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Summary - Consideration is given to the separation of 
the data and control structures of a microprogrammed 
processor. The use of functional memory techniques 
to provide a suitable medium for containing and 
processing the control structure and giving one 
possible solution to this separation problem is 
described. The design considered is that of an 
associative processor but the techniques involved are 
applicable to other types of processors. Some of the 
advantages of this approach are given, together with 
their implications in the light of advances in 
microprocessor technology and cellular logic. 

The microprogrammed control unit of a processor 
has the task of fetching and executing instructions. 
These two functions can be separated out and handled 
by different control units. Similarly, the execution 
unit can be divided into a section that processes the 
data and a section that processes the control 
structure related to that data. Separation of this 
sort is useful because each control section is 
specialised for a particular type of operation and can 
work in parallel with the operation of the other 
sections. It sfems possible to separate out these 
control sections and in fact the use of a 
microprogrammed control unit can go some way towards 
making this separation. However, when the control 
structure requires processing, the microprogrammed 
control unit may borrow resources provided primarily 
for the processing of the data structure and parallel 
operation is no longer possible. 

Take for example the case of the Interdata Model 
70 and related models, a minicomputer where vertical 
microprogramming predominates. Testing may require 
the use of both Sand B busses and does not allow 
multiway branches to take place. This, for example, 
would be very useful in the processing of interrupts. 
The processing of the control structure preempts any 
processing of the data structure during microroutine 
execution. In fact, the processing of the control 
structure is constrained by tbe data processing 
architecture of the processor~ A number of 
instructions have the same microroutines except for 
minor changes, which are restricted to small 
differences in the processing of the data structure. 
A means of separating out these two control sections 
may go some way in compacting the amount of space 
required to hold the differing microroutines into one 
where no such replications are necessary. 
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The attempt is made here to show how the use of 
functional memory techniques may allow a single 
microprogrammed control unit to process, in parallel, 
the data and control operations involved in executing 
instructions. This approach may be useful ,,,hen a 
number of modules, such as microprocessors, must be 
controlled in parallel. 

Functional Memory. 

The term functional memor;~as used to describe 
the use of a special type of memory to realise various 
combinational and sequential functions. A cellular 
structure was considered in which each cell could have 
three possible values : 0, 1 or X (corresponding to 
"don't care"). A rectangular array of thesl3 cells 
could perform searching operations on selected fields 
of rows of cells and data fields from selectl3d rows 
could be ORed together during output. Functional 
memory had the advantages of regular circuitry such as 
RAMs and ROMs when implemented in LSI. The approach 
given here does not require customized LSI. 

The Design of an Associative Proce~~£_~ 

An associative processor was chosen as a 
particular example of a subset of parallel p:r'oces~ors, 
the subset of all single instruction stream - multiple 
data stI'eam pro·cessors. The microprogrammed control 
of such a processor was studied. It is an example 
where the data structure is considerably different 
from the control structure and where control problems 
could be acute,. Associative processors are examples 
where much of the cost of the machine is concentrated 
in the control unit and other supporting modules, and 
where improvements in control unit design can have a 
significant effect. In Goodyear's STARAN pr'ocessor, 
an array of 256 associative elements uses 2,500 
integrated circuits whilst the circuits nec~sary to 
control and support this array number 6,500.J 

There are no fundamental associative properties in 
the processor which was developed. These associative 
properties are provided by the management of the 
processing elements by the microprogrammed control unit. 
The associative operations are emulated by standard 
arithmetic, logical and testing operations on 16-bit 
word-slices of a 256-bit word, as opposed to bit­
slices. The control unit could alternatively emulate 
a different type of parallel processor in this 
subclass. 



A hardware realization of an 8 processing element 
associative processor was built using the inventory of 
DEC RTM modules available in this Department, with the 
addition of a small number of other integrated 
circuits. 

Architectural Decisions. 

It was necessary to choose applications for which 
the associative processor could be used whilst its 
operation was being studied. It was decided to 
consider simple programs for: 

(i) air traffic control conflict detection, and 
(ii) information retrieval query processing. 

Both these applications are suitable for associative 
processing. They also seemed complementary in their 
use of available operations of an associative 
processor. 

The hardware realization was constrained by the 
inventory of DEC RTM modules and other circuits 
available, and this meant that the associative 
processor would have 8 processing elements with each 
element storing 256 bits as 16 words of 16 bits. 
Extensive processing capability was available at the 
processing element level. 

The associative processor is interfaced to a 
sequential processor - an Interdata Model 74. This 
stores the program for the associative processor 
together with the data for its processing elements, 
which can only be accessed in sub-blocks. Thus, the 
sequential processor emulates the fetch section of the 
ideal associative processor being considered. 

There would be I/O traffic of data for PEs during 
associative processing which would be reduced as the 
number of PEs increased. The point could be reached 
when all the data necessary for a particular search or 
data processing operation is loaded in one block. 

The instruction stream is provided by the 
sequential processor and instructions modifying this 
stream are trapped by the sequential processor. If 
the modification is conditional, it is based on 
status information provided by the associative 
processor. The associative processor microprogrammed 
control unit can determine whether the status 
information in the sequential processor requires 
modification and transmits this new status, or whether 
the new status is for local control and can remain in 
the associative processor status register. 

The following policies were pursued:-

(a) Apart from supplying the instructions and data, 
the sequential processor would be free to process 
programs in parallel with associative processor 
operation. 
(b) An operation or design guideline would be adopted 
for the hardware realization only if it could be 
employed effectively or even more effectively in a 
larger (full-scale) associative processor. 
(c) By careful choice of instructions, loops would be 
kept at the level of the microcode where they could 
be handled more efficiently, thus bringing the 
instruction stream as close to a sequential stream as 
possible. This is much easier to do in an 
associative processor, where iteration can be handled 
by exploiting parallelism. 
(d) Delays due to modification of the instruction 
stream would be minimised by careful choice of the 
status information to be transmitted to the sequential 
processor and transmission would be well before this 
data is required for modifying the instruction stream. 
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The Data Processing Structure 

The data processing structure consists of eight 
processing elements (PEs). Each PE has 16 16-bit 
words, a simple ALU, two accumulators, and a means of 
communicating with the MCU. It is a simple data 
processor which could be replaced by an LSI 
microprocessor. 

In examples of associative processors such as 
STARAN, serial processing of a 256-bit word allows 
several fields of differing length starting at 
differing places to be processed. Here, processing 
is in parallel on 16-bit words, so the data fields 
must be integral values of 16-bits and aligned on a 
16~bit word boundary. The STARAN example offers 
cons ide:r'ably more flexibility in the layout of data. 
However, the necessary control is correspondingly 
more complex and may require a lower level of 
microprogramming to achieve results such as the 
addition of two 16-bit fields. 

The possible operations of a PE can be seen from 
the first part of Fig. 1. 

As shown in Fig. 2, the PEs are connected in a 
ring structure, each being able to transmit a 16-bit 
word to one neighbour and receive a 16-bit word from 
its other neighbour. In addition, the microprogram 
control unit (MCU) can transmit a 16-bit word to all 
enabled PEs. The MCU can receive the ORing of 
16-bit words transmitted from all the PEs enabled. 
The MCU can also receive an 8-bit status word from 
all the PEs enabled with each PE represented by a 
corresponding bit of the 8-bit word. 

Note that this processing structure is a general 
purpose parallel processor with a simple interconnec­
tion pattern and that the associative properties are 
provided by the MCU which alternatively could 
emulate a different sort of parallel processor. The 
interconnection structm'e is easily modified in the 
hardware realization if this should prove necessary. 

The Microprogram Control Unit. 

The objective is to supply minimally encoded 
microinstructions to both the PEs and the MCU. Here, 
"minimally'encoded" means that the microinstruction 
is decoded as much as economically possible with 
respect to the number of control lines and the 
corresponding number of pins on functionally 
organized LSI chips such as microprocessors, RAMs 
and ROMs. Thus, the size of the microinstruction 
wordlength is not considered a restraint in the ideal 
case. 

The requirement, in this case, is that the MCU 
must perform a mapping from a user 'instruction of 
16-bits to a variable number of 64-bit 
microinstructions where the first 24 bits are 
minimally encoded for use by the PEs (the data 
structure) and the second 40 bits are minimally 
encoded for use by the MCU (the control structure). 
Note that the MCU microorders are at a slightly 
higher level in order to reduce the number of bits 
required in the microinstruction. 



The MCU is essentially as shown on Fig. 3. Each 
block named SPn o.r RPn represents a 16)'~16 scratchpad 
memory for the select phase or read phase, respectively. 
These will be called functional memories because of the 
role that they play in the design. 

The basic interpretation cycle is as follows:-
The select phase register breaks up the 16-bit word 
stored in it into 4 4-bit fields which address 4 16-
bit words in the select phase functional memories. 
The 4 16-bit words so accessed are ORed together and 
form the 16-bit word stored in the read phase register. 
This word in turn is broken up into 4 4-bit fields and 
used to address the read phase functional memories. 
This provides the 64 bits of the microinstruction. 
The first 24 bits are used to control all the PEs 
enabled by the enable register. The second 40-bit 
field controls the MCU and either generates another 
16-bit word for loading the select phase register or 
uses the next 16-bit user instruction to load it. The 
same interpretation cycle continues with the only 
variations allowed being the way in which the next 
16-bit word for the select phase register is determined. 

Fig. 1 shows the format that was used for the 
microinstruction in the design of this associative 
processor. Note that a few bits are as yet unused 
and may have their roles assigned later. 

A number of other registers, mainly self­
explanatory, are shown in Fig. 3. With proper timing, 
one register could hold the 16-bit word for both the 
select phase and the read phase. The user instruction 
or portions thereof can be loaded directly into the 
select phase register. In the DEC RTM realization, 
the microinstruction is used directly. If this was 
not possible due to synchronization problems then a 
64-bit master-slave register could be used with the 
MCU and the PEs controlled by the master flip flops 
whilst the slave flipflops are being prepared with the 
next microinstruction. 

A simple example of the use of this MCU is now 
given. Consider. that the functional memories are 
loaded as shown in Fig. 4. We consider the example 
of the user instruction 0001 0010 0111 0001 
to read in a variable amount of data into a variable 
number of PEs. Now the user instruction is in 
general broken into 4 4-bit fields as follows:-

(1) First Field - the instruction operation code. 
For example - 0001 - read in a variable amount of data 
into a variable number of PEs. 
(2) Second Field - any necessary information for the 
operation and the PEs, including data or information 
where data is to be found (such as data or address 
in the next 16-bit word of the instruction stream). 
For example - 0010 - load the first (2+1) scratchpad 
words of each PEt 
(3) Third Field - any necessary information for the 
MCU. For example - 0111 - load (7+1) PEs 
consecutively. This field is stored in the X 
register of the MCU. 
(4) Fourth Field - the control level - corresponds to 
a particular microprogram. This is inspected by the 
MCU to cause switching from one set of functional 
memories to another and/or loading or pre loading of 
functional memories. For example - 0001 - the 
control level 1 microprogram. 

Operation commences as follows:-

The fourth field is used for checking that the 
appropriate microprogram is loaded. The first field 
is loaded into the first 4-bit field of the select 
phase register and the second field into the second 
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field 6f the select phase register. The third fiela 
is loaded into the X register of the MCU. Thus, 
initially the select phase register is 
0001 0010 0000 0000 
Only SPI and SP2 are used during the initial user 
instruction interpretation. This causes thl3 read 
phase register to become 
0010 0000 1101 0000 
Note that the one's complement of 0010 (the count of 
the number of words to load into a PE) has bl3en formed 
in the third field. The first microinstruction is 
output (see Fig. 1 for the operations) and the select 
phase register is now loaded directly from this 
microinstruction with 
0001 1111 1101 0000 
Note that a particular bit of the microinstruction 
causes the first field of the select register to be 
loaded from the first field of the instruction. The 
next read phase register contents are 
0010 0001 1110 0001 
Note that the second field has been incremented to 1 
to access the next word in the PE and that the fourth 
field also has this value, which will be used in the 
next cycle for incrementing the second field again. 
Note that the third field has been incremented. The 
test whether the right number of words have been input 
to a PE has been made implicit because when the third 
field reaches 1111, it will cause RP3 to become all 
zero. This will cause the user instruction to be 
used in loading the select phase register as descr'ibed 
above. If the third field of the user instruction as 
stored in the X register of the MCU is non-zero, its 
value is decremented and the same instruction used 
again. Otherwise, the next instruction is used. 

The following points need to be made about this 
microroutine eXample:-
(1) The functional memories have enough space for' more 
instructions than was shown above. The corresponding 
write instruction would be 
0010 0010 0111 0001 
There is space for 14 other instructions which require 
the performing of a particular operation sequentially 
on a variable number of 16-bit fields of a variable 
number of PEs. There are many other possible methods 
of using the MCU of which only one example has been 
given here. Space restrictions do not permit a 
detailed description of the other microprograms for 
parallel and associative operations. In the above 
example, the minimum amount of interaction between 
select phase functional memories in the generation of 
the read phase functional memories data has taken place. 
It is possible for two select phase functional 
memories to contribute alternate bits to a 4-bit 
field of the read-phase register and thus allow 
multiway branching within the one interpretation cycle. 
This could prove useful in instructions where 
considerable decoding and decision making was being 
employed. 
(2) Although primarily designed for associative 
processing, the MCU is suitable for other types of 
single instruction stream - multiple data stream 
processing. Possibly this would require some 
extension of the interconnection pattern considered 
here. 
(3) In addition, it is possible to pick different 
modes of interpretation by suitable use of the mode 
of interpretation field in the microinstruction. 
For example, in the mode of interpretation considered 
above, the select phase register is loaded from the 
previous microinstruction except in the case when 
RP3 is zero. In this case, the previous instruci:ion 
is used again if the X register of the MCU is non··zero, 
otherwise the next user instruction is loaded. 



Another mode tests the activate bit in the micro­
instruction and ORs the value in the X register into 
the SPR before the execution of the next stage of 
interpretation. Other modes could make direct use of 
the status bits in the loading of the select phase 
register, thus allowing much of the branching and 
iteration to remain at the level of the microprogram. 
Although there is much repetition in particular 
fields of the above microprogram example, which is 
provided for explanatory purposes, the fact remains 
that another microprogram when loaded can use these 
same fields for entirely different control purposes 
and with other forms of repetition. See (vi) below. 
Note that the incorporation of the mode of 
interpretation as a field in the microinstruction 
allows a microroutine to change the mode dynamically 
during user instruction interpretation. 
(4) Four different microprograms are now available 
and can be loaded corresponding to the four possible 
control levels specified in the last field of the 
user instruction. (Sixteen possible microprograms 
could be specified). There would be a delay during 
loading. Since a user instruction never requires the 
use of more than one of the microprograms, if two 
function memory "units" were available, one could be 
loaded whilst the other was being used. This is 
especially practical since the instruction stream is 
close to a sequential stream, and the fetch control 
unit could look ahead to the last 4-bit field of the 
next instruction. The second functional memory unit 
could be loaded by looking ahead for the first 
instruction which does not use the current microprogram 
and starting to load the required microprogram in 
parallel with the rest of the MCU operation. When 
this instruction is reached, the MCU switches over to 
the second functional memory unit and the above process 
can be applied to the first functional memory unit. 
Having three functional memory units would take care 
of the worst case of user instruction branching with 
minimum delay. With a judicious choice of the 
instruction classes and the corresponding microprograms 
for these ~lasses, the amount of reloading can be 
decreased. By increasing the permitted size and 
number of functional memories, this problem could be 
eliminated altogether. 

The use of the above microprogramming technique 
has the following additional advantages:-
(i) This form of microprogramming does not seem to be 
any more difficult than the microprogramming schemes 
of many existing machines, especially when a simulator 
is available. It has the advantage of postponing 
until late in the design process, the microprogramming 
stage, the specification of the control structure and 
the operations on it. User microprogramming although 
possible is not the main objective of this approach. 
(ii) In considering the firmware-software interaction, 
this approach allows much of the software to be 
concentrated in the firmware. The user writes 
instructions at a variety of levels corresponding to 
the control level specified in the instruction. At 
present, the microprograms are used as follows:-
(1) control level a - resetting, load, store,-'shifts, 
tests of PE condition codes, inter-PE communication 
(2) control level 1 - input and output 
(3) control level 2 - addition and subtraction with 
provision for multiple precision arithmetic, 
mUltiplication 
(4) control level 3 - general associative operations 
- the first field of the instruction gives the type 
of test. The second field gives the scratchpad 
location on which the test is to take place. The 
third field directs what will be done with the result 
of the test. 
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The user can write programs using the higher level 
instructions (such as the general I/O instruction and 
the general associative operation) descending to the 
lower level instructions only when the final elements 
of control are unavailable higher up the hierarchy 
(such as instructions that set particular bits in the 
enable register). This leads to more compact code 
and faster operation. 
(iii) In considering the hardware-firmware interaction, 
many of the simple flags and small field operations 
that a control unit may use, such as condition and 
emit fields, are eliminated completely by using this 
particular firmware approach. In particular, tests, 
multiway branches, complementation, incrementing, 
shifting, masking and reformatting can take place 
implicitly. Key variables or bits of instructions can 
be stored and used when necessary without requiring 
any additional emit fields, flags or registers. 
Apart from the functional memories, the barest minimum 
of extra circuitry and registers are required. 
(iv) Fault recovery can be facilitated if this is a 
critical factor. A special microprogram could test 
all the PEs in parallel, and also test the MCU. The 
isolation of the malfunctioning PEs can be 
accomplished by microprogrammed control of the enable 
register. Since the MCU consists mainly of identical 
functional memories, a spare can be switched in if 
one shoUld fail. The only critical circuitry 
requiring consideration are the small number of MCU 
register's and the combinational networks. The 
necessary redundancy is therefore limited to these 
circuits and a small number of PEs and functional 
memories. This would be a negligible cost for a 
large associative processor. 
(v) There is a minimum delay in processing the data 
structure, since by the time the data structure has 
been acted upon by a microinstruction, the MCU has 
cycled back in parallel and produced the next 
microinstruction. Status information when required 
need never come from the current microinstruction 
execution. This holds true even when a new user 
instruction interpretation has commenced. In 
particular, there is no delay when a test has to be 
made at the microprogram level, where hopefully the 
majority of all branches will take place. 
(vi) Many instructions can use the same 
microinstruction fields (4 l6-bit fields) and only 
the fields which are different require placement in a 
word of the read phase functional memories. The 
other existing fields can be used unchanged'4 This is 
one answer to the field combination problem. 

Microprogrammed Processors. 

The previous section has attempted to show how 
it is possible to gain an increase in the capability 
of containing and processing the control structure of 
a processor by the addition of a minimum amount of 
extra complexity in the microprogram control unit. 
This was achieved by:-
(i) breaking up decoders for the functional memory 
units (or control memory in the conventional case) 
into a number of separate decoders, 
(ii) breaking up the read phase of the control memory 
into a select phase and then a read phase, and 
(iii) performing an ORing of the output from the 
select phase functional memories. This requires no 
additional circuitry when negative logic and open­
collector drivers are used as in the DEC RTM TTL 
implementation. 



Thus, this is one possible solution. to tlie 
problem of designing processors with separate data and 
control structures. It would be interesting to 
consider this approach in different types of 
processors. 

In the design of the associative processor, each 
processing element was a 16-bit parallel processor 
with a limited number of possible low level operations. 
This approach was used because of availability, speed 
and simplicity. It simplified the microprogramming 
and did not require the lower level of control that 
a serial processor would require. 

Consider however the case where a processing 
element is replaced with a microprocessor. This could 
still provide enough processing power and storage 
per chip if present trends continue. If micro­
processors cost $20-$30 each in large quantities, then 
a lK processing element associative processor would 
have a hardware cost of $20,000-$30,000 plus the cost 
of the control and supporting equipment. The fact 
that suitable microprocessors are available and that 
a possible MCU uses standard RAMs, ROMs and MSI logic 
circuitry means that the development costs are reduced. 
For example, the RCA COS MAC LSI microprocessor is very 
similar to the PE considered here. 

Looking further into the future ,nd considering 
the continuum described by Weinberger, by increasing 
the number of decoders further, the point is reached 
when a decoder is addressing one of two possible 
output lines. The functional memory has then reached 
the cellular complexity of thjse originally 
considered by Flinders, et al. Thus, it is possible 
to envisage the same sorts of operations considered 
here, in a cellular logic implementation with all of 
the many advantages covered by Kautz£ 

Acknowledgement : I am indebted to Peter Gardner for 
mentioning how 16 word memories could be considered 
as an extension of functional memories. 
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