
FUNCTIONAL MEMORY TECHNIQUES APPLIED TO

THE MICROPROGRAMMED CONTROL OF AN ASSOCIATIVE PROCESSOR

C.V.W. Armstrong

Dept. of Computer Science, University of Edinburgh

Edinburgh, Scotland

Summary - Consideration is given to the separation of
the data and control structures of a microprogrammed
processor. The use of functional memory techniques
to provide a suitable medium for containing and
processing the control structure and giving one
possible solution to this separation problem is
described. The design considered is that of an
associative processor but the techniques involved are
applicable to other types of processors. Some of the
advantages of this approach are given, together with
their implications in the light of advances in
microprocessor technology and cellular logic.

The microprogrammed control unit of a processor
has the task of fetching and executing instructions.
These two functions can be separated out and handled
by different control units. Similarly, the execution
unit can be divided into a section that processes the
data and a section that processes the control
structure related to that data. Separation of this
sort is useful because each control section is
specialised for a particular type of operation and can
work in parallel with the operation of the other
sections. It sfems possible to separate out these
control sections and in fact the use of a
microprogrammed control unit can go some way towards
making this separation. However, when the control
structure requires processing, the microprogrammed
control unit may borrow resources provided primarily
for the processing of the data structure and parallel
operation is no longer possible.

Take for example the case of the Interdata Model
70 and related models, a minicomputer where vertical
microprogramming predominates. Testing may require
the use of both Sand B busses and does not allow
multiway branches to take place. This, for example,
would be very useful in the processing of interrupts.
The processing of the control structure preempts any
processing of the data structure during microroutine
execution. In fact, the processing of the control
structure is constrained by tbe data processing
architecture of the processor~ A number of
instructions have the same microroutines except for
minor changes, which are restricted to small
differences in the processing of the data structure.
A means of separating out these two control sections
may go some way in compacting the amount of space
required to hold the differing microroutines into one
where no such replications are necessary.

34

The attempt is made here to show how the use of
functional memory techniques may allow a single
microprogrammed control unit to process, in parallel,
the data and control operations involved in executing
instructions. This approach may be useful ,,,hen a
number of modules, such as microprocessors, must be
controlled in parallel.

Functional Memory.

The term functional memor;~as used to describe
the use of a special type of memory to realise various
combinational and sequential functions. A cellular
structure was considered in which each cell could have
three possible values : 0, 1 or X (corresponding to
"don't care"). A rectangular array of thesl3 cells
could perform searching operations on selected fields
of rows of cells and data fields from selectl3d rows
could be ORed together during output. Functional
memory had the advantages of regular circuitry such as
RAMs and ROMs when implemented in LSI. The approach
given here does not require customized LSI.

The Design of an Associative Proce~~£_~

An associative processor was chosen as a
particular example of a subset of parallel p:r'oces~ors,
the subset of all single instruction stream - multiple
data stI'eam pro·cessors. The microprogrammed control
of such a processor was studied. It is an example
where the data structure is considerably different
from the control structure and where control problems
could be acute,. Associative processors are examples
where much of the cost of the machine is concentrated
in the control unit and other supporting modules, and
where improvements in control unit design can have a
significant effect. In Goodyear's STARAN pr'ocessor,
an array of 256 associative elements uses 2,500
integrated circuits whilst the circuits nec~sary to
control and support this array number 6,500.J

There are no fundamental associative properties in
the processor which was developed. These associative
properties are provided by the management of the
processing elements by the microprogrammed control unit.
The associative operations are emulated by standard
arithmetic, logical and testing operations on 16-bit
word-slices of a 256-bit word, as opposed to bit­
slices. The control unit could alternatively emulate
a different type of parallel processor in this
subclass.

A hardware realization of an 8 processing element
associative processor was built using the inventory of
DEC RTM modules available in this Department, with the
addition of a small number of other integrated
circuits.

Architectural Decisions.

It was necessary to choose applications for which
the associative processor could be used whilst its
operation was being studied. It was decided to
consider simple programs for:

(i) air traffic control conflict detection, and
(ii) information retrieval query processing.

Both these applications are suitable for associative
processing. They also seemed complementary in their
use of available operations of an associative
processor.

The hardware realization was constrained by the
inventory of DEC RTM modules and other circuits
available, and this meant that the associative
processor would have 8 processing elements with each
element storing 256 bits as 16 words of 16 bits.
Extensive processing capability was available at the
processing element level.

The associative processor is interfaced to a
sequential processor - an Interdata Model 74. This
stores the program for the associative processor
together with the data for its processing elements,
which can only be accessed in sub-blocks. Thus, the
sequential processor emulates the fetch section of the
ideal associative processor being considered.

There would be I/O traffic of data for PEs during
associative processing which would be reduced as the
number of PEs increased. The point could be reached
when all the data necessary for a particular search or
data processing operation is loaded in one block.

The instruction stream is provided by the
sequential processor and instructions modifying this
stream are trapped by the sequential processor. If
the modification is conditional, it is based on
status information provided by the associative
processor. The associative processor microprogrammed
control unit can determine whether the status
information in the sequential processor requires
modification and transmits this new status, or whether
the new status is for local control and can remain in
the associative processor status register.

The following policies were pursued:-

(a) Apart from supplying the instructions and data,
the sequential processor would be free to process
programs in parallel with associative processor
operation.
(b) An operation or design guideline would be adopted
for the hardware realization only if it could be
employed effectively or even more effectively in a
larger (full-scale) associative processor.
(c) By careful choice of instructions, loops would be
kept at the level of the microcode where they could
be handled more efficiently, thus bringing the
instruction stream as close to a sequential stream as
possible. This is much easier to do in an
associative processor, where iteration can be handled
by exploiting parallelism.
(d) Delays due to modification of the instruction
stream would be minimised by careful choice of the
status information to be transmitted to the sequential
processor and transmission would be well before this
data is required for modifying the instruction stream.

35

The Data Processing Structure

The data processing structure consists of eight
processing elements (PEs). Each PE has 16 16-bit
words, a simple ALU, two accumulators, and a means of
communicating with the MCU. It is a simple data
processor which could be replaced by an LSI
microprocessor.

In examples of associative processors such as
STARAN, serial processing of a 256-bit word allows
several fields of differing length starting at
differing places to be processed. Here, processing
is in parallel on 16-bit words, so the data fields
must be integral values of 16-bits and aligned on a
16~bit word boundary. The STARAN example offers
cons ide:r'ably more flexibility in the layout of data.
However, the necessary control is correspondingly
more complex and may require a lower level of
microprogramming to achieve results such as the
addition of two 16-bit fields.

The possible operations of a PE can be seen from
the first part of Fig. 1.

As shown in Fig. 2, the PEs are connected in a
ring structure, each being able to transmit a 16-bit
word to one neighbour and receive a 16-bit word from
its other neighbour. In addition, the microprogram
control unit (MCU) can transmit a 16-bit word to all
enabled PEs. The MCU can receive the ORing of
16-bit words transmitted from all the PEs enabled.
The MCU can also receive an 8-bit status word from
all the PEs enabled with each PE represented by a
corresponding bit of the 8-bit word.

Note that this processing structure is a general
purpose parallel processor with a simple interconnec­
tion pattern and that the associative properties are
provided by the MCU which alternatively could
emulate a different sort of parallel processor. The
interconnection structm'e is easily modified in the
hardware realization if this should prove necessary.

The Microprogram Control Unit.

The objective is to supply minimally encoded
microinstructions to both the PEs and the MCU. Here,
"minimally'encoded" means that the microinstruction
is decoded as much as economically possible with
respect to the number of control lines and the
corresponding number of pins on functionally
organized LSI chips such as microprocessors, RAMs
and ROMs. Thus, the size of the microinstruction
wordlength is not considered a restraint in the ideal
case.

The requirement, in this case, is that the MCU
must perform a mapping from a user 'instruction of
16-bits to a variable number of 64-bit
microinstructions where the first 24 bits are
minimally encoded for use by the PEs (the data
structure) and the second 40 bits are minimally
encoded for use by the MCU (the control structure).
Note that the MCU microorders are at a slightly
higher level in order to reduce the number of bits
required in the microinstruction.

The MCU is essentially as shown on Fig. 3. Each
block named SPn o.r RPn represents a 16)'~16 scratchpad
memory for the select phase or read phase, respectively.
These will be called functional memories because of the
role that they play in the design.

The basic interpretation cycle is as follows:-
The select phase register breaks up the 16-bit word
stored in it into 4 4-bit fields which address 4 16-
bit words in the select phase functional memories.
The 4 16-bit words so accessed are ORed together and
form the 16-bit word stored in the read phase register.
This word in turn is broken up into 4 4-bit fields and
used to address the read phase functional memories.
This provides the 64 bits of the microinstruction.
The first 24 bits are used to control all the PEs
enabled by the enable register. The second 40-bit
field controls the MCU and either generates another
16-bit word for loading the select phase register or
uses the next 16-bit user instruction to load it. The
same interpretation cycle continues with the only
variations allowed being the way in which the next
16-bit word for the select phase register is determined.

Fig. 1 shows the format that was used for the
microinstruction in the design of this associative
processor. Note that a few bits are as yet unused
and may have their roles assigned later.

A number of other registers, mainly self­
explanatory, are shown in Fig. 3. With proper timing,
one register could hold the 16-bit word for both the
select phase and the read phase. The user instruction
or portions thereof can be loaded directly into the
select phase register. In the DEC RTM realization,
the microinstruction is used directly. If this was
not possible due to synchronization problems then a
64-bit master-slave register could be used with the
MCU and the PEs controlled by the master flip flops
whilst the slave flipflops are being prepared with the
next microinstruction.

A simple example of the use of this MCU is now
given. Consider. that the functional memories are
loaded as shown in Fig. 4. We consider the example
of the user instruction 0001 0010 0111 0001
to read in a variable amount of data into a variable
number of PEs. Now the user instruction is in
general broken into 4 4-bit fields as follows:-

(1) First Field - the instruction operation code.
For example - 0001 - read in a variable amount of data
into a variable number of PEs.
(2) Second Field - any necessary information for the
operation and the PEs, including data or information
where data is to be found (such as data or address
in the next 16-bit word of the instruction stream).
For example - 0010 - load the first (2+1) scratchpad
words of each PEt
(3) Third Field - any necessary information for the
MCU. For example - 0111 - load (7+1) PEs
consecutively. This field is stored in the X
register of the MCU.
(4) Fourth Field - the control level - corresponds to
a particular microprogram. This is inspected by the
MCU to cause switching from one set of functional
memories to another and/or loading or pre loading of
functional memories. For example - 0001 - the
control level 1 microprogram.

Operation commences as follows:-

The fourth field is used for checking that the
appropriate microprogram is loaded. The first field
is loaded into the first 4-bit field of the select
phase register and the second field into the second

36

field 6f the select phase register. The third fiela
is loaded into the X register of the MCU. Thus,
initially the select phase register is
0001 0010 0000 0000
Only SPI and SP2 are used during the initial user
instruction interpretation. This causes thl3 read
phase register to become
0010 0000 1101 0000
Note that the one's complement of 0010 (the count of
the number of words to load into a PE) has bl3en formed
in the third field. The first microinstruction is
output (see Fig. 1 for the operations) and the select
phase register is now loaded directly from this
microinstruction with
0001 1111 1101 0000
Note that a particular bit of the microinstruction
causes the first field of the select register to be
loaded from the first field of the instruction. The
next read phase register contents are
0010 0001 1110 0001
Note that the second field has been incremented to 1
to access the next word in the PE and that the fourth
field also has this value, which will be used in the
next cycle for incrementing the second field again.
Note that the third field has been incremented. The
test whether the right number of words have been input
to a PE has been made implicit because when the third
field reaches 1111, it will cause RP3 to become all
zero. This will cause the user instruction to be
used in loading the select phase register as descr'ibed
above. If the third field of the user instruction as
stored in the X register of the MCU is non-zero, its
value is decremented and the same instruction used
again. Otherwise, the next instruction is used.

The following points need to be made about this
microroutine eXample:-
(1) The functional memories have enough space for' more
instructions than was shown above. The corresponding
write instruction would be
0010 0010 0111 0001
There is space for 14 other instructions which require
the performing of a particular operation sequentially
on a variable number of 16-bit fields of a variable
number of PEs. There are many other possible methods
of using the MCU of which only one example has been
given here. Space restrictions do not permit a
detailed description of the other microprograms for
parallel and associative operations. In the above
example, the minimum amount of interaction between
select phase functional memories in the generation of
the read phase functional memories data has taken place.
It is possible for two select phase functional
memories to contribute alternate bits to a 4-bit
field of the read-phase register and thus allow
multiway branching within the one interpretation cycle.
This could prove useful in instructions where
considerable decoding and decision making was being
employed.
(2) Although primarily designed for associative
processing, the MCU is suitable for other types of
single instruction stream - multiple data stream
processing. Possibly this would require some
extension of the interconnection pattern considered
here.
(3) In addition, it is possible to pick different
modes of interpretation by suitable use of the mode
of interpretation field in the microinstruction.
For example, in the mode of interpretation considered
above, the select phase register is loaded from the
previous microinstruction except in the case when
RP3 is zero. In this case, the previous instruci:ion
is used again if the X register of the MCU is non··zero,
otherwise the next user instruction is loaded.

Another mode tests the activate bit in the micro­
instruction and ORs the value in the X register into
the SPR before the execution of the next stage of
interpretation. Other modes could make direct use of
the status bits in the loading of the select phase
register, thus allowing much of the branching and
iteration to remain at the level of the microprogram.
Although there is much repetition in particular
fields of the above microprogram example, which is
provided for explanatory purposes, the fact remains
that another microprogram when loaded can use these
same fields for entirely different control purposes
and with other forms of repetition. See (vi) below.
Note that the incorporation of the mode of
interpretation as a field in the microinstruction
allows a microroutine to change the mode dynamically
during user instruction interpretation.
(4) Four different microprograms are now available
and can be loaded corresponding to the four possible
control levels specified in the last field of the
user instruction. (Sixteen possible microprograms
could be specified). There would be a delay during
loading. Since a user instruction never requires the
use of more than one of the microprograms, if two
function memory "units" were available, one could be
loaded whilst the other was being used. This is
especially practical since the instruction stream is
close to a sequential stream, and the fetch control
unit could look ahead to the last 4-bit field of the
next instruction. The second functional memory unit
could be loaded by looking ahead for the first
instruction which does not use the current microprogram
and starting to load the required microprogram in
parallel with the rest of the MCU operation. When
this instruction is reached, the MCU switches over to
the second functional memory unit and the above process
can be applied to the first functional memory unit.
Having three functional memory units would take care
of the worst case of user instruction branching with
minimum delay. With a judicious choice of the
instruction classes and the corresponding microprograms
for these ~lasses, the amount of reloading can be
decreased. By increasing the permitted size and
number of functional memories, this problem could be
eliminated altogether.

The use of the above microprogramming technique
has the following additional advantages:-
(i) This form of microprogramming does not seem to be
any more difficult than the microprogramming schemes
of many existing machines, especially when a simulator
is available. It has the advantage of postponing
until late in the design process, the microprogramming
stage, the specification of the control structure and
the operations on it. User microprogramming although
possible is not the main objective of this approach.
(ii) In considering the firmware-software interaction,
this approach allows much of the software to be
concentrated in the firmware. The user writes
instructions at a variety of levels corresponding to
the control level specified in the instruction. At
present, the microprograms are used as follows:-
(1) control level a - resetting, load, store,-'shifts,
tests of PE condition codes, inter-PE communication
(2) control level 1 - input and output
(3) control level 2 - addition and subtraction with
provision for multiple precision arithmetic,
mUltiplication
(4) control level 3 - general associative operations
- the first field of the instruction gives the type
of test. The second field gives the scratchpad
location on which the test is to take place. The
third field directs what will be done with the result
of the test.

37

The user can write programs using the higher level
instructions (such as the general I/O instruction and
the general associative operation) descending to the
lower level instructions only when the final elements
of control are unavailable higher up the hierarchy
(such as instructions that set particular bits in the
enable register). This leads to more compact code
and faster operation.
(iii) In considering the hardware-firmware interaction,
many of the simple flags and small field operations
that a control unit may use, such as condition and
emit fields, are eliminated completely by using this
particular firmware approach. In particular, tests,
multiway branches, complementation, incrementing,
shifting, masking and reformatting can take place
implicitly. Key variables or bits of instructions can
be stored and used when necessary without requiring
any additional emit fields, flags or registers.
Apart from the functional memories, the barest minimum
of extra circuitry and registers are required.
(iv) Fault recovery can be facilitated if this is a
critical factor. A special microprogram could test
all the PEs in parallel, and also test the MCU. The
isolation of the malfunctioning PEs can be
accomplished by microprogrammed control of the enable
register. Since the MCU consists mainly of identical
functional memories, a spare can be switched in if
one shoUld fail. The only critical circuitry
requiring consideration are the small number of MCU
register's and the combinational networks. The
necessary redundancy is therefore limited to these
circuits and a small number of PEs and functional
memories. This would be a negligible cost for a
large associative processor.
(v) There is a minimum delay in processing the data
structure, since by the time the data structure has
been acted upon by a microinstruction, the MCU has
cycled back in parallel and produced the next
microinstruction. Status information when required
need never come from the current microinstruction
execution. This holds true even when a new user
instruction interpretation has commenced. In
particular, there is no delay when a test has to be
made at the microprogram level, where hopefully the
majority of all branches will take place.
(vi) Many instructions can use the same
microinstruction fields (4 l6-bit fields) and only
the fields which are different require placement in a
word of the read phase functional memories. The
other existing fields can be used unchanged'4 This is
one answer to the field combination problem.

Microprogrammed Processors.

The previous section has attempted to show how
it is possible to gain an increase in the capability
of containing and processing the control structure of
a processor by the addition of a minimum amount of
extra complexity in the microprogram control unit.
This was achieved by:-
(i) breaking up decoders for the functional memory
units (or control memory in the conventional case)
into a number of separate decoders,
(ii) breaking up the read phase of the control memory
into a select phase and then a read phase, and
(iii) performing an ORing of the output from the
select phase functional memories. This requires no
additional circuitry when negative logic and open­
collector drivers are used as in the DEC RTM TTL
implementation.

Thus, this is one possible solution. to tlie
problem of designing processors with separate data and
control structures. It would be interesting to
consider this approach in different types of
processors.

In the design of the associative processor, each
processing element was a 16-bit parallel processor
with a limited number of possible low level operations.
This approach was used because of availability, speed
and simplicity. It simplified the microprogramming
and did not require the lower level of control that
a serial processor would require.

Consider however the case where a processing
element is replaced with a microprocessor. This could
still provide enough processing power and storage
per chip if present trends continue. If micro­
processors cost $20-$30 each in large quantities, then
a lK processing element associative processor would
have a hardware cost of $20,000-$30,000 plus the cost
of the control and supporting equipment. The fact
that suitable microprocessors are available and that
a possible MCU uses standard RAMs, ROMs and MSI logic
circuitry means that the development costs are reduced.
For example, the RCA COS MAC LSI microprocessor is very
similar to the PE considered here.

Looking further into the future ,nd considering
the continuum described by Weinberger, by increasing
the number of decoders further, the point is reached
when a decoder is addressing one of two possible
output lines. The functional memory has then reached
the cellular complexity of thjse originally
considered by Flinders, et al. Thus, it is possible
to envisage the same sorts of operations considered
here, in a cellular logic implementation with all of
the many advantages covered by Kautz£

Acknowledgement : I am indebted to Peter Gardner for
mentioning how 16 word memories could be considered
as an extension of functional memories.

REFERENCES -----

(1) C.G. Bell and J. Grason. The~e~ter Transfer
Module De~~~ncept. Computer Design, May 1971,
pp.87-94.
(2) P.C. Anagnostopoulos, M.J. Michel, G.H. Sockut,
G.M. Stabler and A. van Dam. Com£Yter Architecture
and Instru~tio~_~e~DesiE~. AFIPS 1973 National
Computer Conference Proceedings, Vol 42, pp 519-527.
(3) M. Flinders, P.L. Gardner, R.J. Llewelyn and
J.S. Minshull. Functional Memor~a~~General Purpose
~stems _Technol~. Technical Report T.R. 12.088,
IBM United Kingdom Laboratories Ltd, Hursley Park,
Winchester Hampshire, July 1970.
(4) P.L. Gardner. .DIEs:_tional Memory and its
~icroprogra~ming~J~c~tions. IEEE Trans. on Comp.,
Vol. C-20, No.7 (July 1971) pp.764-775
(5) J.D. Feldman and O.A. Reimann. RADCAP: An
Operation~~l'.5iraJlel Processing FacTiTty. AFIPS
1974 National Computer Conference Proceedings,
Vol. 43, pp. 7-15.
(6) C.C. Foster and R. Gonter. Conditional
Interpret~tion_ . .Q:~rat ion Codes-. IEEE Trans. on Comp,
Vol. C-20, No.2, (January 1971), pp. 108-111.

38

(7) A. Weinberger. Hybrid Associative Memory­
Concept. Computer Design, January 1971.
(8) W. H. Kautz. Cellular Logic-in-Memory Arl~ays .
Trans. on Comp., Vol. C-18, No.8, (August 1969),
pp. 719-727.

