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- ABSTRPCI: A building block approach to configuring large corruter. 
iEerns is attractive because the blocks, either primitive 

processors or small computers, are daily becoming cheaper and 
because this approach alloiis a close match of the pcwer required 
to the pciler supplied. This thesis addresses the design goal 
of an expandable system where there is no premium paid for a 
minimal configuration and the cost of extra units of capacity 
is constant. It is shoiin that a distributed system, a system 
of homogeneous canputers loosely coupled by a cartmunication 
subsystem, is likely to be the best approach to this design 
goal. Some consideration is given to the form of the canmunication 
subsystem but the rain research is directed to.ards the software 
organisation required to achieve efficient co-operation between 
the canputers constituting the distributed system. An organisation 
based on the domain structures of protection schenEs is found to 
have advantages. Hitherto dcirtain management using capabilities 
has been centred around systems with shared. primary memory. This 
is because central tables have been required to implement the 
capability rrechanism. A model is developed which, by restricting. 
the sharing of some items and providing a 'global object' 
managerrent scheme to cover essential sharing, enables central 
tables to be dispensed with and dcmain managenent to be 
distributed. The main goal in achieving this extension is to 
facilitate dynamic and efficient load sharing but the model 
could equally well be used to provide, in distributed systems, 
the protection normally associated with danains. This thesis 
also considers the wider ramifications of distributed systems. 
A simulation program is described and results fran it are analysed 
to give sate insights into factors affecting distributed system 
stability and performance. It is concluded that the above design 
goal of linear expandibility can be attained for a moderate range 
of systems sizes (perhaps fran 1 to 20 canputers). 

and Phrases: distributed computer system, multiple 
computer system, load sharing, homogeneous, domain, capability, 
simulation. 
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CHAPTER 1 

PROLOGUE 

All our yesterdays: 

In 1954, a decade after the first digital computer was 

built, workers at the National bureau of Standards, USA, 

connected together two computers, SEAC and DYSEAC, 

forming the first multiple computer 	system* 	The 

resulting 	system was capable, so they claimed, of 

handling efficiently problems which the two component 

computers could scarcely have handled if each were 

working alone (CODD2]. 	This led them to produce the 

first published proposal 	for the construction of a 

multiple computer system LLEIN58,CURT63I. 	The proposed 

system, PILOT, consisted of three computers: a primary 

computer, a clerical or secondary computer and an I/O 

computer. To quote: 'These computers intercommunicate in 

a way that permits all three to work together 

concurrently on a common problem' and 'The system can be 

used in conjunction with other digital computer 

facilities forming 	an 	interconnected 	communication 

network in which all the machines can work together 

collaboratively on large scale problems that are beyond 

the reach of any single machine'. 
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Despite the confident use of the present tense above 

PILOT did not achieve its design goals. 	It 	was 

decommissioned in the mid sixties, 	its construction 

(started in 1956) never fully cornpleteci although the 

hardware had been working well enough for 'continuing 

difficulties in using primary and secondary (computers) 

together, particularly in program debugging' to be 

experienced (PYKE74] 

This thesis addresses some of the problems involved in 

getting computers to work together. 

before PILOT the sole approach to achieving more 

computing power than that provided by a single machine 

was to build a faster machine. In a 1953 paper Grosch 

wrote: 'I believe that there is a fundamental rule, which 

I modestly call Grosch's law giving economy only as the 

square root of the increase of speed - that is to do a 

calculation ten times as cheaply you must do it one 

hundred times as fast' LGROS531 and Grosch's law, re-cast 

in the positive form as 'the power of a computer is 

proportional to the square of its cost' has in no small 

way encouraged this approach against that of trying to 

form multiple computer systems. 

Grosch's low did not go unchallenged (ADAi62J but some 

ten years later it was given an impressive validation in 

the study of 225 American computers by Knight (KiIG661. 

In a debate on the architecture for large computer 
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systems in 1967 Amdahl, quoting Knight but conveniently 

ignoring a proviso he made about large systems in his 

work, exhorted everyone to 'Keep the faith, baby'  in the 

single processor approach (AMDA67I. 	Amdahl has kept his 

faith to this day as has Grosch URUS761. 	Some of the 

points we raise later (in chapter 2) suggest that there 

is considerable justification for their steadfastness. 

What tomorrow may bring: 

Nevertheless since PILOT there has been an increasing 

number of multiple processor architectures proposed and 

built. These architectures are justified as 

circumventing the current technological limits on the 

power of single processor systems, providing facilities 

to remote users (when the constituent processors are 

situated at geographically different sites) 

(3ERN73,BLAN73,CRAI741, or providing more cost effective 

computing than single processors of equivalent power. 

This thesis is chiefly concerned with multiple computer 

architectures that may provide cost effective computing. 

The imminent prospect 	of 	cheap 	but 	primitive 

microprocessors and 'free' memory (tNITH75J has led to an 

explosion in the size of proposed systems; systems '(of) 

over one hundred active processors' [G00D73J, 'having not 

tens or hundreds of processing elements but many 

thousands' (IRC75) and '(forming) a network of thousands 
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or millions of microcomputers ...0 a range of network 

sizes from 100 to 1,000,000,000 computers' (iJITT76i. 

In 	chapter 2 it is shown that queueinq theory 

mitigates heavily against large numbers of low powered 

processors providing a service equal to that of a single 

processor with 'equivalent' power. Other chapters 

describe some of the mechanisms required for running 

programs on systems with modest numbers of identical 

computers, the overhead these mechanisms produce in each 

computer is shown, at best, to be proportional 	to the 

number of computers in the system. 	Thus the day of the 

million co-operating computers is never likely to arrive. 

Perhaps the most 	telling criticism that can 	be 

levelled both at PILOT and these later extravagant 

architectures is that the designers have concentrated 

only on the hardware requirements and given no thought to 

the software required to achieve co-operation among the 

processors. Anyone attempting to implement one of these 

over-blown systems would also experience 'continuing 

difficulties' in achieving co-operation between 

processors. 	The mechanisms for co-operation have to be 

formulated prior to detailed hardware design. 	The main 

research reported in this thesis has been on the software 

structures required to enable separate computers to 

collaborate to form a single operational entity, a 

distributed system. 
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Cost effectiveness: 

This thesis describes a system that could consist from 

I to perhaps 20 identical computers. trie feel that such a 

system may prove cost effective. For a given cost the 

system might provide more power than a single computer 

system or alternatively a given power might be provided 

by the multiple computer system more cheaply than by a 

single computer. 

We have used the word 'power' several 	times now 

without giving a definition, no satisfactory definition 

exists 	(FULL76J. 	The concept is meant to express the 

overall speed of a computer, how much work it can perform 

in unit time. 	Likewise satisfactory definitions of cost 

are impossible to formulate. 	So we will not add another 

deficient metric of cost effectiveness to the large 

number already in existence. Instead, we instance below 

recent examples of computer use that indicate that today 

Grosch's law is not valid and indeed may have been only a 

self—fufilling prophesy used by computer manufacturers to 

price their products. 

In 1973 Heart and others studied possible replacements 

for the I1P machines in the ARPA network tHEAR73,UR1iS75J, 

The IMP machines perform a single function, namely the 

control of packet switching in the ARPA network. [he 

amount of computing power this function requires varies 

depending on where the IMP is situated in the network. 
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Heart and his coworkers, after performing smulations, 

concluded that systems constructed from upto 14 simple 

minicomputers would be cheaper than using a single faster 

machine. Using a multiple computer system they could 

also vary the number of computers in each IMP system to 

match the intended load, thus providing even greater 

savings* 

Schaeffer (SCHA75J has reported on a costing exercise 

that resulted in a chemistry department shifting its 

computing load away from a centrally run large machine to 

a 24 bit word minicomputer. The department's computing 

allowance bought them 32 hours of CPU time a year on a 

CDC 7600. The rate structure of the CDC 7600 reflected 

simply the cost of operation of the machine, its purchase 

price having been paid by an outside agency. Schaeffer 

found that the same annual budget would, over 4 years, 

pay the purchase price and running costs of a 16K word 

minicomputer. The minicomputer was purchased and the 

department's programs were founa to run, on average, 35 

times slower on the minicomputer than on the CDC 7600. 

Twenty hours a day operation of the minicomputer was 

achieved so that the department's annual budget 

purchased, in effect, 200 hours of CL)C 1600 time instead 

of 32. 

Fuller (FULL76) has attempted a detailed comparison of 

the price/performance ratio of a PDP 10 and C.mmp, a 

system of up to 16 minicomputers (tJULF721. He 



encountered problems in defining performance and cost. 

He used two physical characteristics as measures of 

performance: instructions executed per second and 

processor memory bandwidth. The former is biased towards 

primitive machines that do little work with each 

instruction, while the latter is biased towards large 

machines which may in each memory cycle be fetching more 

data than they use. Therefore Fuller claimed, the two 

measures provided bounds for performance estimates and he 

calculated a factor of 4 in cost effectiveness of C,mmp 

against the most cost effective POP 10 configuration. 

There 	have 	also 	been 	reports 	of 	commrcial 

applications being mounted on systems of minicomputers at 

considerable savings over using single higher powered 

computers. A hospital in the USA has an operational 

system of 10 Data General Novas to perform all its data 

processing (CARR751. Jagerstrom has described plans for 

a company to computerize by putting each application on a 

separate minicomputer [JAGE71. He claims that the end 

system will be cheaper than if a single computer was 

used, with the added advantages that the computer power 

for each application need be acquired by the company only 

when it is ready to mount the application and, as in the 

case of the hospital above, some processing can proceed 

when one of the minicomputers has failed. 

It is not difficult to give reasons for the increasing 

hegemony of small computers. 	Large computers 	are 
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characterized 	by 	low 	volumes 	of 	production and 

significant 	manufacturer 	commitment 	to 	software. 

Successful small computers sell in much larger quantities 

and 	their 	software 	support 	is 	lower, sometimes 

nonexistent. 	Software production is a fixed overhead 

independent of the volume of sales. 	Expected sales 

volume dictates the fraction of this and other overheads, 

such as design cost and tooling up Cost, which will be 

included in the individual selling price. Volume of 

production also affects the Construction cost of each 

unit, greater volumes mean that more automated methods of 

production will be cost effective. The low volume of 

sales of large systems means that the same technology has 

to be retained over a long period to recoup the original 

investment, but older technology is more expensive per 

Se, and also in assembly 	costs 	because 	of 	the 

proportionally higher component counts LI3LAK751. Ut 

course the cheaper computers are, the more will be sold. 

Overall there is a cascade of effects making small 

computers cost effective for more and more applications. 

The big question is whether or not small computers can 

be tied together to make more powerful systems that still 

retain their cost effectiveness. Does the overhead 

produced in amalgamating small machines into a larger one 

swamp the cheapness of the small machines? 

A building block approach 10AV1721, where identical 

computers are added to a system until the required power 
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is achieved would be beneficial both to manufacturers and 

users. 	Manufacturers are often required to produce a 

range of computers of 	identical 	architecture 	but 

differing 	power. 	Each type of computer requires 

designing afresh and may be implemented using different 

semiconductor technology from the other types, thus 

negating many of the benefits of large 	production 

volumes. 	Using a number of low power computers to 

fabricate the computers at the high power end of the 

range means that only one design is needed and this will 

be produced in extra large volumes. The user, unless he 

buys a computer for a single static task, has to be aware 

of the cost of obtaining an increase in capacity as his 

requirements increase. This usually leads him to 

purchase 	a system with capacity in excess of his 

immediate needs and may later involve him in having to 

dispose of some hardware and buy a more powerful system 

if his requirements grow too large. 	Buying a system 

exactly matched to his needs and expanding it 	(or 

contracting it) when those needs change, by altering the 

number of building blocks, can provide obvious economies 

for the user. 

Both manufacturers and users would be looking for 

systems with low initial cost and linear expansion costs. 

If, because of the requirement of being expandable, a 

small system costs a lot more than an equivalent 

non-expandable system then it will be difficult to sell 

the expandable system. Likewise a system where added 
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building blocks become less and less cost effective 

because overall performance diminishes as extra building 

blocks are added, would be limited in usefulness. 	What 

is required is a fixed cost/performance ratio. 	The 

marginal 	increase in power with the addition of an extra 

computer should be constant (or nearly so) no matter how 

many computers there are already in the system. There is 

often an expectation of general synergism in multiple 

computer systems, that is the total power in the system 

is expected to be somehow greater than the sum of the 

individual computers' powers. thile there can be limited 

synergistic effects as a system expands, overall the 

total 	power available is just 	that provided by the 

constituent computers. it is impossible to provide 

indefinitely a diminishing cost/performance ratio as the 

number of computers in a system grows. 

In the next chapter we look at the two basic ways of 

amalgamating computers: multiprocessor systems, where 

primary memory is shared between all processors, and 

distributed systems, where computers are kept separate 

but interact with one another using some form 	of 

communication system. 	e describe the drawbacks of both 

multiprocessor architectures and single processor 

architectures compared to distributed systems and the 

rest of the thesis concentrates on distributed systems. 

Chapter 3 examines the various forms the communication 

system can take and chapter 1  looks at operating systems 
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structures suitable for distributed systems. 	Une of 

these operating system structures, the kernel/domain 

architecture is further described in chaoter 5, ihe rest 

of the thesis then details facets of the design of a 

distributed system using the kernel/domain structure and 

describes a simulation program that was used to study 

some performance questions that arise concerning the 

design. 
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CHAPTER 2 

MERITS OF VARIOUS HARD.IARE ORGANIZATIONS 

A useful taxonomy of computer architectures has been 

defined by Flynn (FLYN72I. He divides systems into 3 

types: 

SISD: (single instruction acting on single 	item of 

date) the conventional uniprocessor system. 

SIMD: 	(single 	instruction acting on multiple data 

items) systems with vector hardware, 	associative 

and parallel processors. 

MIND: 	(multiple 	instructions acting on multiple data 

items) 	multiprocessor 	systems 	and 	computer 

networks. 

(For completeness there is also the MISD type,  which 

others have taken to denote instruction pipelining 

machines (HIG373,THUR751). 

Systems 	of 	the SIM) type have been the chief 

candidates for solving large scale problems beyond the 

limit of conventional machines. They have always been 

"one-off' and economics would seem to be a secondary 

consideration in their construction. It is now generally 

conceded that there are some special problems, weather 

forecasting being the most often quoted example, for 

which these architectures are the most appropriate but 
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'these are special-purpose machines and any attempt to 

apply them to an incorrectly sized, or designed, problem 

is an exercise in futility' (IHURI5J. 

There is a spectrum of 	iIMD systems, 	ranging from 

tightly coupled multiprocessors systems to trans-world 

networks. The system that is described in this thesis is 

a network that lies towards the multiprocessor end of the 

M1MD spectrum. It consists of a number of homogeneous 

(that 	is 	highly compatible, 	if 	not 	identical) sites 

connected by a communications subsystem. [he whole 

system is envisaged to be local in extent, fitting into a 

cabinet, a room or, at most, a building. Each site is 

assumed to consist of a single processor with its own 

memory soace. 	The term 'distributed system' has been 

arbitrarily appropriated to denote this. 	There is no 

logical 	reason why the sites in a distributed system 

should not each consist of multiprocessor systems, but to 

avoid confusion we do not consider such a case here. 

To place distributed systems in context we examine the 

benefits and drawbacks of MIlt) systems compared to $150 

systems, particularly in relation to time sharing. 
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SECTION 1: QUEUEING THEORY CONSIDERATIONS 

In order to gain mathematical tractability, queue 

theoretic models are always idealized abstractions that 

omit many of the details of reality. The results of 

queueing analysis nevertheless often indicate fundamental 

constraints that cannot be breached by any strategy. 

Organizations:  

In a queueing theory approach to hardware organization 

the differences between architectures are represented by 

replicating servers and by having different queueing 

mechanisms. Figures 2.1 to 2.7 give the representation 

of various systems each having a total service capacity 

of C operations per second and each having an overall 

arrival rate of jobs, requests for service, of X requests 

per second. We assume that the mean number of operations 

requested by each job is l/M. To ensure that the systems 

have the capacity to ultimately deal with all jobs 

arriving the further assumption is made that X/}'C < 1. 

The ratio A/j.iC is called p , the utilization, as it gives 

the ratio of the mean number of operations requested of 

the system per second V/A to the number of operations the 

system can perform per second, C. 

The SISO architecture, the single processor system is 

represented by figure 2.1. This is the classical single 

server queueing system, the backbone of queueing theory. 
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Single processor 
Figure 2.1 

1 

Multi processor 
Figure 2.2 

Distributed system with intantneouS jockeying 
Figure 2.3 



Analytic expressions for the mean response time, It 	that 

is the average elapsed time between job arrival and job 

completion, have been found for large classes of 

probability distributions of the arrival rate and service 

times of jobs, and for a number of queueing disciplines 

such as first come first served, round robin and so on 

(see for example KLEI75,KLE176). The simplest case is 

for first come first served systems where both the 

inter-arrival times between jobs and the size of jobs 

have 	(negative) 	exponential 	distributions. 	The mean 

response time is given by 

1/VC-X) 

The tightly coupled multiprocessor system, 	with i%J 

processors is represented by figure 2,2. in the 

multiprocessor system it is assumed that service of jobs 

is from a common core queue. Analytic results are known 

for T only when the service time is exponentially 

distributed (KL1174i. For the case of '2 with 

exponential arrival times the result is 

T 	2fiC/((pCf)J(jUC'X)) 

Figure 2.6 gives graphs (adapted from (KLEI74)) for the 

normalized response time (when,u,C1) for 'J1, the single 

processor 	case, N2 and N10, assuming exponential 

arrival and service times. 	There is an approximate 

solution, 	Kinqman's 	conjecture, 	for I for general 

distributions of arrival times and service times, 	for 

when P is close to It given by  

I 	Np/A+(C+ptC)/2A(1P) 
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where CC4 is the squared coefficient of variation of the 

inter-arrival times and C is the squared coefficient of 

variation for the number of operations required by a job 

(KLEJ7Li 

Figure 2.3 shows a queueing system that has separate 

queues for each server but is subject to instantaneous 

jockeying. The last entry in a queue moves 

instantaneously to another queue if that queue becomes 

shorter than the queue it is in. This represents the 

ideal, 	physically 	unattainable, 	for 	load 	levelling 

distributed systems. Because such systems do not share 

core they do not have a common queue of jobs, but if the 

distributed system wants to keep the load on all 

processors the same, then jobs will be moved around to 

try to attain this. 	In the real world moving jobs will 

take some time, 	during which the load situation could 

change again. 	Instantaneous jockeying means that no 

processor is idle when another server has jobs waiting 

for service. It has been shown that because the idle 

time of servers is the same as in the common queue system 

above that the mean service time will be the same as well 

(LEEAÔbJ 

We make a distinction between load levelling, where 

jobs are moved aoout from queue to queue, and load 

balancing where the system attempts to even out the load 

on each server solely by directing incoming jobs to the 

queue of the server that is most likely to be able to 
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Distributed system: go to shortest queue 
Figure 2.4 
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Distributed system order of arrival 
Figure 2.5 



serve them first. 	Figure 2.4 depicts the system where 

incoming jobs are allocated to the processor with the 

shortest queue, and the job remains in that queue. 

Obviously in this situation it is possible for one server 

to be idle while another server has jobs waiting, hence 

the utilization of servers will be lower than in the 

common queue or instantaneous jockeying system, and the 

average response time will be higher. Definite formulae 

for I have not been derived. 

Figure 2.5 represents the situation where arriving 

jobs are allocated to each server in turn, 	irrespective 

of load. 	We would expect this to give worse response 

times than the case above where jobs go to the processor 

with the shortest queue. 	The arrival rate of jobs at 

each server in this case is A/N and the 	squared 

coefficient 	of 	variation of the arrival times is 

In the case of exponential arrival 	times the effective 

arrival 	time distrioution for each server is N stage 

Erlangian, a situation that has been solved analytically 

when there is exponential service times. Niore generally 

if we consider Kingman's approximation we have 

I 	Np/)+(C+NfC)/2Xç1p) 

Thus the increase in response time over the common queue 

system is confined to the term N C and so depends on 

the number of servers and the coefficient of variation of 

the number of operations required for each job. If each 

job requires exactly the same number of operations (i.e. 

CO) then there would be no increase in response time 
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using this allocation of jobs to each server in turn 

instead of using a common queue. Unfortunately in 

computer systems the coefficient of variation of service 

times is likely to be large. 

Figure 2.6 represents the extreme situation of no 

coupling at all between systems. The population of jobs 

is divided into N categories a priori so that the arrival 

rate at each server is )/ti and the squared coefficient of 

variation remains C. This type of system can arise when 

the users are divided into N equal groups and each group 

is permanently assigned to one computer. It also arises 

when functionally specialized computers are used so that 

each server can only handle one type of job. We assume 

here that there are N types of job and that the overall 

average number of each type of job is the same. 	In this 

case the response time is exactly N times what 	it would 

be for the single server with capacity C because each 

server is an independent server with capacity C/N. 	For 

the case of exponential 	arrival and service times the 

average response time is given by 

T = N/(pC-)J 

If the average fraction of jobs going to each server is 

not identical for all servers then the same mean response 

time (but not the same variance) will be obtained if the 

capacity of each server is adjusted to be in proportion 

to the average number of requests received by that server 

(keeping the overall capacity equal to C). 
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Figure 2,7 shows a pipeline or N stage tandem system. 

Here we assume that each job requires an average service 

of 11Np operations from each server in turn. In the case 

of exponential arrival and service times Burke's theorem 

(KLEI75J states that the mean response time is given by 

I 

which is the same as the completely decoupled system 

above. 

Implications 

Our excursion into queueing theory results has shown 

that the various ways of configuring systems to give a 

capacity of C operations per second do not all give the 

same response times. Figure 2.8 shows the deterioration 

in response time (normalizing ^C to unity) as the 

capacity C is divided among 1,2 and 10 servers, the 2 and 

10 server systems either taking jobs from a common queue 

or havinq instantaneous jockeying. These response curves 

were drawn under the assumption of negative exponential 

arrival and service times, but similar curves could be 

drawn using the Kingman approximation. They 

unequivocally show that unless the utilization p is very 

close to 1, when response times are very long anyway, 

having a single server gives better response times than 

dividing up the capacity among N servers. For batch 

processing systems it is possible to attain a processor 

utilization close to 1. 	To attain reasonable response 

times for time shared systems an operational 	range of 
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utilizations 	is 	likely to be in the region of 0.6<p<0.9 

(E3ELL701. For such an operational range replacing a 

single large processor by a number of microprocessors, 

say, of the same total power (ignoring overheads) is 

going to result in worse response times. 

If other considerations lead to the adoption of multiple 

servers then the results presented above indicate that an 

effort should be made to maximize the utilization of 

servers. Systems where no server can be idle while there 

are jobs waiting for service, the common queue and 

instantaneous jockeying systems above, have a better mean 

response time than systems where there is a possibility 

of servers being idle while there is outstanding work. 

Specialization of servers so that each can only serve a 

subset of jobs, or so that every one of them has to be 

involved in the service of all jobs, gives the worst 

response time. 	Thus the above analysis indicates that 

there are increasing gains to be made by 

accepting any job at any server (processor) 

attempting to load balance by directing incoming jobs 

to the shortest queue 

attempting to load level 	by shifting jobs from the 

ends of queues to shorter queues. 

As 	we 	stated 	in 	chapter 	1, 	the 	expansion 

characteristics of a system are important. 	Figure 2.9 

depicts the normalized response time for three systems, 

each with exponential arrival and service times. The N1 
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system has a single server of capacity C and an arrival 

rate of requests X. The i'J2 and 110 systems have 2 and 

10 servers respectively, each server having a capacity Cr 

and the arrival rates at 'th.ese systems are assumed to be 

2.1 and bA respectively. (Again equivalent curves could 

be drawn using the Kingman approximation). Figure 2.9 

shows a pleasing feature of expansion of the number of 

servers while keeping the load per server constant; in 

the time sharing operational range mentioned above there 

is a decrease in response time. Ihe minimum possible 

mean response time is simply the mean service time and 

this is attained, for all values of ,P<1, when there is an 

infinite number of servers. So the decrease in response 

time, as another server is added, tends to zero as the 

number of servers becomes large. 

Queueing networks and bottlenecks: 

A closed network queueing system consists of a finite 

number of jobs (customers) that cycle around queueing for 

service at a number of nodes. After a job has received 

service at a node it moves to another node to queue there 

for service. Closed network queueing systems can model 

the behaviour of time sharing systems better than the 

models we discussed above. Ihe fixed number of jobs 

represents the restrictions in time shared systems on the 

total number of concurrent users. Resources other than 

the central processor, such as disks, from which there is 
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a requirement for service can be represented as nodes in 

the network system. 

After Moore IMDOR711 analysed the P1TS time sharing 

system using a closed network queueing model, a rash of 

papers appeared applying closed network queueing models 

to the study of time sharing systems. These efforts are 

surveyed by Kleinrock (KLEI76I. We will not discuss them 

further except to examine the concept of the 

'bottleneck'. 

tNhen a system has more than one type of resource in 

demand, then as the load on the system is increased (by 

increasing the number of jobs in the system), 	the 

utilization of the resources will increasee 	eventually 

the utilization of some resource will get very close to 

100 	so 	that 	the 	utilization 	cannot 	increase 

significantly as the load increases. 	At this stage a 

long queue containing almost all 	of the jobs in the 

system will build up waiting to use the resource. 	This 

resource is a bottleneck and the overall response time of 

the system becomes completely dominated by the response 

time of the bottleneck. (The response time analyses we 

gave above are valid therefore when processing power is 

the bottleneck in a system). 	A system where the 

utilization of all resources approach 	10070 together is 

called a balanced system. 
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Memory requirements: 

Recently borgerson (130NG76J has examined another facet 

of -replacing a single processor with N slower processors 

to give the equivalent capacity. He considered a single 

processor system that achieved adequate processor 

utilization when it had enough primary memory to sustain 

a multiprogramming level of K (that is K jobs, or working 

set, could reside in the primary memory at once). by a 

very simplistic analysis 	he 	determined 	that 	the 

'equivalent 	multiprocessor system (with N processors) 

would require enough primary memory to contain N1-c1 jobs 

to achieve the same processor utilization. 	Certainly . 

processors cannot all be gainfully employed processing K 

jobs if K is less than N. The longer response times of 

processor systems translate into longer job residency in 

primary memory. 

Adequacy of queueing theory models: 

Queueing theory does give some very useful insights 

into how various systems will 	behave. 	But there are 

restrictions 	placed on service times, queueing and 

service disciplines, and particularly interactions 

between different resources in the system (e.g. queueing 

theory cannot model the constraint that both primary 

memory space and a processor have to be available before 

a job can be executed). In consequence queue theoretic 
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approaches cannot be used for detailed analysis of 

systems. Perhaps the last word should go to Kleinrock, 

whom we have used as a source for many of the results 

quoted in this section. 

'The mathematical structures ... created in attempting 

to describe real situations are merely idealized 

fictions, and one must not become enamoured with them 

for their own sake if one is really interested in 

practical answers' (KLEI76J. 

SECTION 2: PHYSICAL AND COST CONSIDERATIONS. 

There are of course many 

theory predicted performance to 

considering an architecture. 

paramount factor. 	Ne now look 

that 	affect 	the 	cost 	or 

architectures. 

factors besides queueing 

be taken into account in 

Cost effectiveness is the 

at a number of factors 

performance of various 

Overheads: 

The computation required to manage a list or queue 

grows at a faster than linear rate as the size of the 

list or queue grows (HANS73I. Thus the overheads in 

managing a system with a large number of users are 

28 



proportionally much greater than for a system with a 

small number of users because the former will have longer 

queues. 	A multiprocessor system and a single processor 

system of equivalent power will 	have approximately the 

same management overheads (but there will be some added 

complexity in dealing with multiple processors). However 

in a distributed system some of the lists and queues are 

partitioned amongst the sites so that there is a 

reduction in the overheads of managing thorn. 

Some port, perhaps all, of an operating system must be 

resident in the primary memory of a computer at all 

times, using up memory space that would otherwise be 

available to user programs. In a system with multiple 

servers which are not completely independent, extra 

operating system software is required to achieve the 

necessary cooperation among the servers (t3ORG76J. 

However in a multiprocessor system only one copy of an 

operating system is shared among all the processors. 

This impacts favourably on the expansion characteristics 

of a multiprocessor system because added memory can he 

almost entirely dedicated to user programs. In all 

multiple computer systems that we know of that do not 

have shared memory, apart from the system we develop in 

this thesis, each computer has its own complete, or 

nearly complete, operating system. One of our chief aims 

has been to make as much software as possible shared 

among all the sites in our distributed system so that 

increasing the size of system means that proportionally 

29 



more primary memory space is available for useful work. 

Parallelism: 

If in the queueing theory analysis above each and 

every job presented to a multiserver system could be 

split into exactly N parallel phases of equal duration, 

one phase for each server, then the response times of the 

multiserver system would be equal to that of the 

equivalent capacity single server. 	However, apart from 

such operations as overlapping 1/0 with processing, 

parallelism in general purpose computing is difficult to 

find, both at the macro level 	and the micro level 

ETJAD70). 	Examples of programs decomposed into parallel 

modules [THOM72,FULL76J 	seem to us 	to 	be 	rather 

contrived. vie do not think that parallelism can be 

relied upon as a factor to bring the performance of 

multiple orocessor systems up to that of single processor 

systems. 

Functional specialization 

Many 	designs 	for 	distributed 	systems 	and 

multiprocessor systems utilize 	functionally specialized 

processors 	[JUSE74,COL076,AE75,FAR7,LYL74,SEL1 7  

Computer networks of large machines, usually at separate 

locations, 	are 	often 	justified 	by the differing 
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characteristics, hardware or software, of each computer, 

or host, in the network (FW8E70,GHEL73,CULE73J. 

In the case of networks joining together already 

existing machines, functional specialization does offer 

potential for increased throughput and perhaps reduced 

response times compared to the original situation of not 

having a network at all. [his is because if each host is 

offered highly conformable work it can process it faster 

than if it has to process all types of job. Forms of 

close co-operation, such as load levelling or balancing, 

although often cited as design goals for 	networks 

LR08E70, HU'JE72] have yet to be realized. 	basically the 

overheads in achieving closer co-operation 	LHICK71, 

SMIT7,FRD73i outweigh the benefits. t4e feel functional 

specialization will continue to be the raison d'etre of 

geographically dispersed networks of large computers. 

In the case of distributed systems and multiprocessors 

the gain in effective capacity 	through 	functional 

specialization has to be very large to offset the 

queueing theory gains in response time that can be 

achieved by making all processors capable of executing 

all jobs. Functional specialization often gives rise to 

very simple forms of operating systems, usually of the 

hierarchic (REYL74,RUJA74Ll or pipeline variety LFAR874). 

But—the overall 	system can be very inefficient. 	Ihe 

average response times we quoted above for functionally 

specialized servers are valid only when the distribution 
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of 	server 	capacities 	exactly 	matches 	the 	load 

characteristics. 	If there is a mismatch then the average 

response times will be worse. 	Thus there is the problem 

of determining the exact characteristics of the workload 

on a system and making sure that it stays  stable over 

time. 	Obtaining a balanced system and expanding it in a 

balanced fashion is not easy for small systems. 	For 

small 	hierarchical, 	or star, 	systems 	the 	central 

supervisory 	processor 	which allocates work to the 

specialized servers is likely to be underutilized (if 

there is to be any slack capacity for expansion) making 

the system non cost-effective. For large systems where 

each type of server is replicated many times balance is 

easier to achieve and the theoretical response time 

approaches that of a system with homogeneous servers, 

because the overall load at any particular instant does 

not vary far from the average load IKLEI74J. In 

hierarchical systems though, the central node is likely 

to run out of processing power so that it cannot handle 

the allocation of work to specialized servers fast enough 

to keep them busy. 

All 	hierarchically 	organised 	multiple 	processor 

systems, ones with a supervisory processor, suffer from 

the twin oroblems of underutilization of the supervisory 

processor, 	and hence diminished cost effectiveness, in 

small systems, and eventual 	debilitating inadequacy of 

supervisory processor capacity as the system grows large. 

Since our stated aim is 	low cost small systems with 
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linear expandability we do not consider hierarchical 

systems further in this thesis. 

As 	for functional specialization, we believe that the 

types of processor that will be manufactured in the 

greatest volumes will be general purpose processors. 

Referring back to our discussion of manufacturing costs 

in chapter 1, general purpose processors therefore will 

cost the least. So, because of their likely low cost and 

definite advantages in small systems, we concentrate on 

systems containing homogeneous processors and ignore 

functional specialization, it so happens however that 

the design we develop in this thesis can quite naturally 

handle functional specialized computers, as we show in 

chapter 7 when we discuss peripheral handlers. 

Availahi I ity: 

In theory both multiprocessors and distributed systems 

should be capable of graceful degredation as components 

fail. In practice, for general purpose systems, this is 

likely to be translated into high availability; a failing 

component need only be isolated, not repaired, before the 

system, with reduced capacity, can be used again. The 

single processor system is completely unusable in the 

event of a processor fault until the fault nas been 

repaired. 
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In the production of highly reliable 	computers, 

distributed systems and multiprocessors can be used more 

effectively than double or triple replication of a single 

processor system. 	There are however special 	techniques 

involved 	in the attainment of high reliability tSCO174l, 

which we are not going to pursue in this thesis. 

Large single processor systems: 

From the queueing theory results above a single fast 

processor system would seem to be the best choice. there 

are however two points that need considering in relation 

to the queueing analysis: 

Frequently large computer systems cannot be reasonably 

modelled as a single queue for processor service. 

Often channel 	capacity is a restricting factor and 

even if the system is balanced it is unlikely that 

there will be a single channel of sufficient capacity, 

rather there will be a number of channels (probably 

specialized) of lesser capacity so the poorer response 

characteristics of multiple servers could occur 

anyway. 

The initial assumption in the comparisons was that the 

single processor was uniformly N times as fast as each 

processor in an N processor system. 	However it is 

unlikely that the single processor will be N times as 

fast at context switching. As a processor gets faster 

it uses more and more fast registers which will have 
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to be saved (or drained when pipelines are used) on 

context switching. To avoid too frequent context 

switching large systems use peripheral processors, 

communications processors and/or front end processors; 

hence incurring some of the disadvantages associated 

with multiple servers and functional specialization. 

Even with these aids a greater proportion of computing 

capacity is still likely to be wasted by context 

switching in the single processor environment than 

with slower processors where the 'opportunity' loss on 

a context switch is much smaller. 

If 	it maintains its single server characteristics the 

large scale single processor system offers superior 

performance in general purpose computing compared with 

other architectures of equivalent capacity. but when the 

above factors are combined with the cost considerations 

we described in chapter 1, and the poor availability and 

expansion characteristics of single processor systems we 

see that the case for overall superiority is not so clear 

cut. Considering that they give relative ease of 

expansion, 	high availability and the possiblity 	of 

achieving a capacity not technically feasible with a 

single processor, multiprocessor systems and distributed 

systems are certainly worth investigating. 
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Distributed systems versus multiprocessors: 

The distinguishing characteristic of a multiprocessor, 

its 	shared 	memory, 	gives 	the multiprocessor its 

advantages over distributed systems. these advantages 

are greater speed of interprocessor communication and 

larger size of contiguous memory. In a distributed 

system the various sites can only co-operate by sending 

messages to one another, which takes a longer time than 

using shared tables and semaphores in multiprocessor 

systems. (But since, for example, the processors in a 

distributed system do not have to co-operate over the 

management of shared primary memory, the inter processor 

communication mechanisms will be invoked less frequently 

than in multiprocessor systems). 	A large contiguous 

memory usually 	leads to greater efficiency in handling 

large problems (VflTTbBi. The packing problem, fitting 

complete jobs or working sets into available memory 

(AGRA75], is obviously less severe for one large memory 

than for a number of small memories. 

Shared 	memory is also responsible for the poor 

features of multiprocessor systems: expensive and 

expansion limiting memory access circuitry, contention 

and software lockout. 

In a multiprocessor system more hardware is required 

to provide access to shared memory (and to peripherals). 

The access speeds to memory will be slowed either by the 



inclusion of 	a crossbar switch (with high initial cost 

and inflexible limit to expansion) or a bus 	for which 

processors have to bid. 	Alternatively the memory units 

can be multiple ported making them more expensive and 

again limiting expansion ISEAR751. 

Memory contention occurs in multiprocessor systems 

when a processor cannot access a word of memory because 

some other processor is using the access circuitry. 	The 

partial solution to this can be expensive; 	replicating 

the access circuitry by providing storage in modules and 

then providing interleaving circuitry so that accesses 

are 'random'. Jith random access in a system where the 

number of processors is equal to the number of memory 

modules the utilisation of processors and memory falls 

quickly to 50% as the number of processors is increased 

U3HAN73a,BHAI\173b, bURN73,BASK761. However if the access 

time for a word is far shorter than the average time to 

process the word, as is likely to occur if MO5/LSI 

microprocessors are used LNEYL74J, then the effects will 

not be as severe as this. with high pertormance 

processors obtaining the necessary extra memory bandwidth 

to reduce contention could be costly. Cache design for 

multiprocessors 	is difficult 	(IANGIbJ 	and of dubious 

efficacy. 	In contrast caches can easily be employed in 

the 	single 	processor 	computers that constitute a 

distributed system, if they are required. 
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In multiprocessor systems software lockout occurs 

(MADN68J. Processors executing certain parts of the 

operating system will need to alter tables or have unique 

access to some resource. Other processors executing the 

same code will have to wait for the previous processor to 

finish. This problem can be ameliorated by setting many 

locks, each held for very short periods of time but then 

the cost of setting the locks begins to erode efficiency. 

The two most publicised multiprocessor systems with 

more than two or three processors are C.mrnp 	LvULF7, 

INULF74aI and Pluribus (HEAR73,OR'JS75). Both these 

systems try to circumvent the problems of shared memory 

by providing all processors with private memory as well. 

Pluribus is a special purpose system and the decision as 

to what goes into shared memory and what goes into 

private memory is a static one taken at design time. In 

the case of the general purpose C.mmp system there does 

not seem to be any methodology developed for using 

private memory. 	Private memory is only a partial 

solution to the above problems anyway, 	it lessens the 

amount of contention but does not significantly affect 

software lockout or the cost of the access circuitry. 

A system developed to work where there is no shared 

memory could easily be adapted to a situation where some 

of the memory is shared, but the converse is not true. 

So it makes sense to develop a distributed system and 
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then see if some form of shared memory will 	improve 

Performance 	while 	not 	degrading 	the 	expansion 

capabilities of the system. 	ive raise this topic again in 

chapter 11. 

With an appropriate communication 	subsystem 	and 

software organization a distributed system can exhibit 

most of the advantages a multiprocessor system has over a 

completely decoupled system of computers, while avoiding 

the limiting effects of shared memory. the next chapter 

examines the required features of a communication 

subsystem and chapters 14 to ti are devoted to the 

development of the software organization. 

Features of the distributed system we propose are: 

It is a unified system with respect to peripherals. 

Each memory is private to one processor. Low speed 

memory, matched to processor speed, can be used and 

there will not be any contention, bus or switch 

delays. 

Less memory is required than for the same number of 

independent computers because one copy of most of 

the operating sytem is required for the whole 

system. 

Li) It 	is very modular, easily expandable and has high 

availability. 

5) A form of software lockout will occur but 	it will 

probably involve less wasted processor capacity 

than software lockout in a multiprocessor system. 
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Delays will arise when a component of the operating 

system that 	is shared between sites is required 

simultaneously at two sites. 	However the waiting 

time need not be unproductive; the waiting site can 

do other work if there is any outstanding, in 

contrast to the'busy' wait required at the low 

levels of multiprocessor operating systems. 

Some of the management software will be as simple 

as that required if each site were an independent 

single computer, although other software will be as 

complex as that in multiprocessor systems. 

There will 	be a communications overhead, which is 

not present in multiprocesor systems. 

The response characteristics will be almost 	those 

of a multiprocessor system because the software 

structure 	comes 	close 	to 	implementing 

'instantaneous jockeying'. 
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CHAPTER 3 

COMMUNICATIONS 

A distinguishing feature of distributed systems is 

that co-ordination and control of processors is performed 

by messages rather than by the use of common tables. 

Since we wished to study the software structures needed 

to ensure co-operation between the sites in a distributed 

system, our initial reaction was that the form of 

communication subsystem for passing messages between the 

sites was immaterial to our problem. However we soon 

came to realize that the properties of certain types of 

communication subsystem could have a significant effect 

on the nature and efficiency of some of the software 

mechanisms required. This chapter investigates what kind 

of interconnection Structures, communication subsystems, 

are appropriate for distributed systems. 

In a distributed system there are two types  of 

communication, one, which we refer to as a message, is 

intended for one site only while the other, which we call 

a broadcast, is received by all sites in the system. 

Messages arise chiefly in the transmission of data and 

code between Sites. Broadcasts can be used to propagate 

information about the overall state of the system. 
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First, we examine types of communication subsystem and 

then, 	in 	section 2, we examine how the type of 

communication subsystem impacts upon 	the 	flow 	of 

information in the distributed system. 

SECTION 1: COMMUNICATION SUBSYSTEMS. 

There are a number of criteria that we can use to 

distinguish 	the 	various 	types 	of 	computer 

interconnections, 	existing or planned 	(ANI)E75,CHOU75, 

SEAR751. 	For our distributed system we are looking 

primarily 	for 	low 	initial 	cost 	and expansion costs 

directly proportional to the number of sites in the 

system. 	Since we propose our computers to be separated 

by physically short (although electrically long) 

distances we do not require the existence of alternative 

routes between sites, Nevertheless we do not want the 

failure of a site to disrupt the communications between 

other sites. It is also desirable that the logic 

required 	for 	directing 	messages 	to 	their final 

destination be simple. 

Centralized (star) communication systems (figure 391) 

undoubtedly offer easy routing but their cost is not 
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proportional to the size of the network. 	ihe central 

switch, be it a processor or other device (CULU76], is 

required whether there are two or twenty computers in the 

system. Further if this switch is going to have 

sufficient capacity to allow for reasonable expansion 

then it is going to be underutilized for small systems, 

probably making the small distributed system unattractive 

compared with an equal Cost single processor system. One 

method of expanding the capacity of the central switch 

has been proposed by Goodwin (G00073 1 ANL)E751, He wanted 

to replace the centre switch by a whole tree of lower 

capacity switches (figure 3.2), expanding the size of the 

tree to give greater capacity when required, the cost is 

logarithmically proportional to the number of leaves (the 

computers doing the useful work) and the message 

direction algorithm is simple. but unless (undesirable) 

measures are taken to confine most communication to be 

between leaves that are close to each other, on average 

(n-fl/n of the messages will pass through the root switch 

when there are n nodes connected to it. Thus for message 

transmission at least, a tree structure gains little over 

a star network in capacity ana introduces substantial 

delays to achieve this. 

Of 	the non-centralized interconnection schemes a 

distinction can be drawn between those where the message 

travels directly to its destination without being copied 

and retransmitted, and those where a message travels in 

stages. The latter is often the preferred method in 
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trans-world type networks 	[ROjE70,KLEI70,PDUZ73,HINC7 4 l 

where the complexity of 	routing is justified by the 

reduced cost and enhanced reliability of transmissions. 

The only simple structure of this type is the loop and as 

this meets the criteria of expandaoilitv and linear cost 

we will study it further, along with the two kinds of 

direct distributed communication subsystem: complete 

connection and shared bus. 

Complete connection: 

A complete connection communication subsystem (figure 

3.3) was proposed for the Karoline network (MADS7). For 

small systems it has favourable features. Most computers 

have a few unused peripheral slots and simple links are 

cheap and quite easy to construct LUND/li making initial 

cost low. There are no routing problems. Flow control, 

ensuring that there are not too many messages in the 

communication subsystem simultaneously, is not required 

as each link involves only two computers. An inoperative 

computer does not affect the links between the remaining 

operational computers. 	The total bandwidth grows as the 

number of computers in the system grows. 	Lxpansion is 

not directly limited but it does get progressively more 

expensive. The nth computer added requires n-i links. 

Karoline being a network of 8 machines required 28 links. 

Bearing in mind that the links are probably quite cheap 

compared with other resources in the network, 28 links 
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could well be the best form of communication system. 

broadcasting however, will usually consist of separate 

sequential transmissions to each of the other sites. 

This will present a greater load on the sending site than 

systems where a broadcast involves only one transmission. 

Loop: 

The DCS system (FAR872aI, the initial version of the 

Maryland DCN project (LAYM74J and the waterloo Mini-net 

(MANN75) 	all use a loop or ring communication subsystem 

as depicted in figure 3.. 	In a simple form a ring 

system 	is 	a 	cheaper alternative to the complete 

connection system. 	For n sites n links are required and 

each site requires only one send slot and one receive 

slot. 	A site sends a message to its neighbour which 

decides if it is the message's aestination or not. 	If it 

is not, then the message is passed on to the next 

neighbour. 	1ihen a message has reached its destination it 

can be removed from the system (Maryland DC) or marked 

as received, 	a copy kept, and allowed to circulate back 

to the sender (DCS). 	This later option provides an 

automatic though expensive acknowledgement. 	Given that 

this comolete loop traversal 	is to take place, 	a 

broadcast involves the same overheads as a message. 
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A message however causes interruptions to all sites it 

travels through and so sophisticated ring systems such as 

DCS use special units, ring interfaces, one for each 

site. 	Each interface unit buffers messages and only 

interrupts 	its site if the message is for it [REAM76J. 

With intelligent design, the ring 	interface units also 

overcome 	the 	problem 	of the whole loop becoming 

inoperative should one computer in it fail: in such 

circumstances the ring interface unit can simply pass all 

messages ono The use of special units means that 

beneficial features, discussed in section 2, can be 

added. 

The total 	bandwidth of a loop system is fixed. 	As 

more computers are added the bandwidth available to each 

decreases and the average time for a message to reach its 

destination increases. Since there can be a number of 

messages in the loop the question of flow control arises. 

If a site puts a new message in the loop without regard 

for messages that may arrive and require retransmission, 

messages will have to be destroyed. Simple forms of flow 

control can involve considerable loss of bandwidth. The 

flow control schemes of some loop systems have been 

evaluated by Reames and Liu IREAM76J. The Newhall loop 

uses a round robin, token to send new message, scheme. A 

site can only introduce new messages into the loop when 

it has the token, it sends the token onto the next site 

in the loop at the end of its new messages. 	The Pierce 

loop divides the bandwidth 	into fixed sire slots or 



'message Crates' and a site can send a new message if an 

empty crate is passing through its interface unit. 

Unless messages are all the size of slots or less, they 

have to be broken into packets with all the attendant 

problems 	of 	disassembly, sequencing, buffering and 

reassembly LFRAN72J. The DCL1J loop of Reames and Liu 

uses buffers in the interface unit to hold incoming 

messages (that have to be retransmitted) while new 

messages are introduced into the loop. Thus any site, 

providing its buffer has space equivalent to the length 

of the new message, can introduce a new message almost 

immediately. Although transmission time around the loop 

is increased it is shown by Reames and Liu that, overall, 

messages arrive faster than in the other two schemes 

because they do not have to wait so long to enter the 

loop. 

If it is desired to stop an errant computer from 

monopolising the available bandwidth 	a 	distributed 

control scheme leads to further loss of bandwidth. In 

the OCS system control over runaway sites takes the form 

of the ring interface units permitting each site one 

outstanding message at a time (FAR872cJ. 

Shared bus: 

The KOCOS system (A1S0751 uses a conventional 32 bit 

wide bus while Ethernet 	(METC761 	is a serial bus of 

particularly simple construction. 	For the distriouted 
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use of a bus some interfacing unit is mandatory (figure 

3.5). KOCOS uses one which also aids in controlling 

interprocess communication IALD71. 

The Ethernet interface does not have extra functions 

but would, with the addition of an associative memory 

function, come closest to what we think would be the 

ideal type of communication subsystem for a distributed 

system. As it stands it is an adaptation of a type of 

ALOHA net (A8NA70,BIND75J with 'radio' transmission 

constrained to be along about 1 Km of co-axial cable. 

The interface units have a policy of deferment; they will 

not start transmitting a message if they detect a 

transmission is in progress. This means that collisions 

(and subsequent aborting of transmissions) can only occur 

in the first part of a transmission, in the period equal 

to the round trip time - for Ethernet less than 8 

microseconds. With long packets, 4096 bytes, and the use 

of a 'quadratic back-off' policy when transmitting after 

collisions, 	a utilization of the communication subsystem 

of over 95% is expected when it 	is heavily loaded. 

(METC76]. 	Unlike KOCOS which has a round robin policy 

for control of the bus, in Ethernet any site can send a 

message immediately if the communication subsystem is not 

already in use. 

The total 	bandwidth of a bus is limited but, unlike 

the loop, there is not 	an 	increase 	in 	message 

transmission time as more sites are added. 	Flow control 
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in KOCOS is provided by the round robin scheme while in 

Ethernet it is done by a 'back-off' policy whereby if 

messages collide retransmission is not attempted for a 

random period, the mean of which increases with the 

recent collision rate. 

A broadcast in a shared bus system can he effected 

with a single transmission. Suitable design of interface 

units can ensure that the bus is not brought down by the 

failure of a site. 

SECTION 2: INFORMATION GATHERING. 

Global object management: 

As will be described 	in detail 	in 	later chapters, 

there are certain objects in the distributed system that 

are global; any site must be able to 	locate the sites 

where these objects currently reside. 	As the size of a 

distributed system goes up the movement of global objects 

between sites will increase. Thus we need to be 

concerned with the efficiency of management of global 

objects. There are several ways that the location of 

global objects can be determined. 
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Continuous updating: Every time a global object moves 

a broadcast of the form ,'X has moved to site I" 	is 

performed. 	Each site has a directory of global 

objects which it updates when it 	receives 	the 

broadcast. 

Central directory: Une site is specially designated as 

a directory site. Each time an object moves a message 

of the form "X has moved to site I" is sent to the 

directory site. 	To determine the location of an 

object a site sends a "Vuhere is X" message to the 

directory site which sends a return message "X is at 

I'. So one message is sent every time an object moves 

and two are required to determine its location. 	A 

central directory is in some sense antithetical 	to a 

distributed system. 	However there exist schemes for 

nominating a new site as the directory holder should 

the old one fail (tY1E711 and a directory can quickly 

be reconstituted with a broadcast of "What global 

objects do you have". tve cannot escape the fact that 

part of the directory site's workload will be 

inherently different from the rest of the distributed 

system (perhaps causing problems with load balancing). 

Should this workload prove to be a bottleneck then a 

hybrid system with a number of directory sites using 

continuous updating amongst themselves can be used. 

Each directory site would service a different set of 

non—directory sites. So an object move generates a 

message 	to 	one directory site and a 'limited' 
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broadcast 	from that directory site to all 	other 

directory sites. 

3) Search: No directories are held at any site and there 

are no updating messages or broadcasts when a global 

object moves. Instead, in this scheme every time a 

site wants to know where an object is it broadcasts 

"where is X". The site where the object resides 

replies with a message "X is at my site". 

14) Associative: The only reason a site can have for 

wanting to know the location of a global object is so 

that it can send a message (related to the object) 	to 

the site the object is at. 	An alternative form of the 

search scheme is simply to broadcast the relevant 

'message' and have each site decide if the broadcast 

is related to any global object currently residing at 

it. Although this form of search involves less 

messages than the other, the length of the broadcast 

is likely to be a lot longer. Hence direct 

broadcasting is only appropriate when a broadcast 

involves the same load on the communication subsystem 

as does a single message, namely when systems have 

interface units. A direct broadcast scheme can be 

made most attractive by the use of extra hardware in 

the interface units. If an associative memory, 

containing the names of all the global objects at a 

site, is attached to the message receiver at each site 

then the decison to accept a broadcast can be made 
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without reference to the main processor tFAR872cJ. 

There is no need for directories to be kept, or 

updating information broadcast, when objects move. 

There is no delay when a message has to be sent to 

(the site at which resides) a global object and sites 

are not continually being interrupted-to answer "where 

is X" broadcasts. Whether an associative memory is 

used or not, direct broadcasts require care with 

synchronization; the global object may be in transit 

between sites when the broadcast is made so that no 

site picks up the message. - 

To compare the schemes outlined above we assume that 

each site requires to know the whereabouts of a global 

object 0 times a second. ve further assume that a fixed 

fraction r of these seekings of global objects results in 

the object being moved. lhis fraction r is substantially 

less than 1. These figures are assumed to be independent 

of N the number of sites in the distributed system. 

Of the above schemes the search method is definitely 

inferior to continuous updating. The computation 

required to update a directory may be equivalent to that 

required to determine if a global object is resident but 

not all requests for the location of an object result in 

the eventual moving of the object. Hence the continuous 

updating method involves fewer broadcasts, and does not 

involve the extra "X is at my site" message nor the 

enforced delay while the information is gathered; all for 
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the cost of memory space to hold a directory at each 

site. In the distributed system we are proposing the 

number of global objects is likely to be of the order of 

10 to 50 so the cost of holding a directory at each site 

is not great. 

The 	evaluation 	of 	the 	other schemes requires 

consideration of the form of broadcasting. We have seen 

that for the bus and the DCS type loop a broadcast costs 

the same as a message in terms of the use made of the 

total bandwidth. Also the work done by the sender is 

identical for either. (The total work done by the 

receivers of a broadcast will always be N-i times that 

for a message). For simple complete connected schemes a 

broadcast will use N-i times the bandwidth that a message 

uses, and the sending site will probably have to do N-i 

times the work. For either type of communication 

subsystem the total number of messages (related to global 

object management) received per second for the whole 

system will be N(N1)Qr when using continuous updating. 

When using a central directory scheme (N-1)Ur update 

messages will be received by the directory site per 

second, (N2)Q messages will be received by the directory 

site requesting the whereabouts of a global object and 

the same number of replies will he received at the non 

directory sites, making a total of 

0((N-1)rF2N4) messages per second. 

Thus, considering only the minimization of work done 

receiving messages for a value of r = U (which turns out 
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to be a high value, see in the sample outputs of appendix 

A the ratio of TRANSFERRED DOMAINS to TRANSFERRED 

PROCESSURS), the number of sites, N, would have to be 

greater than 203 for a central directory to perform 

better than continuous updating. hen a directly 

connected communication subsystem is used, the number of 

transmissions is the same as the number of receptions. 

But for a communication subsystem where a broadcast costs 

the same as a message then the overall work done using 

continuous updating is 	less, so that 4 will have to be 

even larger before break-even point is reached. 	6y the 

time we quantify the inconvenience of having to wait 

before a global object's location can be retrieved, it is 

obvious that a central directory is inferior to 

continuous updating. 

We have already mentioned that an associative scheme 

is not appropriate for a system with a directly connected 

communication subsystem. So, for such a system, 

continuous updating of directories held at every site is 

the best scheme. 

In an associative scheme there are no management 

messages sent whereas, for a loop or oust a continuous 

updating scheme gives NOr broadcasts per second resulting 

in N(N-1)Or messages received. The fraction of total 

available 	processor 	power used in maintaining the 

updating is directly proportional 	to N. 	For either 

scheme the fraction of processing power used in actually 
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shifting global 	objects is 	constant. 	Hence 	the 

associative scheme is preferable to continuous updating, 

at least when large scale sites are envisaged. The 

interface units required for an associative scheme may 

not be cost effective for a distributed system of very 

low powered computers. 

Status updating: 

We show later (in chapter 7) that there is a need for 

each site in a distributed system 	to 	have 	some 

information about the status of other sites. vhile the 

information each site requires about the others is not 

very much, it must be reasonably up to date. The ideal 

is that every site has completely accurate information 

about every other site, but finite communication 

bandwidth makes its achievement impossible. A 

distributed system can tolerate some misinformation, but 

the more inaccuracies there are the less efficient the 

system will become. Below we discuss four ways that 

sites can interchange information. 

1) Broadcasts at regular intervals: This policy has the 

obvious disadvantage that the number of broadcasts 

will go up in direct proportion to the number of 

sites. 	Since every site will have to be interrupted 

to receive its message from every other site, 	the 

fraction of computing power in the distributed system 
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dedicated to updating this information 	will 	be 

directly proportional 	to the number of computers in 

the system. 

Exchanges between 	neighbours: 	To 	mitigate 	the 

interruptions caused by receiving broadcasts from 

every site, each site could be arbitrarily assigned 

several neighbours with whom they exchange tables of 

the supposed state of the whole system, similar to the 

way routing information is updated in the ARPA network 

(MCQU72]. The neighbour relationship would have to be 

intransitive so that information about every site in 

the system would work its way through to all other 

sites. 	The items of 	information built up from 

exchanged tables will be of different vintages. There 

can be no guarantee that sites will confine their 

normal transactions to their neighbours; the frequency 

of exchange of information will have to be high if a 

good proportion of the information is not to be 

hopelessly out of date. 

Appended to normal messages: Since the amount of 

information each site would want to propagate about 

its state is quite small, perhaps 2 bytes worth, 	it 

can be appended to normal messages between sites 

without increasing overheads significantly. 	Indeed in 

systems such as Ethernet (NEJC76J 	there is a fixed 

minimum length message and since many control messages 

could be shorter than this length, the information 

about the sender's site Could be carried for free. 

The sending of messages is likely to be correlated 
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with changes of state of the site, and hence with the 

need to update the information held at other sites. 

When to sites are interacting heavily they would have 

their information about each other updated frequently. 

When a site is idle and not 	interacting with other 

sites, 	its status would not be changing, so it would 

not interrupt other sites to give them information 

they already have. 

4) Eavesdropping: 	In 	a 	system that appends state 

information to messages and has associative interface 

units, such as loop or bus systems, the interface 

units can take over the 	intelligence 	gathering 

function. 	Further 	they need not use messages 

addressed tojust their site, but can pick the state 

information (and, 	of course, source) of all messages 

that pass on the loop or bus. 	The interface unit 

would maintain a status table so as not to interrupt 

the kernel too frequently. The kernel could consult 

the table when required. 

Compared 	with 	the first two methods, appending 

information to normal messages has the obvious advantages 

in the conservation of bandwidth and minimization of 

interruptions to sites. The differences between 

information gathered from all messages transmitted and 

from only the messages received at one site will be minor 

if broadcasts are a frequent occurance. Thus when a 

directory update scheme of global object management is 

being used (with its broadcasts of changed object 
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location) the information contained in only the messages 

received at a site will probably be sufficient. However, 

because there are few or no universally received 

broadcasts, eavesdropping will probably be required in a 

system with a bus or loop type communication subsystem 

(that used an associative scheme for managing global 

objects). There is nothing to stop a site performing a 

dummy broadcast when it felt its status had reached some 

critical 	point and this would help homogenize the 

information held at all the sites. 	whether or not the 

extra hardware complexity of eavesdrooping would be 

justified requires investigation. 

In the simulation of a distributed system described 

subsequently we assume a completely connected system. 

Continuous updating is used to locate global objects and 

status information is appended to normal messages. This, 

we considered, would represent a practical implementation 

at the present time. However we feel that any major 

implementation in the future should involve the 

construction of an Ethernet type of bus with associative 

recogniton of addresses and perhaps an eavesdropping 

mechanism to gather status information. Distributed 

control serial buses, like Ethernet, offer ultimately 

very high bandwidths using very cheap materials (ADArl7ôJ, 

the transmitting media (coaxial cables, twisted wire 

pairs or optical fibres) are passive giving immensely 

enhanced reliability compared to schemes involving a 

complex of electronics in the transmission. 
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CHAPTER 4 

OPERATING SYSTEMS ARCHITECTURE 

The designer of an operating system for a distributed 

system has two alternatives: he can attempt to 

'distribute' some form of existing single site operating 

system architecture or he can invent something completely 

new. 	Lacking the required inspiration for the latter 

approach we have chosen the former. 	Consequently, to 

decide on an appropriate architecture for an operating 

system, in a distributed system we now look first at 

those for single or multiprocessor/shared memory systems. 

SECTION 1: SINGLE SITE SYSTEMS ARCHITECTURE. 

Apart from manufacturer's monolithic monstrosities, 

operating systems can be classified into four types of 

architecture. The classification is made according to 

how users, resource allocators and other operating system 

services are permitted to interact. A goal of all 

architectures is to make interactions between functions 

'clean'. Ideally each function does not have to make any 

assumptions about how other functions are realized. he 

emphasize before we describe the categories that they are 

not mutually exclusive. 
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Hierarchical: 

Dijkstra 	is the initial proponent and publiciser of 

the strictly 	hierarchical 	architecture 	(L)1JK68,DIJKI1, 

PARN74a). 	Each function of an operating system is 

statically assigned a unique 	level. 	The 	first 	level 

function is programmed to work on the bare hardware. The 

second level 	is programmed for a system consisting of 

hardware plus the first level. 	It should not have direct 

access to the resources controlled by the first 	level, 

rather it should invoke the primitives provided by the 

first level. 	Likewise the second level 	provides the 

environment in which the third level is programmed and so 

on. 	Each layer 'rebuilds' the machine into a more 

attractive machine. 	In Dijkstra'S view an operating 

system should be regarded as a sequence of layers, built 

on top of each other and each of them implementing a 

given imorovement (DIJK71J. implementing a strictly 

hierarchical system requires a firm belief that functions 

can be totally ordered, a foreswearing of co-routine type 

interactions between functions, and skill in determining 

the correct ordering. Interactions between functions can 

be one way only. 

Virtual machines:  

Variants of the virtual machine architecture form the 

largest class of extant structured operating systems. 
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Basically 	every 	user has his access to resources 

(including core and CPU time) 	controlled ty a single 

virtual 	machine monitor or kernel (we prefer the later 

term). 	This kernel is entered, perhaps by instruction 

traps, every time the user wishes to acquire or release 

resources and it ensures a 'fair' distribution of the 

resources. The user is encapsulated. He cannot 

communicate or interact with other users, he is to all 

intents and purposes using a private computer, a virtual 

machine. 

The pure virtual machine variant provides no more 

facilities to the user than the bare underlying hardware 

(or the hardware of another machine) 

[MEYE70,PARM72,13UZE73,GOLD73J. 	The user has to provide 

himself with an operating system to run 	in his virtual 

machine. 	This can lead to horrendous inefficiencies 

(GOLD741. 	The kernel knows nothing of the behaviour of 

the operating systems in the virtual machines, nor are 

the operating systems aware that there is a kernel 

beneath them. The advantages claimed for this kind of 

virtual machine are that it provides absolute security 

because there is no interaction between virtual machines 

(POPE74I (which security has proved elusive (ATIA761) and 

allows for the development of new versions of operating 

systems concurrently with the useof previous versions. 

In other virtual machine type operating systems such 

as EMAS 14HIT731 or MULFICS (C0Rb72), the kernel 	(called 
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Supervisor in EMAS) provides a number of services, such 

as managing paging and dispatching, to enhance the bare 

machine. The individual 'operating systems' (Directors 

in the case of ElAS) are integrated with this kernel. 

They do not duplicate the provided facilities and they 

could not run on the bare machine. Tuning of integrated 

systems does not present the same dificulties as does 

tuning a pure virtual machine system. The harsh 

principle of the user having access to his virtual 

machine, and nothing else, can be softened by kernels 

that allow limited interaction with other virtual 

machines, usually via the filing or I/O subsystems. 

Intercommunicating processes: 

Process orientated systems have received a Jot of 

attention in the literature (KNOF74] and are exemplified 

by the RCOOO system of brinch Hansen LHANS7OJ • 	The 

kernel, 	the basic addition to the hardware, provides the 

primitives for process management, creation, deletion and 

intercommunication. 	The rest of the system is a set of 

processes. 	In particular, resources are identified with 

the processes that control them. 	Processes are capable 

of 	interacting with any other process, which is a 

considerable difference 	from 	the 	virtual 	machine 

situation. This interaction is accomplished using 

messages. The kernel provides primitives such as 'send', 

'receive' and 'wait for answer' which buffer messages and 
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suspend processes. The 	kernel normally 	implements an 

addressing 	scheme that 	gives processes unique names and 

allows messages 	to be addressed using these 	names. In 

some 	systems 	extra refinements are added, 	such 	as ports 

(bALZ71], 	so 	that 	a process does not 	even 	have 	to he 

aware 	of 	the 	name of 	the 	process with 	which 	it is 

communicating. 

Parallel execution of a program is catered for in a 

process orientated system. A subroutine call can be 

implemented as a message (containing the parameters) to a 

processr this process returning a message when it is 

finished. Thus systems often provide for the creation 

and destruction of processes and the placing of processes 

in a hierarchy of ownership (parenthood). This feature, 

although used by Brinch Hansen in RC4000, has recently 

been criticized by him as being very costly in runtime 

checking of the validity of process interactions 

(HANS74,HANS75I. He advocates that an operating system 

should consist of a fixed number of processes, at least 

for a given configuration with fixed resources. 

Hansen is also critical of messages passing systems 

because they create an artificial 	resource, message 

buffers [HANS73). 	Message buffers require management; 

their allocation has to be carefully controlled 	if 

deadlock, through insufficient message buffers, is to be 

avoided. 	Transmission of messages involves copying 

messages into and out of buffers, 	which is highly 



wasteful 	of processing power, 	at least in single site 

systems. (One message passing architecture, that of the 

GEC 4050 [GECC75), has microprogrammed functions to help 

with message passing, making it more efficient). Larnpson 

(L1MP71] feels that message systems are not convenient to 

the user; elaborate conventions, or contortions 

(SPI73b), are required to find out the unique names of 

the operating system facilities the user requires. 

Kernel/domain architectures:  

Maintaining effective control 	in operating systems 

that permit general 	interactions has been likened to 

'running a three ring circus, in one ring, in the dark' 

(METC72a). 	Capabilities are the basis of a mechanism 

that allows general interactions to be controlled. 

Capabilities allow each computation access to all the 

resources it needs at a particular time. All resources 

are intrinsically shareable, but the computation is not 

permitted access to resources that, at its current stage, 

it does not require. Strictly speaking a computation has 

access to all resources, and only those, for which it 

possesses a capability (DENf6) the assumption being 

made that the ownership of capabilities is so organised 

to reflect the current requirements of the computation. 

The set of resources that, at any time, a computation 

has access to is called a domain 	1LANP71,NEEO74J, also 
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sphere of protection (DENN66J, parameter space [LVAN67J, 

NCP [5P0071], local name space (LJS) (ULF7), protected 

subsystem [SALT74) and domain incarnation ESPIE73aI. 

Should a computation prove erroneous its effect is likely 

to be limited to the current set of resources. The 

resources are enclosed in a 'firewall' and incorrect 

operations are contained and do not affect the rest of 

the system. Capabilities normally restrict the type  of 

access a computation has to its resources; for example a 

segment may be accessed as read/write, read only or 

execute. 

The basic function of a kernel in a capability system 

is twofold: 

It enforces, or assists the hardware (NEED74,ENGL741 

to enforce, the restrictions on the type of access to 

resources, 	including null 	access to resources for 

which no capability exists. For example the kernel 

should detect and disallow a destroy operation on a 

file when the computation only has the capability to 

read from the file. 

The kernel assists computations to change the set of 

resources that they have access to (when this function 

is not carried out entirely by the hardware). Ne call 

this operation an interdomain jump. 	The kernel, 	in 

giving and removing access to resources, can control 

allocation of resources if it wishes. 

Process dispatching is usually included in the kernel 

also, 	either for operational 	efficiency or to ensure 
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fairness in the allocation of 	processing 	capacity 

(WULF75b) 

Resource management in capability systems is performed 

in two different manners. Either a computation is given 

direct access to a resource by being given a capability 

for the resource, or the computation is given just a 

capability for the execution of a piece of code that 

manages the resource. In the latter case, to execute the 

code, the computation changes its domain, or protection 

environment, and the resource becomes available to it. 

But the resource is available to the computation only for 

as long as it executes the appropriate code. 

In many capability systems the kernels provide the 

facilities by which a computation can create, delete, 

copy, contract the types of access, or expand the types 

of access (FERR741 of a capability. 	These facilities are 

appropriate when the type of dynamic creation 	and 

deletion 	of processes (and accompanying resources), 

mentioned above in relation to message passing systems, 

forms the underlying philosophy of the system. Ne have 

adopted the same attitude as 3rinch Hansen and tried to 

do without such dynamic behaviour. There are unsolved 

problems in combining copying of capabilities with the 

ability to delete them LREDE741 and we think these 

problems would only be exacerbated 	in 	a 	network 

environment. 



SECTION 2: DISTRIt3UTED OPERATING SYSTEMS. 

One of our goals in designing a distributed system is 

that there should be as little as possible duplication of 

operating systems functions at different sites. We want 

the normal work of the system to be uniformly distriouted 

across the system and, following the philosophy of 

Spooner LSP0071J and others that the constituents of the 

operating system should not be specially privileged, we 

determined that the ideal is to have systems functions 

spread across the system as well. 

Another 	goal, 	derived from the queueing theory 

considerations expressed in chapter 2, is to have no site 

idle while there is work waiting to be performed at other 

sites. This implies that load le veiling or balancing 

operations must occur frequently, and that the overhead 

of these operations is an important factor in the success 

of a distributed system. 

With these two goals in mind we now examine the four 

types of operating system architecture, outlined above, 

for their suitability for extension to distributed 

systems. 
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Hierarchical: 

The hierarchical 	scheme is superficially the most 

attractive of the architectures to extend to a 

distributed system. The 'only' requirement is to provide 

a bottom layer that somehow melds the different machines 

in the systems into a 'more attractive' single macnine 

upon which Dijkstra's or any other operating system can 

be placed. Goodwin (G00D731 has tried to take this 

approach with his tree structured distributed system. 

The basic layer provides for communication between 

physical 	processors 	and 	a tree structured naming 

mechanism. On top of this was planned a process 

communication system; the bottom layer taking care of 

messages for processors that do not belong at the same 

site as the sender process. be have already criticized 

Goodwin's proposals because of the likelihood of half, or 

more, of the messages travelling through the root node. 

A further criticism, stemming from adherence to 

hierarchical layering, is that there can be no migration 

of load from overworked sites to idle sites. Ihe bottom 

layer has no concept of processor allocation, that 

belongs to higher levels. 	The higher levels do not know 

that the underlying machine is 	in fact a distributed 

system, for that is against the rules of the game. 	Also 

the assigning of processes to sites has to be done 

outside the system and would have to be done every time 

the system was reconfigured. 
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The difficulty with 	incremental 	layered 	machine 

improvements in a distributed system is that in order to 

load level and balance the use of resources, there has to 

be some two way interactions. Structuring systems into 

layers is a good technique but a practical system must 

have many interacting functions in each layer. 

Virtual machines: 

It is pertinent to enquire, 	if one is adopting a 

strict 	virtual machine architecture, whether it is worth 

having a distributed system at all. 	The purpose of the 

virtual 	machine architecture is to create a set of 

private 'bare' machines. 	Uuite possibly all the kernel 

for a distributed system would be doing is tying together 

a number of physical 	machines just so that 	it can 

simulate the same number of virtual machines. 	Ihus if 

the division 	of 	virtual 	machines 	is 	fairly 	static, 

greater efficiency would be obtained by not integrating 

the physical 	machines together, dispensing with the 

virtual machine monitor, ano putting the virtual 	machine 

operating systems onto the physical machines. 

When there is intended to be a multiplicity of virtual 

machines at each site in the distributed system then a 

distributed system could be justified by the possibility 

of load levelling. A kernel would reside at each site 

and manage all the virtual machines at that site, 	as it 
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would in a single site system. 	But, somehow, a load 

levelling apparatus could be incorporated so that the 

kernels could cooperate in moving virtual machines (by 

copying their total memory space) away from busy sites to 

idle sites. Problems arise both at the level of 

determining opportune times to shift virtual machines and 

then of handling peripheral 	devices after a virtual 

machine has been shifted. 	The kernels would probably 

waste a lot of time time polling each other to see how 

busy they all were and would be likely to grow rather 

large to handle the intricacies of shared peripheral 

devices. 

Karolir,e 	[MADS723 	was planned to have 8 virtual 

machines at each of 8 sites, but proposals for load 

levelling, if they were considered, were not published. 

For the less strict virtual machine architecture where 

the virtual 	machine monitor or kernel 	provides many 

services, and sharing of files is permitted, there have 

been at least two implemented distributed systems, RSEXEC 

1T110M73,COSE751 and SBS 14KO72,AKKO74,AKKU75i . These 

systems take what might he called the hypervisor 

approach. Each site maintains a full operating system or 

supervisor and extra facilities are added, often at a 

user level, to form the hypervisor, integrating the site 

into the distributed system. So far these extra 

facilities 	have just 	implemented network wide file 

systems so that files (and peripherals) can be accessed 
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by a user from any site in the 

feature has been exploited, at 

to attempt load balancing at 

time by directing users to the 

mechanism has been developed 

to site once its execution has 

distributed system. 	ihis 

least in RSEXEC 	(COSE751, 

'log in' or job initiation 

least utilized site. No 

for moving a job from site 

begun. 

The advantage of these types of system is that they 

can be built on top of existing operating systems, or at 

least those that have been sympathetically designed 

(METC72b,ZELK74,RETZ75). The disadvantages are the 

duplication of operating systems at each site and the 

inability to load level, except crudely as above, because 

these operating systems are really autonomous units. 

Intercommunicating processes: 

The Distributed Computer System (UCS) being developed 

by Farber and colleagues 	1FARB72a,b,c,d,FARb7,ROJE73J1 

is 	the archetype of process orientated distributed 

systems ELAYM741. We have already mentioned two features 

of the DCS system in chapter 3. 	It has integrated its 

hardware 	into 	the 	system design by employing an 

associative mechanism in its communication system for 

direct addressing of global objects. 	The global objects 

in this case are processes. 	Also OCS broadcasts are as 

efficient in the use of bandwidth as are single messages. 
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The kernel at each site is extended (from single site 

form) to place any interproceSs messages that it cannot 

deliver at 	its own site onto the network communication 

loop. 	There they will be picked up by the appropriate 

kernel 	(because it has set the names of all resident 

processes in the associative memory of its interface 

unit) and eventually delivered to the correct process. 

The other major change in making a distributed system is 

in resource allocation. Resources, we said, were 

identified with processes in process orientated systems. 

The management of these resource controlling processes 

can be carried out by allocator processes. DCS has one 

allocator per site (though not necessarily residing at 

that site). The interaction between users and allocators 

is modelled on microeconorniC theory and is the basis of 

load balancing in DCS. 

hen a user requires a service, the execution of a 

particular type of process (such as a text editor), which 

will use resources (memory and perhaps peripherals), he 

(his agent process) sends a message to all allocators 

requesting a 'bid' for the provision of the service 

required. The allocators all answer to a common name so 

that only one message on the communication loop is 

required to ask for bids. Allocators return bids and 

after a fixed period of time the user evaluates the bids 

he has received and chooses the allocator with the 

smallest bid. 	He sends this allocator a 'contract' 

message. 	The allocator can then create a process of the 
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required type at its site and return the process name to 

the user, but bids are not binding and so an allocator 

could have allocated elsewhere some of its resources in 

the time taken to evaluate bids, in which case the 

'contract' is spurned and the user has 	to 	start 

requesting bids all over again. 

Thus DCS load balances basically at a job-step or 

complete command level. From the above description, for 

an N site system, 1+(N1)1-2 messages on the communication 

loop are required for a first time successful allocation 

of a process to a user (when the allocated process is at 

a different site from the user's agent process). Thus it 

would seem that the overhead would be too great for 

attempting finer load balancing. 

There are other process orientated distributed systems 

under development, DCN (LAYM74,ILL76J is one, POGLJS 

(DUVA75] is another. But, as far as we are aware, a load 

balancing or load levelling strategy has not been 

published for any but OCS, and there has been no 

published evaluation of the operation of OCS. We have 

been told however that for POGOS, a network of 16 or more 

identical minicomputers, attempts at load levelling 

produced instability and were abandoned. Processes were 

being transferred around the system too fast to do any 

useful work between moves. Unfortunately, no details 

have been published. A very recent paper L1ILL76J states 

that load levelling mechanisms are still to be developed 



for DCN. 	 0 

Finally one other feature of DCN, PODS and OCS is the 

duplication of non-kernel code at all sites. In OCJ all 

functions, that is the code for the processes that 

implement these functions, reside at each site. 

Migration of a function involves shifting only the port 

name of the process to a new site (LAYM74]. Primary 

memory space has been permanently traded for decreased 

traffic on the communication loop. In P(JGOS a copy of 

the whole POGOS operating system, which admittedly is 

quite small and primitive, resides at each site. OCS 

does have duplication for fail-soft reasons but it is 

required also because any site, if underloaded, has to be 

able to create (almost) any process. 

Kernel/domain architectures: 

The functions of a kernel 	in a single site domain 

system are to multiplex ready-to-run computations on the 

physical processor and to handle the interdomain jumps. 

We emphasize again that when a computation has entered a 

domain it accesses resources within the domain and no 

others. Thus in a distributed system a process will be 

able to execute unimpeded when all the components of a 

domain are at one site. If there is a kernel at each 

site and it provides a distributed interdomain jump which 

ensures all the components are at one site, the rest of a 
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single site domain system can run with no alterations, 

just as an interprocess Communication system can run once 

the communication primitives have been extended. 

The distributed interdomain jump is the key to the 

operation of a distributed kernel/domain system. A 

process wishing to change domains notifies its local 

kernel (that is the kernel at the site where it was 

executing in the domain it now wishes to leave). This 

kernel has to locate the new domain (domains are the 

global objects in this system) and in co-operation with 

other kernels, choose a site at which the process is to 

enter the new domain. 	The kernels then have 	to 

co-operate, by sending messages to each other, in 

shifting the domain components to that site, if any need 

shifting. When all the components of the domain are at 

the chosen site the kernel there schedules the process 

for execution again. The distributed interdomain jump 

allows load balancing, as distinct from 	load 	levelling, 

to be performed at quite a fine level. Nork is not 

arbitrarily moved around to level the load at each site, 

but each request to enter a domain is taken as an 

opportunity to shift the components of the domain to 

another site if the current status of all the sites 

indicates that this is desirable. Every time an 

interdomain jump occurs there is an opportunity for the 

system to move towards balanced loading. The occasion of 

an interdornain jump is also optimum with respect to the 

volume of data that has to be moved if the computation 

78 



changes site. 	At most, all components of the new domain 

will 	have to change site; 	frequently some of the 

components will already he at the new site. The choice 

of new site can be made to minimize traffic on the 

communication subsystem. 

Synopsis: 

In this chapter we have examined various types of 

operating system architecture and their suitability for 

extension to distributed systems. 	We have shown that a 

strict 	one function per level hierarchical system is not 

suitable because load balancing cannot take place. Those 

systems that have kernels at the lowest level that 

implement several co—operating functions, can be more 

readily extended to distributed systems. The 

inefficiencies of 	strict 	virtual machine architectures 

seem likely to be increased but, logically at least, both 

process orientated systems and domain 	systems 	are 

suitable for extension to distributed systems. Ne have 

indicated areas that are considered by some to be 

drawbacks of process intercommunication systems per Se, 

and we have stated what we consider to be the drawbacks 

of process intercommunication systems as a basis for 

distributed systems. A change in emphasis away from 

processors towards domains, away from managing messages 

towards managing environments, provides, we feel, the key 

to a successful distributed system. A distributed 
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operating system based on the kernel/domain architecture 

offers great potential both for minimizing the 

duplication of code and for fine grain load balancing. 

The rest of this thesis describes more thoroughly the 

kernel/domain architecture, outlines strategies and 

mechanisms that could be employed in implementing the 

distributed interdomain jump, develops some of these 

mechanisms, describes a simulation program that 

'exercised' these mechanisms and analyses the results of 

this simulation. 



CHAPTER 5 

THE DEVELOPMENT OF THE DOMAIN CONCEPT 

Introduction and terminology: 

This chapter presents a survey of the development of 

the domain concept. We show the connection between 

segments and capabilities and show how capabilities are 

used to define domains. Our intention is to demonstrate 

that domains can be considered to be the predominant 

structure in a computer system. 

The concept of a segment dates back at least to the 

Burroughs 135000 U3URR61I. A segment's attributes are 

some form of identification or name, and a length or 

total number of data objects (normally computer words, 

bytes or instructions). Elements of a segment are 

accessed by identifying the segment and specifying an 

offset within the segment. it is assumed that the 

segment's elements are stored contiguously or, as in a 

paged system, discontinuities are taken care of by 

subsidiary addressing mechanisms. If ambiguity of 

addressing is to be avoided a segment needs a name unique 

to all the possible environments in which it will be 

used. 	If addressing is to be controlled, as in a 

protection scheme, then the generation of segment names 

has to be controlled. Both the method of naming segments 
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and the mapping of segment names into hardware segment 

starting addresses have been the subject of a great deal 

of study. 

	

Dennis and Van Horn LD1N661 	are generally credited 

with being the pioneers of protection schemes and being 

the first to use the term 'capability'. 	A capability is 

essentially a name, 	or a pointer; a computation that 

possesses a capability can access the item 	named. 

Capabilities 	can name general 	objects or resources 

(LAMP711. 	The capaoility concept has oeen formalized by 

recent 	writers 	(biULF74,FERR74,LAMP76l 	so 	that 	a 

capability consists of three items: 

a type denoting the class of object named (of which 

segment is one such class) 

a value being the name or identification of the 

object 

a set of rights indicating how the named objects 

may be manipulated by the holder of the capability 

	

(the available set of 	rights will depend on the 

type of the object). 

We discuss later how resources can be associated with 

segments 	so we restrict our interest 	initially to 

capabilities for segments only (PARAI7I4bJ 	(and 	later 	to 

entry capabilites which are capabilities 	for special 

groups of segments). 	The type of access permitted to a 

segment is not really germane to the development of the 

domain concept. 	Hence we will consider a capability to 
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be synonymous with the name of a segment or a pointer to 

a segment. So, in tracing the development of the concept 

of a domain, we concentrate mainly on models of computer 

operation where the only resources in a domain are 

segments. lye are interested in the segments accessible 

to a computation as the computation proceeds. 

Of particular importance is the sharing of segments 

between different domains or environments. When it is 

desired to shift a computation from one site in a 

distributed system to another then all the segments 

currently accessible to the computation (i.e. its domain) 

have to be collected together at the new site. This 

operation will be considerably complicated if some of the 

segments are simultaneously accessible to other 

computations. 

Before we go on to examine various models we attempt 

to clarify some of our terminology. The term 'process' 

in Computer Science has collected many different shades 

of meaning. Spier (SPIE73aJ makes a cogent case for 

using the term 'virtual processor' to denote the idea of 

execution of a user's sequential computation. A virtual 

processor is in a one to one relationship with a user, 

and the user's computation proceeds only when a physical 

processor is allocated to the virtual processor. A 

virtual processor executes 	(potentially) 	all 	the code 

that defines a user's computation but neither code nor 

state space (DIJK71] define a virtual 	processor. 	The 
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virtual 	processor is an agent acting on behalf of the 

user. It is the pseudo-processor of Seltzer [SALTbbJ. 

In the following sections we have altered the notation of 

the original descriptions when these used the term 

'process' to mean no more than virtual processor as we 

have defined it above. ne have retained the term 

'process' however when there are other connotations; for 

example when a segment of code defines a process and a 

subroutine call implies a change of processr or when user 

level parallelism permits a user to 'own' many processes 

at oncer or when resources are managed by processes. 

The Evans and LeClerc model: 

Although Evans and LeClerc ftVAN671 did not use the 

term 'capability' (using the term 'parameter instead), 

they seem to be the first to describe a computation as 

progressing through different (protection) environments, 

in each of which the computation possesses different 

capabilities. 	They concerned themselves solely with 

segments 	and they made a procedure activation, or 

deactivation, the occasion of altering the environment. 

when a computation enters a new procedure some (at least) 

of the segments it accesses 'will be different. in 

particulari if we identify each procedure with a separate 

code segment, then the code segment from which 

instructions are fetched will be different. 	Evans and 

84 



LeClerc recognised the importance of the code segment in 

delimiting an environment and celled the code segment the 

'root' segment of an environment (which they called a 

parameter space). An environment is defined by an 

ordered 	list 	of 	capabilities 	for segments, this list 

being 	called 	a 	c-list 	by 	most 	writers 

(DENN66,LAMP71,tULF74,COHE75J. 	The first capability in 

the list is for the code segment. 	The segments referred 

to by the the other capabilities are of three sorts:-

fixed: 	the segment does not change with each entry 

into the environment 

dummy: 	a different segment can be used every time 

the procedure is entered (the conventional 

parameter) 

scratch: the system will 	supply a fresh temporary 

segment for every procedure activation and 

will reclaim the segment when a return is 

made from the procedure. 

Any of these other segments may be root segments of other 

environments, 	leading 	to 	a 	nested 	structure of 

environments as depicted in figure 5.1. 	Any segment may 

be in many environments simultaneously. 

A user formulates addresses by specifying the number 

in the c-list of the capability for the segment, plus the 

offset within the segment. Thus programs do not have to 

worry about segment names or hardware addresses and are 

not allowed to use them directly. Addresses are taken 

relative to the current protection environment as defined 
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Evans and LeClerc also present mechanisms 

items that are in subsidiary environments, 

whole system structure is not unlike that 

of protection' regime 	LGRAH68,SCHR721. 

h up the hierarcny can access everthing 

A procedure call or subroutine call 	is implemented 

simply enough, 	as the address it is desired to transfer 

to can, and must, be 	generated 	in 	the 	calling 

environment. That is, all subroutines that can be called 

directly from an environment have their code segments as 

part of that environment. The transmission of arguments 

is envisaged to be of three kinds: 

Entire segments: The calling routine presents the system 

(kernel or hardware) with a list of segment capability 

numbers indicating what positions they should occupy 

in the c-list of the called subroutine. The system 

makes copies of these capabilities in the new c-list. 

Portion of a segment: The calling routine gets the system 

to create a capability for part of a segment and this 

is placed in the new c-list. 

Individual values: The values of simple variables have to 

be stored in a stack segment and the capability for 

this segment passed to the called subroutine. 

Unfortunately, procedure or subroutine returns cannot 

be handled using just an index into the current c-list, 

because the code segment from which the call originated 
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is not 	likely to be part of the called environment and 

therefore there is no w ay for a transfer instruction to 

formulate the return address. 	This is where the unique 

names of the segments should come into operation. 	Evans 

and LeClerc use a variation in that they give system wide 

unique names to every environment. Hence a return link 

consists of the unique name of the calling environment, 

which is the same name as the root segment, plus, of 

course, an offset for that segment. They have then to 

introduce a protected stack segment attached to each 

virtual processor to store links. 

The application of unique names to environments rather 

than segments does not appear to be a felicitous choice. 

By considering every non-root segment in an environment 

to be a potential root segment of another environment, as 

Evans and LeClerc do, all segments can be given at 	least 

one unique name. 	Confusion will arise however when the 

same root segment is part of two different environments. 

Evans and LeClerc would have been oetter advised to 

recognise that a c-list defining an environment can be 

stored as a segment, and give unique names directly to 

each segment including the c-list segment. 



The Spooner model: 

Spooner (SPOU71I also proposes a segment based model 

and he seems to the first ot use the actual term 'kernel' 

and define in detail the functions of the kernel He 

again attaches great importance to code segments. A code 

segment defines an operation to be performed by the CPU 

on an operand area. The same (compound) operation can be 

performed on different operand areas corresponding to 

different, but possibly concurrent, 	activations of the 

procedure defined by the code segment. 	Spooner uses the 

term 'operand area' as he envisages 'windows over core' 

(SP1E73a), that is segments are permitted to overlap so 

that the same data item may belong to many segments. 

However a change of procedure is held to be a possible 

change of environment and is managed by the kernel. 

Spooner introduces a third type of memory area, an 

activity base. The activity base, as well as providing 

space for dumping working registers when the virtual 

processor is suspended, records permitted connections', 

that is capabilities for combinations of code and operand 

areas (see figure 5.2). 	rhese are the forerunners of 

entry capabilites (NEED72]. 	Spooner rightly recognises 

that access rights, or capabilities, should be a function 

both of the virtual 	processor and the code it 	is 

executing. The possibility exists for a virtual 

processor to acquire totally new rights when entering a 

routine, in comparison with the scheme of Evans and 
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LeClerc where the capabilities are confined to the 

hierarchy of segments of which the routine is part 

(figure 5.1). 

Spooner also makes the use of protected entry points 

or gates mandatory. Earlier work described protected 

entry points for code, the restriction of jumps into the 

code from other procedures to a number of fixed 

locations, but the use of them was not thought to be 

necessary all the time. but without protected entry 

points no guarantees can be made about the operation of a 

code segment, 

The Spier model: 

Spier, working from the ideas of Spooner, and Evans 

and LeClerc, developed a model for quite a Comprehensive 

protection system [SPE173aJ and also implemented a 

restricted verson of it [5PL174J. The following 

discussion relates primarily to the implemented version, 

while adopting some of the terminology of the former 

paper. 

Spier identifies five different kinds of memory area 

(segment). These are: 
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A body of a pure re-entrant procedure. 	This segment 

is potentially shareable by 	all 	virtual 	processors.. 

It is called the procedure segment. 

A protected data base whose information is managed by 

an associated Procedure. 	Again the single physical 

COPY of 	this segment 	is shared by 	(all) virtual 

processors. It is called the domain own segment. 

A working storage area for permanent 	local 	values, 

values preserved from one procedure invocation to the 

next. These segments are unshareable so that there is 

one for every procedure that has been executed by each 

virtual 	processor. 	These 	segments 	are 	called 

incarnation own permanent segments. 

LI) A 	temporary 	segment 	which 	contains a virtual 

processor's execution stack and 	other 	temporary 

variables for the invocation of a procedure. Again 

not shareable, this segment is called the incarnation 

own temporary segment. 

5) A 	communication area for transferring parameters 

between procedures. 	There is one 	per 	virtual 

processor which is accessible by that virtual 

processor no matter what procedure it is executing. 

This segment is called the argument segment. 

In the above the importance of a procedure as defining 

an environment is again seen. A procedure segment, 

together with its domain own segment, forms the basis of 

a domain, a 'firewalled' group of segments. A total 

domain consists of the procedure segment, the domain own 
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segment and all 	the incarnation own segments (both 

permanent and temporary) related to the procedure 

segment. None of these segments belongs to more that one 

domain. The argument segment is associated with a 

virtual processor and is carried along with it as the 

virtual processor progresses from domain to domain. Thus 

each 	argument segment is shared, serially, between 

domains. 	Figure 5.3 shows the relationships of segments 

to two domains and two virtual processors. 

A virtual processor always enters a domain by a kernel 

controlled interdomain jump to a protected entry point, 

or return point. The set of segments that the virtual 

processor may access while in the domain is called the 

domain incarnation for that virtual Processor. There are 

five segments that the virtual processor may access: the 

procedure segment and the data base or domain own segment 

of the domain, the two incarnation own Segments that 

relate to both the virtual processor and the domain, and 

the argument segment. 	These five segments form the 

environment of the virtual processor. 	Until the virtual 

processor invokes the kernel to change domains it cannot 

access any other segments. After such a change, it 

cannot access any of the segments of the original domain 

incarnation save for the argument segment. 

	

For each virtual processor the kernel 	maintains an 

activation area, containing chiefly information about the 

domain 	incarnations 	that the virtual 	processor is 
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permitted to access. 	This is, in effect, in the form of 

sets of four capabilities, 	for the four segments that 

together with the argument segment constitute each domain 

incarnation. A current domain pointer indicates the set 

of capabilities that define the domain incarnation the 

virtual processor is currently in. The kernel also 

maintains a hidden stack so that interdornain procedure 

returns can be controlled. The kernel's action for an 

interdomain transfer consists essentially of correct 

handling of the stack and repositioning of the current 

domain pointer so that the correct environment will be 

invoked when processing proceeds. 

Spier (SPIE74J describes briefly a mechanism whereby a 

virtual 	processor's activation area need not contain, at 

virtual 	processor 	initiation 	time, 	all 	the 	domain 

incarnation capabilities 	it 	will need as a computation 

proceeds. This involves domains having unique names 

within the system and being objects in the filing system. 

When a call to the kernel requests entry to a domain that 

has not been entered before, the domain procedure and 

data base segments are copied into active storage (i.e. 

given hardware addresses). 	The first time a particular 

virtual 	processor requests entry to the domain the 

incarnation own segments are created in active storage as 

well 	as 	the 	set of capabilities for the domain 

incarnation being placed in the virtual 	processor's 

activation area. No description of the reverse processes 

of unloading domains from active storage and removing 
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capabilities from a virtual processor's activation area 

is given. 

The weakest details of Spier's implementation are a 

consequence of his having just five segments (one of each 

kind) per domain incarnation. Firstly, the possibility 

is denied of segment structure reflecting any underlying 

divisions of the procedure's variables (other than the 

permanent/temporary 	division). 	Secondly, 	parameter 

transmission can become very inefficient. Nhen a few 

simple items are the only arguments that pass between 

domains then the overhead of copying these into the 

argument segment and copying them back again is not too 

great. But, as Spier's model stands, the accessing of a 

whole segment's worth of data from more than one domain 

can be done in one of only three fashions, all 

unsatisfactory. 

The data can be made a permanent part of the argument 

segment thus voiding any claim of confining data to 

the environments in which it is used. 

The data can be copied in and out of the argument 

segment as required. 

An entry point of the calling procedure can be made 

available to be used by the called procedure to access 

items 	of 	data as they are required (cf Algol 

'thunks'). 	This 	involves a 	domain 	call/return 

sequence for every item of data LSPEI73aJ. 
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The Cosserat model: 

Cosserat [CUSS74J proposes a process orientated system 

where the number of segments accessible to a process is 

varied. His model is based on an actual hardware 

architecture, 	that 	of 	the 	Plessey 	250 

LCOss72,ENGL72,LNGL7$). 	Cosserat, 	following 	Fabry 

[FABR74), makes capabilities into data objects which can 

be copied and overwritten in normal segments by user 

programs. Cosserat identifies three types of segment: 

Procedure segments: Cosserat allows his procedure 

segments to be impure so that they can store data 

items and/or capabilities for other segments. 	Thus 

Cosserat's proceciure segment 	subsumes 	both 	the 

procedure segment and the data base or domain own 

segment of Spier. 	The capability for a procedure 

segment is a type of entry capability. Outwith the 

procedure the only form of access to the segment is 

transfer of control to the procedure. When the 

procedure is being executed then other forms of access 

are permitted so that data within the segment can be 

read and written. 

Data segments: These contain general bit patterns and, 

as 	mentioned 	beforer 	can 	also 	contain other 

capabilities (which the hardware always recognises as 

such). The capabilities for these segments are freely 

copiable so that the same segment may belong to more 
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than one protection environment simultaneously. 	Vhen 

a segment is destroyed some (unspecified) procedure 

has to be carried out to alter all capabilities for 

that segment to 'null' capabilities. 

3) Process base segments: then a process is created (see 

later) it owns one segment, a special process base 

segment. This segment contains the capability for the 

procedure being executed and can Contain parameters 

passed to the orocedure. The segment also contains a 

dump area for temporary storage of working registers 

by the system and a return link to the calling 

procedure (see later). )he capability for this 

segment is not explicitly available to the process. 

It is available to the creating process (with access 

rights such that the creating process can block and 

unblock the process but cannot access its data) and it 

is used by the system in its scheduler table entries. 

In Cosserat's model 	transfers of control 	to new 

procedure segments result in the execution of 	new 

processes. 	A GUTO type instruction results in the 

kernel/hardware placing the capability for the 	new 

procedure segment (which the old process must have 

possessed in order to formulate the address correctly) in 

a new process base segment and then deleting the old 

process base segment. Thus processes are truly 

identified with code sequences. 	A CALL type transfer 

results in the creation of a new process base segment 



but, this time, the old process base is not de-allocated 

rather the capability 	for 	it, 	suitably protected, is 

placed in the new process base. 	Hence a 	RETURN  

instruction can formulate the correct address to which 

control 	should be transferred. 	The newly 	entered 

procedure is not allowed to access the calling 

procedure's process base in any other fashion however. 

The creation of parallel processes is accomplished using 

a transfer instruction, but not de-allocating the process 

base of the creator and not removing it from the the 

scheduler. 

All 	these forms of transfer of control permit the 

transfer of parameters. 	The same convention is used in 

all 	cases: 	a 	list of data objects (which could include 

capabilities) in the current process base segment is 

specified by the appropriate instruction, and these are 

copied into the target process base. Since a process 

executing in one procedure segment does not have access 

directly to other procedure segments or to earlier 

process bases the only information that can be shared 

between procedures is that which is pointed to by 

capabilities embedded in the procedure at compile time, 

or that which is passed as parameters during a transfer 

of control. 

Cosserat effects the analogue of Spier's incarnation 

own segments by a modification of the transfer of control 

mechanism. He allows an 'indirect' transfer, a transfer 



to a segment which contains a number of capabilities. 

One of these capabilites is for the procedure segment, 

and the rest, which are made accessible to the processes 

executing the procedure, are capabilities for data 

segments. If each user accesses the code segment through 

different 'indirect' segments then the effect of 

incarnation own segments is achieved. 

Thus the following description of general 	resource 

handling could be applied to Spier's model if his concept 

of domain own segment were to be replaced by both domain 

own segment and domain own resource. 

All resources require code to manipulate them and if 

this code is gathered into a procedure segment then 

access to the code is equivalent to access to the 

resource. 	This is the representation of resources as 

segments mentioned earlier. 	Some resources, such as 

semaphores, can be represented in core so that data space 

associated with the code is all that is required to make 

the code segment a resource manager. 	Other resources, 

such as 	line printers, require special I/O instructions 

to manipulate them and the use of these instructions has 

to be confined to the code segment that manages the 

resource, ;Jhen the control registers for the device are 

treated by the hardware as memory locations (as in the 

PDP 11 series and the Plessey 250) the.n this confinement 

can be achieved using the capability mechanism 

unmodified. 
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For many types of resource a data area for each user 

of the resource has to be kept. 	This area could contain 

buffer space and/or status information such as, 	in the 

case of 	a fil.ehandler, the names of the files currently 

opened by the user. 	Management of this information is 

facilitated by keeping it in separate segments, separate 

both from the common data and from the information 

related to other users. This is the function that the 

'indirect' entry segments serve. This method of resource 

management has been successfully used on the Plessey 250. 

Other Protection Schemes: 

We have not dealt with all the protection schemes that 

have been proposed, concentrating on those that emphasise 

the code segment as the basic unit. Our chief omissions 

are CAP and HYDRA, both of which are being implemented, 

and the Chicago Magic Number Computer, CAL and SUE, the 

implementations of which were terminated prematurely. 

CAP 	is a machine with special capability manipulation 

hardware being developed at Cambridge 	li'JLE072,NEEL)74J. 

The main objects in the system are segments and processes 

and it is similar in many ways to the model of Cosserat. 

However the concept of a domain own segment, in Spiers 

terminology, 	that is a shareable data base, does not 

exist. 	Further the system is formulated in the context 
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of a hierarchy of processes and the accessing of all 

capabilities through indirection tables to a master 

capability segment. A master process in the process 

hierarchy can treat its slave processes' capabilities as 

simple data. this produces reliability compared with 

single level capability systems LLAMP74J but we feel it 

is too general a mechanism to be incorporated in a 

distributed system. 

The Chicago Magic Number Computer 	LFAR74.1 	was the 

first 	attempt at 	incorporating capabilities 	into a 

hardware architecture. 	Capabilities were for a single 

type namely those for segments. 	The resulting machine 

would, it seems, have been similar to the Plessey 250 but 

less efficient in its handling of alterations to 

capabilities when segments change location. 

The HYDRA system 	(tNULF7 14,!JULFi5b,LEVI15,CtJHE75J 	is 

being mounted on the multiprocessor C.mmp machine. 	It 

allows an unlimited set of types of capability. 	Every 

object in the system, not just processes or domains, has 

an associated c-list so that arbitrarily complex objects 

can be built up, HYDRA is also process orientated 

allowing for the dynamic creation of processes. One type 

of object in HYDRA is the procedure. Entering a 

procedure involves the creation of a new protection 

environment. 
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CAL 	[LAMP76J was an attempt to put a capability based 

system on a Control Data 6400 computer. 	It again had a 

multiplicity of types of object but c-lists belonged only 

to domains, and it would appear that the number of 

virtual processors in the system was fixed. The domains 

in this system were rather static objects compared with 

the equivalent in HYDRA. Domains existed for long 

periods of time so that a change of procedure involves a 

change of domain rather than the creation of a new 

domain. 

Project SUE was to result in a capability based 

operating system for an IBM 360 computer (SEv'C7,SEVC74]. 

Again the system had many types of objects, and 

capabilities 	for them, 	and it was also organized to 

support hierarchical processes. 	Processes were created 

with an environment that basically did not change. 	All 

resources were handed out along the arcs of the process 

creation tree. Capabilities for the resources were 

considerably extended from the three fiela sort described 

earlier, to contain five fields including a count field. 

In SUE a capability not only gave access to a resource or 

object but specified how many times or how much of it 

would be accessed. It is interesting to note that the 

nucleus of an operating system for SUE was provided with 

about 10 orocesses, that is 10 protection environments, 

together with the kernel. 
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Summary: 

The use of a code segment, containing a procedure or 

group of related procedures, to define a protection 

environment or domain, pervades almost all the models we 

have mentioned. 	The remaining contents of the domain 

vary from model 	to model but the idea of global data, 

accessible to all 	virtual 	processors that enter the 

domain, 	and local 	data that 	is different 	for each 

processor entering the domain, 	is common to several 

models. 	The models also differ in the latitude given to 

segments to belong to more 	than 	one 	environment 

simultaneously, or even sequentially. As we implied at 

the beginning of this chapter, in a distributed system 

the less sharing there is of segments the easier 

management of domains is likely to be. 

The entering of a new procedure is usually the 

occasion of changing a virtual processor's protection 

environment. Details of this change of domain vary from 

model 	to model, 	particularly in regard to parameters 

passed to the new environment. We have indicated that 

some movement of segments as parameters to new domains is 

essential if gross inefficiencies are to be avoided. 

This, of course, conflicts with our desire to have no 

sharing of segments between domains. 

The fact that the domain is the key concept in all the 

proposals and systems we have mentioned in this chapter, 
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supports our assertion that the domain can be considered 

the paramount structure in computer systems. However 

with the successful implementations of capability based 

systems being so thin on the ground the kernel/domain 

architecture could hardly be called an established 

technology. But we believe it to be a viable 

architecture and in the next chapter we propose a 

kernel/domain architecture suited to distributed systems. 

Our enthusiasm for the kernel/domain architecture is 

tempered, we admit, by one consideration. The size of 

domains is a question of vital importance to us, and one 

on which there has been no published information, both 

CAP and the Plessey 20 use hardware to effect the 

interdomain jump so that the overheacis of using small 

domains, with frequent domain changes, are small. HYDRA 

has a software scheme to handle interdomain jumps and so 

requires largish domains, as a distributed system 

probably will, to avoid the interdornain jump overheads 

swamping the useful computation. As yet there has been 

no indication as to whether the HYDRA implementors have 

succeeded in generating large domains. vie return to this 

question in chapter 7 when we look at how programming 

language structures relate to domains. 
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CHAPTER 6 

OUR MODEL 

In 	this 	chapter 	we 	propose 	a 	kernel/domain 

architecture suited to a distributed system. 	First we 

give a brief discription of its structure and then give a 

detailed description of how 	the 	model 	could 	be 

implemented using capabilities. 	Finally we relate our 

model to those discussed in the previous chapter. 

SECTION 1: THE BASIC CO'IPOI'JEiTS. 

The purpose of all the models we have looked at in the 

previous chapter has been to enhance systems reliability, 

both by enforcing the run time protection rules of the 

model and, as Spooner and Spier stress, by the modular 

structure of software resulting from the desiqn of 

domains or protection environments. iihile we do not want 

to dispense with these aids, our chief reason for wanting 

a computation divided into a sequence of incarnations of 

different domains is to allow the computation to be 

performed at different sites in a distributed system 
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when, 	for resource 	utilization 	reasons, 	this 	is 

desirable. 

Much of the thrust of recent research on capabilities 

and domains has been to generalize their properties to 

cover every conceivable type of computational 

requirement. 	By analogy with the full flexibility of the 

Von Neuman architecture often being restricted (without 

real 	loss of 	function) 	in order to achieve efficiency 

[L3URR61,FEUS73,DORA75], we have sought a minimal set of 

capability and domain properties that can be realized 

efficiently in a distributed system and at the same time 

cover normal computational requirements. because Spiers 

model had the highly desirable property, for us, that no 

segment ever belongs to more than one domain at oncer it 

made a good starting point for the model we have 

developed to meet the requirements for 	distributed 

systems. 	We give a concise description of the model 

before expanding on 	its 	features 	and 	giving 	a 

justification for them. 

The basic components of the model are: 

A 	reference space of segments, spread over and 

interchangeable between a number of sites. 

A number of virtual 	processors; 	relationships or 

associations, alterable in time, exist between virtual 

processors and segments (and also between segments 

themselves). 

A kernel, a software extension of the basic machine, 
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exists at each site and manages virtual processors and 

segments. 	Kernels communicate with one another to 

effect this management. 	All 	transfers of segments 

between sites are performed oy kernels. 

A segment that contains pure reentrant code is called 

a code segment 	and is potentially executable by all 

virtual processors. 	A code segment forms the basis of a 

domain, 	together 	with an associated public 	(data) 

segment, if one exists. 	A public segment consists of 

data that 	is usable by all virtual processors but only 

when they are executing the related code segment. 	Local 

segments constitute the rest of a domain. 	There are 

local segments associated with every virtual 	processor 

that executes (the code) in the domain, 	they hold data 

relevant only to the associated virtual 	processor. 	A 

domain, then, is a group of segments which cannot be 

accessed by any virtual processor not executing the code 

segment of the domain. The entry to and exit from 

domains by virtual processors is carefully controlled by 

kernels. At the time of virtual processor entry or exit, 

local segments related to the virtual processor 

(parameters) may be transferred between domains. 

For each virtual processor there exists an associated 

segment, the processor base segment, which is accessible 

to only that virtual processor. 	It is accessible at all 

times, 	no matter which domain the virtual processor is 

executing in. 	This processor base segment, the code 
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segment and the public segment of the domain the virtual 

processor is in, and the related local segments together 

form a domain incarnation (see figure 6.1). It is 

sufficient condition for a virtual processor to proceed, 

on entering a domain, if all the components of the domain 

incarnation are at the same site. A domain that does not 

have a public segment is called a pure (code) domain. A 

domain incarnation of a pure domain may include a copy of 

the associated code segment rather than the code segment 

itself. A domain that does have a public segment is 

called a monitor (see later). 

The Entry Capability: 

Capabilities are the normal 	mechanism 	used 	to 

implement domains. 	Cosserat's model assumes a tagged 

architecture (FEUS73I and allows capabilities for 

segments to reside in normal data segments. However, the 

implementation from which his model was derived, on the 

non-tagged architecture of the Plessey 250P insists that 

capabilities reside in separate segments from data so 

that appropriate protection of capabilities can be 

applied [ENGL74J. Either approach means that at a change 

of domain the identity of all the segments that belong to 

the new environment is not immediately obvious. 	When 

capabilities are kept in separate segments a 	tree 

scanning operation is required to determine all segments 

in the environment. 	For Cosserat's model the problem is 
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an order of magnitude worse 	every segment must be 

systematically searched to make sure that no possible 

branch in the tree structured environment is overlooked. 

Only if we did not require to know what segments 

constitute the new environment at the time of a domain 

change could we use Cosserat's scheme (if we had a tagged 

architecture) or allow some 	local segments to contain 

capabilities only. 	But since, as we will explain, it is 

necessary to know what segments constitute a new domain 

incarnation, we have to forego the not 	inconsiderable 

advantages of list structured addressing LFAbR74). 	This 

necessity arises in a distributed system because space 

has to be allocated for segments of a domain incarnation 

that are not at the site chosen for the domain 

incarnation, and these segments have to be brought to 

that site. 	This can be done at the time of domain entry 

(pre-loading) 	or the first time a capability is used in 

the new domain (demand loading). 	In paging systems 

pre-loading pages from backing store has been shown to 

involve less overheads than demand paging LADA115J. 	As 

we show later, 	fetching a segment from another site is 

likely to involve almost as much work as fetching a group 

of segments together so that a similar trait with respect 

to segments is likely in distributed systems. 

Accordingly in our model 	the capabilities for all the 

segments that will 	be involved in 	a 	new 	domain 

incarnation are placed in a single list, so that they can 

be quickly scanned to determine the requirements for the 
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new environment. 

segments making 

entry capability. 

This list 	of capabilities for 	the 

UP 	a domain incarnation 	is called 	an 

e have found the entry capability to be a very useful 

concept. The interdomain jump can be thought of as a 

validation of the entry capability for a new domain 

incarnation. As its last action in the old domain a 

virtual 	processor 	places the capabilities 	for the 

segments of the new domain incarnation into a list 

(details about how this is done are given later on). 	We 

call this list a c-list. 	The virtual processor calls the 

local 	kernel 	passing 	it 	the c-list 	it 	has 	just 

constructed. The kernel scans all the capabilities on 

the new c-list and if they all refer to segments resident 

at that site it (normally) will mark the clist as a 

valid entry capability and place it in a queue of ready 

to run domain incarnations. If all the segments are not 

resident 	at 	the site then the cJist is sent to the 

kernel where the code segment resides. 	This kernel 

calculates what 	it considers to be the 'best' site for 

the domain incarntion to take place at, and passes the 

clist, suitably marked, to this site. 	The kernel at the 

'best' site could decide that 	it did not want the 

incarnation at its site in which case it passes on the 

c-list 	to another site, but generally it will accept the 

clist, go through it, and request kernels that have the 

segments in the c-list 	to send those segments to its 

site. 	hen all the segments have arrived at its site the 
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kernel marks the C-list as a valid entry capability and 

schedules the domain incarnation for execution (see 

figure b.fl. 

The above is a very skimpy descriptions but it does 

show the importance of the entry capability in defining 

the domain incarnation in a compact form. The 

interdomain jump involves up to three scans, at different 

sites, of all capabilities for the domain incarnation. 

This shows the infeasibility of having a more general 

distribution of segment capabilities if oreloading of 

segments is to take place. defore we give details on how 

segment capabilities are initially placed in c-lists we 

discuss the differences between the management of 

capabilities for code and public segments, processor base 

segments and local segments. 

Local segments: 

We mentioned that where capabilities were freely 

copiable the deletion, or even change of address, of a 

segment required that all copies of the capability be 

altered. In practice, in single site systems, all such 

capabilities 	are 	pointers 	to 	a 	master 	table 

[NEED14,ENGL741 so that all that is required is the 

alteration of the master entry to reflect the new 

situation, coupled oerhaps with a usage count so that the 

master entry can be dispensed with when no capabilities 

point to it. in distributed systems we are, of course, 
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denied 	the 	luxury 	of a central 	master table of 

capabilities. For local segments a master table could he 

kept in each processor base segment but this would 

complicate any interprocess communication involving the 

passing of segments. 	Hence we make capabilities for all 

local segments 'transfer only' (GNAH72]. 	This is a step 

better than Spier's completely static, 	no transfer, 

scheme for his incarnation segments. Only one capability 

for each local 	segment exists and this is passed from 

environment to environment as required. 	The only time a 

local 	segment is shifted between sites is at the time of 

domain incarnation entry. 	This is when the kernels have 

the entry capability 	list and so can easily modify the 

information in the relevant capability. 

A entry capability 	may 	sometimes 	hold 	pseudo 

capabilities 	instead of capabilities for local segments. 

These are of the following types: 

Transient: This pseudo capability just specifies a length 

so that the system can Create 8 scratch segment for an 

incarnation at the site chosen for the incarnation to 

take place. When the segment is created a genuine 

capability replaces the transient one. 

Null: 	To facilitate the transmission of 	parameters 

between 	domain incarnations a slot in an entry 

capability may be empty. 

On disk: The segment is in a disk buffer. 
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Descriptor: Used when a segment is not intended to be 

accessed by the current domain but to be passed on to 

another domain. 

The last two types have been introduced for reasons of 

operational efficiency and will not be mentioned again in 

this chapter. 

Code and oublic segments: 

Domains, as we have already stated, can be identified 

with their code and public segments. Entering a domain 

implies execution of the code in the code segment. 

Logically many virtual processors can be executing in a 

domain simultaneously (although, when there is one 

physical orocessor per site and only one copy of the 

code, only one virtual processor can be progressing 

through the code). Thus the code and public segments can 

form part of many different environments at the same 

time. We cannot make rules which would restrict these 

segments to single domain incarnations and not, at the 

same time, so emasculate the distributed system as to 

make it useless. Therefore to handle code and public 

segments a distributed equivalent for a master table of 

capabilities is required. we make the code and public 

segments of domains global objects (as discussed in 

chapter 3), the only ones in our System. We assume that 

at any time the kernels in a system can between them 

locate the code and public segment of a domain. Chapter 
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3 detailed how this might be done. 	This means that 

domains must have system wide unique names and every 

program must be appraised of the names of the domains it 

wishes (is permitted) to enter. Ihus a capability for 

code and public segments is simply a name, it does not 

have any address information. Ihe kernels have to 

translate this name into an address. 

Processor ease Segment: 

The management of the processor base segment is the 

easiest of the three types of segment. Its capability 

need never be made explicitly available to a user, nor 

does it make sense for a processor base segment to be 

simultaneously part of more than one environment. ahen a 

kernel is requested to perform an interdomain jump it can 

take the processor base segment from the entry capability 

of the requesting domain incarnation and place it in the 

new entry capability. The kernel may have to modify the 

processor base segment itself to fix up return links. 

Spier's model 	uses the argument segment simply for 

carrying parameters between domain incarnations. 

Information about virtual processors is held in a special 

area in the kernel. Cosserat holds this information in 

his process base segment. This is the solution we prefer 

as then the information moves from site to site as the 

virtual processor moves from site to site. The processor 
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base segment 	in our model is thus slightly anomalous in 

construction, consisting of quite separate sub-segments. 

These sub-segments contain: 

1) simple variable values being passed as interdomain 

parameters 

entry capabilities for the domains 

processor has entered 

other information about domains 

processor is permitted to enter 

general management 	information, 

parameters and accumulated run time. 

that 	the virtual 

which 	the virtual 

e.g. 	scheduling 

SECTION 2: ENTRY CAPABILITY STRUC1URE AND MANAGEMENT. 

Vie have detailed how once a putative entry capability 

(clist) is presented to a kernel, the kernels go about 

gathering all 	the segments together and schedule the 

execution of the new domain incarnation. 	We now look at 

the process of creating the entry capability list in the 

first place. Spier's distinction of two types of local 

segment, incarnation own permanent and incarnation own 

temporary, gives a starting point 	for identifying the 

mechanisms required. 	Since we permit local segments to 

pass as parameters between domain incarnations we require 

three categories of local segments: temporary, permanent 
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and 	argument. 	4e suppose that the local segment 

capabilities in an entry capability each belong to one of 

three sublists 

the temporary list or 1-list 

the permanent list or P-list 

the argument list or A-list 

Stack organization of entry capabilities: 

Consider first a system in which all 	local 	segments 

are of the temporary type. On a computation's entry to a 

domain the local segments required are created. They 

exist while the computation proceeds in the domain and 

while calls are made to other 'inner' domains, to which 

they may be passed as parameters. They are deleted when 

the computation exits from the domain. For such a system 

it is appropriate that skeleton c-lists be kept in a 

stack in the processor base segment. 

To enter a new domain a virtual processor executes the 

code in the old domain to cause the name of the new 

domain, that is the name of the code and possible public 

segments, to be placed in a new c-list which will 

eventually be placed at the top of the stack of entry 

capabilities. This name will normally have been embedded 
a 

in the code at compile time but exceptionally could have 

been passed as a parameter to the old domain incarnation. 

The desired entry point is also stored with the domain 
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name. 

We could use compile time information and have the 

code of the old domain specify pseudo capabilities (of 

the transient type) for the local segments that are to be 

created for the new domain incarnation. The alternative 

is to have a template [COHE15] associated with the code 

segment and have the kernel at the code site create the 

pseudo capabilities before it does its'best' site 

calculation. This second alternative is to be preferred 

because the data about the internal structure of a domain 

is held in just one place, which is in accordance with 

the principle of information hiding (PARN72i, and it 

leads to less duplication of code. 

Parameter handling 

In the case where the domain name is known at compile 

time then the number and type of any parameters taken by 

the domain can also be specified at compile time. When 

these parameters are simple variables they can be loaded 

into an argument stack or area in the processor base 

segment. 

When the parameters are for local segments (which must 

form part of the old domain incarnation) there are two 

approaches that can be taken. 

1) Domains can be oermnitted to shift capabilities between 
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the 1-list and A-list. 	The code in the old domain can 

specify the transfer of the segment's capabilities 

from the 1-list of the old domain incarnation to its 

A-list. The local kernel then transfers the old 

A-list to the A-list of the new entry capability when 

invoked to perform the interdomain jump. 

2) Only 	the 	kernel 	is 	permitted 	to 	manipulate 

capabilities and it transfers the entries direct 	to 

the new A-list. 	In this case the code places pointers 

in 	the new A-list back to entries in the full list of 

local segments in the old entry capability (see figure 

6.3). 	When the interdomain jump request is made the 

local 	kernel 	can 	transfer 	the 	'pointed 	at' 

capabilities to the new A-list, 	noting in 	the old 

c-list to where they were transferred (see figure 

The former of these two approaches is the more 

flexible but is likely to be less efficient and less 

secure. For in this approach the A-list becomes simply a 

receptacle for parameter capabilities at the time of 

interdomain jumps. The entered domain has to transfer 

the capabilities for the parameters back to a T-list 

before it can safely access them. Although it saves the 

kernel a jab, this transferring of capabilities back and 

forth between 1-list and A-list could be error prone. 

Hence we prefer the second approach which leads to more 

compact entry capabilities at the cost of slightly more 

work done by the kernel at domain call and return time. 
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Then the Aljst always contains the parameters passed to 

the domain. It has no special relation to parameters 

passed from the domain to inner domains. 

When the name of the new domain is not known at 

compile time, the same action as above can be taken if 

some form of parameter specification has been given (and 

checked) at compile time. Otherwise the kernel can 

accept the parameters as given but, before permitting 

entry to the new domain, it would have to perform a check 

to ensure that they corresponded to those expected by the 

new domain. Such a dynamic check could turn out to be 

both more costly EHANS74I and coarser [IIANS731 than one 

provided at compile time. 

Figure 6.3 gives an example of the old and new c-lists 

just before the local kernel is invoked to perform the 

interdomain call. Figure 6.4 shows the transfer of 

capabilities made by the local kernel before it sends the 

c-list off to the site of the code segment (or deals with 

it itself if the new code segment is already resident at 

its site). Figure 6.5 shows the situation just prior to 

the 'best' site calculation and figure 6.6 gives the 

final form of the entry capability stack when the called 

domain incarnation is ready to run. 
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Other interdornain jumps 

A return to a domain is also performed by 	an 

interdoinain jump. 	If the slots where parameters were 

passed to were noted (see figure 6,4) then the top two 

entry caoabilities in the entry capability stack contain 

all the information the kernels require to effect a 

return. 	(Except that any simple values to be returned 

must be placed in the parameter area). 	When the 

interdornain jump is requested the local kernel shifts 

back the processor base segment and all the parameter 

segment's capabilities (i.e those in the A-list) to the 

clist for the domain incarnation being returned to. 

Then the kernel deletes all segments whose capabilities 

are in the T-list. The entry capability for the domain 

being returned to is then validated as before except that 

there is no requirement for the code segment to supply 

details of the structure as this is known already. 

Figure 6.7 depicts the movement of capabilities effected 

by the local kernel when requested to perform an 

interdomairi return. 

Unfortunately not all computations proceed in the 

nested fashion mirrored by a stack implementation. One 

simple example of this is where a computation moves 

serially through domains. If the first domain in the 

sequence was passed parameters in a normal call, then all 

domains in the sequence must maintain the same parameters 

so that the final domain in the sequence can perform a 
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correct return. Aithin the sequence of domains a virtual 

processor wishing to jump to the next domain loads the 

name (and entry point of the domain) into a new c-list 

and requests an interdomain jump. The kernel then copies 

the processor base capability and the capabilities in the 

called domain incarnation's A-list into the c-list 	and 

dispatches the c-list to the code segment site. 	It also 

deletes all the local segments whose capabilities remain 

in the old top of stack entry T-list and removes this 

entry capability from the stack. The rest of the 

interdomain jump proceeds as before. 

Retaining permanent segments between calls: 

Greater complications arise when it 	is desired to 

retain local segments between calls on the domain. 	]his 

arises when, for example, there is a co-routine structure 

between two or more domains, or generally in the handling 

of peripherals which requires the maintenance of buffers 

and status information, Although it is quite straight 

forward to devise rules for kernels to know when t place 

local segment capabilities in the P-list, so that they 

will 	not be deleted at domain exit time, it is more 

difficult to devise satisfactory rules 	for kernels to 

know when to eventually delete segments in the P-list. 

Consequently we allow a virtual processor to move any 

local 	segment in its current domain incarnation between 

the P-list 	and the T-list. 	ihis gives a greater 

129 



flexibility than could be achieved by automatic rules. 

It shifts the responsibility for deleting permanent 

segments to the programmer. 

In order to use the local segments whose capabilities 

are stored in the P-list when a domain is re-entered 

again, the P-list, or the whole c-list with appropriate 

empty slots, has to be preserved when 	the 	entry 

capability is removed from the top of the stack. 	The 

following is a list of options available: 

Abandon the stack of c-lists altogether, 	keeping a 

simple table of c-lists for all domains entered or 

known about, and maintain a separate stack of return 

links and a pointer to the Current domain incarnation. 

With appropriate organisation this gives quick access 

to the c-list, which includes at least the P-list, 	of 

any domain. 	This is the approach taken by Spier 

[5PjE74]. 	It restricts all entry points of the domain 

to taking the same number of argument segments and 

using the same number of temporary segments (althougr, 

null segments could be used sometimes). Further it 

does not allow recursion of any form. 

Maintain the stack but use another area of the 

processor base segment for storing Plists of exited 

domain incarnations. 	Together with each P-list, an 

indication must be kept of the domain to which it 

belongs. 	For every call on a domain this area has to 

be checked to see whether there are local permanent 

segments for the new domain or not. 	Also for domains 
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with multiple entry points the sequence of calling 

these has to be controlled, or all entry points must 

use the same structure of permanent local segments. 

Recursion using the same instance of permanent 

segments is possible. 

3) A variation on the previous option is to store the 

P-list with the code segment templates and maintain 

separate templates for every virtual processor that 

has previously entered the domain. This could provide 

more flexibility than option 2 in the arrangement of 

P-lists for different entry points but otherwise the 

properties of the two options are similar, 	but this 

is not a good solution. 	The altering of data 

associated 	with 	the code segments inhibits the 

duplication of code at different sites. Also error 

recovery is made more difficult; information about the 

resources a virtual processor has (defined by the 

permanent local segments it owns), is spread 

throughout the distributed system rather than being 

concentrated in the processor base segment (which will 

always be at the scene of any error). 

LI) Change the stack to a tree arrangement similar to that 

used in quasi-parallel programming systems IDAHL72J 

and some forms of parallel processing (LJRGA73I. when, 

at the first domain exit time, the kernel detects that 

the P-list is not empty it 'splits' the stack. The 

c-list being exited from is linked, by the kernel, 

into the tree as a sibling of the original calling 

domain. Provided that kernels can distinguish first 
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time entry requests from re-entry requests, 	full 

dynamic recursion is possible. 	In the case of 

re-entry, a search up the tree may be required to 

locate the correct- c-list. 	Again care will 	be 

required with multiple entry point domains. This 

option also permits an obvious rule for the ultimate 

deletion of permanent segments, namely deletion is 

performed and the tree pruned, when control returns to 

the parent domain incarnation. But this option 

confines 	interdomain 	calls 	to 	conform 	to 	a 

hierarchical structure. Also if two or more P-lists 

for the same domain incarnation exist with the same 

parent then some further mechanism is required to 

identify which P-list is to be used in a domain 

incarnation. 

5) Retain the stack and introduce labels, that 	is names 

for c-lists. 	These named c-lists are stored in a 

separate area in the processor base segment and 

contain at least the domain name and entry address, 

and incarnation P-list. They could also contain slots 

for parameters and pseudo capabilities for the 

temporary segments (see figure 6.6). 	These c-lists 

are put together by a kernel 	request during the 

virtual 	processor's execution in the domain to which 

the segments pointed to by the c-list belong. 	The 

kernel returns a label which can be passed as a simple 

parameter. 	The main use of this is to preserve the 

P-list of a called domain. 	Before it exits the 

virtual 	processor in this domain sets up the label 
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c-list and then returns with the label to the caller. 

For 	subsequent 	re-entry the caller requests an 

interdomain jump to the 	label. 	The 	local 	kernel 

retrieves the c-list and validates it as usual. [he 

order of calls to multiple entry points is dictated by 

the called domain by way of the labels it returns at 

the end of each call. The label mechanism can also be 

used to implement 'call by name' parameter passing, 

but this is not something to be encouraged in a 

distributed system. 	As the connotations of label 

would suggest, this option is rather primitive. 	Out 

it can permit full recursion as well as distinguishing 

easily between multiple uses of the same domain by the 

same virtual processor. To enter a domain a first 

time a virtual processor presents an initial 	entry 

capability; 	for subsequent re-entry it presents the 

label returned from the previous entry. If the 

virtual processor wants to use the same domain for a 

different purpose (e.g. if it is a file handler oomain 

and the virtual processor wants to open a second file) 

then it presents an initial entry capability again and 

will be returned a new label. This is the only option 

proposed so far that can handle this multiple use 

situation. 

6) Abandon 	the concept of permanent local segments 

altogether. Instead generate temporary local segments 

at an outer level and pass them as parameters through 

all inner levels to the domain that requires to use 

them. Also, the public segment of the domain could be 
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been kept 	in permanent 	local 	segments, this 

solution,as well as 	violating 	protection 	principles, 

could involve a 	huge 	increase 	in 	the number and/or 

size 	of segments that 	would have 	to 	be 	shifted from 

site 	to site 	at each 	interdomain 	jump. 

We feel that the fifth option is the best. 	It could turn 

out 	in practice though that the features this option 

provides are not required, that permanent segments form 

such a tiny fraction of the total number of segments that 

the second or sixth arrangements would be better. 

Creating and deleting local segments: 

One other topic concerning local segments is their 

creation and deletion during execution within a domain. 

We permit virtual processors to make kernel calls to 

delete local segments in the domain they are in, at any 

time. The capability in the c-list is replaced by a null 

capability. 	A null 	capability may be passed as a 

parameter. 	This is particularly appropriate in 	a 

producer/consumer situation; the producer transmits a 

full segment to the consumer as a oarameter in an 

interdomairi call. At the return no useful purpose is 

served by transmitting back the segment so the consumer 

can delete the segment when it has finished with it. 
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The creation of local segments is more difficult as it 

involves the allocation of a resource, namely memory 

space, so it could be subject to delays or even the 

shifting of the domain incarnation to another site. The 

best time to create new segments is at domain entry time. 

This is why we provide templates attached to the code 

segments so that space requirements for a new domain 

incarnation can be determined before the 'best' site 

calculation is performed. If it is absolutely necessary 

for a domain to be able to create segments once its 

execution has begun, then its request to the kernel to do 

this is treated as an interdomain jump back to itself. 

We assume that capabilities for newly created segments 

belong originally to the Tlist. 

SECTION 3: COMPARISONS. 

In this chapter we have proposed a domain architecture 

suitable for distributed systems. 4e have detailed how, 

despite the fact that no copying of capabilities is 

allowed, a quite powerful 	capability system can he 

constructed. 	Uur system does not suffer from revocation 

of capability problems because 1) 	it 	is not process 

orientated and ) only one capability exists for each 

segment (other than code and public segments). 	If 
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powerful 

We now 

systems  

and show 

1e on single site systems 

enough to be viable on a 

identify common points 

we discussed in the last 

where improvements have 

Evans and LeClerc identified three types of local 

segment making up a domain; fixed, dummy and scratch. 

These correspond to the segments whose capabilities are 

kept in our P-list, Alist ana 1-list respectively, by 

allowing segments to be moved between P-list and T-list 

we cater for domain initialization and allow more 

flexible deletion of segments. 

ve have already mentioned what we consider to be the 

main inadequacy of Spier's model, the fixed number and 

type of segments in a domain incarnation. 	Our model 

allows any number of local segments, 	the equivalent of 

Spier's incarnation own temporary segments. 	Ne permit 

local segments to be passed as parameters between domain 

incarnations. This eliminates much of the potential 

inefficiency of Spier's model arising from copying whole 

segments into and out of the processor base (argument) 

segment. ae are also far more flexible in our handling 

of permanent segments. Using labelled entry 

capabilities, our scheme will support a virtual processor 

having two or more different sets of segments in a 

domain. 
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of code and public (domain own) segments, which we have 

adopted, and having them mixed together as Cosserat 

allows, provided that a domain which does not have any 

public data is identifiable as such. In our previous 

discussion above, and our subsequent discussion of the 

implementation of our model, we always treat the two 

segments, when they both exist, as a single entity. If 

however a system had plenty of active storage but was 

lacking in communication bandwidth it is conceivable that 

the code segment would be treated differently from the 

public segment; copies of the code segment being 

permitted. There is no point in having copies of public 

segments because the machinations required to keep them 

consistent would far outweigh any advantage gained in not 

having to shift segments around from site to site to form 

domain incarnations. 

We were not aware of Cosserat's work when we undertook 

the definition of our model, working, as we mentioned 

before, more from the papers of Spier. There are however 

quite a few points of similarity between Cosserat's model 

and ours. 	Both permit any number of segments to be part 

of a domain incarnation. 	Both use the processor base 

segment for several purposes. 	Although in çosserat's 

model a local segment can be part of many domains at once 

it is very unlikely in reality that these domains will 

all be accessing the segment at once (unless the segment 

is a segment of semaphores). Thus we loose little, if 
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anything, by making our local segments accessible in one 

domain at a time. Cosserat's indirect entry mechanism is 

a generalization of our label mechanism. 	;e only permit 

a 	labelled c-list to be built up by the domain to which 

the segments in the c-list belong. 	But again we feel 

that we cater for the major use of the mechanism (the 

handling of permanent or own data) and that further 

generalization is not required. 

Cosserat's rule of creating a new base segment for 

every change of domain brings undoubted advantages when 

it comes to creating new processes, but its efficacy is 

more open to question when the number of virtual 

processors in a system is fixed (a feature we shall 

expound upon further in the next chapter). There is very 

little information that can be left behind in the old 

base segment and not transferred to the new base segment. 

If the simple parameter area is organised as a set of 

stack frames then only the frame for the parameters being 

carried to the new domain need be put in the new base 

segment. Otherwise the only item not required in the new 

base segment is the old domain's return link. Since 

processor base segments are the most frequent movers 

between sites in a distributed system (see the sample 

results in appendix A) it is important that they be 

small. But there is a definite trade off between the 

transmission time saved on one hand and, on the other 

hand, the extra copying involved. Splitting up the 

processor base segment may also cause the occasional 
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delay, when doing a return, when all 	the required 

segments save the old processor base are at one site. 

Only experimental evidence from real implementations can 

resolve questions such as this and th e questions we will 

be raising in the next chapter as we examine more facets 

of distributed Systems. 

140 



CHAPTER 7 

DISTRIBUTED SYSTEM METHODOLOGY 

The last chapter presented a model for a distributed 

system in terms of segments, capabilities and domains. 

We did not specify what was to be the function of any of 

the domains, nor did we indicate how a programmer might 

go about constructing a domain. 	We now direct our 

attention to these and similar topics. 	This chapter is 

concerned with the wider perspective of distributed 

system design. 

SECTION 1: RESOURCE ALLOCATION. 

For some years now there has been a school of thought 

that advocates the limitation of forms of dyrnanic 

behaviour in operating systems ('1ANS73,HAS74,HOAR74a, 

HOAt74h,HANS761. The THE operating system (DIJKbB] has a 

fixed number of virtual processors. The recently 

completed SOLO system 	1HAtJS761 	has not only a fixed 

number of virtual processors but is conceptually 

comoilable as a single program, so that all interactions 

within the system are able to oe checked at compile time. 

We concur with such sentiments, as they lead to a fresh 

view of resource allocation which we believe is suitable 
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for distributed systems. 

Systems with dynamic creation 	and 	deletion 	of 

processes 	usually 	handle resource allocation on a 

hierarchical basis. All the system resources are 

initially vested in an ultimate ancestor [HANS73,SEVC74J. 

Whenever a process is created it is given some of the 

resources of the creator process; if not 'consumed', the 

resources are returned to the creator process when the 

new process is deleted. The ultimate ancestor represents 

a potential bottleneck since it has to deal with all 	the 

systems resources. 	In our distributed system resources 

are associated with domains, 	allowing control 	to be 

spread throughout the system. Each virtual processor can 

enter any domain (known to it) and access the resources 

in it. 	But the virtual processor must execute the code 

of the domain while accessing the resource. 	Thus the 

domain can control all its resources, all of the time. 

This form of distributed control does not preclude the 

use of process hierarchies but it does remove a lot of 

the justification for them. Ability to freely create 

processes could also be troublesome if it is desirea to 

limit the total resources available, at any one time, to 

a user. 	If we were to allow a process to control 	the 

progress of another and even destroy it, as is permitted 

in many process orientated systems 	U<W0T741, then a 

process would have to be a global object. 	This follows 

from the requirement to locate the process that is to be 
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controlled or destroyed. 	The management of global 

objects is relatively expensive. The number of processes 

would grow in proportion to the number of sites, 

presenting larger and larger directory or associative 

memory requirements. 

Overall, considerable simplicity and efficiency 	is 

gained by having a fixed number of virtual processors 

(which are not global objects), one virtual processor per 

user. If some form of parallelism is required a user can 

be permanently allocated more than one virtual processor; 

In the SOLO system he is given three, one to handle 

input, one for computation and one for output. 

Domains: 

Since a system is 	likely to have a fixed maximum 

number of resources for long periods of time it 	is 

logical to have a fixed number of domains to manage these 
iL 

resources. 	We include as resources compl4'ers,  editors 

and anything usable by more than one user. Using a fixed 

number of domains confers two advantages: 

1) Every kernel, as part of the management of global 

objects, needs to keep information about every domain. 

With a constant number of domains, fixed space for 

this information can be allocated inside kernels, 

leading to more efficient operation of the kernels. 

Of course when there is an increase in the number of 
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resource types in the system a recompilation of the 

kernel will be required. 

2) The finding of a domain is considerably simplified if 

it always exists. 'Jhen a kernel receives a message 

related to a domain that does not reside at its site, 

it need only pass the message on to the site where it 

believes the domain to be. Provided that the message 

travels faster than the domain (see chapter 8) it will 

eventually reach the correct site. 	If domains were 

dynamically created and deleted then the kernel 	would 

have to decide whether to pass the message on to 

another site, or initiate the creation of the domain, 

or regard the message as being for a deleted domain 

and hence erroneous. 

Having a fixed number of domains in a system is not an 

absolute fiat. Arrangements could be made for the 

locating and loading of some domains from a file store 

when required (an obvious exception is the basic domains 

that manage the file store), in a similar fashion to 

Spier's implementation. As well as the added complexity 

in domain management described above, knowing when to 

unload the domains again is likely to be a tricky 

problem. 
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SECTION 2: HANDLING USER PROGRAMS. 

So far we have been careful to avoid mentioning user 

code. fie have adopted the attitude of Hoare [HOAR74b] 

towards user code. He believes that all user code should 

be interpreted by the operating system. He reasons that 

a user cannot compromise the security and robustness of a 

system if all (sensitive) operations are vetted by the 

operating system. 

Our adoption of this philosophy allows us to have a 

fixed number of domains in our distributed system since 

users do not generate their own domains. 	04e provide a 

user supervisor domain. 	One, or more, of the local 

segments in an incarnation of this domain is user code. 

The user supervisor'interprets' this code. In practice 

this would mean that the user code is directly executed 

but the domain fields any supervisor calls, which it 

translates to interdornain calls. 

There is no compelling reason why the appearance, to a 

user, of a system should bear any relation to the 

structure used to implement the system. Placing user 

code in a supervisor cocoon means that the ordinary user 

need not be appraised of domain structures when it comes 

to writing his own programs. Interpretation also 

provides a hook uoon which can be hung such facilities as 

execution time limits, error diagnostics and recovery, 

and console generated interrupts. 

145 



Unfortunately this approach also rules out the sharing 

between users of the same copy of user code. If some 

user program is in such demand that the likelihood of two 

or more people using it simultaneously is significant 

then the program could be incorporated into the operating 

system, either directly as a single domain, or, in a 

rewritten form, as several domains. 

SECTION 3: ADDRESSING. 

Addresses in capabilities: 

Another topic we have not yet touched upon is the form 

of addresses stored in capabilities. 	Capabilities always 

reference segments residing at some 	site 	in 	the 

distributed system. When a segment is said to reside at 

a site we mean that the segment is stored in the private 

active storage of that site. The active storage may be 

simply primary memory or could consist of backing store 

as well, provided that the backing store is controlled 

solely by the site. (In the later section on peripheral 

handling we show that problems can arise with shared 

control of backing store devices). 

A segment's address, as stored in a capability, 	is 

assumed to be in two parts. The first part specifies the 
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site where the segment resides. 	The second part is some 

form of address to be interpreted by the kernel at that 

site, 	this second part could consist of: 

a segment starting address (only suitable for one 

level memory and not allowing any repacking of memory) 

a segment table offset 	(allowing backing store and 

repacking) 

a key for a segment hash table (also permitting 

backing store and memory repacking). 

The third approach is likely to be the best 	in a real 

system because it gives more compact segment tables and, 

if the keys are made unique system wide LFA8R74J, it 

provides a useful robustness (LAMP741. 

Moving segments between sites: 

A capability for a segment also has a length field and 

both this field and the segment address play a role in 

the movement of segments between sites. Ahen a kernel 

has accepted a domain incarnation c-list, it initiates 

the transfer to its site of all segments of the domain 

incarnation. The kernel scans each capability in the 

c-list and determines the location of each segment from 

the first part of the segment address. From the length 

field the kernel determines how much memory space each 

segment will require when it arrives. [he kernel could 

allocate the space there and then. 	The Kernel sends a 

message to each site that has one or more of the segments 
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it 	requires, specjIying each relevant second part of the 

segment address and requesting the segment be sent to it. 

When each segment finally arrives, its capability in the 

c-list is altered to reflect its new address. When all 

the segments whose capabilities are in the c-list are at 

the kernel's site, then the c-list is marked as a valid 

entry capability and the domain incarnation is ready to 

run. 

The action taken is slightly different in the case of 

code and public segments, for the capability for these is 

just a name (see chapter 6, section 1). [he kernel which 

wants the segments sends a message to the site where the 

segments are residing (located with the aid of tables or 

associative mechanism in the communication subsystem). 

The segments are sent to the requesting site when they 

are no longer required at their current site, and action 

is taken to appraise all the kernels of the new site for 

the segments. (More details are given in chapter ii). 

The advantages of pre-loading all segments of a domain 

incarnation, rather than requesting segments piecemeal 

from other sites as they are required, can be deduced 

from the above description. Firstly, all segments 

required from a particular site can be requested with a 

single message, saving some communication 	bandwidth 

usage, 	and, far more importantly, interrupting that site 

only once, rather than for every segment. 	Secondly, the 

total (extra) space requirement of the domain incarnation 
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can be determined before any segments are requested from 

other sites. Thus if the site has insufficient space for 

the domain incarnation the appropriate action, normally 

sending the c-list to another site, is taken before any 

segments have been transferred to the site. 

Capability hardware: 

The generation 	of 	addresses 	within 	a 	domain 

incarnation must be in the form of an index into the 

c-list to select a capability for a segment followed by 

an offset within the segment to select the required item. 

This obviously enforces the confinement of all accesses 

to be within the domain incarnation. 

It depends on the hardware facilities as to how the 

physical processor uses capabilities. 	Since each domain 

incarnation's capabilities are stored in the 	entry 

capability or c-list 	for the incarnation the use of a 

fixed, and reasonably modest, number of 	capability 

registers is one option available. 	This is the approach 

used in the Plessey 250 (COSS72,ENGL74). 	When a domain 

is ready to run, the kernel loads the hardware capability 

registers 	with 	the capabilities in the c-list, suitably 

translated to hardware addresses. Since we have 

postulated that a domain incarnation should last for some 

appreciable time, the overhead of loading perhaps 16 

registers at the start of a domain incarnation and 
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unloading 	them 	again when an interdomain jump is 

requested, should not be too large. This is provided 

that these registers do not have to be unloaded and 

loaded again every time the kernel receives an interrupt 

of any sort. As we indicated in chapter $, the volume of 

interrupts will grow as the size of the distributed 

system grows and the preservation of context could 

quickly become a dominant unproductive factor. The 

operation of the Plessey 250 has been described by the 

phrase "Don't interrupt me, I'm computing" [HAYN73] 

because external interrupts have been abolished [ENGL72J. 

This extreme philosophy need not be employed in a 

distributed system provided that kernel operation is 

clearly differentiated from execution in 	a 	domain 

incarnation, 	and simpler context switching is provided 

for the kernel. 

	

Alternatively 	a 	set 	of 	associative 	capability 

registers similar to those used in the CAP system 

(NEED72] could be employed. 	This would allow entry 

capabilities of arbitrary 	(or near arbitrary) length, 

that is large numbers of segments in a domain incarnation 

could be accomodated, but not all of them could be 

accessed quickly. The whole c-list need not be loaded at 

the start of a domain incarnation, entries would be added 

to the associative registers the first time the 

capability was used. 	Further, appropriate design could 

ensure that the contents of the associative capability 

registers remained usable after the handling of an 
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interrupt 	and 	even after an interdomain jump and 

subsequent return (assuming the entered domain did not 

require the use of all the registers for its own clist). 

SECTION 5: PROGRAMMING LANGUAGES. 

Constructing domains: 

The code that constitutes code segments has to be 

written by someone. 	We now look at how appropriate 

present languages are for the task. Our particular 

interest is in the representation of segments and their 

manipulation to form domains. 

High level languages offer the programmer segments in 

many guises. In arrays the offset within a segment at 

which a data item resides is obviously specified by the 

index. Other structures (e.g. RECORDS in the IMP 

language (STEP741) have symbolic names for the various 

data items in segments, it being one of the functions of 

compilers to map these names into offsets. 

Most languages however do not offer the programmer any 

means of specifying domains. Automatic rules could be 

devised for constructing domains from programs in many 

languages, but the efficiency, particularly in our 
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distributed system, of such automatically created domains 

is open to question. Such domains are likely to be so 

small that the overheads involved in domain changing will 

dominate the useful work done in the domain. 

For example, 	in ALGOL 60 the only two possible 

automatic rules are to make the whole program into one 

domain or to make every procedure the basis of a domain. 

In the 86700 system (ORGA731 the code for every ALGOL 

procedure is put in a separate segment. A recent study 

(t3ATS76I suggests that the average number of instructions 

executed from each code segment each time it is entered 

is of the order of 50 to 100. this is too few 

instructions to carry the overheads of domain entry so 

the ALGOL procedure is not a suitable basis for a domain 

in our system. 

FORTRAN does provide a way of generating larger 

domains than just individual subroutines. The CLJElUVl 

block is a suitable structure to be made into a segment. 

Sometimes it may be possible for all subroutines to be 

divided into disjoint sets accessing different CUM1101I 

blocks in which case domains can be constructed with a 

code segment containing the set of subroutines, and with 

local segments containing the mutual COMMON block(s), all 

other local data, and arrays. when it is not possible to 

form disjoint sets of COMMON block accessors then some 

sort of programmer intervention is required to identify 

which CO1MOI blocks are to be used as the basis of 
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domains and which should be passed as parameters between 

domains. This requires the same sort of techniques that 

are used to identify overlays (SELI12). 

SI"IULA 67 	(DAHL66,DAHL72,ICH671) 	provides 	in 	its 

'class' concept a programming analogue to domains. 	A 

class defines both data objects and the operations, 	in 

the form of procedures, to be performed upon them in the 

same way that the code segment of a domain incarnation 

defines the operations that are performed on local 

segments. However in programs these procedures are 

likely to be very short so that domain changing to enter 

a class may have unacceptably high overheads. Further in 

SIMULA 67 access to the data (attributes) of a class is 

permitted directly without executing one of the class 

procedures. Nevertheless a restricted form of SIMULA 67 

could provide a suitable basis for developing a language 

for domain handling. 

Quite a number of languages provide facilities for 

separate compilation of parts of a program. There are 

variations on how much compile time or link time checking 

is performed. 	Complete checking is feasible when there 

is no recursion between separately compiled parts. 	In 

some circumstances it is reasonable to assume that these 

'external' portions constitute the basis for a domain in 

that they perform a definite part of a computation. Of 

course, often these separately compiled sections provide 

a service environment for the rest of the program so that 
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the frequency of use of the separate sections is high and 

the duration of residency is low. but, again with 

appropriate discipline, the separate compilation facility 

does provide a basis for the construction of domains. 

To 	summarise, 	our desiderata for a programming 

language in which to write domain structured programs 

include provision for the manipulation of segments as 

basic items, and structuring rules that 	lead to easy 

specification of appropriately sized domains. 	The entry 

points to a domain must he obvious. This can be achieved 

by specifying routines to be 'external [STEP741, or 

negatively by employing the 'hidden' feature proposed for 

SIMULA 67 (HOAR74bJ 

Language restrictions: 

So far we have looked at features that would - be 

conducive to efficient domain structure. Attention is 

now turned to two language features, the usual generality 

of which would have to be severely restricted in a domain 

system. These are parameters and pointers. 

The parameter passing mechanisms of many high level 

languages are too sophisticated for our 	model 	to 

implement efficiently. The model provides in effect the 

same parameter passing mechanisms as FORTRAN: call by 

value (with possible copyback) for simple variables and 

call by reference for arrays (segments). that this, in 

154 



some way, 	is sufficient 	is demonstrated by the large 

number of running FORTRAN programs in existence. If, as 

we would wish, domains embody some complete and quite 

substantial function then the dictates of good design 

suggest that the number of parameters to he passed 

between domains should be small and that possible 

complexities of side effects and so on should be avoided 

(PANN72]. Hence we feel our model's mechanism to be 

adequate; the type of parameter passing employed  within 

domains need not be restricted to that possible between 

domains. 

Pointers, 	that 	is stored memory addresses, have 

recently fallen into disfavour with some programming 

experts [WIRT71 because they lead to an item having two 

or more names, and hence detract from program clarity. 

In our distributed system any pointer to an address in 

another segment would cause immense difficulties. 	There 

would he two ways  of storing such a pointer. 	One way 

would be to store the full 	capability of the segment 

(plus offset) which violates our principle of having only 

one capability in existence 	(for local segments) and 

keeping that capability in a fixed location. 	The second 

method would be to store the c-list offset of the segment 

(and offset within the segment). Problems would arise if 

the segment containing the pointer was passed to another 

domain incarnation because then the pointer would be 

incorrect. Thus in capability systems such as ours the 

use of intersegment pointers cannot be supported. 
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SECTION 6: MONITORS 

Ue made no mention of public segments 	in 	our 

discussion of programming languages. Only twolanguages, 

that 	we know of, embody such a concept directiy.  

Concurrent 	Pascal 	[HANJS74,HAsJS75) 	is 	the 	original 

language of these two. Details of the second language 

SIMUNE, which is similar to Concurrent Pascal, have been 

published very recently (KAU8761. One of the elements of 

these languages is a 'monitor'. Monitors, before being 

incorporated in Concurrent Pascal, were developed by 

Hoare (HOAR73,HOAR74a) and Hansen (HANS731. A monitor 

consists of some data, and procedures to manipulate the 

data. Monitors have the following properties: 

the data of a monitor is global in the sense that only 

one instance of the data exists, thus corresponding 

directly with data in a public segment. 

the monitor data is only accessible to the monitor 

procedures; all manipulation of the data is by calling 

these procedures, just as a domain must be entered to 

access its public segment. 

at any one time, at most one virtual processor can be 

progressing 	in a monitor; it will maintain exclusive 

access to the monitor's data until it exits from the 

code (or suspends itself on an internal queue), thus 

allowing guarantees to be made about the integrity of 

the monitor's data. 
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The finer details of monitors' properties have yet to 

be agreed upon. For example Hansen has his monitors 

contain global data only (HANS151 while Hoare's monitors 

contain both global data and multiple copies of user data 

(equivalent to local data) IHUAR71IbJ. It is on the basis 

of Hoare's type of monitor that we named domains having a 

public segment 'monitors'. 

Exclusive access and the condition queue: 

Another undecided property of monitors is that of how 

long exclusive access to a monitor should prevail. 

Obviously when a virtual processor finally exits from a 

monitor access can be given to another virtual processor. 

The problem arises when the virtual processor makes a 

call to another domain. Should all other virtual 

processors be denied access while this call 	is in 

progress? 	To do this poses far more management problems 

(LIST7] 	than the approach we have adopted which is that 

whenever a virtual processor executing in a monitor makes 

a call on the kernel (as it will to change domains) it 

looses kernel guaranteed exclusive access. 

To allow longer periods of effective exclusive access 

and to facilitate certain forms of virtual 	processor 

interconirnunication, 	monitors 	have to provide a facility 

whereby a virtual 	processor can suspend itself while 

waiting for some condition to be fulfilled (by some other 
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virtual processor). 	Jhen it suspends itself the virtual 

processor looses exclusive access to the monitor. Hansen 

provides a general queueing mechanism in a monitor so 

that other virtual processors can manipulate the queue 

(called the condition queue) in any desirable fashion. 

Hoare is more strict condition queues have to be served 

either 'first in first out', or in order of a priority 

specified when joining thequeue. 

We stated in chapter 6 that kernels kept validated 

entry capabilites in some form of 'ready to run' queue. 

The running domain incarnation is at the top of the queue 

so that its suspension involves removing its entry 

capability and storing it in the condition queue of the 

monitor. 	The condition queue has to be part of the 

public segment. 	It is no good making it part of a kernel 

area unless the monitor is to be tied to a particular 

site. No major problems arise with entry capabilities 

being moved, undetected by kernels, from site to site. 

When another virtual processor, executing in the monitor, 

wishes to release a suspended virtual processor it 

removes the entry capability from the condition queue and 

passes it to the local kernel which re-validates it. 

Eventually the domain incarnation will be scheduled for 

execution again. 

One difficulty in following Hansen's approach of 

allowing general manipulation of the condition queue is 

that suitable constructs must be provided for the domain 
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code to examine the capabilities in the condition queue. 

We cannot see any neat way of providing these. 

Secretary processors: 

The original impetus for monitors came from DijkstraTh 

'secretary' concept [DIJK71J. In a process orientated 

system a secretary process maintains global data, all 

requests to manipulate it being sent as messages to the 

secretary. In a monitor type system virtual processors 

can enter the monitor themselves to manipulate the data. 

However, particulary when dealing with peripherals, 

situations could arise where the kernel cannot know which 

virtual processor should be dispatched, to answer an 

interrupt, for example. 

Thus in our model we make provision for some monitors 

to have secretary processors (or daemons 	(SALT56i) 

associated with them. 	These special virtual processors 

execute only in the monitor and may use different code 

from the normal 	monitor user. 	Their purpose is to 

provide general housekeeping functions on the 	data 

structure 	that 	constitutes 	the 	public 	segment. 

Secretaries have a special 	relationship with 	kernels. 

Peripheral 	interrupts 	are 	associated 	with unique 

secretaries. 	When a kernel 	recognises a peripheral 

interrupt 	it 	schedules 	the 	approoriate secretary 

processor to run. 	iAJhen this secretary processor runs it 
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can manipulate the queue of the monitor to which it 

belongs to have the correct virtual processor scheduled. 

While 	this 	arrangement 	C ertainly gives flexibility in 

handling I/U devices we are not so sure 	of 	its 

efficiency. 	We postpone discussion of this to chapter 

11. 

SECTION 7: PERIPHERAL HANDLING 

We have just shown how the secretary processor concept 

can aid in the management of peripherals. Using 

secretary processors however is just one approach to 

managing peripherals in a domain structured distributed 

system. 	There are a number of possible approaches 

depending on the functional 	capabilities of peripheral 

controllers. 

In 	this section we propose various schemes for 

handling disk operations, predicated on the intelligence 

of the disk controller. We have chosen disks as an 

example because: 

they could be quite heavily used so that 	inefficent 

operation is less tolerable than for some other 

peripherals. 

disk usage involves reading and writing, a read 

possibly being of something previously written. 

The 	second point has ramifications for distributed 

control which we point out later. 	T4e assume that 	the 
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unit 	of 	reading 	and writing is a segment, more 

specifically a local segment used as a parameter. 	A 

write involves passing the segment to the disk handling 

domain which on exit returns a null 	segment. 	A read 

involves simple parameters and a null segment being 

passed to the disk handling domain and a full segment is 

returned. 

The workstation aoproach: 

Undoubtedly the neatest scheme is to assume that the 

disk controller or other peripheral controller is a site 

in its own right, fully integrated into the communication 

system. When using a bus type communication subsystem, 

which does not require more links as more sites are 

added, a network architecture such as depicted in figure 

7.1 can be achieved. With the advent of microprocessor 

controllers the workstation concept, as embodied in the 

CDC 7600 system 1ELR070,J0'lE71J, is becoming practicable 

for more modest sized systems. Of course, in a 

distributed system, 	the workstations do not serve a 

single 	large processor but rather interact with all the 

general purpose sites in the system. 

The workstation must, to all 	intents and purposes, 

behave like any other site in its interactions with other 

sites (internally it could be rather different in 

structure). This site will have only one domain but must 

be capable of handling entry capabilities correctly. 
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A DISTRIBUTED SYSTEM USING WORKSTATIONS 

Figure 7.1 



Thus for example a request for a disk read would be 

programmed as an interdomain 	call 	on 	the 	'disk 

controller' domain. The entry capability would arrive at 

the disk controller which would validate it as usual and 

queue it in an equivalent of the 'ready to run' queue 

(but presumably so as to optimise disk accesses). When 

the read had been performed the disk controller would 

initiate an interdomain return, with the read data oeing 

an argument segment to be returned to the calling domain 

incarnation. 

This approach can be viewed as multiplexing virtual 

processors on the physical processor of the disk 

controlling site. One requirement of this appraoch is a 

large buffering capacity at the controller site because 

the argument and processor base segments do not 

immediately leave the site when the incarnation has 

terminated (i.e. the disk operation has been completed). 

They stay there until a site has been determined for the 

resumption of the calling domain incarnation and the 

kernel of this site then requests the segments to be sent 

to it. 

One objection to this scheme 

that the general purpose po 

being dedicated to a single job 

considerably underutilized. 

processing power is general and 

is 	a valid objection. 	But 

that could be raised is 

er of a microprocessor is 

in which it could be 

In so far as the the 

being underutilized this 

the architecture of a 
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peripheral controller is likely to be 	rather different 

from a general purpose computer and since the capacity of 

a peripheral can be quite easily determined, the power of 

the 	controller 	can 	be 	matched to the capacity. 

Substantial underutilization of peripherals may be 

unavoidable in small systems but for larger systems it is 

an indicator of bad design. 

Limited capacity controllers: 

This is the scheme that we chose to simulate (see 

chapter 9). 	basically it supposes that a controller will 

not be designed specifically to fit 	into a domain 

orientated system but will 	be capable of using the 

communications subsystem to transmit segments and a 

limited repertoire of control messages to and from other 

sites. 	A domain, the disk handler domain, is required to 

reside at some site to assist the disk controller in 	its 

work. ohether this domain is tied down or not aepends on 

the sophistication of the controller, the communication 

system and the kernels in handling interrupt type signals 

from the controller. The disk handler domain needs to be 

a monitor with an associated secretary processor, so 

there are fewer problems when it is tied to one site. 

This approach assumes that the disk controller has a 

number of buffers for holding segments and that it sends 

a message to the controlling site (i.e. the site where 
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the disk handier domain resides) whenever one of its 

buffers becomes free. This message is interpreted, by 

the receiving kernel, as the secretary processor's entry 

capability for the disk handler domain. The kernel duly 

validates this entry capability and so eventually the 

secretary will run. It will initiate a read or write if 

there are any outstandingp or set a flag to indicate to 

any other virtual processor that subsequently enters the 

domain that it may initiate its own read or write because 

there is a buffer available. 

It was to avoid congestion at the disk handler site 

that we introduced the pseudo capability states of 

'ondisk' and 'desc' (chapter ). Nhen a virtual 

processor wishes to write a segment to disk, it transfers 

as a paramter to the disk handler incarnation simply a 

descriptor of the segment, not the segment itself. 	This 

descriptor 	is placed in a queue of descriptors of 

segments waiting to be written to disk and the virtual 

processor exits 	immediately from the domain (unless the 

Queue is full). 	4hen the disk controller has a free 

buffer into which it can receive the segment a request 

for the segment to be dispatched direct to the disk 

controller is sent to the kernel of the site where the 

segment is still residing. 

Normally reads are executed before writes. 	A virtual 

processor enters the diskhandler domain with simple 

parameters decribing the read. 	insteaa of the processor 
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suspending itself to wait for the segment to be read then 

returning to the calling domain the entry capability for 

the return is prepared, including one segment capability 

marked 'ondisk'. This entry capability is not validated 

until the disk read has taken place into a buffer in the 

disk controller. (In fact this invalid entry capability 

could be sent to the disk controller as the read request 

and be returned to the controlling site when the read is 

complete, whence the kernel there starts to validate it.). 

When a site has been chosen for the incarnation of the 

calling domain to resume, then the kernel of that site 

sends a request for the read segment direct to the disk 

controller. The disk controller dispatches the segment 

from one of its buffers. 

Notice that in a real system a check, on the queue of 

descriptors of segments that are waiting to be written to 

disk, will have to be made before a read is performed. A 

situation could easily arise where a virtual processor is 

trying to read a segment that it had previously written 

(that is called the diskhandler domain and returned) but 

which segment has not in fact got as far as being written 

on the disk. This is one reason why it is not possible 

to have every site control the same disk (perhaps as a 

kernel function). Unless a virtual processor is going to 

be held up until a disk write is acknowledged as 

completed, a single list of outstanding writes for each 

disk is required. Thus notification of writes to a 

particular disk must pass through a single site. 
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The other reason that all sites could not control 	a 

shared disk is related to buffer management. 	there is a 

limited number of buffers in the disk controller, the 

freeing of one of these buffers indicating that the 

controller is capable of accepting another request. 

Although conceivably the disk controller could broadcast 

that the buffer was free, all the sites would have to 

agree on which site was permitted to make the next 

request. The necessity of having all sites in agreement 

is something that we have studiously avoided, it can be a 

very time wasting function in a distributed system. 

Plain dumb controllers: 

It could be that 	the peripheral 	requires direct 

attachment to a central processor for control and has no 

buffers so that it must transfer directly to or from the 

main memory of the controlling site. 	tying the domain 

that uses the peripheral to the site, and utilizing the 

secretary concept to handle completion interrupts and 

general housekeeping, may well be acceptable when the 

peripheral is lightly used. But if the peripheral is 

heavily used, as might be the case for a disk, then the 

controlling site is likely to become very congested. 

Before data can be written to disk it has to be moved to 

the controlling Site where it is queued to be written. 

Data read from disk will initially 90 to the controlling 

site where it will exert an influence on the domain that 
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ultimately uses 	the data, so that that domain will tend 

to migrate to the controlling site as well. 

Alternatively the controlling site could be 	'split' 

into two sites, partitioning the memory and sharing the 

physical orocessor. One site would have a normal kernel 

and the other would perform the disk controller function 

we described in the independent workstation section. 

This scheme, although it would involve extra software to 

share the computer between two 'logical' sites might be 

ideal for a small system that was going to expand. As 

the use of peripherals grew they could be given their own 

independent sites, freeing the original sites to 

concentrate on the expanded workload. This is analogous 

to conventional small computers doing their own terminal 

handling but as a system grows this function is taken 

over by front end processors. 

Efficiency: 

The schemes we have described illustrate the dichotomy 

of dedicating processor power to a single task and 

risking underutilization of the processor, versus doing 

the task with a processor at a general site ,but, because 

of the special nature of the task, distorting the loading 

of the site. All the schemes we proposed however suffer 

in comparison with message passing schemes employed in 

process orientated systems when we consider the loading 
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on the communication subsystem. For in a message passing 

system a peripheral 	is viewed as a sink or source of 

messaaes. 	No domain incarnation is required at the 

peripheral 	controller or handler site, saving at least 

the movement of the processor base segment from the 

controlling site to the peripheral controller or handler 

site and back again. Of course the validation of the 

returning domain incarnation gives an opportunity for it 

to move to another site to help load balance. There is 

no equivalent opportunity in a message passing system. 

Whether this offsets the extra communication costs we do 

not know. We raise the question again in chapter 11. 

SECTION 8: FUNCTIONAL SPECIALIZATION. 

The workstation approach to handling peripherals can 

be extended to cover any functionally specialized site. 

If the site behaves as if it had a (basic) kernel and a 

single domain which implements the special function then 

it can easily be integrated into our distributed system. 

A frequently proposed form of distributed system 

(FU5172,5EL172,COLO76I gives, in our terms, every domain 

a site of its own. The physical processors at these 

sites 	(inevitably microprocessors) 	are tailored to the 

domain resident at them. 

We have already indicated, 	in 	chapter 	2s, 	our 

scepticism of the effectiveness of modest sized systems 
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of functionally soecialized processors. 	We concede that 

because of the smooth demand presented by a very large 

number of users, functionally specialized sites may be 

appropriate for large systems. this is providing that 

the overall system is balanced for the load applied. 

However systems such as ours necessarily precede the 

implementation of such large systems because, for these 

large systems, good estimates are required of the usage 

of each domain. iithout this information bottlenecks are 

almost certain to be designed into any such system built. 

Our system could also mature into a system of 

functionally specialized sites as it grew in size; 

specialized sites could be added if they proved cost 

effective. 

SECTION 9: DEADLOCK AND DISTRIBUTED CUNIRUL. 

Spier, when discussing requirements for code segments, 

stated that they must be re-entrant so as to avoid 

deadlock between two sequences of jnterdomain calls, such 

as A->8->C and C>B->A [SPIE73aJ • i0en used for pure 

domains and monitors that do not have condition queues 

re-entrancy will indeed permit deadlock to be avoided. 

However there is no such guarantee when dealing with 

monitors that have condition queues. if a virtual 

processor in a monitor wishes to retain, in effect, 

exclusive access while it calls another monitor, it needs 

to set a public variable so that other virtual processors 
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enter'iriy the monitor will test the variable and suspend 

themselves on a condition queue. In such a situation two 

virtual processors attempting the call sequences A>b and 

8->A respectively, 	where A and E3 are monitors that have 

condition queues, can be deadlocked. 	The banker's 

algorithm for avoiding deadlock, of dubious usefulness in 

single site systems because of computational overhead 

tHANS731, is useless in a distributed system because it 

requires that allocation of resources be centralized. 

Thus to avoid deadlock of interdomain calls, we require a 

hierarchical ordering of monitors that have condition 

queues. A virtual processor that has entered, but not 

exited, a monitor at a given level can only call monitors 

at hioher levels. 	Thus the circular calling sequence 

required for deadlocks is broken. 	Checks that monitors 

obey this calling rule can be applied at compile time. 

Unfortunately, 	it 	is not only when dealing with 

interdomain 	calls 	that 	deadlock 	can occur in a 

distributed 	system. 	Implicit 	over-allocation 	of 

resources leads to deadlock. 	For example, if too many 

virtual processors are permitted to operate in a 

distributed system then there will not be enough memory 

space at any site for an interdomain call to proceed. If 

no interdornain calls can proceed then no virtual 

processor can finish its work and release memory space. 

The system will be deadlocked. 
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Since allocation of resources can be performed at any 

site in a distributed system then over-allocation could 

easily result. 	Allowing each site a fixed quota of the 

system resources is one obvious method of control. 	But 

to fix quotas that ensure over-allocation never occurs is 

to condemn a system to almost' constant under-utilization 

of resources and negates the purpose of joining the sites 

of the system together in the first place. Resource 

allocation can be done more intelligently 	if 	the 

allocator 	has some knowledge of the state of the 

distributed system. To this end we advocate the exchange 

between kernels of a couple of carefully 	selected 

parameters of the load at each site. 	We have already 

outlined, in chapter 3, the mechanisms that can be used 

to effect this exchange of information. 

Ours is a pragmatic approach to deadlock avoidance. 

Providing information about global status cannot negate 

the possibility of deadlock occurring. But the frequency 

of deadlock can, by altering appropriate 'twiddle 

factors', be brought down to an acceptable level. 	In 

this context it is worth quoting Hoare, 'There is no a 

priori reason why the attempt to split the functions of 

an operating system into a number of isolated disjoint 

monitors should suceed....' Ll1OAR74a). The question is 

just how much information do isolated monitors (kernels) 

need in order to compete with hierarchically controlled 

systems, often silted up with too much information, and 

subject to the delays of bureaucracy, ae believe that 

172 



just a few bytes of information about the global state of 

a distributed system will suffice. 

SECTION 10: SUMMARY. 

This chapter has presented a miscellany of items 

connected with the implementation and operation of a 

distributed system. Not every function required for a 

distributed system needs to he developed from scratch. 

Those functions of a single site system that do not, or 

need not, rely on system wide shared memory can be 

adapted, with little, if any change, for distributed 

systems. Addressing is modified by the addition of a 

site identifier, indicating where in the dispersed memory 

of a distributed system the address refers. The concepts 

of semaphores and conditional critical regions, which 

require common memory and a central queue of suspended 

virtual orocessors respectively, cannot be readily used 

in distributed systems, but monitors, with condition 

queues, can be used, because they localize the management 

of waiting virtual processors to single domains. Again 

the bankers algorithm is unsuitable 	for 	deadlock 

avoidance in distributed systems but the hierarchical 

ordering of calls, enforceable at compile time, can be 

adopted without change for a distributed system. 

Our requirements for language development stem from 

the particular form of distributed system, domain based, 
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that we have chosen. 	Jhile developments in programming 

languages, particularly recent developments in 

programming concepts for handling concurrency, mirror 

many of the features of our model for a distributed 

system, languages developed so far are wedded to single 

site systems. They offer no help in constructing 

reasonable sized domains, their Parameter passing 

mechanisms are too general to be efficient and many of 

them permit references or adoresses to be program data 

which is only feasible when the whole program resides in 

the same address space. But the requirements for a 

language for writing distributed systems are not esoteric 

and we do not think the design of a suiteole language 

will be difficult. 

However 	distributed systems do require some new 

techniques. One example is peripheral handling, when 

peripherals are considered as free standing entities not 

controlled by one particular site. Another example is 

the need to encode the state of each site into a few 

bytes of information and exchange this information 

between sites so that resource allocation decisions can 

be made with reference to the global state of the 

distributed system. The whole technique of managing 

domains is of course different for distributed systems. 

Although we presented the basics of domain management in 

chapter 6 there are still 	some important aspects of 

domain management to be dealt with. 	Having presented a 

picture of some of the wider operational aspects of a 
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distributed system in 	this chapter, we return, in the 

next chapter, to the narrow details of domain management. 
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CHAPTER 8 

DOMAIN MANAGEMENT 

This chapter is concernea both with the protocol 	for 

the movement of code and public segments and with the 

determination of where domain incarnations should take 

place, 	it continues the development, started in chapter 

, of the mechanisms required for handling interdomain 

jumps in a distributed system. 

To aid the clarity of the following description we 

have altered our use of the term 'domain'. Ne have 

stated before that the code segment and possible public 

segment identify a domain. 	ve now actually equate the 

domain with these segments. 	Thus when we write of 

domains being at a site or being moved from site to site, 

what we mean is that the code segments and possible 

public segments are at a site, or are being moved. 
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SECTION 1: MOVEMET OF L)OMA1sJS. 

Introduction: 

Code and public segments are the only segments shared 

between virtual processors and hence greet care must be 

exercised in moving them from one site to another. 

Problems that could arise include the moving of segments 

away while they are being used, moving them away after an 

entry capability referencing them has been put in the 

'ready to run' queue or never moving them because there 

is always some entry capability in the 'ready to run' 

queue which references them. Management of domains then 

requires tnat they are not moved prematurely and that all 

sites will get access to them within a reasonable period 

of time. 

A kernel of a site can receive three typos of message 

or request related to a domain 

A request, in the form of a putative entry capability, 

to 	perform 	a 	'best' 	site calculation for an 

incarnation of the domain; called a crequest. 

A request, also in the form of a putative entry 

capability 	(but 	with a suitable distinguishing tag 

from the above c-request), to execute a 	aomain 

incarnation. 	That 	is, the site has, been chosen as 

the 'oest' site. 	This we call an e-request 	in this 

chapter. 
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3) A request to transfer the domain (the code and 

possible public segments) to another site, called a 

t-request. 

A site will only receive these requests if it is supposed 

by other sites to have the domain resident at its site, 

we call a site which is supposed to be the site of 

residence of a domain, the target site for the domain. 

The correspondence between target and reality depends on 

the method of global object management (chapter 3), 	In 

an associative scheme the target 	is the same for all 

sites. Also if the updating of the associative memory in 

the interface unit is performed as soon as a domain 

arrives then the target site will (almost) always be the 

correct site. in a system that employs the updating of 

directories the target for a request could be quite out 

of date; the directory entry could be changed after the 

request was addressed ana put in a queue for 

transmission, the message to update the directory could 

be delayed. In what follows, we assume a distriouted 

system using directory updates, as it is obviously the 

more difficult case, and we make our strategies robust 

against old information. 
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Pure domains: 

The management of pure domains is easier than dealing 

with monitors so we describe a strategy for pure domains 

first. 

In our distributed system there is one 'original' of a 

code segment of a pure domain and possibly many copies. 

Whenever a kernel receives a trequest for the code 

segment of a pure domain, 	the original 	of which is 

residing at its site, 	it sends off the code segment 

immediately but keeps a copy. 	The kernel then decides 

what to do with the retained copy: 

If the domain was being used when the t-request 

arrived, or there is some 'ready to run' incarnation 

of the domain then the copy is kept. 

If the domain is not required and the kernel is short 

of memory space then it deletes the copy to free 

space. 

If the domain is not required but 	there is already 

sufficient space at the site then the copy is kept so 

that there is no need to fetch the original 	from 

another site if the kernel's site is subsequently 

chosen as 'best' site 	for 	another 	incarnation 

involving the same domain. 

The original 	is sent 	from site to site because the 

sending site may have no use for the code and so could 

reclaim the space occupied by it immediately, whereas the 
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requesting site obviously always has a reQuirement for 

the code. Immediately prior to sending the code segment 

to the new site the kernel broadcasts the identification 

of the new site so that other sites can update their 

directories. The other sites sending messages related to 

the domain will, eventually, having updated their target 

site, send the messages to the new site. 

If a t-request arrives when either there is only a 

copy or no segment at the site then it is passed on to 

the target site for the original. but if the kernel has 

itself sent off a t-request then it 'reserves' the domain 

for the site of the incoming t-request. The kernel sends 

off the original of the code segment, keeping a copy, as 

soon as it arrives. 	If a trequest arrives after the 

kernel 	has reserved the code segment for another site 

then it sends the t-request off to that other site. 	A 

chain of sites, 	each having reserved the domain, could 

build up if there were delays in the segment being 

transmitted from site to site. 

When a c-request, a request to have a 'best' site 

calculation performed, arrives at a Site the kernel 

follows one of the following courses of action. 

If the original 	of the code segment is present then 

the 'best' site calculation is performed and the entry 

capability validated as usual. 

If a copy of the code segment is present then the 

'best' site calculation is performed. 	If the kernel's 
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own site is chosen as 'best' site then the entry 

capability is validated as usual, but if another site 

is chosen then the crequeSt is sent off to the target 

site of the original 	for the calculation to be 

repeated. 	Ihis is done to encourage the aggregation 

of all 	incarnations of a particular domain to be at 

one site (see later). 

3) If, when the c-request arrives, the kernel is already 

expecting the original from another site (that is it 

has dispatched a trequest), then the c-request is put 

in a queue to await the arrival of the coae segment. 

When it arrives the 'best' site calculation is 

performed as usual for all entries in the queue. 

L) if none of the above conditions prevail 	then the 

kernel 	passes on the c-request to the site it 

considers to be the target site for the domain. 

Figure 8.1 is a state diagram for the management of 

pure domains. 	It details the various transitions and 

actions (outputs) that can occur 	when 	c-requests, 

t-requests and domains arrive at a site. 
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STATE DIAGRAM FOR MANAGEMENT OF PURE DOMAINS. 

STATES: - 

0 original of domain is at site 0 original resides elsewhere 
C a copy of domain is at site C no copy held at site 
T domain requested but not arrived T no outstanding t-request 
R domain reserved for 'next site' R not in chain of sites 
'W outstanding work for domain Ti no work for domain 

Inputs are given in lower case, outputs are given in upper case. 
When an input causes no change of state and no output it is omitted. 
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Monitors:  

When we are dealing with monitors we cannot make 

copies of the segments involved and send off 	the 

originals when t-requests arrive. 	Basically what the 

kernel does in this Situation is to reserve the domain 

for the Site that issued the t-request. It refuses to 

process any more c-requests for the domain, sending them 

on to trie site that requested the domain, where they are 

queued uo. Eventually there will be no more work 

outstanding at the site where the domain resides so the 

kernel can then send the domain off to the requesting 

site. For the sake of efficiency we introduce a 

modification to this strategy depending on the type of 

work outstanding. 

When a kernel sends off requests to other kernels for 

the segments required to make up a domain incarnation it 

notes, amongst the information it keeps about every 

domain, that there are some 'external segments' 

outstanding. 	Also, 	every time a domain incarnation is 

placed on the 'ready to run' queue this is noted against 

the relevant domain. 	Ahenever segments arrive at the 

site, 	or domain 	incarnations 	finish execution, 	this 

information is amended appropriately. Thus kernels can 

tell whether outstanding work is all at the site or some 

of it is awaiting the arrival of segments from elsewhere. 
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In tne case where some of the outstanding domain 

incarnations are awaiting segments from other sites, 	the 

kernel 	will 	still evaluate incoming c-requests after it 

has reserved the domain for another site. If all the 

segments specified in a c-request are at the local site 

already, then that domain incarnation is placed in the 

'ready to run' queue but otherwise that c-request is 

passed to the next site, to be queued for re-calculation. 

Once there are no outstanding external segments all 

c-requests are passed to the next site regardless. 	1- his 

modified policy means that a kernel 	can perform useful 

work while waiting for a segment to arrive from another 

site, but it cannot hold onto a monitor indefinitely. 

Any t-request that arrives after the domain has been 

reserved for another site is sent to that site, ihe site 

which has requested the domain reserves it for the first 

site from which it receives a t-request, 	by setting a 

'next site' pointer to the requesting site. 	Thus, again, 

a chain of sites wanting the domain could be built up. 

However, because no c-requests (except those involving 

only segments at the local site) are processed after the 

first t-request is received, 	the chain must terminate 

quite quickly. 	ithen the monitor arrives at the first 

site that it was reserved for, there may be a queue of 

c-requests waiting to be dealt with. One policy with 

respect to these is to process them irrespective of 

whether or not there is a subsequent outstanding 

t-request. Figure 8.2 gives a state diagram for managing 
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monitors hieh embodies this policy. 

Observations: 

It remains to be shown that the two strategies we have 

outlined above give rise to desirable behaviour. 

Firstly, domains are not removed prematurely from sites 

in the following sense: if there are any segments being 

fetched from another site for an incarnation of the 

domain or any incarnations at the site are ready to run, 

or indeed running, then the code and possible public 

segments for the domain incarnation will not be moved 

until the relevant domain incarnations have run. 

Secondly, because either the domain is dispatched to the 

next site in the chain immediately, in the case of a pure 

domain, or as soon as all outstanding work is completed, 

in the case of a tnonitor, the domain will not remain at a 

site indefinitely once a t-request has been received 

(assuming that domain incarnations are of limited 

duration). 

Showing that all 	sites 	which 	issue 	trequests 

eventually receive the domain, requires more formalized 

argument. 	Our first concern is to show that a trequest 

never gets lost 	in a closed loop of reservations (each 

site reserving the domain for its successor with the last 

site reserving the domain for the first site). We make 

the following assumptions. 
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Assumption 1: No site issues a repeat of a t-request 

until it has actually received the domain and passed 

it on to another Site. 

Assumption 2: After a domain has left a site, the target 

of that site for the domain, can be any of tree sites 

subsequently visited by the domain. The target cannot 

be any site not visited by the domain since it was 

last at the particular site. 

Assumption 3: The relative speeds of 	movement 	of 

t-requests (and c-requests) from site to site and of 

domains from site to site is such that a domain cannot 

always stay one step ahead of a t-request (or 

c-request). 

By assumption 1 there can be no loops in the chain of 

reservations whose head is the Site where the domain is 

currently resident (we call this the main chain), because 

a site that is in this chain has not received the domain 

and so does not send out extra t-requests. Nor does a 

site produce forks in the chain by reserving the domain 

for two or more other sites. 

It is possible for temporary independent chains to 

form. 	A site issues a t-request and before it becomes 

part of the main chain a second site, 	having the first 

site as its target, 	sends it a t-request so that the 

second site is duly noted as 'next site' 	for the first 

site. 	But 	since the 	first 	site is a target for the 

second Site then, by assumption 2, the set of possible 
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targets, direct and indirect, for the trequest of the 

first site cannot include the second site. This argument 

can be extended to any other site that subsequently joins 

the independent chain, so that it is impossible for the 

outstanding t-request of the first site to arrive at any 

site in the independent chain and so form a- closed loop. 

By assumption 3 the outstanding trequest of the head of 

this indeoendent chain will eventually reach the main 

chain and the whole independent chain will be appended to 

it. 

Now that we have shown that no closed loops form we 

can state that every trequest issued results in a site 

reserving the domain for the issuer of the t-request. 

Since, once a domain has arrived at a Site where it has 

been reserved for another site, it is eventually 

dispatched to that site, by 	induction the domain will 

eventually arrive at every site that issues a trequest. 

The validity of the above conclusion, that every site 

that issues a trequest 	will 	eventually receive the 

domain, 	depends 	on 	the correctness of the three 

assumptions listed above. 	Assumption 1 is a matter of 

the policy implemented in each kernel. 	In a directory 

update system, assumption 2 requires that no update 

messages issued prior to the domain arriving at a site 

are accented by the site after the domain has left the 

site. This could be ensured by affixing a generation 

number to each update message and allowing a site to 
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accept an update message only if its generation number is 

greater than that of the previous update message it 

received. But we feel that in a real system it is very 

unlikely that messages will get that out of date before 

being acted upon. Likewise we feel that in a real system 

no special precautions would be needed to ensure that 

assumption 3 is correct. A monitor, when it arrives at a 

site, must have some work to perform before it can move 

again. The original code segment of a oure domain can 

move as soon as it arrives at a Site, but as it leaves 

behind a copy it would soon run out of sites where it was 

required. Also communication subsystems may well 

transmit c-requests and t-requests with higher priority 

than whole code and public segments because the former 

are likely to be very short. 

It might be supposed that it would be better for a 

kernel to broadcast the identity of the next site in the 

chain as soon as it had made the reservation of the 

domain for that site. Subsequent t-requests could then 

be sent to the end of the chain with considerable savings 

in overheads compared with the strategy we have outlined, 

where normally t-requests will arrive at the top of the 

chain and have to be passed through every site on the 

chain to the end of the chain. Disregarding the 

likelihood of long chains building up as being very 

small, an equivalent scheme would indeed be possible for 

associative type global management. But in the case of 

updating 	directories, 	such a scheme leaas to the 
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violation of our assumption 2 and could give rise to a 

self-contained loop of reservations for a domain. So the 

extra overhead of passing t-requests down each site in 

the chain is unavoidable if we are to use a directory 

update scheme for locating domains. 

SECTION 2: THE 'BEST' SITE CMLCULF1Og. 

In the first part of this chapter our concern has been 

to show that, once it has been decided that a domain 

incarnation will take place at a particular site, the 

domain will actually move to that site. Ne now look at 

the decision procedure for determining at what site a 

domain incarnation will take place. 

The determination of where the next domain incarnation 

is to take place is the keystone of our distributed 

system. If domain incarnations are moved around the 

system too frequently, virtual processors will be subject 

to extra transmission time delays and the communication 

subsystem may become overloaded. If movement is too 

infrequent then the loading at different sites can be 

become seriously unbalanced, some sites idle while others 

are choked with work. 

In discussing the OCS system in chapter 	4 	we 

criticized open bidding for work by all sites as taking 

too long and putting too great 	a 	load 	on 	the 
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communication subsystem. 	Our approach can be likened to 

a single tender policy. 	An attempt is made to identify a 

Site that will 	run a domain 	incarnation quickly and 

preferauly 	with 	minimum 	demands 	olacea upon the 

communication subsystem. This site, the 'best' site, is 

passed the entry capability for the domain incarnation. 

The situation at this site, and to a lesser extent in the 

rest of the distributed system, may have altered 

significantly between the time of generation of the 

information upon which the decision was made, and the 

time when the kernel examines the newly arrived entry 

capability. 	So if the 'hest 	site, on the information 

available to it, calculates that another site would be a 

substantially better choice, then it sends off the entry 

capability to that site. 	This site also has the freedom 

to accept or reject the domain incarnation. 	(A maximum 

number of transfers can be set to stop the domain 

becoming a hot potato). 

So there are two types of calculation to be described, 

one to nominate the initial 'best site and the other to 

decide to accept or reject the nomination. be assume 

that each site has a table of the number of virtual 

processors at each site in the ready to run' queue, or 

some similar measure of outstanding work, and a table of 

the amount of free memory at each site. This information 

would oe gathered from the exchange of status information 

described in chapter 3. 
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The initial calculation: 

The 	initial 	calculation at 	the code site considers 

(normally) only three possible sites as candidates for 

'best' site. 

the site of the code and possible public segment 

the site of the processor base segment and any 

local segments that are parameters; since they were 

part of the domain incarnation being exited, 	the 

parameters 	will 	be at 	the same site as the 

processor base segment 

the site of any other local segments which, 	since 

they were all last used in the previous incarnation 

of 	the domain being entered, will all 'be at one 

site. 

If the code segment cannot move because it is 'tied 

down' to drive a peripheral attached to a particular site 

then that site is chosen as 'best' site, Otherwise the 

basic policy is for the code site kernel to consider the 

total size, at each distinct site, of segments for the 

domain incarnation. 	The site with the largest aggregate 

size is chosen as the 'best' site. So, when all the 

segments are at the same site that site is chosen, and 

otherwise transmission on the communication links is 

minimized. 

Minimization of communication bandwidth requirements 

is only one of a number of criteria that can be 
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considered. 	before the aggregate sizes are compared 

there are a number of biases that can be applied to them. 

Since the calculation takes place at the code segment 

site it is possible to know how many other virtual 

processors are using the domain (i.e their domain 

incarnations are in the 'ready to run' queue). if the 

domain were to go to another site then either these 

domain incarnations would have to follow (if they are 

re-entered again) or the domain must return to the 

original site. Hence the size of the domain (the code 

and possible public segments) can be biased upwards by 

a 	factor 	representing 	its 	outstanding 	work, 

encouraging incarnations for the same domain to be all 

at the same site. 

The load, that is the number of ready to run domain 

incarnations, 	at each of the three possible sites can 

be taken into account. 	if the domain incarnation is 

sent 	to a 	lightly 	loaded site it will oe executed 

quicker than at a heavily loaded site. And if 

transmission times are less than average execution 

times, substantial advantages accrue by choosing an 

idle site rather than a site with even one other 

domain incarnation to run. Thus sizes can be biased 

downwards by a factor representing the overall load at 

a site. 

A kernel 	is 	likely 	to spend a lot of its time on 

memory management if it has very little free memory 

left. 	Not only should attempts be made to balance 
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I oads at sites but alSO an attempt should be made to 

ensure that a site does not run out of memory space 

when other sites have plenty available. So the sizes 

of segments can be biased upwards proportional to the 

amount of free memory at their site. This will 

encourage migration away from sites with little free 

space. 

L) A good part of a computation may consist of repeated 

calls between the same pair of domains, or, more 

generally, a repeated sequence of calls. If the 

domains reside at different sites and all are larger 

in size than the processor base segment then the 

processor base segment could continually travel 

between the sites concerned. Obviously the 

computation would oroceed faster if all the domains 

were at one site. If a 'shadow' stack is kept with 

the processor base segment it is easy to generate a 

count of how many consecutive interdomain jumps have 

been made in the same sequence of calls. If this 

count is used to bias upwards the size of the 

processor base segment then eventually all the domains 

involved will come to the same site. In particular 

domains that call 	'tied down' peripheral 	handler 

domains will 	tend to migrate to the site of the 

handler domain. 	Of course, if a computation uses two 

or more perioherals controlled from different sites 

then the processor base segment, together with 

parameter segments, is doomed to traverse back and 

forward between sites. This observation lends weight 
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to the desirability ot 	the workstation approach to 

controlling peripherals (chapter 7). 

The effects of the first stage calculation can oe 

summarized as follows: 

It effects at most three sites and it tends to balance 

the load and free memory of these sites. 

It tends to aggregate all incarnations of one domain 

at one site. 

It tends to localize to one site domains that are used 

together. 

Other things being equal, it minimizes the load on the 

communication subsystem. 

The second stage calculation: 

The first stage calculation we have described above 

only takes into consideration a maximum of three sites, 

and nominates one of them 'best' site. A site that is 

completely idle would have no way of breaking into the 

circle of the elect if only this calculation were used. 

The criteria we use for accepting or rejecting the entry 

capability at the 'best' site overcomes this problem. 

Assuming that the domain is not 	'tied down 	at its 

site, 	the 'best' site kernel scans the table it has of 

the loads at other sites and if some other site is 

substantially 	less busy than itself (and, according to 
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the free space table, has the space to accomodte the 

domain incarnation) then that site will be nominated as 

'best' site. If the kernel does not find a suostantially 

less busy site then it checks to see if its own site has 

enough space not only for the incoming segments but also 

for any temporary local segments that have to oe created. 

If it does have the space it accepts the entry 

capability, requests any external segments to be sent to 

it, and eventually schedules the domain incarnation ready 

to run. 

If the kernel does not have enough space then a 

second, less critical, scan of the load and free memory 

tables is made to find a site that does have enough 

space. If no such site can be found, or the domain is 

tied down to the present site, then the incarnation is 

placed in a queue of incarnations waiting for space. It 

is when the distributed system has sites that have 

reached this stage that the danger of deadlock becomes 

real. 	In the case of an incarnation of a domain that is 

tied down, 	the kernel could scan its ready to run queue 

and invalidate the entry capaoility of an incarnation of 

a domain that is not tied down, in the hope that this 

incarnation will move to another site and so release 

space for the tied down domain incarnation. 

The effects of the second stage calculation can be 

summarized as follows: 

At low loading of the system it 	has 	little effect, 
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there is no point in moving computations to idle sites 

if they leave an idle site behind. 

At moderate loading of the system the policy is to try 

to keep all sites busy. 

At heavy loading of the system the concern is more 

with finding space for incarnations. 

SECTION 3: REMARKS ON DOMAINS IN 0ISTNIUIED SYSTEMS. 

This chapter concludes the 	description 	of 	our 

kernel/domain model for distributed systems presented in 

chapter 6. 	Together these two chapters extend the field 

of application of domains. 	Hitherto domain management 

using capabilities has been centred around single site 

systems. 	This is because central 	taoles have been 

required to implement the capability mechanism. dy 

restricting the sharing of segments and providing a 

global object management scheme to cover the essential 

sharing required, we have been able to dispense with 

central tables and hence distribute domain management. 

Our main goal 	in achieving this extention has been to 

facilitate dynamic and efficient 	load sharing but our 

model can equally well be used to provide, in distributed 

systems, the protection normally associated with domains 

in single site systems. 
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CHAPTER 9 

DESCRIPTION OF SINULATIU 

The developers of the DELTA language, a successor to 

SIMULA 67, say in an introduction to a definition of the 

language,  

'Computer simulation has become 	an 	important 

methodological tool in the study of systems. luite 

often, 	the actual 	simulation model 	runs on the 

Computer provide useful 	information. 	What 	is 

nearly 	always useful, 	however, 	is the effort 

invested in writinq the simulation program. 	This 

work requires a careful attention to both the main 

structure of a system and to its details. 	The 

result 	is often an understanding which makes the 

later 	computer 	analysis 	less 	important 	in 

comparison.' EHOL8751 

We have written a simulation of a distributed system. 

Our main ourpose in writing it was to make sure that our 

concept of the requirements for a distributed system was 

complete. Our major interest was to learn more of the 

problems 	of 	distributed 	computing rather than to 

accurately predict performance. 	i'evertheless there were 

two 	semi-quantitative 	questions 	of 	considerable 

importance that we wished our simulation to provide 
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guidance upon. These were; 

What would be an adequate bandwidth, approximately, to 

support what could be a considerable movement of 

segments? 

Would increasing the number of sites in the system 

give close enough to a linear increase in power, or 

would overheads swamp the modest decrease in response 

time predicted in chapter 2 (figure 2.9)? 

but perhaps the question of greatest concern to us was 

that of stability. We wanted to determine if we would 

achieve stable load balancing using the various 

strategies we have outlined for distributed control. The 

demonstration that stability could he achieved in a 

simulation would bode well for its achievement in an 

actual implementation. 

The system we simulated uses directory updating for 

global object management and appends status information 

to each message (see chapter 3). 4e discuss the results 

of our simulation in chapter 10. 	The actual 	simulation 

program 	and some sample outputs are reproduced as 

appendix A. 
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Choice of language: 

live chose SIMULA 67 [DAHL72J as the language in which 

to write our simulation program. The CLASS concept of 

this language allows for the easy and flexible definition 

of objects in the simulation, 	the built-in CLASS of 

Simulation provides 	facilities for linking objects into 

lists and primitives for handling the flow of time. 

These features are expanded upon in a tutorial paper by 

Ichbiah and Morse LICI-4B74i. We assume familiarity with 

the language in the rest of the chapter. 

When we came to use SIMULA 67 we found it had a number 

of drawbacks. 	The first 	is 	that 	it uses a single 

precision real variable for representing time. In a 

computer system's simulation the span of times that are 

of interest ranges from instruction execution times, of 

the order of one microsecond, to say a total simulation 

time of two hours. With 7 digits significance, as for 

the IBM 360 version of SIMULA, lack of differentiation 

(HUTC68I of events would occur after the simulated time 

reached 10 seconds. in fact in our simulation the 

smallest period of interest was around 100 microseconds 

and, because of the expense of computer time to run the 

simulation, its duration (in simulation time) was around 

1000 seconds, so we just avoided the problem. 

Our second problem arose from a language rule that 

classes can only be used as a prefix at the level 	at 
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which they are declared (or in the case of system classes 

at the level enclosed by the simulation block). 

Declarations of the form 

Simulation BEGIN 

Process CLASS communication—system; 

• . . . 

CLASS site; 

Process CLASS kernel; 	... ; 

Process CLASS clock; ... 

. . . . 

EAJO of class site; 

. • . . 

END of simulation block; 

are illegal! 

All objects that make up a site have to be declared at 

the outer level, including all objects that are linked 

into queues inside the kernel. This has produced a large 

separation in the program between the declaration of 

objects and their use. The program structure is not 

clarified by this separation. 

Another problem was that none of the implementations 

of SIMULA 67 that we had access to, IBM SJMULA versions 

02.03 and 014.00 on IBM 360/65 and IbM 370/168 under US, 

and Oec-10 SIMULA KA version 1C, could garbage collect 

correctly. This meant that the creation of new objects 

during the simulation had to be severely curtailed so 

that ciarbage collection would be invoked infrequently; 
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thus lessening the chance of garbage collection being 

invoked in a situation that the implementation could not 

handle. 	This restriction, while perhaos aiding the run 

time of the simulation, 	has 	led 	to 	considerable 

artificiality in the program. For example, instead of 

control messages being created when required, acted upon 

and. abandoned (to be garbage collected) instances of 

every type of control message have to be created at the 

start of the simulation and the same instance altered for 

each individual message. 

The implementations had other faults also and we 

finally abandoned work with the I3M versions. We should 

note however the high compatibility between the languages 

accepted on the various machines. lrIe moved our program 

from IBi to Dec versions and it immediately compiled. We 

also performed the reverse move at a later date, and with 

the assistance of a short conversion program, again 

achieved immediate compilation. 

The basic structure of the simulation: 

SINULA 	67 simulations use the Process class to 

describe entities in the simulation that are active. 	in 

our simulation there are six types of process. 	Each 

process is activated by some process 	(except 	for 

initiation), performs some actions, which can include the 

activation 	of other processes, and then passivates 
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itself. 	The activation of a process by another can be 

specified to take place immediately, or after the actions 

of the activating process are complete, or with a 

simulated time delay. Figure 9.1 depicts this simple 

description. The six types of process are: 

Process CLASS kernelc; 

(lines 573 to 1918 in the program in appendix A). 

Each kerneic instance simulates the behaviour of a 

site and its kernel. 

Process CLASS clockc; 	(lines 3112 to 3139). 

For each site there is a clock 'ts.,clock, 	which can 

be set to interrupt the site. 

Process CLASS s_channelc; 	(lines 299 14 to 3029). 

Each site has one s_channelc instance to handle the 

transmission of messages to other sites. 

14) Process CLASS consolec; 	(lines 3035 to 30914). 

This class simulates the action of a user, presenting 

the distributed system with work, waiting for the work 

to be performed, waiting for a 'thinktime' period and 

then presenting another request for service from the 

system. 

Process CLASS diskc; 	(lines 3271 to 3319). 

There is a instance of this class for every disk in 

the distributed system being simulated. 	the function 

of this class is to define the delays in accessing 

information on a disk. 

Process CLASS disk..,controllerc 	(lines 3151 to 3263). 

There is one instance of this class for every disk. 

It deals with communication between the disk and 
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Sequencing in a quasi-parallel process 

Figure 9.1 



sites, and does Some buffering of requests for use of 

the disk. 

Segments: 

The basic entity of the domain oriented system we have 

described in the previous chapters is the segment. The 

simulation however uses more basic entities than this. 

All objects that are to be queued in the system have to 

be Link CLASS objects. All objects that are transferred 

between sites, that is inter-kernel control messages and 

segments, belong to the Link CLASS contentc (line 530). 

The attributes of a contentc object are a length, an 

origin site, a destination site and status information of 

the origin (for the updating of the destination network 

status tables described in chapter 3). 

A segment is one of the subclasses of the contentc 

class (line 546). 	Additional attributes include site and 

key to the hash organised segment 	table at that site. 

Each of the types of segment in our model are represented 

as subclasses of the segment class. 	Ihus we have: 

segmentc CLASS domainc; 	(line 2061). 

The 	extra 	attributes 	of this class are an 

identification number or name (did) and an indication 

(tied) as to whether or not the domain must remain at 

one site always. This class also defines a set of 

kernel calls such as requests for interdomain jumps. 
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domainc CLASS rnonitorc 	(line 21i) 

This class distinguishes the sizes of the two 

segments that make up the basis of a monitor, c...size 

being the size of the code segment and db,size being 

the size of the public segment. The two segments are 

always treated as a single unit in the simulation. 

monitorc CLASS secretaryc; 	(line 2172). 

This class corresponds to monitors with condition 

queues (chapter7). Its extra attribute is a queue, 

myq, and it provides procedures for 'first in first 

out' manipulation of the queue. It also provides 

procedures for the creation of a secretary processor 

and control procedures for it. 

segmentc CLASS virtuaprocessor 	(line 2227). 

The attributes of this class 	include information 

for the kernel, 	such as priority, a stack of entry 

capabilities and space for parameters. 

segmentc CLASS locaL.seq 	(line 2328). 

This class includes a procedure for moving local 

segments from entry capabilities to Alists. 	The 

handling of 	local 	segment capabilities is not as 

general as the description given in chapter 7, mainly 

because of difficulties arising from not being able to 

dynamically create and delete either local segments or 

entry capabilities. 
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The relationship of the various classes in the simulation 

is depicted in figure 9.2. 

The action of the kernel: 

The basic action of the kernel is to examine entries 

one at a time from the 'ready to run' queue, called 

driverq in the simulation (line 1623). Its action 

depends on the type of the entry. tJhen driverq is empty 

the kernel is idle and so passivates some other process 

class object, usually in the communication subsystem, has 

to activate the kernel again, which is done by calling 

the procedure switch—context (line 1528) when it has 

placed a new entry in driverq. 

The queue driverq has in fact 4 priority levels; 

'high', 'monitor', 'medium' and 'low'.. The class 

definition and associated procedures are given in lines 

217 to 284. At each priority level entries are queued 

first 	come 	'first 	served. 	Entries at the 'high' level 

pre-empt kernel attention 	from 	lower priority 	levels. 

After execution of all tasks at the 'high' priority 

level, execution of the the first entry in the next 

highest priority, non empty queue takes place. Since all 

entries to 'monitor', 'medium' and 'low' are the result 

of executing 'high' priority tasks the effect is that 

each 	level 	preempts lower levels. 	The use of the 

various levels is as follows: 
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high: All messages requiring kernel 	attention 	including 

putative entry capabilities for domain incarnations, 

but excluding valid ready to run domain incarnations, 

are queued at this level. Any entry arriving on this 

queue preempts kernel attention from lower priority 

levels, by executing the switchcontext procedure if 

necessary. 

monitor: All valid (i.e. ready to run) 	incarnations of 

monitors are queued here. 	Since this is the highest 

level of valid domain incarnations once an incarnation 

is at the top of this queue it will remain there until 

it gives up control to the kernel, ensuring the 

exclusive access we discussed in chapter 7. 	For 

although any high priority 	message 	will 	cause 

execution 	of 	the 	monitor 	incarnation 	to 	be 

interrupted, there is no way to put a valid 

incarnation ahead of the interrupted one in driverq. 

So when the interruption has been dealt with the 

original monitor incarnation will be resumed. 

medium and low: All other valid domain incarnations are 

queued at these two levels. 	hen a virtual processor 

has 	had 	a 	period 	of 	service 	greater 	than 

'longtimeslice' 	since 	it 	last 	interacted with 	a 

console, 	it 	is moved from medium priority to low 

priori ty. 

Although we have not used such a category we suspect 

that 	in a real system a 'top' priority may be required 

for 	initial 	loading and dealing 	with 	catastrophic 
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fai lures. 

The kernel contains some general sections of code to 

assist it in handling the various driverq entries. These 

sections are: 

Memory management. 	(lines 640 to 776) 

The program does not simulate any particular memory 

management policy. It just keeps count of how much 

free space there is and increases the simulated time 

taken to grant space when there is not much free 

space. The memory management section handles the 

possible queue of domain incarnations waiting for 

space. Two queues are kept, one for small requests 

which are given priority, and one for larger requests. 

Included also in this section is the procedure 

'make—space' which scans information about domains to 

delete copies of pure domain code segments when space 

is scarce. 

Segment management. 	(lines 778 to 846) 

This 	section 	provides procedures for adding, 

deleting and retrieving segments at a site. A hash 

function is used on the unique identifiers of segments 

(key) so that the segment table at each site can be 

kept reasonably compact. The simulation blurs the 

distinction between a capability for a segment and the 

segment itself. A capability contains all the 

attributes of a segment and thus is analogous to an 
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instance of the class seqmentc, which contains all the 

attributes of a segment as well. Thus, for example, 

there are always exactly two references pointing to an 

instance of a local_seg. One, stored in an entry 

capability, represents the capability for the local 

segment, the other one, stored in a segment table 

(except when the segment is being moved from site to 

site), represents the segment itself. 

Communications interface. 	(lines 648 to 941) 

This section of the kernel 	interacts with the 

communication subsystem. 	INhen a message arrives the 

status information it contains about the sender is 

examined and the message is placed in driverq. in the 

case of the message being a segment, the segment is 

registered in the segment table. 

The kernel places all messages it wants to send to 

other sites in one of two queues. The higher priority 

queue is for short control messages, the other is for 

segments. 	Each time the s_channelc process has 

finished transmitting a message it 	interrupts the 

kernel, by placing a message in driverq and calling 

switchcontext. The kernel releases the space the 

message occupied (except perhaps when the message was 

a pure domain code segment) and initiates the 

transmission of another message if there are any to be 

sent. 

Broadcasting is performed by placing individual 

messages for all the other sites in the send queue and 
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transmitting them serially. 

Load monitoring. 	(lines 9143  to 1025) 

Part 	of the heuristics for avoiding deadlock 

(chapter 7) are contained in this section. 	Its main 

purpose is to monitor the amount of free memory at all 

sites, including its own, and maintain a boolean 

'overload' which it sets when the free memory in the 

total system has diminished past a critical amount. 

The procedure 'ootimum_site' is used to assist in the 

second stage 'best' site calculation for domain 

incarnations. 

Domain management. 	(lines 1027 to 1526) 

The various procedures in this section implement 

the strategies outlined in chapter 8. 

The 	other 	main 	procedures 	in the kernel are 

switch—context, which we have already described, and 

execute. The procedure execute (line 15143) simulates the 

execution of a domain incarnation. Since domain 

incarnations can be interrupted the simulation of their 

execution requires some care. Our simulation program 

allows the action of each domain to be broken into as 

many as five steps, and associates with each step an 

execution time. The kernel process passivates itself for 

the execution time of the step and then 'instantaneously' 

executes the step. If the action of the step does not 

result in the termination of the domain incarnation (that 
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is 	its 	removal 	from driverq) 	the kernel process 

passivates for the duration of the execution time of the 

next step after which it 'instantaneously executes that 

step, and so on. 	During any period of the kernel being 

passivated 	it can be activated by another process 

executing the switch context procedure. 	Since the 

interruption may result 	in another domain incarnation 

being placed in driverq at 	higher priority than the 

incarnation whose simulated execution was interrupted, 

the name of the next step and the time remaining until it 

was due to be executed (runtt) are stored with the entry 

capability for the domain incarnation. Thus simulated 

execution of the domain incarnation can take place at any 

time. 

The entries in driverq: 

We now describe in more detail what actions the kernel 

takes for the various sorts of messages it finds in 

dri verq. 

Entry capabilities. 	(line 1633) 

The kernel 	checks to see if the entry capability 

has been validated, 	if so, control is passed to the 

code segment of the domain (simulated by invoking the 

procedure execute). 	If the entry capability is not 

valid the kernel 	initiates action to make it valid 

using the procedures in the domain management section. 
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Time slice interrupt. 	(line 1676) 

Virtual processors are subject 	to time slicing. 

hen a timer interrupt occurs the kernel continues 

with the current domain incarnation (giving it a new 

quantum of processing time) only if the domain is a 

monitor or the kernel has no other work to do and the 

domain has not been reserved for another site. 

Otherwise the entry capability is invalidated so that 

the domain incarnation will end up last in the medium 

or low queue (perhaps at a different site), depending 

on how much service time the virtual processor has 

received since it last interacted with a console. 

Message from a console. 	(line 1705) 	 - 

If the secretary processor for handling console 

input 	(see later) is not already scheduled then it is 

placed in driverq. 	the message is placed in a special 

queue for the attention of the secretary processor 

when its incarnation is run. 

Request to transfer a domain to another site. 

(line 1719) 

The kernel carries out the action described in the 

section on domain management in chapter 8. If it has 

the domain, and has not reserved it for another site, 

it reserves the domain for the requesting site and 

checks if it can send the domain off immediately. If 

the domain is already reserved then the request is 

sent on to the site that has the reservation, 
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otherwise the request is sent to the site supposed by 

the kernel to have the domain. 

Arrival of a domain. 	(line 1750) 

A domain is placed in driverq when it arrives from 

another site having been previously requested (except 

for initial program loading). The kernel places into 

driverq all entry capabilities that were waiting for 

the arrival 	of the domain so that their 'best' site 

calculation could be performed. 	It also checks to see 

if the domain is the last outstanding external segment 

for any domain incarnation otherwise ready to run. If 

so, that incarnation is also placed in driverq, at the 

appropriate priority level. 

Domain change of site update. 	(line 1796) 

The kernel 	registers the changed site in the 

information it keeps about every domain. 

Request for local segments. 	(line 1801) 

The kernel prepares to send the segments off 

immediately. 

Request for processor base segment and parameters. 

(line 1814) 

Again the kernel sends off the required segments 

immediately. 
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End of message interrupt from s_channeic. (line 169) 

The kernel 	initiates the transmission of the next 

message if there are any queued. 	If the previous 

message was a segment it frees the space occupied by 

it. In the case of pure domain code segments a test 

is carried out to see whether to keep a copy or not. 

Arrival of processor base or local segment. 

(line 1853) 

The arrival 	is always the result of a previous 

reciuest, made to another site, 	that the segment be 

sent. 	The domain incarnation to which the segment 

belongs is determined, and if it is the 	last segment 

required 	for 	the domain incarnation the domain 

incarnation is placed in driverq. 

Hopefully we have built up a picture of how kernels 

co-operate to make the distributed system run. Their 

chief action is of course to execute domain incarnations 

but such executions give rise to many different types of 

messages to be passed between kernels. Kernels deal with 

incoming messages as fast as they can so that other sites 

will not be held up unduly. 
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Action of domains; 

Kernels do not provide most of the facilities of an 

operating system, 	that 	is the function of the various 

domains in the system. 	In our program we have simulated 

the action of four areas of an operating system; command 

analysis, 	diskhandling, compiling and 	user 	program 

supervision. 	Ne have also provided some unspecified 

domains and monitors 	that 	simulate 	the 	resource 

requirements 	of 	other operating system facilities. 

Details of the domains are as follows: 

dornainc CLASS typel 	(line 2408) 

This class has no specific purpose. 	Its possible 

actions 	(determined on a probabilistic basis) are to 

call another domain of this or the type2 class 	(see 

below) 	and to call the diskhandler domain to read a 

buffer from disk. An incarnation of a domain of typel 

class has two local segments, one of which is passed 

as a parameter to the diskhandler domain, in our 

simulation we used ten instances of this class of 

domain intending to represent areas of an operating 

system that handle various sorts of trivial requests 

(c.f. the number of domains in the SUE system nucleus 

(SEVC72I, chapter 5). 

montorc CLASS type2; 	(line 2493) 

The function of this class 	is 	similar 	to 	typel. 

Instances of 	this class handle trivial requests that 
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involve the use of system wiae tables. 	Its action is 

simpler than typel, Consisting of processing followed 

by a return. 	Each incarnation has one local segment. 

The 	simulation 	program in appendix A has five 

instances of this class of domain. 

domainc CLASS compiler; 	(line 2530) 

The system we simulated is assumed to have two 

compilers. The compiler class of domain makes 

substantial demands for processing power and makes 

large transfers to and from disk. It has two local 

segments, one of which is used as a buffer for disk 

transfers. 

domainc CLASS user—supervisor; 	(line 2569) 

This class simulates the 'interpretation' of user 

programs. 	We use one instance of this class in our 

simulation, 	but multiple instances could be used to 

simulate different supervisors available to different 

users. The supervisor domain has three local 

segments, one for user code, one for data and the 

third is a disk buffer for reads and writes to disk. 

The action of a user program is assumed to consist of 

a cycle of processing followed by disk request. 

secretaryc CLASS command; 	(line 2886) 

Each virtual processor has a random number seed 

associated with it. This seed is used (and updated) 

by the code of domains when it is desired to simulate 
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different behaviour for different users. 	The command 

domain is entered when a request for service is 

received from a console. It determines, using the 

random number seed, what domain (from a choice of 

user-supervisor, 2 compilers or any of the trivial 

command domains) the virtual processor will enter 

next.'When execution in the chosen domain is complete 

the virtual processor returns to this domain whence 

the controlling console is notified that service is 

finished, and the virtual processor is suspended until 

another request is received from the console. 

The secretary processor associated with this domain 

executes different code from all 	other 	virtual 

processors. 	Its function is to choose the correct 

virtual processor, 	from among thdse suspended, to 

respond to a request for service from a console. 	The 

kernel 	at the site that 	receives messages 	from 

consoles 	(assumed 	always to be the same site) 

schedules the 	command 	secretary 	processor 	for 

execution on receipt of a console message. Once it 

runs, the secretary processor schedules an incarnation 

of the command domain by the virtual processor 

associated with the console. 

The command domain is tied down so that it can 

communicate with consoles. it does not have any local 

segments but does, of course, have a public segment. 

This domain is one of the two types in our simulation 

that co-operate with the kernels to try to ensure 

stability and freedom from deadlock in the system. 
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Since aM virtual processors pass through this domain, 

a count is maintained of how many there are active in 

the total system. if this number exceeds a certain 

figure or the 000lean 'overload' at the local site is 

set, then only trivial commands are allowed to 

proceed. 	The rest are held up until the number of 

virtual processors is reduced. 	This scheme is similar 

to that described by itdlkes (ILK73J, where processes 

have to move from a waiting list to an accepted list 

before they are eligible to be considered for running. 

Our scheme, in examining the nature of a request for 

service before placing it 	in an 	'accepted' 	or 

'waiting' state, produces better response time 

characteristics for requests that are known to be 

small because they involve specific domains. 

secretaryc CLASS diskhandler 	(line 261) 

This domain is quite complex. 	In conjunction with 

its associated diskcontrollerc process it performs 

the actions described in chapter 7, in the Section on 

limited capacity controllers. All requests for reads 

or writes for the disk belonging to the diskhandler 

domain are programmed as interdomain jumps to the 

diskhandler domain. In the domain, writes to the disk 

are dealt with immediately, the descriptor type 

capability for the segment to be written is placed in 

a queue (wq) and the return to the calling incarnation 

is made. If wq is full then the incarnation is 

suspended instead, on a condition queue, wql or wqh, 
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depending on the priority of the virtual processor. 

As wq empties, by segments being transferred to the 

disk, entries are removed from wqh first, since it has 

incarnations of medium priority virtual processors, 

and then from wql. The virtual processors are allowed 

to resume their incarnations in the calling domains. 

Thus there is limited buffering of disk writes, but a 

virtual processor cannot fill up the distributed 

system with segments destined for the disk. 

Since a virtual 	processor doing a write is not 

usually held up, a virtual 	processor entering the 

domain to read from disk is normally given priority. 

As we mentioned in chapter 7, the entry capability for 

the resumption of the calling domain is prepared so 

that there will be no delay when the read has been 

performed. This entry capability is stored in either 

the rqh or rql queues depending on whether the 

priority of the virtual processor is medium or low. 

If the boolean 'transferin..progress' is false then 

the virtual processor can initiate its own read or 

write operation. 	otherwise this is the function of 

the secretary processor. 	Its incarnation of the 

domain is made ready to run every time the kernel 

receives a message from the disk.sontrollerc process 

indicating that 	it has a free buffer (so that a read 

or write can take place). 	Actually the form of this 

message is simply the secretary's entry capability for 

the domain. 

The diskhendler domain also contributes to the 
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maintainence of system stability 	lf the 'overload' 

boolean at its site is set true then the normal 

ordering of reads before writes is reversed to free 

space. Also virtual processors that have low priority 

(i.e. have been running for a long time since their 

last console interaction) will be suspended after a 

write request (in my—q) until the overload conditon 

has been overcome, whence they will be released one at 

a time. 

We should ooint out that the fixed number of 

buffers in the disk controller together with the fixed 

amount of memory in the system could be a fertile 

source of deadlocks. One of the segments (with status 

'ondisk') of a domain incarnation being resumed after 

a disk read, occupies a disk buffer. Free space at a 

site is required before the segment can be transferred 

to the site, the buffer freed and the domain 

incarnation permitted to proceed. The incarnations of 

other virtual processors occupy memory at sites and, 

if they need to do a disk read or write, require a 

disk buffer to be free before they can proceed. 

Statistics: 

SI14ULA 67 is well suited for the gathering of relevant 

statistics in a simulation. The procedures we used are 

defined in the statistics section of the program (lines 

286 to 528). These procedures were designed so that 
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whatever the number of sites, 	users, 	disks etc. 	in a 

system the program would automatically generate correctly 

annotated statistics. 	Most of the last part of the 

program (line 3321 onwards) is concerned with the setting 

up of these statistics. 	An example of the output 

produced is given at the end of appendix A. 	The 

simulation was allowed to run for a simulated time of 

'settle,time' 	after which all the statistic counters and 

timers were set 	to zero. 	Then the simulation was 

continued for a period sim_time' when all the 

accumulated statistics were output and the simulation 

terminated. !he amount of CPU time used on a Dec-10 KA 

system varied between about 10 and 50 minutes per 

simulation run, depending on how many consoles and how 

many sites were being simulated. 

Performance parameters: 

	

We complete 	this 	chapter 	by 	summarizing 	the 

configuration we simulated and giving figures for the 

simulated load presented by consoles. 	rhe simulated 

distributed system consists of IN sites directly 

interconnected andy for the transmission of segments, 

directly connected to the one or several disks in the 

system. Each site has primary memory only. All consoles 

(i4 of them) are controlled from one site and each disk, 

when there is more than one, is controlled from a 

separate site. 
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Adams and Mjiiaid have published figures for the load 

presented to ERAS (ADAM75i. They give distributions for 

the service times required for important classes of work; 

compilations and the running of compiled programs. We 

arbitrarily decided that each site in our distributed 

system would execute programs at one quarter of the speed 

of the EMS central processors. So the times we give 

here are quadruple those given in AL)AM75. 

EMAS has two different compilers in common use so we 

used two instances of the compiler class 	in 	our 

simulation. The mean time for a compilation is 20 

seconds. (The complete histogram of compilation times is 

defined by the arrays A, cumulative probability, and 8, 

compile time, at line 2580 of the program). 

The mean execution time for a user program is 24 

seconds. 	(The histogram is given by the arrays ueserp, 

cumulative probability, and usert, 	execution time, 	at 

line 1E1 of the program), in this case we did not quite 

follow the distribution given by Adams and Millard. 

Their distribution was biased by a few long execution 

times and would have required us to cater for executions 

of up to 480 seconds. 	Ne imposed a Cut off at 180 

seconds. 	The pragmatic reason for this is that 480 

seconds is about the duration of a simulation run so that 

the statistics from a run including such a request would 

be considerably distorted. 	But there is also a deeper 

justification 	for our action. 	Je believe 	that 	the 
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performance of a system affects the characteristics of 

the 	load offered to it. 	The person who submits the 

equivalent 120 second job to EMAS probably runs it at 

times of slack demand so that a high fraction of total 

processing power is devoted to the job and the resulting 

response time is satisfactory. in our distributed system 

the best that can be done with a 4€0 second job is to 

dedicate one site to executing it so that the response 

time is necessarily much longer than 120 seconds. Users 

will thus be discouraged from running long jobs. 

Seventy four percent of all commands issued to EMAS 

are of the trivial kind. 	This high proportion of trivial 

requests 	in EMAS also supports our assertion that 

performance affects the load presented. 	E1AS responds 

well to short commands (and our simulation is designed to 

give good response to them also). if everyone had to 

wait an average of say 40 seconds to find out how many 

users were logged into the system, or to have the time 

printed out, then they would not make such requests very 

often. 	Adams and Millard do not give distributions for 

trivial command execution times. 	The strategy we picked 

for the operation of typel and type2 domains (see above) 

was chosen more to exercise the interdomain call 

mechanism than reflect reality. A trivial command in our 

simulation can involve up to iJ interdornain jumps. The 

execution time of a trivial command averages almost 200 

milliseconds and is approximately negative exponentially 

distributed. 
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The following table gives, 	for Our 	simulation, 	the 

number of each type of console request as a percentage of 

the total number of requests for service (see lines 2905 

to 2909). 	It also shows how 'useful' physical processor 

time 	(i.e. 	ignoring 	overheads and idle time) 	is 

distributed among the categories. 

Distribution of command types 

Type 	 relative frequency 	Z cpu time 

Compilations 	 9 	 31 

User executions 	17 	 67 

Trivial 	 74 	 2 

Table 9.1 

The overall average time to execute a command is just 

over 6 seconds. 

Although the average think time (including console 

output and input time) is reputed to be 35 seconds on 

EMAS, which agrees exactly with that reported elsewhere 

on other interactive systems LSCHE67,ES1R671, we have 

used a negative exponential think time with a mean of 30 

seconds. 	vle wanted to include each interaction with a 

text editor as a trivial 	command by itself and so 

shortened the average think time to compensate for a 

higher interaction rate for editing. 

The 	other 	timings in the simulation have been 

arbitrarily chosen. 	by and large we assumed that the 
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hardware constituting a distributed system would be 

efficient at performing domain management type tasks. 

When it came to specifying the 	other 	resource 

requirements of domains, namely the amount of space they 

require and the number and frequency of disk requests, we 

had no guiaance from published sources. 	Agrawala and 

colleagues have recently published a study 	LAGRA76I 

correlating Cpu demands with memory requirements and I/I) 

to disk (among other factors) but there is no way of 

deducing from the categorization of jobs (done by cluster 

analysis) which domains would belong to what category. 

Each site in the simulation is assumed to have 126,000 

bytes of memory, 4,O00 bytes of which is occupied by the 

kernel. This amount of memory at a site could be 

considered large, but there is no point in simulating the 

addition of extra sites to a distributed system when the 

addition of extra memory at each of the existing sites 

would produce the same results. The size of a processor 

base segment is made to be 200 bytes. 

The 	following table (9.2) lists the size (or range of 

sizes) in bytes, of incarnations of the various domains 

(assuming 20 users, as some public segment sizes are 

determined by the number of users). 
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Sizes of Domain Incarnations 

Incarnation 	of 	.., 13ytes 

typel 14803144 

type2 14303950 

command 3122 

diskhandler 2760 

compiler 17632-17760 

user 	supervisor 13192-36392 

Table 9.2 

The total size of all domains and processor base 

segments, before any virtual procesor enters any domain 

is 52,032 bytes for a twenty user system. 

If a trivial request goes to the maximum depth of 4 

typel domain calls and performs a disk read at each level 

it will require about 20,000 bytes of memory in total for 

all 	its domain incarnations, and will invoke a kernel to 

change domains 18 times. 	Thus even trivial requests can 

place quite substantial demands on the resources of the 

simulated distributed system. 

When it came to disk usage we arbitrarily decided that 

one in four calls of typel domains would involve a disk 

read. For compiling we assumed an average compiling 

speed of 12 lines a second and, relating this to the size 

of buffer used, fixed the I/O to disk as a pair of 

requests, a write followed closely by a read, on average 

once a second. the assumed distribution of the interval 
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between the write/read pairs is 6 stage Erlang (line 

2556). 	For user programs the mean headway between disk 

I/U requests, 	roughly two thirds reads and one third 

writes, was assumed to be 250 milliseconds. [his is 

twice what the equivalent rate on EIMS is thought to oe. 

This is to compensate for the fact that a user program in 

a distributed system that had only primary memory, would 

probably be restricted in size (in the simulation 32,000 

bytes is the largest size that user code, data and 

buffers can occupy) and so would make more transfers to 

disk than in EMAS, which is a virtual memory system with 

drum backing store. 

We 	freely 	admit 	that many of our performance 

parameters have been rather arbitrarily chosen. 	but we 

are 	in 	neither the business of detailed workload 

construction 	nor 	of 	high 	resolution 	performance 

evaluation. 	As we have indicated we believe the 

characteristics of a distributed system will affect the 

nature of the workload presented to the system. 'Ihe only 

way to accurately estimate the workload, as well as 

determine the number and size of domains, is to actually 

implement such a system. ide feel that the results we 

present in the next chapter show the practicality of 

building a domain orientated distributed system that will 

perform useful work. 



CHAPTER 10 

RESULTS OF OUR SIMULATIU1 

General experience: 

The main result of 	our 	simulation, 	a 	deeper 

understanding of the requirements of distributed systems 

has, we hope, oeen displayed in the earlier chapters. 

One lesson that was quickly brought home to us by runs of 

early versions of our simulation program was the 

necessity to keep all sites as busy as possible. Since 

for many types of communication subsystem the total 

bandwidth does not increase as the number of sites in the 

system qoes up, our original 'best' site calculation used 

minimization of segment transmission between sites as its 

main criterion, so as to conserve bandwidth. However 

simulation 	runs 	showed 	that this produced widely 

disparate utilization of processors, 	with consequent 

longish queues at the well patronised sites. 	oe quickly 

introduced a factor in the initial 'best' site 

calculation so that a site with no work to do would 

almost always be chosen as 'best' site when the other 

sites involved had other work. This, of course, accords 

with the ideal of instantaneous jockeying and 

considerably narrowed the range of physical processor 

utilizations, as shown, for example, in the 'IDLE IIMI' 

figures in the example outputs at the end of appendix A. 
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Another notion of which we were quickly disabused was 

that keeping copies of pure code domains would not result 

in significant gains. There is a lot of extra work 

required to treat pure domains differently from monitors. 

However, simulations with and without the sharing of pure 

domain code segments showed substantially decreased loads 

on the communication subsystem when the segments were 

copied. also since there were only three domains, the 

two compilers and the user supervisor, that received 

really heavy usage the existence of copies meant that the 

load could be spread more evenly when there was more than 

three sites in the network. 

The accidental retention of some tracing statements in 

a full simulation run led us to restrict the number of 

times an entry capability could be passed from site to 

site before actually resulting in a domain incarnation. 

The simulation was of a three site system and the trace 

output degenerated to a constant pattern towards the end 

of the simulation. Investigation revealed that the 

status information that each site held had become so 

arranged that all messages flowed one way around the 

communications system (see figure 10.1). The information 

each site had about the succeeding site was well out of 

date and indicated, falsely, that the site was 

underutilized. So all requests for a domain incarnation 

to take place at the site were refused, the succeeding 

site was nominated as best site and the request passed 

to it. ae were aware of the possibility of such a loop 
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SITE 1 

SITE 2 
	

SITE 3 

OUTSTANDING 
	

OUTSTANDING 

	

WORK TABLE 
	

WORK TABLE 
Site 	Jobs 
	 Site 	Jobs 

1 	3 
	

1 	0 
2 	3 
	

2 	3 
3 	0 
	

3 	3 

Note: Each site's own entry of its own outstanding 
work is the correct value. This value is appended 
to all messages sent from the site. 

OUTSTANDING WORK TABLES 
IN A 3 SITE SYSTEM 

GIVING RISE TO A SITUATION 
WHERE ALL MESSAGES TRAVEL 

IN ONE DIRECTION 

Figure 10.1 



forming, though we considered it 	highly unlikely. 

assumed that the completion of a domain at a site would 

probably result in a message being 	sent 	in 	the 

counter-flow direction. This message would have update 

information about the sending site so that the loop would 

be broken. 4hat appeared to be happening though, was 

that the kernels were so busy pushing around their 

rejected domain incarnations that they had no time to do 

any useful work, and so complete any domain incarnations 

already running at their sites. Ihe forcing of a site to 

accept a domain incarnation after it has been through a 

fixed number of sites has its unfortunate aspects but it 

does lead to the quick breakdown of any loops. 

These few examples suffice to show the qualitative 

benefits of the simulation program. ie now go on to 

present and discuss the semi-quantitative aspects of the 

simulation. 

Performance measures: 

The initial simulation runs were to determine suitable 

values for the various 'twiddle factors' to ensure both 

system stability and high throughput. That such values, 

valid for a wide spread of system sizes and loads, did 

indeed exist is very encouraging. 	After these tuning 

runs 3 series of simulation runs were performed. 	The 
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load characteristics were varied by using a different 

random number seed for each series. In each series of 

runs the number of users (consoles), il, was varied from 4 

to 24 in steps of 4 and the number of sites, i, was 

varied from 1 to 6. 	One disk was simulated in all these 

runs. 	The configuration that was simulated is depicted 

in figure 10.2. 	In one series of runs the simulation 

time, T (sim.time in the program), was 1000 seconds, with 

a prior settle—time of 200 seconds. 	In the other two 

series the simulation time was 500 seconds, 	with a 

settle—time of 200 seconds in one series and 300 seconds 

in the other. (The extra 100 seconds did not make any 

noticeable difference to the results so we assumed that 

200 seconds was sufficient to aemp clown transients caused 

by there being no work outstanding in the distributed 

system when simulation started). 

The chief measurements made during the simulation were 

response time and service time. 	Each virtual 	processor 

corresponding 	to 	a 	user (i.e. not the secretary 

processors associated with console serving and disk 

handling) 	kept 	a tally of how much service time it 

received and how long it was active in the system, 	the 

total time F less all periods of 'thinking time'. 	These 

tallies were zeroed at the start of the period I and were 

recorded at the end of the period. 
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M 	 N 	commdnicctt ion 
consoles 	sites 	system 	disk 

INITIAL SIMULATED CONFIGURATION 
Figure 10.2 



Thus the statistic total 	service 	time 	(1.5.1) 	can be 

defined by 

T.S.T 	fs(t).dt 

1 if any domain incarnation of virtual 
where s(t) 	processor i is being executed at time t f 0 otherwise 
(this is printed as GRAND TOTAL OF SERVICE lIMES in the 

output example in appendix A). 

The total response time (T.R.T) is similarly defined by 

T.R.Ijri(t).dt 

10 if the console associated with virtual 
where r;(t) 	. 	processor i is in the thinking state 

t1 otherwise 

(this is printed as GRAND 	IUTAL OF RESPONSE TINES in 

appendix A). 

From these two statistics were calculated two more; 

a response factor, RE, given by 

RF = T.R.T / 

that 	is the overall 	ratio of response time to service 

time, whicn is also the ratio of the mean response time 
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to mean service time (this is given as PLRFU1MANC 

MEASURE in appendix A). 

an average processor utilization, U, given by 

U = T.S.T /(J x T) 

Since there are overheads 	associated 	with 	kernel 

operations and secretary processors which do not appear 

in T.S.T a value of 1 for U is impossible. Table 10.1 

gives the overall response factor for the three series of 

simulations and figure 10.3 depicts this information 

graphically (T.R.T and T.S.T were both totalled over the 

3 runs before their ratio was taken). table 10.2 gives 

the overall 	average 	useful 	work 	done 	in 	each 

configuration, U*N (again with the numerator and 

denominator of U being separately totalled first) and 

figure 10.4 gives a graphical representation of the 

i nforrnat i om. 
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RE5POSE f- A(' 

Consoles 

Sites 4 8 12 16 20 24 

1 1.82 3.65 7.38 11.55 15.50 19.32 

2 1.45 1.80 2.71 4.34 5.51 8.25 

3 1.35 1.52 1.80 2.51 3.02 4.02 

4 1.33 1.42 1.59 1.98 2.25 2.74 

S 1.33 1.39 1.50 1.74 1.95 2.29 

6 1.33 1.37 1.46 1.53 1.78 2.01 

Fable 10.1 

1ORK DUNE - EQUIVALENT NUMBER OF PROCESSUFS 

Consoles 

Sites 14 8 12 16 20 24 

1 0.60 0.94 0.98 0.98 0.91 0.91 

2 0.71 1.30 1.70 1.89 1.94 1.96 

3 0.73 1.39 1.99 2.48 2.68 2.83 

'4 0.74 1.42 2.05 2.71 3.05 3.42 

5 0.74 1.43 2.09 2.84 3.23 3.71 

6 0.14 1.44 2.11 2.91 3.35 3.85 

Fable 10.2 
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The not three tables give some other figures derived 

from the simulations. 

Table 10.3 shows the number of bytes transmitted per 

second over all communication links, including those to 

disk. 

Table 10,4 gives the number overall, and per site, of 

control messages transmitted per second for the various 

configurations. 

Table 10.5 gives the utilization of the disk, that is the 

ratio of the total time it was carrying out a read or 

write (including seeking) to the overall simulation time. 

DANL)tJ1DTH - Kilobytes per second 

Consoles 

Sites 4 8 12 16 20 214 

1 13 21 23 25 27 26 

2 18 33 149 56 59 58 

3 19 42 614 39 95 105 

4 20 144 72 105 125 142 

5 19 43 73 112 131 165 

6 19 41 73 1114 139 114 

Table 10.3 
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Analysis; 

tlueueing 	theory 	considerations 	LKLEI8,KLE176J 

stipulate that the response factor curve must lie above 

and to the left of two asymptotes; 

RF = 1 	 for M << '1' 

and 

RF = 1 + (M 	M)/N 	for I >> M' 

where M' is the saturation number of consoles, given by 

M'/N 

(mean service time + mean think time)/(mean service time) 

From the figures given in chapter 9, M' is 6*N. 

Figure 10.5 is a re-presentation of the data in table 

10.1 for N = 1, 2 and 3, with the corresponding 

asymptotes. The correct position and indeed close 

fitting to the asymptotes gives us confidence that our 

simulation is not wildly erroneous. 

The tables and diagrams we have presented show that 

* increasing the number of sites increases the 

throughput and reduces the response factor for a fixed 

number of consoles but both effects level off (when 

there are so many sites that all requests from 

consoles can be met without any queues forming). 

* increasing the number of consoles without increasing 

the number of sites leads to greater throughput and a 

higher response factor, the response factor grows very 

fast when the throughput approaches the total capacity 
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RESPONSE CURVES AND ASYHPTOTES 

NUMBER OF CONSOLES 

Figure 10.5 

RESPONSE 
FACTOR 
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of 	the sites and the throughput actually drops 

slightly when the system is 	grossly 	overloaded 

(presumably 	because 	'wasted' processor power is 

required to cope with the congestion). 

* 	for a constant ratio of consoles to sites the number 

of control messages (indicative of general network 

management overheads) increases at a greater than 

linear rate with increasing size of system. 

* at the size of systems considered, control messages 

(each 32 bytes) account for less than 2 of the total 

bandwidth. titherwise use of the available bandwidth 

grows linearly with increasing size of the system 

(except, obviously, for the jump from one site to two 

sites because a system with one site only uses the 

communication subsystem for accessing the disk). 

* disk usage is correlated with throughput, which is to 

be expected; roughly 6 seconds of processing gives 

rise to 1 seconds worth of disk utilization. 

Response factors: 

The presentation of data in figures 10.1 and 10.2 is 

too coarse to determine the effect that the number of 

sites 	has on the relation between utilization, or 

throughput, and response factor. 	Figure 10.1 gives the 

response factor as a function of average processor 

utilization for two series of simulation runs with 3, 	6 

and 9 sites and overall 4, 6 and B consoles per site. 
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These simulation runs differed from the previous runs in 

that firstly, there was 1 disk per 3 sites for each 

system and secondly, the period of simulation depended on 

the number of consoles being simulated (see lines 131 and 

158 of the program in appendix A). [he reasons for the 

differences can be appreciated by referring to figure 

10.6 which is an equivalent graph of response factor 

versus utilization for 1 and 6 sites, derived from the 

data from the first series of simulations (augmented by 

more runs for the N1 case to give the low utilization 

figures). The N6 curve starts to break away upwards 

from the N=I curve when the utilization is only 0.6, 

This is because with 6 sites the single disk is the 

'bottle neck' in the system, rather than the processors, 

so that the response factor is predicated by the disk 

utilization. One disk per three sites is adequate disk 

capacity so that processor utilization is the the chief 

determinant of the response factor in the later series of 

simulations. Also notice that the variance, or spread, 

of points from the i1 curve is large in figure 10.6. 

This we realized, was because the number of console 

interactions in a fixed perioo of simulation is smaller 

when there are few consoles and sites than when there are 

many consoles and sites, and consequently the variance of 

estimates made from the results of the interactions must 

be larger. Hence, to get equal variance independent of 

the number of sites, the simulation should be conducted 

for the same number of interactions, which is roughly 

proportional to the number of consoles. 
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Returning to figure 10.7 we see that there is a slight 

decrease in response time in the region of processor 

utilization, 0.6 to 0.9, most likely to be operated in. 

(The cross-over of the fU9 and i46 curves, when the 

utilization is 0.9, is a reflection of the proportionally 

higher overheads in the 9 site system; see later). Ihe 

gain predicted in chapter 2 (cf figure .9) occurs even 

though the simulated service time is not exponentially 

distributed and the service discipline is not first come 

first served from a common queue. However this gain will 

only occur provided that no other resource, such as 

available bandwidth, saturates as the size of the 

distributed system is increased. 	Given this constraint 

though, the behaviour of the system is very encouraging. 

The system builder has some leeway to use strategies that 

involve overheads at each site that 	increase with the 

number of sites, and jet still 	attain approximately 

linear increases in throughput (for a constant response 

factor) with system expansion. 	There must be a limit to 

this process however because the response time 	is 

ultimately constrained to be at least the service time. 

Bandwidth requirements: 

As we mentioned earlier the simulated communication 

subsystem is a directly connected one but each site can 

only transmit to one other site at a time. Hence the 

effective bandwidth available in the system increases 
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linearly with the number of sites (including disks). 	In 

both the sets of simulations runs described aoove the 

capacity of the links from each site was fixed at 1 MHZ  

or, equivalently, 125 Kilobytes per second. 

Another series of simulations were run for a system of 

three sites, 18 consoles and one disk, and a system with 

nine sites, 54 consoles and three disks, 	when the 

capacity of the links was varied, 	in powers of ten, 

between 0.01 MHz to 10 MHz. 	]able 10.6 gives figures 

from this series for the response factor, 	average 

throughput per processor (as a fraction of the 

theoretical maximum) and the bandwidth used, both in 

absolute terms and as a fraction of the available 

bandwidth. 

EFFECTS OF VARYING bADUDTH 

Link Response Processor bandwidth frraction 
MHz Sites factor utilization used 	(MHz) of 	total 

10.0 3 2.27 0.81 0.763 0.019 
9 1,15 0.86 2.468 0.021 

1.0 3 2.66 0.83 0.793 0.198 
2.26 0.79 2.494 0.208 

0.1 3 36.3 0.13 0.16 0.389 
9 23.7 0.16 0.583 0.486 

0.01 3 338 0.02 0.016 0.396 
9 218 0.02 0.087 0.565 

Table 10.6 
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Table 10.6 shows that 1 NIHz available bandwidth per 

site is adequate but that anything less leads to a severe 

degradation of response factor and throughput. An 

increase in available bandwidth, above 1 MHz per site, 

gives a small increase in performance. Note that 

directly connecting sites is a relatively inefficient way 

of using bandwidth at 0.01 Mhz per link the 

intercomputer links in the 9 site system are only 57 

utilized even though the communication subsystem is a 

substantial bottleneck. Indeed the same argument we used 

for processors in chapter 2, that it is desirable to have 

1 server with capacity C rather than N servers with 

capacity C/N applies to communication subsystems as well. 

So a bus or loop communication subsystem will have a 

lower 	total 	bandwidth requirement 	than a directly 

connected subsystem because of the 	more 	efficient 

utilization of the available bandwidth. 

Extrapolations-. 

Lack of memory space on the computer used to perform 

the simulations prevented simulating systems with more 

than 9 sites. Vie would have liked to increase the number 

of sites further to determine if there is a practical 

upper limit to the system size after which the throughput 

drops or even becomes zero. Ne suspect that there is 

such a limit. 
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From the data given in table 10.4 for systems with a 

r-atio of 14  consoles to a site (i.e the diagonal 	of 	the 

table) 	the best fit quadratic for the number of messages 

as a function of the number of sites, N, is 

control messages/sec. = 1.1 	10.4 ; - 6.1 

For a system of twenty sites and eighty consoles we could 

predict 650 control messages a second, presenting a 

communication bandwidth requirement of 20 Kilobytes per 

second. A one hundred site system with four hundred 

consoles would require a bandwioth of approximately 400 

Kilobytes per second (3.2 Mrlz) just to the control 

messages. 	Each site in such a system would receive a 

control message on average every 8 milliseconds. 	The 

gain shown in figure 10.6 for increasing sizes of system 

Cannot offset this squared growth. Fhe overheads 

associated with dealing with the control messages would 

substantially reduce the capacity of each site to perform 

useful work so that saturation, defined above, would 

occur with fewer consoles and the response factor would 

be increased. As the throughput falls at each site so, 

in general, will the number of control messages issued by 

the site. Ihus it is possible that some form of 

equilibrium state will be reached wnere the adding of new 

sites has no effect on the total throughput of the 

system. but equally it is possible that distributed 

system management will take up more and more of the total 

processing power of the system as sites are added, until 

eventually the whole system is just dedicated to managing 

itself and can do no useful work. 
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Examining the total bandwidth used as presented in 

table 10.3, we see that after subtracting the load due to 

control messages (each 32 bytes long) the growth of 

bandwidth used is reasonably constant at 35 Kilobytes per 

second for each increment, after the first, of one site 

and four consoles. Thus the bandwidth used by a system 

with 20 sites and 80 consoles would be around 700 

Kilobytes per second or 5.6 MHz. From table 10.6 a total 

bandwidth available of 25 Hz would be adequate to 

support this loe, probably a lot less would be required 

if a bus or loop type communication subsystem is used. 

One hundred sites would use a bandwidth of 35 MHz. the 

designers of Ethernet (ME1C761 anticipate no problems in 

increasing the present capacity from 3 MHz to 15 FlHz, 

sufficient probably for a 20 site system, but still 

totally inadequate for a 100 site system. Indeed 

probably the only way of realizing the required bandwidth 

for a 100 site system is to directly connect the sites 

which requires 4950 links, rather impractical. 

To our knowledge, in our simulation of up to 9 sites, 

no domain became a bottleneck. 	Aonitor domains can only 

be at one Site at a time, 	the larger the system, the 

greater the risk that one of them will be in continuous 

demand and so hold back the whole system. Predictions as 

to when this will 	occur require figures on the use of 

individual domains. 	In a hundred site system no monitor 

can have an overall average use of more than 1% of 

processor time if bottlenecks are to be avoided. 
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There is another reason to think that a distributed 

system of 100 sites would never be implemented along the 

lines we have described in this thesis. 	With 1400 to 600 

active consoles, 	by the law of large numbers, the load 

presentea to the system would be very smooth, 	thus 

functional 	specialization 	of sites 	is appropriate. 

Throughout this thesis we have upheld the principle of 

keeping processors general purpose so that they can oeal 

with random variations in the nature of the 	load 

presented. 	But when the load is almost deterministic 

this principle does not apply, provided that the relative 

numbers of each type of functional unit matches exactly 

the characteristics of the load. Functional 

specialization should reduce the management overheads 

(EYL714J. As we showed in chapter 1 functional 

specialization does slot neatly into our system as the 

size of the system goes up. 

So for both technical reasons and theoretical reasons 

we feel that the ultimate size of a distributed system 

based on the kernel/domain architecture will be around 20 

or so sites. Based on the results we have obtained 

simulating systems with up to 9 sites, we make the 

prediction that a system of 20 sites will have 20 times 

the throughput of a system with 1 site and will be able 

to maintain the same response time characteristics. 
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Summary: 

The simulation program achieved it goals, as outlined 

in chapter 9. 

* In writing the program and analysing the results we 

gained a deeoer knowledge of the requirements of 

distributed computing. 

* ihe existence of results shows that it is possible to 

define control strategies that minimize the chances of 

deadlock, eliminate load levelling thrashing and yet 

permit useful work to be done. 

* The simulation results show that the ondwidth used oy 

our distributed system is in the order of 3 MHz for 

the larger systems simulated, which is about that 

provided in other local 	networks 	such 	as 	LICS 

LFAR872c]. 	Thus the bandwidth requirements are not 

impossibly high. 

* Within the range of 	1 	to 9 sites, and over the 

operational 	range of processor utilizations, 	ti'e 

simulation results show that there is a modest 

decrease in response time with increasing number of 

sites. This leads us to predict that expansion will 

be approximately linear up to about 20 sites. 
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CHAPTER 11 

EPILOGUE 

SECTION 1: ACHIEVEMENTS. 

In this thesis we have presented a philosophy for the 

software design of a distributed system, by choosing to 

concentrate on the domain concept, rather than being 

process orientated, we have arrived at a system with the 

following properties: 

The opportunities for load balancing occur frequently, 

every time there is an interdomain jump. 	These load 

balancing points are optimal 	in the sense that the 

minimum possible context is involved. 	This is because 

computations 	are 	changing 	their 	(protection) 

environment at times of load balancing. 

There is no duplication of code except when efficiency 

considerations dictate that there should be. 	Since 

domains are identified with functions, all users of a 

function will use the same copy of the code for the 

function when memory space is short. 	This is in 

contrast to process orientated systems where either 

functions have to be statically allocated to sites or 

all sites have to have the code for all functions. 

The domain mechanism neatly handles the control of 

operating system tables, allowing a single system wide 

256 



operating system. 	This frees the maximum amount of 

primary 	memory 	for use by non-operating system 

programs. 

We have incorporated naturally into our system the 

present state of the art with respect to protection. 

Domain structured systems have been shown to be more 

versatile than message passing systems in the kind of 

protection they can offer. 

The philosophy we have adopted leads, 	in Spier's 

experience (SPIE74], to better structuring of software 

and greater reliability. 

In this thesis we have detailed the special mechanisms 

required to handle domains in a distributed system. 

These mechanisms have been incorporated into a simulation 

program which demonstrated that it is possible to achieve 

stable operation of a load balancing distributed system. 

Further, the statistics derived from the simulation show 

that the design goal we set in chapter 1, a system with 

low initial cost and nearly constant cost/performance 

ratio with increasing size, can be achieved. 
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fLliUI\I 	: FURTHER RESEARCH. 

vie feel that this thesis raises more questions than it 

answers. The following is an incomplete list of research 

topics that we think could be profitably pursued. 

Communication between virtual processors: 

In chapter 7 we expressed some concern about the 

efficiency of transferring local segments between two 

virtual processors. This arose in the context of passing 

buffers to and from peripheral controllers, but the 

problem is the same for any form of communication between 

virtual processors. The processor base segment has to be 

carried along with the buffer, increasing the load on the 

communication subsystem. 	vie would like to investigate 

whether a mechanism similar to ports 	16ALL71,MKK075J, 

used in process orientated systems, can be incorporated 

into our kernel/domain model. A virtual processor would 

pass a message, addressed to a port, to its local kernel 

and the kernels will ensure that the message is delivered 

to the aporopriate place. 

The use of ports would also affect the concept of 

secretary processors. The secretary processor would be 

the sole virtual processor to execute in domains handling 

peripherals. 
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Of course it may turn out that the management of ports 

involves more overheads than carrying the processor base 

segment along with all messages. Research is required to 

ascertain whether this is so. 

Implementation: 

In chapter 9 we pointed out that we had no real idea 

of the characteristics both of user behaviour and program 

behaviour upon which to base simulation parameters. 

This, of course, is the lot of all simulators of unbuilt 

systems, but it is a particularly severe problem for us 

because our system is quite different from any actually 

in existence. building and operating a distributed 

system would enable research to oe carried out in these 

areas of behaviour. It would also help identify what 

hardware or firmware features would assist the domain 

management function. 

Spier did not publish any performance figures for his 

implementation 	of 	a 	single 	site 	kernel/domain 

architecture. He contented himself with saying The 

operating system is within the realm of the possible, 

contingent only upon the emergence of next-generation 

domain-orientated hardware machines' [SPIL74J. 

Undoubtedly domain management could oe very expensive in 

systems with inappropriate hardware. The severity of the 

problem can only be gauged by implementing the system. 
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Only then can a realistic determination be made as to 

whether our system belongs to the class of toy operating 

systems or is a viable technique for building large 

systems out of small scale computers. As we have stated 

before, one very important determinant of viability is 

the size of domains. 

Many of the algorithms used in our simulation program 

could be simply transliterated to a real implementation, 

(Indeed one of our main reasons for simulating a directly 

connected system with directory updating, rather than a 

bus type system with an associative mechanism, is that 

the former architecture could be immediately implemented 

whereas the later would require development of the 

communication subsystem). The figures derived from the 

-real implementation could be fed back to the simulation 

program to validate it and enable it to be used to 

predict the performance of bigger configurations. 

Programming languages: 

Building an actual 	system would also assist 	in 

evaluating the requirements of a programming language for 

domain based systems. 	An easy to use programming 

language would be of widespread benefit. 	ve have been 

told the implementors of the CAP machine have found it 

difficult to link segments into domains. 	Also once a 

language had been developed it would be of assistance in 
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gaining an idea of the natural 	size for domains (when 

domains are 'glued together' from some present language 

code they will probably be made large enough to be 

efficient irrespective of underlying structure). 

Communication subsystems: 

The area of computer communications is one where there 

are still 	plenty of 	research problems [0P0E75J. 	Of 

particular 	interest 	to us 	is the design of 	local 

communication subsystems. 	vIe would like to know if 

transmission schemes such as that employed in Ethernet 

are stable 	(KLEI76] 	and if they can be married with 

intelligent interface units. 	Functions of the interface 

units could include error control, 	the global object 

management we have outlined (including ensuring that no 

messages get lost when a global object changes sites) and 

intelligence gathering. The intelligence gathering, or 

eavesdropping, function needs researching to determine 

how effective it is. Some evaluation of its 

effectiveness could be performed using our simulation 

program. 
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Alternative archi tectures 

Our distributed kernel/domain scheme need not be 

confined to distributed systems. vie mentioned in chapter 

2 that a scheme devised for a system without shared 

memory may well be appropriate for a system with shared 

memory. A knowledge of which segments a computation will 

access could be used to place the segments so as to 

reduce or even eliminate memory contention. 

One kind of architecture that could be investigated is 

that of PRIME EBASK72,FABR73I, but without a supervisory 

processor. 	In PRIME memory modules (and backing store 

units) are switchable between processors. 	Once switched 

to a processor, a memory module is accessed privately by 

that 	processor. 	The switching of modules can be 

considered as a high speed method of 	transferring 

segments between processors. 	The frequency of.switching 

is intended to be very infrequent compared to the 

frequency of memory accesses. 

Perhaps the most promising alternative architecture to 

consider is a system where each processor has its own 

primary memory but where relatively high performance 

secondary memory is shared between all processors as a 

replacement for, or supplement to, the communication 

subsystem. Fuchel and Heller IFUCH681 have proposed a 

system of two CDC 6600 computers sharing extended core 

store (ECS). The ECS was to contain a common job queue 
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and core images of all swopped out jobs. 	At the other 

end of the power scale, Nens1y [triENS751 proposes a system 

with small computers sharing an electronic disk. Arden 

and Berenbaum (ARDE751 have given consideration to the 

type of access circuitry neeaed for this shared second 

level of memory. This kind of architecture can be 

regarded as a multiprocessor system with a cache for each 

processor. But with the type of system we have proposed, 

based on domains, there is a massive simplification of 

the operation of the cache. 	If the cache holds all 	the 

segments of a domain incarnation then it can be 

guaranteed a priori that there will not be a Consistency 

problem. There will he no need to check every cache 

write operation tTANG76I to make sure that the altered 

word is not also in another cache, it is interesting to 

note the direction 	being 	taken 	by 	the 	Minerva 

multiprocessor system [JIDD76]. Cache memory is being 

introduced to save loading on the shared bus to main 

memory. The implementors plan to use Concurrent Pascal 

as their programming language so that a write operation 

to a shared memory location can be detected at compile 

time and the consistency problem eased. 
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Parting remark: 

One day soon some microcomputer is going to become the 

'de facto' industry standarc. 	Abundant software will be 

produced for this microcomputer, locking all 

manufacturers into producing compatible architectures. 

If these architectures do not have have the capability 

for easy integration into multiple computer systems then. 

a great and irreversible loss will have occured. but the 

requirements for multiple computer working have yet to be 

generally delineated. Our research is a small step 

towards this goal, a lot more work is needed quickly. 
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!Simulation of a Domain Based Distributed System 

!Written by: L. Casey 	Date:Oct 76 Version: PRINT; 
5 

!The aim of this program is to simulate the operation of; 
!a network of n computers.; 

!Each computer has a kernel whose functioning is modelled in; 	10 
!the class kernelc. The basic operation of the; 
!kernel is to examine entries in a prioritized queue (driverq); 
!and take appropriate action (see around line 1350).; 

!The basic structure of the program is as follows; 15 
!lines 41 to 173 declare and define constants and parameters; 
!of the simulation. 	Two values, the number of sites and the; 
!number of consoles, are read as input data.; 
!lines 180 to 528 declare 	some primitives for controlling 
!errors,queues and the gathering of statistics; 20 
!lines 530 to 556 declare the basic classes.(contentc and segnentc); 
!lines 573 to 1918 declare the kerneic class, defining the action; 
!of each computer in the network; 
dines 1920 to 2989 declare the classes required for the; 
!manipulation of domains; 25 
!lincs 2991 	to 3319 declare the other process classes (s_channelc, 
!consolec,clockc,disk_controllerc and diskc); 
!from line 3320 onwards is mainly initialization code for the; 
!running of the simulation; 

30 

35 
!After the program a cross reference listing is given.; 
!The letter D after a line number indicates that the variab.leis; 
!declared at that line while H indicates that it occurs more than; 
!once.; 

40 
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1!!1!1!!constants of the simulation run! !! !!!!!! !!! 

BEGIN 
INTEGER 	 45 
n; 
!the number of sites in the network (maximum=128); 

INTEGER msize; 	 !size of primary memory at each site; 
50 

INTEGER 
fixed—domains, 	 !no of operating system domains; 
max—consoles, 
!no of active consoles attached to system (< max_processors); 
ipid, 	 !no of domains existing at ipi time; 
max—disks, 	 !number of disks (not greater than n); 
max_disk_bufs, 
!number of buffers for each disk controller; 
max_writes_pending, 	!a control factor for access to disks; 
compi, 	 !no of domains that are compilers; 	60 
ddl,ddu,mntrl,mntru,diskl; 	 !for naming domains; 
!diskhandler domains numbered from diskl to diskl+max_disks-1; 

REAL 
contextdelay, 	 65 
!the time to preserve context on accepting an interrupt; 
timeslice, !intervals for user processes; 
longtimeslice, 
mesdelay; 	 !the physical delay/byte in sending; 
!a message from one site to any other; 	 70 
BOOLEAN 
running, 	 !genra1ly true; 
full_diags,q_trace,nem_trace; 

INTEGER max_local_segs, 	 75 
!the number of local segments in an incarnation; 
max_param_segs, 	 !number of parameter segments permitted; 
stack—depth; 	 !for number of incarnations; 

INTEGER low,medium,monitor,high; 	 !priorities; 	80 
TEXT ARRAY priority_text(1:4); 
INTEGER null,incore,ondisk,trans,desc; 	 !status; 
INTEGER supern, 	 !domain number for user supervisor; 
commandn, 
!domain number for interpreting commands; 	 85 
cnsl_site; 	 !site where all consoles are attached; 
INTEGER size—divider, 	!constant used in memory management; 
t_length; 	 !length of hash table at each site; 
INTEGER load _shed; 
!factor deciding when to migrate processors; 	 90 
INTEGER max—shifts; 
!another factor for migrating when space is tight; 
INTEGER chopfactor,chopsize; 
!global constraints on number of active processors; 
INTEGER i_chopf; 	 95 
!desirable limit on processors at individual sites; 
REAL ARRAY userp,usert(1:7); 
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!constants defining user progralu behaviour; 

INTEGER wait _ for _d,seekdsite,seek choice,spaceclaimed ,valid; 100 
!constants used in domain—incarnation class; 
INTEGER random _seed; 
REAL sim_time,settle_time; 
!duration of simulation; 
REF (Printfile) results; 	!file for results of simulation; 	105- 

Outtext("NUMBER OF SITES*"); Breakoutimage; 
n : =Inint; 
mesdelay:=80; 	 !microsecs; 
contextdelay: =200; 	 microsecs; 110 
tiinesl ice :=100000; 
longtimeslice:=500000; 	!half a second; 
running: =TRUE; 
low:=1; 	medium:=2; 	monitor:=3; 	high:=4; 
priority_text(low) 	:- Copy("LOW t '); 115 
priority_text(medium) 	:- Copy( "MEDIUM") 
priority_text(monitor) 	:- Copy("HONITOR"); 
priority_text(high) 	:- Copy("FIIGI-I"); 
incore:=1;ondisk:=2;trans:=3;desc:=4; 
Outtext("NUHBER OF CONSOLES*"); 	Breakoutimage; 120 
max consoles: =Inint; 
max_local_segs : =2; 
max _parani_segs: =1; 
stack_depth: =5; 
msize:=128000; 	 !bytes; 125 
size_divider:=1024; 	!bytes; 
t_length:=20+(max_consoles*(6+n))//n; 
supern 	:= 2; 
commandn 	:= 1; 
cnsl_site 	:= 1; 	 e 130 
max disks :=1+(n-1) /13; 
ipld:=2; 
!two 	special domains (supern and commandri); 
compl:=2; 	 !number of compilers; 
ddl:=ipld+compl+1; 	 !first ordinary domain; 135 
ddu:ddl+9; 	 !10 typel domains; 
mntrl:=ddu+1; 
mntru:=mntrl+4; 	 15 	'ordinary' monitors; 
diskl:=mntru+1; 
fixed_domains:=mntru+max_disks; 140 
!each disk has itS own handler domain; 
max_disk_bufs :=3; 
max _writes_pending: =n+1+niax_disk_bufs; 
wait—for—d:=1; 
seek_d_site:=O; 145 
seek_choice:=2; 	 !for domain_incarnationc; 
spaceclaimed :=3; 
valid:=4; 
load_shed: =2; 
max_shifts:=n-1; 150 
chopfactor:=n*4; 
i_chopf:=(3chopfactor)//2+1; 
!allow individual sites 50% more than average load; 
chopsize :32000+(max_consoles//4) *500; 
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!a stab at a formula; 	 155 
random_seed: =787; 

sirn_time := 12000/max—consoles; 
!simulation over a constant number of interactions; 
settle—time := 30+2400/max—consoles; 	 !seconds; 	160" 
userp(1):=0; userp(2):=0.37; userp(3):=0.5; userp(4):=0.64; 
userp(5):0.86; userp(6):0.92; userp(7):1.0;; 
usert(1):=0.5; usert(2):=4; usert(3):=8; usert(4):20; 
usert(5):=40; usert(6):=80; usert(7):180; 
!last value shoUld be 480; 	 165 

full_diags : =FALSE; 
mem_trace: =FALSE; 
q_trace:=FALSE; 	 !à lot of output produced when true; 

results :- NEW Printfile("RESULT/A:APPEND"); 
results. Open( Blanks ( 132 ) ) 

INSPECT results DO 	 175 

Simulation BEGIN 

!some utility functions; 	 180 

PROCEDURE ptine; 
BEGIN 	 !print the 	time; 

Outfix(Time,'0,12); 	Outtext(Blanks(2)); 
END; 185 

PROCEDURE error(t); 
VALUE t;TEXT t; 
BEGIN 

INSPECT Sysout DO BEGIN 190 
Outtext("ERROR OCCURED"); Outimage; 

END; 	 !notify terminal user; 
Outtext(">>>>>> ERROR IN MODEL AT TIME"); 
ptime; 	Outtext(Blanks(10)); 	Outtext(t); 
Outimage; 195 
IF NOT fuli_diags THEN audit; 
!done automatically otherwise; 
running: =FALSE; 
REACTIVATE Main; 	!continue execution of main block; 

END; 200 

TEXT PROCEDURE fillin(string,i); 
VALUE string; 
TEXT string; 
INTEGER i; 	 205 
BEGIN 
!returns a text 3 longer than, string with i edited into space; 
TEXT t; 
t :-Blanks(string .Length+3); 
t:=string; 	 !in left most part; 	 210 
t.Sub(string.Length+1,3).Putint(i); 
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!add integer at end; 
fillin:-t; 

END; 
215 

CLASS qheadc; 
BEGIN 	 !queueing system with 4 priority levels; 

REF(Head) ARRAY q(low:high); 
INTEGER i; 	 !work count; 	 220 
REF(Link) PROCEDURE first; 
BEGIN 

i:=high; 
WHILE (IF i<low THEN FALSE ELSE q(i).Empty) DO i:=i-1; 
IF i<low THEN first:-NONE ELSE first:-q(i).Suc; 	 225 

END; 

INTEGER PROCEDURE total—entries; 
BEGIN 

INTEGER t; 	 230 

FOR i:=low STEP 1 UNTIL high DO t:t+q(i).Cardinal; 
total_entries: =t; 

END; 
235 

INTEGER PROCEDURE b_entries; 
b_entries:=q(low).Cardinal+q(medium) .Cardinal; 

BOOLEAN PROCEDURE qempty; 
BEGIN 	 !true when nothing in queueing system; 

i:=low; 
W11 9  ILE (IF i>high THEN FALSE ELSE q(i).Empty) DO i:i+1; 
IF i>high THEN qempty:=TRUE; 

END; 
245 

FOR i:=low STEP 1 UNTIL high DO q(i):- NEW Head; 
END of class qheadc; 

PROCEDURE queue(qhead ,entry,priority); 
REF(qheadc) qhead; REF(Link) entry; INTEGER priority; 	250 
IF priority GE low AND priority LE high THEN 
entry. Into(qhead . q(priority)) 
!insert behind all entries of same priority; 
ELSE error("WRONG PRIORITY USED IN QUEUE COMMAND"); 

255 

PROCEDURE q_analysis(qhead,heading,items); 
VALUE heading; 
REF(qheadc) qhead; 
TEXT heading; 	 260 
TEXT PROCEDURE items; 
!to map ref type variables into descriptive text; 
BEGIN 
REF(Link) ptr; INTEGER i; 
Outimage; 	 265 
ptime; 
Outtext(heading); Outtext(" TOTAL NUMBER OF ENTRIES = 
Outint(qhead.total_entries,3); 
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Outimage; 
IF NOT qhead.qempty THEN 270 
FOR I 	:= high STEP -1 UNTIL low DO 
BEGIN 

Outtext(priority_text(i)); Outimage; 
ptr 	:- qhead.q(i).Suc; 
!pick off each member of queue; 275 
WHILE ptr 	/ 	NONE DO 
BEGIN 

Out text (items (ptr)); 
!returns a text value 12 characters long; 
ptr:-ptr.Suc; 280 

END; 
Outimage; 

END; 
END of procedure qanalysis; 

285 
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'****'**'****statistics section***********************; 

Link CLASS statistic(heading); 
VALUE heading; TEXT heading; 	 290 
VIRTUAL: PROCEDURE clear, print; 
THIS statistic.Lnto(statistic_list); 

REF(Head) statistic—list; 
REF(Head) grand_t_list; 	 295 

statistic CLASS groupheading; 
!this helps format output; 
BEGIN 
PROCEDURE clear; ; 	 300 
PROCEDURE print; 
BEGIN 

Outimage; 
Out text(heading); 
Outimage; 	 305 

END; 
END of class groupheading; 

statistic CLASS counter; 	 310 
BEGIN 

INTEGER count; 	!counts occurences; 
PROCEDURE clear; 
count: =0; 

315 
PROCEDURE print; 
BEGIN 
Outtext(" 	NUMBER OF 
Outtext(heading); 
Outtirit(count,IF count<1000 THEN 4 ELSE 	 320 
IF count<10000000 THEN 8 ELSE 12); 

END; 

PROCEDURE incr; 
count:=count+1; 	 325 

PROCEDURE add(number); 
INTEGER number; 
count: =count+number; 

330 
END of class counter; 

statistic CLASS timer(master); 
REF(grand_total) master; 
!this class is for accumulating times of operations; 	 335 
!the timer is 'turned on' by procedure start and; 
!'turned off' by procedure stop; 
!the final value is added into master; 
BEGIN 

REAL start—time, total; 	 340 
BOOLEAN keeping; 	!true when in action; 
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PROCEDURE start; 
IF NOT keeping THEN BEGIN 
!multiple calls o.k.; 	 345 
keeping: =TRUE; 
start_time:Time; 

END; 

REAL PROCEDURE stop; 	 350, 
!in simula can call without using returned value; 
IF keeping THEN BEGIN !multiple calls o.k.; 

total: =total+(Time-start_time); 
keeping:=FALSE; 
stop:=Time-start_tirne; 	 355 

END; 

PROCEDURE clear; 
BEGIN 

total:=O; 	 360 
IF keeping THEN start_time:=Time; 
!reset-and start timing from now; 

END; 

365 
PROCEDURE print; 
BEGIN 

REAL t; 
Outtext(" 	TOTAL ");Outtext(heading); 
t:=(total+(IF keeping THEN Time-start—time ELSE 0))*&_6; 370 
Outfix(t,1,7); 
!printing in seconds; 
IF master=/=NONE THEN master.add(t); 	!update grand total; 

END; 
375 

• keeping:FALSE; total:=0; 
!default values anyway; 

END of class timer; 

statistic CLASS time _average; 
	

380 
!for non-negative numbers; 
BEGIN 

REAL initial _time,start_time,total 
INTEGER val,max; 

385 
PROCEDURE chahge_value(level); 
INTEGER level; 
BEGIN 

total: =total±val (Time-start_time); 
val : =level; 
	 390 

IF val>nax THEN max := val; 
start_time:Time; 

END; 

PROCEDURE clear; 
	 395 

BEGIN 
total: =0; 
max: =val; 
initial_time: =start_time: =Time; 
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400 

PROCEDURE print; 
BEGIN 
Outtext(" 	AVERAGE !t);  Outtext(heading); 
Outfix(IF Time-initial_tirne>O THEN 	 405 
(total+val* (Timestart_time)) /(Time-initial_time) 
ELSE 0,0,9); 
Outtext(" 	MAXIMUM"); Outint(rnax,8); 

END; 
410 

END of class time—average; 

statistic CLASS grand_total; 
BEGIN 	 415 

REAL total; 
PROCEDURE clear; 
total:=0; 

PROCEDURE print; 	 420 
BEGIN 

Ou ttext( "GRAND TOTAL OF 
Outtext(heading); 
Outfix(total ,O, 7); 
Outimage; 	 425 

END; 

PROCEDURE add(t); 
REAL t; 
total:=total+t; 	 430 

THIS grand—total. Into(grandt_list); 
!ov&rrides statistic—list; 

END of class grand_total; 
435 

statistic CLASS regression(heading2); 
VALUE heading2;TEXT heading2; 
BEGIN 

INTEGER n; 	 440 
REAL sx,sy,sx2,sy2,sxy; 

PROCEDURE data(x,y); 
REAL x,y; 
BEGIN 	 445 
n:=n+1; sx:=sx+x; sy:=sy+y; 
sx2:=sx2+x*x; sy2:=sy2+y*y; 
sxy : sxy+x*y; 

END; 
450 

PROCEDURE clear; 
BEGIN 

n : =0; 
sx:=sy:=sx2: =sy2: =sxy:=0; 

END; 	 455 

A-10 



PROCEDURE print; 
BEGIN 
REAL aO,al,d,sd,r2; 
Outinage; 	 460 
Outtext("REGRESSION ANALYSIS OF 
Outtext(heading); Outtext(" VERSUS 
Outtext(heading2); Outirnage; 
IF n>5 THEN BEGIN 

!convert data to seconds; 	 465 
sx:=sx*&6; sy: =sy*&_6; 
sx2:=sx2*&_12; sy2:=sy2&-12; sxy:=sxy*&_12; 
d :=n*sx2_sx*sx; 
al : =(n*sxy_sx*sy) Id; 
aO:=(sysx2_sx*sxy)/d; 	 470 
sd =Sqrt((sy2_aO*sy_al*sxy) /(n-2)); 
!standard deviation of y; 
r2: =(n*sxy_sx*sy)**2/(d*(n*sy2_sy*sy)); 

Outtext("NUMBER OF DATA POINTS"); Outint(n,4); Outimage; 
Outtxt("MEAN OF ");Outtext(heading); Outfix(sx/n,1,7); 
Outtext(" MEAN OF "); Outtext(heading2); Outfix(sy/n,1,7); 
Outtext(" 	RESIDUAL STANDARD DEVIATION"); 
Outfix(sd,2,6); Outimage; 
Outtext("ESTIt1ATE OF REGRESSION COEFFICIENT"); 	 480 
Outfix(al, 2,7); 
Outtext(" INTERCEPT"); Outfix(aO,2, 7); 
Outtext(" STANDARD DEVIATION OF REGRESSION COEFFICIENT"); 
!has a students t distribution with n-2 degrees of freedom; 
Outfix(n*sdfSqrt((n_2)d),2,6); 	 485 
Outtext("CORRELATION COEFFICIIENT"); 
Outfix(Sqrt(r2) ,3,5); 

END ELSE Outtext("INSUFFICIENT DATA"); 
Outirnage; 

END ;of procedure print; 	 490 

END of class regression; 

PROCEDURE outputstatistics; 	 495 
BEGIN 
REF(statistic) ptr; 
ptr:-statisticlist.Suc QUA statistic; 
WHILE ptr =1= NONE DO 
BEGIN 	 500 

ptr.print; 	 !call virtual procedure; 
ptr :- ptr.Suc; 

END; 
Outinage; 
Eject(Line+3); 	 505 
ptr:-grand_t_list.Suc QUA statistic; 
IHILE ptr=/=NONE DO BEGIN 
ptr.print; 
ptr:-ptr. Suc; 

END; 	 510 
END; 
PROCEDURE clearstatistics; 
BEGIN 

A-il 



REF(statistic) ptr; 
ptr:-statisticlist.Suc QUA statistic; 	 515 
WHILE ptr / NONE DO BEGIN 
ptr.clear; 
ptr:-ptr. Suc; 

END; 
ptr:-grand_t_list.Suc QUAstatistic; 	 520 
WHILE ptr =/= NONE DO BEGIN 

ptr .clear; 
ptr:-ptr. Suc; 

END; 
END; 	 525 

************end of statistics section***************; 
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Link CLASS coutenLc; 	 530 
VIRTUAL: TEXT PROCEDURE dump; 
BEGIN 

INTEGER size; 	 !in bytes; 
INTEGER orgn,dest; 
!for use only when being transfer betweeen sites by; 	535 
!communication sub—system; 
INTEGER mem,qf; 	!used for kernel to kernel updating; 
TEXT PROCEDURE dump; 	!for diagnostics; 
dump:_Copy("* * * * * 
!always 12 characters; 	 540 

END of class contentc; 

545 
contentc CLASS segmentc(site); 
INTEGER site; 	 !where segment resides; 
BEGIN 

INTEGER key; 	 !for segment hash table at site; 
INTEGER default,status; 	 550 
!take values of null,thcore,ondisk,trans; 
INNER; 
IF status=incore AND key>fixed_domains THEN INSPECT k(site) DO 
add_seg(THIS segmentc); 
!after key has been set; 	 555 

END; 	 - 

REF(kemnelc) ARRAY k(1:n); 
REF(grand_total) usage, !for total service time of system; 	560 
total—response; 	 !for total of all response times; 
REF(counter) xfered_donains ,xfered_processors, 
!couning how many domains and processors shift site; 
xfered_locals, 
new incarnations, 	 565 
migrations, 
short _commands ,over2 , over5, 
!for analysing response times; 
chopcount,spacecount; 	!for counting blocked processors; 
REF(regression) non—trivial; 	 570 
!for response times to substantial commands; 
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Process CLASS kcrnelc(id); 
INTEGER id; 
BEGIN 	 575 

REF(qheadc) driverq, 	!all ready to run tasks held in it; 
spaceq; 
!for incarnations waiting only for primary memory space; 
REF(domain_incarnationc) cu, 
!pointer to current domain incarnation; 	 580 
d_secretary, 	 !pointer to process handling disk; 
c_secretary; 	 !ditto for consoles; 
BOOLEAN 
naskf, 
!true when process switching is not permitted; 	 585 
i flag; 
!raised when an interrupt has caused the kernel to switch task; 

REF(clockc) 	ts_clock; 
590 

INTEGER mfree, 
!size of.current free primary memory at this site; 
copySpace; 
!amount of memory used holding code copies; 
BOOLEAN spaceqempty, 595 
!true when no one at this site is waiting for space; 
(=spaceq.qempty); 

deadlock warning; 
!true when printed a warning about possible deadlock; 

600 
REF(schannelc) 	s_channel; 
!for communicating with other sites; 
REF(timer) 	idle _timer; 
!for collecting statistics; 
REF(time_average) memory_use; 605 
REF(;contentc) ARRAY space situation(1:n); 

PROCEDURE initialization; 
BEGIN 
driverq :- NEW qheadc; 
	

!set up task queue; 
spaceq :- NEW qheadc; 
!set up blocked on memory space queue; 
spaceqenpty: TRUE; 
iflag := FALSE; 
rnaskf := TRUE; 
	

615 
s_channel:-NEU s_channelc(id); 
cq:-NEW Head; 
sq:-NEW Head; 	!queues for messages being sent; 

ts_clock :- NEW clockc(id); 
	

620 
idle—timer :- NEW tirner("IDLE TIME",NONE); 
memory—use:-NEW time _average("MEMORY USE"); 
rnfree: =msize-4000; 
!4000 bytes is assumed size of the kernel code; 
rn_max: =m --min: =id; 
	

625 
rnemory_use.change_value(rnsize-rnfree); 
FOR w:=1 STEP 1 UNTIL n DO m_use(w):mfree; 
!first estimate; 
FOR w:=1 STEP 1 UNTIL fixed—domains DO 
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dmn_info(w):-NEW dmninfoc; 	 630 
!for handling information about domains; 
FOR w:=1 STEP 1 UNTIL n DO BEGIN 

space—situation(w) :-NEW contentc; 
!for warning other kernels that near dadlock; 
!or that have backed of again; 	 635 
space_situation(w).size:32; 

END; 
END; 
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tuIIPIIlIlIIIIIIII!I 	 .- 	JItIIIItIIIIIII!P. • 	IIUlll.JLy 	 • 	• 	• 

routines to be used by the kernel only 	 !; 
contains some assumed timings 	 1; 
memory management policy is not actually simulated, 

I just arithmetic count kept of free memory. 	 !; 

PROCEDURE claim(size,success); 
NAME success; 
BOOLEAN success; 
INTEGER size; 	 !of block of memory required; 	650 
BEGIN 
Hold(200+(2000*size/(size+mfree))); 
!reflects the assumption that as; 
!space gets tighter more time is required to find free space; 
IF spaceqempty THEN BEGIN 655 
WHILE (IF size GE mfree THEN make—Space ELSE FALSE) DO 

END; 
!delete enough code copies to give space if possible; 
IF. size < mfree THEN 
BEGIN 660 

mfree: =mfree-size; 
!nfree always greater than 0; 
register _n_use(id,mfree+copyspace); 
!alter status information of site; 
memory_use.change_value(msize-mfree); 665 
!statistic; 
success: =TRUE; 
IF men—trace THEN BEGIN 
Outint(nsize-mfree, 10); 
Outchar('>'); 	Outint(id,1); 670 

END; 
END 
ELSE success:=FALSE; 

END of procedure claim; 
675 

PROCEDURE q4space(inc); 
REF(domain_incarnationc) 	mc; 
BEGIN 

!assume that claim has been called immediately before; 680 
!i.e. do not check if really has to queue; 
spaceqempty : =FALSE; 
overload: =TRUE; 
queue(spaceq,inc, IF inc.extra_space>size_divider THEN 
low ELSE medium); 685 
!small requests have priority over large ones; 
IF mfree>size_divider THEN BEGIN 
inc.extra_space:=inc.extra_space-(mfree-size_divider); 
claim(mfree-size_divider ,running); 

END; 	 !stake claim to available space; 690 
Hold(2000); 	 Ito sort things out; 
IF full_diags THEN BEGIN 
ptime; Outtext(inc.dump);Outtext(" IN SPACEQ AT SITE"); 
Outint(id,3); 	Outimage; 

END; 695 
spacecount.incr; 	!statistic; 
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END; 

PROCEDURE release(size); 700 
INTEGER size; 
BEGIN 	 !giving back a block of memory; 
REF(domain_incarnationc) 	sr; 
BOOLEAN more; 
flold(50); 705 
mfree : =mfree+size; 
register_m_use(id,mfree+copyspace); 
memory_use.change_value(msize-mfree); 
IF mem_trace THEN BEGIN 
Outint(msize-mfree,10); 710 
Outchar('<'); 	Outint(id,1); 
!diagnostic message; 

END; 
IF NOT spaceqempty THEN BEGIN 
sr:-spaceq.first; 715 
more: =TRUE; 
WHILE sr=/=NONE AND more DO 
BEGIN 
!see if can run incarnation waiting for space; 
claim(sr.extraspace,more); 720 
IF more THEN BEGIN 

sr stage: =spaceclained; 
queue(driverq,sr,high); 
!place freed entry capability back in driverq; 
sr:-spaceq.first; 725 
IF deadlock_warning THEN BEGIN 

ptine; 
Outtext(fillin(" 	DEADLOCK AVERTED AT SITE",id)); 
Outimage; 	!because removed something from spaceq; 
deadlock warninc:=FALSE: 730 

END; 
END ELSE 
IF mfree > size—divider THEN 
BEGIN 

sr.extra_space := sr.extra_space -(mfree-size_divider); 
claim(rnfree-size_divider ,running); 
!try to keep size-divider of memory; 
!to be available for small requests; 

END; 
END; 	 740 
IF sr==NONE THEN spaceqempty:TRUE; 

END; 
END of procedure release; 

745 

BOOLEAN PROCEDURE make—space; 
IF copyspacc>O THEN BEGIN 

leach site can keep copies of shared re-entrant code; 	750 
!the least recently used is deleted; 
!(only done when spaceq empty); 
INTEGER i,j; 
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REAL iru; 
iiold(400); 	 755 
lru:=Time; 
FOR i:=1 STEP 1 UNTIL fixed domains DO 
IF drnn info(i) .copy THEN BEGIN 

IF dmn_info(i) .work.Empty AND 	 - 
dmn_info(i) .external_segs.Empty 	 760 
AND NOT dmn_info(i) going 
THEN BEGIN 

IF iru > dmn_info(i) .lasttime THEN BEGIN 
lru:=dmn_info(i) .lasttiine; 

765 
END; 

END; 
END; 
IF j>0 THEN BEGIN 	!found a segment to delete; 

delete _domain_copy(j); 	 770 
• make_space:=TRUE; 
END; 

END of make—space; 

775 
!***************end of memory management**************!; 
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- 	 ..II,IIIIIII!I,Iu,I. 
begIL!eLtL mdtLdelneuL. 	 . . • 

780 

REF (segmenrc) ARRAY segtable(0:t_length-1); 
INTEGER ARRAY st(0:t_length-1); 

INTEGER PROCEDURE hash(key); 	 785. 
INTEGER key; 
hash:=2*Mod(key,t_length//2)+(IF key>16384 THEN 1 ELSE 0); 
!small numbers will predominate; 

INTEGER PROCEDURE add(key); 	 790 
INTEGER key; 
BEGIN 

INTEGER hk,i; 
hk:=hash(key); 
IF st(hk) NE 0 THEN 	 795 
BEGIN 

!if first slot not free then search table; 
i:=hk; 
FOR hk:=Mod(hk+1,t_length) WHILE i NE hk AND st(hk) NE 0 
DO; 	 800 
IF i=hk THEN error (fillin("HASR TABLE FULL AT SITE",id)); 

END; 
st(hk):=key; 
add:=hk; 

END; 	 805 

INTEGER PROCEDURE retrieve(key); 
INTEGER key; 
BEGIN 

INTEGER hk,i; 	 810 
hk:=hash( key) ; 

IF st(hk) NE key THEN 
BEGIN 

i =hk; 
FOR hk:=Mod(hk+1,t.jength) WHILE i NE hk AND st(hk) NE key 
DO; 
IF i=hk THEN 
error ("ITEM NOT FOUND IN HASH TABLE"); 

END; 
IF segtable(hk)=NONE THEN error("BAD SEGMENT MANAGEMENT"); 
retrieve:=hk; 	 - 

END; 

PROCEDURE addseg( s); 
REF (segmentc) s; 	 825 
BEGIN 
segjable(add(s.key)):-s; 
S .status :=incore; 
s.site:=id; 

END; 	 830 

PROCEDURE delete_seg( s); 
REF (scgmentc) s; 
BEGIN 
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!this may be called after segment has arrived at another site; 
INTEGER i; 
i :=retrieve(s. key); 
st(i) :=0; 
IF ssite=id THEN s.status:=null; 
!not gone anywhere else yet; 	 840 
segtable(i) :-NONE; 
release(s.size); 	!give back space; 

END; 

845 
!*****************end of segment management************!; 

F 
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1!!!!!! 1! communications section 1!!!!!! 	! ! ! 1! 

850 
!Communication interface - receiving messages; 
!Reception of messages takes place in three stages:-; 
11) The message arrives - call on procedure int..; 
!2) The message is stored and the kernel notified by placing; 
Ian entry in driverq - call on queue.; 	 855 
13) When dri'verq entry is examined action is taken on entry.; 

PROCEDURE int(m); 
REF(contentc) m; 
BEGIN 

IF NOT in IS contentc THEN BEGIN 
!not an empty message; 
IF m IN segmentc THEN BEGIN 

IF in QUA segmentc.key LE fixed—domains THEN 
dmn_info(m QUA segmentc.key).d:-m QUA domainc 

	
865 

!domain kept separate from other segments; 
ELSE 
add_seg(m QUA segmentc); 
!it is assumed that space has already been claimed; 
queue(driverq,rn,high); 
	

870 
END ELSE 
IF in IS donain_incarnationc THEN BEGIN 

IF in QUA domain _incarnationc.stage=valid 
THEN queue(driverq,m,ionitor) ELSE 
!unless it is a secretary being used as an interrupt; 
Ia domain incarnation can not be valid at this stage; 
BEGIN 
queue(driverq,m,high); 
qfs(id) :=qfs(id)+1; 
!more work at this site; 

END; 
END ELSE queue(driverq,m,high); 
!other message types; 
switch—context; 	!notify kernel; 

END; 
IF m.orgn LE n AND m.orgn > 0 THEN BEGIN 

register_m_use(m.orgn,m.mem); 
!update memory utilization table; 
qfs(rn.orgn) :=m.qf; 

END; 
END; 

Wo 

.: 

land size of queues; 
890 

!communications interface - sending messages; 

REF(Head) cq, 	 !for high priority control messages; 
sq; 	 !for segments; 
BOOLEAN channel—busy; 

PROCEDURE send_message(dest ,contents); 
INTEGER dest; REF(contentc) contents; 
IF dest NE id THEN 
BEGIN 
contents.orgn:=id; 
contents .dest:=dest; 
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IF channel_busy THEN 	 905 
contents.Into(IF contents IN segientc THEN sq ELSE cq) 
ELSE signal _channel(contents); 
!wait if busy else send message straight away; 

END ELSE 
BEGIN 	 !short circuit; 	 910 

contents .orgn: =id; 
queue(dri-verq,contents ,high); 
!do not send secretaries/interrupts to oneself; 

END of send—message; 
915 

PROCEDURE broadcast(contents); 
!to all other kernels; 	- 
!must have a different object to go to each site; 
REF(contentc)ARRAY contents; 
BEGIN 920 

INTEGER i; 
FOR i:= 1 STEP 1 UNTIL n DO 
IF i NE id THEN send_message(i,contents(i)); 

END of broadcast; 
925 

PROCEDURE signal_channel (contents); 
REF(contentc) 	contents; 
BEGIN 

channel_busy:=TR'JE; 
!channel deals with one message at a time; 930 
contents.mem:=m_use(id); 
IF contents IS donain_incarnationc THEN qfs(id):=qfs(id)-1; 
!if monitors with condition queues moved sites; 
!then this would have to be altered; 
contents.qf:=qfs(id); 935 
!information for receiving kernel; 
contents.Out; 	!if 	in cq or sq; 
s'channel.initiate(contents); 

END of signal—channel; 
940 

!end of communications interface; 
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!****** 	 load monitoring 

BOOLEAN overload; 945 
!If kernel detects that no site has chopsize of free memory; 
!or that some site (probably) 	has entries in its spaceq; 
!i.e. when its free memory is less than size —divider; 
!then overload is set 	true.; 
!Overload is used by secretaries to modify their behaviour.; 

INTEGER ARRAY m_use,qfs(l:n); 
!tables of (supposed) 	utilization of memory and number of; 
!domain incarnations at each site; 

955 
INTEGER m_max,rn_rnin; 	!sites with most and least free memory; 

PROCEDURE register_m_use(site,nem); 
INTEGER site,mern; 	!the amount of free memory at the site; 
BEGIN BOOLEAN sort—required; 	INTEGER j; 960 
lFn> 1 THEN 
BEGIN 

IF site NE rn_max AND site NE m—min THEN 
BEGIN 

IF rnern>rn_use(m_rnax) 	THEN rn_max:=site 965 
ELSE IF mern<m_use(m_rnin) THEN mniin:=site; 

END 
ELSE 
sort_required:=(site=m_rnax AND mem<m_use(m_max)) OR 
(site=m_min AND mern>rn_use(rn_rnin)); 970 

END; 
muse (site) :=mern; 
IF sort—required THEN 
BEGIN 
m_max:=m_min:=1; 975 
FOR j:=2 STEP 2 UNTIL n DO 
!never sort required when n=1; 
IF m_use(j)>m_use(m_max) THEN m_max:j ELSE 
IF rn_use(j)<rn_use(m_nin) THEN m_rnin:=j; 

END; 980 

IF m_use(rn_max)<chopsize OR m_use(rn_min) LE size—divider THEN 
BEGIN 

IF site=id AND NOT overload THEN 
broadcast(space_situation); 985 
!this site has been cause of pushing network into overload; 
!so it notifies the other sites; 
overload: =TRUE; 

END 
ELSE 990 
BEGIN 

IF site=id AND overload THEN broadcast(space_situation); 
!first site out of overload - tell others; 
overload: =FALSE; 

END; 995 
END of register—m—use; 
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INTEGER PROCEDURE optimum _site(size,qf_miri,qt_taax); 	L000 
INTEGER size,qf_min,qf_max; 
!Returns the identity of the site with minimum current work; 
!load (between qf_min and qf_max-1) and free space greater; 
!than size. Where there is more than one site at the level the; 
!one with the most space is chosen.; 	 1005 
!If there are no sites satisfying the conditions returns zero.; 

IF m_use(mjnax)>size THEN 
BEGIN 	 !worth looking; 

INTEGER i,j,k; 	 1010 
k: =qf_min-1; 
FOR k:=k+1 WHILE k<qf_nax AND j=0 DO 
FOR i:=1 STEP 1 UNTIL n DO 
IF qfs(i)=k THEN 
BEGIN 	 1015 

IF m—use(i) GE size THEN 
BEGIN 

j :=i; 
size :=m_use(i); 

END; 	 1020 
END; 
optimum_site:j; 

END of optimum_site; 

end of load monitoring  
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!!!!!!!!!!1!!!!!!!!!domainmanagement!!!H!!!!!!!!H!!!!!; 

1030 
REF(dmn_infoc)ARRAY dmn_info(1:fixed_domains); 

BOOLEAN PROCEDURE validated(dmn_rqst); 
REF(domain_incarnationc) dnn_rqst; 	 1035 
!this procedure handles most of the stages of transferring; 
!a pocessor to a new domain 
!it checks if the entry capability - dnin_rqst - is valid; 
!if not it takes steps to make it valid; 

1040 
IF dmn rqst.stage=valid THEN validated:=TRUE 
!ready to run; 
ELSE 
BEGIN 

Hold(200); 	 !calculation overhead; 	 1045 

IF dmn_rqst.stagc=seek_d_site OR dmn_rqst.stage=wait_for_d 
THEN 
INSPECT dnn_info(dmn_rqst.did) DO 
BEGIN 	 1050 
!must have entry capability at the site of domain before; 
!can work on it; 
IF NOT (here OR-coming OR (copy AND NOT overload)) THEN 
send_message(d_loc ,dmn_rqst) 
ELSE do_domain_calculation(dmn_rqst); 	 1055 

END; 

IF dmn rqst .stage=seek_choice THEN 
BEGIN 

IF dmn_rqst.choice NE id THEN 	 !at wrong site; 1060 
send_message(dmn_rqst.choice,dmn_rqst) 
ELSE 
examine_choice(dnn_rqst); 

END; 
!dont set validated so that incarnation goes to end of queue; 
IF dmn_rqst.stage=spaceclaimed THEN bringtogether(dmn_rqst); 

END of procedure validated; 

1070 
REAL PROCEDURE cost_formula(site,size); 
INTEGER site,size; 
!attempt to give a factor corresponding to congestion; 
BEGIN 

REAL d; 	 1075 
d:=qfs(site); 
IF d=0 THEN d:=0.01; 	 !no work at site; 
cost_formula:=size*(m_use(site)/(d*(msize_m_use(site)))); 

END; 
1080 

PROCEDURE do_domain_calculation(dmn_rqst); 
REF(domain_incarnationc) dmn_rqst; 
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!this procedure calculates the 'best' site for the domain; 
!incarnation to take place; 	 1085 
INSPECT dmn_rqst DO 
INSPECT dmn_info(did) DO BEGIN 

INTEGER big_d_size,big_p_size; 
REAL d_cost,l_cost,p_cost; 
INTEGER i; 	 1090 
IF coming THEN 
BEGIN 

stage:=wait_for_d; 
!note that has waited; 
dmn_rqst.Into(rqst_list); 	 1095 

END 
ELSE 
BEGIN 

!first sort out where all the segments are; 
1site:=0; 	 1100 
!until determined that local segments exist; 
total_size: =1_size: =0; 

d_site:=id; 
d_size:=dmn_info(did) .d.size; 	 1105 
big_d_sizc:=IF d IN monitorc THEN 
d_size* (1+work. Cardinal+external_segs. Cardinal) 
ELSE d_sizc; 
!try to form a clumping of virtual processors using; 
!particular monitors; 	- 	 1110 

INSPECT processor DO 
BEGIN 

p_size: =size; 
FOR i:=1 STEP 1 UNTIL max_param_segs DO 	 1115 
IF params(i).status=incore THEN 
p_size:=p_size+parans(i) .size 
ELSE IF params(i).status=trans OR params(i) .status=ondisk 
THEN total _size:=total_size+params(i) .size; 
p_site:=site; 	 1120 
big_p_size :=p_size*sameness; 
!an agregating factor; 

END; 
total_size: =total_size+p_size; 
!so far size of processor and all parameter segments; 1125 

!assume all 'local segments at same site; 
FOR i:=1 STEP 1 UNTIL max_local_segs DO 
IF locals(i) .status=incore THEN BEGIN 

l_site:=locals(i) .site; 	 1130 
l_size:=l_size+locals(i) size; 

END 
ELSE 
IF locals(i) .status = trans THEN 
!to be created; 	 1135 
total_size:=total_size+locals(i) size; 

IF 1—site NE 0 THEN 
BEGIN 	 !some local segments involved; 

total_size :=total_size+1_size; 	 1140 
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END; 

!now choose site domain incarnation is to take place; 

IFd.tied NE 0 THEN 1145 
BEGIN !domain cannot move; 
choice:id; 
stag:=seek_choice; 

END 
ELSE 1150 
BEGIN 

d_cost: =cost_forrnula(id ,b ig_dsize+ 
(IF p_siteid THEN bip_size ELSE 0)+ 
(IF l_siteid THEN 1—size ELSE 0)); 
IF p_site NE id THEN 1155 
p_cost: =cost_forrnula(p_site,big_p_size+ 
(IF 1_sitep_site THEN 1—size ELSE 0)); 
IF 1—site NE0 AND 1—site NE id AND 1—site NE p_site THEN 
1_cost:=cost_formuia(l_site,1_size); 

1160 
choice:= IF d_cost GE p_cost AND d_cost GE 1—cost THEN id 
ELSE IF p_cost GE 1—cost THEN p_site 
ELSE 1—site; 

!now check that choice is o.k.; 	 1165 

!first check that if domain is going to move; 
!from this site that it is not already promised; 
!elsewhere or only a copy exists here; 
IF choice NE id THEN 1170 
BEGIN 

IF next—site NE 0 THEN 
send _message(next_site ,dmn_rqst) 
ELSE 
IF copy THEN 1175 
send_message(d_loc ,dmn_rqst) 
ELSE 
!no objections to domain moving; 
stage: =seck_choic e; 

END 1180 
ELSE 
BEGIN 

!this site has been chosen; 
if a monitor that has been promised to; 
!another site is involved, the incarnation will; 1185 
!only take place if 

the incarnation was waiting before the 
monitor arrived at this site; 
(stage = wait—for—d); 

!or; 1190 
all required segments are at this site; 
and other incarnations have outstanding; 
requests for segments from other sites; 

IF next—site NE 0 AND stage NE wait—for—d THEN 	1195 
BEGIN 

IF external _seg.Empty OR p_site NE id OR 
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NOT (l_siteO OR l_site=id) 
THEN send_message(next_site,dmn_rqst) 
ELSE 	 1200 
stage: =seek_choic e 

END 
ELSE stage:=seek_choice; 
!no objection to its staying; 

END; 	 1205.. 
END; 

END; 

END of procedure do_ domain _calculation; 
1210 

PROCEDURE examine _choice(dmn_rqst); 
REF(domain_incarnationc) dmn_rqst; 

INSPECT dnn_rqst DO 
BEGIN 	 1215 

BOOLEAN spacefound, 
!true if this site has-enough space for incarnation; 
tied, 	 !true if domain tied down here 
gone; 	 !set if incarnation sent elsewhere; 
INTEGER opt_site,i; 	 1220 

PROCEDURE send off; 
BEGIN 

choice: opt_site; 
send_message(opt_site,dnn_rqst); 	 1225 
gone: =TRUE; 
shifts:=shifts+1; 
migrations. incr; 

END; 
1230 

tied:=IF dmn_info(did).here THEN dmn_info(did).d.tied NE 0 
ELSE FALSE; 

!first see if some other site is under—utilized while this; 
!site is overbusy; 	 1235 
IF NOT(tied OR shifts>max shifts OR 
(overload AND dmn_info(did).here AND shifts>0)) THEN 
BEGIN 
•opt_Site 
o ptimum_site(total_size+d_size,O,qfs(id)//load_shed); 1240 
IF opt_site NE 0 THEN send—off; 
!substantially less busy; 

END; 

IF NOT gone THEN 	 1245 
BEGIN 
!now claim the extra space required and make up lists; 
!for requesting segments; 
'processor.Into(dmn_info(did) .work); 
!mark domain as used; 	 1250 

IF NOT (dmn_info(did) .coming OR dmn_info(did) .here OR 
dmn_info(did) .copy) THEN 
extra_space:=d_size ELSE extra_space:=O; 
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!it is possible that domain is no longer at 4—site; 1255 
extra_space:=extra_space+totalsize - 
(IF p_site=id THEN p_size ELSE 0) - 
(IF l_site=id THEN 1—size ELSE 0); 

IF extra_space>0 THEN 1260 
claim(extra_space,spacefound) ELSE spacefound:=TRUE; 

IF NOT(spacefound OR tied) THEN 
BEGIN 	 !see if another site is suitable; 

IF shifts LE 1265 
(IF dmn_info(did).here AND overload THEN 0 
ELSE max—shifts) 
TI-LEN BEGIN 

opt_site: =optimum site 
(total _size+d_size,qfs(id)//load_shed,i_chopf); 1270 
IF 	opt_site NE id AND opt_site NE 0 THEN BEGIN 

send—off; 
processor. Out; 
!reverse marking of domain; 

END; 1275 
END; 

END; 

IF NOT gone THEN INSPECT dmn_info(did) DO 
BEGIN 	 !sort out domain whereabouts; 1280 
count:O; 	- 	 - 

IF NOT (coming OR here OR copy) THEN BEGIN 
count:1; 
!keep count of segments required from other sites; 
processor.d_transfer.did :=did; 1285 
processor .d_transfer rqstor: =id; 
coming:TRUE; 
!so as subsequent dmn_rqsts dont claim extra space; 

END; 
1290 

IF spacefound THEN stage:=spaceclaimed ELSE 
q4space(dmn_rqst); 
!wait until space is available; 

IF tied AND NOT spacefound THEN BEGIN 	 1295 
IF (IF dmn_info(did).here THEN 
dmn_info(did).d.tied NE 0 
ELSE FALSE) 
THEN BEGIN 

!if the domain is genuinely tied here then; 	1300 
!see if there is a non-tied domain whose incarnation; 
!can be moved away; 
!in a really tight situation most incarnations; 
!will he shifted around; 
!however this will stop when there are none; 	1305 
!left that have not been shifted; 
REF(domain_incarnationc) ptr; 
BOOLEAN found; 
ptr:-driverq.q(low) .Pred; 
UHILE ptr=/=NONE DO 	 1310 
!work backwards along low priority queue; 
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BEGIN 
IF dmn_info(ptr.did).d.tied=0 AND 
ptr.shifts<max_shifts THEN 
BEGIN 	!domain not tied here; 	 1315 

opts it e: = 
optimum—site 
(ptr.total_size+ptr.d_size,O,i_chopf); 
IF opt_site NE 0 AND opt_site NE id THEN 
BEGIN 	!found somewhere to go; 	 1320 

found: =TRUE; 
retire(ptr); 
queue(driverq,ptr,high); 

!since there is no space here this incarnation; 
!will go to another site; 

END; 
END; 
IF found THEN ptr:-NONE ELSE ptr:-ptr.Pred; 

END; 	 1330 
END; 

END; 

END; 
END; 	 1335 

END of examine—choice; 

PROCEDURE bring_togcther(dnn_rqst) . ; 
REF(domain_incarnationc) dmn_rqst; 	 1340 
!now request other sites to send segments; - 
!and create temporary ones; 
INSPECT dmn_rqst DO 
INSPECT processor DO BEGIN 

INTEGER i; 	 1345 
IF count=1 THEN BEGIN 

send_message(drnn_info(did) .d_loc,d_transfer); 
!domain at another site; 
count:=O; 	 !and not currently requested; 

END; 	 1350 

IF site NE id THEN 
BEGIN 	 !processor not here; 

count: =count+1; 
p_segjist.rqstor:=id; 	 1355 
FOR i:=l STEP 1 UNTIL max_param_segs DO 
IF params(i)..status=incore THEN 
BEGIN 

count: =count+1; 
p_segj:Lst.a(i):=params(i).key; 	 1360 

END 
ELSE 
p_seg_list.a(i) :=0; 

send_message(site,p_seg_list); 	 1365 
END; 

FOR i:=1 STEP 1 UNTIL max_param_segs DO 
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BEGIN 
IF params(i) .status=trans THEN add_seg(params(i)). 	1370 
!work segment created; 

• 	 ELSE IF params(i).status=ondisk THEN BEGIN 
count:=count+1; 
disk_read.rqstor:=id; 
!can only be one read at a time; 
	

1375 
disk read.key:=params(i) .key; 
send_message (pa rams( i) .site,disk_read); 
!'site' is a diskcontroller; 

END; 
END; 
	

1380 

FOR i:=1 STEP I UNTIL max_local_segs DO 
IF locals(i) .status=incore THEN 
BEGIN 

IF locals(i).site NE Id THEN BEGIN 
	

1385 
count:=count+1; 	 - 
l_seg_list.a(i) :=locals(i) .key; 

END; 
END 
ELSE BEGIN 
	

1390 
l_seg_list.a(i) :=O; 
IF locals(i).status=trans THEN add_seg(locals(i)); 

END; 

IF 1—site NE 0 AND 1—site NE id - THEN 
	

1395 
BEGIN 

1_seg_list .rqstor:=id; 
send_nessage(1_site,1_seg_list); 

END; 
1400 

IF count>O OR dmn_info(did) .coming THEN 
dmn_rqst.Into(dnn_info(did) .external_segs) 
ELSE put_in_ready_state(dmn_rqst); 

END of procedure bring together; 
1405 

PROCEDURE put_in_ready_state(inc); 
REF(domain_incarnationc) mc; 	 1410 
BEGIN 

!assumes that all segments are at site; 
inc.site:=id; 	!give site of execution; 
Inc .stage :=valid; 

1415 
inc.processor.Into(dmn_info(inc.did) .work); 
!keep track of run state work; 

inc.domain:-dmninfo(inc.did) .d; 
!domain must be here; 
	

1420 
IF inc.domain==NONE THEN 
error("ATTEMPT TO RUN WITHOUT DOMAIN"); 
IF incdomain IN monitorc THEN BEGIN 

!not going to be there long so give favourable priority; 
inc.processor..rts:=timeslice; 	 • 	 1425 
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queue(driverq,inc,monitOr); 
END 
ELSE 
queue(driverq,inc,iflCPrOCeSSOr.Pri0ritY) 
!the invalid form of Inc had high priority; 	 1430 
!an alternative would be to schedule into medium or; 
!low depending on rts, the remaining time slice; 

END of procedure put_in_ready_state; 

1435 

PROCEDURE retire(inc); 
REF(domain_incarnatiOnc) mc; 
BEGIN 
!called when an incarnation is removed from driverq; 
inc.processor.Out; 	!of dmn_info work list; 	 1440 
action_transfer(dmn_info(inc.did)); 
!does domain want to go to another site?; 
inc.Out; 
removed from driverq completely; 
inc.stage:seek_d_site; 	 1445 
!set entry capability back to base state; 
inc.shifts:=0; 	!start counting forced migrations again; 

END of procedure retire; 

1450 
PROCEDURE action_transfer(h); 
REF(dmn_infoc) h; 
BEGIN 

PROCEDURE send—domain; 
BEGIN 	 1455 

broad cast ( h upd ate) 
!tell other sites that domain is going to next —site; 
h.here:=FALSE; 
send_message(h.next_site,h.d); 
h.next_site:0; 	 1460 

END; 

IF h.next_site NE 0 AND h.here THEN 
BEGIN 	 !domain wanted elsewhere; 
IF hd IN monitorc THEN 1465 
BEGIN 	 !must wait until domain is free; 

IF h.work.Empty AND h.external_segs.Empty THEN 
send—domain; 

END 
ELSE 1470 
BEGIN 	 !can send domain and keep copy; 
h.going:=h.copy:TRUE; 
copyspace:copyspace+hd.size; 
!going = true protects copy from being deleted; 
!unil it is transmitted; 1475 

send—domain; 
!decide after actual transmision if want to keep copy; 

END; 
END 

1480 
ELSE IF h.copy THEN BEGIN 
!domain is not wanted elsewhere; 
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!see if want to delete copy; 
IF h.work.Empty AND hexternal_segs.Empty THEN BEGIN 

IF NOT (spaceqempty OR h.going) THEN 	 1485 
deletc_domain_copy(h.d.did) 	 !tight for space; 
ELSE h.lasttime:=Time; 

END; 

END; 
	

1490 
END of procedure action—transfer; 

PROCEDURE domain _copy(domain); 
REF(domainc) domain; 1495 
!this procedure is called by communication section; 
!when it has completed the transmission of a domain; 
BEGIN 
xfered_domains.incr; 	 !statistics; 
IF domain IN monitorc THEN BEGIN 1500 

release(dornain.size); 
!never keep copies of monitors; 
dmn_info(domain.did) .d :-NONE; 

END 
ELSE 1505 
INSPECT dmri_info(domain.did) DO BEGIN 

going: =FALSE; 
IF ((NOT spaceqempty) AND work.Empty 
AND external_segs.Enpty) 
THEN delete_domain_copy(d.did); 1510 

END; 
END of procedure domain—Copy; 

PROCEI)UREdclete_domain_copy(diRI); 	 1515 
INTEGER did; 
!this interacts with memory management; 
INSPECT dmn_info(did) DO BEGIN 

copy: =FALSE; 
copyspace:copyspace-d.size; 	 1520 
release(d.size); 	!give hack space; 
d:-NONE; 	 !domain deleted; 

END of delete—domain—copy; 

1525 
!**********end of domain management*****************; 

. 
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PROCEDURE switch—context; 
!this procedure is only ever called from outside the kernelc; 
IF Idle THEN ACTIVATE THIS kerneic DELAY 0 	 1530 
!assume no switching delay; 
ELSE 
IF NOT maskf THEN BEGIN .  

!when executing a domain incarnation; 
iflag := TRUE; 	!have raised genuine 
maskf := TRUE; 	!but dont want to be 
REACTIVATE THIS kerneic DELAY 0; 

END; 

interrupt; 	1535 
interrupted now; 

1540 

PROCEDURE execute(x); 
REF.(domain_incarnationc) x; 

!This procedure is the simulation of execution of; 
!a domain incarnation.; 
!Although an actual domain incarnation would be; 
!interruptable at any point of execution of the; 
!domain code it is assumed that the domain code; 
!is divided up into at most five steps and; 
!interrupts occur between these steps. The passage; 
!of time is simulated by 'hold' for the assumed; 
!execution time of a step; 
!followed by the 'instantaneous' execution of the; 
!step.; 
!The context of a domain incarnation is thus preserved; 
!by noting how long it has to remain in the 'hold'; 
!state, 'runtt', and which step it must execute; 
!next, 'next—step'.; 	 1560 
!Steps, which are virtual procedures of the class domainc,; 
!have the following properties:; 
!1)at end must set the next set of values for runtt; 
!and next_step.; 

can call kernel primitives, which may remove this; 	1565 
!incarnation from driverq by manipulating Cu.; 

should exercise care in calling more than one kernel; 
!primitive in a step.; 
BEGIN 

REAL finisht; 	!work variable; 
	

1570 
IF x.domain==NONE THEN 
error( "ATTEMPT TO MAKE SKELETON LIVE"); 
IF x.runtt NE 0 THEN 
BEGIN 
maskf:=FALSE; 
	

1575 
!normal domain execution is interruptable and pre-emptable; 
finisht :=Time+x.runtt; 
x.processor.service_timer.start; 
!statistics collection; 
Hold(x.runtt); 	!simulate time to complete action; 1580 
!when the next instruction is executed either the; 
!processor has 'finished' or it has been interrupted; 
x . processor. service_timer, stop; 
x.processor.ctime:= 

1545 

1550 

1555 
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x.proccssor.c_time±xriintt-(fi'nisht-Time); 	 1585 
x.runtt:=IF iflag THEN finisht-Time ELSE 0; 
maskf:=TRLJE; 	!no longer permitted to interrupt; 

END; 

IF NOT iflag THEN 1590 
BEGIN 
!perform, 	step whose execution time has just been simulated; 
SWITCH s:=stpl,stp2,stp3,stp4,stp5; 
!a case statement; 
IF x.next_step<1 OR x..next_step>5 THEN 1595 
error("DOMAIN NOT FORMULATED CORRECTLY"); 
GOTO s(x.next_step); 
stpl: 	x.domain.stepl(x); 	GOTO esac; 

x.domain.step2(x); 	GOTO esac; 
x.domain.step3(x); 	GOTO esac; 1600 

stp4:x.domain..step4(x); 	GOTO esac; 
stp5: 	x.domain.step5(x); 
esac: 

END; 
END of procedure execute; 1605 

REF(Link) ptr; 	 1610 

initialization; 

WHILE running DO 
BEGIN 	 1615 

IF iflag THEN BEGIN 
!simulate time to switch from user process; 
Hold(contextdelay); 
iflag := FALSE; 	 1620 

END; 

ptr :-driverq.first; 
!examine top entry of driverq; 

1625 
IF qtrace AND ptr=/=NONE THEN 
BEGIN 

Outtext(" 	("); Outint(id,2); Outchar(')'); 
ptime; Outtext(dissect(ptr)); 

END; 	 1630 

!determine type of entry; 
IF ptr IN domain incarnationc THEN 
BEGIN 

!cu always points to the current domain incarnation which; 
!keeps its place in driverq unless a kernel primitive; 
!removes it; 
cu :- ptr; 

IF validated(cu) THEN BEGIN 	 1640 
!continue if valid entry capability; 
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ts_clock.set(cu. processor. rts); 
!for remaining timeslice; 

execute(cu); 
	 1645 

!A step of the domain code - consisting in fact; 
!of a 'hold' followed by 1 of the virtual; 
!procedures stepi. . tep5 - is performed; 
or; 
!an interrupt, during the 'hold' section, has occurred; 
!when control returns here.; 

ts_clock.halt(cu.processor.rts); 	!stop clock; 

!after higher priority entries in driverq have; 	1655 
!been examined, execution of the remaining part; 
!of an interrupted step or the next step; 
!will take place.; 

IF NOT iflag THEN cu:-NONE; 	 1660 
!clearing cu is indicative of the succesful completion; 
!of a step; 

END 
ELSE cu:-NONE; 
!incarnation not executed because invalid; 	 1665 

END 

ELSE 
	

1670 
BEGIN 
• IF ptr=/=NONE THEN ptr.Out; 
INSPECT ptr 

1675 
WHEN clockc DO IF ptr==ts_clock THEN 
BEGIN 
!end of time slice for current domain incarnation; 
IF cu =1= NONE THEN BEGIN 

IF NOT cu.domain IN monitorc THEN BEGIN 1680 
IF cu.processor.ctime GE longtimeslice THEN BEGIN 
cu.processor.rtslongtimes1ice 
cu.processor.priority:low; 

END ELSE cu.processor.rts=timeslice; 
cu.Out; 1685 
IF driverq.bentries=O AND 
dmninfo(cu.did) .next_site=0 
THEN 
!no other work and domain not wanted elsewhere; 
queue(driverq,cu,cu.processor.priority) 1690 
ELSE BEGIN 
!redetermine best location for domain incarnation to; 
!continue - gives domain chance to go to other sites; 
retire(cu); 
queue(driverq,cu,high); 	 • 1695 

END; 
END ELSE cu.processor.rts:=timeslice; 
!give processor time to get out of monitor domain; 
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END 1700 

WHEN consolec DO 	 1705 
BEGIN 	 !input has arrived from a console; 

IF c_secretary.Prev == NONE THEN 	!see if in a queue; 
BEGIN 

!assume that it is not in driverq.; 
!note this means domain must be tied; 	 1710 
queue(driverq,c_secretary,medium); 
c_sec retary.stage :=valid; 

END; 
ptr.Into(c_arrival_list); 
!messages from all consoles kept in one list; 	1715 

END 

WHEN dmn_transfer DO 
BEGIN 	 !request to transfer domain has arrived; 

IF dmn_info(did) .next site NE 0 THEN 
!domain promised to someone else; 
send_ncssage(dmn_info(did). next_site,ptr) 
!pass on the request; 
ELSE IF NOT 	(dmn_info(did) .here OR dnn_info(did) .coming) 
THEN 	 !domain already gone elsewhere; 
send _message(dmn_info(did) .d_loc ,ptr) 
ELSE 	 !domain is here or coming; 
IF rqstor NE id THEN BEGIN 

INSPECT dmn_info(did) DO BEGIN 1730 
d_loc =next_site: =rqstor; 
!prepare for updating broadcast; 
IF update(1)==NONE THEN 
BEGIN 	!update not initialized; 

FOR w := 1 STEP 1 UNTIL n DO 1735 
update(w) :-NEW d_loc_update(did,rqstor); 

END 
ELSE 
FOR w:=1 STEP 1 UNTIL n DO 
update(w) .new_site:=rqstor; 1740 

END; 
action_transfer(dmn_info(did)); 
!see if domain can be sent off immediately; 

1745 
END ELSE error("DO?IAIN MANAGEMENT HAS FAILED"); 

END 

WHEN domainc DO 	 1750 
BEGIN 	 !domain has arrived from another site; 

site :=id; 
INSPECT dmn_info(did) DO 
BEGIN 

REF(domain_jncarnatjonc) dr,f; 	 1755 
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IF NOT coming THEN 
BEGIN 	 !arrival unexpected e.g. from ipi; 

claim ( size , running) 
!memory space; 
IF NOT running THEN 1760 
error("NO ROOM FOR A NEW DOMAIN"); 
FOR w:=1 STEP 1 UNTIL n DO 
update(w) :-NEW d_loc_update(did,id); 
broadcast(update); 
!tell other sites it is here; 1765 

• d_loc:=id; 
END; 
coming: =FALSE; 
here:=TRUE; 	!alter state; 
WHILE NOT rqst_list.&pty DO 1770 
BEGIN 	 !examine list of waitng domain requests; 
• dr:-rqst_list.Suc; 
queue(driverq,dr,high); 

!have chosen a strategy such that a request that; 
!is not going to be filled at this site is not acted; 
!upon if domain has been promised elsewhere; 

END; 
dr :-external_segs . Suc; 
WHILE dr=/=NONE DO 	 1780 
!check incarnation(s) that have been waiting for; 
!domain to arrive to see if any are ready to run; 
BEGIN 

f:-dr.Suc; 
IF dr.count=0 THEN 	 1785 
BEGIN 

dr.Out; 
put_in_ready_state(dr); 

END; 
dr:-f; 	 1790 

END; 
END; 

END 

1795 
WHEN d .joc_update DO 
BEGIN 	 !a domain has changed sites; 

dmn_info(did) .d_loc:=new_site; 
END 

1800 
WHEN l_seg.jistc DO 
BEGIN 
!request to transfer a list of local segments; 
INTEGER i; 
REF (segmentc) s; 	 1805 
FOR i:=1 STEP 1 UNTIL max_local_segs DO IF a(i) NE 0 THEN 
BEGIN 

s:-seg_table(retrieve(a(i))); 	!fetch segment; 
xferedlocals.incr; 	 !update statistics; 
send_message(rqstor,$); 	 transmit; 	1810 

END; 
END 	 • 

A-38 



WHEN p seg_listc DO 
BEGIN 	 1815 

!request to transfer processor segment and; 
!possible parameters; 
INTEGER 1; 
send_message(rqstor,seg_table(retrieve(p_key))); 
xfered_processors.incr; 	 1820 
!send processor segment; 
FOR i:=1 STEP 1 UNTIL max_param_segs DO 
IF a(i) NE C) THEN BEGIN 
send_message(rqstor,seg_table(retrieve(a(i)))); 
xfered_locais.incr; 	 1825 

END; 
END 

WHEN s_channelc DO 
BEGIN 	 !transmission to another site completed; 
REF(contentc) m; 
m:-ptr QUA s_channelc.m; 
!retain reference to message just sent; 

!now see if more messages to be sent; 	 1835 
IF NOT(cq.Empty AND sq.Enpty) THEN 
signal _channel 	 - 
((IF cq.Empty THEN sq.Suc ELSE cq.Suc) QUA contentc) 
ELSE 	 !none left; 
channel_busy:=FALSE; 	 1840 

!now free space from previous message; 
!(could be time consuming); 
IF m IN domainc THEN domain_copy(rn QUA donainc) 
!determine if keeping a copy of domain code; 	1845 
ELSE IF m IN segmentc THEN delete_seg(m QUA segmentc); 
!return space; 
!short control messages are assumed not to interact with; 
memory management; 

END 	 1850 

WHEN segmentc DO 	! domainc already dealt with; 
BEGIN 	 !processor or local segment has arrived; 

1855 
INTEGER new did; 
REF(virtual_processor) p; 
REF(domain_incarnationc) f; 
IF ptr IN virtual_processorc THEN BEGIN 

p:-ptr; 	 1860 
new _did:=p.e_stack(p.stackp) .did; 

END 
ELSE BEGIN 

!assume that it is local segment; 
p:-ptr QUA local_seg.pr; 	 1865 

new_did:=ptr QUA local_seg.did; 
END; 
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!locate incarnation, they belong to; 	 1870 
f:-dmn_info(new_did) .external_segs. Suc; 
WHILE (IF fN0NE THEN FALSE ELSE f.processor=/=p) DO 
f:-f. Suc; 
!search for incarnation record; 
IF f==NONE THEN error("SEGMENT HAS LOST ITS DOMAIN") 1875 
ELSE 
BEGIN 

f .count: =f count-i; 
!one more segment has arrived; 
IF f.count=0 AND (dnn_info(new_did).here OR 	1880 
drnn_info(new_did) .copy) THEN 
BEGIN 

f.Out; 	!of external_segs list; 
put_in_ready_state(f); 
!can run - because all segments here; 	 1885 

END; 
END; 

END 

1890 

OTHERWISE BEGIN 
IF NOT spaceqempty THEN 
BEGIN 	 1895 
!have processes waiting for space but.none running; 
IF spaceq.total_entries=qfs(id) AND 
NOT deadlock warning 
THEN 
BEGIN 	 1900 

ptime; 
Outtext("POSSIBLE DEADLOCK AT SITE 
Outint (Id, 2); 
Outtext(" 	NUMBER WAITING"); 
Outint(spaceq.total_entries,2); 	 1905 
Outimage; 
deadlock _warning: =TRUE; 

END; 
END; 
idle_timer.start; 	 1910 
Passivate; 
idle—timer. stop; 
!accumulate idle time; 

END; 
END; 	 1915 

END; 
error("KERNEL HAS STOPPED RUNNING"); 

END of class kernelc; 
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!declarations related to domain management; 	 1920 

CLASS dmn_infoc; 1925 
!this class is a data structure holding all information that the; 
!kernel needs to know about a domain; 
BEGIN 
REF(domainc) 	d; 	!actual reference to domain; 
BOOLEAN 1930 
copy, 
true if only a copy of the domain is here; 

coming, 
!true when this site has requested domain to be sent here; 
here, 1935 
!true when domain is actually at this 	site; 
going; 
!true when domain is in transit between sites; 
INTEGER 
d_loc, 	 !estimate of site of original domain; 
next—site; 
!non-zero when domain reserved for another site; 
REF( Head) 
work, 	 - 
!list of all 'ready-to run' 	incarnations of domain; 1945 
external_segs, 
!list of all incarnations waitingfor segments; 
!from other sites; 
rqst_list; 
!list of all rqsts to have optimum site calculation performed; 
REAL lasttime; 	 !for copies last time it was used; 
REF(d_loc_update) ARRAY update(1:n); 
!kept for efficieny reasons; 

work:-NEW Head; external_segs:-NEW Head; rqst_list:-NEW Head;. 
copy: =FALSE; 
corning: =FALSE; 
here: =FALSE; 
next_site: =0; 

END of class dmn_infoc; 	 - 	1960 

contentc CLASS dmn transfer; 
BEGIN 	 1965 

INTEGER did,rqstor; 
!for requesting the transmission of code and possible public; 
!segments to another site (rqstor); 
size :=32; 

END of class dmn_transfer; 	 1970 

contentc CLASS d_loc_update(did,new_site); 
INTEGER did,new_site; 
!for informing sites of new domain locations; 	- 	 1975 
BEGIN 
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TEXT PROCEDURE dump; 
dump:-Copy("D_LOC_UPDATE t'); 

size :=32; 
	

1980 
END; 

contentc CLASS domain_incarnationc(processor); 
REF(virtual_processorc) processor; 	 1985 
!this is basically an entry capability; 
!the data it contains is fleshed out by various procedures; 
!in the kernel to make the capability valid; 
BEGIN 

INTEGER stage; 	 1990 
!progress indicator in making capability valid; 
INTEGER did; 
!identity o 	(going to be) entered; 
REF(domainc) domain; 	!set just before entering domain; 

1995 
REF (local_seg) ARRAY locals(1:max_local_segs); 

INTEGER choice; 
!site calculated as 'best' for incarnation; 

2000 
INTEGER shifts; 
!count of number of times incarnation forced to another site; 

INTEGER next—step; 	!entry point information; 
REAL runtt; 	 2005 

REAL local _data; 
!required to simulate data stored in local_segments; 

!the above are all that are strictly necessary; 	 2010 
!the rest aid computation; 
INTEGER d_site,p_site,l_site; 
!sites of domain, processor and parameter, and local segments; 
INTEGER d_size,p_size,l_size; 
!size of code (& data-base), processor (& parameter); 	2015 
!and local segments; 

INTEGER total—size, 
!of all segments except domain segments but including those; 
!that are to be created and on disk; 	 2020 
extra—Space; 
!size of segments not resident at chosen site or to be created; 
INTEGER count; 
!number of segments required from other sites; 
INTEGER site; 	 2025 
INTEGER 1; 

PROCEDURE re_ initial ization (did n); 
INTEGER didn; 
BEGIN 	 !sets capability back to base state; 

stage: =seek_d_site; 
runtt:0; next_step:1; 
did: =didn; 
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FOR i:=1 STEP 1 UNTIL max_local_segs 1)0 
1ocals(i).status:=locals(i).default:rnull; 	 2035 

END of re initialization; 

TEXT PROCEDURE dump; 
BEGIN 	 2040 
!for diagnostic identification - 12 chars long; 
TEXT dumpy; 
dumpy :- Copy("DI P= D= 
dumpv.Sub(6,2).Putint(processor..pid); 
dumpv.Sub(I0,2) .Putint(did); 	 2045 
dump: -dumpy; 

END; 

size :=32; 
!for transmission over communication links; 	 2050 
FOR i:1 STEP 1 UNTIL max_local_segs DO 
locals(i) :-NEW local_seg(O,processor); 
!instead of creating a new local segment every time one is; 
!used the same template is used; 

2055 
END of domain_incarnationc; 

2060 
segnentc CLASS domainc(did); 
INTEGER did; 	 !identification number; 
VIRTUAL: PROCEDURE 
stepi, 	 !executed on entering a domain; 
step2,step3,step4,step5; 	

0 	
2065 

!optional extra 'instructions'; 
BEGIN 

INTEGER 
tied; 	 !if non-zero fixed site for domain; 
INTEGER i; 	 2070 

PROCEDURE interdomain_call(x,new_did); 
REF (domain _incarnationc) x; 
INTEGER new_did; 
BEGIN 	 2075 
interdmn_jump(x,x.processor.fetch_c(new_did)); 
!set up new entry capability; 

END; 
PROCEDURE return(x); 
REF(domain_incarnationc) x; 	 2080 
INSPECT x DO BEGIN 

INTEGER i; 
FOR i:=I STEP 1 UNTIL max_local_segs DO 
IF locals(i) . status= incore THEN 
BEGIN 	 2085 

!determine what to do with local segments; 
• IF locals(i) .default=null 
THEN 
INSPECT k(x..site) DO delete_seg(locals(i)); 

END; 	 2090 
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interdmnjump(x,processor.return); 
!retrieve previous entry capability; 

END of return; 

PROCEDURE interdmnjump(x,y); 2095 
REF (domain _incarnationc) 	x,y; 
!set in train the transfer of virtual processor; 
!from incarnation x to y; 
BEGIN 

FOR i:=1 STEP 1 UNTIL max_pararn_segs DO 2100 
x..processor.params(i) .did:=y.did; 
!mark parameter segments as belonging to new domain; 
INSPECT k(x.site) DO BEGIN 

retire(x); 
!remove current domain incarnation from driverq; 2105 
queue(driverq,y,high); 

END; 
new incarnations.incr; 	 !statistic; 

END Of interdmn_jump; 
2110 

REF(domain_incarnationc) PROCEDURE putative_return(x); 
REF(domain_incarnationc) 	x; 
BEGIN 

!gives the entry capability for a return but does not; 
!instigate the return; 2115 
return(x); 	- 
x.processor.Current.Out; 	 !ofdriverq; 
putative_return:-x.processor.Current; 

END; 
2120 

PROCEDURE setup_disk_read(x,size); 
REF(domain_incarnationc) x; INTEGER size; 
!for preparing the parameters of a disk read; 	 2125 
x.processor.simple_parameter:=size; 
!considerably simplified; 

TEXT PROCEDURE dump; 	 2130 
BEGIN 	 !diagnostic; 

TEXT t; 
t:-Copy("DOIIAIN 
t.Sub(7,2) .Putint(did); 
dump:-t; 	 2135 

END; 	 - 

key 	did; 
default:=status :=incore; 	 !always; 	2140 
INNER; 
INSPECT k(site) DO int(THIS don-iainc); 	!instal itself; 

END; 
2145 

CLASS formatc(did); 
INTEGER did; 
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!for handling 'compile-time' information about domain structure; 
VIRTUAL: PROCEDURE format; 

2150 
BEGIN 
PROCEDURE format(l); REF(local_seg)ARRAY 1; 
!default; 	- 
dp(did) :-THIS formatc; 
!make universally available; 	 2155 

END; 

REF(formatc) ARRAY dp(1:fixed_domains); 

2160 
domainc CLASS monitorc; 
BEGIN 

INTEGER c_size, 	!size of code segment; 
db_size; 	 !size of public (data base) segment; 
!n.b. db_size can not be zero.; 	 2165 

INNER; 
size :=c_size+db_size; 

END of class monitorc; 
	

2170 

monitorc CLASS secretaryc; 
BEGIN 

!in this simulation all the monitors that have condition; 
!queues also have secretaries; 	 2175 
REF(head) my—q; 	!coriditon queue; 

Ia virtual processor can suspend 
!itself on the condition queue; 	 2180 
PROCEDURE suspend; 
k(site) .cu.Into(my_q); 
!this assumes that the domain is tied down; 

V. 

PROCEDURE restart_processor; 	 2185 
!removes the first processor from condition queue; 
!because still at same site could be ready to; 
!continue in monitor; 
INSPECT k(site) DO 
BEGIN 	 2190 
REF(domain_incarnationc) mc; 
inc:-my_q.Suc; 
IF inc=/NONE THEN queue 
(driverq,inc,IF inc.stage=valid THEN monitor ELSE high); 

END of procedure restart_processor; 	 2195 

PROCEDURE wait—for—signal; 
k(site) .cu.Out; 
!secretary processor removed from driverq; 

2200 
PROCEDURE create_secrctary(secretary,u); 
NA1E secretary; 
REF(domain_incarnationc) secretary; 
INTEGER u; 
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BEGIN 	 2205 
REF(virtual_processor) pr; 
INSPECT k(site) DO 
BEGIN 
pr:-NEW virtual_processorc(site,max_consoles+did,u); 
claim(pr.size,running); 	 2210 
pr serv ice timer .Out; 
!not giving user service; 
secretary: -pr. f etch_c(did) 
secretary.domain:-THIS domainc; 
secretary.stage:=valid; 	 2215 
!always ready to run; 

END; 
END; 

rny_q :- NEW Head; 	 2220 
tied :=site; 
!because secretary is only known at one site; 

END of class secretaryc; 

2225 

segmentc CLASS virtual_processor (pid,u); 
INTEGER pid, 	 !identification number; 

!random number seed to determine execution path; 2230 
BEGIN 

INTEGER priority; 	!determines scheduling; 
REAL rts, 	 !remaining time slice; 
C_time; 
!processing time received since last command started; 2235 
REF(local_seg) ARRAY params(1 :max_paran_segs); 
!there is one A_list for the virtual processor;' 
!local segments are moved to and from it if necessary; 
INTEGER simple_parameter; 
!for non array type data; 2240 
INTEGER unique; 
INTEGER PROCEDURE uniquenumber; 
BEGIN 

unique: =unique+1; 
IF unique < 	16rffff 	!16bits; 2245 
THEN uniquenumber:=unique 
ELSE error("PROCESSOR HAS RUN OUT OF UNIQUE NUMBERS") ;  

END; 

REF(domain_incarnationc) ARRAY e_stack(1:stack_depth); 	2250 
!for keeping control of sequence of domains visited 
INTEGER stackp; 
INTEGER sameness; 
!counts how many times processor on same domain call sequence; 

2255 
REF(domain_incarnationc) PROCEDURE Current; 
!the incarnation the processor is in or will be in when; 
!it next executes; 
Current :-e_stack(stackp); 

2260 
REF(domain_incarnationc) PROCEDURE fetch_c(did); 
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INTEGER did; 
IF stackp < stack depth THEN 
BEGIN 	 !set up incarnation template; 
stackp:=stackp+1; 	 2265 
IF e_stack(stackp).diddid Ti-LEN 	 !ghost; 	- 
sameness: =saiaeness+1 ELSE sameness: =1; 
e_stack(stackp) .re_initialization(did); 
dp(did) .fornat(e_stack(stackp) .locals); 
!set up temporary space etc; 	 2270 
fetch_c:-e_stack(stackp); 

END 
ELSE error(fillin('STACK  OVERFLOW FOR PROCESSOR",pid)); 

REF(domain_incarnationc) PROCEDURE return; 	 2275 
IF stackp>1 TI-LEN 
BEGIN 

stackp:=stackp-1; 
return:-e_stack(stackp); 

END ELSE error(fillin(' tSTACK UNDERFLOW FOR PROCESSOR",pid)); 

REF(timer) service timer; 

!the next 4 items do not logically belong here; 
!i.e. not part of processor base segment; 	 2285 
!they are included for program efficiency; 
REF(dnn transfer) d_transfer; 
REF(p_seg_listc) p_seg_list; 
REF(1_segjistc) 1_seg_list; 	- 
REF(diskrqst) disk—read; 	 2290 

priority :=medium; 
rts:=timeslice; 	 2295 
service _timer :- NEW timer('SERVICE TIME",usage); 
size := 200; 
key: =pid+fixed_domains; 
status : =defaul t : =incore; 
FOR w:=1 STEP 1 UNTIL stack depth DO 	 2300 
e_stack(w):-NEW dornain_incarnationc(THIS virtual_processorc); 
FOR w:=1 STEP 1 UNTIL max_param_segs DO 
params(w):-NEU local_seg(site,TI-LIS virtual_processorc); 
d_transfer: -NEW dmn_transfer; 
p_seg_list:-NEW p_seg_listc(key); 	 2305 
1_seg_list :-NEW l_seg_listc; 
disk—read:-NEW disk_rqst; 

END of class virtual_processor; 
2310 

contentc CLASS p_seg_listc(p_key); 
INTEGER p_key; 
BEGIN 

!carries kernel request for processor and parameter segsments; 
INTEGER rqstor; 
INTEGER ARRAY a(1:max_param_segs); 
size:=32; 
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END; 
2320 

contentc CLASS l_seg_listc; 
BEGIN 	 !for requests for local segments; 

INTEGER rqstor; 
INTEGER ARRAY a(1:max_local_segs); 
size:=32; 	 2325 

END; 

segmentc CLASS local_seg(pr); 
REF(virtual_processor) pr; 
BEGIN 	 2330 

INTEGER did; 
INTEGER PROCEDURE setkey; 
setkey: =pr. pid*l6rfffff+site*l6rffff+pr.uniquenumber; 
!created before use and reused for sake of program efficiency; 
!site, size and key have to be given each time; 	 2335 

PROCEDURE make_workspace(d_id,newsize); 
INTEGER did,newsiz2; 
BEGIN 
did:=did; 	 2340 
key: =setkey; 
status:=trans; 	!so as created on domain entry; 
size:=newsize; 

END; 	 - 
2345 

PROCEDURE make _ disk _read(newsize); 
INTEGER newsize; 
BEGIN 

!for setting up the parameter segment for a disk read; 
key:=setkey; 	 2350 
status: =ondisk; 
size :=newsize; 

END; 

TEXT PROCEDURE dump; 
	

2355 
dump: -fill in("L_SEG * P",pr.pid); 

END of class local_seg; 

PROCEDURE move(lfrom,lto); 	 2360 
REF(local_seg) lfrom,lto; 
!for transferring a segment into or out of A_list; 
BEGIN 

!an error in simula runtime system prevents swopping 'REFs'; 
INSPECT ifrom DO BEGIN 	 2365 

lto.pr:-pr; 
lto.size :=size; 
ito .site: =site; 
lto..key:=key; 
lto.default:=default; 	 2370 
lto .status : =status; 
lto.did :=did; 
!assume that ito previous status not incore; 
IF status=incore OR status=desc THEN INSPECT k(site) DO 
seg_table(retrieve(key)) :-lto; 	 2375 
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END; 
Ikeep the same number of segment templates in the system; 
if rom status: =nuii; 

END; 
2380 
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PROCEDURE ipi; 
BEGIN INTEGER ul,nn,j; 
ul:=random_seed; 	!random number seed; 

NEW user_supervisor(1,supern); 	 2385 
!simulate part of ipi; 
NEW comrnand(cnslsite,comrnandn); 
FOR nn:=1 STEP 1 UNTIL max disks DO 
NEW diskhandler(nn*(n//max_disks) ,diskl+nn_1,n+nn,ul*(2*nn+1)); 
!spread handlers around to different sites; 	 2390 

FOR nn:=ipld-4-1 STEP 1 UNTIL ipld+compl DO 
NEW compiler(?bd(nn,n)+1,nn); 
FOR nn:dd1 STEP 1 UNTIL ddu DO 
NEW type1(1od(nn,n)+1,nn); 	 2395 
FOR nn:=rnntrl STEP 1 UNTIL mntru DO 
NEW type2(Mod(nn,n)+1,nn); 

FOR nn:=1 STEP 1 UNTIL max consoles DO 
BEGIN 
	

2400 
console(nn) 
	

NEW consolec(nn, (2*Randint(1, 1000,ul)+1)); 
ACTIVATE con 3ole(nn) DELAY 5000; 
!give system time to settle down; 

END; 
END of procedure ipi; 	 2405 
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domainc CLASS typel; 
BEGIN 

!this class simulates trivial commands; 
!overall about half the commands make at least I disk transfer; 
!the average processor time is around 200 msec; 

PROCEDURE stepl (x); 
REF(domainincarnationc) x; 
BEGIN 	 2415 

IF full_diags THEN BEGIN 
TEXT t; 
t:-Copy("PROCESSOR 	ENTERS DOMAIN 	AT SITE 
t.Sub(11,2).Putint(x.processor.pid); 
t.Sub(28,2).Putint(did); 	 2420 
t. Sub(39, 2) .Putint(x.site); 
ptime; Outtext(t); 

END; 
x.nextstep:=2; 
x.runtt:Negexp(1/100000,X.proCeSSor.U); 	 2425 

END of procedure stepl; 

PROCEDURE step2(x); 
REF (domain—incarnation) x; 
BEGIN 2430 

IF Draw(0.25,x.processor.u) 	THEN 
BEGIN 	 - 	!going to rake a disk transfer; 

setup_disk_read(x,512); 	 !read 512 bytes; 
interdonain_call(x,diskhandlern(x. processor.pid)); 
x.next_step:=5; 	x.runtt:200; 2435 

END ELSE BEGIN 
x .next_step: =3; 	x runtt : =0; 

END; 
END of step2; 

2440 
PROCEDURE step3(x); 
REF(dornain_incarnationc) 	x; 
!determine next domain to be entered; 
BEGIN 
REF(virtual_processor) 	p; 2445 
INTEGER new did; 
p : -x. processor; 
IF Draw(0.5,p.u) 
AND p.stackp<stack_depth THEN BEGIN 

new did 	:= Randint((did+1),mntru,p.u); 2450 
IF full_diags THEN BEGIN 
ptime; Outint(p.pid,6); 	Outtext(" 	CHOOSES"); 
Outint(new_did,6); 

END; 
2455 

interdornain_call(x,new_did); 
END; 
x .next_step: =4; 
x .runtt =100; 

END of procedure step3; 2460 

PROCEDURE step4(x); - 
REF(domain_incarnationc) x; 
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BEGIN 
IF full_diags THEN BEGIN 	 2465 
ptime; Outint(x.processor.pid,6); 
Outtext(" RETURNS TO/REMAINS AT"); 
Outint(did,4); Outimage; 

END; 
return(x); 	 2470 

END of procedure step4; 

PROCEDURE step5(x); 
REF(domain_incarnationc) x; 
BEGIN 	 !completed a disk read; 	 2475 
move(x.processor.params(1),x.locals(2)); 
x.next_step:=3; xruntt :0; 

END of stepS; 

2480 
size :=1024; 
NEW typelf(did); 	!to set up domain correctly; 

END of class typel; 

formatc CLASS typeif; 	 2485 
BEGIN 
PROCEDURE format(1); 
REF(local_seg) ARRAY 1; 
1(1).make_workspacc(did,(ddu+2_did)*128); 
!different size for each domain to get different behaviour; 

END of typeif; 
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monitorc CLASS type2; 
!this class simulates actions involving the use of global tables; 
BEGIN 	 2495 

PROCEDURE step 1(x); 
REF(domain_incarnationc) x; 
BEGIN 

IF full_diags THEN BEGIN 	 2500 
TEXT t; 
t:-Copy("PROCESSOR 	ENTERS MONITOR 	AT SITE 
tSub(11,2).Putint(x.processor..pid); 
t.Sub(29,2).Putint(did); 
tSub(40,2).Putint(x.site); 	 2505 
ptime; Outtext(t); 

END; 
xnext_step : =2; 
x.runtt:=Negexp(i/100000,x.processor.u); 

END of stepl; 	 2510 

PROCEDURE step2(x); 
REF(dornain_incarnationc) x; 
return(x); 

2515 
C size :=400; 
db_size : = (nntru-did+1) *nax consoles*3 2 
!expect global tables to be bigger the more users there are; 
NEW type2f(did); 

END of type2; 	 2520 

formatc CLASS type2f; 
BEGIN 
PROCEDURE format(l); 
REF(local_seg) ARRAY 1; 
	

2525 
1(1) .make_workspace(did,10*did); 
!space for a small stack; 

END of type2f; 
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domainc CLASS compiler; 	 2530 
!this domain interacts only with the diskhandler and makes large; 
!computational demands; 
BEGIN 

REAL ARRAY a,b(1:7); 
PROCEDURE stepl(x); 	 2535 
REF(domain_incarnation) x; 
BEGIN 

IF full_diags THEN BEGIN 
TEXT t; 
t:-Copy("PROCESSOR 	ENTERS CO1PILER"); 	 2540 
t.Sub(11,2).Putint(x..processor.pid); 
ptime; Outtext(t); 

END; 
x .next_step : =2; 
x.localdata:=Linear(a,b,x.processor.u)* 1.0&6; 	 2545 

END of step I;. 

PROCEDURE step2(x); 
REF(domain incarnation) x; 
BEGIN 	 2550 
IF x..processor.params(1).statusincore THEN 
INSPECT k(x.site) DO delete_seg(x.processor.params(1)); 
!free previous buffer; 
IF x.local_data > 0 THEN 
BEGIN 	 2555 
x.runtt:Erlang(1.0&-6,6,x.processor.u); 
!we assume an average of 12 lines/sec compilation speed; 
!with 2 disk transfers for every 12 lines; 
x.local_data:=x.local_data-x.runtt; 
setup_disk_read(x,4096); 	 2560 
interdomain_call(x,diskhandlern(x.processor.pid)); 
x .next_step =3; 

END 
ELSE 
return(x); 	 2565 

END of step2; 

PROCEDURE step3(x); 
REF(domain_incarnatioric) x; 
BEGIN 	 !disk write;. 	 2570 
x.processor..params(1).status:=desc; 
interdomaincall(x,diskhandlern(x. processor. pid)); 
x .next_s tep: =2; 
x.runtt:=500; 

END of step3; 	 2575 

size :=I2000; 
a(1):=0; a(2):=0.27; a(3):=0.54; a(4):=0.78; a(5):=0.88; 
a(6):=0.93; a(7):1.O; 	 2580 
b(1):=0.5; b(2):=4; b(3):=8; b(4):=16; b(5):=40; 
b(6):=80; b(7):=200; 
!cumulative density function for cpu times; 
NEV] type lf(did); 

2585 
END of class compiler; 
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domainc CLASS user—supervisor; 
BEGIN 

2590 
!supervise the 'interpretation' of users code; 
!can soak up a lot of cpu time; 

PROCEDURE stepl (x); 
REF(domain_incarnationc) x; 	 2595 
BEGIN 

IF full_diags THEN BEGIN 
ptime; 	Outtext(fillin 
("EXECUTION OF USER CODE BY PROCESSOR",x.processor.pid)); 

END; 	 2600 
x.local_data:=Linear(userp,usert,x.processor.u)*&6; 
setup_disk_read(x,Randint(300,I6000,x.processor.u)); 
!for code from disk; 
interdomain_càll(x,diskhandlern(x.processor.pid)); 
x.next_step:=2 	 2605 

END of stepl; 

PROCEDURE step2(x);. 
REF (domain_incarnationc) x; 
BEGIN 
	

2610 
move(x.processor.params(1),x.locals(2)); 
!code lives in local segment 2; 
x.runtt:=200; 
x.next_step:=3; 	 - 

END of step2; 	 2615 

PROCEDURE step3(x); 
REF(domain_incarnationc) x; 
IF x.local_data>O THEN BEGIN 
x.runtt:Negexp(1/250000,x.processor.u); 	 2620 
!mean headway between disc operations is 250msecs; 
!this is twice the equivalent emas rate but we must allow for 
!overlays or equivalent; 
x .local_data =x .local data—x. runtt; 
INSPECT x.processor DO 	 2625 
BEGIN 

IF Draw(0.5,u) AND params(1).status=incore THEN 
BEGIN 
params(1).status:=desc; 	 !for write; 

END 	 2630 
ELSE 

BEGIN 
IF params(1).status=incoreTI-IEN INSPECT k(x.site) DO 
delete_seg(params(1)); 	 2635 
simple_paramater:=8192; 	 !for read; 

END; 
END; 
interdomain_call(x,diskhandlern(x.processor. pid)); 

END 	 2640 
ELSE 
BEGIN 

IF x.processor.params(i).status=incore THEN 
INSPECT k(x.site) DO delete_seg(x.proàessor.params(1)); 
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return(x); 	 !supervisor finished; 	 2645 
END of stcp3; 

size :=4000; 
NEW supervisorf(did); 

END of class user—supervisor; 	 2650 

forrnatc CLASS supervisorf; 
BEGIN 
PROCEDURE format(l); 
REF (local_seg) ARRAY 1; 	 2655 
BEGIN 
l(1).make_workspace(did,Randint(500,8000,1(1).pr.u)); 

END; 
END; 

2660 

A-S 7 



secretaryc CLASS diskhandier(disk,u); 
INTEGER disk,u; 
BEGIN 

!This domain handles both writes to and reads from disk.; 
!Requests are queued depending on the priority-of the; 	2665 
!processors making the request.; 
!When in overload situation low priority processors are; 
!suspended after they have issued write requests until; 
!situation improves.; 

2670 
REF(virtual_processor) pr; 
REF(domain_incarnationc) next mc; 

BOOLEAN transfer_in_progress, 
read—next, 	 !true if previous operation was a write; 
overload; 
!set to give priority to writes to free memory; 

REF(Head) wfreeq,wq; 
!used to manage limited read before write scheme; 	 2680 
REF(Head) wql,wqh; 
!low and high priority write queues feed into wq; 
REF(Head) rql,rqh; 	!read queues; 
REF(l_seg_listc) disk_write_rqst; 
REF(Link) trans_seg; 	 2685 
BOOLEAN warning, message. 
!true when printed warning about deadlock possibility; 

PROCEDURE signal—disk—write; 
BEGIN 	 2690 
!the kernel where the segment to be written resides is; 
!requested to send the segment straight to the disk; 

disk_write_rqst.a(1):=wq.Suc QUA segmentc.key; 
INSPECT k(site) DO 
send_raessage(wq.Suc QUA segrnentc.site,disk_write_rqst); 2695 
trans_seg:-wq.Suc; trans_seg.Out; 
IF NOT(wqh.Empty AND wql.Empty) AND NOT wfreeq.Enpty THEN 
BEGIN 
!move another write request into pipeline; 

next_inc:-IF wqh.Empty THEN wql.Suc ELSE wqh.Suc; 	2700 
move(next_inc.processor.parains(1),wfreeq.Suc 
QUA local_seg); 
wfreeq.Suc.Into(wq); 

IF next_inc.processor.priority=low THEN 	 2705 
BEGIN 

IF overload OR NOT my_q.Empty THEN 
BEGIN 

next _inc. Into(my_q); 
!hold back to allow other processors to complete; 2710 
IF overload THEN next_inc:-NONE 
ELSE next_inc : -ny_q . Suc; 

END; 
END; 
IF next_inc=/=NONE THEN 	 2715 
INSPECT k(site) DO queue(driverq,next_inc,monitor); 
!in monitor and still valid; 
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END; 
END; 

2720 

BOOLEAN PROCEDURE initiate—read; 
!if there is a read to be done, starts it and returns true; 
BEGIN 

initiate_read:=NOT(rqh..Empty AND rql.Empty); 	 2725 
IF NOT rqh.Empty THEN 
k(site).send_message(disk,rqh.Suc QUA contentc) 
ELSE 
IF NOT rql.Empty THEN 
k(site)..send_message(disk,rql.Suc QUA contentc); 

	
2730 

END of initiate—read; 

PROCEDURE stepl(x) 
REF(domain_incarnationc) x; 
	

2735 
BEGIN 

IF full diags THEN BEGIN 
ptime; 
Outtext(fillin( "DISK 
x.processor.pid)); 
Outimage; 

END; 
x.runtt :=200; 
x .next_step: =2; 

END .of stepi; 

HANDLER ACTIVATED FOR PROCESSOR", 
2740 

2745 

PROCEDURE step2(x); 
REF(doinain_incarnationc) x; 
!for a disk write parans(1) has a segment desc(riptor) while; 
!for a read simple_parameter describes the requirements; 	2750 

IF x.processor.params(1).statusdesc THEN 
BEGIN 	 !write; 

IF NOT wfreeq.Enpty THEN 
BEGIN 	 !go straight into delay line buffer; 
move(x.processorparams(1),wfreeq.Suc QUA local—se,-); 
wfreeq. Suc. Into(wq); 
IF NOT transfer_in_progress THEN 
BEGIN 

!can use disk straight away; 
	

2760 
signal_disk_write; 
transfer_in_progress: =TRIJE; 

END; 
END ELSE BEGIN 

!delay line full so processor has to wait; 
	

2765 
IF x.processorpriority=low THEN x..Into(wql) 
ELSE x.Into(wqh); 

END; 
x..next_step:=3; 
x runtt : =400; 
	

2770 
END 
ELSE 
BEGIN 

!entered to do a disk read; 
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x.processor.params(1).make_ disk _read 	 2775 
(xprocessor.simple_parameter); 
x.processor..params(1).site:disk; 
!identify disk that will read segment; 
next_inc:-putative_return(x); 
!prepare entry capability for when read complete; 	2780 
IF transfer—in—progress THEN 
next_inc.Into(IF x.processor.prioritylow THEN rql ELSE rqh) 
!suspend for secretary to look after; 
ELSE 
BEGIN 	 2785 

transfer_in_progress: =TRUE; 
INSPECT k(site) DO send_message(disk,next_inc); 

END; 
END of step2; 

PROCEDURE step3(x); 
REF (domain_incarnationc) x; 
BEGIN 

return(x); 
END of step3; 

PROCEDURE step4(x); 
!executed by secretary processor; 
REF(domain_incarnationc) x; 
BEGIN 

!in a normal situation read done 
!unless wq is full in which case 
!arid turn about; 

before writes; 
done turn; 

2800 

!in overload situation all writes and high priority reads; 
!are done turn and turn about; 	 2805 

IF trans_seg=/=NONE THEN BEGIN 
trans_seg : -NONE; 
read_next :=TRUE; 

END ELSE read_next:FALSE; 	 2810 

IF read—next THEN overload:=k(site).overload; 

IF overload THEN 
BEGIN 	 2815 

IF NOT((read_next AND NOT rqh.Empty) OR wq.Empty) THEN 
signal—disk-write 
ELSE 
IF NOT initiate—read THEN 
BEGIN 
	

2820 
transfer _in_progress :=FALSE; 

!could be in trouble here as nothing to do yet; 
!system close to deadlock; 

IF NOT warning_message THEN BEGIN 
ptime; Outtext("DISKHANDLER IMPOTENT"); Outimage; 2825 

warning_message:=TRUE; END; 
END 

END 
ELSE 
IF NOT(wqLEmpty AND wqh.Empty) THEN 
	

2830 
BEGIN 

2790 

2795 
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IF NOT read—next OR (rql.Empty AND rqh.Empty) THEN 
signal_disk_write 
ELSE initiate—read; 

END 	 2835 
ELSE 
BEGIN 
!the normal situation - reads before writes; 
IF NOT initiate—read THEN 
BEGIN 	 2840 

IF NOT wq.Empty THEN signal_disk_write 
ELSE 
BEGIN 

!nothing to do; 
transfer_in_progress: =FALSE; 	 2845 
IF NOT my_q.Empty THEN BEGIN 

restart_processo r; 
!judge it safe to release one held up processor; 
warning_message: =FALSE; 

END; 	 2850 
END; 

END; 
END; 
wait—for—signal; 
x.runtt:=200+300*(ny_q.Cardinal+rql.Cardinal); 	 2855 
the bigger the disk queues the more time spent; 
!manipulating them; 

END of step4; 

c_size 	:= 512; 	db_size:=2048; 2860 
wq:-NEW Head; 
wfreeq:-NEW Head; 
wqh:-NEW Head; 
wql :-NEU Head; 
rqh:-NEW Head; 2865 
rql:-NEW Head; 

write-NEW l_selistc; disk_ 	 g_ 
disk _write_rqst .rqstor:=disk; 
FOR w:=1 STEP 1 UNTIL max _writes_pending DO 
NEW local _seg(O,NONE) .Into(wfreeq); 2870 
NEW formatc(did); 
INSPECT k(site) DO BEGIN 
create_secretary(d_secretary,u); 
d_secretary .next_step: =4; 
d_secretary.runtt:=200; 2875 

ACTIVATE NEW disk_controller(disk,site,d_secretary) DELAY 0; 
END; 

END of diskhandler; 
2880 

INTEGER PROCEDURE diskhandlern(pid); 
INTEGER pid; 
!rule for associating virtual processors with disks; 
diskhandlern:=diskl+Mod(pid,max_disks); 

2885 
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secretaryc CLASS command; 
!this domain analyses console input - in a random fashion; 
BEGIN 
REF(virtual_processor) pr; 
REF(Head) c_ wait _list; 	 2890 
INTEGER active_processors; 

PROCEDURE step 1(x); 
REF(domain_incarnationc) x; 	 2895 
BEGIN 

x.next_step :=2; x.runtt :=200; 
END of stepi; 

PROCEDURE step2(x); 2900 
REF(domain_incarnationc) x; 
BEGIN 	 - 
REAL r; INTEGER new did; 
r:=Uniform(O,1,xprocessor.u); 
new_did:= 2905 
IF r<009 THEN Randint(ipld+1,ipld+compl,x.processor.u) 
ELSE IF r<0.26 THEN supern 	 !user program; 
ELSE Randint(ddu,mntru,x.processor.u); 	!typel or type2; 
interdomain_call(x,new_did); 
!choose new domain; 2910 
IF new did < ddl THEN 
BEGIN 

!see if can accept another incarnation of a large domain; 
-IF k(site) .overload OR active_processors>chopfactor OR 
NOT c_wait_list.Enpty THEN BEGIN 2915 
x.processor.Current.Into(c_wait_list); 
chopcount.incr; 	!statistics; 
IF active_processors<chopfactor AND NOT k(site) .overload 
THEN 
queue(k( site) .driverq,c_wait_list.Suc,high) 2920 
!free first in queue if nothing overloaded; 
ELSE 
BEGIN 

active_processors: =ac tive_processors-1; 
k(site).qfs(site):k(site).qfs(site)-1; 2925 
!taken out of driverq to wait until system is; 
less congested; 

END; 
END; 	 - 

END; 2930 
x.next_step:=3; 	x.runtt:=50; 

END of step2; 

PROCEDURE step3(x); 
REF(domain_incarnationc) x; 	 2935 
BEGIN 	 !executes here when finished processing; 
ACTIVATE console(x.processor.pid) DELAY contextdelay; 
!notify console that service is complete; 

xnext_step:l; x..runtt:=0; 	 2940 
active_processors: =active_processors-1; 
k(site).retire(x); 	!in theory should go in my q; 
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k(site)..qfs(site):k(site).qfs(site)-1; 
!see if any chopped processors can run; 

	

IF (IF c_wait_list.Empty THEN FALSE ELSE 	 2945 
active_processors=O OR (active_process .or<chopfactor AND 
NOT k(site).overload)) THEN 
BEGIN 

INSPECT k(site) DO BEGIN 

	

queue(driverq,c_ wait _list.Suc,high); 	 2950 
qfs(id):=qfs(id)+1; 
active_processors: =active_processors+1.; 

END; 
END; 

END of step3; 	 2955 

PROCEDURE step4(x); 
REF(domain_incarnationc) x; 
!this is the code executed by the secretary processor; 
BEGIN 2960 

REF(linkage) 	ptr; 
ptr:-c_ arrival _list; 
FOR ptr:-ptr.Suc WHILE ptr=/=NONE DO BEGIN 

pr:-ptr QUA consolec.pr ; 
INSPECT k(site) 	DO BEGIN 2965 
queue(driverq,pr.e_stack(pr.stackp),high); 
!removes from rny_q (if there); 
active_processors :=active_processors+1; 
qfs(id):=qfs(id)+1; 

END; 2970 
END; 
c_arrival_list Clear; 
!all outstanding inputs dealt with; 
wait—for—signal; 
x.runtt:200; 2975 

END of step4; 

!initialization; 
NEW formatc(did); 	 2980 
c_size:=512; db_size:=120*max_consoles; 	!buffer space; 
INSPECT k(site) DO BEGIN 
create_secretary(c_secretary, 1); 
c_secretary .next_step: =4; 
c_secretary.runtt:200; 	 2985 

END; 
c_arrival_list:-NEW Head; 
c_wait_list:-NEW Head; 

END of class command; 
2990 
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REF(counter) channel _use; 
REF(counter) control—count; 

Process CLASS s_channelc(orgn);. 
INTEGER orgn; 	 2995 
!it is assumed that each site can transmit to only one other; 
site at a time but that a site can receive many; 

!messages simultaneously; 
BEGIN 

REF(contentc) m; 	!all messages are of type contentc; 3000 

PROCEDURE initiate(message); 
REF(contentc) message; 
BEGIN 
m:-message; 	 3005 
!channel deals with one message at a time; 
ACTIVATE THIS s_channelc DELAY(m.size*mesdelay); 
!time to transmit; 

END; 
3010 

WHILE running DO BEGIN 
channel_use.add(m.size); 	 !update statistics; 
IF m.size=32 THEN control_count.incr; 
IF m.dest LE n THEN 	 3015 
BEGIN 

k(m.dest).int(rn) 	!message arrival is signalled; 
END 
ELSE dsk(m.dest) .int(m); 

3020 
INSPECT k(orgn) DO BEGIN 

queue(driverq,THIS s_channelc,high); 
switch—context; 
!interrupt kernel to notify end of transmission; 

END; 	 3025 
!dealt with message; 
Passivate; 

END; 
END of s_channelc; 

3030 
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REF(Head) c_ arrival _list; 
!part of the public segment of the command domain; 

Process CLASS consolec(userid,u); 
	

3035 
INTEGER userid, 
u; 	 !random number seed; 
BEGIN 

REF(.virtual_processor) pr; 
REF(counter) completed _commands; 
	

3040 
REF(timer) response_timer,think_timer; 
REAL rt; 
REAL PROCEDURE thinktime; 
thinktime:= Negexp(1/30,u)*&6; 

3045 
NEW groupheading(fillin("CONSOLE",userid)); 
think timer : - NEW timer( "THINKING TIME" ,NONE); 
response—timer :- NEW timer("RESPONSE TIME",total_respons); 

Pr:- NEW virtual_processor(cnsl_site,userid,u); 	 3050 
pr.fetch_c(commandn); 
initialize virtual processor to serve console; 

completed_commands: -NEW counter( "COMPLETED COMMANDS"); 

INSPECT k(cnsl_site) DO 	 3055 
BEGIN 
clain(pr.size,running); 
!space for process base; 

WHILE running DO 	 3060 
BEGIN 

think _timer, start; 
Hold( thinktine); 
think _timer .stop; 
queue(drivàrq,TUIS consolec,high); 	 3065 
switch—context; 
IF full_diags THEN BEGIN 

Outimage; 
ptime; Outtext("INPUT FROM CONSOLE 1/"); Outint(userid,3); 

END; 	 3070 

rt :=Time; 
pr.c_time:=0; 

response_timer.start; 	 3075 
Passivate; 	!wait until processing finished; 
response_timer.stop; 
!accumulate response times; 
rt:=Time-rt; 
IF pr.c_time<longtirneslice THEN 
	

3080 
BEGIN 	 !analyse response to trivial command; 

short_commands. incr; 
IF rt>2..0&6 THEN over2.incr; 
IF rt>5.0&6 THEN over5.incr; 

END ELSE non_trivial.data(pr.c_time,rt); 
	

3085 
completed_commands. incr; 
!another command completed; 
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IF full_diags THEN BEGIN 
ptime; Outtext("OUTPIJT TO CONSOLE #"); Outint(userid,3); 
Outimage; 	 3090 

END; 
END; 

END; 
END of class consolec; 	 - 

3095 

REF(consolec) ARRAY console (1:max_consoles); 

PROCEDURE thinking consoles; 
BEGIN 	 3100 

INTEGER i,j; 
Outtext(" NUMBER OF CONSOLES IN THINKING STATE"); 
FOR i:=1 STEP 1 UNTIL max—consoles DO 
IF NOT console(i),Idle THEN j:=j+1; 
Outint(j,4); 	 3105 
Outtext(" NUMBER AWAITING ENTRY TO SYSTEM"); 
Outint(k(cnsl_site) .c secretary.domain QUA 
command .c_wait_list.Cardinal ,4); 
Outimage 

END; 	 3110 
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Process CLASS clockc(id); 
INTEGER id; 	 !site it belongs to; 
BEGIN 
PROCEDURE set(interval); 	 3115 
REAL interval; 
REACTIVATE THIS clockc DELAY interval; 

PROCEDURE halt(remaining); 
NAME remaining; 	 3120 
REAL remaining; !time of processors time slice; 
IF THIS clockc=/=Current AND NOT THIS clockc.Idle THEN 
BEGIN  
!called when want to suspend flow of time; 
remaining:THIS clockc.Evtime-Time; 	 3125 
Cancel(THIS clockc); 

END ELSE remaining:0; 

WHILE TRUE DO BEGIN 
INSPECT k(id) DO BEGIN 	 3130 
queue(driverq,TRIS clockc,high); 
swi tch_context; 

END; 
IF full _diags THEN BEGIN 
Outint(id,2); Outchar('!'); 	 3135 

END; 
Passivate; 

END; 
END of class clockc; 

3140 
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REF(diskcontrollerc) ARRAY dsk(n+1:n+max_disks); 

Link CLASS disk buffer; 
BEGIN 	 !data structure; 

REF(segmentc) seg; 	!space for data; 	 3145 
REF(domain_incarnationc) mc; 
!control information; 
BOOLEAN read; 	 !true when read false when write; 

END; - 
3150 

Process CLASS disk_controllerc(id,handler_site,d_secretary); 
INTEGER id,handler_site; 
REF(domain_incarnationc) d_secretary; 
BEGIN 
REF(Head) sq, 	 !for messages sent to kernels; 	3155 
freeq, 	 !for free buffers; 
xferq, 	 !for actual disk reads and writes; 
matchq; 	 !for holding reads until claimed; 

REF(diskc) disk; 	!associated disk; 	 3160 
REF(contentc) message; 
REF(Link) ptr; 
REF(disk_buffer) buf; !pointer to current buffer; 

PROCEDURE int(m); 3165 
REF(contentc) 	in; 
INSPECT in 

WHEN disk_rqst DO 
BEGIN 
!required segment has already been read from disk; 3170 
buf:-matchq.Suc; 	!and is waiting in matchq; 
WHILE IF buf==NONE THEN FALSE ELSE buf.seg.key NE key DO 
buf:-buf.Suc; 
IF bufNONE THEN error("DISK READS OUT OF SEQUENCE") 
ELSE BEGIN 3175 

buf .seg .dest : =rqstor; 
buf.Into(sq); 
IF THIS disk_controllerc.Idle THEN 
ACTIVATE THIS disk_controllerc DELAY 0; 

END; 3180 
!send segment away; 

END 

WHEN domain •incarnationc DO 
BEGIN 	 !request to read from disk; 	3185 
buf:-freeq.Suc; 
IF buf/NONE THEN BEGIN 
buf..read:=TRUE; 
buf.seg:-processor.params(1); 	 !set up information; 
buf.inc:-m QUA domain_incarnationc; 	 3190 
bufInto(xferq); 	land put into fifo queue for disk; 
IF disk.Idle THEN disk.transfer; 
IF NOT freeq.Empty THEN signal _free _buffer; 

END ELSE error("DISK MANAGEMENT MESSED UP"); 
END 	 3195 

WHEN segmentc DO 
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BEGIN 	 !segment to be written to disk; 
buf :-freeq.Suc; 
IF buf=/=NONE THEN BEGIN 	 3200 

buf.read :=FALSE; 
buf. inc :-NONE; 
buf.seg:-m QUA segmentc; 
buf. Into(xferq); 
IF disk Idle THEN disk.transfer; 	 3205 
IF NOT freeq.Empty THEN signal _ free _buffer; 

END ELSE error("DISK MANAGEMENT MESSED UP"); 
END 

OTHERWISE error("UNRECOGNISED MESSAGE TO DISK"); 	 3210 

PROCEDURE signal—free—buffer; 
BEGIN 
!this is only executed when d_secretary is not scheduled; 
d_secretary .dest =handler_site; 	 3215 
d_secretary.Into(sq); 
IF THIS disk_conrollerc.Idle THEN 
ACTIVATE THIS disk_controllerc DELAY 0; 
!equivalent to send_nessage(handler_site,d_secretary); 

END; 	 3220 

PROCEDURE signal_read_complete(buf); 
REF(disk_buffer) buf; !holding read data; 
BEGIN 
buf.Into(matchq); 	!to await incarnation claiming it; 3225 
buf .inc .dest : =handler_site; 
!where process base is; 
buf.inc. Into(sq); 
IF THIS disk_controllercIdle THEN 
ACTIVATE THIS disk_controllerc DELAY 0; 	 3230 

END of signal_read_complete; 

sq:-NEU Head; freeq:-NEW Head; xferq:-NEW head; 
matchq:-NEW Head; 
dsk(id) :-THIS disk_controllerc; 	 3235 
disk:-NEW diskc(TFIIS disk_controllerc); 
FOR w:=1 STEP 1 UNTIL max_disk_bufs DO 
NEW disk_buffer.Into(freeq); 
ACTIVATE disk DELAY 0; 	 !initialize; 

3240 
WHILE running DO 
BEGIN 
WHILE sq.Suc =1= NONE DO 
BEGIN 

ptr:-sq.Suc; 	 3245 
ptr. Out; 	 !of sq; 
IF ptr IS disk buffer THEN message:-ptr QUA disk_buffer.seg 
ELSE message:-ptr; 
message .orgn : =id; 
Hold(message.sizc*mesdelay); 	 3250 
channel_use . add (message . size) 
IF message.size32 THEN control_count.incr; 
INSPECT k(message.dest) DO int(message); 
IF ptr IS disk buffer THEN 
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BEGIN 	 3255 
IF freeq.Empty THEN signal—free—buffer; 
ptrInto(freeq); 

END; 
END; 
Passivate; 	 !no more messages to send; 	 3260 

END; 

END of class disk_controllerc; 

3265 

contnntc CLASS -disk rqst; 
BEGIN 

INTEGER rqstor,key; 
END; 

3270 
Process CLASS diskc(controller); 
REF(diskcontrollerc) controller; 
BEGIN 
REF(disk_buffer) buf; 
INTEGER u; 	 !random number seed; 	 3275 
REF(timer) idle—timer; 
REF(counter) transfers ,bytes; 

PROCEDURE transfer; 
BEGIN 3280 

!called by controller to initiate transfer; 
buf:-controller.xferq..Suc; 
idle timer.stop; 
REACTIVATE THIS diskc DELAY 
(Ahs(Randint(1,20,u)_Randint(1,20,u))*2000 3285 
!find track 2msecs intertrack time; 
+Uniforrn(0,50000,u) 	150 nsec rotation; 
+buf.seg.size*2); 	!0.5 mbytes/sec transfer rate; 

END; 
3290 

u:=3031; 
NEV groupheading("DISK PERFORMANCE"); 
bytes:-NEW counter("BYTES TRANSFERED"); 
transfers:-NEW counter("COMPLETED TRANSFERS"); 
idle_timer:-NEU timer("DISK IDLE TUIE",NONE); 3295 
idle_timer .start; 
Passivate; 
WHILE running DO BEGIN 	- 

transfers.incr; 
bytes.add(buf.seg.size); 3300 

IF buf.read THEN controller.signal_read_complete(buf) 
ELSE BEGIN 	 !write so buffer is free; 
buf.seg Into 
(controller.d_secretary.domain QUA diskhandler.wfreeq); 
!a big fix to keep number of segment objects constant; 
IF controller..freeq.Empty THEN 
controller, signal_free_buffer; 
buf.Into(controller.freeq); 

END; 	 3310 
IF controller.xferq.Empty THEN 
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BEGIN 
idle_timer. start; 
Passivate; 
	!no more disk transfers to perform; 

END 
	

3315 
ELSE transfer; 
	

!another segment; 

END; 
END of class diskc; 

3320 

IN 
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PROCEDURE system—initialization; 
BEGIN 

INTEGER i; 
statistic_list:-NEW Head; 
grand _t_list:-NEW Head; 
!initialize statistic lists; 
total—response:-NEW grand_total("RESPONSE TIMES"); 
usage :- NEW grand _total("SERVICE TINES It); 

NEW groupheading("UTILIZATION OF PROCESSORS"); 
FOR i:=1 STEP 1 UNTIL n DO 
BEGIN 

NEW groupheading( fillin( "SITE" ,i)); 
k(i) :- NEW kernelc(i); 
ACTIVATE k(i); 

END; 
NEW groupheadirig("); 
new_incarnations:-NEW counter("CHANGES OF DOMAIN"); 
xfered_domains:- NEW counter("TRANSFERED DOMAINS"); 
xfered_processors:-NEW counter("TRANSFERED PROCESSORS"); 
xfered_locais:-NEW counter("TRANSFERED LOCAL SEGMENTS"); 
migrations : -NEW counter( "FORCED MIGRATIONS"); 
c hopc oun t : - 
NEW couater("PROCESSORS BLOCKED ON ENTRY TO NETWORK"); 

spacecount : - 
NEW counter("INCARNATIONS BLOCKED WAITING FOR SPACE"); 
NEW g rouphead ing( "RESPONSE TIMES"); 
short commands:-NEW counter ("COMPLETED SHORT COMMANDS"); 
over2:- NEW counter("RESPONSE TIMES OVER 2 SECS"); 
over5:-NEW counter("RESPONSE TIMES OVER 5 SECS"); 
non trivial:- 	 3350 
NEW regression("NON TRIVIAL SERVICE TIMES" ,"RESPONSE TIME"); 
NEW g rouphead ing ( " COMMUN ICAT IONS SUBSYSTEM"); 

channel—use:-NEW counter("BYTES TRANSFERED"); 
control_count:-NEW counter("CONTROL MESSAGES (32 BYTES) SENT"); 

END; 	 3355 

INTEGER w; 
	 !work variable; 

TEXT PROCEDURE dissect(p); 	 3360 
REF(Link) p; 
!gives a text description of a class; 
IF p IN contentc THEN dissect:-p QUA contentc.duinp 
ELSE dissect:- Copy(" - LINK - 

3365 
PROCEDURE audit; 
BEGIN  
!examines various queues to check on operation of system; 

INTEGER i,j,size; 
REF(Link) ptr; 	 3370 

thinking_consoles; 
FOR i:=1 STEP 1 UNTIL n DO 
INSPECT k(i) DO 
BEGIN 

q_analysis(driverq,filliri('DRIVERQ",i) ,dissect); 	 3375 
q_analysis(spaceq,"SPACEQ",dissect); 
size:=0; 

3325 

3330 

3335 

3340 

3345 
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Outtext("DOMAINS"); 	Outirnage; 
FOR j:=1 STEP 1 UNTIL fixed—domains DO 
IF dmn_info(j).here OR dmn info(j).copy THEN 3380 
INSPECT drnn_info(j) DO 
BEGIN 

size:=size+d.size; 
!keep track of all space actually being used; 
Outint(j,6); 3385 
IF here THEN Outtext(" HERE") 	ELSE Outtext(" COPY"); 
IF NOT external_segs.Enpty THEN 
BEGIN 

Outchar(' ('); 
ptr : -external_segs. Suc; 3390 
WHILE ptr/=NONE DO 
BEGIN 

Outint(ptr QUA domain_incarnationc.processor.pid,3); 
ptr:-ptr. Suc; 

END; 3395 
Outchar(')'); 

END; 
IF NOT work.Empty THEN 
BEGIN 
Outtext(" PROCESSOR LIST("); 3400 
ptr:-work.Suc; 
WHILE ptr/NONE DO 
BEGIN 
Outint(ptr QUA virtual_processor.pid,3); 
ptr:-ptr.Suc; 3405 

END; 
Outchar(')'); 

END; 
END 	of looking at domains; 
Outimage; 3410 
Outtext("OUTSTANDING MESSAGES 
Outint 
((sq..Cardinal+cq.Cardinal+ 
(IF s_channel.Idle THEN 0 ELSE 1)),3); 
Outimage; 3415 
FOR j:=1 STEP 1 UNTIL n DO BEGIN 

Outint(ni_use(j) ,8); 
Outchar(':'); 
Outint(qfs(j) ,2); 

END; 3420 
Outtext(" 	ACTUAL FREE HE?1ORY"); 
FOR j:=0 STEP 1 UNTIL t_length-I DO 
IF segtable(j)/NONE THEN size:=size+seg_table(j).size; 
Outint(rnsize-4000-size , 8); 
Outtext(" 	COPYSPACE"); 	Outint(copyspace,8); 3425 
Outimage; 

END; 
Outimage; 
Outtext("NUNBER QUEUED FOR DISK READS"); 

3430 
FOR i:=1 STEP 1 UNTIL max—disks DO 
INSPECT k(i*(n//ma_disks)) .d_secretary.domain 
WHEN diskhandler DO 
j :=j+rql.Cardinal+rqh.Cardinal; 
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!could be a transfer in progress; 
	 3435 

Outint(j ,3); 
Outimage; 
Eject(Line+6); 

END; 
3440 
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statistic list:-NEW Head; 
grand _t_list :- NEW Head; 
!for keeping control of statistics; 
Ej ect(Line+4); 
Outtext(" 	 SIMULATION OF NETWORK WITH"); 	 3445 
Outint(n,IF n<10 THEN 2 ELSE 3); Outtext(" SITES AND WITH"); 
Outint(max_consoles,3); Outtext(" CONSOLES"); 
Outimage; Eject(Line+3); 

FOR w:= 1 STEP 1 UNTIL 132 DO Outchar('*'); Outimage; 	3450 
Outchar( - 
Outtext(" 	DIRECTLY CONNECTED SITES AND DISK: " ); 
Outtext(" COPYING OF CODE PERFORMED:"); 
Outtext(" BIAS TOWARDS PROCESSOR UTILIZATION"); 
Image.Setpos(132); Ou tchar('*'); Outirnage; 	 3455 

Outtext("* PERIOD OF SIMULATION (SECS) II); 

Outf ix( sin_time, 0, 4) 
Outtext(" 	NUMBER OF SYSTEM DOMAINS ="); 
Outint(fixed_dornains,3); 	 3460 

Outtext(' 	NUMBER OF COMPILERS ="); Outint(compl,2); 
Image.Setpos(132); Outchar('*'); Outirnage; 

Ou ttext("* 	IIEMORY SIZE ="); 	Ou tint (nsize,7); 
Outtext("BYTES 	SIZE DIVIDER CONSTANT=");Ou tint (size divider,S) 

Outtext(" 	LOAD SHEDDING FACTOR="); Outint(load_shed,2); 
Outtext(" 	MAXIMUM MIGRATIONS="); Outint(max_shifts,2); 
image.Setpos(132); 	Outchar('');Outnage; 
Ou ttext("* LARGE DOMAINS NOT ALLOWED TO START WHEN"); 
Outtext(" GREATEST FREE MEMORY IS LESS THAN "); 3470 
Outint(chopsize,8); 
Outtext(" OR NUMBER IN SYSTEM IS GREATER THAN 
Outint(chopfactor, 2); 
Image.Setpos(l32); 	Outchar('*');Outioage; 
Outtext("* CONSOLE CONTROL SITE="); 	Outint(cnsl_site,2); 3475 

Outtext(" 	NUMBER OF DISKS="); 	Outint(maxdisks,2); 
Outtext(" 	DISK BUFFERS="); Outint(max_disk_bufs,2); 
Outtext(" 	DISK SITE(S)="); 
FOR w:=1 STEP 1 UNTIL max—disks DO 
Ou tint(w*(nI!max_disks) ,3); 3480 
Image. Setpos(132);Outchar('*'); 	Outimage; 
Ou ttext("* TIME SLICE ="); 	Outfix(timeslice*1&_3,0,3); 
Outtext("MSECS 	LONG TIME SLICE 
Outfix(longtimeslice*1 &-3, 0,4); 
Outtext("?ISECS. 	COMMUNICATION FREQUENCY (MHZ) ="); 3485 
Outfix(8/nesdelay,2,5); 
Outtext(" 	RANDOM NUMBER SEED ="); Outint(random_seed,5); 
Image. Setpos(132) ; 	Outchar('*'); 
Outimage; 
FOR w:=1 STEP 1 UNTIL 132 DO Outchar('*'); Outimage; 3490 

system _initialization; 
	 3495 

ipi; 
Hold(settie_time*&6); 
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clear statistics; 
Outtext("START OF RUN ti); thinking_consoles; 

IF full _diags THEN audit; 
IF running THEN Hold(sim_time*&6) 
Outtext("END OF RUN "); thinking_consoles; 
!a check that system has not seized up; 
IF running THEN BEGIN 
outputstatistiCS 
Out text ("P ERFORHANCE MEASURE"); 
Ou tfix (to tal_res po flSe.total/Usage.t0ta1,2,8); 
Outiniage; 
Outtext("FRACTION USEFUL PROCESSOR UTILIZATION"); 
Ou tfix ( usage.total/(n*sim_time) ,3,6); 
Outirnage; 

END; 

3500 

3505 

3510 

END; 
results. Close; 

END; 

!of simulation block; 

!'of program; 
3515 
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CROSS REFERENCE TABLE 

a 1360 1363 1387 1391 1806 1808 1823 1824 23170 23240 
2534d 2545 25801 258214 2693 

al! 4591) 470 471 482 
al 459!) 469 471 481 
abs 3285 
action trans 1441 14511) 1743 
active proce 28910 2914 2918 292414 294111 294614 295214 296814 
add 3273) 373 4280 7901) 804 827 3013 3251 3300 
add seg 554 8243) 868 1370 1392 
audit 196 33661) 3500 
b 25340 2545 258314 258414 
bigd size 10880 1106 1152 
big_p_size 1088D 1121 1153 1156 
blanks 173 184 194 209 
breakoutlmag 107 120 
bring_togeth 1066 13390 
broadcast 9161) 985 992 1764 
buf 31631) 3171 317214 317314 3174 3176 3177 3186 3187 3188 

3189 3190 3191 3199 3200 3201 3202 3203 3204 32220 
3225 3226 3228 3274D 3282 3288 3300 330211 3304 3309 

bytes 32770 3293 3300 
b_entries 236!) 237 1686 
cancel 3126 
cardinal 232 23714 110711 285511 3108 341314 343414 
change_value 386D 626 665 708 
channel busy 8970 905 929 1840 
channel7_use 29910 3013 3251 3353 
choice 1060 1061 1147 1161 1170 1224 1998D 
chopcount 5690 2917 3342 
chopfactor 930 151 152 2914 2918 2946 3473 
chopsize 930 154 982 3471 
claim 6470 689 720 736 1261 1758 2210 3057 
clear 2910 3000 3130 3580 3950 4170 4510 517 522 2972 
clearstatist 5120 3498 
clockc 589 620 1676 31120 3117 312214 3125 3126 3131 
close 3515 
cnsl site 860 130 2387 3050 3055 3107 3475 
coming 1053 1091 1252 1282 1287 1401 1725 1756 1768 19330 

1957 
command 2387 28860 3108 
commando 840 129 2387 3051 
compiler 2393 25300 
compi 60!) 134 135 2392 2906 3461 
completed Co 30400 3053 3086 
console 2401 2402 2937 30970 3104 
consolec 1705 2401 2964 30350 3065 3097 
çontentc 5300 546 606 633 859 861 900 919 927 1831 

1838 1964 1973 1984 2312 2321 2727 2730 3000 3003 
3161 3166 3266 336314 

contents 8990 903 904 90614 907 911 912 9160 923 9260 
931 932 935 937 938 

contextdelay 650 110 1619 2937 
controller 32710 3282 3302 3305 3307 3308 3309 3311 
control coun 29920 3014 3252 3354 
copy 	- 115 116 117 118 539 758 1053 1175 1253 1282 

1472 1481 1519 1881 19310 1956 1978 2043 2133 2418 
2502 2540 3364 3380 

copyspace 5930 663 707 749 147314 152014 3425 
cost formula 10710 1078 1152 1156 1159 
count 3120 314 32014 321 32511 32914 1281 1283 1346 1349 

1354m 1359m 137314 1386M 1401 1785 187814 1880 20230 
counter 3100 562 2991 2992 3040 3053 3277 3293 3294 3337 

3338 3339 3340 3341 3343 3345 3347 3348 3349 3353 
3354 

cq 617 8950 906 1836 183814 3413 
create secre 22010 2873 2983 
cu 	- 5790 1638 1640 1642 1645 1653 1660 1664 1679 1680 

1681 1682 1683 1684 1685 1687 1690M 1694 1695 1697 
2182 2198 

current 2117 2118 2256!) 2259 2916 3122 
c_arrival_li 1714 2962 2972 2987 30310 
c_secretary 5820 1707 1711 1712 2983 2984 2985 3107 
c size 21630 2169 2516 2860 2981 
ctime 1584 1585 1681 22340 3073 3080 3085 
c wait list 28900 2915 2916 2920 2945 2950 2988 3108 
d 4590 468 469 470 473 485 865 10750 1076 107714 

1078 1105 1106 1145 1231 1297 1313 1419 1459 1465 
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1473 1486 1503 1510 1520 1521 1522 19290 3383 
data 4431) 3085 
db size 2164!) 2169 2517 2860 2981 
ddi 61D 135 136 2394 2911 
ddu 611) 136 137 2394 2489 2908 
deadlock war 5981) 726 730 1898 1907 
default - 5501) 2035 2087 2140 2299 237011 
delete domai 770 1486 1510 15150 
delete seg 832D 1846 2089 2552 2635 2644 
desc 8211 119 2374 2573 2629 2752 
dest 53411 899D 901 90411 3015 3017 3019 3176 3215 3226 

3253 
did 1049 1087 1105 123111 1237 1249 125211 1253 1266 1279 

1285m 1296 1297 1313 1347 1401 1402 1416 1419 1441 
1486 1503 1506 1510 15150 1518 1687 1721 1723 172511 
1727 1730 1736 1743 1753 1763 1798 1861 1867 19660 
1973d 1992d 2033 2045 20610 210111 2134 2139 21460 2154 
2209 2213 22610 226611 2268 2269 233111 2340 237211 2420 
2450 2468 2482 248911 2504 2517 2519 252611 2586 2649 
2657 2871 2980 

didn 20280 2033 
disk 26610 2727 2730 2777 2787 2868 2877 31601) 319211 320511 

3236 3239 
diskc 3160 3236 32710 3284 
diskhandler 2389 26610 3305 3433 
diskhandlern 2434 2561 2574 2604 2639 288111 2884 
diskl 610 139 2389 2884 
disk buffer 3143D 3163 3223 3238 3247M 3254 3274 
disk control 2877 3141 31510 3178 3179 3217 3218 3229 3230 3235 

- 3236 3272 
disk read 1374 1376 1377 22900 2307 
disk_rqst 2290 2307 3168 32660 
disk write r 26840 2693 2695 2867 2868 
dissect 1629 33600 3363 3364 3375 3376 
den info 630 758 759 760 761 763 764 865 10310 1049 

1087 1105 123111 1237 1249 125211 1253 1266 1279 1296 
1297 1313 1347 1401 1402 1416 1419 1441 1503 1506 
1518 1687 1721 1723 172511 1727 1730 1743 1753 1798 
1871 1880 1881 338011 3381 

den infoc 630 1031 1452 19250 
den

- 
 rqst 10340 1041 104711 1049 1054 1055 1058 1060 106111 1063 

1066m 1082d 1086 1095 1173 1176 1199 12110 1214 1225 
1292 1339d 1343 1402 1403 

den transfer 1719 19641) 2287 2304 
domain 1419 1421 1423 14940 1500 1501 1503 1506 1571 1598 

1599 1600 1601 1602 1680 19940 2214 3107 3305 3432 
donainc 865 1495 1750 184411 1929 1994 20610 2142 2161 2214 

2407 2530 2589 - 
domain—Copy 14940 1844 	- 
domain incar 579 678 703 872 873 932 1035 1083 1212 1307 

1340 1410 1437 1 .544 1633 1755 1858 19840 2073 2080 
2096 2111 2112 2124 2191 2203 2250 2256 2261 2275 
2301 2414 2429 2442 2463 2474 2498 2513 2536 2549 
2571 2595 2609 2618 2672 2735 2748 2792 2799 2895 
2901 2935 2958 3146 3153 3184 3190 3393 

do_domain_ca 1055 10820 
dp 2154 21580 2269 
dr 17550 1772 1773 1779 1780 1784 1785 1787 1788 1790 
draw 2431 2448 2627 
driverq 5760 610 723 870 874 878 882 912 1309 1323 

1426 1429 1623 1686 1690 1695 1711 1773 2106 2194 
2716 2920 2950 2966 3022 3065 3131 3375 

dsk 3019 314111 3235 
dump 5310 5380 539 693 197711 1978 20390 2046 21300 2135 

2355d 2356 3363 
dunpv 20420 2043 2044 2045 2046 
d cost 10890 1152 116111 
did 23370 2340 
dloc 1054 1176 1347 1727 1731 1766 179& 19400 
dlocupdate 1736 1763 1796 1952 19730 
dsccretary 58111 2873 2874 2875 2877 31510 3215 3216 3305 3432 
d site 1104 201211 
dsize 1105 1107 1108 1240 1254 1270 1318 20140 
dtransfer 1285 1286 1347 22870 2304 
eject 505 3438 3444 3448 
empty 224 242 759 760 1197 146711 148411 1508 1509 1770 

1836m 1838 269711 2700 2707 272511 2726 2729 2754 281611 
2830m 2832m 2841 2846 2915 2945 3193 3206 3256 3307 
3311 3387 3398 

entry 2490 252 



erlang 2556 
error 187D 254 801 818 820 1422 1572 1596 1746 1761 

1875 1917 2247 2273 2280 3174 3194 3207 3210 
esac 1598 1599 1600 1601 16031) 
evtime 3125 
examine chol 1063 1211D 
execute 15430 1645 
external sag 760 1107 1197 1402 1467 1484 1509 1779 1871 19460 

1955 3387 3390 
extra space 684 68811 720 73511 125411 125611 1260 1261 20211) 
e stack 1861 2250D 2259 2266 2268 2269 2271 2279 2301 2966 
f 175511 1784 1790 18581) 1871 187211 187311 1875 187811 1880 

1883 1884 
fetch c 2076 2213 2261D 2271 3051 
filli7n 2020 213 728 801 2273 2280 2356 2598 2739 3045 

3332 3375 
finisht 15701) 1577 1585 1586 
first 2211) 22511 715 725 1623 
fixed domain 521) 140 553 629 757 864 1031 2158 2298 3379 

3460 
format 2149D 21521) 2269 24871) 25241) 26540 
formatc 2146D 2154 2158 2485 2522 2652 2871 2980 
found 13081) 1321 1329 
freeq 31561) 3186 3193 3199 3206 3233 3238 3256 3257 3307 

3309 
full diags 730 168 196 692 2416 2451 2465 2500 2538 2597 

- 2737 3067 3088 3134 3500 
going 761 1472 1485 1507 1937D 
gone 121911 1226 1245 1279 
grand total 334 41411 432 560 3327 3328 
grand t list 295D 432 506 520 3325 3442 
groupheading 2971) 3046 3292 3329 3332 3336 3346 3352 
h 14510 1458 145911 1460 146311 1465 146711 147211 1473 1481 

1484m 1485 1486 1487 
halt 1653 31191) 
handler site 315111 3215 3226 
hash 	- 7850 787 794 811 
head 219 246 294 295 617 618 895 1943 195511 2176 

2220 2679 2681 2683 2861 2862 2863 2864 2865 2866 
2890 2987 2988 3031 3155 323311 3234 3324 3325 3441 
3442 

heading 25711 267 28911 304 319 369 404 423 462 476 
heading2 437D 463 477 
here 1053 1231 1237 1252 1266 1282 1296 1458 1463 1725 

1769 1880 193511 1958 3380 3386 
high 8011 114 118 219 223 232 242 243 246 251 

271 723 870 878 882 912 1323 1695 1773 2106 
2194 2920 2950 2966 3022 3065 3131 

hk 7930 794 795 798 79911 801 803 804 8100 811 
812 814 81511 817 820 821 

hold 652 691 705 755 1045 1580 1619 3063 3250 3497 
3501 

I 202D 211 22011 223 22411 22511 23211 241 24211 243 
246m 264d 271 273 274 75311 757 758 759 . 	 760 
761 763 764 765 793D 798 799 801 8100 814 
815 817 83611 837 838 841 92111 922 92311 10090 
1012 1013 1015 1017 1018 10901) 1115 1116 1117 111811 
1119 1128 1129 1130 1131 1134 1136 122011 134511 1356 
1357 1360m 1363 1368 13701.1 1372 1376 1377 1382 1383 
1385 1387m 1391 139211 1804D 180611 1808 18180 1822 1823 
1824 2026drn 2034 203511 2051 2052 207011 208211 2083 2084 
2087 2089 2100 2101 310111 3103 3104 332311 3330 3332 
3333m 3334 33691) 3372 3373 3375 3431 3432 

id 5730 616 620 625 663 670 694 707 711 728 
801 829 839 87911 901 903 911 923 931 93211 
935 984 992 1060 1104 1147 1152 1153 1154 1155 
1158 1161 1170 1197 1198 1240 1257 1258 1270 1271 
1286 1319 1352 1355 1374 1385 1395 1397 1413 1628 
1729 1752 1763 1766 1897 1903 295111 296911 31121) 3130 
3135 3151d 3235 3249 

Idle 1530 3104 3122 3178 3192 3205 3217 3229 3414 
idle timer 60311 621 1910 1912 32760 3283 3295 3296 3313 
Iflag 58611 614 1535 1586 1590 1617 1620 1660 
image 3455 3462 3468 3474 3481 3488 
inc 677D 68411 68811 693 14090 1413 1414 14161.1 14191! 1421 

1423 1425 1426 142911 14360 1440 1441 1443 1445 1447 
2191d 2192 2193 219411 3146D 3190 3202 3226 3228 

incore 82!) 119 333 828 1116 1129 1357 1383 2084 2140 
2299 2374 2551 2627 2634 2643 

incr 324D 696 1228 1499 1809 1820 1825 2108 2917 3014 
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3082 3083 3084 3086 3252 3299 
mint 108 121 
initializati 6081) 1612 
initial time 3830 399 405 406 
initiate 938 30021) 
initiate rca 272211 2725 2819 2834 2839 
let 8581) 2142 3017 3019 31651) 3253 
lnterdmnjum 2076 2091 209511 
interdomain 2072D 2434 2456 2561 2574 2604 2639 2909 
interval 31151) 3117 
into 252 292 432 906 1095 1249 1402 1416 1714 2182 

2703 2709 2757 2766 2767 2782 2870 2916 3177 3191 
3204 3216 3225 3228 3238 3257 3304 3309 

ipi 23810 3496 
ipid 5511 132 135 23928 2906M 
items 2570 278 
i_chopf 95D 152 1270 1318 
j 75311 765 769 770 960D 976 9788 9798 10090 1011 

1017 1021 238211 3101D 310411 3105 3369D 3379 338011 3381 
3385 3416 3417 3419 3422 34238 3430 343411 3436 

k 553 5591) 100911 1010 10118 1013 2089 2103 2142 2182 
2189 2198 2207 2374 2552 2634 2644 2694 2716 2727 
2730 2787 2812 2872 2914 2918 2920 29258 2942 2943M 
2947 2949 2965 2982 3017 3021 3055 3107 3130 3253 
3333 3334 3373 3432 

keeping 3410 344 346 352 354 361 370 376 
kerneic 559 5731) 1530 1537 3333 
key 54911 553 78511 78711 79011 794 803 80711 811 812 

815 827 837 864 865 1360 13768 1387 2139 2298 
2305 2341 2350 236911 2375 2693 317211 32681) 

1 215211 248711 2489 25240 2526 2654D 26578 
lasttime 763 764 1487 195111 
length 209 211 
level 3860 390 
lfrom 2360D 2365 2378 
line 505 3438 3444 3448 
linear 2545 2601 
link 221 250 264 	- 289 530 1610 2685 3143 3162 3361 

3370 
linkage 2961 
load shed 8911 149 	, 1240 1270 3466 
beaTs 1129 1130 1131 1134 1136 1383 1385 1387 13928 199611 

2035m 2052 2084 2087 2089 2269 2476 2611 
local data 20071) 2545 2554 255911 2601 2619 26248 
localseg 1865 1867 1996 2052 2152 2236 2303 2328D 2361 2488 

- 2525 2655 2702 2756 2870 
bongtimeslic 680 112 1681 1682 3080 3484 
low 80D 114 115 219 224 225-  232 237 241 246 

251 271 685 1309 1683 2705 2766 '2782 
iru 75411 756 763 764 
Ito 236011 2366 2367 2368 2369 2370 2371 2372 2375 
1-cost 1089D 1159 1161 1162 
1scg_list 1387 1391 1397 1398 22890 2306 
1_seg_listc 1801 2289 2306 232111 2684 2867 
1-site 1100 1130 1138 1154 1157 115811 1159 1163 11988 1258 

1395m 1398 20120 
1-size 1102 113111 1140 1154 1157 1159 1258 20140 
In 8580 861 863 864 86511 868 870 872 873 874 

878 882 88611 88711 88911 183111 183211 184411 184611 300011 
3005 3007 3013 3014 3015 301711 30198 3165D 3167 3190 
3203 

main 199 
make—disk—re 234611 2775 
make—space 656 74811 771 
make workspa 233711 2489 2526 2657 
maskf 5840 615 1533 1536 1575 1587 
master 33311 37311 
matchq 315811 3171 3225 3234 
max 384D 39111 398 408 
max—consoles 5311 121 127 154 158 160 2209 2399 2517 2981 

3097 3103 3447 
max—disks 5611 131 140 2388 2389 2884 3141 3431 3432 3476 

3479 3480 
max disk buf 5711 142 143 3237 3477 
max_local_sc 7511 122 1128 1382 1806 1996 2034 2051 2083 2324 
max parani so 7711 123 1115 1356 1368 1822 2100 2236 2302 2317 
max shifts 91D 150 1236 1267 1314 3467 
max writes p 590 143 2869 
medium 8011 114 116 237 685 1711 2294 
mom 5371) 887 931 958D 965 966 969 970 972 



memory use 6051) 622 626 665 708 
mom trace 73D 169 668 709 
mesdelay 69D 109 3007 3250 3486 
message 30021) 3005 31611) 3247 3248 3249 3250 3251 3252 3253M 
rafree 591!) 623 626 627 652 656 659 6618 663 665 

669 687 688 689 7068 707 708 710 733 735 
736 

migrations 566!) 1228 3341 
mntrl 611) 137 138 2396 
mntru 611) 138 139 140 2396 2450 2517 2908 
mod 787 799 815 2393 2395 2397 2884 
monitor 80!) 114 117 874 1426 2194 2716 
monitorc 1106 1423 1465 1500 1680 21611) 2172 2493 
more 7041) 716 717 720 721 
move 2360D 2476 2611 2701 2756 
msize 49!) 125 623 626 665 669 708 710 1078 3424 

3464 
my __q 21760 2182 2192 2220 2707 2709 2712 2846 2855 
in max 625 956D 963 96511 9698 975 97811 982 1007 
cimin 625 . 	 956D 963 96611 9708 975 97911 982 
muse 627 931 9521) 965 966 969 970 972 9788 97911 
- 982m 1007 1015 1018 107811 3417 
n . 	 46!) 108 1278 131 143 150 151 440D 4468 453 

464 468 469 471 4738 475 476 477 48511 559 
606 627 632 886 922 952 961 976 1012 1735 

1739 1762 1952 23898 2393 2395 2397 	. 3015 31418 3330 
3372 3416 3432 3446?! 3480 3510 

negexp 2425 2509 2620 3044 
mewsize 23370 2343 2346D 2352 
new did 1856!) 1861 1867 1871 1880 1881 2072D 2076 2446!) 2450 

- 2453 2456 29031) 2905 2909 2911 
new incarnat 565D 2108 3337 
new site 1740 1798 1973!) 
next inc 2672D 2700 2701 2705 2709 2711 2712 2715 2716 2779 

2782 2787 
next site 1172 1173 1195 1199 1459 1460 1463 1687 1721 1723 

1731 1941d 1959 
next step 159511 1597 20040 2032 2424 2435 2437 2458 2477 2508 

2544 2562 2575 2605 2614 2744 2769 2874 2897 2931 
2940 2984 

no 23821) 2388 238911 2392 23938 2394 239511 2396 2397M 2399 
2401m 2402 

non trivial 5701) 3085 3350 
null 820 839 2035 2087 2378 
number 327D 329 -- 	 -. 

ondisk 821) 119 1118 1.372 2351 	- 
open 	. 173 
optioum_site 9981) 1021 1240 1269 1317 
opt site 1220!) 1224 1225 1239 1241 1269 1271M 1316 131911 
orgn 5341) 8868 887 889 903 911 29940 3021 3249 
out 937 1273 1440 1443 1672 1685 1787 1883 2117 2198 

2211 2696 3246 
outchar 670 711 1628 3135 3389 3396 3407 3418 3450 3451 

3455 3462 3468 3474 3481 3488 3490 
outfix 184 371 405 424 476 477 479 481 482 485 

487 3458 3482 3484 3486 3507 3510 
outimage 191 195 265 269 273 282 303 305 425 460 

463 475 479 489 504 694 729 1906 2468 2741 
2825 3068 3090 3109 3378 3410 3415 3426 3428 3437 
3448 3450 3455 3462 3468 3474 3481 3489 3490 3508 
3511 

outint 268 320 408 475 669 670 694 710 711 1628 
1903 1905 2452 2453 2466 2468 3069 3089 3105 3107 
3135 3385 3393 3404 3412 3417 3419 3424 3425 3436 
3446 3447 3460 3461 3464 3465 3466 3467 3471 3473 
3475 3476 3477 3480 3487 

outputstatis 4951) 3505 
outtext 107 120 184 191 193 1948 2678 273 278 304 

318 319 3691! 4048 408 422 423 461 4628 463 
475 476m 47711 478 480 482 483 486 488 69311 
728 1628 1629 1902 1904 2422 2452 2467 2506 2542 

2598 2739 2825 3069 3089 3102 3106 3378 33868 3400 
3411 3421 3425 3429 3445 3446 3447 3452 3453 3454 
3457 3459 3461 3464 3465 3466 3467 3469 3470 3472 
3475 3476 3477 3478 3482 3483 3485 3487 3499 3502 
3506 3509 

nver2 5671) 3083 3348 
overS 567!) 3064 3349 
overload 683 9451) 984 988 992 994 1053 1237 1266 2676!) 

270 2711 28128 2814 2914 2918 2947 

on 



p 18570 1860 186111 1865 1872 24450 2447 2448 2449 2450 
2452 3360d 336311 

params 1116 1117 11181! 1119 1357 1360 13701! 1372 1376 1377 
2101 2236d 2303 2476 2551 2552 2573 2611 2627 2629 
2634 2635 2643 2644 2701 2752 2756 2775 2777 3189 

passivate 1911 3027 3076 3137 3260 3297 3314 
pid 2044 22271) 2273 2280 2298 2333 2356 2419 2434 2452 

2466 2503 2541 2561 2574 2599 2604 2639 2740 2881D 
2884 2937 3393 3404 

pr 1865 22061) 2209 2210 2211 2213 23281) 233311 2356 236611 
2657 2671d 2889D 296411 296611 30391) 3050 3051 3057 3073 
3080 3085 

pred 1309 1329 
prey 1707 
print 291D 3011) 3161) 3661) 402D 420D 4571) 501 508 
printfile 105 172 
priority 2490 25111 252 1429 1683 1690 2232D 2294 2705 2766 

2782 
priority_tex 810 115 116 117 118 273 
process 573 2994 3035 3112 3151 3271 
processor 1112 1249 1273 1285 1286 1344 1416 1425 1429 1440 

1578 1583 1584 1585 1642 1653 1681 1682 1683 1684 
1690 1697 1872 19841) 2044 2052 2076 2091 2101 2117 
2118 2126 2419 2425 2431 2434 2447 2466 2476 2503 
2509 2541 2545 2551 2552 2556 2561 2573 2574 2599 
2601 2602 2604 2611 2620 2625 2639 2643 2644 2701 
2705 2740 2752 2756 2766 2775 2776 2777 2782 2904 
2906 2908 2916 2937 3189 3393 

ptime 1821) 194 266 693 727 1629 1901 2422 2452 2466 
2506 2542 2598 2738 2825 3069 3089 

ptr 2641) 274 276 278 28011 4971) 498 499 501 502M 
506 507 508 50911 5140 515 516 517 51811 520 
521 522 52311 13070 1309 1310 1313 1314 131811 1322 

1323 1329m 16100 1623 1626 1629 1633 1638 167211 1673 
1676 1714 1723 1727 1832 1859 1860 1865 1867 29610 
2962 2963m 2964 31620 3245 3246 324711 3248 3254 3257 
3370d 3390 3391 3393 339411 3401 3402 3404 3405M 

putative ret 2111D 2118 2779 
putint 211. 2044 2045 2134 2419 2420 2421 2503 2504 2505 

2541 
put in ready 1403 14090 1788 1884 
p cost 10890 1156 1161 1162 
pkey 1819 23121) 
pseglist 1355 1360 1363 1365 22881) 2305 
pseglistc 1814 2288 2305 2312!) 
P site 1120 1153 1155 1156 1157 1158 1162 1197 1257 20120 
psize 1114 111711 1121 1124 1257 2014!) 
q 2190 224 225 232 23711 242 246 252 274 1309 
q4space 677D 1292 
qempty 239D 243 270 
qf 5370 889 935 
qfs 87911 889 93211 935 9520 1013 1076 1240 1270 1897 

2925m 2943m 295111 296911 3419 
qfmax 998D 1011 
qfrnin 9981) 1010 
qhead 2491) 252 2570 268 270 274 
qheadc 217D 250 259 576 610 611 
queue 2490 684 723 870 874 878 882 912 1323 1426 

1429 1690 1695 1711 1773 2106 2193 2716 2920 2950 
2966 3022 3065 3131 

q_analysis 2570 3375 3376 
q_trace 73D 170 1626 
r 29030 2904 2906 2907 
r2 	. 4590 473 487 
randint 2401 2450 2602 2657 2906 2908 328511 
random seed 102D 156 2383 3487 
read 31481) 3188 3201 3302 
read next 26750 2809 2810 2812 2816 2832 
registermu 663 707 887 9581) 
regression 4370 570 3351 
release 7000 842 1501 1521 
remaining 31191) 3125 3127 
response_tim 30410 3048 3075 3077 
restart proc 2185D 2847 
results 1051) 172 173 175 3515 
retire 1322 1436!) 1694 2104 2942 
retrieve 8070 821 837 1808 1819 1824 2375 
return 20790 2091 2116 2275!) 2279 2470 2514 2566 2645 2794 
re initializ 2028!) 2268 
rq—h 26830 2725 2726 2727 2782 2816 2832 2865 3434 

on 



rql 26830 2725 2729 2730 2782 2832 2855 2866 3434 
rqstor 1286 1355 1374 1397 1729 1731 1736 1740 1810 1819 

1824 1966d 23161) 23231) 2868 3176 32680 
rqst list 1095 1770 1772 19490 1955 
rt 30420 3072 30791) 3083 3084 3085 
rts 1425 1642 1653 1682 1684 1697 22330 2295 
running 721) 113 198 689 736 1614 1758 1760 2210 3012 

3057 3060 3241 3298 3501 3504 
runtt 1573 1577 1580 1585 1586 20051) 2032 2425 2435 2437 

2459 2477 2509 2556 2559 2576 2613 2620 2624 2743 
2770 2855 2875 2897 2931 2940 2975 2985 

S 8240 8271! 828 829 8321) 837 83911 842 15930 1597 
1805d 1808 1810 

sameness 1121 22530 22671) 
sd 4590 471 479 485 
secretary 22010 2213 2214 2215 
secretaryc 21721) 2661 2886 
seek choice 100!) 146 1058 1148 1179 1201 1203 
seek d site 1000 145 1047 1645 2031 
seg 31450 3172 3176 3189 3203 3247 3288 3300 3304 
segmentc 5460 554 782 825 833 863 864 865 868 906 

1805 1846m 1853 2061 2227 2328 2693 2695 3145 3197 
3203 

seg table 7820 820 827 841 1808 1819 1824 2375 3423M 
send domain 14540 1468 1476 
send—message 8990 923 1054 1061 1173 1176 1199 1225 1347 1365 

1377 1398 1459 1723 1727 1810 1819 1824 2695 2727 
2730 2787 

send off 1222D 1241 1272 
servicetime 1578 1583 2211 22821) 2296 
set 1642 31150 
setkey 23320 2333 2341 2350 
setpos 3455 3462 3468 3474 3481 3488 
settle—time 103D 160 3497 
setup_diskr 21231) 2433 2560 2602 
shifts 12271) 1236 1237 1265 1314 1447 20010 
short comman 567D 3082 3347 - 

— 	signal chann 907 9260 1837 
signal disk 26890 2761 2817 2833 2841 
sigilal free 3193 3206 32120 3256 3308 
signal_read 3222D 3302 
simple param 2126 22390 2636 2776 
simulation 178 
Sim 

—
time 1030 158 3458 3501 3510 

site 5460 553 829 839 9581) 9631! 965 966 969 970 
972 984 992 1071D 1076 107811 1120 1130 1352 1365 

1377 1385 1413 1752 2025D 2089 2103 2142 2182 2189 
2198 2207 2209 2221 2303 2333 236811 2374 2421 2505 
2552 2634 2644 2694 2695 2716 2727 2730 2777 2787 
2812 2872 2877 2914 2918 2920 292511 2942 294311 2947 
2949 2965 2982 

size 5330 636 6470 6521) 656 659 661 7000 706 842 
998d 1007 1015 1018 10711) 1078 1105 1114 1117 1119 

1131 1136 1473 1501 1520 1521 1758 1969 1980 2049 
2123d 2126 2169 2210 2297 2318 2325 2343 2352 236711 
2481 2580 2648 3007 3013 3014 3057 3250 3251 3252 
3288 3300 33690 3377 33831) 34231) 3424 

size divider 870 126 684 687 688 689 733 735 736 982 
3465 

sort require 9600 969 973 
spaceclaimed IOOD 147 722 1066 1291 
spacecount 5690 696 3344 
spacefound 12160 12611) 1263 1291 1295 
spaceqempty 595D 613 655 682 714 741 1485 1508 1894 
spaceq 5770 611 684 715 725 1897 1905 3376 
space situat 6060 633 636 985 992 
sq 618 8960 906 1836 1838 31550 3177 3216 3228 3233 

3243 3245 3413 
sqrt 471 485 487 
sr 7030 715 717 720 722 723 725 7351) 741 
St 783!) 795 799 803 812 815 838 
stackp 1861 22520 2259 2263 226511 2266 2268 2269 2271 2276 

2278m 2279 2449 2966 
stack depth 780 124 2250 2263 2300 2449 
stage 722 873 1041 10471! 1058 1066 1093 1148 1179 1195 

1201 1203 1291 1414 1445 1712 19900 2031 2194 2215 
Start 343!) 1578 1910 3062 3075 3296 3313 
start time 3400 347 353 355 361 370 3830 389 392 399 

406 
statistic 289D 292 297 310 333 380 414 437 497 498 



success 
supern 
supervisorf 
suspend 
switch conte 
sx 
sx2 
sxy 
sy 
sy2 
sysout 
system_initi 
s_channel 
schanneic 
t 

506 514 515 520 
292 2941) 498 515 3324 3441 
5500 553 828 839 1116 111811 1129 1134 1357 1370 
1372 1383 1392 2035 2084 2140 2299 2342 2351 237111 
2374m 2378 2551 2573 2627 2629 2634 2643 2752 
1598 20641) 24131) 24971) 25351) 25941) 2734D 28941) 
1599 20651) 24281) 25121) 25481) 26081) 27471) 29001) 
1600 20651) 2441D 25701) 2617!) 27910 29340 
1601 20650 24620 27970 2957!) 
1602 20650 24730 
3500 355 1583 1912 3064 3077 3283 
1593 15981) 
1593 15990 
1593 16000 
1593 16010 
1593 1602D 
2020 209 210 211 
211 2044 2065 2134 2419 2420 2421 2503 2504 2505 

2541 
225 274 280 498 502 506 509 515 518 520 
523 1772 1779 1784 183811 1871 1873 2192 2693 2695 

2696 2700m 2701 2703 2712 2727 2730 2756 2757 2920 
2950 2963 3171 3173 3186 3199 3243 3245 3282 3390 
3394 3401 3405. 
6471) 667 673 
830 128 2385 2907 

2649 26520 
21810 
884 1528D 3023 3066 3132 
4410 44611 454 46611 46811 469 470 473 476 
4410 44711 454 46711 468 470 
4410 44811 454 46711 469 470 471 473 
4410 44611 454 46611 469 470 471 47311 477 
4411) 4471! 454 46711 471 473 
190 

33210 3495 
6010 616 938 3414 
601 616 1829 1832 29940 3007 3022 
1870 194 2080 209 210 211 213 2300 231 23211 
233 368d 370 371 373 4280 430 21320 2133 2134 

2-135 2417d 2418 2419 2420 2421 2422 25010 2502 2503 
2504 2505 2506 2539D 2540 2541 2542 
30990 3371 3499 3502 
30430 3044 3063 
30410 3047 3062 3064 
1145 1218D 123111 1236 1263 1295 1297 	. 1313 20690 2221 
184 347 353 355 361 370 389 392 399 405 
406m 756 1487 1577 1585 1586 3072 3079 3125 
3330 603 621 2282 2296 3041 3047 3048 3276 3295 
671) 111 1425 1684 1697 2295 3482 

380D 605 622 
3401) 35311 360 370 376 3830 38911 397 406 416!) 

418 424 43011 350711 3510 
2280 233 268 1897 1905 
5611) 3048 3327 3507 
1102 111911 112411 113611 114011 1240 1256 1270 1318 20180 
820 119 1118 1134 1370 1392 2342 

3192 3205 32791) 3316 
32770 3294 3299 
26740 2758 2762 2781 2786 2821 2845 
2685D 269611 2807 2808 
5890 620 1642 1653 1676 

2395 24070 - 

2482 24851) 2586 
2397 24931) 
2519 25220 

881) 127 782 783 787 799 815 3422 
22010 2209 22270 2425 2431 2448 2450 2509 2545 2556 
2601 2602 2620 2627 2657 26610 2873 2904 2906 2908 

3035d 3044 3050 32750 328511 3287 3291 
23820 2383 2389 2401 
2904 3287 
22420 2246 2333 
22410 224411 2245 2246 
1733 1736 1740 1763 1764 1952D 
560D 2296 3328 3507 3510 

30351) 3046 3050 3069 3089 
970 16111 16211 2601 
97!) 16311 1641! 2601 

2385 2589D 

statistic ii 
status 

stepi 
step2 
step3 
step4 
stepS 
stop 
stpl 
stp2 
stp3 
stp4 
stp5 
string 
sub 

S UC 

thinking_con 
thinktime 
think t jeer 
tied 
time 

timer 
time Si ice 
time-average 
total 

total entrie 
total respon 
total_size 
trans 
transfer 
transfers 
transfer in 
trans_seg 
t sc lock 
type 1 
typelf 
type 2 
type 2 f 
t_iength 
U 

U  
uniform 
Un iquenumber 
unique 
update 
usage 
userid 
userp 
us or t 
use r supe rv i 



val. 3841) 389 390 39111 398 406 
valid 1000 148 873 1041 1414 1712 2194 2215 
validated 1034!) 1041 1640 
virtual proc 1857 1859 1985 2206 2209 2227!) 2301 2303 2329 2445 

2671 2889 3039 3050 3404 
w 62711 629 630 632 633 636 1735 1736 1739 1740 

1762 1763 2300 2301 2302 2303 2869 3237 33581) 3450 
3479 3480 3490 

wait ford 1001) 144 1047 1093 1195 
wait for sig 21970 2854 2974 
warning mess 2686D 2824 2826 2849 
wfreeq 26791) 2697 2701 2703 2754 2756 2757 2862 2870 3305 
work 759 1107 1249 1416 1467 1484 1508 19441) 1955 3398 

3401 
wq 26790 2693 2695 2696 2703 2757 2816 2841 2861 
wqh 2681!) 2697 270011 2767 2830 2863 
wql 26811) 2697 2700 2766 2830 2864 
x 4431) 446 44714 448 15431) 1571 1573 1577 1578 1580 

1583 1584 15851! 1586 159511 1597 159814 15991! 16001! 160114 
1602m 2072d 207614 2079D 2081 2089 2091 20951) 2101 2103 
2104 2111d 2116 2117 2118 21231) 2126 24131) 2419 2421 
2424 2425m 2428!) 2431 2433 2434M 243514 2437!! 24411) 2447 
256 2458 2459 2462!) 2466 2470 24731) 2476M 247714 24971) 
2503 2505 2508 250911 25120 2514 2535!) 2541 2544 254514 
2548d 2551 255214 2554 255614 2559M 2560 256114 2562 2566 
2570d 2573 257414 2575 2576 25941) 2599 260114 260211 260414 
2605 2608d 261111 2613 2614 26170 2619 26201! 26201 2625 
2634 2639m 2643 264414 2645 2734!) 2740 2743 2744 27471) 
2752 2756 276614 2767 2769 2770 2775 2776 2777 2779 
2782 2791d 2794 27970 2855 2894D 289714 2900D 2904 2906 
2908 2909 2916 293111 29340 2937 29401! 2942 2957D 2975 

xfereddomai 5621) 1499 3338 
xfered local. 564!) 1809 1825 3340 
xfered proce 5620 1820 3339 

- xferq 3157D 3191 3204 3233 3282 3311 
y 4431) 446 44714 448 20950 2101 2106 

A-85 



SIMULATION OF NETWORK WITH 1 SITES AND WITH 6 CONSOLES 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * ** * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * 
* 	DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 * 

• PERIOD OF SIMULATION (SECS) =2000 	NUMBER OF SYSTEM DOMAINS = 20 	NUMBER OF COMPILERS = 2 	 * 

• MEMORY SIZE = I28000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 0 	 * 

• LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	32500 OR NUMBER IN SYSTEM IS GREATER THAN 4 	* 

• CONSOLE CONTROL SITE= 1 	NUMBER OF DISKS= 1 	DISK BUFFERS= 3 	DISK SITE(S)= 1 	 * 

• TIME SLICE 100MSECS. 	LONG TIME SLICE = 500MSECS. 	COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED 	787 	 * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** * * * * * * * * * * * ** ** * *** ** * * * * * * * * * * ** * * * 

113397709 DISKHANDLER IMPOTENT 
START OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 4 NUMBER AWAITING ENTRY TO SYSTEM 0 

00 	 END OF RUN NUMBER OF CONSOLES IN THINKING STATE 4 NUMBER AWAITING ENTRY TO SYSTEM 0 
ON 

UTILIZATION OF PROCESSORS 

SITE 1 
TOTAL IDLE TIME 372.1 	AVERAGE MEMORY USE 	84780 	MAXIMUM 123850 

NUMBER OF CHANGES OF DOMAIN 	11656 NUMBER OF TRANSFERED DOMAINS 	0 NUMBER OF TRANSFERED PROCESSORS 0 NUMBER OF 
TRANSFERED LOCAL SEGMENTS 	1941 	NUMBER OF FORCED MIGRATIONS 	0 NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 12 

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0 
RESPONSE TIMES 

NUMBER OF COMPLETED SHORT COMMANDS 182 	NUMBER OF RESPONSE TIMES OVER 2 SECS 	2 NUMBER OF RESPONSE TIMES OVER 5 SECS 0 
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME 
NUMBER OF DATA POINTS 65 
MEAN OF NON TRIVIAL SERVICE TIMES 	21.5 MEAN OF RESPONSE TIME 	61.0 	RESIDUAL STANDARD DEVIATION 35.42 
ESTIMATE OF REGRESSION COEFFICIENT 	2.33 INTERCEPT 10.90 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.16 
CORRELATION COEFFICIENT 0.883 

COMMUNICATIONS SUBSYSTEM 
NUMBER OF BYTES TRANSFERED 	42470472 	NUMBER OF CONTROL MESSAGES (32 BYTES) SENT 	12823 

DISK PERFORMANCE 
NUMBER OF BYTES TRANSFERED 	42060136 	NUMBER OF COMPLETED TRANSFERS 	5569 	TOTAL. DISK IDLE TIME 1702.8 



CONSOLE 1 
TOTAL THINKING TIME 1219.0 

CONSOLE 2 
TOTAL THINKING TIME 1033.6 

CONSOLE 3 
TOTAL THINKING TIME 1097.3 

CONSOLE 4 
TOTAL THINKING TIME 1405.4 

CONSOLE 5 
TOTAL THINKING TIME 848.2 

CONSOLE 6 
TOTAL THINKING TIME 1636.0 

TOTAL RESPONSE TIME 781.0 

TOTAL RESPONSE TIME 966.4 

TOTAL RESPONSE TIME 902.7 

TOTAL RESPONSE TIME 594.6 

TOTAL RESPONSE TIME 1151.8 

TOTAL RESPONSE TIME 364.0 

TOTAL SERVICE TIME 282.3 NUMBER OF COMPLETED COMMANDS 40 

TOTAL SERVICE TIME 322.5 NUMBER OF COMPLETED COMMANDS 40 

TOTAL SERVICE TIME 338.9 NUMBER OF COMPLETED COMMANDS 39 

TOTAL SERVICE TIME 147.1 NUMBER OF COMPLETED COMMANDS 46 

TOTAL SERVICE TIME 382.1 NUMBER OF COMPLETED COMMANDS 21 

TOTAL SERVICE TIME 144.4 NUMBER OF COMPLETED COMMANDS 61 

GRAND TOTAL OF RESPONSE TIMES 4760 
GRAND TOTAL OF SERVICE TIMES 	1617 
PERFORMANCE MEASURE 	2.94 
FRACTION USEFUL PROCESSOR UTILIZATION 0.809 

co 



SIMULATION OF NETWORK WITH 6 SITES AND WITH 48 CONSOLES 

03 
03 

It 	 DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 * 
* PERIOD OF SIMULATION (SECS) = 250 	NUMBER OF SYSTEM DOMAINS = 21 	NUMBER OF COMPILERS = 2 	 * 
* MEMORY SIZE = I28000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 5 	 * 
* LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	38000 OR NUMBER IN SYSTEM IS GREATER THAN 24 	* 

CONSOLE CONTROL SITE= 1 	NUMBER OF DISKS= 2 	DISK BUFFERS= 3 	DISK SITE(S)= 3 6 	 * 
* TIME SLICE =1001ISECS. 	LONG TIME SLICE = 500NSECS. 	COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED = 787 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ** * ** ** * ** * * ** * * * * * * * * * * * * * * * * * * 
START OF RUN NUMBER OF CONSOLES IN THINKING STATE 34 NUMBER AWAITING ENTRY TO SYSTEM 0 
END OF RUN NUMBER OF CONSOLES IN THINKING STATE 26 NUMBER AWAITING ENTRY TO SYSTEM 0 

UTILIZATION OF PROCESSORS 

SITE 1 
TOTAL IDLE TIME 22.8 AVERAGE MEMORY USE 85923 MAXIMUM 127961 

SITE 	2 
TOTAL IDLE TIME 11.8 AVERAGE MEMORY USE 85319 MAXIMUM 126082 

SITE 	3 
TOTAL IDLE TIME 6.9 AVERAGE MEMORY USE 88036 MAXIMUM 127633 

SITE 	4 
TOTAL IDLE TIME 15.3 AVERAGE MEMORY USE 77067 MAXIMUM 127356 

SITE 	5 
TOTAL IDLE TIME 12.3 AVERAGE MEMORY USE 78316 MAXIMUM 126079 

SITE 	6 
TOTAL IDLE TIME 4.8 AVERAGE MEMORY USE 81423 MAXIMUM 126745 

NUMBER OF CHANCES OF DOMAIN 	9896 NUMBER OF TRANSFERED DOMAINS 61 	NUMBER OF TRANSFERED PROCESSORS 	6369 NUMBER OF 
TRANSFERED LOCAL SEGMENTS 	5187 	NUMBER OF FORCED MIGRATIONS 	1461 	NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 0 

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0 
RESPONSE TIMES 

NUMBER OF COMPLETED SHORT COMMANDS 187 	NUMBER OF RESPONSE TIMES OVER 2 SECS 2 NUMBER OF RESPONSE TIMES OVER 5 SECS 0 
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME 
NUMBER OF DATA POINTS 59 



MEAN OF NON TRIVIAL SERVICE TIMES 	16.4 MEAN OF RESPONSE TIME 	49.7 	RESIDUAL STANDARD DEVIATION 13.50 
ESTIMATE OF REGRESSION COEFFICIENT 	2.92 INTERCEPT 	1.68 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.11 
CORRELATION COEFFICIENT 0.965 

ol 
10 

COMMUNICATIONS SUBSYSTEM 
NUMBER OF BYTES TRANSFERED 

DISK PERFORMANCE 
NUMBER OF BYTES TRANSFERED 

DISK PERFORMANCE 
NUMBER OF BYTES TRANSFERED 

CONSOLE 1 
TOTAL THINKING TIME 242.8 

CONSOLE 2 
TOTAL THINKING TIME 204.4 

CONSOLE 3 
TOTAL THINKING TIME 	24.3 

CONSOLE 4 
TOTAL THINKING TIME 124.2 

CONSOLE 5 
TOTAL THINKING TIME 204.9 

CONSOLE 6 
TOTAL THINKING TIME 98.8 

CONSOLE 7 
TOTAL THINKING TIME 169.2 

CONSOLE 8 
TOTAL THINKING TIME 208.7 

CONSOLE 9 
TOTAL THINKING TIME 248.8 

CONSOLE 10 
TOTAL THINKING TIME 235.3 

CONSOLE 11 
TOTAL THINKING TIME 225.6 

CONSOLE 12 
TOTAL THINKING TINE 	23.3 

CONSOLE 13 
TOTAL THINKING TIME 158.6 

CONSOLE 14 
TOTAL THINKING TIME 	77.7 

CONSOLE 15 
TOTAL THINKING TIME 216.3 

CONSOLE 16  

55422984 	NUMBER OF CONTROL MESSAGES (32 BYTES) 

18885714 	NUMBER OF COMPLETED TRANSFERS 	2563 

15662283 	NUMBER OF COMPLETED TRANSFERS 	2116 

TOTAL RESPONSE TIME 	7.2 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 45.6 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 225.7 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 125.8 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 	45.1 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 151.2 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 80.8 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 	41.3 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 	1.2 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 	14.7 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 	24.4 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 226.7 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 91.4 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 172.3 	TOTAL SERVICE TIME 

TOTAL RESPONSE TIME 33.7 	TOTAL SERVICE TIME  

ENT 	29604 

TOTAL DISK IDLE TIME 115.2 

TOTAL DISK IDLE TIME 138.9 

4.4 NUMBER OF COMPLETED COMMANDS ' 5 

	

17.6 NUMBER OF COMPLETED COMMANDS 	6 

	

63.4 NUMBER OF COMPLETED COMMANDS 	1 

	

33.4 NUMBER OF COMPLETED COMMANDS 	4 

18.9 NUMBER OF COMPLETED COMMANDS 13 

	

37.2 NUMBER OF COMPLETED COMMANDS 	5 

	

31.6 NUMBER OF COMPLETED COMMANDS 	6 

	

9.4 NUMBER OF COMPLETED COMMANDS 	8 

0.3 NUMBER OF COMPLETED COMMANDS 5 

3.5 NUMBER OF COMPLETED COMMANDS 10 

	

5.7 NUMBER OF COMPLETED COMMANDS 	7 

	

91.0 NUMBER OF COMPLETED COMMANDS 	1 

30.6 NUMBER OF COMPLETED COMMANDS 9 

	

45.2 NUMBER OF COMPLETED COMMANDS 	2 

11.9 NUMBER OF COMPLETED COMMANDS 8 



TOTAL THINKING TIME 146.4 TOTAL RESPONSE TIME 103.6 TOTAL SERVICE TIME 25.5 NUMBER OF COMPLETED COMMANDS 
CONSOLE 17 

TOTAL THINKING TIME 238.8 TOTAL RESPONSE TIME 11.2 TOTAL SERVICE TIME 3.5 NUMBER OF COMPLETED COMMANDS 
CONSOLE 18 

TOTAL THINKING TIME 243.7 TOTAL RESPONSE TIME 6.3 TOTAL SERVICE TIME 2.7 NUMBER OF COMPLETED COMMANDS 
CONSOLE 19 

TOTAL THINKING TIME 59.0 TOTAL RESPONSE TIME 191.0 TOTAL SERVICE TIME 52.8 NUMBER OF COMPLETED COMMANDS 
CONSOLE 20 

TOTAL THINKING TIME 230.0 TOTAL RESPONSE TIME 20.0 TOTAL SERVICE TIME 8.9 NUMBER OF COMPLETED COMMANDS 
CONSOLE 21 

TOTAL THINKING TIME 214.0 TOTAL RESPONSE TIME 36.0 TOTAL SERVICE TIME 13.4 NUMBER OF COMPLETED COMMANDS 
CONSOLE 22 

TOTAL THINKING TIME 76.6 TOTAL RESPONSE TIME 173.4 TOTAL SERVICE TIME 49.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 23 - 

TOTAL THINKING TIME 249.0 TOTAL RESPONSE TIME 1.0 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 24 

TOTAL THINKING TIME 236.8 TOTAL RESPONSE TIME 13.2 TOTAL SERVICE TIME 2.4 NUMBER OF COMPLETED COMMANDS 
CONSOLE 25 

TOTAL THINKING TIME 248.8 TOTAL RESPONSE TIME 1.2 TOTAL SERVICE TIME 0.7 NUMBER OF COMPLETED COMMANDS 
CONSOLE 26 

TOTAL THINKING TIME 2.2 TOTAL RESPONSE TIME 2478 TOTAL SERVICE TIME 69.3 NUMBER OF COMPLETED COMMANDS 
CONSOLE 27 

TOTAL THINKING TIME 0.0 TOTAL RESPONSE TIME 250.0 TOTAL SERVICE TIME 70.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 28 

TOTAL THINKING TIME 235.1 TOTAL RESPONSE TIME 14.9 TOTAL SERVICE TIME 4.3 NUMBER OF COMPLETED COMMANDS 	.11 
CONSOLE 29 

TOTAL THINKING TIME 83.3 TOTAL RESPONSE TIME 166.7 TOTAL SERVICE TIME 47.8 NUMBER OF COMPLETED COMMANDS 
CONSOLE 30 

TOTAL THINKING TIME 190.3 TOTAL RESPONSE TIME 59.7 TOTAL SERVICE TIME 16.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 31 

TOTAL THINKING TIME 167.1 TOTAL RESPONSE TIME 82.9 TOTAL SERVICE TIME 24.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 32 

TOTAL THINKING TIME 219.3 TOTAL RESPONSE TIME 30.7 TOTAL SERVICE TIME 8.8 NUMBER OF COMPLETED COMMANDS 
CONSOLE 33 

TOTAL THINKING TIME 184.3 TOTAL RESPONSE TIME 65.7 TOTAL SERVICE TIME 26.9 NUMBER OF COMPLETED COMMANDS 
CONSOLE 34 

TOTAL THINKING TIME 211.1 TOTAL RESPONSE TIME 38.9 TOTAL SERVICE TIME 10.3 NUMBER OF COMPLETED COMMANDS 
CONSOLE 35 

TOTAL THINKING TIME 236.9 TOTAL RESPONSE TIME 13.1 TOTAL SERVICE TIME 5.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 36 

TOTAL THINKING TIME 230.8 TOTAL RESPONSE TIME 19.2 TOTAL SERVICE TIME 4.5 NUMBER OF COMPLETED COMMANDS 
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CONSOLE 37 
TOTAL THINKING TIME 	67.8 

CONSOLE 38 
TOTAL THINKING TIME 	61.2 

CONSOLE 39 
TOTAL THINKING TIME 113.3 

CONSOLE 40 
TOTAL THINKING TIME 160.5 

CONSOLE 41 
TOTAL THINKING TIME 231.5 

CONSOLE 42 
TOTAL THINKING TIME 	66.2 

CONSOLE 43 
TOTAL THINKING TIME 110.9 

CONSOLE 44 
TOTAL THINKING TIME 	15.6 

CONSOLE 45 
TOTAL THINKING TIME 138.8 

CONSOLE 46 
TOTAL THINKING TIME 	51.1 

CONSOLE 47 
TOTAL THINKING TIME 181.2 

CONSOLE 48 
TOTAL THINKING TIME 133.4 

TOTAL RESPONSE TIME 182.2 

TOTAL RESPONSE TIME 188.8 

TOTAL RESPONSE TIME 136.7 

TOTAL RESPONSE TIME 89.5 

TOTAL RESPONSE TIME 18.5 

TOTAL RESPONSE TIME 183.8 

TOTAL RESPONSE TIME 139.1 

TOTAL RESPONSE TIME 234.4 

TOTAL RESPONSE TIME 111.2 

TOTAL RESPONSE TIME 198.9 

TOTAL RESPONSE TIME 68.8 

TOTAL RESPONSE TIME 116.6 

TOTAL SERVICE TIME 59.3 NUMBER OF COMPLETED COMMANDS 2 

TOTAL SERVICE TIME 50.3 NUMBER OF COMPLETED COMMANDS 1 

TOTAL SERVICE TIME 55.1 NUMBER OF COMPLETED COMMANDS 5 

TOTAL SERVICE TIME 28.8 NUMBER OF COMPLETED COMMANDS 5 

TOTAL SERVICE TIME 5.8 NUMBER OF COMPLETED COMMANDS 6 

TOTAL SERVICE TIME 66.1 NUMBER OF COMPLETED COMMANDS 4 

TOTAL SERVICE TIME 45.7 NUMBER OF COMPLETED COMMANDS 2 

TOTAL SERVICE TIME 98.2 NUMBER OF COMPLETED COMMANDS 0 

TOTAL SERVICE TIME 34.1 NUMBER OF COMPLETED COMMANDS 10 

TOTAL SERVICE TIME 58.6 NUMBER OF COMPLETED COMMANDS 1 

TOTAL SERVICE TIME 18.7 NUMBER OF COMPLETED COMMANDS 5 

TOTAL SERVICE TIME 30.0 NUMBER OF COMPLETED COMMANDS 7 

GRAND TOTAL OF RESPONSE TIMES 4502 
GRAND TOTAL OF SERVICE TIMES 1403 
PERFORMANCE MEASURE . 3.21 
FRACTION USEFUL PROCESSOR UTILIZATION 0.935 



SIMULATION OF NETWORK WITH 9 SITES AND WITH 54 CONSOLES 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 	DIRECTLY CONNECTED SITES AND DISK: COPYING OF CODE PERFORMED: BIAS TOWARDS PROCESSOR UTILIZATION 	 * 
* PERIOD OF SIMULATION (SECS) = 222 	NUMBER OF SYSTEM DOMAINS = 22 	NUMBER OF COMPILERS = 2 	 * 

* MEMORY SIZE = 128000BYTES 	SIZE DIVIDER CONSTANT= 1024 	LOAD SHEDDING FACTOR= 2 	MAXIMUM MIGRATIONS= 8 	 * 

* LARGE DOMAINS NOT ALLOWED TO START WHEN GREATEST FREE MEMORY IS LESS THAN 	38500 OR NUMBER IN SYSTEM IS GREATER THAN 36 	* 

* CONSOLE' CONTROL SITE= 1 	NUMBER OF DISKS= 3 	DISK BUFFERS= 3 	DISK SITE(S)= 	3 	6 	9 	 * 

* TIME SLICE =IOOMSECS. 	LONG TIME SLICE = 500MSECS. COMMUNICATION FREQUENCY (MHZ) = 1.00 	RANDOM NUMBER SEED = 	787 	 * 

* 
START OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 41 	NUMBER AWAITING ENTRY TO SYSTEM 	0 

END OF RUN 	NUMBER OF CONSOLES IN THINKING STATE 36 	NUMBER AWAITING ENTRY TO SYSTEM 	0 

UTILIZATION OF PROCESSORS 

SITE 	1 
TOTAL IDLE TIME 	60.8 	AVERAGE MEMORY USE 71696 	MAXIMUM 	121965 

SITE 	2 
TOTAL IDLE TIME 	41.6 	AVERAGE MEMORY USE 65136 	MAXIMUM 	126458 

SITE 	3 
TOTAL IDLE TIME 	23.8 	AVERAGE MEMORY USE 71719 	MAXIMUM 	115889 

SITE 	4 
TOTAL IDLE TIME 	46.8 	AVERAGE MEMORY USE 62161 	MAXIMUM 	112435 

SITE 	5 
TOTAL IDLE TIME 	46.7 	AVERAGE MEMORY USE 62969 	MAXIMUM 	112889 

SITE 	6 
TOTAL IDLE TIME 	20.7 	AVERAGE MEMORY USE 70847 	MAXIMUM 	120689 

SITE 	7 
TOTAL IDLE TIME 	40.0 	AVERAGE MEMORY USE 66601 	MAXIMUM 	119485 

SITE 	8 
TOTAL IDLE TIME 	42.8 	AVERAGE MEMORY USE 68012 	MAXIMUM 	123993 

SITE 	9 
TOTAL IDLE TIME 	18.3 	AVERAGE MEMORY USE 68560 	MAXIMUM 	108749 

NUMBER OF CHANGES OF DOMAIN 	11139 	NUMBER OF TRANSFERED DOMAINS 	69 	NUMBER OF TRANSFERED PROCESSORS 	7626 	NUMBER OF 



TRANSFERED LOCAL SEGMENTS 	6768 NUMBER OF FORCED MIGRATIONS 	2999 NUMBER OF PROCESSORS BLOCKED ON ENTRY TO NETWORK 0 

NUMBER OF INCARNATIONS BLOCKED WAITING FOR SPACE 0 
RESPONSE TIMES 

	

NUMBER OF COMPLETED SHORT COMMANDS 211 	NUMBER OF RESPONSE TIMES OVER 2 SECS 0 NUMBER OF RESPONSE TIMES OVER 5 SECS 0 
REGRESSION ANALYSIS OF NON TRIVIAL SERVICE TIMES VERSUS RESPONSE TIME 
NUMBER OF DATA POINTS 65 
MEAN OF NON TRIVIAL SERVICE TIMES 	17.2 MEAN OF RESPONSE TIME 	39.6 	RESIDUAL STANDARD DEVIATION 9.19 
ESTIMATE OF REGRESSION COEFFICIENT 	2.26 INTERCEPT 	0.70 STANDARD DEVIATION OF REGRESSION COEFFICIENT 0.07 
CORRELATION COEFFICIENT 0.975 

COMMUNICATIONS SUBSYSTEM 

	

NUMBER OF BYTES TRANSFERED 	66558763 	NUMBER OF CONTROL MESSAGES (32 BYTES) SENT 	38987 
DISK PERFORMANCE 	S  

	

NUMBER OF BYTES TRANSFERED 	13383539 	NUMBER OF COMPLETED TRANSFERS 	1910 	TOTAL DISK IDLE TIME 123.8 

DISK PERFORMANCE 

	

NUMBER OF BYTES TRANSFERED 	14095901 	NUMBER OF COMPLETED TRANSFERS 	1915 	TOTAL DISK IDLE TIME 122.3 
DISK PERFORMANCE 

	

NUMBER OF BYTES TRANSFERED 	10538990 	NUMBER OF COMPLETED TRANSFERS 	1447 	TOTAL DISK IDLE TIME 146.8 
CONSOLE 1 

	

TOTAL THINKING TIME 215.6 	TOTAL RESPONSE TIME 	6.6 	TOTAL SERVICE TIME 	4.9 	NUMBER OF COMPLETED COMMANDS 	5 
Li 	

CONSOLE 2 

	

TOTAL THINKING TIME 184.4 	TOTAL RESPONSE TIME 	37.9 	TOTAL SERVICE TIME 	17.6 NUMBER OF COMPLETED COMMANDS 	6 
CONSOLE 3 

TOTAL THINKING TIME 	28.6 	TOTAL RESPONSE TIME 193.6 	TOTAL SERVICE TIME 	73.8 NUMBER OF COMPLETED COMMANDS 	2 
CONSOLE 4 

	

TOTAL THINKING TIME 128.5 	TOTAL RESPONSE TIME 93.7 	TOTAL SERVICE TIME 33.2 NUMBER OF COMPLETED COMMANDS 	4 
CONSOLE 5 

	

TOTAL THINKING TIME 185.9 	TOTAL RESPONSE TIME 	36.4 	TOTAL SERVICE TIME 	18.3 NUMBER OF COMPLETED COMMANDS 11 
CONSOLE 6 

	

TOTAL THINKING TIME 113.9 	TOTAL RESPONSE TIME 108.3 	TOTAL SERVICE TIME 38.8 NUMBER OF COMPLETED COMMANDS 	5 
CONSOLE 7 

	

TOTAL THINKING TIME 159.6 	TOTAL RESPONSE TIME 62.6 	TOTAL SERVICE TIME 31.6 NUMBER OF COMPLETED COMMANDS 	6 
CONSOLE 8 

	

TOTAL THINKING TIME 195.4 	TOTAL RESPONSE TIME 26.8 	TOTAL SERVICE TIME 	9.0 NUMBER OF COMPLETED COMMANDS 	6 
CONSOLE 9 

	

TOTAL THINKING TIME 222.0 	TOTAL RESPONSE TIME 	0.3 	TOTAL SERVICE TIME 	0.2 NUMBER OF COMPLETED COMMANDS 	4 
CONSOLE 10 

	

TOTAL THINKING TIME 215.9 	TOTAL RESPONSE TIME 	6.3 	TOTAL SERVICE TIME 	2.9 NUMBER OF COMPLETED COMMANDS 	9 
CONSOLE 11 

	

• TOTAL THINKING TIME 220.3 	TOTAL RESPONSE TIME 	2.0 	TOTAL SERVICE TIME 	0.5 NUMBER OF COMPLETED COMMANDS .7 
CONSOLE 12 
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TOTAL THINKING TIME 33.6 TOTAL RESPONSE TIME 188.7 TOTAL SERVICE TIME 102.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 13 

TOTAL THINKING TIME 155.4 TOTAL RESPONSE TIME 66.9 TOTAL SERVICE TIME 30.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 14 

TOTAL THINKING TIME 82.8 TOTAL RESPONSE TIME 139.4 TOTAL SERVICE TIME 50.4 NUMBER OF COMPLETED COMMANDS 
CONSOLE 15 

TOTAL THINKING TIME 196.8 TOTAL RESPONSE TIME 25.4 TOTAL SERVICE TIME 11.9 NUMBER OF COMPLETED COMMANDS 
CONSOLE 16 

TOTAL THINKING TIME 147.2 TOTAL RESPONSE TIME 75.0 TOTAL SERVICE TIME 27.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 17 

TOTAL THINKING TIME 212.8 TOTAL RESPONSE TIME 9.4 TOTAL SERVICE TIME 4.4 NUMBER OF COMPLETED COMMANDS 
CONSOLE 18 

TOTAL THINKING TIME 214.4 TOTAL RESPONSE TIME 7.9 TOTAL SERVICE TIME 4.7 NUMBER OF COMPLETED COMMANDS 
CONSOLE 19 

TOTAL THINKING TIME 64.5 TOTAL RESPONSE TIME 157.7 TOTAL SERVICE TIME 63.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 20 

TOTAL THINKING TIME 204.4 TOTAL RESPONSE TIME 17.9 TOTAL SERVICE TIME 7.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 21 

TOTAL THINKING TIME 201.6 TOTAL RESPONSE TIME 20.7 TOTAL SERVICE TIME 9.0 NUMBER OF COMPLETED COMMANDS 
CONSOLE 22 

TOTAL THINKING TIME 86.1 TOTAL RESPONSE TIME 136.1 TOTAL SERVICE TIME 56.8 NUMBER OF COMPLETED COMMANDS 
CONSOLE 23 

TOTAL THINKING TIME 221.9 TOTAL RESPONSE TIME 0.3 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 24 

TOTAL THINKING TIME 222.0 TOTAL RESPONSE TIME 0.2 TOTAL SERVICE TIME 0.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 25 . 

TOTAL THINKING TIME 220.6 TOTAL RESPONSE TIME 1.6 TOTAL SERVICE TIME 0.7 NUMBER OF COMPLETED COMMANDS 
CONSOLE 26 

TOTAL THINKING TIME 7.7 TOTAL RESPONSE TIME 214.5 TOTAL SERVICE TIME 77.3 NUMBER OF COMPLETED COMMANDS 
CONSOLE 27 

TOTAL THINKING TIME 0.0 TOTAL RESPONSE TIME 222.2 TOTAL SERVICE TIME 79.5 NUMBER OF COMPLETED COMMANDS 
CONSOLE 28 

TOTAL THINKING TIME 216.8 TOTAL RESPONSE TIME 5.4 TOTAL SERVICE TIME 2.9 NUMBER OF COMPLETED COMMANDS 
CONSOLE 29 

TOTAL THINKING TIME 99.1 TOTAL RESPONSE TIME 123.1 TOTAL SERVICE TIME 48.6 NUMBER OF COMPLETED COMMANDS 
CONSOLE 30 

TOTAL THINKING TIME 178.7 TOTAL RESPONSE TIME 43.5 TOTAL SERVICE TIME 16.2 NUMBER OF COMPLETED COMMANDS 
CONSOLE 31 

TOTAL THINKING TIME 160.1 TOTAL RESPONSE TIME 62.2 TOTAL SERVICE TIME 24.3 NUMBER OF COMPLETED COMMANDS 
CONSOLE 32 

TOTAL THINKING TIME 220.4 TOTAL RESPONSE TIME 1.8 TOTAL SERVICE TIME 1.0 NUMBER OF COMPLETED COMMANDS 
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CONSOLE 33 
TOTAL THINKING TIME 168.8 TOTAL RESPONSE TIME 53.4 

CONSOLE 34 
TOTAL THINKING TIME 216.8 TOTAL RESPONSE TIME 5.4 

CONSOLE 35 
TOTAL THINKING TIME 210.9 TOTAL RESPONSE TIME 11.4 

CONSOLE 36 
TOTAL THINKING TIME 209.4 TOTAL RESPONSE TIME 12.8 

CONSOLE 37 
TOTAL THINKING TIME 67.8 TOTAL RESPONSE TIME 154.4 

CONSOLE 38 
TOTAL THINKING TIME 67.0 TOTAL RESPONSE TIME 155.3 

CONSOLE 39 
TOTAL THINKING TIME 118.9 TOTAL RESPONSE TIME 103.3 

CONSOLE 40 
TOTAL THINKING TIME 164.9 TOTAL RESPONSE TIME 57.3 

CONSOLE 41 
TOTAL THINKING TIME 210.8 TOTAL RESPONSE TIME 11.4 

CONSOLE 42 
TOTAL THINKING TIME 70.4 TOTAL RESPONSE TIME 151.8 

CONSOLE 43 
TOTAL THINKING TIME 110.9 TOTAL RESPONSE TIME 111.3 

CONSOLE 44 
TOTAL THINKING TIME 21.1 TOTAL RESPONSE TIME 201.1 

CONSOLE 45 
TOTAL THINKING TIME 144.6 TOTAL RESPONSE TIME 77.7 

CONSOLE 46 
TOTAL THINKING TIME 51.1 TOTAL RESPONSE TIME 171.1 

CONSOLE 47 
TOTAL THINKING TIME 186.8 TOTAL RESPONSE TIME 35.4 

CONSOLE 48 
TOTAL THINKING TIME 145.1 TOTAL RESPONSE TIME 77.1 

CONSOLE 49 
TOTAL THINKING TIME 34.9 TOTAL RESPONSE TIME 187.3 

CONSOLE 50 
TOTAL THINKING TIME 221.5 TOTAL RESPONSE TIME 0.7 

CONSOLE 51 
TOTAL THINKING TIME 168.5 TOTAL RESPONSE TIME 53.7 

CONSOLE 52 
TOTAL THINKING TIME 216.9 TOTAL RESPONSETIME 5.3 

CONSOLE 53 

TOTAL SERVICE TIME 26.9 NUMBER OF COMPLETED COMMANDS 6 

TOTAL SERVICE TIME 	2.3 NUMBER OF COMPLETED COMMANDS 	6 

TOTAL SERVICE TIME 	5.6 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 	4.5 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TINE 68.5 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 62.8 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 55.1 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 	18.3 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 	5.6 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 66.1 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 48.6 NUMBER OF COMPLETED COMMANDS 

TOTAL SERVICE TIME 111.3 

TOTAL SERVICE TIME 	31.8 

TOTAL SERVICE TIME 	65.8 

TOTAL SERVICE TIME 	12.4 

TOTAL SERVICE TIME 	30.1 

TOTAL SERVICE TIME 100.8 

TOTAL SERVICE TIME 0.6 

TOTAL SERVICE TIME 23.6 

TOTAL SERVICE TIME 3.2 
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NUMBER OF COMPLETED COMMANDS 0 

NUMBER OF COMPLETED COMMANDS 10 

NUMBER OF COMPLETED COMMANDS 1 

NUMBER OF COMPLETED COMMANDS 5 

NUMBER OF COMPLETED COMMANDS 7 

NUMBER OF COMPLETED COMMANDS 0 

NUMBER OF COMPLETED COMMANDS 7 

NUMBER OF COMPLETED COMMANDS 6 

NUMER OF COMPLETED COMMANDS 6 



TOTAL THINKING TIME 190.6 	TOTAL RESPONSE TIME 31.6 	TOTAL SERVICE TIME 	15.4 NUMBER OF COMPLETED COMMANDS 11 
CONSOLE 54 

TOTAL THINKING TIME 151.6 	TOTAL RESPONSE TIME 70.6 	TOTAL SERVICE TIME 23.6 NUMBER OF COMPLETED COMMANDS 	8 

GRAND TOTAL OF RESPONSE TIMES 3834 
GRAND TOTAL OF SERVICE TIMES 	1633 
PERFORMANCE MEASURE 	2.35 
FRACTION USEFUL PROCESSOR UTILIZATION 0.817 
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