COMPUTER STRUCTURES FOR DISTRIBUTEL SYSTEMS

LiaM Maurice CASEY

o DocToR OF PHILOSOPHY
UNIVERSITY OF EDINBURGH
1977

.ABSTRACT: A building block approach to configuring large computer .
systems is attractive because the blocks, either primitive
processors or small camputers, are daily becaning cheaper and
because this approach allows a close match of the power required
to the power supplied. This thesis addresses the design goal

of an expandable system vhere there is no premium paid for a
minimal configuration and the cost of extra wunits of capacity

is constant. It is shown that a distributed system, a system

of homogeneous camputers loosely.coupled by a cammunication
subsystem, is likely to be the best approach to this design

goal. Some consideration is given to the form of the cammmication
subsystem but the main research is directed towards the software
organisation required to achieve efficient co-operation between
the camputers constituting the distributed system. An organisation
based on the domain structures of protection schemes is found to
have advantages. Hitherto damain meragement using capabilities
has been centred around systems with shared. primary memory. This
is because central tables have been required to implement the
capability mechanism. A model is developed vhich, by restricting .
the sharing of scme items and providing a ‘'global object' '
managerent: schere to cover essential sharing, enables central
tables to be dispensed with and domain management to be
distributed. The main goal in achieving this extension is to
facilitate d&mnamic and efficient load sharing but the model

could equally well be used to provide, in distributed systems,

the protecticn normally associated with damains. This thesis

also cansiders the wider ramifications of distributed systems.

A simulation program is described and results fram it are analysed
to give sane insights into factors affecting distributed system
stability and performance. It is concluded that the above design
goal of linear expandibility can be attained for a moderate range
of systems sizes (perhaps fram 1 to 20 camputers).

Keywords and Phrases: distributed computer system, multiple
computer system, load sharing, homogeneous, damain, capability,
simulation.

ACKNGWLEDGEMENTS ¢

Acknowledgement is due to the New Zealand Department of
Scientific and Industrial Research vhose generous financial support
made this work possible. I wish to thank the supervisors of my
study, Professor Sidney Michaelson and Nick Shelness. Also a
word cf thanks is due to Lee Smith who has assisted with the
proof reading of this thesis. Finally I would like to thank my

wife Hilary who has bome her 'Ph.D. widowhood' well.

This thesis is dedicated to my son Martin. If it were not
for his habit of waking early this thesis would not be canpleted

yet.

- DECLARATICN:
I hereby declare that this thesis has been camposed by myself

and that the work reported is my own.

18 January 1977

Chepter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:
Chapter 10:

Chapter 11:

Appendix A

Bibliography

CONTENTS

PROLOGUE
MERITS OF VARTOUS HARDWARE ORGANISATICNS

COYMUNICATIONS

OPEPATING SYSTEMS ARCHITECTURE

THE DEVELOPMENT OF THE DQYAIN CONCEPT

OCUR MODEL

' DISTRIBUTED SYSTEM METHODOLOGY

DQMATIN MANAGEMENT
DESCRIPTION OF SIMULATION

RESULTS OF OUR SIMULATI(N

EPIIOGUE

41

62

81

106

141

176

198

230

256

B-1 -

CHAPTER 1

PROLOGUE

All our vesterdays:

In 1954, a decade after the first digital computer was
built, workers at the National Bureau of Standards, USA,
connected together two computers, SEAC and DYSEAC,
forming the first multiple computer system, The
resulting system was capable, so they «claimed, of
handling efficiently problems which the two component
computers could scarcely have handled if each were
working alone (CODD62]. This led them to produce the
first published proposal for the <construction of a
multiple computer system [LEINS8,CURT63]. The proposed
system, PILOT, consisted of three computers: a primary
computer, a clerical or secondary computer and an I/0
computer., To guote: ‘These computers intercommunicate in
a way that permits all three to work together
concurrently on a common problem’ and “The system can be
ceee used in conjunction with other digital computer
facilities forming an interconnected communication
network in which all the machines can work together
collaboratively on large scale problems that are beyond

the reach of any single machine’,

Despite the confident use of the present tense above
PILOT did not achieve its design goals. It Wwas
decommissioned in the mid sixties, its construction
(started in 1958) never fully completed although the
hardware had been working well enough for ‘“continuing
difficulties in using primary and secondary (computers)
together, particularly in program debugging® to be

experienced [PYKE741],

This thesis addresses some of the problems involved in

getting computers to work together,

Before PILOT the sole approach to achieving more
computing power than that provided by a single machine
was to build a faster machine. In a 1953 paper Grosch
wrote: ‘I believe that there is a fundamental rule, which
I modestly call Grosch’s law giving economy only as the
square root of the increase of speed = that is to do a
calculation ten times as cheaply you must do it one
hundred times as fast’ [GR0S53] and Grosch®s law, re=cast
in the positive form as “the power of a computer s
proportional to the square of its cost’ has in no small
way encouraged this approach against that of trying to

form multiple computer systems.

Grosch’s law did not go unchallenged [ADAY62] but some
ten years later it was given an impressive validation in
the study of 225 American computers by Knight [KNIG66) .

In a debate on the archijtecture for large computer

systems in 1967 Amdahl, quoting Knight but conveniently
ignoring a proviso he made about large systems in his
work, exhorted everyone to “Keep the faith, baby® in the
single processor approach (AMDA67]. Amdahl has kept his
faith to this day as has Grosch [GRUS76]. Some of the
points we raise later (in chapter 2) suggest that there

is considerable justification for their steadfastness.

What tomorrow may bring:

Nevertheless since PILOT there has been an increasing
number of multiple processor architectures proposed and
built, These architectures are justified as
circumventing the current technological limits on the
power of single processor systems, providing facilities
to remote users (when the constituent processors are
situated at geographically different sites)
{BERN73,BLAN73,CRAI74], or providing more cost effective
computing than single processors of equivalent power,
This thesis is chiefly concerned with multiple computer

architectures that may provide cost effective computing.

The imminent prospect of cheap but primitive
microprocessors and “free’ memory [WITH75) has led to an
explosion in the size of proposed systems; systems “(of)
over one hundred active processors’ [GOUD73), “having not
tens or hundreds of processing elements Dbut manf

thousands’ (WIRC751] and “(forming) a network of thousands

or millions of microcomputers a range of network

sizes from 100 to 1,000,000,000 computers” ([WITT76].

In chapter 2 it is shown that queueing theory
mitigates heavily against large numbers of low powered
processors providing a service equal to that of a single
processor with ‘equivalent® power, Other chapters
describe some of the mechanisms required for running
programs on systems with modest numbers of identical
computers, the overhead these mechanisms produce in each
computer is shown, at best, to be proportional to the
number of computers in the system, Thus the day of the

million co~operating computers is never likely to arrive.

- S N A o 4 . .
Dee e v v € U2 dhe Lt

Perhaps the most telling criticism that can be
levelled both at PILOT and these later extravagant
architectures is that the designers have concentrated
only on the hardware requirements and given no thought to
the software required to achieve co-operation among the
processors, Anyone attempting to implement one of these

over=blown systems would also experience ‘continuing

difficulties”’ in achieving co=operation between
processors., The mechanisms for co=operation have to be
formulated prior to detailed hardware designe. The main

research reported in this thesis has been on the software
structures required to enable separate computers to
collaborate to form a single operational entity, a

distributed system,.

Cost effectiveness:

This thesis describes a system that could consist from
1 to perhaps 20 identiqal computers. e feel that such a
system may prove cost effective. For a given cost the
system might provide more power than a single computer
system or alternatively a given power might be provided
by the multiple computer system more cheaply than by a

single computer.

We have wused the word ‘power’ several times now
without giving a definition, no satisfactory definition
exists [FULL76]., The concept is meant to express the
overall soeed of a computer, how much work it can perform
in unit time. Likewise satisfactory definitions of cost
are impossible to formulate. So we will not add another
deficient metric of cost effectiveness +to the large
number already in existence. Instead, we instance below
recent examples of computer use that indicate that today
Grosch’s law is not valid and indeed may have been only a
self=-fufilling prophesy used by computer manufacturers to

price their products.

In 1973 Heart and others studied possible replacements
for the IMP machines in the ARPA network [HEAR73,0RNS75],
The IMP machines perform a single function, namely the
control of packet switching in the ARPA network, The
amount of computing power this function requires varies

depending on where the IMP is situated 1in the network,

Heart and his co-workers, after performing simulations,
concluded that systems constructed from upto 14 simple
minicomputers would be cheaper than usiﬁg a single faster
machinee. Using a multiple computer system they could
also vary the number of computers in each IMP system to
match the intended load, thus providing even greater

savingse.

Schaeffer [SCHA75) has reported on a costing exercise
that resulted in a chemistry department shifting its
computing load away from a centrally run large machine to
a8 24 bit word minicomputer, The department’s computing
allowance bought them 32 hours of CPU time a year on a
CDC 7600, The rate structure of the CDC 7600 reflected
simply the cost of operation of the machine, its purchase
price having been paid by an outside agency. Schaeffer
found that the same annual budget would, over 4 vyears.,
pay the purchase price and running costs of a 16K word
minicomputer., The minicomputer was purchased and the
department’s programs were found to run, on average, 35
times slower on the minicomputer than on the CDC 7600.
Twenty hours a day operation of the minicomputer was
achieved so that the department’s annual budget
purchased, in effect, 200 hours of CDC /600 time instead

_of 32.

Fuller [FULL76) has attempted a detailed comparison of
the price/performance ratio of a PDP 10 and C.mmp, 2

system of up to 16 minicomputers [WULF72]. He

encountered problems in defining per{ormance and cost,
He used two physical characteristics as measures of
performance: instructions executed per second and
processor memory bandwidth, The former is biased towards
primitive machines that do little work with each
instruction, while the latter 1is biased towards large
machines which may in each memory cycle be fetching more
data than they use. Therefore Fuller claimed, the two
measures provided bounds for performance estimates and he
calculated a factor of 4 in cost effectiveness of C.mmp

agsinst the most cost effective PDP 10 configuration.

There have also been reports of commercial
applications being mounted on systems of minicomputers at
considerable savings over wusing single higher powered
computers, A hospital in the USA has an operational
system of 10 Data General Novas to perform all its data
processing [CARR75]. Jagerstrom has described plans for
a company to computerize by putting each application on a
separate minicomputer ([JAGE74]. He claims that the end
system will be cheaper than if a single computer was
used, with the added advantages that the computer power
for each application need be acquired by the company only
when it is ready to mount the application and, as in the
case of the hosopital above, some processing can proceed

when one of the minicomputers has failed.

It is not difficult to give reasons for the increasing

hegemony of small computers, Large computers are

characterized by low volumes of production and
significant manufacturer commitment to software.

Successful small computers sell in much larger quantities

and their software support is lower, sometimes
non=existent. Software production is a fixed overhead
independent of the volume of sales. Expected sales

volume dictates the fraction of this and other overheads,
such as design cost and tooling up cost, which will be
included in the individual selling price. Volume of
production also affects the construction cost of each
unit, greater volumes mean that more automated methods of
production will be cost effective. The low volume of
sales of large systems means that the same technoliogy has
to be retained over a long period to recoup the original
investment., But older technology is more expensive per
ser, and also in assembly costs because of the
proportionally higher component counts (BLAK751, Of
course the cheaper computers are, the more will be sold.
Overall there 1is a cascade of effects making small

computers cost effective for more and more applications.

The big question is whether or not small computers can
be tied together to make more powerful systems that still
retain their cost effectiveness. Does the overhead
produced in amalgamating small machines into a larger one

swamp the cheapness of the small machines?

A building block approach [DAV]I72], where identical

computers are added to a system until the required power

is achieved would be beneficial both to manufacturers and

users, Manufacturers are often required to produce a
range of computers of identical architecture but
differing power. Each type of computer requires

designing afresh and may be implemented wusing different
semiconductor technology from the other types, thus
negating many of the benefits of Jlarge production
volumes. Using a number of 1low power computers to
fabricate the computers at the high power end of the
range means that only one design is needed and this will
be produced in extra large volumes. The user, unless he
buys a computer for a single static task, has to be aware
of the <cost of obtaining an increase in capacity as his
requirements increase. This wusually 1leads him to
purchase a system with capacity in excess of his
immediate needs and may later involve him in having to
dispose of some hardware and buy a more powerful system
if his requirements grow too Jlarge. Buying a system
exactly matched to his needs and expanding it (or
contracting it) when those needs change, by altering the
number of building blocks, can provide obvious economies

for the user.

Both manufaﬁturers and wusers would be looking for
systems with low initial cost and linear expansion costs.
If, because of the requirement of being expandable, a
small system costs a lot more than an equivalent
non=expandable system then it will be difficult to sell

the expandable system. Likewise a system where added

building blocks become 1less and Jless cost effective
because overall performance diminishes as extra building
blocks are added, would be limited in usefulness. ihat
is required is a fixed cost/performance ratio. The
marginal increase in power with the addition of an extra
computer should be constant (or nearly so) no matter how
many computers there are already in the system, There is
often an expectation of general synergism in multiple
computer systems, that is the total power in the system
is expected to be somehow greater than the sum of the
individual computers’ powers. Wwhile there can be limited
synergistic effects as a system expands, overall the
total power available 1is just that provided by the
constituent computerse. It is impossible to provide
indefinitely a diminishing cost/performance ratio as the

number of computers in a system Qgrows.

In the next chapter we look at the two basic ways of
amalgamating computers: multiprocessor systems, where
primary memory is shared between all processors, and

distributed systems, where computers are kept separate

but interact with one another using some form of
communication system. We describe the drawbacks of both
multiprocessor architectures and single processor

architectures compared to distributed systems and the

rest of the thesis concentrates on distributed systems.

Chapter 3 examines the various forms the communication

system can take and chapter 4 looks at operating systems

10

structures suitable for distributed systems. Une of
these operating system structures, the kernel/domain
architecture is further described in chaoter 5. The rest
of the thesis then details facets of the design of a
distributed system using the kernel/domain structure and
describes a simulation program that was used to study
some performance questions that arise concerning the

design.

11

CHAPTER 2

MERITS OF VARIOUS HARDAARE ORGANIZATIUNS

A useful taxonomy of computer architectures has been
defined by Flynn [FLYN72]. He divides systems into 3
types:

SISD: (single instruction acting on single item of
data) the conventional uniprocessor system,

SImMD: (single instruction acting on multiple data
items) systems with wvector hardware, associative
and parallel processors.

MIMD: (multiple instructions acting on multiple data
itemns) multiprocessor systems and computer
networks.

(For completeness there 1is also the MISD type, which
others have taken to denote instruction pipelining

machines [HIGB7§:THUR7S]).

Systems of the SIMD type have been the chief
candidates for solving large scale problems obeyond the
limit of conventional machines. They have always been
‘one=off® and economics would seem to be a secondary
consideration in their construction. It is now generally
conceded that there are some special problems, weather

forecasting being the most often aquoted exampley for

which these architectures are the most appropriate but

12

‘these are special=purpose machines and any attempt to
apply them to an incorrectly sized, or designed, problem

is an exercise in futility® (IHUR/S].

There is a spectrum of MIMD systems, ranging from
tightly coupled multiprocessors systems to trans=world
networks., The system that is described in this thesis is
a network that lies towards the multiprocessor end of the
MIMD spectrum, It consists of a number of homogeneous
(that is highly compatible, if not identical) sites
connected by a communications subsystem. Fhe whole
system is envisaged to be local in extent, fitting into a
cabinet, & room or, at most, a building. Each site is
assumed to consist of a single processor with 1its own
memory S23Ce. The term “distributed system’ has been
arbitrarily appropriated to denote this. There 1is no
logical reason why the sites in a distributed system
should not each consist of multiprocessor systems, but to

avoid confusion we do not consider such a case here,

To place distributed systems in context we examine the
benefits and drawbacks of MIMD systems compared to SISV

systems, particularly in relation to time sharing.

SECTION 1: QUEUEING THEORY CONSIDERATIONS

In order to gain mathematical tractability, queue=
theoretic models are always idealized abstractions that
omit many of the details of reality. The results of
queueing analysis nevertheless often indicate fundamental

constraints that cannot be breached by any strategy.

Organizations:

In a queueing theory approach to hardware organization
the differences between architectures are represented by
replicating servers and by having different queueing
mechanisms. Figures 2.1 to 2.7 give the representation
of various systems each having a total service capacity
of C operations per second and each having an overall
arrival rate of jobs, requests for service, of X requests
per second., We assume that the mean number of operations
requested by each job is 1/u. To ensure that the systems
have the <capacity to ultimately deal with all jobs
arriving the further assumption is made that A/#C < 1,
The ratio A/uC is calledp, the utilization, as it gives
the ratio of the mean number of operations requested of
the system per second Mu to the number of operations the

system can perform per second, C,
The SISD architecture;, the single processor system is

represented by figure 2.1, This is the classical single

server queueing system, the backbone of queueing theory,

14

A { 1——@

Single procesSor
Figure 2.1

o
Multi processor
Figure 2.2

Distri buted system with instantaneous jockeying
Figure 2.3

Analytic expressions for the mean response times, I, that
is the average elapsed time between joo arrival and job
complietion, have been found for Jlarge classes of
probability distributions of the arrival rate and service
times of jobs, and for a number of queueing disciplines
such as first come first served, round robin and so on
(see for example KLEI7S,KLEI76). The simplest case is
for first come first served systems where both the
inter-arrival times between jobs and the size of jobs
have (negative) exponential distributions, The mean
response time is given by

T = 1/(pC=\)

The tightly coupled multiprocessor system, with N
processors is represented by figure 2.2. In the
multiprocessor system it is assumed that service of jobs
is from a common core Qqueue. Analytic results are known
for T only when the service time is exponentially
distributed [KLEL74]). For the case of N=2 with
exponential arrival times the result is

T = 2uC/((uCHI) (uC-)))
Figure 2.8 gives graphs (adapted from [(KLEI74)) for the

normalized response time (when 4C=1) for N=1, the single

processor case, N=2 and N=10, assuming exponential
arrival and service times. There is an approximate
solution, Kingman’s conjecture, for T for general

distributions of arrival times and service times. for
when o is close to 1, given by

T = Np/at(C+p*C)/2(1=p)

16

where Cg 1is the squared coefficient of variation of the
inter-arrival times and C; is the squared coefficient of
variation for the number of operations required by a job

(KLE174}.

Figure 2.3 shows a queueing system that has separate
queues for each server but is subject to “instantaneous
jockeying”’. The last entry in a queue moves

instantaneously to another queue if that gueue becomes

shorter than the queue it is in. This represents the
ideal, physically unattainable, for load 1levelling
distributed systems. Because such systems do not share

core they do not have a common queue of jobs, but if the
distributed system wants to keep the 1load on all
processors the same, then jobs will be moved around to
try to attain this. In the real world moving jobs will
take some time, during which the load situation could
change again, Instantaneous jockeying means that no
processor is idle whén another server has jobs waitting
for service. It has been shown that because the idle
time of servers is the same as in the common queue system
above that. the mean service time will be the same as well

[LEEAG66] .,

We make a distinction between load levelling, where
jobs are moved avout from Qqueue to queuer and load
balancing where the system attempts to even out the load
on each server solely by directing incoming jobs to the

queue of the server that is most likely to be able to

17

Distributed system:go to shortest queue

Figure 2.4

— I In
P :

| I

A | ;
i {

I L
—_ I /N

Distributed system : order of Cerivdl
Figure 2.5

serve them first, Figure 2.4 depicts the system where
incoming jobs are allocated to the processor with the
shortest gueue, and the Jjob remains in that queue.
Obviously in this situation it is possible for one server
to be idle while another server has jobs waiting, hence
the utilization of servers will be Jower than in the
common Qqueue or instantaneous jockeying system, and the
average response time will be higher. Definite formulae

for T have not been derived.

Figure 2.5 represents the situation where arriving
jobs are allocated to each server in turn, irrespective
of load. We would expect this to give worse response
times than the case above where jobs go to the processor
with the shortest queue. The arrival rate of jobs at
each server 1in this case is A/N and the squarea
coefficient of variation of the arrival times is CQ/N.
In the case of exponential arrival times the effective
arrival time distripution for each server is N stage
Erlangians, a situation that has been solved analytically
when there js exponential service times. More generally
if we consider Kingman's approximation we have

T = Np/A+(CI+NpC) /20 (1=p)
Thus the increase in response time over the common Qqueue
system 1is confined to the term Nﬁ Q; and so depends on
the number of servers and the coefficient of varjation of
the number of operations required for each jobo. It each
job requires exactly the same number of operations (i.e.

C?:O) then there would be no increase in response time

19

using this allocation of jobs to each server in turn
instead of wusing a common queue, Unfortunately in
computer systems the coefficient of variation of service

times is likely to be large.

Figure 2.6 represents the extreme situation of no
coupling at all between systems. The popuiation of jobs
is divided into N categories a priori so that the arrival
rate at each server is A/N and the squared coefficient of
variation remains Cae This type of system can arise when
the users are divided into N equal groups and each group
is permanently assigned to one computer, It also arises
when functionally specialized computers are used so that
each server can only handie one type of job. Ne assume
here that there are N types of job and that the overall
average number of each type of job is the same. In this
case the response time is exactly N times what it would
be for the single server with capacity C because each
server is an independent server'wjth capacity C/N, For
the case of exponential arrival and service times the
average response time is given by

T = N/(uC=)
If the average fraction of jobs going to each server s
not identical for all servers then the same mean response
time (but not the same variance) will be obtained if the
capacity of each server is adjusted to be in proportion
to the average number of requests received by that server

(keeping the overall capacity equal to C).

20

<
Z
.

R)

2>

Separate systems
Figure 2.6

)\'—--- —9:@

Pipeline
Figure 2.7

Figure 2.7 shows a pipeline or N stage tandem system.
Here we assume that each job regquires an average service
of 1/Nm operations from each server in turn. In the case
of exponential arrival and service times Burke®s theoren
(KLEI75] states that the mean response time is given by

T = N/(uC=A)
which is the same as the completely decoupled system

above.

Impltications:

Our excursion into queueing theory results has shown
that the various ways of configuring systems to give a
capacity of C operations per second do not all give the
same response times. Figure 2.8 shows the deterioration
in response time (normalizing aC to wunity) as the
capacity C 1is divided among 1,2 and 1V servers, the 2 and
10 server systems either taking jobs from a common Qqueue
or having instantaneous jockeying. These response curves
were drawn under the assumption of negative exponential
arrival and service times, but similar curves could be
drawn using the Kingman approximation. They
unequivocally show that unless the utilization p is very
close to 1, when response times are very long anywayr
having a single server gives better response times than
dividing up the <capacity among N servers. For batch
processing systems it is possible to attain a processor
‘utilization <close to 1. To attain reasonable response

times for time shared systems an operational range of

8
lona

rt

Figur

ropo

P

c

utilizations 1is likely to be in the region of 0.6<p<0.9
(BELL70} . For such an operational range replacing a
single large processor by a number of microprocessors,
say, of the same total power (ignoring overhegds] is

going to result in worse response times.

If other considerations lead to the adoption of multiple
servers then the results presented above indicate that an
effort should be made to maximize the wutilization of
servers. Systems where no server can be idle while there
are jobs waiting for service, the common queue and
instantaneous jockeying systems above, have a better mean
response time than systems where there is a possibility
of servers being idle while there is outstanding work.
Specialization of servers so that each can only serve a
subset of jobs, or so that every one of them has to be
involved in the service of all jobss gives the worst
response time, Thus the above analysis indicates that
there are increasing gains to be made by

1) accepting any job at any server (processor)

2) attempting to load balance by directing incoming jobs

to the shortest queue
3) attempting to load level by shifting jobs from the

ends of queues to shorter queues.

As we stated in chapter | the expansion
characteristics of a system are important. Figure 2.9
depicts the normalized response time for three systems,

each with exponential arrival and service times. The N=1

24

system has a single server of capacity C and an arrival
rate of requests A The N=2 and N=10 systems have 2 and
10 servers respectively, each server having a capacity C,
and the arrival rates at ‘these systems are assumed to be
2) and 10A respectively. gAgain equivalent curves could
be drawn using the Kingman approximation). Figure 2.9
shows a pleasing feature of expansion of the number of
servers while keeping the load per server constant; in
the time sharing operational range mentioned above there
is a decrease 1in response time. The minimum possible
mean response time is simply the mean service time and
this is attained, for all values of fKIu when there is an
infinite number of servers, So the decrease in response
time, as another server is added, tends to 2zero as the

number of servers becomes large.

Queueing networks and bottlenecks:

A closed network queueing system consists of a finite
number of jobs gcustomers) that cycle around queueing for
service at a number of nodes. After a job has received
service at a node it moves to another node to queue there
for service. Closed network queueing systems can model
the behaviour of time sharing systems better than the
models we discussed above, The fixed number of jobs
represents the restrictions in time shared systems on the
total number of concurrent users. Resources other than

the central processor, such as disks, from which there is

25

a requirement for service can be represented as nodes in

the network system,

After VMoore L[MOOR71]) analysed the MTS time sharing
system using a closed network queueing model, a rash of
papers appeared applying closed network gqueueing models
to the study of time sharing systems. These efforts are
surveyed by Kleinrock [KLEI76l. we will not discuss them
further except to examine the concept of the

'bottleneckf.

Wwhen a system has more than one type of resource in
demand, then as the load on the system is increased (by
increasing the number of jobs in the system), the
utilization of the resources will increase. tventually
the wutilization of some resource will get very close to
100% S0 that the utilization cannot increase
significantly as the load increases. At this stage a
long queue containing almost all of the jobs in the
system will build up waiting to use the resource. This
resource is a bottleneck and the overall response time of
the system becomes completely dominated by the response
time of the bottleneck. (The response time analyses we
gave above are valid therefore when processing power is
the bottleneck in a system). A system where the
utilization of all resources approach 100% together 1is

cglled a balanced system.

26

Memory requirements:

Recently Borgerson [BORG76) has examined another facet
of -replacing a single processor wWith N slower processors
to give the equivalent capacity. He considered a single
processor system that achieved adequate processor
utilization when it had enough primary memory to sustain
a multiprogramming level of K (that is K jobs, or working
set, could reside in the primary memory at once). By a
very simplistic analysis he determined that the
‘equivalent’ multiprocessor system (with N processors)
would require enough primary memory to contain N+K=1 jobs
to achieve the same processor utilization. Certainly W
processors cannot all be gginfully employed processing K
jobs if K is less than N. The longer response times of W
processor systems translate into longer job residency in

primary memory.

Adequacy of queueing theory modelis:

Queueing theory does give some very useful insights

into how various systems will behave. But there are
restrictions placed on service times, Qqueueing and
service disciplines, and particularly interactions

between different resources in the system (e.qg. queueing
theory cannot model the «constraint that both primary
memory space and a processor have to be available before

a job can be executed). In consequence gueue theoretic

27

approaches cannot be wused for detailed analysis of
systems, Perhaps the last word should go to KleinrocKky
whom we have wused as a source for many of the results
quoted in this section.
“The mathematical structures ... created in attempting
to describe real situations are merely idealized
fictionss, and one must not become enamoured with them
for their own sake if one s really interested in

practical answers’® [KLELI76].

SECTION 23 PHYSICAL AND CUST CONSIDERATIONS.

There are of course many factors besides queueing

theory predicted performance to be taken into account in

considering an architecture, Cost effectiveness is the
paramount factor, We now look at a number of factors
that affect the cost or performance of wvarious

architectures.

DOverheads:

The computation required to manage a list or queue
grows at a faster than linear rate as the size of the
list or queue grows [HANS73]. Thus the overheads in

managing a system with & large number of users are

28

proportionally much greater than for a system with a
small number of users because the former Will have longer
queues. A multiprocessor system and a single processor
system of equivalent power will have approximately the
same management overheads (but there will be some added
complexity in dealing with multiple processors). However
in a distributed system some of the lists and qQqueues are
partitioned amongst the sites so that there 1is a

reduction in the overheads of managing them.

Some part, perhaps all, of an operating system must pe
resident in the primary memory of a computer at all
times, using up memory space that would otherwise be
available to user programs, In a system with multiple
servers which are not completely independent, extra
operating system software is required to achieve the
necessary co=operation among the servers [(BORG76).
However in a multiprocessor system only one copy of an
operating system is shared among all the processors.
This impacts favourably on the expansion characteristics
of a multiprocessor system because added memory can be
almost entirely dedicated to user programse. In all
multiple computer systems that we know of that do not
have shared memory, apart from the system we develop in
this thesis, each <computer has its own complete, or
nearly complete, operating system. OUne of our chief aims
has been to make as much software as possible shared
among all the sites in our distributed system so that

increasing the size of system means that proportionally

29

more primary memory space is available for useful worke.

P@ra1lelism:

If in the queueing theory analysis above each and
every job presented to a multiserver system could be
split into exactly N parallel phases of equal durationy
one phase for each server, then the response times of the
multiserver system would be equal to that of the
équivalent capacity single server, However, apart from
such operations as overlapping 1/0 with processing,
pgrallelism in general purpose computing is difficult to
find, both at the macro Jlevel and the micro level
[TJADT7O}. Examples of programs decomposed into parallel
modules [THOM72,FULL76}) seem to us to be rather
contrived, e do not think that parallelism can be
relied upon as a factor to ©Dbring the performance of
multiple orocessor systems up to that of single processor

systems.

Functional specialization?

Many designs for distributed systems and
multiprocessor systems utilize functionally specialized
processors [JUSE74,C0LO76,ARDETS,FABR74,REYLT4,SELLT2) .
Computer networks of large machines, usually at separate

locationsy are often justified by the differing

30

characteristics, hardware or software, of each computer,

or host, in the network [RuBE?U,GHEé73;CULE73J.

In the case of networks joining together already
existing machines, functional specialization does offer
potential for increased throughput and perhaps reduced
response time, compared to the original situation of not
having a network at alla fThis is because i1if each host is
offe;ed highly .conformable work it can process it faster
than if it has to process all types of job. Forms of
close co-operation, such as load levelling or balancing,
although often <cited as design goals for networks
{ROBE70, HOWE72] have yet to be realized. Basically the
overheads in achieving closer co=operation (HICKT71,
SMIT72,FRED73] outweigh the benefits. We feel functional
specialization will continue to be the raison d’etre of

geographically dispersed networks of large computers.

In the case of distributed systems and multiprocessors
the gain in effective capacity through functional
specialization has to be very large to offset the
queueing theory gains 1in response time that «can be
achieved by making all processors capable of executing
all jobs. Functional specialization often gives rise to
very simple forms of operating systems, usually of the
hierarchic [REYL74,RUWAT4] or pipeline variety (FARB74I.
But. . the overall system can be very inefficient. lhe
average response times wWe quoted above for functionally

specialized servers are valid only when the distribution

31

of server capacities exactiy matches the load
characteristics. If there is a mismatch then the average
response times will be worse. Thus there is the problem
of determining the exact characteristics of the workload
on a system and making sure that it stays stable over
time. Obtaining a balanced system and expanding it in a
balanced fashion is not easy for small systems, For
small hierarchical, or star, systems the central
supervisory processor which allocates work to the
specialized servers is likely to be wunderutilized (if
there 1is to be any slack capacity for expansion) making
the system non cost=effective. For large systems where
each type of server is replicated many times balance is
easier to achieve and the theoretical response time
approaches that of a system wjth homogeneous serversy
because the overall load at any particular instant does
not vary far from the average load [KLEI74}, In
hierarchical systems though, the central node 1is likely
to run out of processing power so that it cannot handle
the allocation of work to specialized servers fast enough

to keep them busy.

Al hierarchically organised multiple processor
systems, ones with a supervisory processor, suffer from
the twin oroblems of underutilization of the supervisory
processor, and hence diminishea cost effectiveness, in
small systems, and eventual debilitating inadequacy of
supervisory processor capacity as the system grows large.

Since our stated aim is low cost small systems with

32

linear expandability we do not consider hier;rchical

systems further in this thesis.

As for functional specialization, we believe that the
types of processor that will be manufactured in the
greatest volumes will be general purpose processors,
Referring back to our discussion of manufacturing costs
in chapter 1, general purpose processors therefore will
cost the least. So, because of their likely low cost and
definite advantages in small systems, we concentrate on
systems containing homogeneous pProcessors and ignore
functional specialization. 1t so happens however that
the design we develop in this thesis can quite naturally
handle functional specialized computers, as we show in

chapter 7 when we discuss peripheral handlers.

Availability:

In theory both multiprocessors and distributed systems
should be capable of graceful degredation as components
féil. In practice, for general purpose systems, this is
Jikely to be trgnslated into high availability; a failing
component need only be isolated, not repaired, before the
system, with reduced capacity, can be used again, The
single processor system is completely unusable in the
event of a processor fault until the fault nas been

repaired.

33

In the production of highly reliable computers,
distributed systems and multiprocessors can be used more
effectively than double or triple replication of a single
processor system, There are however special techniques
involved in the attainment of high reliability (scorzai,

which we are not going to pursue in this thesis.

Large single processor systems:

From the queueing theory results above a single fast
processor system would seem to be the best choice. Ihere
are however two points that need considering in relation
to the queueing analysis:

1) Frequently large computer systems cannot be reasonably
modelled as a single queue for mprocessor service,
Often channel capacity s & restricting factor and
even if the system is balanced it is unlikely that
there will be a single channel of sufficient capacity,
rather there will be @ number of channels (probably

"specialized) of lesser capacity so the poorer response

characteristics of multiple servers could occur

anyway.

2) The initial §ssumption in the comparisons was that the
single processor was uniformly N times as fast as each
processor in an N processor system. However it 1is
unlikely that the single processor will be N times as
fast at context switching. As a processor gets faster

it uses more and more fast registers which will have

34

to be saved gor drained when pipelines are used) on
context switchinge. To avoid too frequent context
switching large systems use peripheral processorsy
communications processors and/or front end processors;
hence incurring some of the disadvantages associated
with multiple servers and functional specialization,
Even with these aids a greater proportion of computing
capacity is still likely to be wasted by context
switching in the single processor environment than
with slower processors where the ‘opportunity’ loss on

a context switch is much smaller.

If it maintains its single server characteristics the
large scale single processor system offers superior
performance in general purpose computing compared with
other architectures of equivalent capacity. But when the
above factors are combined with the cost considerations
we described in chapter 1, and the poor availability and
expansion characteristics of single processor systems we
see that the case for overall superiority is not so clear
cut. Considering that they give relative ease of
expansion, high availability and the possiblity of
achieving a capacity not technically feasible with a
single processor, multiprocessor systems and distributed

systems are certainly worth investigating.

35

Distributed systems versus multiprocessors:

The distinguishing characteristic of a multiprocessoﬁr
its shared memory, gives the multiprocessor 1its
advantages over distributed systemse. These advantages
are greater speed of interprocessor communication and
larger size of contiguous memory., In a distributed
system the various sites can only co=-operate by sending
messages to one another, which takes a longer time than
using shared tables and semaphores in multiprocessor
systems. (But sincer, for example, the processors in a
distributed system do not have to co~-operate over the
management of shared primary memory, the inter processor
communication mechanisms will be invoked less frequently
than in multiprocessor systems). A large contiguous
memory usually leads to greater efficiency in handling
large problems [WITT68]. The packing problem, fitting
complete jobs or working sets into available memory
[AGRA?S]' is obviously less severe for one large memory

than for a number of small memories.

Shared memory 1is also responsible for the poor
features of multiprocessor systems: expensive and
expansion limiting memory access circuitry, contention

and software lockout.
In a multiprocessor system more hardware is required

to provide access to shared memory (and to peripherals).

The access speeds to memory will be slowed either by the

36

inclusion of a crossbar switch (with high initial cost
and inflexible limit to expansion) or a bus for which
processors have to bid. Alternatively the memory units
can be multiple ported making them more expensive and

again limiting expansion @SEAR?S].

Memory contention occurs in multiprocessor systems
when a processor cannot access a word of memory because
some other processor is using the access circuitry. The
partial solution to this can be expensive; replicating
the access circuitry by providing storage in modules and
then providing interleaving circuitry so that accesses
are ‘random’. Wwith random access in a system where the
number of processors is equal to the number of memory
modules the wutilisation of processors and memory falls
guickly to 50% as the number of processors 1is 1increased
[BHAN73a,BHAN73b, BURN73,BASK76]. However if the access
time for a word is far shorter than the average time to
process the word, as is Jlikely to occur if MUS/LSI
microprocessors are used LREYL74], then the effects will
not be as severe as thise. with high pertormance
processors obtaining the necessary extra memory bandwidth
to reduce contention could be costly. Cache design for
multiprocessors is difficult [TANG76] and of dubious
efficacye. In contrast caches can easily be employed 1in
the single processor computers that constitute a

distributed system, if they are required,

37

In multiprocessor systems software Jlockout occurs
[MADNG68] . Processors executing certain parts of the
operating system will need to alter tables or have unique
access to some resourcee. Other processors executing the
same code will have to wait for the previous processor to
finish, This problem can be ameliorated by setting many
locks, each held for very short periods of time but then

the cost of setting the locks begins to erode efficiency.

The two most publicised multiprocessor systems with
more than two or three processors are C.mmp [(WULF72,
WULF74al and Pluribus [HEAR73,0RN3S75]. Both these
systems try to circumvent the problems ot shared memory
by providing all processors with private memory as well.
Pluribus is a special purpose system and the decision as
to what goes into shared memory and what goes into
private memory is a static one taken at design time., In
the case of the general purpose C.mmp system there does
not seem to ©bDe any methodology developed for using
private memoryv. Private memory 1is only a partial
solution to the above problems anyway, it lessens the

amount of contention but does not significantly affect

software lockout or the cost of the access circuitry.

A system developed to work where there is no shared
memory could easily be adapted to a situation where some
of the memory is shared, but the converse 1is not true.

So it makes sense to develop a distributed system and

38

then see if some form of shared memory will improve
performance while not degrading the expansion
capabilities of the system, e raise this topic again in

chapter 11,

With an appropriate communication subsystem and
software organization a distributed system can exhibit
most of the advantages a multiprocessor system has over a
completely decoupled system of computers, while avoiding
the limiting effects of shared memory. Ihe next chapter
examines the required features of a communication
subsystem and chapters 4 to 8 are devoted to the

development of the software organization,

Features of the distributed system we propose are:

1) It is a unified system with respect to peripherals.

2) Each memory is private to one processor. Low speed
memory, matched to processor speed, can be used and
there will not be any contention, bus or switch
delays.

3) Less memory is required than for the same number of
independent computers because one copy of most of
the operating sytem is required for the whole
system.

4) It is very modular, easily expandable and has high
availability.

5) A form of software lockout will occur but it will
probably involve less wasted processor capacity

than software lockout in a multiprocessor system.

39

6)

7

8)

Delays will arise when a component of the operating
system that is shared between sites is required
simultaneously at two sitese. However the waiting
time need not be unproductive; the waiting site can
do other work if there s any outstanding, in
contrast to the ‘busy’ wait required at the low
levels of multiprocessor operating systems,

Some of the management software will be as simple
as that required if each site were an independent
single computer, although other software will be as
complex as that in multiprocessor systems,

There will be a communications overheads which is
not present in multiprocesor systems.

The response characteristics will be almost those
of a multiprocessor system because the software
structure comes close to implementing

instantaneous jockeying’.,

40

CHAPTER 3

COMMUNICATIOMNS

A distinguishing feature of distributed systems s
that co=-ordination and control of processors is performed
by messages rather than by the use of common tables.
Since we wished to study the software structures needed
to ensure co=operation between the sites in a distributed
system, our initial reaction was that the form of
communication subsystem for passing messages between the
sites was immaterial to our problem. However we soon
came to realize that the properties of certain types of
communication subsystem could have a significant effect
on the nature and efficiency of some of the software
mechanisms required. This chapter investigates what kind
of interconnection structures, communication subsystems,

are appropriate for distributed systems,

In a distributed system there are two types of
communication, one, which we refer to as a message, iS
intended for one site only while the other, which we call
a broadcast, is received by all sites in the system.
Messages arise chiefly in the transmission of data and
code between sites, Broadcasts can be used to propagate

information about the overall state of the system.

41

First, we examine types of communication subsystem and
theny in section 2+, wWe examine how the type of
communication subsystem impacts upon the flow of

information in the distributed system.

SECTION 1: COMMUNICATION SUBSYSTEMS.

There are a number of criteria that we can use to
distinguish the various types of computer
interconnections, existing or planned (ANDE75,CHOU7S,
SEAR7S51. For our distributed system we are Jlooking
primarily for low initial cost and expansion costs
directly proportional to the number of sites in the
system, Since we propose our computers to be separated
by physically short (although electrically iong)
distances we do not require the existence of alternative
routes between sites. Nevertheless we do not want the
failure of a site to disrupt the communications between
other sites. It is also desirable that the logic
required for directing messages to their final

destination be simple.

Centralized (star) communication systems (figure 3.1)

undoubtedly offer easy routing but their cost is not

42

Site

Goodwin's Hierarchical System

Site

Site

Star Communication System

Central

Site

Switch

Figure 3-1

Site

I~

Figure 32

Site

Site

Site

proportional to the size of the network. lhe central
sWwitch, be it a processor or other device (CULU76], is
required whether there are two or twenty computers in the
system, Further if this switch 1is going to have
sufficient capacity to allow for reasonable expansion
then it is going to be underutilized for small systems,
probably making the small distributed system unattractive
compared with an equal cost single processor system. One
method of expanding the capacity of the central switch
has been proposed by Goodwin (GOOD73,ANDET7S5]., He wanted
to replace the centre switch by a whole tree of lower
capacity switches (figure 3.2), expanding the size of the
tree to give greater capacity when required. [he cost is
logarithmically proportional to the number of leaves (the
computers doing the wuseful work) and the message
direction algorithm is simple. But unless (undesirable)
measures are taken to confine most communication to be
between Jleaves that are close to each other, on average
(n=1)/n of the messages will pass through the root switch
when there are n nodes connected to it. Thus for message
transmission at least, a tree structure gains little over
a star network in capacity ano introduces substantial

delays to achieve this,

of the non=centralized interconnection schemes a
distinction can be drawn between those where the message
travels directly to its destination without being copied
and retransmitted, and those where a message travels 1in

stages. The 1latter 1is often the preferred method in

44

trans=world type networks {ROBE70,KLEI70,POUZ73,HIRCT74]
where the complexity of routing is justified by the
reduced cost and enhanced reliability of transmissions.
The only simple structure of this type is the loop and as
this meets the criteria of expandaoility and linear cost
we will study it further, along with the two kinds of
direct distributed communication subsystem: complete

connection and shared bus.

Complete connection:

A complete connection communication subsystem (figure
3.3) was proposed for the Karoline network (MADS72]. For
small systems it has favourable features. Most computers
have a few unused peripheral slots and simple links are
cheap and qQuite easy to construct (LIND/1) making initial
cost low. There are no routing problems. Flow control.,
ensuring that there are not too many messages in the
communication subsystem simultaneously, is not required
as each link involves only two computers. An inoperative
computer does not affect the links between the remaining
operational computerse. The total bandwidth grows as the
number of computers in the system grows. Expansion is
not directly limited but it does get proaressively more
expensivee. The nth computer added requires n=1 links.
Karoline being a network of 8 machines required 28 links.
Bearing in mind that the links are probably aquite cheap

compared with other resources in the network, 28 links

4s

Site Site

Site Site

Completely Connected

System
 Figure 3-3 »
Si te | Site
1U U
{U=interface Vunit
- ;IU [U
Site o Site
Ring System

Figure 3-4

could well be the best form of communication system.

Broadcasting however, will usually consist of separate
sequential transmissions to each of the other sites.
This will present a greater load on the sending site than

systems where a broadcast involves only one transmission.

Loop?

The DCS system [FARB72al, the initial version of the
Maryland DCN project [LAYM74} and the Waterloo Mini=net

{MANNT75] all use a loop or ring communication subsystem

as depicted in figure 3.4, In & simple form a ring
system is a cheaper alternative to the complete
connection system. For n sites n links are required and

each site requires only one send slot and one receive
slot, A site sends a message to its neighbour which
decides if it is the message’s destination or not. If it
is not, then the message is passed on to the next
neighbour. When a message has reached its destination it
can be removed from the system (Maryland DCN) or marked

as received, a copy kept, and allowed to circulate back

to the sender (DCS). This Jlater option provides an
automatic though expensive acknowledgement. Given that
this compolete loop traversal is to take place., 3

broadcast involves the same overheads as a message.

47

A message however causes interruptions to all sites it
travels through and so sophisticated ring systems such as
DCS wuse special wunits, ring interfaces, one for each
site. Each interface unit buffers messages and only
interrupts its site if the message is for it [(REAM76).
With intelligent designs, the ring interface wunits also
overcome the problem of the whole loop becoming
inoperative should one computer in it fail: in such
circumstances the ring interface unit can simply pass all
messages On. The use of special wunits means that
beneficial features, discussed in section 2, can be

added.

The total bandwidth of a loop system is fixed. As
more computers are added the bandwidth available to each
decreases and the average time for a message to reach its
destination increases. Since there can be a number of
messages in the loop the question of flow control arises.
If a site puts @ new message in the loop without regard
for messages that may arrive and require retransmissiony
messages will have to be destroyed. Simple forms of tlow
control can involve considerable loss of bandwidthe. The
flow control schemes of some Jloop systems have been
evaluated by Reames and Liu [REAMT76], The Newhall loop
uses a round robin, token to send new message, Scheme. A
site can only introduce new messages into the loop when
it has the token, it sends the token onto the next site
in the loop at the end of its new messages. The Pierce

loop divides the bandwidth into fixed size slots or

48

“message crates” and & site can send a new message if an
empty crate 1is passing through its interface unit,
Unless messages are all the size of slots or less, they
have to be broken into packets with all the attendant
problems of disassembly, sequencing, butfering and
reassembly [FRAN72], The DCLN loop of Reames and Liu
uses buffers in the 1interface wunit to hold incoming
messages (that have to be retransmitted) while new
messages are introduced into the loop. Thus any site,
providing its buffer has space equivalent to the length
of the new message, can introduce a new message almost
immediately. Although transmission time around the loop
is increased it is shown by Reames and Liu that, overall,
messages arrive faster than in the other two schemes
because they do not have to wait so long to enter the

]OOP-

If it is desiréed to stop an errant computer from
monopolising the available bandwidth a distributed
control scheme leads to further loss of bandwidth, In
the DCS system control over runaway sites takes the form
of the ring interface units permitting each site one

outstanding message at a time (FARB72c].

Shared bus:

The KOCDS system [AISO75) uses a conventional 32 bit

wide bus while Ethernet (METC76] is a serial bus of

particularly simple construction, For the distriputed

49

Site

Site

Site

& & & &

Site

U=z interface unit

Shared Bus System

Figure 35

use of a bus some interfacing unit is mandatory (figure
3.5). KOCOS uses one which also aids in controlling

interprocess communication [WALD72].

The Ethernet interface does not have extra functions
but would, with the addition of an associative memory
function, come closest to what we think would be the
ideal type of communication subsystem for a distributed
system. As it stands it is an adaptation of a type of
ALOHA net [ABRAT70,BIND7S5) with ‘radio’ transmission
constrained to be along about 1 Km of co-axial cable.
The interface units have a policy of deferment; they will
not start transmitting a message if they detect a
transmission is in progress. This means that collisions
(and subsequent aborting of transmissions) can only occur
in the first part of a transmission, in the period equal
to 'the round trip time = for Ethernet less than 38
microseconds. With long packets, U096 bytes, and the use
of a “quadratic back=off” policy when transmitting after
collisions, a utilization of the communication subsystem
of over 95% is expected when it is heavily loaded.
(METC761. Unlike KOCOS which has a round robin policy
for control of the bus, in Ethernet any site can send a
message immediately if the communication subsystem is not

already in use.
The total bandwidth of a bus is limited but, unlike

the loop., there 1is not an increase in message

transmission time as more sites are added. Flow control

51

in KOCOS is provided by the round robin scheme while in
Ethernet it s done by a fbackaoff’ policy whereby if
messages collide retransmission is not attempted for a

random period, the mean of which increases with the

recent collision rate.

A broadcast in & shared bus system c¢an be effected
with a single transmission., Suitable design of interface
units can ensure that the bus is not brought down by the

failure of a site.

SECTION 2: INFORMATION GATHERING.

Global object manégement:

As will be described 1in detail in later chapters,
there are certain objects in the distributed system that
are global; any site must be able to locate the sites
where these objects currently reside. As the size of a
distributed system goes up the movement of global objects
between sites will increase. Thus we need to be
concerned with the efficiency of management of global
objects. There are several ways that the location of

global objects can be determined.

52

1

2)

Continuous updating: Every time a global object moves

a broadcast of the form "X has moved to site 1" is
performed. Each site has a directory of giobal
objects which it updates when it receives the

broadcast.

Central directory: Une site is specially designated as

a directory site. Each time an object moves a message

of the form "X has moved to site I" is sent to the
directory site. To determine the location of an
object a site sends a "Wwhere is X" message to the

directory site which sends a return message fX is at

I". So one message is sent every time an object moves

and two are required to determine its location. A
central directory is in some sense antithetical to a
distributed system. However there exist schemes for

nominating a new site as the directory holder should
the old one fail [TYME71) and a directory can quickly
be reconstituted with a broadcast of “wWhat global
objects do you have'. We cannot escape the fact that
part of the directory site’s workload will be
inherently different from the rest of the distributed
system (perhaps causing problems with load balancing).
Should this workload prove to be a bottleneck then a
hybrid system with a number of directory sites using
continuous updating amongst themselves <can be used.,
Each directory site would service a diffgrent set of
non=directory sites. So an ovject move generates 2

message to one directory site and a ‘limited’

53

3)

4)

broadcast from that directory site to all other

directory sitese.

Search: No dfrectories are held at any site and there
are no updating messages or broadcasts when a global
object moves. Instead, in this scheme every time a
site wants to know where an object is it broadcasts
"Where 1i1s X", The site where the object resides

replies with a message "X is at my site".

Associative: The only reason a site can have for
wanting to know the location of a global object is so
that it can send a message (related to the object) to
the site the object is at. An alternative form of the
search scheme 1is simply to broadcast the relevant
‘message’ and have each site decide if the broadcast
is related to any global object currently residing at
ite. Although this form of search involves less
messages thgn the other, the length of the broadcast
is likely to be a lot longer. Hence direct
broadcasting 1is only appropriate when a broadcast
involves the same load on the communication subsystem
as does a single message, namely when systems have
interface units, A direct broadcast scheme can be
made most attractive by the use of extra hardware in
the interface units, If an associative memory,
containing the names of all the global objects at a
site, is attached to the message receiver at each site

then the decison to accept a broadcast can be made

54

without reference to the main processor L(FARB7Zc].
There is no need for directories to be kept, or
updating information broadcast, when objects move.
There is no delay when a message has to be sent to
(the site at which resides) a global object and sites
are not continually being interrupted to answer ?Where
is X" broadcasts. Whether an associative memory s
used or not, direct broadcasts require care with
synchronization; the global object may be in transit
between sites when the broadcast is made so that no

site picks up the message.

To compare the schemes outlined above we assume that
each site requires to know the whereabouts of a global
object Q@ times a second. we further assume that a fixed
fraction r of these seekings of global objects results in
the object being moved, This fraction r is substantially
less than 1. These figures are assumed to be independent

of N the number of sites in the distributed system.

Of the above schemes the search method is definitely
inferior to continuous wupdating. The computation
required to update a directory may be equivalent to that
required to determine if a global object is resident but
not all requests for the location of an object result in
the eventual moving of the object. Hence the continuous
updating method involves fewer broadcasts, and does not
involve the extra "X is at my site” message nor the

enforced delay while the information is gathered; all for

55

the cost of memory space to hold a directory at each
site. In the distributed system we are proposing the
number of global objects is likely to be of the order of
10 to SO0 so the cost of holding a directory at each site

is not great.

The evaluation of the other schemes requires
consideration of the form of broadcasting. We have seen
that for the bus and the DCS type loop a broadcast costs
the same as a message in terms of the wuse made of the
total bandwidth, Also the work done by the sender is
identical for either., (The total work done by the
receivers of a broadcast will always be N=1 times that
for a message). For simple complete connected schemes a
broadcast will use N-1 times the bandwidth that a message
uses, and the sending site will probably have to do N-1
times the work. For either type of communication
subsystem the total number of messages (related to global
object management) received per second for the whole
system will be N(N=1)@r when using continuous 'updgting.
When wusing & central directory scheme gwalqur update
messages will be received by the directory site per
second, (N=2)Q messages will be received by the directory
site requesting the whereabouts of a global object and
the same number of replies will be received at the non
directory sites, making a total of

Q((N=1)r+2N=4) messages per second.

Thus, considering only the minimization of work done

receiving messages for a value of r = 1% gwhich turns out

56

to be a high value, see in the sampie outputs of appendix
A the ratio of TRANSFERRED DUMAINS to TRANSFERRED
PROCESSURS), the number of sites, N, would have to be
greater than 203 for a central directory to perform
better than continuous updating. Wwhen a directly
connected communication subsystem is used, the number of
transmissions 1is the same as the number of receptions,
But for a communication subsystem where a broadcast costs
the same as a message then the overall work done using
continuous wupdating 1is less, so that N will have to be
even larger before break=even point is reached, By the
time we quantify the inconvenience of having to wait
before a global object’s location can be retrieved, it is
obvious that a <central directory is inferior to

continuous updating.

e .have already mentioned that an associative scheme
is not appropriate for a system with a directly connected
communication subsystem, Sor, for such a systemy
continuous updgting of directories held at every site is

the best scheme,

In an associative scheme there are no management
messages sent whereas, for a loop or bus, a continuous

updating scheme gives N@r broadcasts per second resulting

in N(N=1)Qr messages received. The fraction of total
available processor power wused in maintaining the
updating is directly proportional to N. For either

scheme the fraction of processing power used in actually

57

shifting global objects s constant. Hence the
associative scheme is preferable to continuous updating,
at least when large scale sites are envisaged. The
interface wunits required for an associative scheme may
not be cost effective for a distributed system of very

low powered computers.

Status updating:?

We show later (in chapter 7) that there is a need for
each site in a distributed system to have some
information about the status of other sites, While the
information each site requires about the others is not
very muchy, it must be reasonably up to date. The ideal
is that every site has completely accurate information
about every other site, but finite communication
bandwidth makes its achievement . impossible, A
distributed system can tolerate some misinformation, but
the more inaccuracies there are the less efficient the
system will become. Below we discuss four ways that

sites can interchange informatione.

1) Broadcasts at regular intervals: This policy has the
obvious disadvantage that the number of broadcasts
will go up in direct proportion to the number of
sites., Since every site will have to be interrupted
to receive its message from every other site, the

fraction of computing power in the distributed system

58

2)

3)

dedicated to wupdating this information wWill be
directly proportional to the number of computers in
the system.

Exchanges between neighbours: To mitigate the
interruptions caused by receiving broadcasts from
every site, each site could be arbitrarily assigned
several neighbours with whom they exchange tables of
the supposed state of the whole system, similar to the
way routing information is updated in the ARPA network
(MCQU72), The neighbour relationship would have to be
intransitive so that information about every site in
the system would work its way through to all other
sites. The items of information built wup from
exchanged tables will be of different vintages. There
can be no guarantee that sites will confine their
normal transactions to their neighbours; the freguency
of exchange of information will have to be high if a
good oroportion of the information is not to be
hopelessly out of date.

Appended to normal messages: Since the amount of
information each site would want to propagate about
its state is quite small, perhsps 2 bytes worth, it
can be appended to normal messages between sites
without increasing overheads significantly. Indeed in
systems such as Ethernet [METC76J there is a fixed
minimum length message and since many control messages
could be shorter than this length, the information
about the sender’s site coula be carried for free.

The sending of messages is likely to be correlated

59

Wwith changes of state of the site, and hence with the
need to update the information held at other sites.
When two sites are interacting heavily they would have
their information about each other updated frequently.
When a site is idle and not interacting with other
sites, its status would not be changing, so it would
not interrupt other sites to give them information
they already have.

4) Eavesdropping:? In a system that appends state
information to messages and has associative interface
units, such as loop or bus systems, the interface
units can take over the intelligence gathering
function. Eurther they need not use messages
addressed tojust their site, but can pick the state
information (and, of course, source) of all messages
that pass on the loop or bus,. The 1interface unit
would maintain a status table so as not to interrupt
the kernel too frequently. The kernel could consult

the table when required.

Compared with the first two methods, appending
information to normal messages has the obvious advantages
in the conservation of bandwidth and .minimization of
interruptions to sitese. The differences between
information gathered from a3ll messages trgnsmitted and
from only the messages received at one site will be minor
if broadcasts are a frequent occurance. Thus when a
directory update scheme of global object management s

being used (with its broadcasts of changed object

60

location) the information contained in only the messages
received at a site will probably be sufficient. However,
because there are few or no universally received
broadcasts, eavesdropping will probably be required in a
system with a bus or loop type communication subsystem
(that used an gssociative scheme for managing global
objects). There is nothing to stop a site performing a
dummy broadcast when it felt its status had reached some
critical point and this would help homogenize the
information held at all the sites. Whether or not the
extra hardware complexity of eavesdrooping would be

justified requires investigation.

In the simulation of a distributed system described
subsequently we assume a completely connected system.
Continuous updating is used to locate global objects and
status information is appended to normal messages. This,
we considered, would represent a practical implementation
at the present time. However we feel that any major
implementation in the future should involve the
construction of an Ethernet type of bus with associative
recogniton of gddresses and perhabs an eavesdropping
mechanism to gather status information. Distributed
control serial buses, like Ethernet, offer ultimately
very high bandwidths usina very cheap materials [ADAMT6I],
the transmitting media (co=axial <cables, twisted wire
pairs or optical fibres) are passive giving immensely
enhanced reliability compared to schemes involving a

complex of electronics in the transmission,

61

CHAPTER 4

OPERATING SYSTEMS ARCHITECTURE

The designer of an operating system for a distributed
system has two alternatives: he can attempt to
‘distribute’ some form of existing single site operating
system architecture or he can invent something completely
new. Lacking the required inspiration for the latter
approach we have chosen the former. Consequently, to
decide on an appropriate architecture for an operating
system, in a distributed system we now Jlook first at

those for single or multiprocessor/shared memory systems,

SECTION 1: SINGLE SITE SYSTEMS ARCHITECTURE.

Apart from manufacturer®s monolithic monstrosities,
operating systems can be classified into four types of
architecture, The <clessification is made according to
how users, resource allocators and other operating system
services are permitted to interact. A goal of all
architectures 1is to make interactions petween functions
‘ciean’. Ideally each function does not have to make any
assumptions about how other functions are realized. We
emphasize before we describe the categories that they are

not mutually exclusive.

62

Hierarchical:

Dijkstra is the initial proponent and publiciser of
the strictly hierarchical architecture [DIJK68,DIJK/1,
PARN74al . Each function of an operating system s
statically assigned a unique level. The first level
function is programmed to work on the bare hardware. The
second level is programmed for a system consisting of
hardware plus the first level. It should not have direct
access to the resources controlled by the first Jlevel,
rather it should invoke the primitives provided by the
first level. Likewise the second level provides the
environment in which the third level is programmed and so
on,. Each layer ‘rebuilds’ the machine into a more
attractive machine. In Dijkstra’s view an operating
system should be regarded as a sequence of layers, built
on top of each other and each of them implementing a
given imorovement (DIJK71}. Implementing a strictly
hierarchical system requires a firm belief that functions
can be totally ordered, a foreswearing of co=routine type
interactions between functions, and skill in determining
the correct orderinge. Interactions between functions can

be one way only.

Virtual machines:

Variants of the virtual machine architecture form the

largest class of extant structured operating systems,

63

Basically every user has his access to resources
(including core and CPU time) controlled vy a single
virtual machine monitor or kernel (we prefer the later
term). This kernel is entered, perhaps by instruction
traps, every time the user wishes to acquire or release
resources, and it ensures 3 “fair® distribution of the
resources. The wuser is encapsulated. He cannot
communicate or interact with other users, he 1is to all
intents and purposes using a private computer, a virtual

machine.

The pure virtual machine variant provides no more
facilities to the user than the bare underlying hardware
(or the hardware of another machine)
{(MEYE70,PARM72,BUZE73,G0LD73]. The user has to provide
himself with an operating system to run in his virtual
machine. This can Jlead to horrendous inefficiencies
(GOLD74], The kernel knows nothing of the behaviour of
the operating systems 1in the virtual machines, nor are
the operating systems aware that there is a kernel
beneath them. The advantages claimed for this kind of
virtual machine are that it provides absolute security
because there is no interaction between virtual machines
[POPE74] (which security has proved elusive [ATIA76]) and
allows for the development of new versions of operating

systems concurrently with the use of previous versions,

In other virtual machine type operating systems such

as EMAS [AHIT73] or MULTICS (CORB72), the kernel (called

64

Supervisor in EMAS) provides a number of services, such
as managing paging and dispatching, to enhance the bare
machine. The individual ‘operating systems’” (Directors
in the case of EMAS) are integrated with this kernel.
They do not duplicate the provided facilities and they
could not run on the bare machine, Tuning of integrated
systems does not present the same dificulties as does
tuning a pure virtual machine systenm. The harsh
principle of the wuser having access to his virtual
machinep and nothing else, can be softened by kernels
that allow limited interaction with other virtual

machines, usually via the filing or I/0 subsystems.

Intercommunicating processes:

Process orientated systems have received a Jot of
attention in the literature [KNOT74] and are exemplified
by the RCU000 system of Brinch Hansen {tHANS70] ., The
kernel, the basic addition to the hardware, provides the
primitives for process management, creation, deletion and
intercommunication, The rest of the system is a set of
processes. In particular, resources are identified with
the processes that control them. Processes are capable
of interacting with any other process, which 1is a
considerable difference from the virtual machine
situation, This interaction is accomplished wusing
messages. The kernel provides primitives such as “send’,

‘receive’ and ‘wait for answer’ which buffer messages and

65

suspend processes. The kernel norm§lly implements an
addressing scheme that gives processes unigque names and
allows messages to be addressed using these names. In
some systems extra refinements are added, such as ports
[BALZ711, so that a process does not even have to be
aware of the name of the process with which it is

communicating.

Parallel execution of a program is catered for in 3
process orientated system. A subroutine call can be
implemented as a message (containing the parameters) to a
processs, this process returning & message when it s
finished, Thus systems often provide for the creation
and destruction of processes and the placing of processes
in a hierarchy of ownership (parenthood). This feature,
although wused by Brinch Hansen in RC4000, has recently
been criticized by him as being very costly 1in runtime
checking of the validity of process interactions
[HANS74,HANS75] . He advocates that an operating system
should consist of a fixed number of processes, at least

for a given configuration with fixed resources.

Hansen is also critical of messages passing systems
because they <create an artificial resource, message
buffers [HANS73]). Message buffers require management;
their allocation has to be carefully controlled if
deadlock, through insufficient message buffers, is to be
avoided. Transmission of messages 1involves copying

messages into and out of buffers, which is highly

66

wasteful of processing power, at.least in single site
systems. (One message passing architecture, that of the
GEC 4080 ([GECC7S5), has microprogrammed functions to help
with message passings making it more efficient). Lampson
(LAMP71) feels that message systems are not convenient to
the usery; elaborate conventionsy or contortions
(SPIE73bl, are required to find out the unique names of

the operating system facilities the user requires.

Kernel/domain architectures:

Maintaining effective control in operating systems
that permit general interactions has been likened to
‘running a three ring circus, in one rings in the darkf
(METC72al. Capabilities are the basis of a mechanism
that allows general interactions to be controlled.
Capabilities allow each computation access to all the
resources it needs at a particular time. All resources
are intrinsically shareable, but the computation is not
permitted access to resources that, at its current stage,
it does not require. Strictly speaking a computation has
access to all resources, and only those, for which it
possesses a capability [(DENN66]; the assumption being
made that the ownership ot capabilities is so organised

to reflect the current requirements of the computation,

The set of resources that, at any time, a computation

has access to is called a domain @LAMP?I,NEED?Q], also

67

sphere of protection [DENN66], parameter space [EVANG6TI,
NCP [SP0O0O711, local name space (LNS) [(WULF74), protected
subsystem [SALT74] and domain incarnation (SPIE73al.
Should a computation prove erroneous its eftect is likely
to be limited to the current set of resources., The
resources are enclosed in a “firewall’ and incorrect
operations are contained and do not atfect the rest of
the system. Capabilities normally restrict the type of
access a computation has to its resources; for example a
segment may be accessed as read/write, read only or

execute,

The basic function of a kernel in a capability systenm
is twofold:

1) It enforces, or assists the hardware (NEED74,ENGLT74)
to enforce, the restrictions on the type of access to
resources, including null access to resources for
which no capability exists. For example the kernel
should detect and disallow a destroy operation on a
file when the computation only has the capability ¢to
read from the file.

2) The kernel assists computations to change the set of
resources that they have access to (when this function
is not carried out entirely by the hardware). We call
this operation an interdomain jump. The kernel, in
giving and removing access to resources, can control
allocation of resources if it wishes.

Process dispatching is usually included 1in the kernel

also, either for operational efficiency or to ensure

68

fairness in the allocation of processing capacity

(WULF75b] .

Resource management in capability systems is pertormed
in two different manners. Either a computation is given
direct access to a resource by being given a capability
for the resource, or the computation is given just a
cgpability for the execution of & piece of code that
manages the resource. In the latter caser to execute the
code, the computation changes its domain, or protection
environment, and the resource becomes available to it.
But the resource is available to the computation only for

as long as it executes the appropriate code.

In many capability systems the kernels provide the
facilities by which a computation can create, delete,
copyr, contract the types of access, or expand the types
of access (FERR74) of a capability. These facilities are
appropriate when the type of dynamic creation and
deletion of processes (and accompanying resources)y,
mentioned above in relation to message passing systemsy
forms the underlying philosophy of the system, We have
adopted the same attitude as Brinch Hansen and tried to
do without such dynamic behaviour. There are unsolved
problems in combining copying of capabilities with the
ability to delete them [REDE74) and we think these
problems would only be exacerbated in a network

environment.

69

SECTION 2: DISTRIBUTED OPERATING SYSTEMS.

One of our goals in designing a distributed system is
that there should be as little as possible duplication of
operating systems functions at different sites, He want
the normal work of the system to be uniformly distripbuted
across the system and, following the philosophy of
Spooner [SPO071) and others that the constituents of the
operating system should not be specially privileged, we
determined that the ideal is to have systems functions

spread across the system as well.,

Another goal, derived from the queueing theory
considerations expressed in chapter 2, is to have no site
idle while there is work waiting to be performed at other
sites. This implies that load levelling or balancing
operations must occur frequently, and that the overhead
of these operations is an important factor in the success

of a distributed system.

With these two goals in mind we now examine the four
types of operating system architecture, outlined above,
for their suitability for extension to distributed

systems,

70

Hierarchical:

The hierarchical scheme is superficially the most
attractive of the architectures to extend to)
distributed system. The ‘only’ requirement is to provide
a bottom layer that somehow melds the different machines
in the systems into a “more attractive® single machine
upon which Dijkstra’s or any other operating system can
be placed. Goodwin [GOOD73)] has tried to take this

approach with his tree structured distributed system,

The basic layer provides tor communication between
physical processors and a tree structured naming
mechanisme. On top of this was planned a process

communication system; the bottom layer taking care of
messages for processors that do not belong at the same
site as the sender process. we have already criticized
Goodwin’s proposals because of the likelihood of half, or
more, of the messages travelling through the root node.
A further criticism, stemming from adherence to
hierarchical layering, is that there can be no migration
of load from overworked sites to idle sites. he bottom
layer has no concept of processor allocation, that
belongs ;o higher levels, The higher levels do not know
that the underlying machine 1is 1in fact a distributed
system, for that is against-the rules of the game. Also
the assigning of processes to sites has to be done
outside the system and would have to be done every time

the system was reconfigured.

71

The difficulty with incremental layered machine
improvements in a distributed system is that in order to
load level and balance the use of resources, there has to
be some two way interactions, Structuring systems into
layers is a good technique but a practical system must

have many interacting functions in each layer,

Virtual machines?

It is pertinent to enquire, if one 1is adopting a
strict virtual machine architecture, whether it is worth
having a distributed system at all, The purpose of the
virtual machine architecture s to create a set of
private “bare’ machines. Wuite possibly all the kernel
for a distributed system would be doing is tying together
a number of physical machines just so that it can
simulate the same number of virtual machines, lhus if
the division of virtual machines 1is fairly staticy
greater efficiency would be obtained by not integrating
the physical machines together, dispensing with the
virtual machine monitor, ano putting the virtual machine

operating systems onto the physical machines,

When there is intended to be a multiplicity of virtu9l
machines at each site in the distributed system then a
distributed system could be justified by the possibility
of load levelling. A kernel would reside at each site

and manage all the virtual machines at that site, as it

72

would in a single site system. But, somehow, a load
ievelling apparatus could be incorporated so that the
kernels could co=operate in moving virtual machines (by
copying their total memory space) away from busy sites to
idle sites, Problems arise both at the level of
determining opportune times to shift virtual machines and
then of handling peripheral devices after a virtual
machine has been shifted, The kernels would probably
waste a lot of time time polling each other to see how
busy they all were and would be likely to grow rather
large to handle the intricacies of shared peripheral

devices.

Karoline {MADST72) was planned to have 8 wvirtual
machines at each of 8 sites, but proposals for load

levelling, if they were considered, were not published.

For the less strict virtual machine architecture where
the virtual machine monitor or kernel provides many
services, and sharing of files is permitted, there have
been at least two implemented distributed systems, RSEXEC
[THOM73,COSE7S] and SBS [AKKO72,AKKO74,AKKO75]). These
systems take what might be <called the hypervisor
approach. Each site maintains a full operating system or
supervisor and extra facilities are added, often at a
user level, to form the hypervisor, integrating the site
into the distributed system, So far these extra
fgcilities have just implemented network wide file

systems so that files (and peripherals) can be accessed

73

by & user from any site in the distributed system. This
feature has been exploited, at least in RSEXEC (COSE75],
to attempt load balancing at “log in’ or job initiation
time by directing users to the least utilized site, No
mechanism has been developed for moving a job from site

to site once its execution has begun,

The advantage of these types of system 1is that they
can be built on top of existing operating systems, or at
least those that have been sympathetically designed
IMETC72b, ZELK74,RETZ75]) . The disadvantages are the
duplication of operating systems at each site and the
inability to load level, except crudely as above, because

these operating systems are really autonomous units.

Intercommunicating processes:

The Distributed Computer System (DCS) being developed
by Farber and colleagues [(FARB72a,brcrd,FARB75,ROWET3],
is the archetype of process orientated distributed
systems [LAYM74]1., We have already mentioned two features
of the DCS system in chapter 3, It has 1integrated its
hardware into the system design by employing an
associative mechanism in 1its communication system for
direct addressing of global objects. The global objects
in this case are processes. Also UCS broadcasts are as

efficient in the use of bandwidth as are single messages.

74

The kernel-at each site is extended (from single site
form) to place any interprocess messages that it cannot
deliver at its own site onto the network communication
loop. There they will be picked up by the appropriate
kernel (because it has set the names of all resident
processes in the associative memory of its interface
unit) and eventually delivered to the correct process,.
The other major change in making a distributed system s
in resource allocation. Resources, we said, were
jdentified with processes in process orientated systems.,
The management of these resource controlling processes
can be carried out by allocator processes,. DCS has one
allocator per site (though not necessarily resjding at
that site). The interaction between users and allocators
is modelled on microeconomic theory and is the basis of

load balancing in DCSs,

#hen a user requires a servicer, the execution of 3
particular type of process (such as a text editor), which
will use resources (memory and perhaps peripherals), he
(his agent process) sends a message to all allocators
requesting a *bid’ for the provision of the service
required, The allocators all answer to & common name SO
that only one message on the communication Jloop is
required to ask for bids. Allocators return bids and
after a fixed period of time the user evaluates the bids
he has received and chooses the allocator with the
smallest bid. He sends this allocator a ’‘contract’

message. The gllocator can then create a process of the

75

required type at its site and return the process name to
the wuser. But bids are not binding and so an a]locator
could have allocated elsewhere some of its resources in
the time taken to evaluate ©bpids, 1in which case the
‘contract’ is spurned and the wuser has to start

requesting bids a2ll over again.

Thus DCS 1load balances basically at a job=step or
complete command level, From the above description, for
an N site system, 1+(N=1)+2 messages on the communication
loop are required for a first time successful allocation
of a2 process to a user {when the allocated process is at
a different site from the user®s agent process). Thus it
would seem thgt the overhead would be too great for

attempting finer load balancing.

There are other process orientated distributed systems
under development, DCN ([LAYM74,MILL76) is one, POGUS
(DUVAT7S] is another. But, as far as we are aware, a load
balancing or load levelling strategy has not been
published for any but DCS, and there has been no
published evaluation of the operation of DCS, We have
been told however that for POGOS, a network of 16 or more
identical minicomputers, attempts at load levelling
produced instability and were abandoned. Processes were
being transferred around the system too fast to do any
useful work between moves. Unfortunately, no details
have been published. A very recent paper [MILL76J states

that load levelling mechanisms are still to be developed

76

for DCN.

Finally one other feature of DCN, POGOS and DCS is the
duplication of non=kernel code at all sites. In DCN all
functions, that is the code for the processes that
implement these functions., reside at each site,
Migration of a function involves shifting only the port
name of the process to a new site (LAYM74], Primary
memory space has been permanently traded for decre§sed
traffic on the communication loop. In POGOS a copy of
the whole POGOS operating system, which admittedly 1is
quite small and primitive, resides at each site. DCS
does have duplication for fail=soft reasons but it s
required also because any site, if underioaded, has to be

able to create @almost) any processe.

Kernel/domain architectures:

The functions of a kernel in a single site domain
system are to multiplex ready=to=run computations on the
physical processor and to handle the interdomain jumps.
We emphasize aggin that when a computation has entered a
domain it accesses resources Wwithin the domain and no
others, Thus in a distributed system a process will be
able to execute unimpeded when all the components of a
domain are at one site. If there is a kernel at each
site and it provides a distributed interdomain jump which

ensures all the components are at one site, the rest of a

77

single site domain system can run with no alterations:
just as an interprocess communication system can run once

the communication primitives have been extended.

The distributed interdomain jump is the key to the
operation of @ distributed kernel/domain system, A
process wishing to change domains notifies its local
kernel (that s the kernel at the site where it was
executing in the domain it now wishes to leave). This
kernel has to locate the new domain (domains are the
global objeéts in this system) and in co~operation with
other kernels, choose a site at which the process is to
enter the new domain. The kernels then have to
co=operate, by sending messages to each other, in
shifting the domain components to that site, if any need
shifting. #hen all the components of the domain are at

the chosen site the kernel there schedules the process

for execution again. The distributed interdomain jump
allows load balgncing, as distinct from load levelling,
to be performed at quite a fine level, Work is not

arbitrarily moved around to level the load at each site,
but each request to enter a domain is taken as an
opportunity to shift the components of the domain to
another site if the current status of all the sites
indicates that this is desirable. Every time an
interdomain jump occurs there is an opportunity for the
system to move towards balanced loading. The occasion of
an interdomain jump is also optimum with respect to the

volume of data that has to be moved if the computation

78

changes site. At most, all components of the new domain
will have to change site; frequently some of the
components will already be at the new site. The <choice
of new site can be made to minimize traffic on the

communication subsysteme.

Synopsis:

In this chapter we have examined various types of
operating system architecture and their suitability for
extension to distributed systems. We have shown that a
strict one function per level hierarchical system is not

suitable because load balancing cannot take place. Those

systems that have kernels at the Jlowest level that
implement several co=operating functions, can be more
readily extended to distributed systems. The

inefficiencies of strict virtual machine architectures
seem likely to be increased but, logically at least, both
process orientated systems and domain systems are
suitable for extension to distributed systems, Wwe have
indicated areas that are considered by some to be
drawbacks of process intercommunication systems per ser
and we have stated what we consider to be the drawbacks
of process intercommunication systems 3s 3 basis for
distributed systems, A change in emphasis away fromn
processors towards domains, away from managing messages

towards managing environments, provides, we feel, the key

to a successful distributed system. A distributed

79

operating system based on the kernel/domain architecture
offers great potential both for minimizing the

duplication of code and for fine grain load balancing.

The rest of this thesis describes more thoroughly the
kernel/domain architecture, outlines strategies and
mechanisms that could be employed in implementing the
distributed interdomain jump, develops some of these
mechanisms, describes 3 simulation program that
exercised’ these mechanisms and analyses the results of

this simulation.

80

CHAPTER 5

THE DEVELOPMENT OF THE DOMAIN CONCEPT

Introduction and terminology:

This chapter presents a survey of the development of
the domain concept. We show the connection between
segments and capabilities and show how capabilities are
used to define domains. Jur intention is to demonstrate
that domains can be considered to be the predominant

structure in a computer systeme.

The concept of a segment dates back at least to the
Burroughs B5000 [BURRe61). A segment’s attributes are
some form of identification or name, and a length or
total number of data objects (normally computer wordsy
bytes or instructions). Elements of a segment are
accessed by identifying the segment and specifying an
offset within the segment, It 1is assumed that the
segment’s elements are stored contiguously or, as in a
paged system, discontinuities are taken care of by
subsidiary addressing mechanisms, If ambiguity of
addressing is to be avoided a segment needs a name unique
to all the possible environments in which it will be
used, I1f addressing 1is to be controlled, as in a
protection scheme, then the generation of segment names

has to be controlled. Both the method of naming segments

81

and the mapping of segment names into hardware segment
starting addresses have been the subject of a great deal

of study.

Dennis and Van Horn [DENN66) are generally credited
with being the pioneers of protection schemes and being
the first to use the term “capability’. A capability is

essentially a name, or 2 pointer; a computation that

possesses a capability can access the item named.
Capabilities can name general objects or resources
[LAMPT71] . The capaoility concept has oeen formalized by

recent writers [(WULFT74,FERR74,LANPT6] S0 that a
capability consists of three items:
1) a type denoting the class of object named (of which
éegment is one such class)
2) a value being the éame or identification of the
object
3) a set of rights indicating how the ngmed objects
may be manipulated by the holder of the capability
(the avajlable set ot rights will depend on the

type of the object).

We discuss later how resources can be associated with
segments so we restrict our interest initi§lly to
cgpabilities for segments only (PARN74Db] (and later to
entry capabilites which are capabilities for special
groups of segments). The type ot access permitted to a

segment is not really germane to the development of the

domgin concepte. Hence we will consider a capability to

82

be synonymous with the name of a segment or a pointer to
a segment. So, in tracing the development of the concept
of a domain, we concentrate mainly on modeils of computer
operation where the only resources in & domain are
segments. Ne are interested in the segments accessible

to a computation as the computation proceeds.

Of particular importance 1is the sharing of segments
between different domains or environments. When it s
desired to shift a computation from one site in a
distributed system to another then all the segments
currently accessible to the computation (i.e. its domain)
have to be «collected together at the new site. This
operation will be considerably compliicated if some of the
segments are simultaneously accessible to other

computations.

Before we go on to examine various models we attempt
to clarify some of our terminology. The term ‘process”’
in Computer Science has collected many different shades
of meaning. Spier [SPIE73a) makes a cogent case for
using the term ‘virtual processor’ to denote the idea of
execution of a user’s sequential computation. A virtual
processor is in a one to one relationship with a user,
and the user’s computation proceeds only when a physical
processor is allocated to the virtual processor, A
virtusl processor executes (potentially) all the code
that defines a wuser’s computation but neither code nor

state space [DIJK71] define a virtual processor. The

83

virtual orocessor s an agent acting on behalf of the
user, It is the pseudo=processor of Saltzer [(SALTo66].
In the following sectioné we have altered the notation of
the original descriptions when these wused the term
‘process’ to mean no more than virtual processor as we
have defined it above. we have retained the term
‘process” however when there are other connotations; for
example when a segment of code defines a process and a
subroutine call implies a change of process, or when user

level parallelism permits a user to “own® many processes

at oncer or when resources are managed by processes.

The Evans and LeClerc model:

Although Evans and LeClerc [EVAN6T7] did not use the
term “capability” (using the term fparameterf instead),
they seem to be the first to describe a computation as
progressing through different (protection) environments,
in each of which the computation possesses different
capabilities. They concerned themselves solely with
segments and they made a procedure activation, or
deactivation, the occasion of altering the environment.
when a computation enters a new procedure some (at Ieast}
of the segments it accesses will be different, 1n
particular, if we identify each procedure with a separate
code segment, then the code segment from which

instructions are fetched wiil be different, Evans and

84

LeClerc recognised the importance of the code segment in
delimiting an environment and called the code segment the
‘root’ segment of an environment (which they called a
parameter space). An environment is defined by an
ordered list of capabilities for segments, this list
being called a c=list oy most writers
[DENN66,LAMPT71,WULFT74,COHET7S] . The first capability in
the list is for the code segment. The segments referred
to by the the other capabilities are of three sorts:=~
fixed: the segment does not change with each entry
into the environment
dummy 3 a different segment can be wused every time
the procedure is entered (the conventional
parameter)
scratch: the system will supply a fresh temporary
segment for every procedure activation and
will reclaim the segment when a return s
made from the procedure.
Any of these other segments may be root segments of other
environments, leading to 3 nested structure of
environments as depicted in figure 5.1. Any segment may

be in many environments simultaneously,.

A user formulates addresses by specifying the number
in the c=list of the capability for the segment, plus the
offset within the segment. Thus programs do not have to
worry about segment names or hardware addresses and are
not allowed to use them directly. Addresses are taken

relative to the current protection environment as defined

85

P P=procedure or code segment

S1=1st segment in parameter space
etc.

S1 S2 S3/P| |S4
S1/P| |s2
S1/P

An environment hierarchy of Evans
and LeClerc.

Figure 51

by the c=list. Evans and LeClerc also present mechanisms
for addressing items that are in subsidiary environments,
so that the whole system structure is not uniike that
under a ‘rings of protection” regime [GRAH68,3CHR7Z2].
Procedures high wup the hierarcny can access everthing

lower down,

A procedure call or subroutine call is implemented
simply enough, as the address it is desired to transfer
to can, and must, be generated in the calling
environment. That is, all subroutines that can be called
directly from an environment have their code segments as
part of that environment, The transmission of arguments
is envisaged to be of three kinds:

Entire segmentss The calling routine presents the system
(kernel or hardware) with a list of segment capability
numbers indicating what positions they should occupy
in the c¢=list of the called subroutine. The system
makes copies of these capabilities in the new c=list.

Portion of a segment? The calling routine gets the system
to create a capability for part of a segment and this
is placed in the new c=list.

Individual values: The values of simple variables have to
be stored in a stack segment and the capability for

this segment passed to the called subroutine.

Unfortunately, procedure or subroutine returns cannot
be handlied using just an index into the current c=list,

because the code segment from which the call originated

is not likely to be part of the called environment and
therefore there is no way for a transfer instruction to
formulate the return address, This is where the unique
names of the segments should come into operation. Evans
and LeClerc use a variation in that they give system wide
unique nahes to every environment. Hence a return link
consists of the unique name of the calling environment,
which is the same name as the root segment, plus, of
course, an offset for that segment, They have then to
introduce a protected stack segment attached to each

virtual processor to store links.

The application of unique names to environments rather
than segments does not appear to be a felicitous choicee.
By considering every non=root segment in an environment
to be a potential root segment of another environment, as
Evans and LeClierc do, all segments can be given at least
one unique name, Confusion will arise however when the
same root segment is part of two different environments,
Evans and LeClerc would have been petter advised to
recognise that a c~list defining an environment can be
stored as a segment, and give unique names directly to

each segment including the c=list segment.

88

The Spooner model:

Spooner ([SPOU71] also proposes a segment based model
and he seems to the first ot use the actual term “kernel’
and define 1in detail the functions of the kernel, He
again attaches great importance to code segments. A code
segment defines an operation to be performed by the CPU
on an operand area. The same (compound) operation can ve
performed on different operand areas corresponding to
different, but possibly concurrent, activations of the
procedure defined by the code segment. Spooner uses the
term ‘operand area’ as he envisages ‘windows over core’
(SP1E73a), that is segments are permitted to overlap so
that the same data item may belong to many segments,
However a <change of procedure is held to be & possible

change of environment and is managed by the kernel,

Spooner introduces a third type of memory area, an
activity base. The activity base, as well as providing
space for dumping working registers when the virtual
processor is suspended, records ‘permitted connections’,
that is capabilities for combinations of code and operand
areas (see figure 5.2). fhese are the forerunners of
entry capabilites [NEED72]. Spooner rightly recognises
that access rights, or capabilities, should be a function
both of the virtual processor and the <code it is
executinge. The possibility exists for a virtual
processor to acquire totally new rights when entering a

routine, in comparison with the scheme of Evans and

89

operand

aredas
e i
\\\\\ //
\\‘ II
']
| '
U
. code
P! segments
[|
-
ll l\
s \\\
I(\\
activity
) bases

Spooners model showing 2 possible
‘permitted connections’

Hgure 5.2

LeClerc where the capabilities are confined to the
hierarchy of segments of which the routine is part

(figure 5.1).

Spooner also makes the use of protected entry points
or gates mandatory. Earlier work described protected
entry points for codes the restriction of jumps into the
code from other procedures to a number of fixed
locations, but the use of them was not thought to be
necessary all the time. But without protected entry
points no guarantees can be made about the operation of a

code segment.

The Spier model:

Spier, working from the ideas of Spooner, and Evans
and LeClerc, developed a model for quite a comprehensive
protection system ([SPEI73al and also implemented a
restricted verson of it [SPELT74), The following
discussion relates primarily to the implemented version,
while adopting some of the terminology of the former

paper.

Spier identifies five different kinds of memory area

(segment). These are:

91

1) A body of a pure re=entrant procedure, This segment
is potentially shareable by all virtual processors,
It is called the procedure segment.

2) A protected data base whose information is managed by
an associated procedure, Again the single physical
copy of this segment is shared by (all) virtual
processors. It is called the domain own segment,

3) A working storage area for permanent local values.,
values preserved from one procedure invocation to the
next, These segments are unshareable so that there is
one for every procedure that has been executed by each
virtual processor. These segments are called

incarnation own permanent segments.

QQ A temporary segment which contains a virtual
processor’s execution stack and other temporary
variables for the invocation of a procedure. Again

not shareable, this segment is called the incarnation

own temporary segment,

5) A communication area for transferring parameters
between procedures. There 1s one per virtual
processor which is accessible by that virtual

processor no matter what procedure it is executing,.

This segment is called the argument segment.

In the above the importance of a procedure as defining
an environment 1is again seen, A procedure segment,
together with its domain own segment, forms the basis of
a domain, a ‘firewalled” group of segments. A total

domain consists of the procedure segment, the domain own

9e

segment and all the incarnation own segments (both
permanent and temporary) related to the procedure
segment. None of.these segments belongs to more that one
QOmain. The argument segment s associated with a
virtual processor and is carried along with it as the
virtual processor progresses from domain to domain. Thus
each argument segment is sﬁared, serially, between
domainse. Figure 5.3 shows the relationships of segments

to two domains and two virtual processors.

A virtual processor always enters a domain by a kernel
controlled interdOmain jump to a protected entry point,
or return point, The set of segments that the virtual
processor may access while in the domain is called the
domain incarnation\for that virtual processor. There are
five segments that the virtual processor may access: the
procedure segment and the data base or domain own segment
ot the domain, the two 1incarnation own segments that
relate to both the virtual processor and the domain, and
the argument segment, These five segments form the
environment of the virtual processor, Until the virtual
processor invokes the kernel to change domains it cannot
access any other segments, After such a change, it

csnnot access any of the segments of the original domain

incarnation save for the argument segment.

For each virtual processor the kernel maintgins an

activation area, containing chiefly information about the

domain incarnations that the virtual processor is

93

Virtual processor 1

Virtual processor 2

Z

Domain A procedufé and domain own
shared by virtual processors 1 & 2

N

Incarnation Al
own permanent

Incarnation A2
own permanent

Incarnation Al
ovn temporary

Incarnation A2
own temporary

m
g
< <]
<} a
ot
g <
-
S e B
(] H 5
2 8
& O
0 v
/7]
>
m e
< 0 o
-l E O
g 3 K
& o
0 MG
a (<

Incarnation Bl
own permanent

Incarnation B2
own permanent

Incarnation Bl
own temporary

Incarnation B2
own temporary

Argument segment 2
‘shared by domains A and B

N

Domain B procedure and domain own
shared by virtual processors 1 & 2

N

Segment access in
Spier's model

Figure 5.3

permitted to access. This is, in effect, in the form of
sets of four capabilities, for the four segments that
together with the argument segment constitute each domain
incarnation, A current domain pointer indicates the set
of capabilities that define the domain incarnation the
virtual processor is currently in. The kernel also
maintains a hidden stack so that interdomain procedure
returns can be controlled. The kernel”s action for an
interdomaiH transfer consists essentially of correct
handling of the stack and repositioning of the current
domain pointer so that the correct environment will be

invoked when processing proceeds.

Spier [SPIE74) describes briefly a mechanism whereby a
virtual processor”s activation area neéd not contain, at
virtual processor initiation time, all the domain
incarnation capabilities it will need as a computation
proceeds. This involves domains having unique names
within the system and being objects in the tiling system,
When a call to the kernel requests entry to a domain that
has not been entered before, the domain procedure and
data base segments are copied into active storage (i.e,
given hardware addresses). The first time a particular
virtual orocessor requests entry to the domain the
incarnation own segments are created in active storage as
well as the set of «capabilities for the domain
incarnation being placed in the virtual processor’s
activation area. WNo description of the reverse processes

of unloading domains from active storage and removing

95

capabilities from a virtual processor®’s activation area

is given,

The weakest details of Spier’s implementation are a
consequence of his having just five segments (one of each
kind) per domain incarnation, Firstly, the possibility
is denied of seagment structure reflecting any underlying
divisions of the procedure’s variables (other than the
permanent/temporary division). Secondly, parameter
transmission can become very inefficient. Wwhen a few
simple items are the only arguments that pass between
domains then the overhead of <copying these 1into the
argument segment and copying them back again is not too
great. But, as Spier”s model stands, the accessing of a
whole segment’s worth of data from more than one domain
can be done in one of only three fashions, all
unsatisfactory.

1) The data can be made a permanent part of the argument
segment thus voiding any claim of confining data to
the environments in which it is used.

2) The data can be copied in and out of the argument
segment as required.

3) An entry point of the calling procedure can be made
available to be used by the called procedure to access
items of data as they are required (cf Algol
“thunks”’)., This involves a domain call/return

sequence for every item of data (SPE173al.

96

The Cosserat model:

Cosserat [CUSS74) proposes a process orientated system

where the number of segments accessible to a process is

varied, His model is based on an actual hardware
architecture, that of the Plessey 250
[CUSS72;ENGL72;§NGL74]. Cosserat, following Fabry

[FABR74), makes capabilities into data objects which can
be copied and overwritten in normal segments by wuser

programs. Cosserat identifies three types of segment:?

1) Procedure segments: Cosserat allows his procedure
segments to be impure so that they can store data
items and/or capabilities for other segments. Thus
Cossergtfs procedure segment subsumes both the
procedure segment and the data base or domain own
segment of Spier. The capability for a procedure
segment is @& type of entry capability. Qutwith the
procedure the only form of access to the segment is
transfer of control to the procedure, fhen the
procedure is being executed then other forms of access
are permitted so that data within the segment can De

read and written.

2) Data segments: These contain general bit patterns and,
as mentioned before, can also contain other
capabilities (which the hardware always recognises as
such). The capabilities for these segments are freely

copiable so that the same segment may belong to more

97

than one protection environment simultaneouslye. when
a segment 1is destroyed some (unspecified) procedure
has to be carried out to alter all capabilities for

that segment to “null’ capabilities.

3) Process base segments: When a process is created (see
later) it owns one segment, a special process base
segment. This segment contains the capability for the
procedure being executed and can contain parameters
passed to the procedure. The segment also contains a
dump area for temporary storage of wWworking registers
by the system and a return Jlink to the <calling
procedure (see later). ihe capability for this
segment is not explicitly available to the process.
It 1is available to the creating process (with access
rights such that the creating process can block and
unblock the process but cannot access its data) and it

is used by the system in its scheduler table entries,

In Cosserat’s model transfers of control to new
procedure segments result in the execution of new
processes, A GOTO type instruction results in the
kernel/hardware placing the capability for the new
procedure segment (which the old process must have
possessed in order to formulate the address correctly) in
a new process base segment and then deleting the old
process base segment. Thus processes are truly
identified with code sequences, A CALL type transfer

results in the <creation of a new process base segment

98

but, this time, the old process base is not de=allocated
rather the capability for it, suitaoly protected, s
placed in the new process base. Hence & RETURN
instruction can formulate the correct address to which
control should be transferred. The newly entered
procedure is not allowed to access the «calling
procedurefs process base in any other fashion however.
The creation of parallel processes is accomplished using
a transfer instruction, but not de=allocating the process

base of the creator and not removing it from the the

scheduler.

A1l these forms of transfer of control permit the
transfer of parameters, The same convention is used 1in
all cases: a list of data objects (which could include
cgpabilities) in the current process base segment s
specified by the appropriate instruction, and these are
copied into the target process base. Since a process
executing 1in one procedure segment does not have access
directly to other procedure segments or to earlier
process bases the only information that can be shared
between procedures 118 that which s pointed to by
capabilities embedded in the procedure at compile timey
or that which is passed as parameters during a transfer

of control.
Cosserat effects the analogue of Spierfs incarnation

own segments by a modification of the transfer of control

mechanism, He allows an “indirect’ transfer, a transfer

99

to a segment which contgins a number of capabilities,
One of these capabilites is for the procedure segment,
and the rest, which are made accessible to the processes
executing the procedure, are capabilities for data
segments. If each user accesses the code segment through
different “indirect”’ segments then the effect of

incarnation own segments is achieved.

Thus the following description of general resource
handling could be applied to Spier’s model if his concept
of domain own segment were to be replaced by both domain

own segment and domain own resource.

All resources require codevto manipulate them and 1f
this code 1is gathered 1into a procedure segment then
access to the <code is equivalent to access to the
resource, This 1is the representation of resources as
segments mentioned earlier, Some resources, such as
semaphores, can be represented in core so that data space
associated with the code is all that is required to make
the code segment a resource manager. Other resources:
such as line printers, require special [/0 instructions
to manipulate them and the use of these instructions has
to be confined to the <code segment that manages the
rPesource, When the control registers for the device are
treated by the hardware as memory locations (as in the
PDP 11 series and the Plessey 250) then this confinement

can be achieved using the capapility mechanism

unmodi fied.

100

For many types of resource a data area for each user
of the resource has to be kept, This area could contain
buffer space and/or status information such és, in the
case of a filehandler, the names of the files currentiy
opened by the user. Management of this information is
facilitated by keeping it in separate segments, separate
both from the common data and from the information
related to other users. This is the function that the
‘indirect’ entry segments serve. This method of resource

management has been successfully used on the Plessey 250.

Other Protection Schemes:

e have not dealt with all the proteqtion schemes that
have been proposed, concentrating on those that emphasise
the code segment as the basic Junit, OQur chief omissions
are CAP and HYDRA, both of which are being implemented,
and the Chicago Magic Number Computer, CAL and SUE, the

implementations of which were terminated prematurely.

CAP is a machine with special capability manipulation
hardware being developed at Cambridge gNtED72.NEED74].
The main objects in the system are segments and processes
and it is similar in many ways to the model of Cosserat.
However the concept of a domain own segment, in 3Spier’s
terminologyr, that is a shareable data base, does not

existe. Eurther the system is formulated in the context

101

of & hierarchy of processes and the accessing of all
capabilities through indirection tables to a master
capability segment. A master process in the process
hierarchy can treat its slave processesf capabilities as
simple data. This produces reliability compared with
single level capability systems [LAMP741 but we feel it
is too general a mechanism to be incorporated in a

distributed system,

The Chicago Magic Number Computer LFABR74] was the

first attempt at incorporating capabilities into a
hardware architecture. Capabilities were for a single
type namely those for segments, The resulting machine

would, it seems, have been similar to the Plessey 250 but
less efficient in its handling of alterations to

capabilities when segments change location,

The HYDRA system [(WULF74,RULF75b,LEVI7S,CUHETS] s
being mounted on the multiprocessor C.mmp machine, It
allows an wunlimited set of types of capability. Every
object in the system, not just processes or domains, has
an associated c~list so that arbitrarily complex objects
can be built up. HYDRA s also process orientated
allowing for the dynamic creation of processes. Une type
of object in HYDRA is the procedure. Entering a
procedure involves the <creation of a new protection

environmente.

102

CAL [LAMP76] was an attempt to put a capability bgsed
system on a Control Data 6400 computer. It again had a
multiplicity of types of object but c=lists belonged only
to domains, and it would appear that the number of
virtual processors in the system was fixed. The domains
in this system were rather static objects compared with
the equivalent in HYDRA, Domains existed for long
periods of time so that a change of procedure involves a
change of domain rather than the creation of a new

domain.,.

Project SUE was to result in & capability based
operating system for an IBM 360 computer {SEVC72,SEVC74),
Again the system had many types of objects, and
capabilities for them, and it was also organized to
support hierarchical processes, Processes were created
with an environment that basically did not change. Al
resources were handed out along the arcs of the process
creation tree. Capabilities for the resources were
conside;ably extended from the three field sort described
earlier, to contain five fields including a count field.
In SUE a capability not only pave access to a resource or
object but specified how many times or how much of it
would be accessed, It is interesting to note that the
nucleus of an operating system for SUE was provided with
about 10 processes, that is 10 protection environments,

together with the kernel.

103

Summary:

The use of a code segment, containing a procedure or
group of related procedures, to define a protection
environment or domain, pervades almost all the models we
have mentioned. The remaining contents of the domain
vary from model to model but the idea of global data,
accessible to @all virtual processors that enter the
domain, and local data that is different for each

processor entering the domaing, is common to several

models, The models also differ in the latitude given to
segments to belong to more than one environment
simultaneously, oOPr even Sequentiglly. As we implied at

the beginning of this chapter, in a distributed system
the less sharing there is of segments the easier

management of domains is likely to be.

The entering of a new procedure 1is wusually the
occasion of changing a virtual processor’s protection
environment, Details of this change of domain vary from
model to model, particularly 1in regard to parameters
passed to the new environment. e have indicated that
some movement of segments as parameters to new domains is
essential if gross inefficiencies are to be avoided.
This, of course, conflicts Wwith our desire to have no

sharing of segments between domains,

The fact that the domain is the key concept in all the

proposals and systems we have mentioned in this chapter,

104

supports our assertion that the domain can be considered
the paramount structure in computer systems, However
with the successful implementations of capability based
systems being so thin on the ground the kernel/domain
architecture could hardly be <called an established
technology. But we believe it to be & viable
architecture and in the next chapter wWe propose a
kernel/domain architecture suited to distributed systems.
Our enthusiasm for the kernel/domain architecture is
tempered, we admit, by one consideration, The size of
domains is a question of vital importance to us, and one
on which there has been no published information. Both
CAP and the Plessey 250 wuse hardware to efftect the
interdomain jump so that the overheads of wusing small
domains, with frequent domain changes, are small. HYDRA
has a software scheme to handle interdomain jumps and So
requires largish domains, as a distributed system
probably will, to avoid the interdomain jump overheads
swamping the useful computation. As yet there has been
no indication as to whether the HYDRA implementors have
succeeded in generating large domains. We return to this
question in chapter 7 when we look at how programming

language structures relate to domains.

105

CHAPTER 6

OUR ™MODEL
In this chapter we propose a kernel/domain
architecture suited to a distributed system. First we

give a brief discriotion of its structure and then give a
detailed description of how the model could be
implemented wusing capabilities. Finally we relate our

model to those discussed in the previous chapter,

SECTION 1: THE BASIC COMPONENTS.

The purpose of all the models we have looked at in the
previous chapter has been to enhance systems reliability,
both by enforcing the run time protection rules of the
model and, as Spooner and Spier stress, by the modular
structure of software resulting from the design of
domains or protection environments. #hile we do not want
to dispense with these aids, our chief reason for wanting
a computation divided into a sequence of incarnations of
different domains is to allow the <computation to be

performed at different sites in a distributed system

106

when, for resource utilization reasonsy this is

desirable.

Much of the thrust of recent research on capabilities
and domains has been to generalize their oproperties to
cover every conceivable type of computational
requirement. By analogy with the full flexibility of the
Von Neuman architecture often being restricted (without
real loss of function) in order to achieve efficiency
[BURR61,FEUS73,D0RA7S5]), we have sought a minimal set of
capability and domain properties that can be realized
efficiently in a distributed system and at the same time
cover normal computational requirements. Because Spier’s
model had the highly desirable property, for us, that no
segment ever belongs to more than one domain at once. it

made a good starting point for the model we have

developed to meet the requirements for distributed
systems. We give a concise description of the model
before expanding on its features and giving a

justification for them.

The basic components of the model are:

1) A reference space of segments, spread over and
interchangeable between a number of sites,

2) A number of virtual oprocessors; relationships or
associations, alterable in time, exist between virtual
processors and segments (and also between segmnents
themselves).

3) A kernel, a software extension of the basic machine,

107

exists at each site and manages virtual processors and
segments. Kernels communicate with one another to
effect this management. All transfers of segments

between sites are performed oy kernels.

A segment that contains pure re=entrant code is called

a code segment and is potentially executable by all

virtual processors. A code segment forms the basis of a
domaing together Wwith an associated public (data)
segment, if one exists. A public segment consists of

data that is usable by all virtual processors, but only
when they are executing the related code segment. Local
segments constitute the rest of a domaine. There are
local segments associated Wwith every virtual processor
that executes (the code) in the domain. They hold data
relevant only to the associated virtual processor. A
domain, then, is a group of segments which cannot be
accessed by any virtual processor not executing the code
segment of the domain. The entry to and exit from
domains by virtual processors is carefully controlled by
kernels. At the time of virtual processor entry or exity
local segments related to the virtual processor

(parameters) may be transferred between domains.,

For each virtual processor there exists an associated
segment, the processor base segment, which is accessible
to only that virtual processor. It is accessible at all
times, no matter which domain the virtual processor is

executing in. This processor base segment, the code

108

segment and the public segment of the domain the virtual
processor is ins and the related local segments together
form a domain incarnation (see figure 6.1). It is a
sufficient condition for a virtual processor to proceed,
on entering a domain, if all the components of the domain
incarnation are at the same site. A domain that does not
have a public segment is called a pure (code) domain, A
domain incarnation of a pure domain may include a copy of
the associated code segment rather than the code segment
itself. A domain that does have a public segment is

called a monitor (see later).

'The Entry Capability:

Capabilities are the normal mechanism used to
implement domains., Cosserat’s model assumes a tagged
architecture [FEUS73] and allows capabilities for
segments to reside in normal data segments. However, the
implementation from which his model was derived, on the
non=tagged architecture of the Plessey 250, insists that
capabilities reside 1in separate segments from data so
that appropriate protection of capabilities can be
applied [ENGL74]. Either approach means that at a change
of domain the identity of all the segments that belong to
the new environment is not immediately obvious. Vhen
capabilities are kept in separate segments a tree

scanning operation is required to determine all segments

in the environment, For Cosserat’s model the problem is

- 109

CODE SEG.

PUBLIC SEG.

| LOCAL SEG. 1

LOCAL SEG. n

PROCE SSOR BASE SEG.

A DOMAIN INCARNATION

Figure 6.1

an order of magnitude worse; every segment must be
systematically searched to make sure that no possible

branch in the tree structured environment is overlookede.

Only if we did not require to know what segments
constitute the new environment at the time of a domain
change could we use Cosserat’s scheme (if we had a tagged
architecture) or allow some local segments to contain
capabilities only. But since, as we will explain, it is
necessary to know what segments constitute a new domain
incarnation, we have to forego the not inconsiderable
advantages of list structured addressing ;FA&R?Q]. This
necessity arises in a distributed system because space
has to be allocated for segments of a domain incarnation
that are not at the site chosen for the domain
incarnation, and these segments have to be brought to
that site. This can be done at the time of domain entry
(pre=loading) or the first time a capability is used in
the new domain (demand loading). In paging systems
pre=loading pages from backing store has been shown to
involve less overheads than demand paging [ADAM7S], As
we show later, fetching a segment from another site is
likely to involve almost as much work as fetching a group
of segments together so that a similar trait with respect
to segments is likely in distributed systems,
Accordingly 1in our model the capabilities for all the
segments that will ©be involved 1in 3 new domain
incarnation are placed in a single list, so that they can

be quickly scanned to determine the requirements for the

111

new environment, This 1list of capabilities for the
segments making up a domain incarnation is called an

entry capability,

Ne have found the entry capability to be a very useful
concept. The interdomain jump can be thought of as a
validation of the entry capability for a new domain
incarnation. As its last action in the old domain 3
virtual processor places the capabilities for the
segments of the new domain incarnation into a 1list
(details about how this is done are given later on)o. He
call this list a c~list. The virtual processor calls the
local kernel passing it the c=list it has just
constructed. The kernel scans all the capabilities on
the new c=list and if they all refer to segments resident
at that site it (normally) will mark the c=list aé a
valid entry capability and place it in a qqueue of ready
to run domain incarnations, If all the segments are not
resident at the site then the c=list is sent to the
kernel where the code segment resides. This kernel
calculates what it considers to be the “best’ site for
the domain incarntion to take place at, and passes the
c=list, suitably marked, to this site. The kernel at the
*best’® site could decide that it did not want the
jncarnation at its site in which case it passes on the
c=list to another site, but generally it will accept the
c=list, go through it, and request kernels that have the
segments in the <c¢=list to send those segments to its

site. when all the segments have arrived at its site the

112

kernel marks the c-list as a valid entry capability and
schedules the domain incarnation for execution (see

figure 6.2).

The above is a very skimpy description, but it does
show the importance of the entry capability in defining
the domain incarnation in a compact form, The
interdomain jump involves up to three scans, at different
sites, of all capabilities for the domain incarnation,
This shows the infeasibility of having a more general
distribution of segment capabilities if preloading of
segments is to take place. Before we give details on how
segment capabilities are initially placed in c=lists we
discuss the differences between the management of
capabilities for code and public segments, processor base

segments and local segments,

Local segments:

We mentioned that where <capabilities were freely
copiable the deletion, or even change of address, of a
segment required that all copies of the capability be
altered. In practicer, in single site systems, all such
capabilities are pointers to a master table
INEED74,ENGL74] so that all that s required is the
alteration of the master entry to reflect the new
situation, coupled perhaps with a usage count so that the
master entry can be dispensed with when no capabilities

point to it. In distributed systems we are, of course,

113

STAGE 1

AT LOCAL SITE Send entry capability
to code segment site.

STAGE 2
AT CODE SITE Perform ‘best’ site
: calculation and send
entry capability there.
STAGE 3
AT “BEST” SITE ‘ Request other kernels

to send component
segments and then
schedule for execution.

BASIC ACTIONS PERFORMED FOR AN INTERDOMAIN JUMP

Figure 6.2

denied the luxury ot a central master table of
capabilities., For local segments a master table could be
kept in each processor base segment but this would
complicate any interprocess communication involving the
passing of segments. Hence we make capabilities for all
local segments “transfer onlyf [GRAHT7Z2]) . This is a step
better than Spier®s completely static, no transfer,
scheme for his incarnation segments. OUOnly one capability
for each local segment exists and this is passed from
environment to environment as requirede. The only time a
local segment is shifted between sites is at the time of
domain incarnation entry. This is when the kernels have
the entry capability 1list and so can easily modify the

information in the relevant capability.

A entry capability may sometimes hold pseudo
capabilities instead of capabilities for local segments.

These are of the following types:

Transient: This pseudo capability just specifies a length
so that the system can create a scratch segment for an
incarnation at the site chosen for the incarnation to
take place. Ahen the segment is created a genuine
capability replaces the transient one.

Null: To facilitate 'the transmission of parameters
between domain incarnations a slot in an entry
capability may be empty.

On disk: The segment is in & disk buffer,

115

Descriptor: Used when a segment is not intended to be
accessed by the current domain but to be passed on to

another domain.

The last two types have been introduced for reasons of
operational efficiency and will not be mentioned again in

this chapter.

Code and oublic segments:

Domains, as we have already stated, can be identified
with their code and public segments. Entering a domain
implies execution of the code 1in the code segment.
Logically many virtual processors can be executing 1in a
domain simultaneously (although, when there is one
physical orocessor per site and only one copy of the
code., only one viptual processor can be progressing
through the code). Thus the code and public segments can
form part of many different environments at the same
time, #e cannot make rules wnhich would restrict these
segments to single domain incarnations and not, at the
same time, so emasculate the distributed system as to
make it useless. Therefore to handle <code and public
segments a distributed equivalent for a master table of
capabilities is required. We make the code and public
segments of domains global objects (as discussed in
chapter 3), the only ones in our system, We assume that
at any time the kernels 1in a system can between them

locate the code and public segment of a domain. Chapter

116

3 detailed how this might be done. This means that
domainsg must have system wide unique names and every
program must be appraised of the names of the domains it
wishes (is permitted) to enter. Thus a capability for
code and public segments is simply a name, it does not
have any address information. The kernels have to

translate this mame into an address.

Processor Base Segment:

The management of the processor base segment is the
casiest of the three types of segment. Its capability
need never be made explicitly available to a user, nor
does it make sense for a processor base segment to Dbe
simultaneously part of more than one environment, Wwhen a
kernel is requested to perform an interdomain jump it can
take the processor base segment from the entry capability
of the requesting domain incarnation and place it in the
new entry capabiliity. The kernel may have to modify the

processor base segment itself to fix up return links,

Spier’s model uses the argument segment simply for
carrying parameters between domain incarnations.
Information about virtual processors is held in a special
area in the kernel. Cosserat holds this information in
his process base segment., This is the solution we prefer
as then the information moves from site to site as the

virtual processor moves from site to site. The processor

117

base segment in our model is thus slightly anomalous in

construction, consisting of quite separate sub-segments.

These sub-segments containz

1) simple variable values being passed as interdomain
parameters

2) entry capabilities for the domains that the virtual
processor has entered

3) other information about domains which the virtual
processor is permitted to enter

4) general management information, €eJ. scheduling

parameters and accumulated run time.,

SECTION 2: ENTRY CAPABILITY STRUCTURE AND MANAGEMENT.

We have detailed how once a putative entry capability
(c=1list) is presented to a kernel, the kernels go about
gathering all the segments together and schedule the
execution of the new domain incarnation. We now look at
the process of creating the entry capability list in the
first place. Spier”s distinction of two types of local
segment, incarnation own permanent and incarnation own
temporary, gives a starting point for identifying the
mechanisms required. Since we permit local segments to
pass as parameters between domain incarnations we reguire

three categories of local segments?: temporaryy permanent

118

and argument. #e suppose that the local segment
capabilities in an entry capability each belong to one of
three sublists:

the temporary list or I=1list

the permanent 1ist or P=list

the argument list or A=list

Stack organization of entry capabilities:

Consider first a system in which all local segments
are of the temporary type. OUn 2 computation’s entry to a
domain the local segments required are created. They
exist while the computation proceeds in the domain and
while calls are made to other “inner’ domains, to which
they may be passed as parameters, They are deleted when
the computation exits from the domain. For such a system
it is appropriate that skeleton c=lists be kept in a

stack in the processor base segmente.

To enter a new domain a virtual processor executes the
code in the old domain to cause the name of the new
domain, that is the name of the code and possible public
segments, to be placed in a new c=list which will
eventually be placed at the top of the stack of entry
capabilities. This name will normally have been embedded
in the cod; at compile time but exceptionally could have

been passed as a parameter to the old domain incarnation.

The desired entry point is also stored with the domain

119

namee.

e could use compile time information and have the
code of the old domain specify pseudo capabilities (of
the'transient type) for the local segmenté that are to be
created for the new domain incarnation. The alternative
is to have a template [(CUOHE7S5] associated with the code
segment and have the kernel at the code site create the
pseudo capabilities before it does its ‘best® site
calculation, This second alternative is to be preferred
because the data about the internal structure of a domain
is held in just one place, which is in accordance with
the principle of information hiding (PARN72), and it

leads to less duplication of code.

Parameter handling:

In the case where the domain name is known at compile
time then the number and type of any parameters taken Dby
the domain can also be specified at compile time. When
these parameters are simple variables they can be loaded
into an argument stack or area in the processor base

segment.

When the parameters are for local segments (which must
form part of the old domain incarnation) there are two
approaches that can be taken.

1) Domains can be oermitted to shift capabilities between

120

the T=list and A~list. The code in the old domain can
specify the transfer of the segment’s capabilities
from the T=list of the old domain incarnation to its
A=list. The local kernel then transfers the old
A=list to the A=list of the new entry capability when
invoked to perform the interdomain jump.

2) Only the kernel is permitted to manipulate
capabilities and it transfers the entries direct to
the new A=list. In this case the code places pointers
in the new A=list back to entries in the full list of
local seagments in the old entry capability (see figure
6.3). When the interdomain jump request is made the
local kernel can transfer the ‘pointed at”

capabilities to the new A=list, noting in the old

c=list to where they were transferred (see figure

The former of these two approaches 1is the more
flexible but 1is 1likely to be less efficient and less
secure. For in this approach the A=list becomes simply a
receptacle for parameter capabilities at the time of
interdomain jumps. The entered domain has to transfer
the capabilities for the parameters back to a T=list
before it can safely access them, Although it saves the
kernel a job, this transferring of capabilities back and
forth between T=list and A«=list could be error prone.
Hence we prefer the second approach which leads to more
compact entry capabilities at the cost of slightly more

work done by the kernel at domain call and return time,

Then the A=list always contains the parameters passed to
the domain. It has no special relation to parameters

passed from the domain to inner domains.

when the name of the new domain 1is not known at
compile time, the same action as above can Dbe taken if
some form of parameter specitfication has been given (and
checked) at compile time. Otherwise the kernel can
accept the parameters as given but, before permitting
entry to the new domain, it would have to perform a check
to ensure that they corresponded to those expected by the
new domain. Such a dynamic check could turn out to be
both more costly [HANS74] and coarser [HANS73) than one

provided at compile time.

Figure 6.3 gives an example of the old and new c=lists
just before the local kernel is invoked to perform the
interdomain call. Figure 6.4 shows the transfer of
capabilities made by the local kernel before it sends the
c=list off to the site of the code segment (or deals with
it itself if the new code segment is already resident at
its site). Figure 6.5 shows the situation just prior to
the “best’ site calculation and figure 6.6 gives the
final form of the entry capability stack when the called

domain incarnation is ready to run,

122

[T] LOCAL SEG.D

[T] LOCAL SEG.C:

{T] LOCAL SEG.B

1 4

[T] LOCAL SEG.A

CALLING
DOMAIN ADDRESS

PROCESSOR BASE

STACK OF C-LISTS

[A] ta

PROCESSOR BASE

(A] 24
CALLED ENTRY
DOMAIN POINT
SLOT FOR

NEW C-LIST

2
parameter
segments
specified

Notes: [T] indicates that the

segment belongs to the T-1list

etc.

Local seg A is segment 1l in
the c-list, B is 2 etc

START OF INTERDOMAIN CALL

Figure 6.3

[T] #24#

{T] LOCAL .SEG.C

[T] #1#

. [A]l LOCAL

SEG.D

{A] LOCAL

SEG.B

CALLED-
DOMAIN

ENTRY
POINT

PROCESSOR

BASE

[T] LOCAL SEG.A

CALLING / RETURN
DOMAIN /ADDRESS

SLOT FOR
PROCESSOR BASE

STACK OF C~LISTS

NEW C-LIST

TRANSFER OF CAPABILITIES

TO NEW C-LIST
Figure 6.4

[T] size=100

[T)] size=267

[T) size=900

[A] LOCAL SEG.D

[A) LOCAL SEG.B

CALLED / ENTRY
DOMAIN /ADDRESS

PROCESSOR BASE

-NEW C-LIST

NEW C-LIST AFTER
INFORMATION FROM
CODE SEGMENT TEMPLATE
HAS BEEN ADDED

Figure 6.5

[T)] LOCAL SEG.G

[T] LOCAL SEG.F

[T}] LOCAL SEG.E

[A] LOCAL SEG.D

[A] LOCAL SEG.B

CALLED
"DOMAIN ADDRESS

PROCESSOR BASE

0.

[T) #2i

[T)] LOCAL SEG.C

[T] F1

[T] LOCAL SEG.A
CALLING / RETURN
DOMAIN /ADDRESS

SLOT FOR
PROCESSOR BASE

({
| |

STACK OF C-LISTS

COMPLETED INTERDOMAIN CALL
Figure 6.6

\ DOMAIN ADDRESS

< [T) LOCAL SEG.C

——-— = = - — = - - =

]

|

, [T] LOCAL SEG.G : DELETED
]

i
r —————————— -

f

. [T) LOCAL SEG.F : DELETED
|

L__.____._._.._.__.I
''[T] LOCAL SEG.E' DELETED

4 [T] LOCAL SEG.D

Y (T] LOCAL SEG.B

[T] LOCAL SEG.A

CALLING RETURN

¥ PROCESSOR BASE

STACK OF C-LISTS

TRANSFER OF CAPABILITIES
AT INTERDOMAIN RETURN
Figure 6.7

Other interdomain jumps:

A return to a domain is also performed by an
interdomain jump. If the slots where parameters were
passed to were noted (see figure 6.,4) then the top two
entry caoabilities in the entry capability stack contain
all the information the kernels require to effect a
return. (Except that any simple values to be returned
must be olaced 1in the parameter aresd. When the
interdomain jump is requested the local kernel shifts
back the processor base segment and all the parameter
segment’s capabilities (i.e those in the A=list) to the
c-list for the domain incarnation being returned to.
Then the kernel deletes all segments whose capabilities
are in the T=list, The entry capability for the domain
being returned to is then validated as before except that
there 1is no requirement for the code segment to supply
details of the structure as this is known already.
Figure 6.7 depicts the movement of capabilities effected
by the 1local kernel when requested to perform an

interdomain return,

Unfortunately not all computations proceed 1in the
nested fashion mirrored by a stack implementation. One
simple example of this 1is where a computatjon moves
serially through domains. If the first domain 1in the
sequence was passed parameters in a normal call, then all
domains in the sequence must maintain the same parameters

so that the final domain in the sequence can perform a

128

correct return. Within the sequence of domains a virtual
processor wishing to jump to the next domain loads the
name (and entry point of the domain) into a new c~list
and requests an interdomain jump. The kernel then copies
the processor base capability and the capabilities in the
called domain incarnation’s A=list into the c-list and
dispatches the c=list to the code segment site, It also
deletes all the local segments whose capabilities remain
in the old top of stack entry T=]list and removes this
entry capability from the stacke. The rest of the

interdomain jump proceeds as before.

Retaining permanent segments between calls:

Greater complications arise when it is desired to
retain local segments between calls on the domain. This
arises when, for example, there is a co<routine structure
between two or more domains, or generally in the handling
of peripherals which requires the maintenance of buffers
and status information, Although it is quite straight
forward to devise rules for kernels to know when t place
local segment capabilities in the P=list, so that they
Wwill not be deleted at domain exit time, it is more
difficult to devise satisfactory rules for kernels to
know when to eventually delete segments in the P=list,
Consequently we allow a virtual processor to move any
local segment in its current domain incarnation between

the P=list and the T=list. This gives a greater

flexibility than could be achieved by automatic rules,
It shifts the responsibility for deleting permanent

segments to the prograommer.

In order to use the local segments whose capabilities
are stored in the P=list when a domain 1is re-entered
again, the P=list, or the whole c=list with appropriate
empty slots, has to be preserved when the entry
capability is removed from the top of the stack. The
following is a list of options available:

1) Abandon the stack of <c¢c~lists altogether, keeping a
simple table of c=lists for all domains entered or
known about, and maintain a separate stack of return
links and a pointer to the current domain incarnation,
With appropriate organisation this gives quick access
to the c=list, which includes at least the P=list, of
any domain,. This 1is the approach taken by Spier
(SPIE74)1. It restricts all entry points of the domain
to taking the same number of argument segments and
using the same number of temporary segments (althougnh
null segments could be used sometimes). Further it
does not allow recursion of any form.

2) Maintain the stack but wuse another area of the
processor base segment for storing P=lists of exited
domain incarnations. Together with each P=list, an

indication must be kept of the domain to which it

belongs. For every call on a domain this ares has to
be checked to see whether there are local permanent
segments for the new domain or not. Also for domains

130

3)

4)

with multiple entry points the sequence of <calling
these has to be controlled, or all entry points must
use the same structure of permanent local segments.
Recursion using the same instance of permanent
segments is possible.

A variation on the previous option is to store the
P=1list with the code segment templates and maintain
separate templates for every virtual processor that
has previously entered the domain., This could provide
more flexibility than option 2 in the arrangement of

P=lists for different entry points but otherwise the

properties of the two options are similar, But this
is not a good solution,. The altering of data
associated with the code segments inhibits the
duplication of code at different sites. Also error

recovery is made more difficult; information about the
resources a virtual processor has (defined by the
permanent local segments it owns), is spread
throughout the distributed system rather than being
concentrated in the processor base segment (which will
always be at the scene of any error).

Change the stack to a tree arrangement similar to that
used in quasi=parallel programming systems [DAHL72]
and some forms of parallel processing [ORGA73). When,
at the first domain exit time, the kernel detects that
the P=list 1is not empty it “splits’® the stack, The
c=list being exited from is linked, by the kernel,
into the ¢tree as a sibling of the original calling

domain, Provided that kernels can distinguish first

131

5)

time entry requests from re=entry requests, full
dynamic recursion is possible. In the case of
re=entry, a search up the tree may be required to
locate the correct- c=list. Again care will Dbe
required with mbltiple entry point domains. This
option also permits an obvious rule for the wultimate
deletion of permanent segments, namely deletion is

performed and the tree pruned, when control returns to

the parent domain incarnation. But this option
confines interdomain calls to conform to a
hierarchical structure. Also if two or more P=lists

for the same domain incarnation exist with the same
parent then some further mechanism s required to
identify which P=list 1is to be wused 1in a domain
incarnation.

Retain the stack and introduce labels, that 1is names
for c=lists. These named c¢=lists are stored in a
separate area 1in the processor base segment and
contain at least the domain name and entry address,

and incarnation P=list. They could also contain slots

for parameters and pseudo capabilities for the
temporary segments (see figure 6.8). These c=lists
are put together by a kernel request during the

virtual processor’s execution in the domain to which
the segments pointed to by the c¢=list belong. The
kernel returns a label which can be passed as a simple
parameter. The main use of this is to preserve the
P=1list of a called domain, Before it exits the

virtual processor in this domain sets up the label

132

[T} size=900

[T) size=200

[P] PERMANENT
LOCAL SEG.

[A] SLOT FOR
PARAMETER

[A] SLOT FOR
: PARAMETER

DOMAIN ENTRY
NAME ADDRESS

"SLOT FOR
PROCESSOR BASE

EXAMPLE OF A
LABEL C-LIST

Figure 6.8

6)

c=list and then returns with the label to the c¢aller,

For subsequent re=entry the <caller requests an
interdomain jump to the label. The local kernel
retrieves the c=list and validates it as usual, The

order of calls to multiple entry points is dictated by
the called domain by way of the labels it returns at
the end of each call. The label mechanism can also be
used to implement “call by namef parameter passingy
but this is not something to be encouraged in a
distributed system. As the connotations of label
would suggest, this option is rather primitive. But
it can permit full recursion as well as distinguishing
easily between multiple uses of the same domain by the
same virtual processor. To enter a domain a first
time a virtual processor presents an initial entry
capability; for subsequent re-entry it presents the
label returned from the previous entry. If the
virtual processor wants to use the same domain for a
different purpose (e.g. if it is a file handler dgomain
and the virtual processor wants to open a second file)
then it presents an initial entry capability again and
will be returned a new label. This is the only option
proposed so far that can handle this multiple use
situation.

Abandon the concept of permanent local segments
altogether. Instead generate temporary local segments
at an outer level and pass them as parameters through
all inner levels to the domain that requires to use

them, Also, the public segment of the domain could be

134

used to hold information thst would otherwise have
been kept in permanent local segments, This
solution,as well as violating protection principles,
could involve a huge 1increase in the number and/or
size of segments that would have to ope shifted from

site to site at each interdomain jump,

e feel that the fifth obtion is the best. It could turn
out in practice though that the features this option
provides are not required, that permanent segments form
such a tiny fraction of the total number of segments that

the second or sixth arrangements would be better.

Creating and deleting local segments:

One other topic <concerning local segments is their
creation and deletion during execution within a domain,
We permit virtual processors to make kernel calls to
delete local segments in the domain they are in, at any
time. The capability in the c=list is replaced by a null
capability. A null capability may be passed as a
parameter, This s particularly appropriate in a
producer/consumer situation; the producer transmits a
full segment to the <consumer as @& parameter in an
interdomain call, At the return no useful purpose is
served by transmitting back the segment so the consumer

can delete the segment when it has finished with it.

135

The creation of local segments is more difficult as it
involves the allocation of @& resource, namely memory
spaces so it could be subject to delays or even the
shifting of the domain incarnation to another site. The
best time to create new segments is at domain entry time,
This is why we provide templates attached to the code
segments so that space requirements for a new domain
incarnation can be determined before the ‘best’ site
calculation is performed. If it is absolutely necessary
for a domain to be able to create segments once its
execution has begun, then its request to the kernel to do
this 1is treated as an interdomain jump back to itself,
We assume that capabilities for newly created segments

belong originally to the T=1list,

SECTION 3: COMPARISONS.

In this chapter we have proposed a domain architecture
suitable for distributed systems. We have detailed how,
despite the fact that no copying of capabilities is
allowedr a quite powerful capability system can be
constructed, Uur system does not suffer from revocation
of <capability problems because 1) it is not process
orientated and 2) only one <capability exists for each

segment (other than code and public segments). If

136

present domain systems are viable on single site systems
then our system 1is powerful enough to be viable on a
distributed system, We now identify common points
between those domain systems we discussed in the last
chapter and our model, and show where improvements have

been made.

Evans and LeClerc identified three types of local
segment making up a domain; fixed, dummy and scratch.
These correspond to the segments whose capabilities are
kept in our P-list, A=list and I=list respectively, By
allowing segments to be moved between P=list and T-list
we cater for domain initialization and allow more

flexible deletion of segments,

we have already mentioned what we consider to be the
main inadequacy of Spier‘s model, the fixed number and
type of segments in a domain incarnation, Our model
allows any number of local segments, the equivalent of
Spier”s incarnation own temporary segments, We permit
local segments to be passed as parameters between domain
incarnations, This eliminates much of the potential
inefficiency of Spier’s model arising from copying whole
segments into and out of the processor base gargument)
segment. We are also far more flexible in our handling
of permanent segments., Using labelled entry
capabilities' our scheme will support a virtual processor
having two or more different sets of segments in a

dOmain.

137

Thama s = 13661 tan Ak
Ty © 19 ti vy LU L

O
/]
Lt})

tve
of code and publiic (domain own) segments, which we have
adopted, and having them mixed together as Cosserat
allows, provided that a domain which does not have any
public data 1is 1identifiable as such, In our previous
discussion above, and our subsequent discussion of the
implementation of our model, we always treat the two
segments, when they both exist, as a single entity. Lt
however a system had plenty of active storage but was
lacking in communication bandwidth it is conceivable that
the code segment would be treated differently from the
public segment; copies of the code segment being
permitted. There is no point in having copies of public
segments because the machinations required to keep them
consistent would far outweigh any advantage gained in not

having to shift segments around from site to site to form

domain incarnations.

We were not aware of Cosserat’s work when we undertook
the definition of our model, working, as we mentioned
before, more from the papers of Spier. There are however
quite a few points of similarity between Cosserat®s model
and ours,. Both permit any number of segments to be part
of a domain incarnation. Both use the processor base
segment for several purposes. Although in Cosserat’s
model a local segment can be part of many domains at once
it is very unlikely in reality that these domains will
all be accessing the segment at once (unless the segment

is a segment of semaphores). Thus we loose little, if

138

anything, by making our local segments accessible in one
domain at a time. Cosserat’s indirect entry mechanism is
a generalization of our label mechanism. Ve only permit
a labelled c=list to be built up by the domain to which
the segments in the c=list belong. But again we fteel
that we <cater for the major use of the mechanism (the
handling of permanent or own data) and that further

generalization is not reguired.

Cosseratfs rule of creating a new base segment for
every change of domain brings undoubted advantages when
it comes to creating new processes, but its efficacy is
more open to Qquestion when the number of virtual
processors in a system 1is fixed (a feature we shall
expound upon further in the next chapter). There is very
little information that can be left behind in the old
base segment and not transferred to the new base segment.
If the simple parameter area is organised as a set of
stack frames then only the frame for the parameters being
carried to the new domain need be put in the new base
segment. Otherwise the only item not required in the new
base segment is the old domain’s return link. Since
processor base segments are the most frequent movers
between sites in a distributed system (see the sample
results in appendix A) it is important that they be
small, But there 1is a definite trade off between the
transmission time saved on one hand andy, on the other
hand, the extra copying involved. Splitting up the

processor base segment may also <cause the occasional

139

delav, when doin a return, when all the reauired

F -

o}

segments save the old processor base are at one site,
Only experimental evidence from real implementations can
resolve questions such as this and the questions we will
be raising in the next chapter as we examine more facets

of distributed systems.

140

CHAPTER 7

DISTRIBUTED SYSTEM METHODLOLOGY

The last chapter presented a model for a distributed
system in terms of segments, capabilities and domains,
We did not specify what was to be the function of any of
the domains, nor did we indicate how a programmer might
go about constructing a domain, Ne now direct our
attention to these and similar topics. This chapter is
concerned with the wider perspective of distributed

system designe.

SECTION 1: RESOURCE ALLUCATION,

For some years now there has been a school of thought
that advocates the limitation of forms of dymanic
behaviour in operating systems [HANS73,HANS74,HOAR7da,
HUOAR74b,HANS76). The THE operating system I(DIJK68] has a
fixed number of virtual processors, The recently
completed SOLO system [HANST76] has not only a fixed
number of wvirtual processors but is conceptually
compilable as a single program, so that all interactions
within the system are able to be checked at compile time.
We concur with such sentiments, as they lead to a fresh

view of resource allocation which we believe is suitable

141

for distributed systems.

Systems with dynamic creation and deletion of
processes usually handle resource allocation on a
hierarchical basis. Al the system resources are

initially vested in an ultimate ancestor [HANS73,SEVC74]).
Whenever a process 1S created it is given some of the
resources of the creator process; if not “consumed®, the
resources are returned to the creator process when the
new process is deleted, The ultimate ancestor represents
a potential bottleneck since it has to deal with all the
systems resources. In our distributed system resources
are associated with domains, allowing control to be
spread throughout the system., Each virtual processor can
enter any domain (known to it) and access the resources
in it. But the virtual processor must execute the code
of the domain while accessing the resource, Thus the

domain can control all its resources, all of the time.

This form of distributed control does not preclude the
use of process hierarchies but it does remove a lot of
the justification for them. Ability to freely create
processes could also be troublesome if it is desireg to
limit the total resources available, at any one time, to
a user, I1f we were to aliow a process to control the
progress of another and even destroy it, as is permitted
in many oporocess orientated systems {(KNOT74}, then a
process would have to be a global object. This follows

from the requirement to locate the process that is to be

142

controiied or destroyede. The management of globa!l
objects is relatively expensive., The number of processes
would grow in proportion to the number of sites.,
presenting Jlarger and Jlarger directory or associative

memory requirements.

Overall, considerable simplicity and efficiency s
gained by having a fixed number of virtual processors
(which are not global objects), one virtual processor per
user, If some form of parallelism is required & user can
be permanently ;llocated more than one virtual processor;
in the SOLO system he 1is given three, one to handle

input, one for computation and one for output.

Domains:

Since a system 1is Jlikely to have a fixed maximum
number of resources for Jlong periods of time it is
logical to have a fixed number of domains to manage these

il

resources. WHe 1include as resources comp}(érs, editors

and anything usable by more than one user. Using a fixed

number of domains confers two advantages:

1) Every kernel, as part of the management of global
objects, needs to keep information about every domain,
With a constant number of domains, fixed space for
this information can be allocated 1inside kernels,

leading to more efficient operation of the kernels.

Of course when there is an increase in the number of

143

resource tv

D

es in the system a recompilation of the
kernel will be required,

2) The finding of a domain is considerably simplified if
it always exists. hen a kernel receives a message
related to a domain that does not reside at its site,
it need only pass the message on to the site where it
believes the domain to be, Provided that the message
travels faster than the domain (see chapter 8) it will
eventually reach the correct site., If domains were
dynamically created and deleted then the kernel would
have to decide whether to pass the message on to
another site, or initiate the creation of the domain,
or regard the message as being for a deleted domain

and hence erroneous.,

Having a fixed number of domains in a system is not an
absolute fiat. Arrangements could be made for the
locating and loading of some domains from a file store
when required (an obvious exception is the basic domains
that manage the file store), in a8 similar fashion to
Spier’s implementation, As well as the added complexity
in domain management described above, knowing when to
unload the domains again is likely to be a tricky

problem,

144

So far we have been careful to avoid mentioning user
code. #e have adopted the attitude of Hoare [(HOAR74b]
towards user code. He believes that all user code should
be interpreted by the operating system, He reasons that
a user cannot compromise the security and robustness of a
system if all (sensitive) operations are vetted by the

operating system,

OQur adoption of this philosophy allows us to have a
fixed number of domains in our distributed system since
users do not generate their own domains. We provide a
user supervisor domain, One, or more, of the local
segments in an incarnation of this domain is user code,
The user supervisor “interprets’ this code, In practice
this would mean that the user code is directly executed
but the domain fields any “supervisor’® <calls, which it

translates to interdomain calls.

There is no compelling reason why the appearance, to 3
user, of a system should bear any vrelation to the
structure used to implement the system, Placing wuser
code in a supervisor cocoon means that the ordinary user
need not be appraised of domain structures when it comes
to writing his own programs, Interpretation also
provides a hook upon which can be hung such facilities as
execution time limits, error diagnostics and recovery,

and console generated interrupts.

145

Unfortunately this approach also rules out the sharing
between users of the same copy of user code. If some
user program is in such demand that the likelihood of two
or more people using it simultaneously 1is significant
then the program could be incorporated into the operating
system, either directly as a single domain, or, in a

rewritten form, as several domains,

" SECTION 3: ADDRESSING.

Addresses in capabilities:

Another topic we have not yet touched upon is the form
of addresses stored in capabilities. Capabilities always
reference segments residing at some site in the
distributed system, when a segment is said to reside at
a site we mean that the segment is stored in the private
active storage of that site. The active storage may be
simply primary memory or could consist of backing store
as well, provided that the backing store is controlled
solely by the site. (In the later section on peripheral
handling we show that problems can arise with shared

control of backing store devices).

A segment’s address, as stored in a capability, is

assumed to be in two parts. The first part specifies the

146

"~
L]
)]
o)
3
m

site where the segment resides., The second par

form of address to be interpreted by the kernel at that

site., This second part could consist of:

1) a segment starting address (only suitable for one
level memory and not allowing any repacking of memory)

2) a segment table offset (allowing backing store and
repacking)

3) a key for a segment hash table (also permitting
backing store and memory repacking),

The third approach is likely to be the bpest in a real

system because it gives more compact segment tables and,

if the keys are made wunique system wide [(FABR74], it

provides a useful robustness (LAMP74],

Moving segments between sites:

A capability for a segment also has a length field and
both this field and the segment address play a role in
the movement of segments between sites, Ahen a kernel
has accepted a domain incarnation c=list, it initiates
the transfer to its site of all segments of the domain
incarnation, The kernel scans each capability in the
c=list and determines the location of each segment from
the first part of the segment address. From the length
field the kernel determines how much memory space each
segment «will require when jt arrives. The kernel could
allocate the space there and then. The xernel sends a

message to each site that has one or more of the segments

147

it requires, specifying each reievant second part of the
segment address and requesting the segment be sent to it,
When each segment finally arrives, its capability in the
c=list is altered to reflect its new address. When all
the segments whose capabilities are in the c=list are at
the kernel®s site, then the c=list is marked as a valid
entry capability and the domain incarnation is ready to

run.

The action taken is slightly different in the case of
code and public segments, for the capability for these is
just a name (see chapter 6, section 1). [he kernel which
wants the segments sends a message to the site where the
segments are residing (located with the aid of tables or
associative mechanism in the communication subsystem),
The segments are sent to the requesting site when they
are no longer required at their current site, and action
is taken to appraise all the kernels of the new site for

the segments. (More details are given in chapter 8).

The advantages of pre-loading all segments of a domain
incarnation, rather than requesting segments piecemeal
from other sites as they are required, can be deduced
from the above description. Firstly, all segments
required from a particular site can be reqguested with a
single message, Ssaving some communication bandwidth
usage, ands, far more importantly, interrupting that site
only once, rather than for every segment, Secondly, the

total (extra) space requirement of the domain incarnation

148

can be determined before any segments are requested from
other sites. Thus if the site has insufficient space for
the domain incarnation the appropriate action, normally
sending the <c¢=list to another site, is taken before any

segments have been transferred to the site.

Capability hardware:

The generation of addresses within . a domain
incarnation must be in the form of an index into the
c=list to select a capability for a segment followed by
an offset within the segment to select the required item.
This obviously enforces the confinement of all accesses

to be within the domain incarnation.

It depends on the hardware facilities as to how the
physical orocessor uses capabilities, Since each domain
incarnationfs capabilities are stored in the entry
capability or c=list for the incarnation the use of a
fixed, and reasonably modest, number of capability
registers is one option available. This is the approach
used in the Plessey 250 [COSS72,ENGL74]. When a domain
is ready to run, the kernel loads the hardware capability
registers with the capabilities in the c=list, suitably
translated to hardware addresses. Since we have
postulated that a domain incarnation should last for some
appreciable time, the overhead of loading perhaps 16

registers at the start of & domain incarnation and

149

unioading them again when an interdomain jump 1S
requested, should not be too large. This 1is provided
that these registers do not have to be unloaded and
loaded again every time the kernel receives an interrupt
of any sort. As we indicated in chapter 3, the volume of
interrupts will grow as the size of the distributed
system grows and the preservation of context could
quickly become a dominant wunproductive factor. The
operation of the Plessey 250 has been described by the
phrase "Don‘t interrupt me, I°m computing” [HAYN73]
because external interrupts have been abolished [ENGL72].
This extreme philosophy need not be employed in a
distributed system provided that kernel operation is
clearly differentiated from execution in a domain
incarnation, and simpler context switching is provided

for the kernel.,

Alternatively a set of associative capability
registers similar to those wused 1in the CAP system
[NEED72) could be employed. This would allow entry
capabilities of arbitrary (or near arbitrary) length,
that is large numbers of segments in a domain incarnation
could be accomodated, but not all of them could be
accessed quickly. The whole c=list need not be loaded at
the start of a domain incarnation, entries would be added
to the associative registers the first time the
capability was used. Further, appropriate design could

ensure that the contents of the associative capability

registers remained wusable after the handling of an

150

interrupt and even after an interdomain jump and
subsequent return (assuming the entereda domain did not

require the use of all the registers for its own c=list).

SECTION S: PRUGRAMMING LANGUAGES,

Constructing domains:

The code that constitutes code segments has to be
written by someone. Ne now look at how appropriate
present languages are for the task. Our particular
interest is in the representation of segments and their

manipulation to form domains,

High level languages offer the programmer segments in
many Quises. In arrays the offset within a segment at
which a data item resides is obviously specified by the
index. Other structures (e.g. RECORDS in the 1IMP
language [STEP741) have symbolic names for the various
data items in segments, it being one of the functions of

compilers to map these names into offsets,

Most languages however do not offer the programmer any
means of specifying domains, Automatic rules could be
devised for constructing domains from programs 1in many

languages, but the efficiency, particularly in our

151

distributed system, of such automatically created domains
is open to Question. Such domains are likely to be so
small that the overheads involved in domain changing will

dominate the useful work done in the domain.

For example, in ALGOL 60 the only two possible
automatic rules are to make the whole program into one
domain or to make every procedure the basis of a domain,
In the B6700 system (ORGA73)] the code for every ALGOL
procedure is put in a separate segmnent. A recent study
[(BATS76] suggests that the average number of instructions
executed from each code segment each time it 1is entered
is of the order of 50 to 100. I'his is too few
instructions to carry the overheads of domain entry so
the ALGOL procedure is not a suitable basis for a domain

in our system,

FORTRAN does provide a way of generating Jlarger
domains than just individual subroutines. The COMMOM
block is a suitable structure to be made into a segment,
Sometimes it may be possible for all subroutines to be
divided into disjoint sets accessing different CUMMON
blocks in which case domains can be constructed with a
code segment containing the set of subroutines, and with
local segments containing the mutual COMMON block(s), all
other local data, and arrays. #hen it is not possible to
form disjoint sets of COMMON block accessors then some
sort of programmer intervention is required to identify

which COvYMON blocks are to be used as the basis of

152

domains and which should be passed as parameters between
domains.,. This requires the same sort of techniques that

are used to identify overliays ([SELI72).

SIMULA 67 [DAHL66,DAHLT72,ICHB74) provides in its
‘class’ concept a programming analogue to domains. A
class defines both data objects and the operations, in
the form of procedures, to be performed upon them in the
same way that the code segment of a domain incarnation
defines the operations that are performed on Jlocal
segments, However in programs these procedures are
likely to be very short so that domain changing to enter
a class may have unacceptably high overheads. Further in
SIMULA 67 access to the data (attributes) of a <class s
permitted directly without executing one of the class
procedures, Nevertheless a restricted form of SIMULA 67
could provide a suitable basis for developing & language

for domain handlinge.

Quite a number of languages provide facilities for
separate compilation of parts of a program, There are
variations on how much compile time or link time checking
is performed, Complete checking is feasible when there
is no recursion between separately compiled parts. In
some circumstances it is reasonable to assume that these
‘external’ portions constitute the basis for a domain in
that they perform a definite part of a computation. af
course, often these separately compiled sections provide

a service environment for the rest of the program so that

153

the freguency of use of the separate sections is high and
the duration of residency 1i1s low. But, again with
appropriate discipline, the separate compilation facility

does provide a basis for the construction of domainse.

To summariser our desiderata for a programming
language in which to write domain structured programs
include provision for the manipulation of segments as
basic items, and structuring rules that lead to easy
specification of appropriately sized domains. The entry
points to a domain must be obvious. This can be achieved
by specifying routines to be ‘external”’ [(STEP741, or
negatively by employing the “hidden’ feature proposed for

SIMULA 67 [HOAR74b].

Language restrictions:

So far we have Jlooked at features that would be
conducive to efficient domain structure. Attention is
now turned to two language features, the usual generality
of which would have to be severely restricted in a domain

system, These are parameters and pointers.

The parameter passing mechanisms of many high level
languages are too sophisticated for our mode to
implement efficiently, The model provides in effect the
same parameter passing mechanisms as FORTRAN: call by
value (with possible copyback) for simole variables and

call by reference for arrays (segments). That this, in

154

some way, is sufficient is demonstrated by the jarge
number of running FORTRAN programs in existencee. I+, as
we would wish, domains embody some complete and qQquite
substantial function then the dictates of good design
suggest that the number of parameters to be passed
between domains should be small and that possible
complexities of side effects and so on should be avoided
[PARN721, Hence we feel our model’s mechanism to be
adequate; the type of parameter passing employed within
domains need not be restricted to that possible between

domains.

Pointers, that 1is stored memory addresses, have
recently fallen 1into disfavour with some programming
experts {NIRT741 because they lead to an item having two
or more names: and hence detract from program clarity.
In our distributed system any pointer to an address in
another segment would cause immense difficulties. There
would be two ways of storing such a pointer, One way
would be to store the full capability of the segment
(plus offset) which violates our principle of having only
one capability in existence (for Jlocal segments) and
keeping that capability in a fixed location. The second
method would be to store the c=list offset of the segment
(and offset within the segment). Problems would arise if
the segment containing the pointer was passed to another
domain incarnation because then the pointer would be
incorrect. Thus in capability systems such as ours the

use of intersegment pointers cannot be supported.

155

TION &: MONITORS

we made no mention of public segments in our
discussion of programming languages. Only two languages,
that we know of, embody such a <concept directly,

Concurrent Pascal [HANS74,HANSTS] is the original

language of these two. Details of the second |language

SIMUNE, which is similar to Concurrent Pascal, have been

published very recently [KAUB76]. OUne of the elements of

these languages is a ‘monitor”’. Monitors, before being
incorporated in Concurrent Pascal, were developed by

Hoare [HOAR73,HOAR74a) and Hansen [HANS731, A monitor

consists of some data, and procedures to manipulate the

data. Monitors have the following propertiess:

1) the data of a monitor is global in the sense that only
one instance of the data exists, thus corresponding
directly with data in a public segment,

2) the monitor data is only accessible to the monitor
procedures; all manipulation of the data is by calling
these procedures, just as a domain must be entered to
access its public segment,

3) at any one time, at most one virtual processor can be
progressing in a monitor; it will maintain exclusive
access to the monitor®s data until it exits from the
code (or suspends itself on an internal queue), thus
allowing guarantees to be made about the integrity of

the monitor’s data.

156

ors’ properties have yet to

The finer details of monit
be agreed upon. For example Hansen has his monitors
contain global data only [HANS75] while Hoare’s monitors
contain both global data and multiple copies of user data
(equivalent to local data) [HUAR74bl. It is on the basis
of Hoare’s type of monitor that we named domains having a

public segment fmonitors'.

Exclusive access and the condition queues

Another undecided property of monitors is that of how
long exclusive access to a monitor should prevail,
Obviously when a virtual processor finally exits from a
monitor access can be given to another virtual processor.
The problem arises when the virtual processor makes a
call to another domaine. Should all other virtual
processors be denied access while this call is in
progress? To do this poses far more management problems
(LIST76]) than the approach we have adopted which is that
whenever a virtual processor executing in a monitor makes
a call on the kernel (as it will to <c¢hange domains) it

looses kernel guaranteed exclusive accesse.

To allow longer periods of effective exclusive access
and to facilitate certain forms of virtual processor
intercommunication, monitors have to provide a tacility
whereby a virtual processor can suspend itself while

waiting for some condition to be fulfilled (by some other

157

virtual processor). #hen it suspends itself the virtual

(1]

processor looses exclusive access to the monitor., Hansen
provides a general Queueing mechanism 1in a monitor so
that other virtual processors can manipulate the queue
(called the condition queue) in any desirable fashion.
Hoare is more strict; condition queues have to be served
either “first in first out’, or in order of a opriority

specified when joining the queue.

We stated 1in chapter 6 that kernels kept validated
entry capabilites in some form of ‘ready to run’ queue.,
The running domain incarnation is at the top of the queue
so that 1its suspension involves removing its entry
capability and storing it in the condition queue of the
monitor, The condition queue has to be part of the
public segment. It is no good making 1t part of a kernel
area unless the monitor is to be tied to a particular
site. No major problems arise with entry capabilities
being moved, undetected by kernels, from site to site.
When another virtual processor, executing in the monitor,
wishes to release a suspended virtual processor it
removes the entry capability from the condition queue and
passes it to the local kernel which re=validates it.
Eventually the domain incarnation will be scheduled for

execution again,
Une difficulty in following Hansen’s approach of

allowing gaeneral manipulation of the condition queue is

that suitable constructs must be provided for the domain

158

code to examine the capabilities in the condition queue,

We cannot see any neat way of providing these.

Secretary processors:

The original impetus for monitors came from Dijkstrafs
‘secretary’ concept [DIJK71). In a process orientated
system a secretary process maintains global data, all
requests to manipulate it being sent as messages to the
secretary. In a monitor type system virtual processors
can enter the monitor themselves to manipulate the data.
However., particulary when dealing with peripherals,
situations could arise where the kernel cannot know which
virtual processor should be dispatched, to answer an

interrupt, for examole.

Thus 1in our model we make provision for some monitors
to have secretary processors (or daemons (SALTeb6!1)
associated with them. These special virtual processors
execute only in the monitor and may use different code
from the normal monitor wuser, Their purpose is to
provide general housekeeping functions on the data
structure that constitutes the public segment.,
Secretaries have a special relationship with kernels,
Peripheral interrupts are associated with unique
secretaries. When a kernel recognises a peripheral

interrupt it schedules the appropriate secretary

processor to run, When this secretary processor runs it

159

I P S TP ~ : Well 1
can manipuiate the queue of the monitor to which it

belongs to have the correct virtual processor scheduled.

While this arrangement certainiy gives flexibility in

handling 1/0 devices we are not so sure of its
efficiency. We postpone discussion of this to chapter
11.

SECTIUN 7: PERIPHERAL HANDLING

We have just shown how the secretary processor concept
can aid in the management of peripherals. Using
secretary processors however is just one approach to
managing peripherals in a domain structured distributed
system. There are a number of possible approaches
depending on the functional capabilities of peripheral

controllers.

In this section we propose various schemes for
handling disk operations, predicated on the intelligence
of the disk controller. W#e have chosen disks as an
example because:

1) they could be quite heavily used so that inefficent
operation is less tolerable than for some other
peripherals.

2) disk wusage involves reading and writing, a read
possibly being of something previously written.

The second point has ramifications for distributed

control which we point out later. vwe assume that the

160

unit of reading and writing 1i1s a segment, more
specifically a local seament used as a parameter, A
write 1involves passing the segment to the disk handling
domain which on exit returns a null segment. A read
involves simple parameters and a null segment being

passed to the disk handling domain and a full segment is

returned,

The workstation approach:

Undoubtedly the neatest scheme is to assume that the
disk controller or other peripheral controliler is a site
in its own right, fully integrated into the communication
system, Wwhen using a3 bus type communication subsystem,
which does not require more 1links as more sites are
added, a network architecture such as depicted in figure
7.1 can be achieved. With the advent of microprocessor
controllers the workstation concept, 8s embodied in the
CDC 7600 system (ELRO70,JONE71), is becoming practicable
for more modest sized systems. Uf course, in a
distributed system, the workstations do not serve a
single large processor but rather interact with all the

general purpose sites in the system.

The workstation must, to all intents and purposesy
behave like any other site in its interactions with other
sites (internally it could be rather different in
structure). This site will have only one domain but must

be capable of handling entry capabilities correctly.

161

SITE

TERMINAL
CONTROLLER

SITE

A DISTRIBUTED SYSTEM USING WORKSTATIONS

Figure 7.1

Thus for exsmple a reauest for a disk read would be
programmed as an interdomain call on the “disk
controller’ domain, The entry capability would arrive at
the disk controller which would validate it as usual and
queue it in an equivalent of the 'regdy to runf queue
(but presumably so as to optimise disk accesses). When
the read had been performed the disk controller would
initiate an interdomain return, with the read data pbeing

an argument segment to be returned to the calling domain

incarnation.

This approach c¢an be viewed as multiplexing virtual
processors on the physical processor of the disk
controlling site., One requirement of this appraoch is a
large buffering capacity at the controller site because
the argument and processor base segments do not
immediately leave the site when the incarnation has
terminated (i.e. the disk operation has been completed).,
They stay there until a site has been determined for the
resumption of the <calling domain 1incarnation and the
kernel of this site then requests the segments to be sent

to it.

One objection to this scheme that could be raised is
that the general purpose power of a microprocessor is
being dedicated to a single job in which it could be
considerably underutilized. In so far as the the
processing power is general and being underutilized this

is a wvalid objection, But the architecture of a

163

peripherai controiler is iikeiy to be rather different
from a general purpose computer and since the capacity of
a peripheral can be quite easily determined, the power of
the controller can be matched to the capacity.
Substantial wunderutilization of peripherals may be
unavoidable in small systems but for larger systems it is

an indicator of bad design.

Limited capacity controllers:

This is the scheme that we chose to simulate (see
chapter 9)., Basically it supposes that a controller wil)
not be designed specifically to fit 1into a domain
orientated system but will be capable of wusing the
communications subsystem to transmit segments and a
limited repertoire of control messages to and from other
sites. A domain, the disk handler domain, is required to
reside at some site to assist the disk controller in its
work, whether this domain is tied down or not depends on
the sophistication of the controller, the communication
system and the kernels in handling interrupt type signals
from the controller., The disk handler domain needs to be
a monitor with an associated secretary processor, SO

there are fewer problems when it is tied to one site.
This approach assumes that the disk controller has a

number of buffers for holding segments and that it sends

a message to the controlling site (i.e. the site where

164

the disk handier domain resides) whenever one of its
buffers becomes free. This message is interpreted, by
the receiving kernel, as the secretary processor’s entry
capability for the disk handler domain. The kernel duly
validates this entry capability and so eventually the
secretary will run. It will initiate a read or write if
there are any outstanding, or set a flag to indicate to
any other virtual processor that subseguently enters the
domain that it may initiate its own read or write because

there is a buffer available.

It was to avoid congestion at the disk bhandler site
that we introduced the pseudo <capability states of
‘ondisk® and ‘desc” (chapter 6). Ahen a virtual
processor wishes to write a segment to disks, it transfers
as a paramter to the disk handler incarnation simply a
descriptor of the segment, not the segment itself, This
descriptor is placed 1in a queue of descriptors of
segments waiting to be written to disk and the virtual
processor exits immediately from the domain (unless the
queue is full). N#hen the disk controller has a free
buffer into which it can receive the segment a request
for the segment to be dispatched direct to the disk
controller 1is sent to the kernel of the site where the

segment is still residing.
Normally reads are executed before writes. A virtual

processor enters the diskhandler domain with simple

parameters decribing thé read. Insteaa of the processor

165

suspending itseif to wait for the scgment to be read then
returning to the calling domain the entry capability for
the return is prepared, including one segment capability
marked ‘ondisk’. This entry capability is not validated
until the disk read has taken place into a buffer in the
disk controller. (In fact this invalid entry capability
could be sent to the disk controller as the read request
and be returned to the controlling site when the read is
complete, whence the kernel there starts to validate it),
When a site has been chosen for the incarnation of the
calling domain to resume, then the kernel of that site
sends a request for the read segment direct to the disk

controller, The disk controller dispatches the segment

from one of its buffers.

Notice that in a real system a checks on the queue of
descriptors of segments that are waiting to be written to
disky, will have to be made before a read is performed. A
situation could easily arise where a virtual processor is
trying to read a segment that it had previously written
(that is called the diskhandler domain and returned) but
which segment has not in fact got as far as being written
on the disk. This is one reason why it is not possible
to have every site control the same disk (perhaps as a
kernel function)., Unless a virtual processor is going to
be held wup until a disk write 1is acknowledged as
completed, a single list of outstanding writes for each
disk 1is required. Thus notification of writes to a

particular disk must pass through a single site.

166

The other reason that ail sites couid not controi a
shared disk is related to buffer management. fhere is a
limited number of buffers in the disk controller, the
freeing of one of these buffers indicating that the
controlleé is capable of accepting another request.
Although conceivably the disk controller could broadcast
that the buffer was free, all the sites would have to
agree on which site was permitted to make the next
request. The necessity of having all sites in agreement
is something that we have studiously avoided, it can be a

‘very time wasting function in a distributed system.

Plain dumb controllers:

It could be that the peripheral requires direct
attachment to a central processor for control and has no
buffers so that it must transfer directly to or from the
main memory of the controlling site. fying the domain
that wuses the peripheral to the site, and utilizing the
secretary concept to handle completion interrupts and
general housekeepings may well be acceptable when the
peripheral is lightly used. But if the peripheral is
heavily wusedr, as might be the case for a disk, then the
controlling site is likely to Dbecome very congested,
Before data can be written to disk it has to be moved to
the controlling site where it is queued to be written,
Data read from disk will initially go to the controlling

site where it will exert an influence on the domain that

167

ultimately uses the data, so that that domain will tend

to migrate to the controlling site as well,

Alternatively the controlling site could be ‘split”’
into th sites, partitioning the memory and sharing the
physical orocessor, One site would have a normal kernel
and the other would perform the disk controller function
we descrioed in the .independent workstation section,
This scheme, although it would involve extra software to
share the computer between two “logical’ sites might be
ideal for a small system that was going to expand. As
the use of peripherals grew they could be given their own
independent sites, freeing the original sites to
concentrate on the expanded workload, This is analogous
to conventional small computers doing their own terminal
handling but as a system grows this function is taken

over by front end processors.

Efficiency:

The schemes we have described illustrate the dichotomy
of dedicating processor power to a single task and
risking wunderutilization of the processor, versus doing
the task with a processor at a general site ,but, because
of the special nature of the task, distorting the loading
of the site. All the schemes we proposed however suffer
in comparison wWith message passing schemes employed in

process orientated systems when we consider the loading

168

on the communication subsystem. For in a message passing
system a peripheral is viewed as a sink or sou