
COMPUTER MODELLING OF FLOW NETWORKS

FRANCES J. DON EGAN

M. PHIL

UNIVERSITY OF EDINBURGH

1988

Abstract

Pipe networks are a common feature of chemical and process
plants, acting as conduits for main process fluids and for
process utilities such as air, water and steam. For any
pipe system it is often necessary to calculate flows and
pressure drops throughout the network in order to assess
the effect of changes in network structure (such as the
addition or removal of certain pipes). Design and
optimisation of pipe networks are dependent on reliable and
accurate calculation of such flows and pressure drops.

These calculations are commonly performed using computer
programs written specifically for the analysis of flow and
pressure in pipe networks. This thesis firstly discusses
factors which must be taken into account in the design of
such programs. It subsequently describes the development
and testing of three computer programs for the analysis of
flow and pressure in steady- and unsteady-state pipe
networks. In the thesis' conclusions the test results are
discussed and recommendations are made for improvements to
the computer programs.

Declaration

I declare that this thesis has been composed by me, and
that the work contained herein is my own.

ACKNOWLEDGEMENTS

I should like to express my sincere thanks to Dr. J.W. Ponton for all his help,
suggestions, support and encouragement during the course of this project. I should
also like to thank Dr G. M. Alder of the Department of Mechanical Engineering,
Edinburgh University, and Malcolm Preston and Chris Wells of Id, Runcorn.

This project was carried out with the financial support of id.

TABLE OF CONTENTS

1 Flow Network Analysis : Introduction 1

2 Literature Review 4

3 Development of a Program for Steady-State Flow Network Modelling 50

4 Performance Testing of Steady-State Flow Network Program 60

5 Equation Parser and Dynamic Network Program 67

6 Steady-State and Dynamic Analysis of Kiln Network 77

7 Conclusions 80

Appendices

I Bibliography 82

II Flow Diagrams for FLONET main program and modules 85

Ill Data, Results and Diagrams for Steady-State Networks 99

IV Listings fOr programs/modules referred to in Chapter 5 145

V Data Sets, Results and Diagrams for EQPARSE and DYNET problems 187

VI Data Sets, Results and Diagrams for HF Kiln Network 198

CHAPTER 1

FLOW NETWORK ANALYSIS: INTRODUCTION

Pipe networks are a common feature of chemical and process plants,

acting as conduits for main process fluids and for process utilities such as

air, water and steam. For any pipe system it is often necessary to calculate

flows and pressure drops throughout the network in order to assess the

effect of changes in system parameters (such as supply/source pressure)

and changes in network structure (such as the addition or removal of

certain pipes). Design and optimisation of pipe networks are dependent on

reliable and accurate calculation of such flows and pressure drops.

These calculations are commonly performed using computer programs

written specifically for the analysis of flow and pressure in pipe networks.

A number are commercially available, including PIPENET [351 PIPEPHASE

[36] and FLONET (described in Chapter 3). Some programs have a wide

range of facilities, such as a facility to handle two-phase flow in pipes, or

a facility to analyse spray and sprinkler systems. Variation occurs in the

method of data input and the way in which various network fittings (valves,

orifice plates, pumps, compressors) must be described for data input. The

essential requirement, however, of any program which performs the

analysis of flow and pressure in pipe networks, is that the algorithm used

to solve for flow and pressure drops must be robust and reasonably fast

when networks of medium and large size are analysed. The algorithm

needs to be robust because instabilities often can occur in a large network

where flow in a few pipes is negligible in comparison with flow in the main

network pipes. This can lead to the solution oscillating between two

values.

The formulation and solution of equation sets which describe fluid flow

in pipe networks have been extensively researched and documented. Early

work concentrated on the analogy of fluid flow networks with electrical

networks and used Kirchoff's laws to solve for flows and pressures. The

main drawback to this method is that convergence of the solution is slow

and not always guaranteed. Other methods have been developed which

also use the electrical analogy. A major consideration when using any

method of pipe network analysis is the ease and reliability with which the

FA

set of equations describing the network may be solved. Research has

focused on linearised network models for this reason.

This thesis describes work which was carried out on the topic of pipe

network systems. The aim of the work was three-fold. Firstly, to make an

appraisal of existing methods for modelling and solving steady-state pipe

network problems. Secondly, to provide a computer tool to be used for

the solution of such problems, by employing a modified version of a

previously described linearisation method. Thirdly, to further develop this

computer tool so that it would handle network constraints in the form of

equations, as well as a description of the physical dimensions of the

network. In addition, a further aim was to enable unsteady-state networks

to be modelled by the computer program.

The first aim involved a survey of the available literature on analysis of

steady-state pipe networks, including methods of describing network

topology and the physical components incorporated into the network.

Matrix and linear equation solving techniques were also briefly examined.

Most recent methods describe a pipe network as a set of linearised

equations and the computer program which was written to carry Out the

second aim used a combination of two of these methods, namely the

Newton method and the Bending and Hutchison method. The program was

tested on a number of sample networks of varying complexity. In some of

these networks, flow in certain parts of the network was negligible in

comparison with the rest of the network and this provided a good test of

the program's ability to cope with potential instabilities in the final flow

distribution throughout the network.

Aim three necessitated that a parser be written to handle additional

data which is input as a set of linear equations. Syntax and consistency

checking was incorporated in the parser. A number of sample networks

were again used to test the program which successfully calculated the final

flow distribution in all cases. The program was further modified to accept

data input describing pressure vessels and also time step values, so that

unsteady-state networks could be modelled. The sample unsteady-state

problems supplied to test the program were all successfully solved.

The format of this thesis may be briefly described as follows

3

- Chapter 2 gives an account of the literature survey of
flow analysis in steady-state pipe networks.

- Chapter 3 describes the development of a computer
program to analyse flow in steady-state pipe networks.

- Chapter 4 describes the sample network problems which
were presented to the computer program and discusses
the results obtained.

- Chapter 5 outlines the development of two computer
programs which were developed from the program
described in Chapter 3; the first intended to solve
network problems where the data sets include network
equations, the second intended to solve unsteady-state
network problems.

- Chapter 6 discusses the performance of all three
programs in relation to one particular sample network
problem.

- Chapter 7 presents the conclusions of the thesis.

The notation for each chapter is given at the end of that chapter.

4

CHAPTER 2

UTERATURE REVIEW

2.1. Introduction

As stated in Chapter 1, the first aim of the work described in this thesis

was to make an appraisal of existing methods for modelling and solving

steady-state pipe network problems. This chapter presents a summary of

the literature which was reviewed with this aim in mind.

The topics discussed in this chapter may be summarised as follows.

Section 2.2 briefly describes how flow network problems are

mathematically modelled. (It should be noted that the more general term

'flow network' is used interchangeably with 'pipe network' throughout this

chapter and in the rest of the thesis). Section 2.3 discusses how the

physical structure of a network is mathematically 'abstracted'. The next

three sections are concerned with the analogy between fluid flow networks

and electrical networks. These sections examine methods which have been

originally used to model and solve electrical network problems, and their

extension to fluid flow network problems. These methods use matrices to

model the basic network and also to transform the network to one which

is more easily analysed. The significant amount of matrix algebra involved

in these methods, and those described in Section 2.7, illustrates the

associated need for efficient matrix solution techniques when such

methods are employed.

Section 2.8 discusses techniques which have been used to linearise the

sets of non-linear equations relating flow and pressure in pipe networks.

Section 2.9 presents a summary of all other network models covered in the

literature survey.

Section 2.10 discusses how individual pipe line elements - pipes,

pumps, various types of valves, compressors and pressure regulators - can

be modelled. Sections 2.11 and 2.12 cover sparse matrix methods and the

influence of supercomputers on the development of sparse matrix methods.

The conclusions to this chapter are given in section 2.13.

2.2.. Flow Network Representation

Flow networks are represented by sets of non-linear algebraic

equations of the form

1(') = 0 	 (2.1)

There are two ways of obtaining the solution of such equations

Rearrange each equation to x = 4(z) and solve
iteratively, so that a better estimate of x is obtained
each time, on the left hand side.

Linearise the set of equations such that

1(z) --> Az -i- B 	 (2.2)

and solve this new set of linear equations, using
established methods.

Either approach can include the rearrangement and/or decomposition of

the set of equations into subsets.

In general there are two kinds of equation

Mass balance

ly i = 0
	

(2.3)

Flow/pressure drop equations

F, = f(k' P)
	

(2.4)

Solution methods can handle either

The full equation set

A reduced equation set formed by substituting (2.4) into
(2.3) to get a node formulation (thus eliminating flows)

A reduced equation set formed by eliminating pressures
(mesh formulation)

In the analysis of flow networks much use has been made of graph theory.

Graph theory enables network relationships to be deduced and expressed

in the form of matrix algebra. A short discussion of graph theory follows,

as an introduction to the methods which are used to model flow networks.

2.3. Graph Theory

A flow, or pipe, network is a connected set of physical elements which

permit or control the flow of fluid. Examples of such elements are pipes,

pumps, control valves, non-return valves, pressure sources and reservoirs.

The graph of such a network is a diagram showing the structure of the

network. It consists of branches, which correspond to individual pipes,

pumps or valves, and nodes, between which the branches run. A branch is

said to be incident to its terminal nodes. The graph is directed if assumed

directions of flow, or pressure rise, for example, are indicated. A graph is

said to be connected if it is possible to move between any two nodes

along the branches.

Any connected graph contains at least one tree. A tree is a set of

branches connecting all the nodes without forming any meshes (or closed

paths). The term 'basic mesh' describes any closed path formed from the

tree by the inclusion of one non-tree branch (or link) in the graph. For

example in Fig. 2.1, branches 1,2,3,4,5 constitute a tree (heavy lines).

Consequently, this tree forms three basic meshes containing 3-4-6, 2-4-7

and 2-4-5-8.

b 	 e

3 f!
C c~<

Pig. 2. 1

It follows that if a connected graph has n nodes then any tree will

contain n-i branches, and the number of basic meshes is rn, where

m = 6 - n f I and b is the number of branches. In a directed graph the

7

meshes also have directions which may be defined by those of the

defining links.

Graph/network characteristics can be represented by matrices. Table 2.1

shows the augmented branch-node incidence matrix l for the graph in

Fig. 2.1. An element a of A ' is 1, -1 or 0 if branch i is, respectively,

incident towards, incident away from, or not connected to node j. The sum

of elements in any row is zero and the columns are linearly dependent.

Hence any column may be deleted the node corresponding to this column

is called the 'datum node' and the matrix so formed constitutes the

branch-node incidence matrix .4 of the graph.

Node

Branch 	a 	b 	c 	d 	e 	f

2
3
4
5
6
7
8

Table 2. 1

Augmented branch-node incidence matrix for graph in Pig. 2. 1

Ivies/i

Branch Ot B 	X
1 0 0 	 0
2
3 1
4 1 1 	 1
5
6 • 1 .

-1
8

Table 2.1.1

Branch-mesh incidence matrix for graph in Pig. 2.1

The basic meshes of a graph are described by its branch-mesh

incidence matrix C. Table 2.2 shows this matrix for the graph (and tree) in

Fig. 2.1. Any element c.. of C is 1,-1 or 0 if branch i has, respectively, the

same direction as, the opposite direction to, or is not included in mesh j

It is readily shown that

ATC=O and CT.4 =0

This brief discussion of graph theory leads to the consideration of its

applications in pipe-network modelling. One of the best-known methods

for solving network problems, which uses graph theory to model the

network, is the Hardy Cross method.

2.4. Hardy Cross

This method is based on Kirchoff's laws

The algebraic sum of the flows at any pipe junction is
zero (this is a statement of the mass balance rule).

The algebraic sum of the pressure drops around any
mesh of the network is zero.

To employ the Hardy Cross method it is necessary to construct 'circuit

equations', using the matrices described in the section on graph theory.

A set of basic meshes for the network is selected, the branch-node and

branch-mesh incidence matrices, 4 and C, are constructed and used in

conjunction with the equations describing pressure-drop in a pipe and

mass-balance at a node, to solve for pressures and flows in the network:

The solution can be obtained in two ways, using either the 'mesh' method

or the 'nodal' method.

Both methods have been discussed by Barlow and Markland [21 who

have suggested modifications for improving convergence by either method.

In their discussion they consider a network having P pipes connected

between N nodes at Al of which the head is specified and at each of the

remaining (M-N) nodes the outflow from the network is specified (Fig.

2.2).

Pig. 2.2 Notation at a typical node of the network

In the mesh method, trial flowrates are assumed along each of the

pipes, consistent with continuity of flow at the nodes. The head loss

around each mesh is calculated with the assumed flowrates. In the

unmodified Hardy Cross method, the flow corrections are applied one mesh

at a time until Kirchoff's 2nd law is satisfied for all meshes. For network

elements modelled by

Ok
= ctqfqJ)_l 	 (2.5)

where °k is head-loss through the element, qk is flowrate and ak depends

on friction factor (and roughness, if the element is a pipe), the flow

correction for mesh C, is given by

S' c1qJqJ'
6qC

V flcJqJfh L
(2.6)

where the summations are taken in a consistent direction around the mesh

C.. The exponent n is normally taken to be 2 (although it is somewhat less

than 2 in the transition region of flow).

Rewriting eq.(2.6) in the simpler form of eq.(2.7), where AQ C is the

linear correction applied to the flowrate in each of the branches of a mesh

around which the closing error in the head is AIlS

- MI
Qc - V1nh7

i q

then Barlow and Markland's suggested improved correction may be

expressed as

n(n-i)/i 	n(n-i)h
Qc 2 EfI 2 q Z 	 2q2 	 I AHc = 0 	

(2.8)

where X f denotes summation over those branches in the mesh where the

flow direction is in the direction in which the mesh is defined, and

denotes summation over those branches where the flow is in the opposite

direction. Assuming that is = 2 gives

Qc2EfFrI
&I —7 	fl I1 + 2AQc — I 	Hc = 0 	 (2.9)

Barlow and Marklanci state that over-correction, with a factor of about 1.25

has proved particularly valuable. They cite an example where, in a typical

small network having 10 nodes and 13 pipes, the number of iterations was

reduced from 13 to 7 when an over-correction factor of 1.2 was used. On

much larger networks, values up to 1.4 have been used to advantage.

The major disadvantage of the mesh method is in the selection of basic

meshes. The rate of convergence can be considerably affected by the set

of meshes chosen. Barlow and Markland suggest choosing meshes directly

from the network, according to general rules aimed at dispersing gross

errors in flowrates rapidly over the whole network and removing local

inaccuracies in pipes of subsidiary diameters. However this method is

unsatisfactory when the networks are large and complex.

In the 'nodal' method, an assumed set of heads is successively

corrected at each node in turn according to the expression

= 	
Qn MI

10

(2.7)

In this, Ali n represents the increment of head ii, at the node in question

and AQ n is the amount by which the inflow rate along the pipes into the

11

node exceeds the specified outflow rate Q , at that node.

Barlow and Markland's improved correction for the nodal method may

be stated as

AH 2 	

I ii 	r 	I - 	V I 2_ I

8 	Lo 	- LiIhz 	2 	h 	+Q = 0 	 (2.11)

where the expression 1. indicates summation over all the pipes along

which the flow is away from the node under consideration and L indicates

summation over all the pipes along which the flow is towards the node.

Barlow and Markland state that over-correction, using values in the

range 1.1 - 1.3 again proves useful, but if too large a value is chosen,

instability of the solution results. They also mention an extrapolation

method. After a number of corrective iterations from an initial estimate, the

total of flow errors at each of the nodes -)AQrJ - is compared with the

initial total. The changes in the heads - - are than extrapolated to

make the total error equal to zero, on the assumption of linear dependence

of errors and changes in heads. Barlow and Markland cite an example

where, in a network having 14 nodes and 25 pipes, the number of

iterations required for convergence is reduced from 55 without

extrapolation to 27 with extrapolation.

In their survey of methods used in network flow analysis, Mah and

Shacham [261 state that the general consensus is that the nodal method is

slower than the mesh method, and Barlow and Markland mention slowness

of convergence, when the network is ill-conditioned.

2.5. Network Transformations

Gay and Middleton 1161 investigated methods of solution which

appeared to be better adapted to computer techniques than the method of

Hardy Cross. Their methods are based on the relationships which exist

between nodal, branch and mesh quantities. The function of the previously

described matrices A and C is to interrelate or transform these quantities.

For example, if e' is the vector of nodal pressures (measured with

reference to the datum node) then e = ,1 e' is the vector of branch pressure

rises. Kirchoff's laws may be expressed using the relationships

12

AT1 	ATCi = 0 	 (2.12)

CT = CTAe = 0 	 (2.13)

where I is the vector of branch flows and i'is the vector of mesh flows.

Gay and Middleton visualised any branch of the network as consisting

of three elements an impedance element Z, a pressure source E and a

flow source I For each branch the following relationships apply

V = E + e

J 	1+- I 	 (2.15)

V = ZJ 	 (2.16)

J = YV 	 (2.17)

where E is the vector of branch pressure sources (i.e. pumps), / is the

vector of branch flow sources, Z and Y are diagonal matrices and V =

From relationships (2.14)-(2.17) and the relationships between nodal,

branch and mesh quantities, Gay and Middleton derived expressions for e

the vector of nodal pressures, and 1 the vector of mesh flows.

e' = (ATYA) - l(/. ATYE) 	 (2.18)

I' = (CTZC)-lCT(E ZI)
	

(2.19)

These two routes for a solution are analogous to the alternative methods

developed by Hardy Cross. It can be seen that both require matrix

inversion, which is a serious drawback for large networks. Gay and

Middleton suggested that the computational problems could be reduced by

applying the technique of diakoptics to the network problem. Diakoptics

originated from the consideration of certain orthogonal transformations

which could be applied to the network. The network may be converted to

an all-node or an all-mesh network, described by the square

transformation matrices C 1 or A 1 , having dimensions b x b (where b is the

number of branches).

Gay and Middleton considered an all-mesh network, that is, a network

in which there are as many fictitious branches as there are non-datum

13

nodes in the original network. If / is the vector of 'primitive' branch flows

('primitive' signifying that each branch is connected to the datum node),

then

/ =C1)I = C 1 J' 	 (2.20)

where 1' and i are the flow vectors for an all-mesh network,

representing the nodal flow vector which is considered to be flowing in the

fictitious meshes and i representing the mesh flows. From relationships

(2.14)-(2.17) and the relationships between nodal (or fictitious mesh),

branch and mesh quantities in an all-mesh network, two expressions for

the nodal pressures may be derived.

e1 ' = Y 	1(i; - V E) - 	 (2.21)

= (Z; - ZZ'Z)/; -- Z;Z 1 E - 	 (2.22)

in which the matrices 	and 	are partitions of E;' the mesh pressure

source vector for an all mesh network, into its nodal (or fictitious mesh)

and mesh components. V and V are partitions of the admittance matrix

V 'and Z, Z, Z and are partitions of the impedance matrix Z

2.6. Diakoptics

The method of diakoptics takes the concept of orthogonal

transformations one step further. A transformation matrix can be

constructed to relate any two systems containing the same number of

equivalent branches. So, for two such systems, A and B,

CAB 	 (2.23)

where CAB is the required transformation matrix.

The purpose of using the diakoptics method is to transform a network

to an intermediate network, whose solution can be found, then to

transform this solution into the solution of the given network. The matrix

CAB will be of a particularly simple form if the intermediate network is a

'cut' or 'torn' form of the original (the term 'cut' is used with reference to

an 'all mesh' network which has been subdivided into different groups, and

the term 'torn' indicates a similar subdivision of an 'all node' - or open

14

path - network). An 'all mesh' network may be 'cut' into two groups,

containing 'Cut segments' and 'cut branch segments'. The branch flows in

the original 'all mesh' network and the new cut network are equated, giving

rise to the transformation matrix CAB. A solution may be found for the

pressure vector, V , in network it, which can then yield, by a further

transformation, the vector of nodal pressures, e for network 13.

The work on orthogonal transformations and diakoptics was developed

further by Gay and Preece in [171 and [181 They examined the 'mesh'

method of solution in both orthogonal transformations and diakoptics as an

alternative to the 'nodal' method (i.e. solving the transformed networks for

nodal pressures) presented by Gay and Middleton.

In the 'nodal' method the network is seen as consisting entirely of

meshes. In the 'mesh' method the network is viewed as consisting of 'node

to datum' (or open) paths. This leads to the construction of an incidence

matrix B such that bi,is equal to 1, -1 or 0 if branch i is included positively

(dire ctionwise), negatively, or not included in the node to datum path j.

The positive direction of the node to datum path is away from the datum

node.

Because of the referencing of the non-tree branches, the B matrix may

be partitioned into tree and non-tree parts such that the non-tree part is a

null matrix

B
= BL I jI 	 (2.24)

As in the nodal method the flows in the actual network may be related to

those in the orthogonal network by the linear transformation.

J = YJ' 	 (2.25)

This is a parallel to eq. (2.20). J is the vector of branch flows and J 'is the

vector of path flows. y may be partitioned such that

I = IIJICI 	 (2.26)

where C is the branch-node incidence matrix, which may be further

partitioned into tree and non-tree parts.

15

C = ICTI = JCTJ 	 (2.27)
CL 	U

where Uis a unit matrix.

In the mesh method, the mesh flows can be found from the following

equation

= (C.JZ.J.C 1 + Z1)'(EL - CTZTBT/) 	 (2.28)

where

EL = C TT EJ. + E 	 (2.29)

/' is the vector of flows in the node to datum paths. Each node to datum

path is assigned the flow which enters or leaves at the terminal node of

the path. ZT and ZL are the tree and non-tree parts of the impedance

matrix Z. E.g. and EL are the tree and non-tree parts of E. the matrix of

branch pressure sources.

For networks which contain fewer meshes than branches, the matrices

handled are smaller in the mesh method than in the nodal method (in

which the numbers of branches and meshes are equal), due to the

transformation used. The results of a program written by Gay and Preece

to compare the nodal and mesh methods confirmed that the mesh method

was faster for networks of this kind.

In the mesh method as it is applied to diakoptics, the relevant

transformation matrix (corresponding to. y in eq. (2.25)) is a, where

a = (1T).1 	 (2.30)

and

a = I'li1 	 (2.31)

A is the branch-node incidence matrix described previously and P is the

non-tree branch-mesh incidence matrix. P may be partitioned into tree and

non-tree parts.

16

F=lT
U L

where 0 is the null matrix.

(2.32)

In Gay and Middleton's presentation of diakoptics using the nodal

method, an all mesh network was 'cut' into 'cut segments' and 'cut branch

segments'. In the mesh method, the network may be 'torn' into

subnetworks. This is accomplished by the removal of combinations of tree

and non-tree branches, provided that these combinations form continuous

paths. Figs 2.2 and 2.3 show what is meant by 'tearing' the network.

'I
- ------)- -

-

- 	-----)----- 4

	

H 	I'

	

1' 	 74
0 	 I 	 12-

Fig. 2.2 - The connected network that is to be torn apart by the

removal of the branches indicated by the heavy dashed line.

59

i. 	

)Io

- 	___
Daeum

Fig. 2.8 - The torn network, referenced for solution by the mesh method

Each subnetwork is viewed as a collection of node-to-datum and mesh

paths, while the removed branches are viewed as the tree of an additional

subnetwork.

As was the case in orthogonal transformations, use of the mesh

method in diakoptics leads to a solution for the network mesh flows, 1 by

using relationships (2.14) to (2.17) and the appropriate transformation

PA

17

matrix a. Again, if the network is not heavily meshed, the mesh method as

it has been tested by Gay and Preece, proves to be more effective. In both

the nodal and mesh methods, the relevant authors suggest 'rule of thumb'

techniques for cutting and tearing the network.

Gay and Middleton in their study compared the diakoptics method with

that of Hardy Cross for a network containing 22 nodes and 38 branches.

The ease with which network alteration effects could be tested using each

method was investigated. They concluded that the diakoptics method

converged faster and that changes in the network were more readily

investigated using this method. However, they found that apparently small

changes in the network affected the solution time considerably.

2.7. Other Matrix Methods

Further matrix methods for the solution of pipe network problems have

been suggested by Mah and Shacham [26]. They used graph theory to

investigate the possibility of grouping vertices (nodes) in such a way as to

yield an advantageous formulation.

They used the concept of 'cut-sets' (not to be confused with 'cutting' in

diakoptics) of a network, in their analysis. In a connected graph (described

in the section on graph theory), a cut-set is a minimal set of branches

whose deletion from the graph separates some vertices from others

(resulting in an increase in the number of connected subgraphs). If the cut-

set contains only one branch then it is called a bridge. In the case of a

tree, every branch is a bridge - its removal creating two subgraphs

containing subsets of vertices, V A and V 6. Considering the graph again as

a whole, the two subgraphs containing VA and V B are linked by a unique

cut which contains one tree branch together with possibly some non-tree

branches (or chords as they are referred to by Mah and Shacham). There

are (N-i) such cuts corresponding to the (N-i) tree branches. If an

incidence matrix is constructed based on branches incident with each of

the (N-i) vertex (or node) subsets, VA, VB etc., then the cut-set matrix K is

obtained. If the graph is undirected, i.e. no directions assumed for

branches, then K = K, where

K = '' N-1111'

IN-1 is the identity matrix of order (N-i) and B is an (N-i) x in binary

matrix corresponding to the chords (in is the number of chords).

The cut-set matrix K is related to material balances around the (N-i)

vertex subsets. The rows of K are linear combinations of columns of A

(where A is the branch-node matrix as before - .4 signifies that the graph

is undirected).

Mah and Shacham state that, for an undirected graph

Kr4T 	
0 	and 	' 0 	 (2.34)

and

(2.35)
_ 	

,.4 	.-•

where r is C (C is the branch-mesh incidence matrix for an undirected

graph). 1' may be expressed as

(2.36)

where IC is an identity matrix of order C and T is a in x (N-i) binary

matrix corresponding to the tree branches.

For a directed graph, the parallel equation to eq. (2.35) is

B = TT
	

(2.37)

This relationship shows the link between basic meshes and Cut-Sets of a

graph. Thus it may be argued that a spanning tree provides a convenient

starting point for formulating a consistent set of governing equations for

network problems.

If the flow rates associated with the tree branches and chords are

denoted by q r and qC respectively, then the material balance for the (N-i)

vertex subsets may be stated as

18

I .) •,.)

19

- 9Tq = w
	

(2.38)

where a component, w., of vector w represents the net output from the

vertex subset V A -The matrices K and ' refer to 'internal' branches of the

network only, i.e. any branches associated with external inputs and outputs

to the network are ignored. From eq. (2.38)

qr
= w +7 Tq 	 (2.39)

= 	
= (V) 	

T) c = 	
= AT

where w' is the vector of input/output flows. Eq. (2.40) gives, in effect, an

expression for mesh flows.

Mah and Shacham do not cite any examples of the performance of this

solution method in comparison with diakoptics. In both cases a spanning

tree is the starting point for the problem formulation. However, for a given

spanning tree, network equations may be more easily obtained via Mah and

Shacham's method than by the more arbitrary cutting and tearing

techniques of diakoptics. However, changes to the network are less readily

investigated with the former method than with diakoptics.

28. Linearisation Methods

28.1. Bending and Hutchison Method

Bending and Hutchison [4] developed a method for calculating steady-

state flows in networks of pipes and pumps, which they called the

linearisation method. It is simpler in conception than Hardy Cross or

diakoptics, requires smaller computation times and is more general, in that

certain design-type calculations can be undertaken. Examples of these are

problems in which input and output flowrates are determined so as to

satisfy nodal pressure specifications.

For a network containing X pipes, X nodes, XPU pumps and

input/outputs, the linearisation method involves the construction of the

following set of equations.

(a) Mass balance over each node

20-

A 1V - 	A 1 V. + I Q 1 - 	 - 	j"1 =
0 	 (2.41)

iEG. 	iER. 	iH• 	i€S 	iEI
equations

(b) Pressure drop for each pipe

If the flow is turbulent

- P 1 = 4C1 P(? V V 1

If the flow is laminar

- P 1 = 32 p4 i 	 (2.12)

equations

(c) Specified pressure drop for some (maybe all) pumps

- P 1 = x 	 (2.43)
NPu equations

(d) Specified input (or output) flowrates

Fl = x 	 (2.41)
N 1 equations

(e) Additional nodal pressure specifications - sufficient to completely define
the problem

I I = I 	 (2.45)

Xp u + X1 - N - N 1 equations

In (a) the sum for each member i of a set G is indicated by I . In (b) and

(c) subscripts k and I refer to input and output nodal pressures.

The above set of equations is linear except for eq. (42.i). If an initial

guess V 1 101 for the velocity is available, eq. (42a) can be rewritten as

I, 	- k 	l = 	 (2.46)

This new set of equations is now linear and can be solved to obtain new

values of pipe velocities, the process being repeated until convergence is

attained. After each iteration the pipe velocities are taken to be the mean

of the previous value and the calculated value. Bending and Hutchison

21

introduced this relaxation method, since the basic algorithm converges very

slowly, due to the fact that pipe velocities oscillate about their basic

values.

A problem arises from the size of the set of linear equations that need

to be solved at each iteration. Clearly sparse matrix methods must be used

if the linearisation method outlined by Bending and Hutchison is to have an

advantage over the earlier mesh methods.

Bending and Hutchison applied their method to the network of Gay and

Middleton E1611 containing 22 nodes, 38 pipes and 6 input/outputs, and to

variations of this network- They found that (for Gay and Middleton's

network) the linearisation method gave faster convergence than the

diakoptics method.

One conclusion which they reached in their analysis was that

convergence does not seem to depend greatly on the network but only on

the type of flow existing. Thus it may be stated that usually laminar flow

problems converge in two iterations and mixed flow problems converge in

10-13 iterations.

The data input requirements of the linearisation method are more

simple than for Hardy Cross or diakoptics. Also, although changes in the

network topology require a complete recalculation, computation times of

the order of only 3 seconds make this no great disadvantage.

28.2. Newton-Raphson Method

This method is based on the Taylor expansion of f (4 about the kth

iterate, x k

0 	f(z*) 	f(xk) 	
x 	

- xk) 	... 	 (2.47)
j

Neglecting higher order (nonlinear) terms in x*_x k and replacing x' by the

(k+1)th approximation, Xk+1 results in:

22

1k+1 = 	taf(rk) 	
(2.48)

The Jacobian, 	is to be evaluated at z =

The chief merit of this method is its rapid rate of convergence starting

witha set of good initial guesses.

The Newton-Raphson linearisation per se has been applied to the mesh

formulation of a network by Lang and Miller [231 They state that for the

solution to converge there must be no discontinuities in calculated
CK(Utge of

pressure drop or in the rate ofApressure drop with flowrate. Many practical

piping networks have laminar or transitional flow in cross-over piping

between major flow streams which are turbulent so the friction-factor

correlation must be smooth and continuous. Lang and Miller use the

Churchill correlation. (Friction factor correlations are discussed in the

section on modelling of pipeline network elements).

Referring to Fig. 2.4 the condition for a net zero pressure-drop around

loop A may be stated as 	 -

Ai •j 	
(2.49)

b 	 I .

where on. is the correction to flow in any given loop I', and 	denotes the

direction of flow in a pipe relative to the loop flow. For each loop the

pressure condition may be expressed as the forcing function P 1 where

= 	
- 0 	 (2.50)

in, is the mass flow in each pipe i in the loop I, and 4, and n. are functions

of the friction factor, j

A 1B

D 3

Pig. ".4 Two-loop network

In order to use the Newton-Raphson linearisation, the F1 and oni

23

values are expressed in vector notation.

-

	

= (FA, ''B) 	 (2.51)

= (am A' 0771
B)(2.52)

The solution procedure of Lang and Miller generates am 1 for the iteration

j-*1 by correcting 0m 1 from the previous iteration.

j+1 	=
Gm am

where D is the Jacobian matrix whose elements are defined by

D= _E1 	 (2.54)

For the two loops in Fig. 2.4, the Jacobian is

A --E 	.±A

6

 I
D - I 6 A 6 Om B I

BI

	

- I-±B 	BI

	

ISOTIIA 	6 '

When Urn = 0, the iteration is complete.

Lang and Miller claim that this procedure has proved very reliable for

analysing pipe networks involving all flow regimes. It does however require

mesh selection prior to the calculation proper.

Mah and Shacham [261 state that the Newton-Raphson method also

lends itself very readily to sensitivity analysis, that is, analysis of the way

in which a network system behaves when certain specifications such as

delivery pressures or nodal flow rates are changed. For many situations it

is sufficient to determine the approximate behaviour from sensitivity

information based on linearized approximation in the neighbourhood of the

original design solution. Such an analysis is most readily carried out when

the Newton-Raphson method is used for the steady-state solution of the

network concerned.

If the network specifications and parameters are collectively denoted by

u and the state variables are denoted by x, then the steady-state pipeline

network equations are

24

f(x, tz) = 0
	

(2.56)

The effect of varying 'u' and at the same time satisfying eq. (2.56) is given

by

(If = (az)u 	+ 	= fdz ± fu(JU 	 (2.57)

or

- -

	 (2.58)

where (.r/u) is an (n x rn) matrix of partial derivatives of the n state

variables with respect to the n 'external' variables (network specifications),

referred to by Mah and Shacham as the sensitivity matrix. If the

Newton-Raphson method is used to solve the network, the Jacobian matrix

(f/.r) is already available.

Mah [25] uses the Newton-Raphson method, along with algorithms for

node-arc reassignment and cycle selection, to solve mesh-formulated

network problems. This formulation is solved by the product form of the

inverse (a description is given in the section on matrix methods).

2.9. Other Work

Wood and Thorley [341 have written a BASIC computer program for

pressure and flow analysis in pipe networks, which includes extended

period simulations. They employ an algorithm called the SP method for the

solution of the mesh equations (they use the mesh formulation of a

network). Their algorithm makes use of gradient methods to handle the

nonlinear flowrate terms in the pressure-flowrate equation for each

network element. The algorithm is similar to the Hardy Cross mesh method

except that corrections are applied to all meshes simultaneously instead of

sequentially (SP stands for simultaneous path adjustment).

Pipeline network problems may, in principle, be solved by transient

solution methods after allowing sufficient time steps for the solution to

reach steady-state. Nahavandi and Catanzaro [27] made a comparison of a

transient solution method with the Hardy Cross method of balancing flows.

25

For the particular 35-node and 45-branch hydraulic network problem

tested, the transient solution method took 108 seconds compared with 134

seconds required by the Hardy Cross method.

Isaacs and Mills [22] have developed a linear theory method which is

suitable for implementation on a mini- or microcomputer because the

algorithm is simple. It uses a similar linearisation strategem to the

Bending and Hutchison method. The nodal pressures are solved for

simultaneously and the flows are then found from the flow-pressure

equations using the calculated pressures. The matrix on the left hand side

of the equations contains the coefficients for each branch which is

involved in a particular nodal flow balance (or equation). The solution

method used is iterative and at each step sucessive over-relaxation is used

to solve the current set of equations.

The authors state that initialisation presented no problem, and that

initial flow guesses ranging from 0.001 m 3 /s to 1 m 3 /s were used, without

affecting the solution. They recognise the problem of zero flow and say

that when the pressure drop across a branch is very low, that branch

should be removed from the network.

A program for the analysis of flow networks was written by G.M. Alder

[1] at Edinburgh University. The program runs interactively and the user has

the option of using either the Hardy Cross method or the Newton method.

The commands available include SOLVE to find the steady-state flows and

pressures for the present network, or ADJUST to change the pipe

diameters according to the pressure and flow requirements at the

discharge nodes.

Chandrashekar [81 has written a program to analyse hydraulic networks

consisting of pipes, pressure-reducing valves, non-return valves and

booster pumps. The Newton-Raphson solution procedure is employed with

the Hazen-Williams pipe pressure loss equation to find the nodal pressures.

The program has been used to analyse several networks and the author

claims that if several valves are present a correct solution may not be

given, and problems of oscillation or slow convergence may also arise.

Chandrashekar and Stewart [9] state that Newton's method is the fastest

method for flow networks, but the step at which the inverse of the

26

Jacobian matrix is calculated is time-consuming. They observe that the

fraction of non-zeros in the Jacobian may be as low as 2-5%, and they

describe an LU decomposition method which takes advantage of this

sparsity. The method required 10 iterations and 3 seconds for a network

with 191 nodes and 287 pipes.

A large proportion of pipeline flow analysis methods are for hydraulic

applications, but could be easily modified for compressible flow situations.

Hutchison [21] has written a program for the simulation of steam

distribution networks which is based on the linearisation method of

Bending and Hutchison. Facilities are included for calculating steam

properties and also for handling incondensible gases.

R. Liebe [24) has developed a method for finding the steady-state

energy and flow distribution in arbitrary networks where, in addition to

pumps, pipes and valves, the network contains components for the

generation, transfer and removal of heat. In such networks the nodal

properties are temperature and enthalpy, and in branches the quantities of

interest are heat flow and fluid flow. Such networks are described by sets

of coupled, partially non-linear equations. Liebe's method derives from an

equivalent network model which employs lumped properties and quantities

for nodes, branches and components - he describes the model as a

'discrete structure' model. He uses a Taylor expansion to linearise the fluid

velocity/enthalpy relationship in all network branches ; the network as a

whole is described by a set of equations in which nodal flow balances are

expressed in terms of nodal enthalpies. Liebe's method uses an overall

Gauss-Seidel iteration procedure to obtain nodal enthalpies. After each

iteration step, a new coefficient matrix for nodal enthalpies is obtained. The

elements of the coefficient matrix are further updated by an 'improvement

step' before the next it-eration. The values obtained in this improvement

step are derived from the above-mentioned Taylor expansion of the branch

fluid velocity/enthalpy relationship, using the current and previous values

of enthalpy at the branch end-nodes. Within the overall Gauss-Seidel

iteration procedure for nodal enthalpies, there are two sequential iteration

procedures the first obtains the network heat-flow distribution by solving

for nodal temperatures, and the second iteration procedure obtains the

network fluid-flow distribution by solving for nodal enthalpies. Liebe claims

27

that the method has low sensitivity towards physical or numerical ill-

conditioning, due to the formulation of nodal equations using scalar energy

(enthalpy) type unknowns ; the coefficient matrix for nodal enthalpies is

positive and diagonally dominant (this aspect is further discussed in the

section on 'Iterative Methods'). Liebe cites a use of the method in the

design optimization of an air coolant distribution system in a large,

prototype water-wheel-generator. He states that it took only 5 to 10

iterations to produce nodal residual flows which were 1-2 % of the net

nodal flow.

The field of dynamic modelling is not so well developed as that of

steady-state, but commercial programs for unsteady-state analysis do

exist. An example is the Pan network analysis program developed by

Goldwater, Rogers and Turnbull [20] for the analysis of gas distribution

networks. Bender [3] has developed a mathematical model for simulation of

dynamic gas flows in networks including control loops. He uses the Lax-

Wendroff scheme to solve the coupled hyperbolic partial differentiation

equations which arise in the dynamic model.

2.10. Modelling of Pipeline Network Elements

An important factor in the analysis of pipeline network problems is the

modelling of network elements, including pipes, pumps and various types

of valves. The following subsections describe methods for modelling such

elements. -

2.10.1. Pipes

The modelling of pipes in network flow analysis is concerned mainly

with the choice of friction factor correlation. If there are discontinuities in

the pressure-drop equation used over different flow regimes this can lead

to convergence difficulties.

Estimation of friction factor is usually done by using the Moody friction

factor chart which is made up of the following equations. For laminar flow

with Re < 2100, the Hagen- Poiseuille equation is used

28

64
ID = Re (2.59)

where fD is the Darcy friction factor which is four times the Fanning

friction factor f.

For fully developed turbulent flow in smooth pipes with 3000 < Re <

3.4x10 6 , Prandtl's equation is

/1 	= 2.UloglO(Re/JD) - 0.8 	 (2.60)

For fully developed turbulent flow in rough pipes with 11)Ic)/(/?e/f)' >

0.01, Von Karman's equation is

= 2 . 01ogo() ± 1.74

where E is pipe roughness and I) is diameter.

For transition flow where the friction factor varies with both Reynolds

number and (c/D), Colebrook's equation is the most commonly used

2c 	18.7
,If

= 1.74 - '-)log(±
	Re 	

(2.62)

This equation is valid up to a value of [(D/c)/Re/ff) = 0.01.

In fact the Colebrook equation covers the fully developed flow regions

for smooth and rough pipes, as well as the transition region. However it is

an implicit equation and requires iteration . Various explicit equations have

subsequently been proposed. Chen [11] compared two of the explicit

equations, the Wood and the Churchill, with his own suggested equation

and concluded that the latter gave best agreement with Colebrook over a

Reynolds number range of 4000 to 4x10 8 and a roughness ratio, (ell)),

range from 0.05 to 5x10 7 .

Chen's equation is

2 01o[T7
E 	5.0452 	1 	1.1098 = - 	

065D - Re
-to

 2.8257

5.8506 " +)J 	 (2.63)

29

2.10.2. Pumps and Compressors

With regard to the modelling of pumps, Gostoli and Spadoni [19] have

extended the linearisation method of Bending and Hutchison to include

pumps with variable head.

It is usual practice to represent the head-capacity curve of a centrifugal

pump by a polynomial

= 1(Q) = aQ 2 	bQ -s- h o 	 (2.61)

Gostoli and Spadoni propose that a linear characteristic equation be used

to model the pump.

Ii = 1(Q) =h - ZhQ
	

(2.65)

in which

= QoQhh 	
(2.66)

(Eh ZhQO and U < Qh < Qo NO
is the rnaxirnu in pump through put)

Eq. (2.66) can be regarded as the equation of a linear element with a

source L' h and impedance Zh > 0. According to electrical network theory

the network with a linear pump has thus a unique solution Qh,1' and this

can be found by the linearisation method.

Gastoli and Spadoni have used this linear pump model successfully in

the solution of networks including several pumps. They state that

singularities are never encountered until the impedances Z of the pumps

are positive, and this is generally true in a wide range of flows.

Wood and Thorley [34] in their program for the analysis of pipe

distribution systems allow a pump to be specified in two ways for data

input. The useful power a pump puts into the system can be specified. This

method of describing a pump is-useful for a preliminary analysis or design

when the specific characteristics of the pump are not known.

Alternately a pump can be described by points of operating data input

to the program. An exponential curve is fitted to this data to obtain a

30

pump characteristic curve describing the pump operation, of the form

kIlp = il - CQ °
	

(2.67)

where E is the pump head, Q is the flowrate and IL, is the pump shut-off

head. C and n are determined by passing the curve through two points of

operating data supplied to the program. The program handles out of range

pump operation as follows. If flow reversal occurs then the pump operates

at shut-off head. If the solution indicates that the pump is operating at a

flowrate above that of the highest flowrate supplied in the input data, then

the pump operates on a straight line with equation / = .4 - SQ. where S

is the gradient of eq. (2.67) at the highest flowrate value supplied.

For compressors, Mah and Shacham [261 state that the modelling

equation most commonly used is

qji 	 liP 	 (2.68)

Pi

where h is the compressor horsepower, q ij is the flow through the

compressor,p 1 and p 1 are the input and output pressures respectively and

cz 0, c& and a2 are constants.

2-103. Pipe fittings

For pipeline fittings such as bends, valves, expansions and contractions,

the head loss, ilL, is evaluated from

ilL =
iL9V2 	

(2.69)

where KL is the loss coefficient and V is a characteristic velocity in the

fitting. If the network as a whole is modelled by linearised pipeline

'element' equations then eq. (2.69) will also be linearised according to the

method used (Bending and Hutchison, Newton-Raphson, etc).

Eq. (2.69), however, applies only to the turbulent region of flow. Little is

known about the behaviour of loss coefficients for pipe fittings in the

laminar region. Edwards, Jadallah and Smith [151 have investigated this

area and proposed that it is possible to present fittings loss data as

31

relationships between the loss coefficient and a generalised Reynolds

number.

They performed experiments with various pipe fittings, including

elbows, gate valves, 1 and 2 inch globe valves, sudden contractions and

expansions and orifice plates. In all cases they were able to present their

results in the form, KL =

2.10.4. Miscellaneous Pipeline Elements

Another common set of devices used as pipeline elements are pressure

regulators. These are of two types the downstream regulators (or

pressure reducing valves) and the upstream regulators (or pressure

retaining valves). Mah and Shacham [261 state that the idealized

downstream regulator may be modelled by

min(p1, p 5) 	 (2.70)

where ps is the regulator set-point pressure. The valve is closed when p >

Pi (p 1 and p are the inlet and outlet pressures respectively). For the

idealized upstream regulator,

max(p, ')
	

(2.71)

and the valve is closed when p 1 < p.

Wood and Thorley [34] modelled these two types of regulators in their

network flow analysis program. The downstream regulator was modelled as

two nodes : at the upstream node the flow demand is set (within the

program) equal to the flow through the regulator itself. The downstream

node is a fixed pressure node in which the pressure is set equal to the set

pressure plus the head due to elevation of the regulator. If flow reversal

through the regulator occurs, a designated check valve downstream from

the regulator will close. For the case of a pressure retaining valve, Wood

and Thorley's simulation uses flow in reverse through a pressure reducing

valve and the valve can operate in three modes

1. The valve is fully open and the upstream pressure is
above the set value.

32

The valve is throttled and the upstream pressure is
regulated at the set value.

The valve is closed and the upstream pressure drops
below its set value but cannot be controlled by the
valve.

Wood and Thorley say that if the operation mode is unknown, then two

simulations will be required to check all three possibilities.

In their program they also include the facilities to model variable

pressure sources, storage tanks and pressure switches. These can be

described briefly as follows.

Variable pressure source - as an example suppose a pressure main at

200 metres elevation has the following flowrate-pressure characteristics.

flowrate(litres/s) available pressure(kPa) head increase(m)
0 	 1000 	 102

18 	 690 	 70
25 	 572 	 58

This can be simulated by a feed line with a pump connected to a reservoir

at elevation 200m. The pump characteristics are described by the flowrate-

head data shown above where the head represents the pressure head of

the source for the associated flowrate. This representation will simulate a

variable pressure source which operates on a curve which passes through

three specified points.

Storage tanks - represented by a fixed pressure node with the pressure

specified as that due to the elevation of the fluid surface. For an extended

period simulation the tank characteristics must be specified.

Pressure switches - this feature is used in extended period simulations

and allows the open-closed status of lines to be controlled by the head at

a specified node.

33

2.1 1. Sparse Matrix Methods

2.11.1. Gaussian Elimination

Most sparse matrix methods are derived from Gaussian elimination, so

a brief description of the method is given.

The equations to be solved are

a11i1 	'12'2 	 + ... -I- ax 	= b 1
(2.72)

a 1 x 1 + a 2z 2 f a 3- 3 + ... + annxn = b

The first equation is stored for later use and the variable x.1 is eliminated

from the remaining n-i equations by subtracting an appropriate multiple of

the other equations. If the original coefficients are given the notation

(1) ' . 	= 	 , (L 	 = 	1, 	..
Ii 	

a. 	i.j 	 . ,n 	 (2.73)

b. 114 = b. 	i 	= 	1, 2, ... ,n 	 (2.74)

then the new coefficients are found by using the multipliers

a 	(1)
fl 	= __!i_j 	1 	2, 3..... n 	 (2.75)

and forming the new elements

a
I,
..(2) = 	aH'1 - ?n11a1 (1) 	

2 	2,3, ...
1 2= 	, 2, 	, n 	 (2.76)

b 121 = b 111 	 i = 2,3, 	,n 	 (2.77)

In this way, the first variable, x 1 , is eliminated in the last n-i equations.

If this procedure is repeated a further n-2 times, the remaining

equation will have only one unknown and can be solved very easily.

At each stage in the process when the variable x is to be eliminated

the multipliers formed are

(k)
Tflik = _.!..4k) 	i = k-i-i, k-i-2, ... ,n 	 (2.78)

and the new elements formed are

34

- rn a (k) 	= k ii, k 2, ...
Ii 	 ii 	ik kj 	

j = 	k, k F I, ... , n 	 (2.79)

	

= b1 	- mkbk 	i = kt I, k+2, ... ,n 	 (2.80)

The result of this elimination process is an upper-triangular set of

equations given by

a ll1
(1)x 1 	a 12 1 x 2 + ... + a ln in

(2) a22 (2) x2 -F ... + a2 n 	Z n

(n) Z a 11 	n

b 1 1

b 2
(2)

b(n) 	 (2.81)

where all the elements below the diagonal are zero. It is easy to solve

these equations by a process of back substitution. The last equation has

the solution

b

	

Zfl = _..(fl) 	 (2.82)
nn

and this value can then be substituted in the next lowest equation to give

x_ 1 . By working back up the equations the values of all the variables can

be calculated.

The basic method can be improved upon by partial pivoting and scaling.

The aim of partial pivoting is to minimize the build-up of errors. From Eqs.

(2.79) and (2.80) it can be seen that one operation which occurs many

times is multiplication by m 1 . In multiplying the number, any accumulated

error which is present will also be multiplied by rn, therefore these

multipliers should be made as small as possible, and certainly less than

one, so that the errors are not magnified by the multiplication.

This can be achieved if the pivotal element akk M is the largest of all the

elements ak in the same column for i > k since then

	

'< I 	j < i ; 	i = 2, ..., n 	 (2.83)

The partial-pivoting strategy on its own is inadequate ; the matrix should

be scaled so that the rows are comparable in some defined way. This is

usually done by normalizing in one of two ways. The rows can either be

normalized by dividing the whole row by the element in the row which has

the largest modulus so that the largest element of the new row is one, or

35

alternatively, each row can be divided by

d, = a 	 (2.84)

Williams 1321 states that although it is established that scaling can make a

significant difference to the accuracy of the solution, there is no standard

method of scaling which is universally accepted.

There are several variants of the standard Gaussian elimination method.

In the Jordan elimination scheme the final form of the matrix after

elimination is a diagonal form, in which each equation has only one

variable. Therefore the back-substitution process is avoided and the values

of the variables can be calculated directly. However Jordan elimination

needs approximately n /2 operations compared to n 3/3 for Gaussian

elimination.

There is another group of methods which can be described under the

general heading of triangular decomposition ; these include the methods of

Crout and Choleski. The computational scheme is based on a series of

multipliers which reduce the matrix to triangular form followed by the

process of back substitution. Reduction to triangular form means that

matrix A can be expressed as

A = L. U 	 (2.85)

where U is an upper-triangular matrix and L is a lower-triangular matrix.

Once these matrices have been found the set of equations is solved in two

stages of forward- or back-substitution. If:

A X = L . U. X = Ii 	 (2.86)

vector Yis found such that L. Y= B, then the equations U.X= Yare solved.

The number of operations is the same as for Gaussian elimination.

In the case of a symmetric matrix it is possible to reduce the amount of

computation and storage by taking advantage of the symmetry. If the

diagonal elements of L and U are made equal then (I = LT and only the

elements of L need be calculated or stored. This is known as Choleski

36

factorization.

2.11.2- Product Form of the Inverse

This is also a matrix factorization and has been applied in one instance

[251 to the solution of pipeline network problems after node and mesh

reordering algorithms have been applied.

The following description of the PFI is taken from Brameller [61

For the equation

A X= 6

the solution is

X = A 1 b

In the product form of the inverse, A' is given by

= 7' ...T 3T 2T 1

(2.87)

(2.88)

(2.89)

The steps required to achieve this result can be illustrated by considering

the following 3rd-order problem.

a ll 	a 12 	a 13 x , 	 b 1
a 21 	a 22 	a23 	£2 	= 	b 2 	 (2.90)

"31 	a 32 	a 33 	£ 3 	b 3

The elements below the diagonal element of the first column are

eliminated by pre-multiplying the coefficient matrix A by a transformation

matrix, T 1 , where

7 1 1
 =

- 0 0
a ll

I 	0
a 11

0 	I
a ll

(2.91)

This operation gives a new matrix A 111 = T 1 A where

37

((1)
a 12 1) 	a 13

= 	0 	a 22 1 	a 23 1 	 (2.92)

0a32 	a33

The elements a.. of A 111 are obtained by the method used in Gaussian

elimination, i.e.

aJ'1 = 	 i = 2..... n 	 (2.93)
a 11 	 .= _,...,n

Therefore eq. (2.87) has been transformed into a related set of equations

which can be expressed as

= 'J' 1 AX = T 1 b 	 (2.94)

This process can be continued using the second diagonal element of the

new matrix A ll) as a pivot. Using the same technique, the off-diagonal

elements of the second column of can be reduced to zero and the

diagonal element made unity by pre-multiplying the matrix A 111 by a

transformation matrix T 2, where

I
a 22

7 2 = 	0 	 0 	 (2.95)

(1)
0_.i

a
(i)

22

giving I1(2) = T 2 A 111 = T 2T 1 A where

0 	a 13 121

A 121 = 	0 	1 	1123 (2) 	 (2.96)

0 	0 	0

Eq. (2.87) is now transformed to

Al 2 X =. T 2A 111X = T 2T 1 AX = T 2T 1 b 	 (2.97)

If this transformation process is continued, then for a nth order problem,

eq. (2.87) becomes

38

= 7' ..T 2T 1 b 	 (2.98)

But A 1 ' has been reduced sequentially to a unit matrix, therefore eq. (2.98)

is

X = T ... T 2 T 1 b 	 (2.99)

and by comparing eqs. (2.87) and (2.99)

.4' = 7 ' ...T 271 1 	 (2.100)

From eq. (2.100) it can be seen that this transformation process enables

the inverse of the original matrix A to be obtained implicitly as the product

of n factor or transformation matrices.

Each transformation matrix T. (i = 1,2, .. ,n) is a unit matrix except for

its i th column, therefore, in computer solutions, only the i th column need

be stored ; all other elements of the matrix are known implicitly. In general

sparse network problems, the i th column of T will also contain a large

proportion of zero elements.

2.11.3. Sparse Matrix Codes

Duff [131[141 (with Stewart) has made some comparisons of code for

the solution of sparse sets of linear eqations. The following is a brief list of

programs with their description.

MA28 - pivots are selected using the Markowitz scheme with

threshold pivot. There is an optional block triangularisation routine and the

program can cope with singular systems.

YSMP - pivots are chosen from the main diagonal according to a

minimum degree algorithm on A and A T

GNSOIN - generates a cycle-free code which performs Crout

reduction when supplied with the pivot order.

SLMATH - generates pivot order using the Markowitz method with

threshold pivoting and has the option of switching to a full matrix code

when the active matrix is sufficiently full.

39

SSLEST - uses threshold pivoting. User options include the removal

of all elements below a user-set value, restriction of pivots to the main

diagonal, or restriction on the number of rows inspected before each pivot

selection.

NSPIV - uses partial pivoting to solve a single set of equations. It

preorders the rows in order of increasing number of non-zeros. The largest

element from each row in turn is then used as pivot.

Bending and Hutchison [5] developed TRGB routines for solution of

sparse matrices, further to their work on linearisation methods. The method

is based on Gaussian elimination and has two stages. In the primary stage,

the matrix problem is solved and a first-time 'operator list' is obtained.

This is composed of the addresses of elements and the operations

performed. If another system of the same topology is to be solved then

the secondary stage will solve it in conjunction with the operator list. This

reduces the computation time and is particularly appropriate for pipe

network systems, since changing network parameters will alter the matrix

coefficients, but not their position within the matrix. However, if a

previously used pivot has become zero, or falls inside a pre-defined

tolerance, then the primary stage is used again.

For the TRGB routines the pivot is selected by chosing the column with

the fewest non-zero elements, or least 'file'. The rows which include the

variable corresponding to the column of least file are searched, and the

one with the fewest non-zero elements, or least rank, is chosen. The

element at the intersection is the new pivot unless it is too small. The

routines will only accept as many equations as there are variables and will

reject any extra rows. If there are too few rows, or the matrix is singular,

the TRGB routines will attempt to solve for as many variables as possible.

2-11.4. Iterative methods

Iterative methods often prove useful in the solution of linear systems.

They use only the non-zero elements and so appear especially attractive in

the solution of sparse sets of linear equations, since only the non-zero

elements need be stored.

40

The simplest iterative method is that of Jacobi. The Gauss-Seidel

method is an improved version of Jacobi's.

In order to see the way in which the two methods work, the coefficient

matrix A may be split into three parts. These correspond to the set of

diagonal elements, the elements above the diagonal, and the elements

below the diagonal. Thus

AX= (L-i-D+U)X= B 	 (2.101)

It is convenient to scale the equation by dividing through by the diagonal

elements so that 1) becomes equal to the unit matrix I.

The Jacobi method results from transferring all terms to the right hand

side except the diagonal terms, and iterating as follows.

= (- L - U)x(r) -1- B 	r = 0,1, ... 	 (2.102)

However, the Gauss-Seidel method introduces x1 fn. l), 2 (r + l) etc., on the

right hand side as soon as they are available. Thus, the iteration equations

become

x (r+1) = -L. x 	11 - 	(r) -I-. B

or

(1 + L)x1'' 	= U.X' 1 -i- B
	

(2.103)

Williams [321 states that when both the Jacobi and the Gauss-Seidel

methods converge, the Gauss-Seidel method converges faster than Jacobi.

If the iterative process converges slowly, the technique of over-

relaxation may be employed. The values calculated from the Gauss-Seidel

process are modified according to the following equation

= X(r) -F W(X' - X (' 1) 	 (2.104)

is the value calculated by the Gauss-Seidel process.

If the above equation is written in the form

41

px 	+ C 	 (2.105)

and the final solution X is given by the equation

XPX+C

then the error B 	= x- x' 1 is given by

X - 	 = P(X -

P
= p r+1(0) 	 (2.106)

For convergence to be achieved, one necessary condition is that the

eigenvalues of P should have modulus less than one. Williams [321 states

that the condition I X i I < 1 is also a sufficient condition and, therefore, a

knowledge of the eigenvalues of P will determine whether the iteration will

converge. However, the eigenvalues themselves are difficult to evaluate.

One condition which is easily checked and which guarantees

convergence is that of diagonal dominance of the original matrix .1. A

matrix is said to be strictly diagonally dominant if

dr < 1 	 r = 1, 2, .. ,n

where

n

d r 	Iü rj I 	 (2.107)
j=1

a rr I

with the prime notation signifying that the value art, is omitted from the

summation. If d r 1 for r = 1,2, .. ,n and dr < I for at least one value of r,

then the matrix is said to be weakly diagonally dominant. This condition is

sufficient for convergence of the iterative process. It should be noted here

that, with respect to the network program described in Chapter 3, the

coefficient matrix has d t, = 1 for all r, which signifies that convergence will

not necessarily be achieved in all cases. However, as stated, this condition

is sufficient, but not necessary.

Another condition which ensures convergence is when the matrix A is

positive definite. A matrix is said to be positive definite if for every non-

null vector Xthe quantity)A > 0. Since this property is more difficult to

42

investigate, the property of diagonal dominance is more often used to

check if convergence can be guaranteed.

2.12.. Supercomputers and sparse matrix strategies

The coming availability of cheap supercomputing power will greatly

affect the areas of process simulation and design. Supercomputers differ

architecturally from present-day "conventional" large mainframe computers

and can potentially provide very large increases in speed relative to the

conventional machine. However the amount by which speed can be

increased depends on problem formulation and the solution strategy

involved. Speed may be only doubled, or increased by a factor of twenty or

more if the supercomputer architecture is well exploited.

The most significant, architectural feature of the supercomputer is its

ability to perform vector operations. The term vector operation is described

by Calahan and Ames [71 as 'a sequence of identical arithmetic or logic

operations performed on elements of one or more arrrays, invoked by a

single instruction'. Thus, any algorithm which uses a high amount of

vectorization in the course of its solution is well able to exploit this feature

of supercomputers.

Stadtherr and Vegeais [281 have discussed various sparse matrix

strategies which may be used on supercomputers.

One approach is the block-oriented approach, in which parts of the

matrix are treated as if they were dense blocks of non-zeros. The blocks

are so located that the system can be solved by performing block Gaussian

elimination. The blocks are given descriptors that identify the size of the

block and its position in the matrix. Because the blocks are considered full,

the location of all elements is described completely by the block

descriptors. The system is then solved by block Gaussian elimination.

Because of the regular way in which the matrix is stored, the operations

performed in this approach are vector operations.

The drawbacks to this method are that, although a high number of

operations per second may be performed, many of these operations are

carried out, unnecessarily, on zero elements, and difficulty arises in

43

pivoting to maintain numerical stabilty. If, in the course of performing

threshold pivoting, it becomes necessary to exchange columns for reasons

of numerical stability, then this could lead to transfers among a number of

blocks and possibly the formation of new blocks because of fill-in. Thus,

the overall performance of the block-oriented solver could be slowed down

considerably.

Another approach is the continuous backsubstitution approach which

tries to exploit the presence of contiguous non-zero elements in order to

carry out vector operations. The CBS algorithm limits fill-in in the matrix to

certain columns, called spike columns. Because these spike columns

normally become completely filled-in in the CBS algorithm, they can be

stored as a full vector. This means that computations with the spike

columns can be done as vector operations. The method operates almost

exclusively on non-zeros and also limits the amount of fill-in that can

occur. However increased speed occurs only in the spike columns. The

elements below the diagonal are indirectly indexed and cannot be operated

on as vectors. Also, when column exchange is necessary in order to

maintain numerical stability, the spike column must be put into indexed

form and the pivot column must be "unindexed" into a contiguous vector.

Another method cited by Stadtherr and Vegeais is a variation of the

frontal approach, which was developed for use in finite element problems.

It takes advantage of the fact that each variable only appears in a few

equations and that pivoting on a variable will only affect a small number of

equations and variables. Only a small submatrix, called the frontal matrix, is

stored at any time during the solution of the sparse matrix. In essence, this

method takes advantage of a banded type of matrix structure.

The frontal matrix is fairly dense and may be treated as a full matrix,

thus allowing the use of vector , operations during elimination. Another

advantage of this approach is that the amount of storage necessary for the

frontal matrix and other needed arrays is small.

Stadtherr and Vegeais state that for the frontal method it is desirable to

process small columns first and small rows last. Because of this, a

reordering method should first be applied to the matrix. They have tested

various reordering methods and conclude that the best overall method is

44

the BLOKS reordering (which they refer to in [281).

A disadvantage to this method is that operations are done on zero

elements (as was the case in the block-oriented approach). So while the

operations performed are vector operations and are therefore performed at

a much faster rate, some of this speed is wasted on unnecessary

computations.

2.13 Conclusions

This literature review has described the development of methods for

modelling steady-state flow networks, beginning with the method of Hardy

Cross, which was the basis for much later work. The Hardy Cross method,

in its basic and improved forms, requires mesh selection, which is time

consuming, since it is largely an ad hoc process. Orthogonal transformation

of the network also requires mesh selection, and diakoptics involves the

abitrary cutting or tearing of the network, with only general guidelines

available for the best way to carry out this operation. The methods

described in the section on Graph Theory are also dependent on a mesh

formulation of the network. Such methods as these are largely redundant.

A number of linearisation methods were examined. The first of these, the

Bending and Hutchison method, applies to networks which have been

modelled by sets of equations describing mass conservation at network

nodes (i.e. a nodal formulation). This model is simpler than mesh- or

partition-type models and its use allows the effects of changes to network

structure or conditions to be more easily demonstrated. Various different

linearisation techniques, including Newton-Raphson or variations of the

linearisation used by Bending and Hutchison, have been applied to mesh or

nodal network models. The sets of equations cIe5cribing nodal mass

conservation or mesh pressure drop are typically large and sparse, and

require the availability of efficient sparse matrix solvers. With the

development of more efficient sparse matrix methods and improved

computing power, the linearisation methods which have been applied to

network problems appear the most favourable. They allow ease of

specification and are very reliable, so long as the equations used for flow-

pressure drop in pipes do not contain discontinuities.

With regard to future developments in flow network simulation, there

45

would appear to be scope for more reliable and accurate modelling of

network elements in steady- and unsteady-state networks.

46

2.14. Notation

Flow Network Representation

F 1 	Mass flow along branch i

k' pj 	pressures at nodes k and j (end nodes of branch i)

Graph Theory

A 	 augmented branch-node incidence matrix for graph of network

A 	 branch-node incidence matrix for graph of network

C 	 branch-mesh incidence matrix for graph of network

Hardy Cross

AHc 	error in head around mesh

AI-In 	increment in head at node n

AQc 	linear correction applied to flowrate in mesh

AQn 	excess inflow/outflow at node n

q k 	flowrate through network element

Otk 	 coefficient in flow/head-loss equation

Ok 	 head-loss through network element

Network Transformations

C 1 	square transformation matrix for network

E 	vector of branch pressure sources

vector of mesh pressure sources for all-mesh network

/ 	 vector of branch flow sources

Ii 	nodal flow vector for all-mesh network

J 	vector of total branch flows

vector of total mesh flows for all-mesh network

Y 	 admittance matrix

admittance matrix for all-mesh netwok

Z 	 impedance matrix

47

impedance matrix for all-mesh network

e 	vector of branch pressure rises

vector of nodal pressures

/ 	 vector of branch flows

vector of mesh flows

mesh flow vector for all-mesh network

/ 	 vector of 'primitive' branch flows

Dia ko plic s

B 	branch-'node to datum path' incidence matrix

BT, BL 	tree and non-tree partitions of B

CA B 	transformation matrix relating networks A and B

I' 	vector of flows in the node to datum paths

J, J'8 	generalised flow vectors for networks A and B

vector of path flows for all-path network

pressure vector for network A

vector of nodal pressures for network B

ot 	 transformation matrix for all-mesh (diakoptic) network

y 	 transformation matrix for all-path network

Other Matrix Methods

B 	partition of K

K 	cut-set matrix

K 	cut-set matrix for undirected graph

r'.J

7' 	 partition of r

VA! VB 	sets of vertices in subgraphs A and 1

qC 	 flow rate in chord

q. 	flow rate in tree branch

W 	 vector of flow balances for vertex subsets

48

W 	 vector of input/output flows for network

F 	 transpose of branch-mesh incidence matrix for undirected graph

Bending and Hutchison

C 1 	coefficient in pipe pressure/flow relationship

D i 	pipe diameter

F. 	Volumetric inflow/outflow at node i

C. 	set of pipes connected to node j where flow direction is away
from node j

ii, 	set of pumps connected to node j where flow direction is away
from node j

set of nodes where external network flows are input/output

L i 	pipe length

N1 	number of volumetric inflow/outflow specifications for network

NPU 	
number of pumps at which pressure drop is specified

I'. 	pressure at node i

P1 	pressure at pipe input/output nodes

Q j 	volumetric flowrate in pump i

set of pipes connected to node j where flow
direction is towards node j

S3 	set of pumps connected to node j where flow
direction is towards node j

V 1 	fluid velocity in pipe i

number of network input/outputs

Xn 	number of nodes in network

X, 	number of pipes in network

XPU 	
number of pumps in network

11 	fluid viscosity

Newton- Raphson

D 	Jacobian matrix for forcing function P

49

F, 	forcing function for network loop

rn i 	mass flow in each pipe i in network loop

arn 	 correction to flow in network loop

direction of flow in pipe relative to loop flow direction

Modelling of Pipeline Network Elements

D 	 pipe diameter

Re 	Reynolds number

AD 	Darcy friction factor

Fanning friction factor

£ 	 pipe roughness

Pumps (Castoli and Spadoni)

H 	pump head

Q 	 flowrate through pump

maximum pump throughput

h 0 	pump shut-off head

Pumps (Wood and Thorley)

pump head

If 	pump shut-oft head

Compressors

h 	compressor horsepower

Pi' Pj 	compressor input and output pressures

q ji 	flow through compressor

constants in flow/pressure equation

Pipeline fittings

hL 	head loss

KL 	loss coefficient

V 	 characteristic velocity in pipe fitting

50

CHAPTER 3

THE DEVELOPMENT OF A PROGRAM FOR STEADY-STATE FLOW NETWORK MODELUNG

3.1. Introduction

The second aim of this thesis, stated in Chapter 1, was to provide a

computer tool to be used for the solution of steady-state flow network

problems. In this chapter a description is given of the development of a

FORTRAN program which was written to achieve this aim. Reference is

made to methods mentioned in the literature survey of Chapter 2. Some of

the concepts discussed in Chapter 2 are restated, in order to describe

clearly the factors involved in program design.

3.2. Computer Modelling of Flow Networks : Overview

The modelling of steady-state flow networks by computer program

depends on the way in which the network is 'abstracted' or numerically

represented. Most flow network programs are based on representations

which derive from one of the two following views of a network. The

network may be seen as consisting of a set of meshes (the mesh

formulation, described in Chapter 2), or viewed as a set of connected pipes

and nodes. The choice of representation directly influences the choice of

solution algorithm and this in turn has an effect on the range of problems

which may efficiently be solved by the program, for example networks with

very small flows in certain pipes may prove insoluble by a particular

solution method. Clearly, it is desirable to have a solution algorithm which

is robust for all types of flow regime and network topology.

33. Basis of Program Design

The computer program described in this chapter was based in part on

an existing ICI flow network program ; certain features of that program,

such as data input/output and physical properties utilities, were not

changed, or modified only slightly. However the solution algorithm was

replaced by one based on a different network abstraction. The original

algorithm used the mesh formulation of a network the new algorithm

applies to a network which is modelled as a set of linearised pipe

pressure/flow equations. Several workers, e.g. Bending and Hutchison [41

51

quoted in the literature survey, suggest that solution methods based on

the 'linearised network' approach have superior convergence properties to

those which are based on the mesh formulation. Consideration of the flow

network literature thus decided that a version of the former method be

used.

3.4. Choice of Network Representation

For the purposes of the program under discussion, a flow network is

viewed as a connected set of nodes and links. Links correspond to actual

physical pipeline elements which may be pipes, pumps or valves, however

the latter two are considered as 'pseudo-pipes' by the program. The

following is a summary of the network components and their properties.

- Node : Nodes in the network may be of two types -
junction and pendant. A junction node refers to a point in
the network adjoined by two or more links. A pendant
node is a point in the network adjoined by only one link
and which has been assigned either a fixed pressure or
net inflow/outflow value. Physically a pendant node
corresponds to a supply/demand point in the network,
such as a reservoir, pressure source or input to a
subsidiary network. The properties of a node are pressure
and inflow/outflow. If a pressure or flow is not explicitly
specified in the data set, then the inflow/outflow is set
implicitly to zero.

- Link : A link, as mentioned above, can refer to either a
pipe, pump or valve. Pumps and valves are considered,
for the purposes of data input, to be pipes with zero
length and bore equivalent to that of the actual pipe with
which the pump or valve is physically associated in the
network. Pipes (or pseudo-pipes) have the properties of
length, bore, roughness ratio, fittings loss and
temperature, of which only bore and temperature are
non-zero for pumps and bore, fittings loss and
temperature are non-zero for valves.

3.5. Flow Analysis

An analysis of flow in pipes is necessary as a precursor to the

description of the algorithm used in the program. The algorithm is based

on equations describing the flow/pressure drop relation for a single pipe.

Pressure drop in a pipe passing fluid is a result of

52

friction or drag of the fluid on the pipe walls

losses due to fittings (localised changes of bore
and changes of direction of flow)

kinetic energy changes

gravity heads due to change in height.

For incompressible flow, the pressure drop is related to the mean flow

velocity by the Darcy-Weisbach or Fanning law. This law is only 'true' for

fully turbulent flow, where the friction coefficient is constant, and it

becomes the definition of friction or loss coefficients for other flow

regimes.

J) - J) =
2 	d 	

+k)

Eq. (3.1) is a restatement of eq. (2.42(i)), with an added fittings loss term.

For compressible flow, the density changes with pressure and eq. (3.1) can

only be taken as true for short lengths of pipe. A similar expression to eq.

(3.1) may be derived for compressible flow, using the continuity and

momentum equations. The compressible flow equation applies for the

isothermal flow of perfect gases (pressure density).

- P! 2 L1
- 	- 	2 	

d + k + 21n() 	 (3.2)
P O

Eqs. (3.1) and (3.2) may be rewritten in terms of mass flows (the program

herein described works internally in terms of mass flows) as

Pi
 - P0 = 2s2p

(_f_1
-I-. k) 	 (3.3)

P 	
2

-

0 = 2s
F

2p (1-j- + k 	 ± 21n(P.1)) 	 (3.4)
P,

The friction coefficient, J is determined by the pipe wall roughness and the

Reynolds number. In the program this is calculated from the Hagen-

Poiseuille law for laminar flow and from the Colebrook-White equation for

transitional and turbulent flow. The Colebrook-White equation is used when

the Reynolds number is greater than or equal to 2500. Below 2500 the

Hagen-Poiseuille law is used. The Hagen-Poiseuille law may be stated as

53

I =
	 (3. 5)

Re

The Colebrook-White equation is (restating from Chapter 2, eq. (2.62))

2E 	18.7

77 =1.74 - 2log(-;- +
	?elf (3.6)

The gravity heads due to sloping pipes are taken into account by adding

the term pg(h 0-h 1) to the pressure drop where p is the mean fluid density

and h, , h 0 the node heights at inlet and outlet.

There now follows a description of the algorithm used in the program

(the program will be referred to by the acronym FLONET). The flow

diagrams for the FLONET program and subroutines are given in appendix ii.

36. FLONET algorithm

The algorithm involves setting up flow balances for all nodes in the

network which have a specified or implicit inflow/outflow assigned to them

(any node which has not been assigned a fixed pressure or inflow/outflow

in the data set is assumed to have an inflow/outflow specification of zero).

There is a requirement that at least one fixed nodal pressure be specified

in the data set. (Nodal flow balances are not applied at fixed pressure

nodes). Where nodal pressures are specified, their values are used to

obtain an averaged 'initial' pressure specification for all other nodes in the

network which are not fixed-pressure nodes.

The algorithm uses an iterative procedure to construct and solve a set

of linear equations describing the flow/pressure drop relationship in each

link. These equations are of the form

A ij (Pi - P) + Hij = Fii 	 (3.7)

and are a linearised version of eqs. (3.3) and (3.4). Whatever linearisation

method is used, it is necessary, at any rate, to have a value for the friction

factor which appears in eqs. (3.3) and (3.4). The friction factor at each new

iteration is calculated from the Reynolds number of the flow at the

previous iteration. At the zeroth iteration there is, of course, no previous

flow value, and so the algorithm incorporates an initialization step in which

54

the following points apply (for links which are pipes or valves).

The flow is assumed laminar and incompressible (thus
equation (3.3) applies)

The fittings loss term 'k ' (if present) is 'absorbed' into
the friction factor term (fild) by adding an extra length
to the link length, 1. This extra length is calculated
according to a rule of thumb and is equal to 50 x k x d,
where d is the diameter of the link.

Substitution of f=64/Re into the modified eq. (3.3) and rearrangement of

terms gives an equation of the form of eq. (3.7) (with the terms /J, equal to

zero).

When the link is a pump, then the Aij, B.. and P1, are obtained from an

analysis of the supplied pump data describing the pump characteristic. A

liriearisation procedure is applied which permits the flow/pressure

relationship for a pump (which is described in the input data by a set of

operating points on the pump characteristic) to be expressed in the form

of eq. (3.7). This linearisation procedure is outlined in flow diagram form in

appendix ii (see flow diagrams for subroutines FPUMP,LPLJMP,QPUMP and

LNPUMP).

When the A Ii 's, B 'J 's and
 FIi

's have been obtained for all links in the

network then the flow balances are set up for every node in the network

(excluding fixed-pressure nodes) using eq. (3.7) to express the flow

entering or leaving a node via the links connected to it. For each node,

then:

i G
IA (P - P) + B 1 I

- H i
 A1(P - P) + B1] = F' 	 (3.8)

Having thus set up the nodal flow balances, eq. (3.8) is modified such that

all terms in P are on the left hand side and all constant terms are on the

right hand side. The equation for each node j is then normalised by

dividing through by the sum of the A 11 's so that the coefficient of

becomes -1. These operations result in a set of linear equations in P to

which are added expressions for the fixed pressure nodes, of the form

P.
J 	 J

fix

where P 	isthe fixed pressure value assigned to node J' 	left hand

side of the set of equations represents a coefficient matrix for the vector

of network nodal pressures. The pressures are solved for, using a direct

linear solving method.

The new pressures are used, in the next iteration, to calculate new

network flows, P, (using eqs. (3.3) or (3.4)). As already mentioned, the

friction factor 'f' in eq. (3.3) or eq.(3.4) is calculated from the flow value in

the previous iteration. New A,,and B 1 must also be obtained. If the flow in

any link is below 1*10_6 kg/s then the initialization step is again used, for

that link. Otherwise the .4 and lJ are obtained by using one of two

linearisation methods - the Newton-Raphson or the Bending and Hutchison

method. These are fully explained in the next section. The process of

calculating new pressures, using the new/I ij and I3, and hence obtaining

updated flows, is repeated until convergence is achieved. The convergence

criterion is that the discrepancy between the specified inflow/outflow to a

node and the calculated inflow/outflow to that node is within a pre-

specified tolerance, for every node in the network.

37. Linearisation methods

As already stated, two methods of linearising the flow/pressure drop

equation in pipes (for transition and turbulent flow) were used, Newton-

Raphson, and Bending and Hutchison.

If eq. (3.3) (or (3.4)) is written as

AP ij = P 2 .0 	 (3.10)

then it can be re-expressed as

Fii = K. ,IP1 	 (3.11)

and it is this eq. (3.11) which is to be linearised using the Newton-Raphson

technique. Actually, a slightly modified Newton-Raphson method is used in

the program.

The Newton-Raphson approximation to a function, J(z). may be stated as

55

(3.9)

56

_ 1(i) = f(r) 	L[
1! h)r ± 	2! h)2

For a linear approximation to a function, the first two terms are used, with

f (x) representing the actual value of the function at the POiflt x about

which linearisation is being attempted, and I ' (x
h) the value of the first

derivative at that point. Thus if AP,,O were the value about which a

linearisation of eq. (3.11) were being attempted then the Newton-Raphson

approximation would be

	

= K./P ° + 	2/AP10 .AI'
	 (3.12)

If this is compared with eq. (3.7), then A = K/(2/tI' °) and Ii = h'./LX1' ° .

As already stated, a slightly modified Newton-Raphson method is used in

the program. At the start of each iteration, k, F. i is calculated from the

pressures obtained in the previous iteration, using eq. (3.11). Thus

p1k) = Kv'l(/)lk- 1) - p1k - 1)) 	 (3 1 3)

	

Ij
The coefficient .4.. 	is calculated by the Newton-Raphson method, using

the pressures from the previous iteration, P1 111 and and 	But B.,

is calculated as

I ii
II 	 Fij

	- A (k) k p(k 1) - p(k - 1)) 1 	 (3.14)

(The appropriate sign is then assigned to B depending on the direction of

flow between nodes i and j).

This modification to the method is necessary because of the fact that

flows are always calculated by the non-linear equation (for transitional and

turbulent flow regimes) and therefore, in eq. (3.12), the left hand side is

equal to K./LI' ° . B 1 , in fact, becomes (K/2)./M'.. 0 .

The Bending and Hutchison method may be described with reference to

eq. (3.10), which may be rewritten in a linear, iterative form as

j'(k)
= 	Cl F -11 I 	

1) = K*.APij
	

1) 	 (3.15)

However, due to the fact that the value of K* could oscillate if the

pressure drop AP remained the same between two consecutive iterations,

57

then p1k) is defined as

= 	...J...(p(k) . 	p,. (k- 1 I) 	
(3.16)

i.e. the value ofIQ is the average of that calculated in eq. (3.15) and the

value, 	, calculated in the previous iteration.

A feature of the Bending and Hutchison linearisation method is that

when applied to the inflows/outflows to a node from pipes connected to it,

it forces a material balance at that node. With this in mind, the linearisation

process used in FLONET was formulated as follows

Use the Bending and Hutchison method for the first five
iterations, to force a material balance at all network
nodes, and thereby enhance convergence.

Use the Newton-Raphson method thereafter, up to
iteration 25 (most of the test problems converged
within 25 iterations). The Newton-Raphson linearisation
is faster than the Bending and Hutchison method in
terms of the number of iterations required to achieve
convergence, though less robust in certain network
problems.

If convergence has not been achieved after 25
iterations, switch to the Bending and Hutchison method.
(In only one case, case 10, did the solution take longer
than 25 iterations to converge and this was due to
precision difficulties, which the Bending and Hutchison
method was able to overcome if only the Newton-
Raphson method was used, convergence was never
achieved).

3.8. Intractable Problems

Some of the test cases whose solution was attempted using the

FLONET algorithm, exhibited oscillating flow in certain pipes, which

prevented convergence of the solution. In case 13, flow oscillation occurred

in a pipe (23-43) which was between 4 and 8 times as long as the pipes

adjacent to it in the network, and this difference could have made the

network ill-conditioned. In case 14, oscillation occurred in the flow around

a mesh (9-10-11-6-9).

Two subroutines were written to handle oscillating flow in a network -

ri

58

QCON and CONCHK. The flow diagrams for these subroutines are given in

appendix ii.

3.9. Conclusions

As will subsequently be shown in Chapter 4, the program FLONET

performed significantly better on supplied network problems than the

existing flow program on which it was based. The linearisation method

used in the program was found to produce flow convergence in all the test

networks. However, as mentioned in the section above, it was necessary

to write additional subroutines to deal with the problem of flow oscillation,

which occurred in two of the test networks.

A discussion of the supplied network problems and their solution using

FLONET is presented in the next chapter. Further development of the

steady-state program to allow data input in the form of linear equations,

and to enable solution of dynamic problems, is detailed in Chapter 5.

59

3.10. Notation

r1. 	B ij coefficients in flow/pressure drop relationship

F mass flow in pipe

Fij mass flow in pipe whose end nodes are i,j

mass inflow/outflow at nodes

C set of nodes whose pressures exceed that at node j

H set of nodes whose pressures are less than that at node

K, K* coefficients in flow/pressure drop relationship

P i pipe inlet pressure

P. P. pipe outlet pressure

PJ (fI X)
fixed pressure at node

Ap ij pressure difference across link between nodes i,j

Re Reynolds number of flow

d diameter of pipe

f friction factor

k fittings loss

I length of pipe

S cross-sectional area of pipe

V velocity of fluid flowing in pipe

p density of fluid flowing in pipe

Pi, p 0 density of fluid at inlet/outlet of pipe

AN

CHAPTER 4

PERFORMANCE TESTING OF STEADY-STATE FLOW NETWORK PROGRAM

4.1. Introduction

The performance of the steady-state flow network solver, FL.ONET, was

evaluated by using it to solve 15 network test cases of varying size and

topological complexity. The largest network tested consisted of 108 nodes

and 142 pipes. Multiple pumps were incorporated in two of the larger

networks. Seven of the test cases were compressible flow problems.

In the last chapter it was stated that FLONET was based partly on an

existing steady-state flow network program. Solution of the test cases

mentioned above had previously been attempted using this original

program. Successful solution was not achieved in all cases. In the

summary which follows, comparison is made between the performance of

FLONET and its earlier version, for each test case.

4.2. Summary of test cases

Information relating to the test cases is given in appendix iii. Diagrams

are presented for all the test cases, however data and results are only

given for small and medium size networks. Graphs of maximum nodal flow

residuals (after each program iteration) vs. time are given for all the test

cases.

4.2.1. Case 1 : Simple Network

Case 1 is a very simple network which the old version of FLONET failed,

however, to solve. With the pressure and flow specifications given in the

data set, the new version of FLONET solved the problem in 7 iterations.

4.2.2. Case 2 : Simple Network Containing One Pump

Case 2 is composed of two test problems concerning the same network

but with different data sets. In the first problem one reference pressure is

specified at an external node (i.e. a node where flow enters or leaves the

network) and at the other external nodes the network inflows/outflows are

specified. (There is no need to specify inflow/outflow at the 'pressure' node

as the program calculates the material balance for the network internally).

61

In the second problem reference pressures are specified at all external

nodes.

The program can in fact handle a combination of external flow and

pressure specifications, as will be shown in later test cases however,

these two problems demonstrate the program's ability to cope with either

type of specification.

For the first problem, where external flows were specified, the program

took 9 iterations to converge. For the second problem, where external

pressures were specified, the program took 6 iterations to converge.

4.2.3. Case 3 Simple Single-Mesh Network Containing One Pump

The old FLONET program failed to solve this case, although it

successfully solved the Case 2 problems, from which this one differs only

by the presence of a cross pipe going from node A210 to A220.

This case was successfully solved by the new FLONET program, with

convergence achieved after 6 iterations.

424. Case 4 : Network with Multiple Pumps

The first network in Case 4 demonstrated the problems which the old

FLONET program had with pumps in parallel. The solution for this network

was unobtainable using the old algorithm, although each of the parallel

lines could be solved separately and the configuration without pumps

could also easily be solved. Using the new algorithm the parallel pumps

problem was easily solved in 5 iterations.

The solution of the third network in Case 4 converged after 1 iteration.

The solution would have converged immediately with laminar flow in all

pipes (which is incorrect in this particular instance) due to the strategy of

assuming laminar flow in the network at the zeroth iteration. However, if

the program detects flow convergence with laminar flow, before any

iteration has occurred, then the internal convergence flag is reset and,

although the nodal pressures may have converged, at least one more

iteration is then required for the achievement of flow convergence.

The second network in Case 4 is a single line from the first network. As

62

may be expected, the number of iterations required for this network is the

same as for the first - 5 iterations - due to the feature of parallelism.

4.2.5. Case 5 : Kiln Network

This case study examines a network which incorporates a kiln and

associated piping. The diagram for this network is given in appendix iii,

however, the data set and results are given in appendix vi (and referenced

in Chapter 6). Chapter 6 presents a detailed discussion of this network in

relation to the steady-state program and also to two further computer

programs which are described in Chapter 5.

4.2.6. Case 6 : Steam System

This network is a simplified model of a works steam system. 43 flow

conditions and 1 pressure condition are specified.

The solution converged in 8 iterations.

4.2.7. Case 7 : Network with Gravity Feed

This network is a model of a drainage system. It was found that the

drain was not removing liquid fast enough, so it was hoped, by modelling

the network using FLONET, to find some way of debottle- neckingit.

As the flow is entirely gravity feed, this network is a good test of

FLONET's ability to handle the effects of gravity.

The solution converged in 8 iterations

4.2.8. Case 8: Water System

This network models a fire safety water system. The previous version

of FLONET failed to solve this network problem, predicting a negative

pressure during the iteration procedure, although increasing all pressures

by 10 bar (arbitrarily) led to successful solution.

The current version of FLONET successfully solved the original problem

in 9 iterations.

63

4.2.9. Case 9 : Furnace Gas Distribution System

The problem in this case concerns the flow distribution through a

network of furnace pipes. The gas flows through the furnace along a series

of parallel pipes. The pipes are connected between two common headers

(1-36) and (73-108).

Since the heat flux distribution is even in the furnace it is important to

have approximately the same flow through each pipe. FLONET was to be

used to examine the flow distribution of several network designs to see

which would best be suited.

The old version of FLONET did not manage to balance the parallel flow

system properly - the flow along pipe 1-37 differed markedly from that

along 36-72. However, the new version of the program balanced the flows

satisfactorily, as can be seen from the results. The solution converged in 8

iterations.

4.2.10. Case 10 : Subnetwork of Network 9

This network is a much smaller version of the network in Case 9.

With the old version of FLONET, the solution predicted that all the fluid

is carried across the network through lines 1-5 and 4-8 (zero flow being

predicted in lines 2-6 and 3-7).

This network presented a problem for the new version, with respect to

the precision required to achieve a converged solution. As can be seen

from the results, the nodal pressures which produce the specified outflow

of 1 kg/s from the network (for a pressure of 30 bar at node 1) are very

close in value, and this explains the number of iterations - 42 - required to

achieve convergence. However the fact that convergence was achieved

illustrates the robustness of the algorithm used.

4.2.11. Case 11 : Furnace Gas Distribution System

This network is similar to that in Case 9 and was one of the

alternatives considered for the furnace gas piping. It differs from the

network in Case 9 in that the upper and lower headers are rings.

The problem was solved in 8 iterations.

64

4.2.12. Case 12 : Water Supply System

This is a model of a works water supply system, with several

inlet/outlet points at varying heights. The network includes 4 pumps (2

pairs in parallel).

FLONET easily handled the size (97 pipes) and complexity of this

problem, with flow convergence being achieved in 9 iterations.

4.2.13. Case 13

This too is a model of a works water supply system. When an initial

attempt was made made at the solution of this problem it was found that

the specified system pressure was too low and several nodal pressures

became negative. A check for negative nodal pressures was then included

in the algorithm, with a warning message being printed to advise the user

to increase the supply pressure, in this event.

After the supply pressure was increased, however, another problem was

discovered, in that the occurrence of the maximum flow residuals after

each iteration, oscillated between two adjacent nodes (23 and 24), without

convergence being achieved. This necessitated the alteration of the

solution algorithm to include steps to damp out oscillatating flows in pipes.

With these improvements the solution converged in 18 iterations.

4.2.14. Case 14 : Compressible flow network

This is another example of a network which gave problems with

oscillating flows in pipes, although these yielded to the improvements in

the solution algorithm, mentioned in the last case. The oscillating flows in

the links in ring 9-10-11- 6-9 were damped out and the solution was

achieved in 19 iterations. However, the program output indicated that the

Mach number in one pipe in the network exceeds 0.2. The correlations

used in the program are only valid up to a Mach number of 0.2 and

therefore the results are to be viewed cautiously.

65

4.2.15. Case 15 : Brinetields network

This is a model of a subsection of a brinefields network. The data

supplied is for a compressible fluid, for the purposes of testing FLONET's

compressible flow algorithm in a complicated network.

As can be seen from the graph of flow residuals, oscillation of the

solution occurred, with the largest flow residual being seen alternately at

nodes BSB3 and WSB3. However the algorithm was able to deal with this

oscillation, as in previous cases. The results indicate that, with the supply

pressure of 40 bar given in the problem data, the Mach number in two of

the network pipes exceeds 0.2. Reducing the supply pressure to 13 bar

reduced the velocity to beneath the level where the Mach number

exceeded 0.2, without affecting convergence properties.

The solution converged in 17 iterations

4.3. Conclusions

Flow convergence was achieved in all the network test-cases submitted

to FLONET, demonstrating the effectiveness of FLONET's solution algorithm

in general, and especially as compared with the solution algorithm of the

earlier version of the program. The problems caused by oscillating flows in

two of the test cases were successfully overcome by the smoothing

procedure included in the problem. This procedure, however, should be

further tested on other networks where the feature of flow oscillation is

present, since the pattern of oscillation is likely to differ from case to case

(e.g. alternate positive and negative flows at the same pipe, or maximum

flow residual occurring alternately between two different nodes, adjacent or

otherwise).

The program arrays holding flow and pressure values were declared as

DOUBLE PRECISION Case 10 illustrated the necessity for this degree of

precision.

The design and testing of the steady-state flow network program

FLONET satisfied the second aim of this thesis. The third aim necessitated

further development of the steady-state network program, to permit data

input in the form of equations, and to enable solution of dynamic network

problems. The next chapter describes the design and testing of program

66

modules for the purpose just outlined.

67

CHAPTER 5

EQUATION PARSER AND DYNAMIC NETWORK PROGRAM

5.1. Introduction

Further to the development of a program for the solution of steady-state

network problems, additional design work was carried out in order to extend

the programs range of application. Two types of extension to the program

described in Chapter 4 were examined. The first type was concerned with the

format of data input for steady-state network problems. The second type

involved adding to the program a capacity to handle a certain class of dynamic

network problems. This chapter describes the development of two computer

programs which were the outcome of the additional design work. Both

programs were used to obtain the solution of sample network problems and a

discussion of the results is presented.

5.2. Data Input for Steady-state Network Problems

With regard to the first type of extension mentioned above, the current

steady-state network solver described in Chapter 4 can only handle input data

of the form

P(n) = ... fixed value

F(n) = ...

i.e. nodal quantities of pressure and flow only can be specified

One example of additional flow network quantities which could be specified

as input data would be fixed flows at any given link. This type of specification

could be used when, for example, it is known that there is a particular coolant

flow through an exchanger. Here the resistance of the link cannot be specified,

the flow is achieved by closing a valve and the pressure drop across the

exchanger is to be calculated. Another example would be the specification of a

node which does not have a fixed height, as would be the case when the node

represented a tank with a free surface.

A very useful extension would be to add the facility to provide, as data, any

linear relationship amongst flows, or pressures, in the form of an additional

equation

e.g. 	F(3) 	= 	F(4)

or 	F(2) = F(1) - F(6)

or 	P(5) = P(7) - 4

A computer program was written to analyse flow network problems which are

specified in terms of linear equations involving pressures and flows. The

steady-state program described in Chapter 3 was used as a basis for the new

program, which is referred to as EQNET. Documentation for EGNET is presented

in appendix iv. The former program required, firstly, the addition of a module to

perform parsing of the network equations. Within the program the network is

described by a matrix of linear equations which represent nodal flow balances.

Additional modules were therefore required to incorporate the specified 'data'

equations into this internal matrix. The network parser is described briefly in

the following (full documentation for the network parser, EQPARSE, is given in

appendix iv).

5.3. Input and Processing of Data by Equation Parser

Data is input to the program EQNET in a similar format to that used in the

steady-state program, except that network equations are included after the

physical properties data. The data set begins with a list describing the

characteristics of the network links (pipes or valves). The first two numbers of

each line in this list are the input and output node identifiers of the link. The

third number is either 1 or -99, depending on whether the link is described by

pipe data (length, bore, roughness ratio, etc) or by a network equation. The last

number on each line in this list is the link temperature. The letter E at the end

of a data set indicates that no more network equations are to be supplied.

The equation parser, EQPARSE, reads in one network equation (line) at a

time and 'atomises' it, so that the equation is expressed as a set of separate

entities or atoms. For each atom the parser generates 3 entries - type, label

and value. The type of an atom indicates whether the atom represents a node

pressure, link flow, node inflow/outflow or a numerical constant. An atom label

is the identifier of the node or link to which the atom refers (the label is equal

to -1 for numerical constants). For atoms which refer to node pressure/flow or

link flow, the value entry is the coefficient of the flow or pressure term in the

equation. Where atoms refer to numerical constants, the value entry is the

actual value of the constant.

The following description outlines the main steps of the parsing algorithm.

Read in next equation line to be processed. If the first
character in the line is "E", then exit from the module.

Initialise to zero the counters for numbers of atoms and left
and right parentheses in the equation. Set a flag to indicate
that the 	sign has not yet been encountered in the
current equation line. Initialise to 1 the coefficient of P, Q, F
and constant terms.

(Start of cycle to atomise each equation line - maximum
number of atoms allowed in each equation is 10). Look at
next unread character in equation line and set this to be the
'current character'. (First time round, see if line begins with
"+" or "-" sign and set 'sign flag' accordingly).

If the current character is a digit or a decimal point, go to
step 11.

If the current character is a "+" or 	character, check the
current settings of the two sign flags (one of which refers
to terms inside parentheses) and alter the settings if
necessary. If the current character is an "=' sign then set a
flag to indicate that this has been encountered.

If the current character is a left or right parenthesis, then
increment the appropriate counter.

If the current character is "P" (signifying a pressure term),
go to step 13. 	 --

If the current character is "Q" (signifying a link flow term),
go to step 14.

If the current character is "F" (signifying a nodal inflow/out
flow term), go to step 15.

If the current character is none of the previous items, then
write error message to terminal and exit from the parser
module.

Read the characters following the current character until a
non-numerical character (i.e. not a digit, exponent sign or
decimal point) is encountered. Decode the character string
to a real number. If the non-numerical character following
this string is a "+", "-", "=", ")" or a newline character, then
the character string represents an atom which is a

70

numerical constant. (The atom's type, label and value are
stored in the arrays itype, ivalue and rvalue). If the string
represents an atom, then increment the counter for the
number of atoms and return to step 3.

If the non-numerical character following the character string
is a left parenthesis, this indicates that the character string
is a coefficient. Go to step 13, 14, 15 or 3, depending on
whether the character after the parenthesis is "P", "0", "F" or
none of these (in which case it will be a digit, unless an
error occurs).

Increment the counter for the number of atoms. Set the
atom type to 1 (indicates pressure term). Set the atom
value equal to the current value of the coefficient term (this
will be either 1, or the number obtained in step 11)
multiplied by the current values of the 'sign' and 'equals'
flags. Extract the string delimited by parentheses, which
follows the "P", "0" or "F" characters. Go to step 16.

Same as step 13, except that the atom type is set to 2
(indicates link flow term).

Same as step 13, except that the atom type is set to 3
(indicates node inflow/outflow term).

Decode the character string obtained in step 13, 14 or 15 to
obtain the identifier of the node or link associated with the
pressure ("P") or flow ("0" or "F") term. Set the atom label
equal to this identifier (the identifier is an integer value).
Return to step 3 and repeat until the end of the current line
is reached. If the end of the current line is reached, then
return to step 1.

Once the equation lines have been read and parsed, then the values stored in

arrays itype, ivalue and rvalue have to be transferred to the matrix arrays A and

B used in the linear-equation solving routine which obtains values for flow and

pressure throughout the network. This transfer is accomplished in routines

SETUPM and SET UP RM, the listings for which are given in appendix iv. The

program then procedes in a similar manner to the steady-state program

FI..ONET, described in Chapter 3.

There now follows a description of the network problems used to test the

flow network program with incorporated network equation parser, and a

discussion of the results in each case. The data sets and results are presented

in appendix v.

71

5.4. Test Problems for Flow Network Program with Equation Parser

5.41. Problem 1: All Network Data Supplied as Equations

The network for this problem is shown in Fig. 5.1 in appendix v. It is a

simple four node, three branch network for which the input data is given

entirely as a set of linear equations. The data set for this problem is listed as

Network 5.1 in appendix v. At two of the external nodes the pressure is fixed

and at the other node the outflow is specified. Linear valve constants are given

for all three branches. In the first three lines of the data set, -99 indicates that

an equation will be supplied for the flow/pressure relationship in the branch

whose end nodes are specified in the first two columns of each row. The

results for this problem are listed after the data set (for Network 5.1), in

appendix v.

5.4.2. Problem 2: Mixed Input, i.e. Equations and Data List

This network is identical to the previous one, but the data set contains two

rows of physical pipe data as well as equations. This was intended to test the

program's ability to handle network problems with "mixed" data sets. The data

set and results for this problem are listed under the heading of Network 5.2 in

appendix v.

5.4.3 Problem 3: Mixed Data Input for HF 3 Network

This network problem, and its solution using EONET, is mentioned here only

in passing. Chapter 6 describes how an analysis of this network was made,

using three different computer programs, including EQNET. Therefore a full

description of the data set for this network, and a discussion of the results, is

deferred till then.

5.5. Performance of Network Program EQNET

The three supplied problems tested the effectiveness of the program EQNET

as an analysis tool for the networks described by linear equations. The parser

module successfully processed the input equations in each problem, and the

'atomised' equations were then successfully placed in the program's internal

matrix of network equations, using modules SETUPM and SET UP RM.

72

5.6. Dynamic Modelling of Flow Networks

As a conclusion to the work carried out on the analysis and solution of flow

network problems, a 'dynamic' version of the steady-state program described

in Chapter 3 was written and tested. This 'dynamic' version was intended to

solve a limited class of unsteady-state network problems. Four sample

networks were used to test the program's ability to profile flow/pressure

control with time. The input data format is identical to that for the steady-state

program except that non-zero values are assigned to nodal capacities and

valve (linear) characteristics.

Before discussing the dynamic version of the program and the solutions of

the four test problems, a short summary is given of the theory which was used

in the design of the program.

5.7. Theory in Dynamic Flow Network Modelling

At a node in a dynamic flow network (a 'dynamic' node) the net sum of

flows into the node is not zero.

-

— dl 	
(5.1)

where ink is the mass stored at node k.

Assuming compressible flow and ideal gas, then

PkVk 	!kRT
Wk 	k

dznk 	-% v -'k
- c —a 	 (5.2)

-

dt 	RT k kdt 	dt
dP

Therefore, eq. (5.1) may be stated in the form

F, = -1 kC 	 (5.3)

Eq. (5.3) may be written in finite form as

F(P)
= pt_- po

k 	 (5.4)
k 	 5t

Thus, at a dynamic node, the sum of flows may be expressed as

73

.tkPt - (' ifl 	... = - Cj1i= 	C' 	 (5.5)

(leaving out the pressure terms due to other nodes connected to node k).

The four network problems used to test the dynamic program - listed in

appendix iv as DYNET - incorporate flow and/or pressure control valves. The

controllers in each case are of the simplest type - proportional controllers.

The equation used in the program to model the controller is

k = kp(z - x) + k
	

(5.6)

where

x is the measured variable (a flow or a pressure)

X.
is its fixed setpoint value

kr is a manual reset (valve position at zero error)

k is the controller output

(kLL) expresses the controller "gain"

The main steps in the dynamic flow program DYNET are summarised in the

following

Obtain the flow distribution in the network at time zero
using subroutine FLOWS.

Increment the time step (by the user-specified value).

Using the value of the controlled flow/pressure at the
previous time step to obtain a 'k' value for the controller
valve(s), solve iteratively for flows and pressures in the
network at the current time value.

If steady-state has been obtained, print the results, plot
graphs and stop.

If steady-state has not been achieved, go to step 2 and
repeat.

Step 3 is carried out using the following set of subroutines (which are listed in

appendix iv).

74

SET UP K : Get k' values for all branches in network

SET UP A : Construct matrix of linearised network equations.

PRESSURES Solve for pressures in network at current time
value.

FLOWS Obtain flows in network at current time value.

There now follows a description of the network problems used to test the

dynamic flow network program.

5.8. Test Problems for Dynamic Version of Flow Network Program

5.8.1. Problem 1: Simple Row Control

The network diagram for this problem is shown in Fig. 5.2 in appendix v.

The flow through the line is to be regulated to 5 kg/s. The data set is listed as

Network 5.3 and the graph of flow vs. time is shown in Fig 5.4.

582. Problem 2 : Simple Pressure Control

The network diagram for this problem is shown in Fig. 5.3 in appendix v.

The pressure in the pressure vessel at node 2 is to be regulated to 12 bar.

The data set is listed as Network 5.4 and the graph of pressure (at node 2) vs.

time is shown in Fig. 5.5. The network pressure and flow values at steady-state

are listed after the data set.

5.8.3. Problem 3 : Flow and Pressure Control in Compressor Network

The network for this problem is shown in Fig. 5.6.The pressure at node 4 is

to be regulated to 7 bar and the flow in the tine between nodes 3 and 4 is to

be regulated to 0.6 kg/s. The data set for this problem is listed as Network 5.5.

The steady-state values of pressure and flow are listed after the data Set. The

graphs of flow vs. time (for line (3.4)) and pressure vs. time (for node 4) are

shown at Figs. 5.7 and 5.8 respectively.

75

5.8.4. Problem 4: Flow and Pressure Control in HF Network

As was the case in problem 3 for the program EQNET, a discussion of this

network problem, and its solution using DYNET, is deferred till the next chapter.

5.9. Conclusions

The dynamic network program solved, and produced graphic output for, the

four test problems presented to it. The HF network problem demonr&e& the

program's ability to solve medium-size network problems involving flow and

pressure control, and the compressor problem showed the the program could

successfully handle networks involving recyc loops.

76

5.10. Notation

P(n) 	 pressure at node n

F(n) 	 inflow/outflow at node n

F. 	 Sum of all mass flows
k

F1 into node k

Pk 	 Pressure at node k

V k 	 Capacity at node k

W
k 	 Molecular weight of fluid flowing into node k

R 	 Gas Constant

F j(Pk t) 	 Sum of flows F1 into

node k at time t

Pressure at node k at time t

Pressure at node k at time 0

77

CHAPTER 6

STEADY-STATE AND DYNAMIC ANALYSIS OF KILN NETWORK

6.1. Introduction

Chapter 5 described the development of two new flow network programs

which were based on the steady-state program FLONET. This chapter is

devoted to a discussion of a particular test network which was analysed using

FLONET and also EONET and DYNET (with suitable modifications to the steady-

state data set for the latter two programs).

6.2. HF Kiln Network

The network, referred to as test case 5 in Chapter 4, incorporates an HF kiln

and associated piping (the network diagram is given in appendix iii). The kiln is

heated by passing hot gas through 4 jackets placed round the kiln. The fuel gas

(methane) is burnt with a large excess of air in the burner. Hot flue gas then

separates into 4 streams, each of which then passes through a jacket. Once

through the jackets the streams recombine and pass back via a recycle fan.

Gas is purged off after the fan, this being replaced at a gas inlet in the burner

feed line.

The flow through the jackets can be altered by adjusting any of the 9

butterfly valves within the network. Valves are situated on the inlet and outlet

lines of each jacket and on the inlet line of the recycle fan.

The purpose of using the steady-state program, FLONET, here was to

develop an appropriate operating schema for controlling the gas flows through

the jackets using the 9 valves. The pressure in the system must be kept close

to atmospheric to prevent either suction of cold air into the system or loss of

gas Out of it.

6.3. Steady-State Solution using FLONET

In the FLONET data set two node conditions were specified - the pressures

at the external nodes '28' and '27' were set to atmospheric pressure. The

solution to the network then converged in 6 iterations. (The data set and

results for this test case are given in appendix vi).

78

The results for this network show that the flows in cross-lines '11'-'14%

'13'-'16' and '12'-'15' are negligibly small in comparison with flows in the rest

of the network and, in the case of the first two, are in fact negative. The

results thus demonstrate that these lines are redundant in terms of controlling

the flows through the jackets and indicate that they should be removed from

the network.

6.4. Steady-State Solution using EQNET

Two versions of the original problem were solved using EQNET. In the first

version, two lines which listed pipe physical data were replaced by equations.

In the second version, a design specification was included. The flow in link

(9,13) was specified as being equal to a fraction (0.8) of the total flow in links

(6,10), (7,11) and (8,12). (The data set is listed as Case Sb in appendix vi).

The first version of the problem (Case 5a in appendix vi) is similar to the

"mixed" network described in Chapter 5 - in neither problem do the equations

in the data set represent design constraints. Case 5a was successfully solved,

as might be expected, given the prior solution of the "mixed" network problem.

In the second version, as stated above, the list of equations included a flow

constraint. Successful solution of this problem was achieved using EQNET.

This illustrates the usefulness of the equation parsing facility in allowing such

design constraints,which could not be specified in the original program.

6.5. Dynamic Solution using DYNET

In the dynamic version of test case 5, the steady-state data set was

modified such that capacity was assigned to nodes 10, 11, 12, 13, 29 and 30,

and links (2,24) and (30,23) were designated as control valves of pressure and

flow respectively. The dynamic simulation involves disturbing the pressure at

node 28 at random time intervals and noting the effect of this disturbance on

the pressure at node 29 (node 29 is a pressure vessel whose pressure is

controlled by the valve in link (2,24)).

Fig 6.2 in appendix vi shows the pressure variation with time at node 29.

The upper graph shows the randomly generated pressure variation which is

applied to the pressure at node 28 at randomly generated time intervals (over a

period of 20 seconds). The lower graph shows pressure versus time at node 29.

79

The specified set pressure for the pressure vessel at node 29 is 1.0013 bar. The

maximum pressure disturbance introduced was ± 500 Newtons and the time

step for the simulation was 0.2 seconds. The problem was run for 2 seconds

before pressure disturbance was instigated and the maximum allowed time

interval for non-disturbance was set at 2.5 seconds.

The lower graph in Fig. 6.2 shows that after each perturbation of pressure

at node 28, pressure control is exerted (by the control valve in link (2,24)) to

force the pressure at node 29 towards the set value of 1.0013 bar. Only

proportional control was applied, so there is an offset above 1.0013 bar.

6.6. Conclusions

Test case 5, representing an HF kiln heating network, was originally supplied

as a steady-state problem, to be solved by FLONET. Having obtained a

successful solution of the problem by the use of FLONET, the data set was

modified to allow further analysis of the network using the programs EQNET

and DYNET.

EQNET was applied to two versions of the steady-state problem. The

original data set was modified by replacing pipe data by linear equations in

pressure and flow. In the second of the two versions, a design specification, in

the form of a linear equation, was included. Successful solution was obtained

in both cases. The latter version demonstrated the enhanced capability of the

equation parser to handle design constraints, in comparison with the data

processing module of FLONET which can handle only fixed values of nodal -

pressures and flows.

DYNET was used to simulate pressure control at a node in the network

where random pressure fluctuation was generated.

The solution of the original network problem, and of suitably modified

versions of it, by FLONET, EQNET and DYNET demonstrated firstly the

improvements made to the program FLONET, as represented by the programs

EQNET and DYNET. Secondly, diverse aspects of flow network modelling were

illustrated by the use of the three different programs.

80

CHAPTER 7

CONCLUSIONS

The work done in this project may be summarised in two parts. In the first

part the aim was to produce a computer program which could be used in the

analysis of steady-state flow network systems. Given fixed values of pressure

and inflow/outflow at certain points in the network, the program was to solve

for flows in all network branches and pressures at branch junctions. A network

model was adopted which described the network in terms of a set of linearised

equations containing flow and pressure terms. Two different linearisation

methods - the Bending and Hutchison method and the Newton-Raphson

method - were used in an iterative procedure to obtain flows and pressures at

steady-state. The computer program was tested on a number of network

problems, ranging from simple networks containing of the order of 10 pipes

and nodes, to large, densely interconnected networks containing about 150

pipes and nodes and including pumps/fans and non-return valves. The program

performed well on all the test cases provided. Modifications, however, had to

be made to the solution algorithm when two of the test cases exhibited flow

oscillation in certain network branches. A 'smoothing' procedure was added to

the program to handle oscillation of branch flows. In general, convergence was

fast and solution was obtained in less than 10 iterations for the medium size

test networks (between 10 and 30 nodes and pipes), and in about 20 iterations

for the larger networks tested.

With respect to the steady-state flow network program, further work could

be done to determine the optimum switch-point from the Bending and

Hutchison linearisation to the Newton-Raphson linearisation. Also, the

program's ability to cope with networks where the solution oscillates needs to

be tested to a greater extent. In the two test cases where oscillation of the

solution occurred, it appeared to be caused by a disproportionately small flow

in one part of the network which was adjacent to, or intrinsic in, a network

mesh. The program should be tested further on networks of this type.

The second part of the project concerned work done on a network parser

and on a program which could solve unsteady-state problems. The network

parser was tested on two small network problems, one containing a mixture of

written equations and numeric data. The HF network, tested first using the

81

steady-state program, was modified, with some pipe data being replaced by

equations. The network parser satisfactorily handled the network specifications

in the form of equations. Only simple equations were handled - the parser

should be expanded to cope with more complicated equation forms, and more

testing should be done to illustrate how much information should be specified

in the equation list, so that over- or under-specification of the network does

not occur.

The dynamic network program was tested on two simple pressure/flow

control problems and on a network containing a compressor, and finally on the

HF network mentioned above. Satisfactory solution of flows and pressures at

steady-state was obtained in all cases. Further work could be done to link this

program with the network parser so that equation lists could be used to

describe all or part of the network.

Viewed as a whole, the project illustrated a variety of requirements which

must be met in a computer program designed to analyse flow networks. The

program which was written to solve steady-state flow networks successfully

solved all the test cases which were supplied ; network specification in the

form of equation lists was tested using a network parser, and the steady-state

program was extended to include a capability for dynamic analysis.

With reference to the three aims stated in Chapter 1, the project can be

considered to have been successful in all of these, particularly with regard to

the second aim. The computer program which was designed for the the

solution of steady-state network problems was a modified version of an earlier

program. The earlier program had been unable to obtain a solution for several

of the test networks solved by the new program. The robustness of the

algorithm used in the new program was thus effectively demonstrated.

To sum up, this project has examined methods of modelling fluid flow

networks by computer, and has successfully applied a number of these

methods in the design of three computer programs to solve flow network

problems.

I. Bibliography

ALDER G.M., "Pipe Net - A computer program for the analysis
of hydraulic networks", Dept. of Mechanical Engineering,
Edinburgh University, November 1980

BARLOW J.F. and MARKLAND E., "Computer analysis of pipe
networks", Proc. Institution of Civil Engineers, 43 (June),
pp249-259, 1969

BENDER E., Simulation of dynamic gas flows in networks
including control loops", Computers & Chemical Engineering,
Vol. 3, pp6ll-613, 1979

BENDING M.J. and Hutchison H.P., "The calculation of
steady-state incompressible flow in large networks of pipes",
Chemical Engineering Science, Vol. 28, ppl857-1864, 1973

BENDING M.J. and Hutchison H.P., "TRGB Routines", Appendix to
[4]

BRAMELLER A., ALLAN R.N. and HAMAM Y.M., "Sparsity", Pitman
Publishing, pp 58-99, 1976

CALAHAN D.A. and AMES W.G., "Vector Processors : Models and
Applications", IEEE Transactions on Circuits and Systems, Vol
CAS-26 No. 9 (September), pp715-725, 1979

CHANDRASHEKAR M., "Extended sets of components in pipe
networks", Journal of the Hydraulics Division, Proc ASCE,
Vol. 106, No. HY1, pp 133-149, January 1980

CHANDRASHEKAR M. and STEWART K.H., "Sparsity Oriented
Analysis of Large Pipe Networks", Journal of the Hydraulics
Division, Proc ASCE, Vol. 101, No. HY4, pp 341-355, April
1975

CHEN H. and STADTHERR M.A., "On solving large sparse
nonlinear equation systems", Computers & Chemical
Engineering, Vol. 8, ppl-7, 1984

CHEN N.S. "An explicit equation for friction factor in
pipe", Ind. Eng. Chem. Fundam., Vol. 18, No. 3, pp296-297,
1984,

CROSS H. "Analysis of Flow in Networks of Conduits or
Conductors" Univ. of Illinois, Bull. 286, Nov. 1946

13. DUFF 1.S., 'A Survey of Sparse Matrix Research", Proceedings
of the IEEE, Vol. 65, No. 4, pp 500-535, 1977

DUFF I.S. and STEWART G.W., "Practical Comparisons of Codes
for the solution of Sparse Linear Systems", Sparse Matrix
Proceedings 1978 Society for Industrial & Applied
Mathematics, Philadelphia

EDWARDS M.F., JADALLAH M.S.M. and SMITH R, "Head losses in
pipe fittings at low Reynolds numbers", Trans. Institution
Chem. Engineers, January 1985

GAY B. and MIDDLETON P., "The solution of pipe network
problems", Chemical Engineering Science, Vol. 26, pp109-123,
1971

GAY B. and PREECE P.E., "Matrix methods for the solution of
fluid networ problems : Part I - Mesh methods", Trans.
Institution Chem. Engineers, Vol. 53, No. 1, pp 12-15, 1975

GAY B. and PREECE P.E., "Matrix methods for the solution of
fluid network problems : Part II - Diakoptic methods", Trans.
Institution Chem. Engineers, Vol. 55, No. 1, pp 38-45, 1977

GOSTOLI C. and SPADONI G., "Linearisation of the
head-capacity curve in the analysis of pipe networks
including pumps", Computers & Chemical Engineering, Vol. 9,
No.1, pp89-92, 195

GOLDWATER M.H., ROGERS K. and TURNBULL D.K., "The Pan Network
Analysis Program - its development and use", The Institution
of Gas Engineers, Communication 1005, November 1976

HUTCHISON H.P., "Simulation of Steam Distribution Networks',
Paper : Source - Chem. Eng. Dept Literature

ISAACS L.T. and MILLS K.G., "Linear Theory Methods for Pipe
Network Analysis", Journal of the Hydraulics Division, Proc
ASCE, Vol. 106, No. HY7, pp 1191-1201, July 1980

LANG F.D. and MILLER B.L., "Use of friction-factor
correlation in pipe-network problems", Chem. Engineering,
Vol. 88, No. 13, pp 95-97, 1981

LIEBE P., "Numerical Simulation of Nonlinear Networks with
Complex Feedbacks" CEF 87 : XVIII Congress, The Use of
Computers in Chemical Engineering EFCE

MAH R.S.H., "Pipeline Network Calculations using sparse
computation techniques", Chem. Eng. Science, Vol. 29, pp
1629-1638, 1974

MAH R.S.H. and SHACHAM M., "Pipeline Network Design and
Synthesis", Advances in Chem. Engineering, Vol. 10, 1978

NAHAVANDI A.N. and CATANZARO G.V., "Matrix Method for
Analysis of Hydraulic Networks", Journal of the Hydraulics
Division, Proc ASCE, Vol. 99, No. HY1, pp 47-63, January 1973

STADTHERR M.A. and VEGEAIS J.A., "Process flowsheeting on
supercomputers", Chem. Eng. Dept., Univ of Illinois, 1985

TAYLOR R.G., "Fluid Flow Network Analysis (A computer
program)", Research & Development Dept, Theoretical
Exploratory Group, ICI July 1970, File No. A.127,564

VARGA R.S., "Matrix Iterative Analysis", Prentice-Hall, 1962

WILCOCKSON R.B., "Pipeline Simulation", Pipeline, No. 21, pp
10-12, November 1985

WILLIAMS P.W., "Numerical Computation", Nelson, pp 57-72

WISHART R. "The Solution of Flow Network Problems,
Literature Survey, Dept. of Chem. Engineering, Edin. Univ.,
1983

WOOD D.J. and THORLEY A.R.D., "BASIC Computer Program for the
analysis of pressure and flow distribution systems including
extended period simulations", Dept. of Mech. Eng., The City
University, London, 1983

PIPENET Computer Aided Design Centre, Cambridge

PIPEPHASE SimSCi Simulation Sciences Inc. Stockport,
Cheshire

II. Flow Diagrams for FLONET main program and modules

In the flow diagrams shown in this appendix, the following conventions

apply. Boxes which are connected by horizontal lines entering or leaving the

sides of the box signify sequential instructions at the same program level.

Boxes which are connected by vertical lines signify nested program levels. The

symbol 0 in a box indicates that the box contains a conditional statement and

that lower-level statements beneath the current box will only be executed if

the conditional statement is true. The symbol * in a box signifies that all

lower-level statements connected to the current box will be executed

iteratively, for the number of cycles specified in the box, or until the exit

condition is satisfied.

Program FLONET

NLINK: Gets number of links to each network node.

PMPCAR Gets number of points supplied on each pump
characteristic.

PMPNET: Gets pump equation (calls FPUMP, LPUMP or
QPUMP), depending on the number of points supplied as
data for each pump.

FPUMP :Expresses pump equation as "flow = constant" (only
one point on pump characteristic has been supplied as
data).

LPUMP : Expresses pump equation as
"(Pin - P) = A * flow + B" (two points on pump
characterrstic have been supplied as data).

OPUMP: Expresses pump equation as
"(P. - Pout) A * flow + B" (three or more - up to five -
pots on pump characteristic have been supplied as data).

LINNET : Calculates new network flows at the current values
of nodal pressures, and linearises the flow/pressure
relationship in all network links. Calls LNPUMP and LINPIP.

LNPUMP : Obtains pump flow/pressure relationship of the
form "flow = A * (P.

lfl
-

Out)
+ B".

LINPIP : Obtains pipe (or valve) flow/pressure relationship of

the form "flow = A * (P.
in - Out)

+ B".

FCHECK : Checks whether absolute flow convergence has
been achieved (flow residuals at all nodes are < 0.001
kg/s).

CONCHK : Examines behaviour of maximum flow residuals
over number of iterations and sets flags for links in which
flow oscillation occurs.

QCON Averages out oscillating flows in network links.

ARRAYS : Constructs matrix of linnearised flow/pressure
equations for all network links. The matrix also contains
equations which specify fixed pressures or inflows/outflows
at nodes.

FLOW DIAGRAM FOR PROGRAM FLONET

Initialise Read data. Define output. Convert all I Get coeffs. 	I
I node pressures Assign node Initialise data to strict of density 	1-
and flows. conditions. prog. 	variables 1 S. 	I. 	units. 	I & viscosity. 	I .1.----------------J. .1 ------------------- - ------------------------- --- ------ ------------ -

	

Call NLINK to 	I 	I Assign av. value

	

get no. of links 1 	I of pressure to all

	

I to each node. 	 I nodes for which 	r

	

A------------------A 	 pressure not set.

Get characteristic
- equations for 	 L_4 Start of main

non-pipe/valve links. I I program algorithm. I
.1.------------ ----------

.1. .L...--- ---- - ----------
.1.

Look for pumps I 	I Iterate 	* I
in the network. 	I IT = 0 TO 100

I------- ---------

0 If network : 	I Call LINNET to linearise 	 I Call FCHECK & CONCHK
contains pumps 	pressure/flow relationships I 	! to check for flow

I in all network links & to 	1 	1 convergence.
calculate new flows.

I Call PMPCAR & PMPNET I 	-----------------------------
to get characteristic

I equation(s).

0 	If Convergence 1 0 	If convergence
1 achieved I not achieved

1-----------I A----------.1.

I I Call OCON to 	I I Get fluid 1 Call ARRAYS to 	I 	I Solve for new
I Print results I 1 damp out any 	1 density & I 	I construct matrix 	1 pressures
I 	& stop. 	I oscillating viscosity I 	-I of linearised 	{-4 using linear
J. --------------- links. in all links. I 	I 	network eqs. 	1 eq. solver.

I 	 I I I 	I 	 I 	I

WIM
ME

NLINK(NNODES.NLINSMAX. lN,QUTLIMcCC.CPPP,FEXX)

Find no. of
Ilinks to
leach node

Itnitialise 	!Get no. of
!arrays CC 	!links to
land CP 	1 	leach node

:Go 	 *1
!through all
!nodes
(Ii. NNODES)

If 	 EH 	:If 	 a:
:node is 	I 	!node is not
fixed 	1 	'.fixed
:pressure 	1 	:pressure
node 	 node

0. OF 	1 	Io 	 *1
links to 	through all 1
iero 	 I 	:links

(Jl,NLINKS)1

!Get final
no, of links!
Ito node 	I'

0:
node 'I' is I
an end node
for link J

Increase no.!
of links by I

hf 	 01
:node •I' is I
!an 	in' nodel
!for link 	J'h

!Get corresp.
rout' node
hand linking
:pipe/pump.

!if 	. 	oh
hnode •I' is I
:an out' 	I
Inode for 	I
hunk •J

IGet corresp. I
:'in' node
hand linking I
:pipe/pump. 	I

PMPCAR (NPTS, PFORM, NPUIIP)

Gets value
:of PFORM
(Pump type
identifi'r)

Go
through a11
pumps

;Get PFORM Is

.for each
pump

PiPNET(PCHAR C1,C2, NPTSPFORt11 NPUMP)

Routine to

:coefficients
for pump
'pre s cure—fl ow
;equation

;Call PMPCAR
I 	 $
I 	 I

I 	 $
I 	 I

* 	 I
I 	 I

• 	 a
I 	 I

$ 	 $

Get
coefficients
for
'pressure—flow',
eqn. in each
purnp

1Q

FPUMP(PCHARS Cl, C2 NPUtIP)

Returns
:value for
flow 	 01

through a
;fixed flow
,pump

Get flow
8 	 $
I 	 8

8 	 I
I 	 I

LPUMP(PCHAR, Cl, C2., NPUP)

Gets pump
pre ssure_fl oi;

;relation in
linear form

Initlali Sat lo;

$ 	 8
I 	 I

Get linear
coeFficjents

I 	 $
I 	 I

'ii

OPVr1P(PCHAR, Ci, C2 NPTSP NPUMP)

;Gets pump
pressure—flow;
relation in
:quadratic
:form

• 	 I
• 	 I

	

lInItlalisatiol 	Wind highest so

ins

	

• 	•and lowest
II I

	

• 	•values of C2

	

$:in DR = Cl - I

$ 	
'

	

' 	C2 * Q**2 I 	 I 	I

Find best
!value of C2
I 	 I
• 	 I

• 	 I
I 	 I

I 	 I
I 	 I

Set correct
;values of Cl
:and C2

Divide into
Uncrements 	Is

the interval
'between
:highest and
;lowest C2

Find 'sum of I
;squares'
'residual for
leach value of!
1C2

Find C2 whic
gives lowest
'sum of
squares'
residual

Frorn 	*1
	

1 From
11=0 to 20 1
	

I I = 1 to 21
• 	 I
• 	 I

'Get residual I
	

Compare
for each
	

:residuals an
:different
	

'find lowest
value of C2 I

0

LINNET(PP, PLEr1G, BORE, ROUQH, FITLOS, TEMP, HEIGHT, CD, CV, Ci • C2. A. B. 0, 00. PLOSS.
+1W, OUT, IPBR, NP, NPUPIP, IT, LFLOW. MAX, PFC'RM. NFLUID)

Linearises
the
:pressure — fl ow
!relation for
each link

UdentiFy any
:links which
are pumps

Go
through all
links in
network

Call DE4ST
and VISCO to
get density
and viscosity:
for each link;

Examine
:whether link
:is pipe or
:puitp

If 	 a; 	hf 	 o;
link is pump 	!link is pipe

LNPUMP(P1, P2,C1, C2) DEN, PFCRM,N, 0,A, B)

IQet linear
:coefficients,
A & B and
Plow 0.

0:
PFORM = 1

Get As 13, 0
!from fixed
,flow
characteristi

:c.

01
IPFORM = 2

lOOt As B, 0
'from linear
chai'acteristil

Ic.

hf 	 Dl
PFORM =3 	I

I 	 I

Describe 	1 	lOet
:process of 	:coefficients
lllnearisation 	fin terms of

I 	1KG/S and
I N/M**2.

I 	 I

hf 	 DI 	lIP 	 DI
IN = C, I. e. 	I 	I (P2 - RI) < 01
first time
:only.

	

I 	I
I 	 I 	I

Get As I3 	0 	1 	IGet A, 13, 0.
:from 	 I 	11

quadratic 	11 	It

Icharacteristil
:c. 	 1.

hf 	 DI 	hf 	 of
I(P2 - Pt) >= 1 	hO <= (P2 -
10.9 * CCI, 	I 	1P1) < 0.9 *
hi.e. >= 90'. 	I 	ICC1
hof shut—off 	I 	I
Ihead. 	 I

Met As 13, 0. I
I 	 I
• 	 I

• 	 I
• 	 I

Met As B, 0. 1

I 	 I
I 	 I

LINPIP (P1. P2, L. D, DENAV, DEF4Y1, DENY2, VIS, R'., FIT, N. 0, GO, A, B. PLO, LFLOW)

Produces a
Ilineavised 	I
Iform 	of the
pipe 	 I
p 	cx s Ui' c_f low
Ire lation. 	I

IPerform 	I 	IEwamine valuel
UnitialisatioI 	of N 	in main
Ins 	and 	define! 	Iprogram. I
Iconstants. 	I 	I I

I -

Ilf 01 hf Oh
IN I IN>- i

I
I
I

hf 	 Oh

I

hf 	 Oh 	ICheck 	flow 	I I 	Met A. 	B & 0. I

I

:Calculate Re. I ICheck
Ino 	fittings 	I Ifittings 	I 	[regime 	I I I Imagnitude of 	$
Ilos. 	I Ilos, I I IRe.

ICalculate A Zd ICalculate 	A t.I 	Uf 	 DI hf 	 Dl hf Oh
:o. 	 : :o. 	 previous 	flow I IRe < 2500 	1 Me) 	2500

;Is 	zero

I

Oh 	If

I

ICet 	friction 	I Oh IQet 	lam. flowl
no 	fittings 	1 	:ftttings loss I 'f I Ifactor.
110cc 	 1 	I 1 I I

Calculate 	A &I 	Calculate 	A &I

FCHECK(01 FEXX1 LIMk IN, OUT, CP, NN, LFLOW MAX, FTOL, HFTOT, HFNODs CHEC

R¼CHEC
Checks for
node flow
:convergence

'In l tial Isat 10;

!ns
Sum flow out
:f all nodes

31

om
;1 = I to NW

See if
:convergence
;achieved

'Initialise
node flow to
:preset
external node:
flow

Examine links,
:to node I
S 	 I

I 	 I

$ 	 I

$ 	 I

;If 	 0:
links to node
:1 exist

1
	

Get largest
of the net
node flows

:00

:through all
;links to node:
ly
IL

;Get the
identifying

:no. of the
:connecting
;link

;Add flow in
:each link to
:net node flow;
$ 	 S

I 	 I

CONCHK(HFNOD1 PHFNOD1SHFNOD1 HFTOT1 PHFTOTSHFTOT GTOL1
SCTRI OUR DCTR1OFLAG1 PFLAG) IT, CHECR2 NOR, FOR, DOR)

Routlne to
'examine flow
convergence

I 	 I

,Initialise
	;Look at

:convergence 	convergence
;flag CHEC2
	

;beav1our

hf 	 of

1 possible
:oscillation
!between two
'distinct
'nodes

Ipossible
:oscillation 	I
!occurs at
Isame node

hf 	 07
maxirnum flow
land
associated
!node are same!
las before

hf
:after 40
iterations.

• 	 I

0:
none of
1 previous
1 conditions
apply

I.LT

hoscillation
verified
:increment
DCTR

I?

;oscillation
!verified
'increment
IOCTR

llncrement
IS C TR

istop if
!change
;between flow
reslduals<=0T
IOL 	 It

ISet OCTR and
SCTR to zero 1

I 	 I
I 	 I

I 	 I
I 	 I

I 	 S
I 	 I

1/

OCON(Q GIPVHFTOT, PHFTOT, LIM4, CP, DCTRa OCTR, I-FNOD, PHFNODIIAX)

;Subroutine to
:deal with
!oscillating
flow in any
pipes

Examine 	Is

charactevjsti
Ics of
oscillation
:pattern

H

;if 	 0;
highest flow
:residuals
oscillate

H

Find all
links to 	:
present and
previous
nodes

;If 	 0;
'they don't
:oscillate

• 	 I

Get the flows
:as before
I 	 I
$ 	 - 	 I

1f 	 0
	

1f oil

:oscillation 	11
	

oscillation
:counter = 1
	

counter >= 2

;Get flows in
links to all
:nodes
• 	 I
• 	 I

Average
:present and
:previous
flows to node

ARRAYS(NN, MAX. CC , CP, IN, LINK, A. B. AA, BB. PP.FEXX. DEN. HEIGHT)

Sets up
3 1near 	I
lequations to
The solved by I
INag routines.

:Initialise 	ISet up
:array BT 	I IcoefficientS

: for linear
lequations

100 	 *1
Ithrough all I
Inodes (I 	I
Is NN) 	I

i Per form 	1 	1
l initial isatioi
Ins for each 	1 	1
;node 	 :

;if 	 lif
:flo links to 	1 	:node 	has I
.node 'I' 	1 	Uinks

	

exist 	1 	1 	 1

hf 	 0;
:links to node'
'I' exist

	

Set BB(l) to I 	'.Go 	 :Get

I-PP 	1 	through all I 	 1 	 1 	Vnormalised

	

1 	ll inks (.J1. LIrfl 	 1 	 1 	value of

I ;K(I) 	 1 	BB(I)

mote arrays I 	!Calculate 	sum'. Go 	 *1

:CC, 	CP and AA 	I I 	hOf L.H.S. 	I through all

1 	1 1 	Icoeffs and 	I ;links to node
R. H. S total

1 1 1

lif 	 DI hf 	 01 IGet
II 	is 	'in' 	I II 	is 	'out' 	1 I 'normalised' 	I
'node of pipe 	I Inode of pipe 	I Ivalue of 	I

ICP(I.J) 	I ICP(X.J) 	I IAA(I.J) 	I

bet 	 I IGet
lappropriate 	I lappropriate
Isign of 	I Isign 	of 	I
IBT(I.J) 	I IBT(I.J) 	1

Ill. Data. Results and Diagrams for Steady—State Networks

This appendix lists information referred to in Chapter 4. Diagrams are

presented for all network test cases. Graphs of maximum nodal flow

residuals vs. iteration step are also given for all test cases (except for Case

4(iii)). Data sets and results are given for Cases 1, 2, 3, 4, 7, 8 and 10

i 1 20

A 100 	 :

CASE 2

A 20

1210 	-•--

C A S El

CASE$,.. A210- 	 -A215

AIIm 	 r •-"
'.-

A220 	 A 2 2 5

A21".10

Al 0 6
A3 4) !)

1 41) 	 4 0

C A E: 4

C 1)

I,-.---

r2FJ1)H-••-------------- A'500

___p'_•__

A1f30- 	- 	
-S

Ci i I:)

CASE5

2

26

18

	

14 	 15 	 16

	

JACKET 	 JACKET 	 JiCIET 	 JM

12 	 13 --

_____i __________ 	 ________
6 (-'-- 	7 f--- 	-- - --•(.f- 5 -•__-

0

2 --if- 32

(ASE6
-----TA5

DS21

31

CKH1 	-...
CK2 CK9 - -- R C 2 S

CKCS R(1MJ.
CCRR

CIIfGT CKIPH RLP

clfcT HS0
CIDS

CIPP CKU3 RIW3

CK:I. it c 12 N

11" 10SID C1O---GT3
CKWS---CK2 ck7
CKDO---C3 CJP1

CK63---- CKL
I CKP2
Iv I'

.1
C K's

CGC6 CKEL

__......CK5 	6112

at,, r __rI r r' I!? 	 - " I II 	ri, Sit 1 	 1% .1 1— in 	in IS

:8

CASE? 	
(200 	A300 	 A4,00 	A5,00

A10IE—*---Ai1O-

CASE8

A 	 _) B - 	A A -----1-----2----- 3------ 4 ---- H 13

CASE9

I .)' 	2)_•"-

I 	 1'
37 	38 	39•

7:;--(---74--(75

'4...

4---3-------35-----*---36

•1'
70 	 71 	 72

kle 	 It
sf
1.06----*--------1137---(----108

CASE1O

NI"

1— 	 2 	 —3 	 •. 4
/

CASE I.I.

\
/

/

--.2- 	 2-\3I3i

--32

ASE 12

BPF---Ct12

I3IE---I3PC

BPIB — BPC

PHI _l. 	 N Lr ______
F3

.---I)3 CEA 	N

AF-- CTF

Dl 	C

El

dc
'N

Fl

JI --Hi

CM1 —Ki

	

M2 —HF3 	A113

C
E—A22

	

J..HF2)—A115

Al2—P2-13-- P2

--HF1B

—F—HFIA

--Y-------BCFB

13 C FL

1l—.-.--- B " 	
•r- --

V — '- BCFA

IF 	

I1 	
S S A S S B

Mi----Nl---U1

A C— I. 	CM P 	 E 2--B P i--il CC

CSA 	 MSA MSJ3

C AS E i
46

---1i-12--1-14---41

48

1

r 	5 -4 1 5 fi
I 7 	• 	>-.,.-'. 	d.

iflj 	 7 	.,,.-..

I
L

26---- 28

13

27

4

F

J

11

C A SE 14

17

-16

I. 	

17

1'4------2"3 	-*.------.-..-- 	 4-.--- . -5

0
7

6 	---11

CSE15

BH22-------------- BI}1224

-

	

BH1
B H 221 	 B 1122 J' 	Hi 70",

	

0H218----- 	-TH21J

	

B Hl. 7 2--- 	 I !t 1? I

WH225----- 	---

I 	I1SB2
W H 22 1 	 141220.

WH2ir[H$1

Hi17i 	1111117
IH169

14SO EX I I

CASE 1

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG I S

PRESSURES:
BARS ABS

DENSITY:
KG / CU.M

VISCOSITY:
CENTIPOISE

PIPE BORE:
MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M/S

PIPING DETAILS DATA -

NUMBER OF PIPES = 	3

NODE LABELS 	PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX 	LENGTH BORE ROUGHNESS COEFF. TEMP.

(RA1iv)
1 	 2 	1.00 100.000 0.00100 1.000 1.0

2 	3 	1.00 100.000 0.00100 1.000 1.0

2 	4 	1.00 100.000 0.00100 1.000 1.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 	3

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE
LABEL 	 NODE STANDARD LEVEL

1 	 0.000 	 1.0000 0.0

3 	 -1.000 	 0.0000 0.0

4 	 -1.000 	 0.0000 0.0

FLUID PROPERTIES DATA -

TYPE OF FLUID: LIQUID

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY

1.000 	 1.0 • 1000.0 	 1.0000

2.000 	 2.0 1000.0 	 1.0000

3.000 	 3.0 1000.0 	 1.0000

CASE 1

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX -->XXXX (BARS) (KG/S) (M / S) NUMBER

1 	 2 1.0000 	0.9996 2.0004 0.2547 25471

2 	 3 0.9996 	0.9995 1.0004 0.1274 12738

2 	 4 0.9996 	0.9995 1.0004 0.1274 12738

CASE 2 : Flows Specified

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG / S

PRESSURES:

BARS ABS

DENSITY:

KG / CU.M

VISCOSITY:

CENTIPOISE

PIPE BORE:

MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CEL5 IUS

MEAN FLOW VEL:
M/S

PIPING DETAILS DATA -

NUMBER OF PIPES 	6

NODE LABELS 	PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX 	LENGTH BORE ROUGHNESS COEFF. TEMP.

(RgLA1NE)
A100 	A120 	0.00 50.000 0.00000 0.000 40.0

A120 	A200 	100.00 50.000 0.00050 2.000 40.0

A200 	A210 	50.00 25.000 0.00025 -5.000 40.0

A200 	A220 	50.00 25.000 0.00025 -5.000 40.0

A210 	A215 	25.00 30.000 0.00030 6.000 30.0

A220 	A225 	25.00 30.000 0.00030 6.000 30.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 5

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE
LABEL NODE STANDARD LEVEL

A100 0.000 1.0100 0.0

A210 0.000 0.0000 5.0

A215 -1.000 0.0000 5.0

A220 0.000 0.0000 5.0

A225 -1.200 0.0000 5.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 1

PUMP 	1 	PIPE A100 TO A120

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

FLUID PROPERTIES DATA -

TYPE OF FLUID LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.380 45.0 998.25 0.59273

1.725 35.0 992.10 0.71811

2.068 55.0 983.93 0.50006

CASE 2 Flows Specified

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX --> XXXX (BARS) (KG / S) (M / S) NUMBER

A100 	A120 1.010 3.396 2.2000 1.1259 86004

A120 	A200 3.396 3.121 2.1999 1.1259 86000

A200 	A210 3.121 1.693 0.9999 2.0470 78180

A200 	A220 3.121 1.315 1.1999 2.4564 93817

A210 	A215 1.693 1.454 1.0000 1.4014 53440

A220 	A225 1.315 0.980 1.2000 1.6817 64128

113

CASE 2 : Pressures Specified

DATA AND RESULTS UNITS -

MASS FLOWRATES:

PRESSURES:

DENSITY:

VISCOSITY:

PIPE BORE:

PIPE LENGTH
AND NODE HEIGHT:

TEMPERATURE:

MEAN FLOW VEL:

PIPING DETAILS DATA -

NUMBER OF PIPES 6

NODE LABELS PIPE
XXXX --> XXXX LENGTH

A100 	A120 0.00

A120 	A200 100.00

A200 	A210 50.00

A200 	A220 50.00

A210 	A215 25.00

A220 	A225 25.00

KG / S

BARS ABS

KG / CU.M

CENTIPOISE

MILLIMETRES

METRES

CELSIUS

M/S

PIPE INSIDE WALL FIT. LOSS MEAN
BORE ROUGHNESS COEFF. TEMP.

(RELATIVE)
50.000 0.00000 0.000 40.0

50.000 0.00050 2.000 40.0

25.000 0.00025 -5.000 40.0

25.000 0.00025 -5.000 40.0

30.000 0.00030 6.000 30.0

30.000 0.00030 6.000 30.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 5

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE
LABEL 	 NODE STANDARD LEVEL

A100 	 0.000 1.0100 0.0

A210 	 0.000 0.0000 5.0

A220 	 0.000 0.0000 5.0

A215 	 0.000 0.6000 5.0

A225 	 0.000 0.4000 5.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 1

PUMP 	1 	PIPE A100 TO A120

HEAD 	FLOW

25.00 	0.0000
23.77 	0.0060
21.33 	0.0120

FLUID PROPERTIES DATA -

TYPE OF FLUID : LIQUID

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY

1.380 	 45.0 998.25 	 0.59273

1.725 	 35.0 992.10 	 0.71811

2.068 	 55.0 983.93 	 0.50006

CASE 2 Pressures Specified

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXx --> XXXX (BARS) (KG / S) (M / S) NUMBER

A100 A120 1.010 3.384 2.6607 1.3617 104015

A120 A200 3.384 2.992 2.6608 1.3618 104019

A200 A210 2.992 0.986 1.2948 2.6505 101231

A200 A220 2.992 0.827 1.3661 2.7966 106810

A210 A215 0.986 0.600 1.2944 1.8140 69176

A220 A225 0.827 0.400 1.3657 1.9140 72988

115

CASE 3

DATA AND RESULTS UNITS -

MASS FLOWRATE5:

PRESSURES:

DENSITY:

VISCOSITY

PIPE BORE:

PIPE LENGTH
AND NODE HEIGHT:

TEMPERATURE:

MEAN FLOW VEL:

PIPING DETAILS DATA -

NUMBER OF PIPES = 7

NODE LABELS PIPE
XXXX --> XXXX LENGTH

A210 	A220 50.00

A100 	A120 0.00

A120 	A200 100.00

A200 	A210 50.00

A200 	A220 50.00

A210 	A215 25.00

A220 	A225 25.00

KG / S

BARS ABS

KG / CU.M

CENTIPOISE

MILLIMETRES

METRES

CELSIUS

M/S

PIPE INSIDE WALL FIT. LOSS MEAN
BORE ROUGHNESS COEFF. TEMP.

(ArI%J)
25.000 0.00025 2.000 40.0

50.000 0.00000 0.000 40.0

50.000 0.00050 2.000 40.0

25.000 0.00025 -5.000 40.0

25.000 0.00025 -5.000 40.0

30.000 0.00030 6.000 30.0

30.000 0.00030 6.000 30.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 5

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE
LABEL NODE STANDARD LEVEL

A100 0.000 1.0100 0.0

A210 0.000 0.0000 5.0

A220 0.000 0.0000 5.0

A215 0.000 0.6000 5.0

A225 0.000 0.4000 5.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 1

PUMP 	1 	PIPE A100 TO A120

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

FLUID PROPERTIES DATA -

TYPE OF FLUID: LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.380 45.0 998.25 0.59273

1.725 35.0 992.10 0.71811

2.068 55.0 983.93 0.50006

CASE 3

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX -->XXXX (BARS) (KG/S) (MIS) NUMBER

A210 A220 0.924 0.896 0.1450 0.2968 11337

A100 A120 1.010 3.384 2.6589 1.3607 103941

A120 A200 3.384 2.993 2.6589 1.3608 103944

A200 A210 2.993 0.924 1.3233 2.7090 103464

A200 A220 2.993 0.896 1.3357 2.7342 104428

A210 A215 0.924 0.600 1.1783 1.6513 62970

A220 A225 0.896 0.400 1.4801 2.0742 79097

CASE 4(i)

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG / S

PRESSURES:
BARS ABS

DENSITY:

KG / CU.M

VISCOSITY:

CENTIPOISE

PIPE BORE:

MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M/S

PIPING DETAILS DATA -

NUMBER OF PIPES 9

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

A100 	A120 0.00 50.000 0.00000 0.000 40.0

A100 	A130 0.00 50.000 0.00000 0.000 40.0

A100 	A140 0.00 50.000 0.00000 0.000 40.0

A120 	A200 10000 50.000 0.00050 - 	2.000 40.0

A130 	A300 100.00 50.000 0.00050 2.000 40.0

A140 	A400 100.00 50.000 0.00050 2.000 40.0

A200 	A500 100.00 50.000 0.00050 2.000 40.0

A300 	A500 100.00 50.000 0.00050 2.000 40.0

A400 	A500 100.00 50.000 0.00050 2.000 40.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 2

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE
LABEL 	 NODE STANDARD LEVEL

A100 	 0.000 2.0000 0.0

A500 	 0.000 2.0000 0.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 3

PUMP 	1 	PIPE A100 TO A120

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

PUMP 2 	PIPE A100 TO A130

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

PUMP 3 	PIPE A100 TO A140

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

FLUID PROPERTIES DATA -

TYPE OF FLUID: LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.380 45.0 998.25 0.59273

1.725 35.0 992.10 0.71811

2.068 55.0 983.93 0.50006

CASE 4(i)

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX -->XXXX (BARS) (KGIS) (MIS) NUMBER

A100 	A120 2.000 4.323 4.7233 2.4173 184647

A100 	A130 2.000 4.323 4.7233 2.4173 184647

A100 	A140 2.000 4.323 4.7233 2.4173 184647

A120 	A200 4.323 3.161 4.7241 2.4177 184676

A130 	A300 4.323 3.161 4.7241 2.4177 184676

A140 	A400 4.323 3.161 4.7241 2.4177 184676

A200 	A500 3.161 2.000 4.7241 2.4177 184676

A300 	A500 3.161 2.000 4.7241 2.4177 184676

A400 	A500 3.161 2.000 4.7241 2.4177 184676

III

CASE 4(u)

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG / S

PRESSURES:
BARS ABS

DENSITY:
KG / CU.M

VISCOSITY:
CENTIPOISE

PIPE BORE:
MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M / S

PIPING DETAILS DATA -

NUMBER OF PIPES = 3

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

(gEi.Aflv)
AlO 	A100 0.00 50.000 0.00000 0.000 40.0

A100 	A200 100.00 50.000 0.00050 2.000 40.0

A200 	A500 100.00 50.000 0.00050 2.000 40.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 2

	

NODE 	FLOW INTO 	PRESSURE 	NODE HEIGHT ABOVE

	

LABEL 	 NODE 	 STANDARD LEVEL

	

AlO 	 0.000 	 2.0000 	 0.0

	

A500 	 0.000 	 2.0000 	 0.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 1

PUMP 	1 	PIPE AlO TO A100

HEAD FLOW

25.00 0.0000
23.77 0.0060
21.33 0.0120

FLUID PROPERTIES DATA -

TYPE OF FLUID: LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.380 45.0 998.25 0.59273

1.725 35.0 992.10 0.71811

2.068 55.0 983.93 0.50006

CASE 4(u)

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
xxxx --> XXXX (BARS) (KG / S) (M / S) NUMBER

AlO 	A100 2.000 	4.323 4.7233 2.4173 184647

A100 	A200 4.323 	3.161 4.7241 2.4177 184676

A200 	A500 3.161 	2.000 4.7241 2.4177 184676

IoL

CASE 4(11i)

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG / S

PRESSURES:
BARS ABS

DENSITY:
KG / CU.M

VISCOSITY:
CENTIPOISE

PIPE BORE:
MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M / S

PIPING DETAILS DATA -

NUMBER OF PIPES 	6

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

(ft LPIJE
A100 	A200 100.00 50.000 0.00050 2.000 40.0

A100 	A300 100.00 50.000 0.00050 2.000 40.0

A100 	A400 100.00 50.000 0.00050 2.000 40.0

A200 	A500 100.00 50.000 0.00050 2.000 40.0

A300 	A500 100.00 50.000 0.00050 2.000 40.0

A400 	A500 100.00 50.000 0.00050 2.000 40.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 	2

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE
LABEL 	 NODE STANDARD LEVEL

A100 	 0.000 	 2.0000 0.0

A500 	 0.000 	 1.0000 0.0

FLUID PROPERTIES DATA -

TYPE OF FLUID: LIQUID

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY

1.380 	 45.0 998.25 	 0.59273

1.725 	 35.0 992.10 	 0.71811

2.068 	 55.0 983.93 	 0.50006

CASE 4(iii)

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX --> XXXX (BARS) (KG / S) (M / S) NUMBER

AiQO A200 2.000 1.500 3.2815 1.6794 128282

A100 A300 2.000 1.500 3.2815 1.6794 128282

A100 A400 2.000 1.500 3.2815 1.6794 128282

A200 A500 1.500 1.000 3.2815 1.6794 128282

4300 4500 1.500 1.000 3.2815 1.6794 128282

4400 A500 1.500 1.000 3.2815 1.6794 128282

CASE 7

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG /

PRESSURES:
BARS ABS

DENSITY:
KG / CU.M

VISCOSITY:
CENTIPOISE

PIPE BORE:
MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M / S

PIPING DETAILS DATA -

NUMBER OF PIPES = 9

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

(RELATIVE)
AlDO AllO 8.23 100.000 0.01000 5.550 20.0

A200 AllO 3.96 100.000 0.01000 5.550 20.0

AllO A120 6.10 100.000 0.01000 0.000 20.0

A300 A120 4.57 100.000 0.01000 5.550 20.0

A120 A130 12.20 100.000 0.01000 0.000 20.0

A400 A130 4.57 100.000 0.01000 5.550 20.0

A130 A140 4.27 100.000 0.01000 0.000 20.0

A500 A140 3.96 100.000 0.01000 5.550 20.0

A140 A600 2.93 100.000 0.01000 1.650 20.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 6

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE
LABEL NODE STANDARD LEVEL

A100 0.000 1.0000 1.2

A200 0.000 1.0000 1.2

A300 0.000 1.0000 1.2

A400 0.000 1.0000 1.2

A500 0.000 1.0000 1.2

A600 0.000 1.0000 -1.5

FLUID PROPERTIES DATA-

TYPE OF FLUID: LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.380 45.0 998.25 0.59273

1.725 35.0 992.10 0.71811

2.068 55.0 983.93 0.50006

CASE 7

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX --> XXXX (BARS) (KG / S) (M / S) NUMBER

A100 AllO 1.000 1.116 2.4560 0.3054 31864

A200 AllO 1.000 1.116 2.7341 0.3400 35472

AllO A120 1.116 1.111 5.1901 0.6455 67336

A300 A120 1.000 1.111 3.9924 0.4965 51797

A120 A130 1.111 1.080 9.1835 1.1421 119146

A400 A130 1.000 1.080 8.3700 1.0409 108592

A130 A140 1.080 1.040 17.5544 2.1832 227750

A500 A140 1.000 1.040 11.9788 1.4898 155412

A140 A600 1.040 1.000 29.5334 3.6729 383165

CASE 8

DATA AND RESULTS UNITS -

MASS FLOWRATES:

PRESSURES:

DENSITY:

VISCOSITY:

PIPE BORE:

PIPE LENGTH
AND NODE HEIGHT:

TEMPERATURE:

MEAN FLOW VEL:

PIPING DETAILS DATA -

NUMBER OF PIPES = 7

NODE LABELS PIPE
XXXX --> XXXX LENGTH

A 	B 0.00

B 	AA 1.00

AA 	 1 180.00

1 	 2 30.00

2 	3 130.00

3 	4 70.00

4 	H13 1.00

I cU

KG / S

BARS ABS

KG / CU.M

CENTIPOISE

MILLIMETRES

METRES

CEL$IUS

M/S

PIPE INSIDE WALL FIT. LOSS MEAN
BORE ROUGHNESS COEFF. TEMP.

(R.AflV

260.000 0.00000 0.000 10.0

260.000 0.00000 0.000 10.0

260.000 0.00096 3.400 10.0

260.000 0.00096 1.200 10.0

206.000 0.00121 0.200 10.0

206.000 0.00121 1.300 10.0

206.000 0.00121 1.300 10.0

I'

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 2

	

NODE 	FLOW INTO 	PRESSURE

	

LABEL 	 NODE

	

A 	 0.000 	 1.0000

	

H13 	 0.000. 	 7.2000

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS = 1

PUMP 1 	PIPE A TO B

HEAD 	FLOW

125.00 	0.0000
109.30 	0.0430
106.60 	0.0757
94.25 	0.1038
73.71 	0.1290

NODE HEIGHT ABOVE
STANDARD LEVEL

0.0

0.0

FLUID PROPERTIES DATA -

TYPE OF FLUID LIQUID

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.000 10.0 1000.0 1.3000

2.000 20.0 1000.0 1.0000

3.000 30.0 1000.0 0.8000

CASE 8

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXXX -->XXXX (BARS) (KG/S; (M / S) NUMBER

A B 1.000 9.143 116.9339 2.2025 440501

B AA 9.143 9.142 116.9386 2.2026 440519

AA 1 9.142 8.722 116.9337 2.2025 440500

1 2 8.722 8.636 116.9337 2.2025 440500

2 3 8.636 7.806 116.9336 3.5086 555970

3 4 7.806 7.286 116.9337 3.5086 555971

4 H13 7.286 7.200 116.9339 3.5086 555972

l;t I

CASE 10

DATA AND RESULTS UNITS -

MASS FLOWRATES:
KG / S

PRESSURES:
BARS ABS

DENSITY:
KG / CU.M

VISCOSITY:
CENTIPOISE

PIPE BORE:
MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:
CELSIUS

MEAN FLOW VEL:
M/S

PIPING DETAILS DATA -

NUMBER OF PIPES 10

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

1 	 2 0.36 477.800 0.00009 0.000 409.0

2 	3 0.36 477.800 0.00009 0.000 409.0

3 	4 0.36 477.800 0.00009 0.000 409.0

1 	 5 0.40 477.800 0.00009 0.000 409.0

2 	6 0.40 477.800 0.00009 0.000 409.0

3 	7 0.40 477.800 0.00009 0.000 409.0

4 	8 0.40 477.800 0.00009 0.000 409.0

8 	7 0.36 477.800 0.00009 0.000 409.0

7 	6 0.36 477.800 0.00009 0.000 409.0

6 	5 0.36 477.800 0.00009 0.000 409.0

w

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 2

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE
LABEL 	 NODE STANDARD LEVEL

1 	 0.000 30.0000 0.0

5 	 -1.000 0.0000 0.0

FLUID PROPERTIES DATA -

TYPE OF FLUID 	GAS
RATIO OF SPECIFIC HEATS = 1.100

PRESSURE TEMPERATURE DENSITY 	VISCOSITY

29.980 420.0 12.950 	0.18800E-01

25.840 460.0 10.270 	0.19800E-01

25.840 460.0 10.270 	0.19800E-01

CASE 10

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS Xxxx --> XXXX (BARS) (KG / S) (M / 5) NUMBER

1 2 	 30.00000000 29.99999997 0.3911 0.1656 56269

2 3 	 29.99999997 29.99999997 0.1512 0.0640 21761

3 4 	 29.99999997 29.99999997 0.0545 0.0231 7847

1 5 	 30.00000000 29.99999993 0.6089 0.2579 87610

2 6 	 29.99999997 29.99999996 0.2399 0.1016 34514

3 7 	 29.99999997 29.99999996 0.0975 0.0413 14034

4 8 	 29.99999997 29.99999996 0.0537 0.0228 7731

8 7 	 29.99999996 29.99999996 0.0537 0.0228 7730

7 6 	 29.99999996 29.99999996 0.1512 0.0640 21758

6 5 	 29.99999996 29.99999993 0.3911 0.1656 56269

I 0L'l

Case 1: Simple Nework

hO

0.8

(0

0)
-1 0.6

0

IL 0.4

ID

0

0.2

0.0
0 	 2 	 4 	 6 	 8 	 10

Aeration No.

I.3(-)

Case 2: Flows Spec.

32.0

28.0

24.0

0)
20.0

cn

16.0

LL

(1)
•O 12.0
0

8.0

4.0

0.0
0 	 2 	 4 	 6 	 6 	 10

1eraHon No

(Jl

Case 2: Press Spec

1.0 	2.0 	8.0 	4.0 	5.0 	6.0

Iteration No

(1)
20.0

0)

$2.0

$2.0

24.0

8.0

4.0

0.0
0.0

18.0

IL

0
-o 12.0
0

20.0

20.0

24.0

0)
20.0

0)

16.0

LL

0 $2.0
0

6.0

4.0

0.0
0 1 	 2 	 3 	 4 	 5 	 6 	 7 	 5

Iteration No.

Case 3: Single-Mesh Network
containing one
pump

1 	 2 	 3 	 4 	 5

Iteration No

Co
20.0

-

92.0

20.0

24.0

8.0

4.0

0.0
0

18.0

IL

D 12.0
0

Case 4(1): Pumps in
parallel

1 	 2 	 8 	 4 	 5

ilerahon No

S2.0

28.0

24.0

8.0

0.0
0

4.0

F-'

(0
20.0

U)

'.1

18.0

Li-

0 12.0
0
z

Case 4(11): Line
From Nekiork 4(1)

135

Case 6: Steam Sysem

10.0

16.0

14.0

12.0

10.0

0

LL

e.o

-D
0
z

1.0 	2.0 	0.0 	4.0 	5.0

Iteration No.

0.1
0.0 b.0 	 F.I

6.0

4.1

2.1

1 0.0
0.0 	 1.0 	 2.0 	 3.0 	 4.0 	 5.0 	 6.0 	 7.0 	 6.

eraHon No.

Case 7: Nelwork wiH
Graviy Feed

10.0

9.0

6.0

7.0

(1)
6.0

0)

5.0

LL-

(1)
0 4.0

0

3.0

2.0

1.0

2.0 	 3.0 	 4.0 	 5.0 	 6.0

Ilenahon No.

7.0 	 8.0

140.0

120.0

100.0

(1)

0)

z 80. 0

0

Li_ 60.0

-D
0

40.0

20.0

0.0
0.0 1.0

16!

Case 8: WoIer Syslem

Case 9: Furnace Gas
EJistribu ion
Syslem

24.0

(ci

0)
16.0

0

Ii_ 12.0

ID
0
0

M 6.0

4.0

	

0.01 	i 	 I 	I 	I 	I 	I 	 I I

	

0.0 	1.0 	2.0 	6.0 	4.0 	5.0 	6.0 	7.0 	6.0

IeraHon No.

Case 10: Subnetwork oF
Nework 9

20.0

18.0

16.0

14.0

0)
12.0

0)

10.0

IL

-D 6.0
0

6.0

4.0

2.0

0.0
0 	 4 	 e 	12 	 18 	 20 	 24 	 28 	 w 	88 	 40

Iteration No.

2 	 4 	 6 	 8 	 10

Iteration No.

0) '..._ 40.0
a)

0)
0 20.0
0

80.0

10.0

mo

0.0
0

I#0

Case 11: Furnace Gas
DisribuI ion
Sysem

)41

Case 12: WaIer Supply
Sys fem

140.0

120.0

100.0

0)

0)
00.0

0

U.... 60.0

0)
-D
0

40.0

20.0

0.0
0 	 2 	 4 	 6 	 6 	 10

Iteration No.

)42

Case 13: Wafer Supply Syslem

2 	 4 	 6 	 8 	 10 	 12 	 14 	 16 	 18

iteration No.

ci)
2.4

0)

2.0

Li

ci)
-0 1 . 6
0

3.6

3.2

4.0

2.8

0.8

0.4

1.2

0.0
0

2 	 4 	 6 	 8 	 10 	 12 	 14

fleraHon No

0

LL 4.0

tD
0
0

2.0

10.0

8.0
I-'

(I)

0)

.._ 	.0

0.0
0

Case 14: Compressible
Flow Nework

Case 15: BrineFHelds network

1.0

0•8
(O

0)
-

0.6

0

LL

-o
0
71

0.2

0.0
U 	 2 	 4 	 6 	 6 	 10 	 12 	 14 	 16

Ijerahon No.

IV. Listings for programs/modules referred to in Chapter 5

This appendix gives the listings for the following programs or modules:

1. Program EQNET I4-

2. Module getdata)S.

3. Module eqparse

4. Module set up rm 14

5. Module setupm

6. Program DYNET 170

7. Module set up k 171
8. Module set up a

9. Module flows

The programs listed in this appendix are written in IMP80.
(Ref : "IMP80 Language Manual",

Felicity Stephens & John Munson,
Edinburgh Regional Computing Centre, 1981)

Program Notes

The symbol '@' signifies the exponent (E).

In converting temperature values from celsius to kelvin, the factor
+273 is used.

The value used for acceleration due to gravity (g) is 9.81

/4-6

I,, III$ III,lII,IuIIt 1q11 1I1t11i1t IIIIIII uI 	 lIiiII 11111t 	III

Program to solve pipe network problems. Data input may include network
equations as an alternative to 'number lists' specifying pipe/valve
characteristics and pressure/flow conditions at nodes.

IIIII , IIII ,, IIII , II ,, It ,, II , I ,, I , I ,, I , I,II,,II,I,,,IJ,,,I,IIII,,,,,,I,II

begin

externalroutinespec pressures(longrealarrayname a,b,p,ffo,c
integer nn,nf,y, integerarrayname pset,qset)

externalroutinespec set up a(longrealarrayname k,kb,p,tp,fn,ncap,c
a,b,den,ht,realarrayname qrterms,integerarrayname qterms,qtctr,c
u,d,pfix,longreal delta,tcon,integer qlctr,nn,nf,string(20) linmeth)

externalroutinespec nlink(integer nnodes,nlinks,c
integerarrayname in,out,ncode,link,cc,cp,longrealarrayname pp,fexx)

externairout inespec fcheck (longrealarrayname q ,c
fexx,integerarrayname pfix,link,in,cp,c
integer nn,longreal ftol ,longrealname hf tot, integername hfnod,check)

externalroutinespec flows(longrealarrayname p,kv,k,kb, f,fo,l,da,c
rk,ft,denav,den,ht.,vjs,cd,cv,cl,c2 ,temp, realarrayname qrterms,c
integerarrayname qtctr,qterms,ipbr,u,d,tlink,pform,jnteger c
pass ,printit ,nf,nn,npump,nfluid,string(20) linmeth)

externalroutinespec idenst(longrealarrayname cd, longrealname c
dens,longreal press,temp,integer nfluid)

externairoutinespec idfit(longrealarrayname d,p, t, longrealname c
cdl,cd2,cd3,integer nfluid)

externalroutinespec ipmpnet(longrealarraynaine pchar,cl,c2,c
integerarrayname npts,pform, integer npump) 	 -

externairoutinespec ivfit(longrealarrayname v,p, t, longrealname c
cvl,cv2,cv3, integer nfluid)

externalroutinespec ivisco(longrealarrayname cv, longrealname c
visc,longreal press,temp,integer nfluid)

externalroutinespec ilnpump(longreal pl,p2,cl,c2,den,c
integer pform,n,longrealname q,a,b)

externairoutinespec setupm(longrealarrayname p,fnum,qn,k,kv,kb,a,rhs,c
realarraynaine qrterms,rvalue,integerarrayname qterms,qtctr,pset,qset,c
pfix,ffix,qfix,in,out,tlink, ivalue,itype,integername qlctr,ierror,mrows,
integer pass,nn,nf,sum)

externairoutinespec set up rm(longrealarrayname ppi,p,k,kb,f,c
fn,qn,a,b, integerarrayname node,pset,qset,pfix,ffix,qfix,in,out,c
integer nn,nf, integernanie sum,mrows)

/

externairoutinespec getdata(longrealarraynanie p,c
kv,l,da,rk,ft,temp,fn,ht,ndtp,tpres,tvjsc,tden,ttemp,pchar,mu,ncap,sfpc

.14-7

integerarrayname node,ltno,in,out,ffix,pfix,npts,jpbr,tljnk,ncode,c
itype, ivalue,u,d,realarrayname rvalue, integername c
nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename)

externairoutinespec set up k(longrealarrayname f,fo,flst,k,kb,kv,p,plst,c
lidadenav,temp,vis,ht,ft,rk,cv,cd,cl,c2,mu,sfp,integerarrayname C
ltno,in,out,tiink,pform, ipbr,integer nf,npump,c
nfluid,pass,string(20) linmeth)

externairoutinespec emas3prompt(stringname s)

externairoutinespec emas3(stringname comm,parms.c
integername flag)

<<<<< MAIN PROGRAM >>>>> *****

main arrays...
a - matrix for linearised equations
b - constant vector for
p - new pressures to be calculated
po- last pressures
kv - valve consts for flowkv*sqrt(delta p)
k - linearised valve constants
f - new flows
fo - last flows
fn - node specified flows

structure' arrays...
u(i) - number of node upstream on branch i
d(i) - 	downstream
pfix(i) - is 1 if pressure at node i is fixed specification,

0 if variable
ffix(i) - is 1 if flow at node i is fixed specification,

0 if variable
N.B. flow into node is +ve, out of node is -ye

longrealarray a(l:100,l:lOO),p,b,fo,f(l:100),po,ppj,ncap,tp,.ht,c
plst,flst,l,da,rk,ft,qn,fn,den,nodtemp,temp,mu,sfp(1:40)
longrealarray k,kv,kb,denav,vis(1:40)
longrealarray tpres,tvisc,tden,ttemp(1:3),pchar(1:10,1:10)
longrealarray cl,c2(1:10)
longrealarray cv,cd(1:3)
realarray rvalue(l:40,l:lO),qrts(l:10, 1:5)
integerarray in,out,ffix,qfix,pfix,tlink,ncode(1:40),npts, ipbr(1:lO)
integerarray itype,ivalue(1:40,1:10) ,node(l:40)
integerarray u,d(1:40)
integerarray cp,cc(1:40,1:6) ,link(1:40)
integerarray ltno,pset(1:40),qset(1:40)
integerarray pbr ,pform(1:10)
integerarray qts(1:10,1:5),qtcount(1:10)
integer nn,nf,npump,ierror,j,j,mv
longreal ptot,rav,time,hftot,ftol,delta,tcon
integer hf nod, check, rcheck ,qlcount
integer nfluid(-ve for gas, 0 or +ve for liquid)
integer 11, mm, ntotal, tc, y,HH,zz,mcc,qq,ks
integer sum, mrows, pass, eflag, pcount, zw
string(20) filename
string(40) outfile

MM

ownstring (20) linmeth='newton" (initial solution method)

ftol=0.000001

CHECK P : This routine checks pressures for convergence
and returns 0 if sum of absolute changes is less
than specified limit. Also updates po().

integerfunction check p(longrealarrayname p,po,integer nn)

in... p(),po(),nn
out.. po()

integer i
longreal sum
suin= 0
for i=l,l,nn cycle

sum=sum+mod(p(i)-po(i))
po(i)p(i)

repeat
if sum<0.l then result=0
printstring('press Error = ',) ; printfl(sum,7) ; newline
result=l

end

initialise values which will be returned by the parser routine
for i1,1,40 cycle
qset(i)0
ppi(i)0
for j=1,1,10 cycle
itype(i,j)0 ; ivalue(i,j)0
rvalue(i ,j)0
repeat
repeat
qtcount(i)=0 for i=l,l,lO
for 1=1,1,10 cycle

for j1,1,5 cycle
qts(1, j)0
qrts(i, j)0

repeat
repeat

Initialise pump parameter values
for 1=1,1,10 cycle
pform(i)0
cl(i)0 ; c2(i)0
repeat

qfix(i)0 for i=1,1,40

Get input data file

filename="name of file :
emas3prompt(filename)
readstring(f ilename)
emas3("define","2,.out,eflag)

92

outfile="name of output file :
emas3prompt(outfile)
Get name of output file for results

readstring(outfile)
ernas3("define","ll,".outfile,eflag)

!set value of delta and tcon
tconO .0
delta=0.0

!initialise values of ncap (the capacity of each node in m**3)

ncap(zz)=0.0 for zz=1,1,40

Call routine to read network data (and parse network equations if preset
getdata(p,kv,l,da,rk,ft,temp,fn,ht,nodtemp,tpres,tvjsc,tden,c
ttemp,pchar, mu ,ncap, sfp, node , itno, in,out ,ff ix,pf ix ,npts, ipbr , tlink
ncode,itype,ivalue,u,d,rvalue,c
nn,nf,npump,nfluid,ierror,ptot,rav,fjlename)

!set value of tp
tp(zz)=0.0 for zz=l,l,nn

assign values to elements of array ppi for nodes whose p's are fixed

for i=l,l,nn cycle
if pfix(i)=l then ppi(i)p(i)
repeat

get no. of links to each node

nhink(nn ,nf , in ,out ,ncode, link, cc ,cp,p, fn)

assign average node pressure (returned in 'pLot' by routine getdata)
to nodes which have not been assigned inititial (fixed) pressures

for y=l,l,nn cycle
if p(y)=0 then start
p(y)ptot
po(y)=ptot
ppi(y)ptot
finish else start
ppi(y)=p(y)

p0 (y) = p (y)
finish
repeat

assign initial values to hfnod and hftot
hfnod is the node identifier of the node with the highest excess
inflow/outflow after each iteration
hftot is the value of the excess inflow/outflow.

hfnod=0
hftot=0

select input(0)

!get pump characteristics if there are pumps in the network

Io

if npump>O then start
ipmpnet(pchar,cl ,c2, npts ,pform,npump)
finish

!get viscosity and density fit details
ivf it (tvisc, tpres ttemp,cv(1) ,cv(2) ,cv(3) ,nfluid)
idfit(tden,tpres,ttemp,cd(l),cd(2),cd(3),nfluid)

initialise the constants in the pipe flow/pressure equations

for mv=l,l,nf cycle
k(mv)=0.0 ; kb(mv)=0.0
repeat

call routine flows to get initial flow distribution in network

flows(p,kvsk,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cic2tempqrtsc
qtcount,qts,ipbr,u,d,tlink,pform,o,o,nf,nn,npump,nflujd,ljnmeth)

select input(0)

ntotal=nn+nf

for i=l,l,lOO cycle ;! ----------------start iteration ----------------
pass =l
it i1 then start
pass =0
finish

Get current pressure and flow values for input to routine set up k

plst(zw)p(zw) for zw=l,l,nn
flst(zw)f(zw) for zwl,l,nf

set up k(f,fo, flst,k,kb,kv,p,plst, l,da,denav,temp,vis,ht,ft, rk,c
cvlcd,cl,c 2 lmu,sfp,ltno,u,d,tlink,pform,jpbr,nf,npump,nflujd,pass,ljflmeth)

setup rm(ppi,p,k,kb,f,c
fn,qn,a,b,node,pset,qset,pfix,ffix,qfjx,u,d,nn,nf,sum,mrows)

first time round call setupm to insert prespecified network equations ir
full matrix of flow network equations

if pass=0 then setupm(ppi, fn,qn,k,kv,kb,a,b,qrts,rvalue,qts,qtcount,c
pset,qset,pfix,ffix,qfix,u,d,tlink,jva1ue,jtype,q1count,ierror,mro50
pass ,nn, nf, Sum)

if i=l then start
p(zz)=ppi(zz) for zz=l,l,nn
po(zz)ppi(zz) for zzl,l,nn
finish

selectoutput (2)

set up a(k,kb,p, tp,fn,ncap,a,b,denav,ht,qrts,qts,qtcount,u,d,pfjx,c
delta,tcon,qlcount,nn,nf,linmeth)

pressures(a,b,p,f,fo,nn,nf,O,pset,qset)

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,qrtsc

15 1

qtcount,qts, ipbr ,u,d,tlink ,pform,pass, O,nf,nn,npump,nfluid,linmeth)
check for convergence

check for flow convergence

fcheck(f,fn,pfix,link,u,cp,nn,ftol,hftot,hfnod,check)

newline; printstring("error = "); print(hftot,3,8)
printstring(" at node "); write(hfnod,3)
if (check = 0 and i>2) or i>40 then exit

repeat ; ! 	 next iteration ----------------

newline ; write(i,3)
flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vjs,cd,cv,cl,c2,temp,qrts,c
qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth)

selectoutput(2)
printstring(

Used U) ; write(i,4) ; printstring(iterations')

closestream(2)
selectoutput(ll)
flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,c1,c2,temp,qrts,c
qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth)
closestream(11)

endofprogram

Is

routine getdata 	reads in data for a pipe network,presented as a list
pipe/pump/valve physical characteristics.

read in...
fixed pressures (pfix)
branches and associated kvs or piping data (u,d,kv,1,da,rk,ft,temp)

I and set nn and nf

externalroutine getdata(longrealarrayname p,kv,l,da,rk,ft,temp,fn,c
ht,nodtemp,tpres,tvisc,tderi,ttemp,pchar,mu,ncap,sfp,c
integerarrayname node, ltno, in,out, ffix,pfix,npts,ipbr,tlink,ncode,c
itype, ivalue,u,d,realarrayname rvalue, integername C

nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename)

externairoutinespec inoden(integer label ,nnodes, integername index,c
integerarrayname node)
externalroutinespec indlis(integerarraynaine lindex,node,instr,outstr,c
in,out, integername nnodes, npipes)
externalroutinespec eqparse(longrealarrayname kv, integerarrayname node ,c
in,out,tlink,itype,ivalue,realarrayname rvalue,integername nn,nf,ierror)
externalroutinespec emas3(stringname comm,parms, integername flag)

integer i,fl,f2,f3,nnum, ii ,jj,pcount,srflag,eflag,nnodes,qq,nlab
real nspec, pspec
integerarray uu,dd(1:40)
integerarray lindex,dlindex(1:80)

ptot=0 (initialise sum of pressures)
pcount=0 (initialise counter)

for i=1,1,40 cycle
pfix(i)0
ffix(i)=0
p(i)0
fn(i)=0 	 -
ht(i)=0
tlink(i)=-99
it no (i) = 0
mu(i)=O
ncap(i)=0
sfp(i) =0

repeat

!Enter branch details
!upstream node no., downstream node no.,
!if full piping details supplied answer > 0,
!if only constant is supplied answer 0 for non-linear, -1 for linear const
!if equation to be read in for this link later, enter <-1
!terminate with < 0
nnodes=0
nf =0

emas 3 (°def me" ,"12," . filename, ef lag)
select input(12)

'53

for i1,1,40 cycle
read(fl)
if fl<O then exit
read(f2) ; if f2<0 thenexit
read(f3)
u(i)=(fl) ; d(i)=(f2)
uu(i)u(i) ; dd(i)d(i)
nf=nf+l

if f3>0 then start
!signify that the link is either a pipe with full piping details
!supplied or it is a pump (the value of tlink is changed later
!in this routine if the link is a pump)

tlink(i)=l
!read length (assumed to be in meters)
read(l(i))
!read pipe diameter (assumed to be in mm), and convert it to m
read(da(i)); da(i)=da(i) *l@_3
!read roughness ratio
read(rk(i)
!read fittings loss
read(ft(i))
!read temperature and convert it from celcius to kelvin

read(temp(i)); temp(i)=temp(i)+273.0

finish else if f3=0 or f3=-1 then start

!signify that link is a valve (valve const. supplied)

tlink(i)f3; (tlink=-1 signifies linear k, tlink=O means non-linear
read(kv(i)); read(mu(i)) ; read(ltno(i)) ; read(sfp(i))
if ltno(i)>O then sfp(i)=sfp(i)*100000
read(temp(i)) ; temp(i)=temp(i)+273.0
finish else start

the characteristics of this link are described in an equation later.
read(temp(i)) ; temp(i)=temp(i)+273.0

kv(i)0
finish

repeat

get a list of all the nodes
for qq=1,1,40 cycle
in(qq)0 ; out(qq)0
node(qq)0
repeat
dlindex(i)=O for i=1,1,40
for qq=l,l,nf cycle
1 index(qq*2_l)=u(qq) ; lindex(qq*2)=d(qq)
repeat
indlis(dlindex,node,uu,dd,in,out,nnodes,nf)
for qq1,1,40 cycle
1 index(qq)=dlindex(qq)
repeat

nn=nnode s
!Enter node conditions which are fixed

Answer >= 0 to prompt 'node spec ?' if specifying
a condition, else answer < 0

for i=1,1,40 cycle
read (nspec)

,ls-'l-

if nspec < 0 thenexit
read (nnum)

check that the node label is in the list
i noden(nnum,nn, nlab ,node)

the nodes are classified according to the following codes
code 	 type of node

1 	 fixed pressure node
2 	 fixed flow node
3 	 height specified

read(ncode(nnum)); !read the node code
read(ncap(nnum));! 	read the capacity of the node in m**3
read(ht(nnum));! 	read the height of the node in m
if ncode(nnum)=2 then start; !fixed flow node

pcount=pcount+l
read(fn(nnum)); ! note that flow in is +ve, flow out of node is -ye

fn (nnum) =-fn (nnum)
ffix(nnum)=l

finish else start
read(p(nnum))
if p(nnum)>0 then start
pcount pcount+l

p(nnum)=p(nnum)*l.05 ;! convert bar to n/m**2
ptotptot+p(nnum)

if ricode(nnum)=l then pfix(nnum)=l
finish
finish
read(nodtemp(nnum)) ; ! read the node temperature in C
nodtemp(nnum)=nodtemp(nnum)+273.0 ; ! convert to kelvin
repeat

!read in number of pumps in network

read(npump)

if npump>0 thenstart
for iil,l,npump cycle

!get the number of points on the characteristic.
read(npts(ii))
repeat

for iil,l,npump cycle
read(uu(ii)); read(dd(ii))

for jjl,l,nf cycle
!set value of tlink for appropriate link number.
!also set value of ipbr (link number of pump in network)

ifuu(ii)u(jj) and dd(ii)=d(jj) then start
tlink(jj)=2

!tlink(.
.) = 2 signifies a pump

ipbr (ii) j j
finish
repeat

!head/flow data
for j]=l,l,npts(ii) cycle

!read head and flow values on pump characteristic
read(pchar(iI,jj*2_l)); read(pchar(ii,jj*2))
repeat

repeat
finish

rav=O

!get the physical properties data
for ii=1,1,3 cycle
read(tpres(i i)); read(ttemp(ii))
read(tden(ii)); read(tvisc(ii))

!convert bar to pascal, celcius to kelvin, cp to kg/ms
tpres(ii)=tpres(jj)*1.0@5
ttemp(ii)=ttemp(ii)+273.0
tvisc(ii)tvisc(ii)*l3
rav=rav+(tpres(jj)/(tden(jj)*ttemp(jj)))
repeat

!get value of nfluid (-ye for gas, 0 or +ve for liquid)
read(nfluid)

get the average value of the gas constant, ray.

rav=rav/3

see if should quit at this point

read(f 3)

if f3<0 then start
ptot ptot/pcount
return
finish else start
eqparse(kv,node,in,out,tlink,itype,ivalue,rvalue,nn,nf,jerror)
finish

end
endoffile

0

156

ROUTINE EQPARSE : parses input equations describing network

externairoutinespec S to r(string(40) s,realname x,integername srflag)
externairoutinespec ucstrg(stringname 5)

externairoutinespec inoden(integer label,nnodes, integernaine index,c
integerarrayname node)

externairoutine eqparse(longrealarrayname kv, integerarrayname node,c
in,out,tlink,itype,ivalue,realarrayname rvalue,integername nn,nf,ierror)

For each atom, 4 entries are generated.
itype - indicates if item is P,Q,F or constant
ivalue - label indicating location of node/link in network
rvalue - coefficient of P,Q,F or value of constant

itype 	meaning 	 ivalue 	rvalue

1 	pressure term 	node label 	coeff
2 	link flow term 	link label 	coeff
3 	node flow term 	node label 	coeff
4 	constant term 	 -1 	value

The node identifiers are F (f) and P (p).
The link identifier is Q (q).
There are also identifiers for individual nodes and links.
Links are identified in terms of the nodes between which they run.

integer eqstat,j,ollen,stsign,lbctr,rbctr
integer natoms,sign,srflag,indexl,index2,index,eqlen,ll,dpt,am
integer istr1,15tr2,istr,qq,i,m,j],errcnt
real x,xstrl,xstr2 ,xstr
string(l) lcr.ccr,lbr,rbr,nlcar
string(l) array oper(l :3),nos(l:10)
string(20) numstr, str, stri ,str2
string(80) line,ol ine,nline,errmes

set the newline character
rilcar="

set the array of operator values
ope r (1) 	+ 0

oper (2) =0_

oper(3)=•'="

set the string values for brackets
lbr=" ("
rbr=")•'

initialise the array of integers
nOs(l)'l' ; nos(2) 1 2" ; nos(3)="3"
nos(4)="4 11 ; nos(5)="5" 	nos(6)="6"
nos(7)="7" ; nos(8)="8" 	nos(9)="9"
nos(10) =11 0 11

start reading in equati on lines (max of 20 lines is expected)

for m=1,1,20 cycle

IS7

ierror0
e r rmes""
line= It,,
nil ne=" H

oline""
ccr" Of

call routine ucstr to read the line
ucstrg(line)
get the line length
eqlen=length(line)
if line="E' or line = e" then return

0
lbctr=0
rbct r0
natoms=0

initialise eqstat at start of read. eqstat signifies whether
an "=' has been encountered yet in the line.

eqstat-1

cycle for the max no. of atoms expected in equation line.
initialise the string variable holding the previous character.
1 cr=""
oline=l me
initialise the sign to •+"

initialise the coefficient of P,Q,and F terms.
x1

signl ; stsign=l
for 1=1,1,10 cycle ; 	start of main cycle to read line

no blanks allowed
if oline->(" ").oline then ierror=-1 and -> errorl

see if line commences with + or

if i=l then start
if substring(oline,l,l)='-s-' then start

oline -> 	oline ; siqn=l ; lcr=+"
finish
if substring(oiine,1,1)=-" then start

oline -> ('-').oline ; sign=-1 ; lcr="-"
finish

finish

numtest : !test for numbers
see if next char is a number
if oiine="' then exit
ccr=subst ring (oline, 1,1)
for j=1,1,10 cycle
if ccr=nos(j) then -> numlab
repeat
if ccr="." then start
-> numlab

finish

Two
AMP

if the next character is not a number
it may be an operator

if ccr"+" or ccr="-" or ccr="=" then start

if lcr=+" or lcr="-' or lcr==' then ierror = -2 and -> errorl
if lcr="+" or lcr="-" or lcr==" then ierror = -2 and -> errorl
if ccr=+' and lbctr>rbctr then stsign=sign else stsign=l
if ccr='+" then sign=l and lcr=+' and oline->(ccr).oline
if ccr="- and lbctr>rbctr then stsign=sign else stsign=l
if ccr="-" then sign=-1 and lcr="-" and oline->(ccr).oline
if ccr="=" then eqstat=l and lcr='= and oline->(ccr).oline

if ccr"=" then sign=l and x=l
-> newlab
finish

test if left bracket is present.
if ccr=lbr then start
oline -> (ccr).oline
lbct r=lbct r+l
-> newlab

finish

test if right bracket is present.
if ccr=rbr then start
rbct r=rbct r+ 1
if rbctr>lbctr then ierror=-3 and -> errorl
oline -> (ccr).oline
-> newlab

finish

test whether the next char is an identifier
if ccr='P or ccr="Q" or ccr='F" then start

if lcr='" or lcr="+' or lcr="-" or lcr="=" then start
if ccr="P" then ni ine=ol me and -> plab
if ccr='Q" then nline=ol.ine and -> qlab
if ccr="F" then nline=oline and -> flab

finish else ierror = -4 and -> errorl
finish

if none of these things, then error
ierror = -5
-> errorl

numlab : !numbers

initialise decimal point counter
dptO
initialise exponent counter
am=O

numst r='
look at the rest of the line
ollen=length(ol me)

has the line been completed ?
if ollen=O then -> newlabl

for jjl,l,ollen cycle

161

ccr=substring(oline, jj, jj)
for 3=1,1,10 cycle

if ccr=nos(j) and jjollen then numstr=numstr.ccr and -> numdec
if ccr=nos(j) and jjo11en then numstr=numstr.ccr and -> ncont
repeat

if ccr=".' then start
if dpt=l then ierror=-6 and -> errorl else start
dpt=l
numstr=numstr .ccr
1 cr=" ."

-> ncOnt
finish

finish

if ccr="@" then start
if am=l then ierror=-7 and -> errorl else start

am= 1
numstr=numstr."@"
lcr=hs@fl

look at nline to see if a valid number follows the exponent
-> ncont

finish
finish

if am=l then start
if the next char is a '-i-" or "-" after an

if 1cr="@ and (ccr="+" or ccr="-") then start
numstr=numstr . ccr
lcr=ccr
-> ncont
finish
if (lcr="+" or 1cr=-") and (ccr="+" or ccr"-") C
then ierror=-8 and -> errorl

finish

if the next char is none of these things, then decode the number
if jj=ollen and ccr=lbr then ierror=-9 and -> errorl

ic r=ccr
-> numdec

ncont : repeat

numdec 	!decode the number

s to r(numstr,x,srflag)
look at rest of line following number.

if lcr=lbr then start
lbct r=lbctr+l
nline=substring(oline, jj+l,ollen)
-> plab

finish

if jjollen then c
nline=subst ring (oline,jj+l,ollefl) else ni ine"
ll=length(nline)

if 110 then ccr=substring(nline,1,1) else ccr=nlcar
is number a constant ?

if ccr='+' or ccr="- or ccr'=" or ccr=")" or 11=0 then start
natoms=natoms4-1

Tn

itype(m,natoms)=4 ; ivalue(m,natoms)= -1
rvalue(m,natoms)=stsign*x*sign*eqstat

if ccr "-" then sign=-1 else sign=l
if ccr="=" then eqstat=l and x=l
if jjollen then exit
lcr=ccr
oline=nline
atom finished, continue atom cycle

-> newlab
finish

the number is a coefficient

if nline -> (lbr).nhine then start

plab : ! pressure

if nline -> ("P(").nhine then start
natoms=natoms+l
itype(m,natoms)=l
rvalue(m,natoms)=stsign*x*sign*eqstat
riline->str.(")).nhine

-> nodelab
finish

may be link flow identifier

qiab : ! flow in link
if nline -> (°Q(").nhine then start
natoms=natoms+l
i type(m,natoms) =2
rvalue(m, natoms)=stsign*x*s ign*eqstat
nline -> str.(')").nline
-> nodelab

finish

flab
may be node flow identifier

if nline -> ('F(").nline then start
natoms=natoms+l
i type(m,natoms)=3
rvalue(m,natoms)=stsign*x*sign*eqstat
nhine->str.(").nline
finish

nodelab
at this point call the special routine for labels, inoden

if identifier is 0 there are two labels to be matched
if itype(m,natoms)2 then start
str -> strl.(",").str2
• to r(strl,xstrl,srflag)
• to r(str2,xstr2,srflag)
iStrlint(xstrl) ; istr2=int(xstr2)

inoden(istrl,nn,indexl,node)
inoden(istr2,nn,index2,node)
for qq=l,l,nf cycle
if (indexl=in(qq) and index2=out(qq)) then C

ivalue(m,natoms)=qq and exit
if (indexl=out(qq) and indexl=in(qq)) then c
ivalue(m,natoms)=-(qq) and exit
repeat

finish else if itype(m,natoms)=l or itype(m,natoms)=3 then c
start
s to r(str,xstr,srflag)
istr=int(xstr)
inoden(istr,nn,index,node)
ivalue(m,natoms)=node(index)
finish
lcr")"

if it's another number.

see if next char is a number
oline=nline
finish

newlab : repeat

newlabi : repeat

errorl : !error handling
if ierror < 0 then start

if ierror = -1 then errmes="Blank character not allowed"
if ierror = -2 then errmes="Invalid character after operator"
if ierror = -3 then errmes="Brackets not matching"
if ierror = -4 then errmes="Next character should be P, 0 or F"
if ierror = -5 then errmes="Invalid character"
if ierror = -6 then errmes="Error in position of decimal point"
if ierror = -7 then errmes="Error in position of exponent"
if ierror = -8 then errmes="Invalid character after exponent"
if ierror = -9 then errmes="Brackets not closed"
newline ; printstring(errmes." in line "); write(m,3); newline

finish

end
endoff ile

external c
routine set up rm(longrealarraynaine ppi,p,k,kb,f,fn,qn,a,b,c
integerarrayname node,pset,qset,pfix,ffix,qfix, in,out,c
integer nn,nf, integername sum,mrows)

!This routine solves for pressures and flows by setting up the equations
!for flows into nodes and flows into pipes as separate entities.

in...
nn, nf, p, k, f, fn, pfix, ffix, qfix, in, out

out...
a, b, pset, fset

integer nl, i ,j,s, ii, nfl, ln,flag, hh
integerarray flowval,flowdir(1:6), lmark(l:nf)

!get total number of equations (=no. of links + no. , of nodes)
nl =nn+nf

flowval(i)=O for i1,1,6
flowdir(i)=O for i=1,1,6
for i=l,l,nl cycle
a(i,j)=O for j=l,l,nl
b(i)0
repeat

pset(i)=O for i=l,l,nn;qset(i)=O for j=1,l,nf
imark is a marker for each pipe. It is set to 1 once the flow
equation in that pipe has been inserted into the matrix. This
is in order that there can be no repetitions when the same
pipe is encountered again.

lmark(i)=O for il,l,nf

sum is the number of entities in the flow/pressure vector which
have been 'set so far. ln is the line position marker.

sumO; 1n0

go through all the nodes
cycle hh=l,l,nn
iinode(hh)
if pfix(ii)=l thenstart;! fixed pressure node
ln=ln-s-1
first examine to see if this pressure is already in the
vector of flows and pressures (i.e. has it been set' yet)
if the entity is a new one then note its position in the
flow/pressure vector (as indicated by the value of 'sum)
if pset(ii)=O then sumsum+l and pset(ii)=sum

ln,pset(ii))1
ln)=ppi(ii)

finish

if pfix(ii)=O thenstart
nfl=O
go through all links
cycle i1,1,nf
examine which links are connected to node ii

13

if iiout(i) or ii=in(i) thenstart
if pipe is previously 'unmarked' then mark it and set
flag to off.

if lmark(i)=O then lmark(i)=l and flagO else flag=l
if flag is 'off' increase line no.

if flag=O and k(i)=O and qfix(i)=l then ln=ln+l
if flagO and k(i)#O then ln=ln+1
nfl=nfl+l; flowval(nfl)=i
if ii=out(i) then flowdir(nfl)=l else flowdir(nfl)=-1
get b(ii)
if flag=O and k(i)#O then b(ln)-kb(i)

if pset(ii)=O then sum=sum+l and pset(ii)=sum
is ii downstream or upstream node of pipe i?

if ii=out(i) thenstart
if pset(in(i))=O then sum=sum+l and pset(in(i))=sum

if k(i)#O then start
if flag=O then a(ln,pset(ii))=-k(i)
if flag=O then a(ln,pset(in(i)))=k(i)

finish
finish elsestart
if pset(out(i))=O then sumsum+1 and pset(out(i))=sum

if k(i)O then start
if flag=O then a(ln,pset(ii))=k(i)
if flag=O then a(ln,pset(out(i)))=-k(i)

finish
finish

if qset(i)r0 then sumsum+l and qset(i)=sunl
if flagO and k(i)=O and qfix(i)l then a(ln,qset(i))=1 C

and b(ln)rqn(i)
if flag=O and k(i)#-O then a(ln,qset(i))-1
finish

repeat
sum flows at a node if appropriate
if nfl>=l and ffix(ii)=1 then start
lnln+l
a(ln,qset(flowval(j)))=flowdir(j) for j=l,l,nfl
b(ln)=fn(ii)
finish

finish
repeat

mrows=ln

end
endoff ile

164-

ROUTINE SETUPM

Adds equations in the data input file to the matrix of
network equations.

external routine setupm(longrealarrayname p,fnum,qn,k,kv,kb,a,rhs,c
realarraynanie qrterms,rvalue,integerarrayname qterms,qtctr,pset,qset,c
pfix,ffix,qfix,in,out,tlink, ivalue,itype,integernatne qlctr,ierror,mrows,
integer pass,nn,nf,sum)

!Phis routine is a modified version of set up reqn, which solves
!for pressures and flows by setting up the equations for flows into
!nodes and flows in pipes as separate entries. In this routine,
!the matrix created from network data is added to, using additional
network equations specified by the user.

in...
itype, ivalue, rvalue

out...
a, b, pset, qset

integer nl,i,j,s,mm, ii,nfl,ln,flag,nodl,nod2
integer inls,onls,nsp,modp,ppl,pp2,m,npts,nfts,nqts
integer ncts,mdim,jj,kk,natoms,index,cpindex,nodjql,nodjq2
integer pcon,nindex,pindex,pinctr, fldir,nodiq
real cpincf,pincf,pplcf,pp2cf
real cfl,cf2
longrealarray irhs(l:lOO)
integerarray flowval,flowdir(1:6),lmark(1:nf)

initialise the error flag, ierror
ier ror=O

initialise the number of link flows which are fixed
qlctr=O
qtctr(i)=O for i1,1,10
for mm=l,l,lO cycle
qterms(mm,i)=O for i=1,1,5
qrterms(mm,i)=O for i=1,1,5

repeat

the dimension of the (square) matrix = no. of links + no. of nodes.
mdim = nn+nf

for rn=1,1,20 cycle ; !read each equation line
if itype(m,l)=O then -> nextcont

!increment no. of rows in matrix
if pass=O then mrows=mrows-4-1

check that current no. of rows does not exceed mdim.
if mrows>mdim then ierror=-1 and -> errorl

a(mrows,i)=Q for i1,l,mdim
i rhs (mrows) =0
nptso ; nqtsO ; nfts=0 ; ncts0 ; natoms=0

"3-

for i1,1,10 cycle
if itype(m,i)=0 then exit
natoms=natoms+ 1
if itype(m,i)=l then npts=npts+l
if itype(m,i)=2 then nqtsnqts+l
if itype(m,i)=3 then nfts=nfts+l
if itype(m,i)=4 then ncts=ncts+l

repeat

is the equation a fixed pressure specification ; i.e. does it
contain only one pressure term and some constant terms ?

if npts=l and nqts=0 and nfts=0 and ncts>0 then start

irhs (mrows)=0
for j=l,l,natoms cycle

if itype(m,j)=l then start
look at the node index.

index=ivalue(m, j)
-if pset(index)=0 then sum=sum+l and pset(index)=sum
a(mrows , pset (index)) =rvalue(m, j)

- pfix(index)=l
finish else start

irhs(mrows)=irhs(mrows)+rvalue(m,j)
finish

repeat

if irhs(mrows)>0 and a(mrows,pset(index))<0 then c
a(mrows,pset(index))=0-a(mrows,pset(index))
if irhs(mrows)<Q and a(mrows,pset(index))>0 then c
i rhs (mrows) =0-i rhs (mrows)
if irhs(mrows)<0 and a(mrows,pset(index))<0 theii C

ierror=-12 and -> errorl
p(index)=irhs(mrows)*l@5
rhs(mrows)=irhs(mrows)*1@5
continue
finish

is the equation a pseudo fixed pressure spec ; i.e. does it
contain two pressure terms and some constant terms - ?

if ripts=2 and nqts0 and nfts=0 and ncts>0 then start

pirictr=0
irhs (mrows) 0
ppl0 ; pp2=0; pplcf=0 ; pp2cf=0
for j1,l,natoms cycle

if itype(m,j)l then start
pindex=0 ; pincfo
pinctrpinctr+l

look at the node index.
index=ivalue(m, j)
if pset(index)=0 then sum=sum+l and pset(index)=sum
a(mrows..pset(index))=-rvalue(m,j)
if ppl=0 and pfix(index)=0 then start
ppl-(index)
pplcf=rvalue(m, j)
if pinctr=l then pindexindex and pincf=rvalue(m,j)
continue

I:,

finish
if pplO and pfix(index)=l then start
cpindex=index ; cpincf=rvalue(m,j)
finish
if pp1O and pfix(index)0 then pp2-(index) and c
pp2cf=rvalue(m,j)

finish else start

irhs(mrows)=irhs(mrows)+rvalue(m,j)
finish
repeat

see if both nodes are of unspecified pressure

if ppl<O and pp2<0 then start
index=-(ppl) 	; 	pfix(index)=pp2
index=-(pp2) 	; 	pfix(index)=ppl

finish else start
if ppl<O then start
nindex=-(ppl) 	; 	pfix(nindex)=l
if pindex>O then start
if pplcf<O and rvalue(m,j)>O then p(nindex)=c
p(index)+irhs(mrows)
if pplcf>O and rvalue(m,j)<O then p(nindex)c
p(index)_irhs(mrows)*l@5

finish else start
if pplcf<O and cpincf>O then p(nindex)=c
p(cpindex)+irhs(mrows)
if pplcf>O and cpincf<O then p(nindex)=c
p(cpindex)-irhs(mrows) *1@5

finish
finish

finish

rhs(mrows)=irhs(mrows)*1@5
-> contline
finish

is the equation a flow specification for a pipe ?

if npts=2 and nqts=1 and nfts=O and ncts>=O then start

get the identifiers of the end nodes.

rhs (mrows)0
nodl=O ; nod2=0 ; cfl=O ; cf20

for i=l,l,lO cycle
if itype(m,i)=l then start

if nodl=Q then nodl=ivalue(m,i) and cflrvalue(m,i)else c
nod2=ivalue(m,i) and cf2=rvalue(m,i)

finish else if itype(m,i)2 then start
index=ivalue(m,i) ; if index<O then index-(index)
ppl=in(index) ; pp2=out(index)
finish else rhs(mrows)=rhs(mrows)+rvalue(m,i)
repeat

check that the two nodes are connected by the given pipe no.
if (nodl=ppl and nod2=pp2) or c
(nodl=pp2 and nod2=ppl) then start

U

17

if cfl-(cf2) then ierror=-7 and -> errorl
finish else start

ierror-8
-> errorl
finish

check that a 'k' value has not been assigned to this pipe ; if so
then assume that the coefficient (cfl,cf2) is the
required 'k' and set up the standard equation for that pipe.

if k(index)-O then ierror=-9 and -> errorl
if pset(nodl)0 then sum=sum+l and pset(nodl)=sum
k(index)=cf 2
tlink(index)=-1 ; kv(index)=k(index)
kb(index)=O
a(mrows,pset(nodl))=-cfl
a(mrows,pset(nod2))=-cf 2
if qset(index)=0 then sumsum+1 and qset(index)=sum
a(mrows,qset(index))=-1

continue
finish

Q terms only

if nqts>1 and ncts>=0 and nfts=O and nptsO then start
inls=0
onls=0
rhs(mrows)0

if nqts=l then start ; !look at the end nodes
for jj=l,l,natoms cycle
if itype(m,jj)=2 then start

see if the end nodes of the pipe are pendant nodes
modp=ivalue(m, jj)
fldir=l
if modp<0 then modp=-(modp) and fldir=-1
for kkl,l,nf cycle
if in(modp)=in(kk) or c
in(modp)out(kk) then inls=inls+l
if out(modp)=in(kk) or c
out(modp)out(kk) then onls=onls+1
repeat
if inls=l and onls=1 then ierror=-9 and -> errorl
if inls=l or onls=l then start
if inls=l then nsp=in(modp) else c
nspout (modp)
if pfix(nsp)1 or ffix(nsp)1 then ierror=-10 and -> errorl

I put the line in the coeff matrix

if qset(modp)0 then sum=sum+l and qset(modp)=sum
a(mrows,qset(modp))-rvalue(m,jj)
ffix(nsp)1

finish
if inls>l or onls>l then start

put the line in the coeff matrix

if qset(modp)=O then sum=sum+l and qset(modp)=sum
a(mrows,qset(modp))=-rvalue(m,jj)
qfix(modp)=1
finish

finish else rhs(mrows)=rhs(mrows)+rvalue(m,jj)
repeat

if a(mrows,qset(modp))>o then start
if fldir=1 and onls=l then fnum(nsp)=rhs(mrows)
if fldir=-1 and onls=l then fnum(nsp)=-rhs(mrows) and c
rhs (mrows) =-rhs (mrows)
if fldir=l and inls=1 then fnum(nsp)=-rhs(mrows) c
and rhs(mrows)=-rhs(mrows)
if fldir=-1 and inls=l then fnum(nsp)=rhs(mrows)
if fldir=l and (inls>l or onls>l) then qn(modp)=rhs(mrows)
if fldir=-i and (inls>l or onls>l) then qn(modp)=-rhs(mrows)
finish
finish

!if there are two q ' terms.

if nqts>l then start

increment the counter for the number of fixed flows

qlctr=qlctr+l
nodiq=O ; nodiql=O ; nodiq2=0
mm= 0
for jjl,l,natoms cycle
if itype(m,jj)=2 then start
mm= mm + 1
modp=ivalue(m, jj)
fldir=l
if modp<O then modp-(modp) and fldir=-1

!get the identifier of flow which is defined in terms of other network
if mm=l then qtctr(qlctr)=modp
if mm>l then qterms(qlctr,mm-l)=modp

!put the line in the coefficient matrix

if qset(modp)=0 then sum=sum+l and qset(modp)=sum
a(mrows,qset(modp))=-rvalue(m,jj)
if mm>1 then qrterms(qlctr,mm-l)=-rvalue(m,jj)
if pfix(in(modp))=O and (in(modp)=nodiq or c
ffix(in(modp))=0) then c
ffix(in(modp))=1 and nodiq=in(modp)
if pfix(out(modp))=0 and (out(modp)=nodiq or c
ffix(out(modp))=0) then
ffix(out(modp))=l and nodiq=out(modp)
if nodiql=O then nodiql=nodiq else nodiq2=nodiq

finish else rhs(mrows)=rhs(mrows)+rvalue(m,jj)
repeat
if nodiq#O and nodiql=nodiq2 then fnum(nodiq)=rhs(mrows)
finish
finish

contline 	!continue

repeat ; Ifinish reading each equation line

nextcont : !next
check that all k's have been assigned.

for i=l,l,nf cycle
if k(i)=0 then ierror=-1 and exit

repeat

for iil,l,nn cycle

check that flow balances have been set up for all nodes
where the pressure has not been assigned.

if pfix(ii)=0 and ffix(ii)0 then start
mrowsmrows+ 1
rhs(mrows) =0
for jj=l,l,nf cycle
if ii=in(jj) or ii=out(jj) then start
if ii=in(jj) then a(mrows,qset(jj))=-1 c
else a(mrows,qset(jj))=l
ffix(ii)=l

finish
repeat

finish

check that, for any node which has pressure specified in terms
I of pressure at another node, that the pressure specification is

now specific

if pfix(ii)<0 then start
pcon=-(pfix(ii))
if pfix(pcon)=l then pfix(ii)=l else c
ierror=-6 and -> errorl

finish
repeat

errorl 	!error label
end
endoffile

170

***** DYNAMIC NETWORK PROGRAM *****

begin

externairoutinespec flprint(longrealarrayname p,k,kb.,f,c
integerarrayname u,d,integer nn,nf)

externairoutinespeC pressures(longrealarrayflame a,b,pf,fo,c
integer nn,nf,y,integerarrayname pset,qset)

externairoutinespeC set up a(longrealarrayname k,kb,p,tp,fn,ncap,C
a,b,den,ht,realarrayname qrterms,integerarrayname qterms,qtctr,u,d,pfix s
longreal delta,tcon, integer qlctr,nn,nf,string(20) linmeth)

externairoutinespec emas3cputime(longrealname time)

externallongrealfnspec logten(longreal x)

externairoutinespec nhink(integer nnodes,nlinks,c
integerarrayflame in,out,pfix,link,cc,cp,longrealarravflame pp,fexx)

externairoutinespec fcheck(longrealarrayname q,c
fexx,integerarrayname pfix,link,in,Cp,C
integer nn,longreal ftol,longrealname hftot,integername hfnod,check)

externairoutinespeC flows(longrealarrayname p,kv,k,kb,f,fo,1,da,rk,ft1C
denav,den,ht,vis,cd,cv,cl,C2,temp, realarrayname qrterms,c
integerarrayname qtctr,qterms, ipbr,u,d..tlink,pform,integer pass..printit,
nf ,nn,npump,nfluid,string(20) linmeth)

externairoutinespec iaux(longrealname a,rhs,pp,integerflame nn,nz.c
nm,1icn,1irn,icn,irn,ikeep,ivect,jveCt,iW,idiSP,
rpt, longrealnarne anag,w)

externairoutinespec idenst(longrealarrayname cd,longrealname C

dens,longreal press,temp,integer nfluid)

externairoutinespec idfit(longrealarrayname d,p,t,longrealname c
cdl,cd2,cd3,integer nfluid)

externairoutineSpeC ipmpnet(longrealarraYflame pchar,cl,c2..c
integerarrayname npts.pform,integer npump)

externairoutinespec ivfit(longrealarrayname v,p,t,longrealname c
cvl,cv2,cv3,integer nfluid)

externairoutinespec ivisco(longrealarrayflame cv,longrealname C

visc,longreal press,temp,integer nfluid)

externairoutinespeC ilnpump(longreal pl,p2,cl,c2,den,c
integer pform,n,longrealname q,a,b)

externairoutinespec set up rm(longrealarrayname ppi,p,k,kb,f,c
fn..qn,a,b, integerarrayname node,pset,qset,pfix,ffiX,qfiX,insOUt
integer nn,nf,integername sum,mrows)

I -í 1

externalroutinespec getdata(longrealarrayname p,kv,l,da,rk,ft,c
temp,fn,ht,ntemp,tpres,tvisc,tden,ttemp,pchar,mu,ncap,sfp,c
integerarrayname node,ltno,in,out,ffix,pfix,npts,ipbr,tlink,ncode,c
itype,ivalue,u,d,realarrayname rvalue,integername c
nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename)

externairoutinespec set up k(longrealarrayname f..fo,flst,k,kb,kv,p,c
plst,l,da,denav,temp,vis,ht, ft,rk,cv,cd,cl,c2,mu,sfp,integerarrayname C

ltno,in,out,tlink,pform, ipbr,integer nf,npump,c
nfluid,pass, string(20) linmeth)

externalroutinespec rsolex eqn(longrealarrayname a,b,p,f,fo,anag,c
w,integer nn,nf,y,nm,integername nz,licn,lirn,integerarrayname c
u,d,node,pset,qset,icn,irn,ikeep,iw, idisp, ivect, jvect,string(20) linmeth)

externairoutinespec emas3prompt(stringname s)

externalroutinespec emas3(stringname comm,parms,c
integername flag)

externairoutinespec opensq(integer m)

externalrealfnspec random(integername i, integer n)

Main program starts here *****

***** beginning of declarations

main arrays...
a - matrix for linearised equations
b - constant vector for
p - new pressures to be calculated, or delta p's in Newton solution
po- last pressures
kv - valve consts for flow=kv*sqrt(delta p)
k - linearised valve constants
f - new flows. NB max 2* no.of nodes
fo - last flows
fn - node specified flows

'structure' arrays...
u(i) - number of node upstream on branch i
d(i) - 	downstream
pfix(i) - is 1 if pressure at node i is fixed specification,

o if variable
ffix(i) - is 1 if flow at node i is fixed specification,

o if variable
N.B. flow into node is +ve, out of node is -ye

longrealarray a(1:40,1:40),p,plst,b(1:40),po,ppi,ncap,ptp,tp.ht,ç
l,da,rk,ft,fn,den,temp,ntemp,mu,sfp(1:40)
longrealarray k, kv,kb, fo,f ,flst,denav,vis(l: 40)
longrealarray tpres,tvisc,tden,ttemp(1:3),pchar(1:10,1:10)
longrealarray cl,c2(1:10)
longrealarray cv,cd(1:3)
realarray rvalue(l:40,l:l0),qrts(l :10,1:5)
integerarray ltno,pset(1:40),qset(1:40)
integerarray pbr,pform(l:l0),qts(1:10,1:5)

I7-

integerarray cp,cc(1:40,1:6),link(1:40),qtcount(1:10)
integerarray in,out,ffix,pfix,tlink,ncode(1:40),npts,ipbr(1:10)
integerarray itype,ivalue(1:40,1:10),node(1:40)
integerarray u,d(1:40)
longreal ptot
longreal time2, time, tcon, hftot, ftol, ray
real delta,deltac,tnext,xmax,xrandom,deltatime,deltaclast,deltaco
real tmax
string(40) outfile
integer nm,hfnod,check,rcheck,ofiag,nodemax,ntstep
integer nfiuid(-ve for gas, 0 or +ve for liquid)
integer ll,mm,tc,y,zz,mcc,ks,irandom,nrandom
integer sum, mrows,pass,eflag,pcount,pcset,pc2s
integer nn,nf,npump,ierror,i,j,zw,zy,qlcount,ff
string(20) filename
string(l) ans

owninteger seedl=1234567
owninteger seed2=7654321
ownreal switch=10 (..after ? iterations switch to Newton)
ownreal eqset=0 (..solve full set or short set of eqns)
ownreal eps0.001 (small number for compressibility')
ownstring (20) linmeth="hutchison" (initial solution method)
ownstring (20) solmeth="shortset" (solve for pressures only)

CHECK P 	This routine checks pressures for convergence
and returns 0 if sum of absolute changes is less
than specified limit. Also updates po().

integerfunction check p(longrealarrayname p,po,integer nn)

I in... p(),po,nn
out.. po()

integer i
long real sum
suni= 0
for i=l,l,nn cycle

sumsum+rnod(p(i)-po(i))
0 (i) = p (i)

repeat

current limit is 0.00001 N/m**2

if sum<0.00001 then result=0
new line
!printstring(press Error = ") ; !printfl(sum,7) ; !newline
resu it =1

end

nm=l 0
ftol=0 .0000001

qlcountO
for i=1,1,10 cycle

qtcount(i)=0

115

for j=1,1,5 cycle
qts(i, j)0; qrts(i , j)0

repeat
repeat

for i=1,1,40 cycle
for jl,l,lO cycle
itype(i,j)=0 ; ivalue(i,j)=0
rvalue(i , j)0
repeat

p(i)=O
f(i)=O
ppi(i)=0
repeat

for i=l,l,lO cycle
pform(i) =0
cl(i)0 ; c2(i)=0
repeat

filename="name of file
emas3prompt(filename)
readstrinq(f ilename)
emas3("define",'2,.out,eflag)
outtile="name of output file
emas3prompt(outf ile)
Get name of output file for results

readstring(outfile)
emas3("define","11,.outfile,eflag)
ernas3("def me" ,"20 ,cfkout" ,eflag)
emas3("def me" , "21 ,cfout" ,eflag)
emas3("define","22,cpout",eflag)
emas3("define",'23,cpkout",eflag)
emas3("define","25,dy2list",eflag)

getdata(p,kv,l,da,rk,ft,temp,fn,ht,ntemp,tpres,tvisc,tden,c
ttemp,pchar,mu,ncap,sfp, node, ltno,in,out,f fix, pfix,npts,ipbr,tljnk,c
ncode,itype,ivalue,u,d,rvalue,c
nn,nf, npump, nflu id, ier ror, ptot , rav,filename)
!get no. of links to each node
nlirik(nfl ,nf , in ,out ,ncode , link, cc ,cp, p, fn)

for y=l,l,nn cycle
if ncap(y)>0 then ncap(y)=ncap(y)/(rav*nternp(y))
if p(y)0 then start
p(y)ptot
po(y)ptot
ppi(y)ptot
finish else start
ppi(y)=p(y)

0 (y) p (y)
finish
repeat

assign initial value to hfnod
hfnod=0
hftot=0

"-74--

!get pump characteristics if there are pumps in the network
if npump>O then start
ipmpnet(pchar,cl,c2,npts,pform,npump)
finish

!get viscosity and density fit details
ivfit(tvisc,tpres,ttemp,cv(l),cv(2),cv(3),nflujd)
idf it (tden, tpres, ttemp, cd(l) ,cd(2) cd (3) nf lu id)

for y=l,l,nf cycle
k(y)0.O ; kb(y)0.O
repeat
flows(p,kv,k,kbsf,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,c
qrts,qtcount,qts,ipbr,u,d,tlink,pform,o,o,nf,nn,npump,nfluid,ljnmeth)

****** start of program run with defined data set

cycle 	 -
emas3cputime(t ime)

select input(0)
emas3prompt("Switch to Newton:") ; read(switch)
emas3prompt("Label of node for pressure control:"); read(nodemax)
if nodemax>0 then start
emas3prompt("Maximum pressure variation at this node (Newtons):")
read(xmax) ;xmax=xmax*2
finish
emas3prompt("time step : "); read(delta)

deltatime = 0
deltac=0
deltaco=0

if nodemax>0 then start
emas3prompt("non-disturbance time(secs) : "); read(deltatime)
finish
emas3prompt("no of time steps : "); read(ntstep)
emas3prompt("value of tmax : "); read(tmax)

tcon=0; ! initialise time counter
tp(zz)=0 for zz=l,l,nn
oflag=l;! set convergence flag to off

***** read data into file for plotting with "EASYGRAPH'

only print data for node whose pressure is being controlled.
for j1,1,nf cycle
if ltno(j)>0 then start
selectoutput(22)
write in time and pressure as data pairs
newl me
print(deltac,5,2); print(p(ltno(j))*0.00001,4,10)
newl me
finish
repeat

closestream(22)
selectoutput(21)

only print data for link through which flow is controlled
for j=l,l,nf cycle

175

if ltno(j)<0 then '1-.ir F

ltno(j)=0-ltno(j)
write in time and flow as data pairs
print(deltac,5,2); print (f (ltno() , 4, 5)
ltno(j)=0-ltno(j)
newl me
finish
repeat

closest ream(21)
selectoutput (20)

for j=l,l,nf cycle
if ltno(j)<0 then start
write in time and valve constant as data pairs
print(deltac,5,2); print(kv(j),2,10)
newl me
finish
repeat

closestream(20)
seléctoutput(23)

for j1,1,nf cycle
if ltno(j)>0 then start
write in time and valve constant as data pairs
print(deltac,5,2); print(kv(j) ,2,lO)
newl me
f i i i zh

repeat

closestream(23)

!*** set values of fist and p1st for next time round
flst(zw)=f(zw) for zw=l,l,nf
plst(zy)=p(zy) for zy=l,l,nn

deltaclast=0
tnext=deltat ime
for tc=l,l,ntstep cyc1e; start of time cycle
deltac=deltac+delta

see if time value has exceeded tnext
if nodemax>0 then start
if (deltac-deltaclast)>tnext then start
deltaclast=deltac
tnext=random(seedl,0)*tmax

newline ; printstring("time = ');print(deltac,5,2);printstring("secs")
newline ; printstring("new generated time interval = ');print(tnext,4,2)

xrandom=random(seed2,0)*xmax
if xrandom >= 200 then xrandom -> +ve fluctuation in pressure
if xrandom < 200 then xrandom -> -ye fluctuation in pressure

xrandom = xrandom - 200
printstring(" x 	h);print(xrandom*l@_5,2,3)
if nodemax>0 then start

newline; printstring("old pressure was ");print(p(nodemax),7,3)
p(nodemax)=p(nodemax)+xrandom

newline; printstring("new pressure is ");print(p(nodemax),7,3)
finish

finish

lib

finish
for j=l,l,nn cycle
if ncap(j)>O then ptp(j)=tp(j) and tp(j)=p(j)
repeat
newline;!printstring("iteration no. ");!write(tc,3)
newline; ! printstring("time step = "); !print(deltac,5,3)
tcondel ta
if tc=l then tcon=O

for i=l,l,lOO cycle ;! ----------------start iteration ----------------

set the value of 'pass' for routines 'setupk' and 'flows'

pass =1
if tc=l and i1 then passO
if tc>l and i=l then passO

selectoutput (2)
set up k(f,fo, flst ,k ,kb,kv,p,plst, l,da,denav,temp,vis,ht ,ft, rk ,c
cv,cd,cl,c2,mu,sfp,ltno,u,d,tlink,pform,ipbr,nf,npump,nfluid,pass,linmeth
selectoutput (2)

set up a(k.,kb,p, tp,fn,ncap,a,b,denav,ht,qrts,qts,qtcount ,u,d,pfix,c
delta,tcon,qlcount,nn,nf,linmeth)

pressures(a,b,p,f,fo,nn,nf,O,pset,qset)
if i>switch then linmeth="newton"

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,c1,c2,temp,c
qrts,qtcount,qts,ipbr,u,d,tlink,pform,pass,O,nf,nn,npump,nfluid,linmeth)

check for convergence
fcheck(f,fn,pfix,link,u,cp,nn,ftol,hftot,hfnod,check)

if (check = 0 and i>2) or i>lOO then start
!newline ; printstring("check=O")
!newline;! priritstring("error = ");! print(hftot,3,5)
!printstring(" at node ");! write(hfnod,3)
new 1 i ne
if (check = 0 and i>2) or i>100 then exit
!if check p(p,po,nn) = 0 or i>100 thenexit
finish

repeat ; 	 next iteration ----------------

set up k(f,fo, flst,k ,kb, kv,p,plst, l,da,denav,temp,vis,ht,ft, rk ,c
!cv,cd,cl,c2,mu,sfp,ltno,u,d,tlink,pform,ipbr,nf,npump,nfluid,pass,linmet

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,c
qrts,qtcount,qts,ipbr,u,d,tlink,pform,l,0,nf,nn,npump,nfluid,linmeth)

!*** set values of flst and p1st for next time round
flst(zw)=f(zw) for zwl,l,nf
plst(zy)p(zy) for zy=l,l,nn
!

emas3cputime(t ime2)
!printstring("cpu secs = ");!print(time2-time,5,3)
!printstring("

Used ") ; ! write(i,4) ; ! printstring(" iterations")
new 1 i ne

t77

!read data into file for plotting with "EASYGRAPH'

closestream(2)
only print data for node whose pressure is being controlled
for jl,l,nf cycle
if ltno(j)>O then start
selectoutput(22)
write in time and pressure as data pairs
print(deltac,5,2); print(p(ltno(j))*0.00001,4,10)
newl me

repeat

closestream(22)
selectoutput(21)

only print data for link through which flow is controlled
for j1,1,nf cycle
if ltno(j)<O then start
write in time and flow as data pairs
ltno(j)=O-ltno(j
print(deltac,5,2); print(f(ltno(j)),4,5)
ltno(j)0-ltno(j
newl me
finish
repeat

closestream(21)
selectoutput(20)

for j1,1,nf cycle
if ltno(j)<O then start
write in time and valve constant as data pairs
print(deltac,5,2); print(k(j),2,10)
newl me
Fi ,- 	 ,h

repeat

closestream(20)
selectoutput(23)

for j1,1,nf cycle
if ltno(j)>O then start
write in time and valve constant as data pairs
print(deltac,5,2); print(k(j),2,10)
newl me
finish
repeat

closestream(23)
selectoutput (2)

for zz=l,l,nn cycle
if ncap(zz)>O then start
if mod(ptp(zz)-tp(zz))<O.00l then oflagO
if tc=l then oflag=l
finish

IM

repeat
if oflagO then c
start
printstring("
end of time-step cycle")
newl me
exit
finish

repeat; ! repeat for time step cycle
select input(0)
emas3prompt("Continue (1 or N) ?"); skipsymbol ; readitem(ans)

if ans ="n" or ans="N" then c
printstring(" 	 Finish") and -> printlabel

set all pressures to original values
p(ll)=ppi(ll) for ll=l,l,nn

newl me
emas3prompt("change parameters (Y or N) ?")
sk ipsymbol ;readi tem(ans)
newl me
if ans="y" or ans="Y" then start
emas3prompt("link or node parameter?")
read(kv(l)); read(mu(l)); read(ltno(l)) ; read(sfp(l))

printlabel:
!closestream(2)
selectoutput(ll)
flows(p,kv,k,kb,f,fo,l,da,rk,ft.denav,den,ht,vis,cd,cv,cl,c2,temp,c
qrts,qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth)
!closestream(ll)
if ans ="n" or ans="N" then stop

repeat

endofprogram

SET UP K : Routine to get the 'k' values for each link.
The k' values are obtained from the nonlinear
kv' values. The equation set up for each link
is ; Q = K * (P(in) - P(out)) + KB

external c
routine set up k(longrealarrayname f,fo,flst,k,kb,kv,p,plst,l,c
da,denav,temp,vis,ht,ft,rk,cv,cd,cl,c2,mu,sfp,jntegerarrayname ltno,in,c
out, tlink,pform, ipbr,integer nf,npump,nfluid,pass,string(20) linmeth)

externairoutinespec ilnpump(longreal pl,p2,cl,c2,den,c
integer pform,n,longrealname q,a,b)

externalroutinespec idenst(longrealarrayname cd,longrealname C

dens,longreal press,temp,integer nfluid)

externalroutinespec ivisco(longrealarrayname cv,longrealname C

visc,longreal press,temp,integer nfluid)

externallongrealfnspec logten(longreal x)

!in ... kv,p,fo(),nf
out.. k()

integer i ,j, vv,ks
longreal flow,dp,pi, re,ff,pav
longrealarray den(1:40)
pi3 .14159

I limit sets minimum pressure difference or flow below which
linearisation is not attempted.

constreal limit=0.0001
for i=l,l,nf cycle

pav=0.5*(p(in(i))+p(out(i)))

get average density in the pipe
idenst(cd,denav(i),pav,temp(i),nfluid)
get density at either end of the pipe
idenst(cd,den(in(i)),p(in(i)),temp(i),nfluid)
idenst(cd,den(out(i)),p(out(i)),temp(i),nfluid)

get viscosity in the pipe
ivisco(cv,vis(i),pav,temp(i),nfluid)
dp(p(in(i))+9.81*denav(i)*ht(in(i)))_(p(out(i))c
+9.81*denav(i)*ht(out(i)))

dpmod(dp)
if dp<limit then dplimit
flowmod(fo(i))
if mod(flow)<limit then flow=limit

!for tlink=-1, k does not have to be linearised

if tlink(i)-1 and kv(i)O then start
kb(i)=O
if ltno(i)>O then start

190

is upstream or downstream pressure being controlled ?

if sfp(i)>0 then start

k(i)kv(i)+mu(i)*(sfp(i)_plst(ltflo(j)))

finish else if sfp(i)<O then start

k(i)kv(i)+mu(i)*(plst(ltno(i))+sfp(j))

finish

if passO then k(i)=kv(i)
finish else if ltno(i)=0 then start
k(i)=kv(i)
kb(i)=O
ifp(in(i))<p(out(i)) then kb(i)=-kb(j)
finish else if ltno(i)<O then start
vv=0-ltno(i)
k(i)kv(i)+mu(i)*(sfp(i)_flst(vv))
kb(i)=O
ifpassO then k(i)kv(i)
if flst(vv)<0.0000001 then k(i)=kv(i)
finish
finish else if tlink(i)=-1 and kv(i)=0 then start

k(i)=O
kb(i)=O

finish
if tlink(i)=0 thenstart
if ltno(i)>0 then start

is upstream or downstream pressure being controlled ?

if sfp(i)>0 then start

k (i) =kv (i)+mu (i) * (sfp(i)-plst (ltno(i)

finish else if sfp(i)<0 then start

k(i)kv(i)+mu(i)*(plst(ltno(i))+sfp(i))

finish

if passo then k(i)kv(i)
k(i)k(i)/2/sqrt(dp)
kb(i) =k (i) * (sqrt(dp)/2)
ifp(in(i))<p(out(i)) then kb(i)=-icb(i)
finish else if ltno(i)=0 then start
k (i)=kv(i)/2/sqrt (dp)
kb(i)=kv(i)*(sqrt(dp)/2)

if p(in(i))<p(out(i)) then kb(i)-kb(i)
finish else if ltno(i)<0 then start
vv=0-ltno(i)
k(i)kv(i)+mu(i)*(sfp(i)_flst(vv))
if passo then k(i)=kv(i)
k(i)k(i)/2/sqrt(dp)
kb(i)rk(i)*(sqrt(dp)/2)
if p(in(i))<p(out(i)) then kb(i)=-kb(i)
finish
finish

JI

if tlink(i)=l then start
if pass=O then start

!get laminar 'k'
kv(i)=pj/(2*vjs(j))*denav(j)*da(j)**4/((l(i)+50*ft(j)*da(j))*64)
k(i)kv(j)
kb(i)=O
finish else start
get Reynolds number
re=(flow*4)/(pj*da(j)*vjs(i))

laminar or turbulent flow?
if re<2500 thenstart
get friction factor for laminar flow
ff =6 4/re
finish else start
get friction factor for turbulent flow
use Chen explicit equation
ff(rk(i)**l.1098)/2 .8257+ (5 .8506/(re**O .8981)

ff_2*log t en ((r k (i) /3 . 7065) _ (5.0452/r)*1Qgefl(ff))

ff=(1/ff)**2
finish
get k(i)

kv(i)2*mod(loy(den(in(i))/den(out(i))))
kv(i)r1/(ff*l(i)/da(i)+ft(i)+kv(i))
II I

if denav(i)<O then start
newline;printstring("up");write(in(i),4) ;print (p(in(j)),7,3)
newline;printstring('down") ;write (out(j),4);prjnt(p(out(j)),7,3)

finish
II

kv(i)(pi/2)*da(i)**2*sqrt(denav(i)/2)*sqrt(kv(j))
if linmeth='newton" then start

k(i)kv(i)/(2*sqrt(dp))
kb(i)mod((kv(i)/2)*sqrt(dp))
if p(out(i))>p(in(i)) then kb(i)=O-kb(i)

finish
if linmeth=hutchison" then k(i)=(kv(i)**2)/flow and kb(i)=O

finish
finish

get the pump number corresponding to this link number
if tlink(i)=2 then start
for j1,1,npump cycle
if ipbr(j)=i then start
ilnpump(p(in(i)),p(out(i)),cl(j),c2(j),denav(i),c
pform(j),pass,f(i),k(i),kb(i))
finish
repeat
finish

repeat

end
endoffile

externairoutine set up a(longrealarrayname k,kb,p,tp,fn,ncap,a,b,c
den,ht.realarrayname qrterms,integerarrayname qterms,qtctr,u,d,pfix,c
longreal delta,tcon, integer qlctr,nn,nf,string(20) linmeth)

Create the a matrix of linearised equations and its vector b
from the linearised flow/pressure relations involving k.

integer i, j, fl ,f2, fdl, fd2,vv
integer fflag,q2def,jj,mm,uu

for i=1,1,nn cycle
a(i,j)=O for j=l,l,nn
b(i)=fn(i)

repeat

for i=1,1,nf cycle
fflagO
if qlctr>O then start

for jjl,l,qlctr cycle
if i=qtctr(jj) then fflag=jj

repeat
finish
if fflag=O then start
flu(i) ; f2=d(i)
a(fl,fl)=a(fl,fl)-k(i)
a(f2,f2)=a(f2,f2)-k(i)
a(fl,f2)a(fl,f2)+k(i)
a(f2,fl)=a(f2,fl)+k(i)

b(fl)=b(fl)+kb(i)
b(f2)=b(f2)-kb(i
b(fl)b(fl)_(k(i)*den(i)*9.81*(ht(f2)_ht(fl)))
b(f2)b(f2)(k(i)*den(i)*9.81*(ht(fl)_ht(f2)))

finish else start
!look at the related flows

for mm=1,1,5 cycle
if qterms(fflag,mm)>O then start

!examine whether these flows themselves are defined in terms -
!of other flows

q2defO
for vvl,l,qlctr cycle

if qterms(fflag,rnm)=qtctr(vv) then q2def=vv
repeat
if q2def=O then start

if k(qterms(fflag,mm))>O then start
fl=u(qtctr(fflag)) ; f2=d(qtctr(fflag))
fdl=u(qterms(fflag,mm)) ; fd2=d(qterms(fflag,mm))
a(fl,fdl)a(fl,fdl)_(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm))
a(fl,fd2)=a(fl,fd2)+(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm))
a(f2,fd2)=a(f2,fd2)_(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm))
a(f2,fdl)=a(f2,fdl)+(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm))
b(fl)b(fl)+(_l)*qrterms(fflag,mm)*kb(qterms(fflag,mm))
b(f2)=b(f2)_(_l)*qrterms(fflag,mm)*kb(qterms(fflag,mm)

finish
finish else start

for uu=1,1,5 cycle
if qterms(vv,uu)>O then start

If k(qterms(vv,uu))>O then start
flu(qtctr(vv)) ; f2d(qtctr(vv))

fdl=u(qterms(vv,uu)) ; fd2=d(qterms(vv,uu))

finish
finish

repeat
finish

finish
repeat

! **
finish

repeat

for i=1,1,nn cycle
if pfix(i)=1 thenstart
a(i,j)=O for jr1,1,nn
b(i)p(i) ; a(i,i)1

finish
if ncap(i)O and tcon>O then start
a(i,i)=a(i,i)-ncap(j)/delta

b(i) b(i)-tp(i)*ncap(i)/delta
finish

repeat
end
endoffile

external routine flows(longrealarrayname p,kv,k,kb,f,fo,l,da,rk,ft,c
denav,den,ht,vis,cd,cv,cl,c2,temp,.realarrayname qrterms,c
integerarrayname qtctr,qterms,ipbr,u,d,tlink,pform,integer c
pass,printit ,nf,nn,npump,nfluid,string(20) linmeth)

externairoutinespec ilnpump(longreal pl,p2,cl,c2,den,c
integer pform,n,longreàlnanie q,a,b)
externairoutinespec idenst(longrealarrayname cd, longrealnaine c
dens,longreal press,temp,integer nfluid)
externairoutinespec ivisco(longrealarraynauie cv, longrealname c
visc,longreal press,temp,integer nfluid)
calculate flows in branches once pressures are known

in.. p() and pointers u(),d(), kv(),k(),den(),
deriav() , l() , da() , rk() ,ft
and scalars pass, nf, printit

out... f() and fo() when pass=O

integerarray iflow(1:10)
integer i,j, ii,jj,ifctr,lkflo,lkrflo,uu,vv,yy,zz,nflo,qflo
longreal flow,dp,s,ff,fp,re,pi ,pav,kreal

owninteger opO
opprint it
pi=3 .14159

if opi then printstring(
node 	pressure

if op=l then start
for i1,1,nn cycle

write(i,5)
print(p(i),4,4)
newl me
repeat
finish
if op=i then printstring(
Branch 	from 	to 	flow 	 k 	 kb

ifctr=O
iflow(i)0 for i1,1,10
qfloO
for 11,1,nf cycle

pav0.5*(p(u(i))+p(d(i)))
get average density in the pipe
idenst(cd,denav(i),pav,temp(i),nfluid)
get viscosity in the pipe
ivisco(cv,vis(i),pav,temp(i),nfluid)

dp(p(u(i))+9.81*denav(i)*ht(u(i)))_(p(d(i))+9.81*denav(i)*ht(d(i)))
if dp>0 then s=l else s-1
dpmod(dp)

!pipe data or valve const only ?

if tlink(i)-99 then start

!flow is specified in terms of flow in another link

for ii=l,l,lO cycle
if qtctr(ii)=i then start
ifctr=ifctr+l
iflow(ifctr)=ii

finish
repeat

finish

if tlink(i)=l thenstart
!pipe data supplied

Us it first time round ?
if pass=O thenstart
calculate laminar flow in each pipe

flow(pi/(2*vis(i)))*denav(j)*da(j)**4/((l(j)+50*ft(j)*da(j))*64)*dp*s
finish elsestart
calculate Reynolds number
re=mod (f (i)) *4/(pi*da(i) 	(
laminar or turbulent flow ?

if re<2500 thenstart
get laminar flow

flow=(pi/(2*vis(i)))*denav(i)*da(j)**4/((l(j)+50*ft(i)*da(i))*64)*dp*s
finish elsestart
get flow

flowrkv(i)*sqrt(dp)*s

!if linmeth='newton" then flow=k(i)*dp*S + kb(i)
!if linmeth="hutchison" then flow=k(i)*dp*s

finish
finish

finish else if tlink(i)=O thenstart
only value for kv supplied

if passO then flow=kv(i)*s*sqrt(dp)
if linmeth='hutchison and pass=l then flow=k(i)*dp*s + kb(i)
if linmeth='newton and pass=l then flow=k(i)*dp*s + kb(i)

finish else if tlink(i)=-1 then start
if pass=O then flowkv(i)*s*dp else c
flow=k (i)*s*dp; (linear kv supplied)
finish else if tlink(i)=2 then start
get the pump number corresponding to this link number
for j1,1,npump cycle
if ipbr(j)=i then start
ilnpump(p(u(i)),p(d(i)),cl(j),c2(j),denav(i),c
pform(j),pass,flow,k(i),kb(i))
finish
repeat
finish

if passO then start
if tlink(i)=-99 then flow=O
if tlink(i) -99 then fo(i)=mod(flow) else fo(i)=O

finish else start
if linmeth'hutchison' then c

fo(i)=0.5*mod(fo(i)+mod(flow)) else fo(i)=flow
finish
f(i)=f low
repeat
!examine flows in links where tlink = -99 (signifies flow is

a —

!specified in terms of other network flows)

if ifctr > 0 then start
for iil,l,ifctr cycle
set flag to indicate that recursive flow definition has not (yet) occu

nflo=l
lkfloiflow(ii)
qflo=qtctr(lkf 10)

initialise value of flow in this link
f(qflo)0
for zz=l,l.S cycle
lkrfloO; yyO; vvO
if qterms(lkflo,zz)>0 then lkrflo=qterms(lkflo,zz) and yyzz

is related flow expressed in terms of other flows ?
if lkrflo>0 then start
for uul,l,lO cycle

if lkrflo=qtctr(uu) then vv=uu and nflo0
repeat
if vv>O then start
for uu1,1,5 cycle

if qterms(vv,uu)>O then start
f(qflo)=f(qflo)+qrterms(lkflo,yy)*qrterms(vv,uu)*f(qterms(v ,

finish
repeat

finish else start
f(qflo)=_(l)*qrterms(lkflo,yy)*f(lkrflo)

finish
finish

repeat
repeat

finish

for i=1,1,nf cycle
if op=l then start
write(i,5) ; write(u(i) ,7); write(d(i),5)
print(f(i) ,8,9)
print(k(i),5,9) and print(kb(i),6,6)
newl iries (1)

finish
repeat

end
endoffile

a

V. Data Sets, Results and Diagrams for EQPARSE and DYNET problems.

FIG 5i.

flU 52

FIG 53

I 3

I(6Ci,

Network 5.1

1 2 	-99 200
2 3 -99 200
2 4 -99 200
-1
-1
Li

10 200 1000 1
20 300 1000 1
30 400 1000 1
1
0
P(1)=10
P(1)=P(3)+1
0.0003(P(1)-P(2))=Q(1,2)
0.0003(P(2)-P(3))=Q(2,3)
0.0003(P(2)-P(4))=Q(2,4)
Q(2,4)=15

Network 5.2

1 2 	1 	12 	30 	0.003 	2 	200
2 3 	1 	12 30 	0.004 	1 	200
2 4-99 	 200
-1
-1
Li

10 200 	1000 	1
20 300 1000 1
30 400 1000 1
1
0
P(1)=3
P(1)=P(3)+1
0.0003(P(2)-P(4))=Q(2,4)
Q(2,4) =0.009
E

11-0

Results for Network 5.1

Branch from to P in (bar) P out (bar) Flow (kg/s)

1 1 2 10.0 9.25 22.5
2 2 3 9.25 9.0 7.5
3 2 4 9.25 8.75 15.0

Results for Network 5.2

Branch from to P in (bar) P out (bar) Flow (kg/s)

1 1 2 3.0 2.4938 1.9658
2 2 3 2.4938 2.0 1.9568
3 2 4 2.4938 2.4935 0.009

Network 5.3

1 2 -1 	0.5E-5 	0.1E-6 -1 5 	25
-1
1 1 3 	20 	0 	20 	25
1 2 1 	0 	0 	1 	30
-1
0
10 27 	11 	0.018
10 127 	8.33 	0.018
20 377 	10 	0.018
-1

Network 5.4-

1 2 0 	0.005 	0 	0 0 30
2 3 0 	0.005 	0.5E-8 	2 -12 30
-1
1 1 1 	0 	0 	20 	30
1 2 3 	20 	0 	0 	30
1 3 I 	0 	0 	1 	30
-1
0
29.98 420 	12.95 	0.0188
25.84 460 	10.27 	0.0198
30.81 540 	11.34 	0.018
-1
E

Network 5.5

1 2 -1 	0.001 	1E-7 	4 7 25
2 3 1 	0 	100 	0 0 25
3 4 -1 	1E-6 	0 	0 0 25
4 2 -1 	1E-6 	1E-6 	-3 0.6 25
4 5 -1 	1E-6 	0 	0 0 25
-1
1 1 1 	0 	0 	1 	25
1 2 3 	5 	0 	0 	25
1 3 3 	0 	0 	0 	25
1 4 3 	1 	0 	0 	25
1 5 1 	0 	0 	6 	25
-1
1
3
2 3 1.2E6 	0 	8E5 	1 1000 2
10 27 11 	0.018
10 127 8.33 	0.018
20 377 10 	0.018
-1
E

Results for Network 5.4

Branch from to P in (bar) P out (bar) Flow(kg/s)

1 1 2 20.00000 14.59973 3.4763
2 2 3 14.59973 1.00000 3.4763

Results for Network 5.5

Branch from to P in (bar) P out (bar) Flow (kg/s)

1 1 2 1.00000 0.99997 0.0251
2 2 3 0.99997 11.92359 0.5673
3 3 4 11.92359 6.25054 0.5673
4 4 2 6.25054 0.99997 0.5422
5 4 5 6.25054 6.00000 0.0251

Fig 5..4 : Simple Flow ConIr'ol

15.0

18.0

14.0

12.0

(I)
1-1

0)

*0.0

0

Li

8.0

4.0

2.0

	

0.01 	i 	i 	I I 	I 	I 	I 	I 	I 	I

	

0 	 10 	
I 	

IC 	 50 	 00 	 70 	 00 	 00 	 400 so 	
Time (sees)

14.0

12.0

10.0

C-
a

e.0

(t)
a,
L 8.0

3-

4.0

2.0

-4

Fig 5.5 : Simple Pressure Conirnol

	

0.01 	i 	 I 	 I 	 I 	 I 	 I 	 I

	

0 	 40 	 80 	 120 	160 	200 	240 	280 	320 	380 	400

Time (sees)

U 2

F113

Ui
i• 	 ,.

-D

cJ\

Fig. 5.7 Compressor Flow

4.00 	0.00 	12.00 	*0.00 	20.00 	24.00 	20.00 	SLOD 	20.00 	40.00

Time (secs)

0.0

Ct)

0)

0.40

0

LL.

o.

0.20

0.10

0.00
0.00

0.70

0.00

il -I

Fig. 5.2
	

Compressor Pres.

7.00

0.00

5.00

C-
o 4.00

CD

-a

0.00

C-
0

2.00

1.00

0.00
0.00 4.00 	0.00 	12.00 	10.00 	20.00 	24.00

Time (secs)
20.00 	RLOD 	30.00 	40.00

M. Data Sets. Results and Diagrams for HF Kiln Network

This appendix relates to Chapter 6 and includes the following:

Data set for HF kiln network analysed using FLONET

FLONET results

Data set 1 for HF kiln network analysed using EQNET

Graph of max. nodal flow residual vs. iteration number for steady-
state network

EQNET results for data set 1

Data set 2 for HF kiln network analysed using EQNET

EQNET results for data set 2

Diagram for dynamic' HF network

Data set for HF network analysed using DYNET

Graph of pressure vs time at node 29 in HF network

CASE 5

DATA AND RESULTS UNITS -

MASS Ft.OWRATEs:

KG / S

PRESSURES:

BARS ABS

DENSITY:

KG / CU.M

VISCOSITY:

CENTIPOISE

PIPE BORE:

MILLIMETRES

PIPE LENGTH
AND NODE HEIGHT:

METRES

TEMPERATURE:

CELCIUS

MEAN FLOW VEL

MIS

PIPING DETAILS DATA -

NUMBER OF PIPES - 38

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN XX)O(--> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

1 	2 2.00 2500.000 0.25000 0.000 400.0

2 	3 3.00 2300.000 0.25000 0.500 400.0

3 	29 2.00 2500.000 0.25000 2.000 400.0

29 	4 8.00 2500.000 0.25000 2.000 530.0

4 	5 10.00 2500.000 0.25000 1.100 530.0

5 	9 18.00 1000.000 0.25000 0.000 530.0

5 	8 2.00 2500.000 0.25000 0.000 530.0

Zco

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

8 7 24.00 1800.000 0.25000 0.000 530.0

7 6 10.00 1300.000 0.25000 0.000 530.0

9 13 4.00 1000.000 0.25000 3.250 530.0

13 17 5.00 1100.000 0.25000 0.000 445.0

17 21 18.00 1300.000 0.25000 6.500 360.0

8 12 4.00 1500.000 0.25000 3.250 530.0

12 16 17.00 1600.000 0.25000 0.000 455.0

16 20 4.00 1500.000 0.25000 3.250 380.0

7 11 4.00 1500.000 0.25000 3.250 530.0

11 15 17.00 1600.000 0.25000 0.000 480.0

15 19 4.00 1500.000 0.25000 3.250 430.0

6 10 18.00 1300.000 0.25000 3.250 530.0

10 14 8.00 1100.000 0.25000 0.000 485.0

14 18 4.00 1000.000 0.25000 3.250 460.0

28 31 0.00 750.000 0.00000 0.000 275.0

31 29 23.00 750.000 0.25000 6.400 275.0

2 24 14.00 750.000 0.25000 2.200 400.0

24 25 3.00 750.000 0.25000 0.000 250.0

25 26 5.00 750.000 0.25000 1.100 100.0

26 27 18.00 900.000 0.25000 • 	1.100 100.0

11 14 1.00 300.000 0.25000 1.500 495.0

12 15 1.00 400.000 0.25000 1.500 480.0

13 16 1.00 300.000 0.25000 1.500 455.0

21 20 8.00 1300.000 0.25000 0.000 360.0

20 22 9.00 2500.000 0.25000 0.000 370.0

2o

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP.

18 	19 19.00 1000.000 0.25000 0.000 460.0

19 	22 17.00 1800.000 0.25000 0.000 440.0

22 	30 10.00 2500.000 0.25000 1.100 400.0

30 	23 1.00 2500.000 0.25000 1.100 400.0

23 	32 0.00 2500.000 0.00000 0.000 400.0

32 	 1 1.00 2500.000 0.25000 0.000 400.0

SPECIFIED FLOW AND PRESSURE CONDITIONS -

NUMBER OF CONDITIONS = 	2

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE
LABEL NODE STANDARD LEVEL

28 0.000 1.0010 0.0

27 0.000 1.0010 0.0

PUMP CHARACTERISTIC DATA -

NUMBER OF PUMPS 	2

PUMP 1 	PIPE 23 TO 32

HEAD FLOW

477.00 88.8900
500.00 0.0000

PUMP 2 	PIPE 28 TO 31

HEAD FLOW

477.00 6.7000
500.00 0.0000

FLUID PROPERTIES DATA -

TYPE OF FLUID : GAS
RATIO OF SPECIFIC HEATS 	1.403

PRESSURE TEMPERATURE DENSITY VISCOSITY

1.000 20.0 1.2050 0.18000E-01

1.010 400.0 0.52420 0.33000E-01

1.000 550.0 0.42860 0.37000E-01

2c

Case 5 : FLONET Results for Steady-State HF3 Kiln Network

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS
XXX --> XXX (BAR) (KG / S) 	 (M / S) NUMBER

1 2 1.00192 1.00188 20.1013 9.2981 337203
2 3 1.00188 1.00174 18.6729 8.6380 313241
3 29 1.00174 1.00144 18.6729 7.3127 288181

29 4 1.00144 1.00094 20.1013 9.3224 276574
4 5 1.00094 1.00060 20.1013 9.3260 276574
5 9 1.00060 1.00003 3.0515 8.8522 104965
5 8 1.00060 1.00058 17.0498 7.9116 234588
8 7 1.00058 1.00023 8.9538 8.0161 171105
7 6 1.00023 1.00017 2.7035 4.6411 71533
9 13 1.00003 0.99935 3.0515 8.8574 104965

13 17 0.99935 0.99925 3.1464 6.7854 105763
17 21 0.99925 0.99879 3.1464 4.3071 97271

8 12 1.00058 0.99968 8.0960 10.4399 185664
12 16 0.99968 0.99939 7.7167 7.9686 176730
16 20 0.99939 0.99873 7.6218 8.0738 200013

7 11 1.00023 0.99970 6.2504 8.0612 143331
11 15 0.99970 0.99950 6.3800 6.8039 142949
15 19 0.99950 0.99894 6.7593 7.6831 168938

6 10 1.00017 0.99989 2.7035 4.6418 71533
10 14 0.99989 0.99978 2.7035 6.1371 87731
14 18 0.99978 0.99933 2.5739 6.8487 93897
28 31 1.00100 1.00243 1.4284 5.0999 84439
31 29 1.00243 1.00144 1.4284 5.0989 84439

2 24 1.00188 1.00132 1.4284 6.2156 73485
24 25 1.00132 1.00126 1.4284 4.8757 87225
25 26 1.00126 1.00113 1.4284 3.4781 111542
26 27 1.00113 1.00100 1.4284 2.4156 92952
11 14 0.99970 0.99978 -0.1296 -4.0064 15294
12 15 0.99968 0.99949 0.3793 6.4719 33993
13 16 0.99935 0.99939 -0.0949 -2.7865 11586
21 20 0.99879 0.99873 3.1464 4.3081 97271
20 22 0.99873 0.99871 10.7682 4.0474 171302
18 19 0.99933 0.99894 2.5739 6.8514 93897
19 22 0.99894 0.99871 9.3331 7.4700 192600
22 30 0.99871 0.99841 20.1013 7.8941 310227
30 23 0.99841 0.99822 20.1013 7.8958 310227
23 32 0.99822 1.00193 20.1013 7.8831 310227
32 1 1.00193 1.00192 20.1013 7.8687 310227

2C

Case 5: Kiln
Nelwork

00.0

(0

0)
.._ 	60.0

0

40.0

0

0.0
0 	 2 	 4 	6 	 8

Inera ion No

40+

Network 5 CL

1 	2 	1
2 3 1
3 29 1

29 4 1
4 5 1
5 	9 	1
5 8 	1
8 7 1

	

7 6 	1
9 13 1

13 17 1

	

17 21 	1

	

8 12 	1

	

12 16 	1
16 20 1

	

7 11 	1

	

11 15 	1

	

15 19 	1
6 10 1

10 14 1

	

14 18 	.1

	

28 31 	1

	

31 29 	1
2 24 -99

	

24 25 	1

	

25 26 	1
26 27 -99

	

11 14 	1

	

12 15 	1

	

13 16 	1
21 20 1

	

20 22 	1

	

18 19 	1

	

19 22 	1

	

22 30 	1

	

30 23 	1

	

23 32 	1

	

32 1 	1
-1
1 	28 	1
-1
2
22

(HF3 network)

2 2300 .25
3 2300 .25
2 2500 .25
8 2500 .25

10 2500 .25
18 1000 .25

2 2500 .25
24 1800 .25
10 1300 .25

4 1000 .25
5 1100 .25

18 1300 .25
4 1500 .25

17 1600 .25
4 1500 .25
4 1500 .25

17 1600 .25
4 1500 .25

18 1300 .25
8 1100 .25
4 1 .000 .25
o 750 0

23 750 .25

3 750 .25
5 750 .25

1 300 .25
1 400 .25
1 300 .25
8 1300 .25
9 2500 .25

19 1000 .25
17 1800 .25
10 2500 .25

1 2500 .25
0 2500 0
1 2500 .25

0 	0 	1.001 	100

o 400
.5 400
2 400
2 530

	

1.1 	530

	

.0 	530
0 530
0 530
0 530

	

3.25 	530
0 445

	

6.5 	360

	

3.25 	530
o 455

	

3.25 	380

	

3.25 	530
0 480

	

3.25 	430

	

3.25 	530
0 485

	

3.25 	460
0 275

	

6.4 	275
400

0 250

	

1.1 	100
100

	

1.5 	495

	

1.5 	480

	

1.5 	455
0 360
0 370
0 460
0 440

	

1.1 	400

	

1.1 	400
0 400
0 400

23 32 	477 	88.89 	500 	0
28 31 	477 	6.7 	500 	0

1 	20 	1.205 	0.018
1.01 400 	0.5242 	0.033

1 550 	0.4286 	0.037
0
0.03(P(2)-P(24))=Q(2,24)
0.12(P(26)-P(27))=Q(26,27)
Q(2627)=1.5
E.

zos-

Results for Network 5c

Branch from to P in (bar) P out (bar) Flow (kg/s)

1 1 2 1.01095 1.01094 13.0182
2 2 3 1.01094 1.01089 11.5182
3 3 29 1.01089 1.01079 11.5182
4 29 4 1.01079 1.01056 13.0182
5 4 5 1.01056 1.01040 13.0182
6 5 9 1.01040 1.01014 1.9585
7 5 8 1.01040 1.01039 11.0600
8 8 7 1.01039 1.01023 5.7853
9 7 6 1.01023 1.01020 1.7529

10 9 13 1.01014 1.00983 1.9585
11 13 17 1.00983 1.00979 2.0282
12 17 21 1.00979 1.00963 2.0282
13 8 12 1.01039 1.00997 5.2743
14 12 16 1.00997 1.00985 5.0425
15 16 20 1.00985 1.00961 4.9729
16 7 11 1.01023 1.00999 4.0325
17 :11 15 1.00999 1.00990 4.1230
18 15 19 1.00990 1.00969 4.3548
19 6 10 1.01020 1.01007 1.7529
20 10 14 1.01007 1.01002 1.7529
21 14 18 1.01002 1.00985 1.6624
22 28 31 1.00100 1.01169 1.5000
23 31 29 1.01169 1.01079 1.5000
24 2 24 1.01095 1.01044 1.5000
25 24 25 1.01044 1.01039 1.5000
26 25 26 1.01039 1.01026 1.5000
27 26 27 1.01026 1.01013 1.5000
28 11 14 1.00999 1.01002 -0.0905
29 12 15 1.00997 1.00990 0.2318
30 13 16 1.00983 1.00985 -0.0697
31 21 20 1.00963 1.00961 2.0282
32 20 22 1.00961 1.00960 7.0010
33 18 19 1.00985 1.00969 1.6624
34 19 22 1.00969 1.00960 6.0171
35 22 30 1.00960 1.00949 13.0182
36 30 23 1.00949 1.00942 13.0182
37 23 32 1.00942 1.01096 13.0182
38 32 1 1.01096 1.01095 13.0182

Network 5b

1 2 1 2 2300 .25 0
2 3 1 3 2300 .25 .5
3 29 1 2 2500 .25 2

29 4 1 8 2500 .25 2
4 5 1 10 2500 .25 1.1
5 9 1 18 1000 .25 0
5 8 1 2 2500 .25 0
8 7 1 24 1800 .25 0
7 6 1 10 1300 .25 0
9 13 -99

13 17 1 5 1100 .25 0
17 21 1 18 1300 .25 6.5

8 12 -99
12 16 1 17 1600 .25 0
16 20 1 4 1500 .25 3.25

7 11 -99
11 15 1 17 1600 .25 0
15 19 1 4 1500 .25 3.25

6 10 1 18 1300 .25 3.25
10 14 1 8 1100 .25 0
14 18 1 4 1000 .25 3.25
28 31 1 0 750 0 0
31 29 1 23 750 .25 6.4

2 24 -99
24 25 1 3 750 .25 0
25 26 1 5 750 .25 1.1
26 27 -99
11 14 1 1 300 .25 1.5
12 15 ' 	 1 1 400 .25 1.5
13 16 1 1 300 .25 1.5
21 20 1 8 1300 .25 0
20 22 1 9 2500 .25 0
18 19 1 19 1000 .25 0
19 22 1 17 1800 .25 0
22 30 1 10 2500 .25 1.1
30 23 1 1 2500 .25 1.1
23 32 1 0 2500 0 0
32 1 1 1 2500 .25 0
-1
1 28 1 0 0 	1.001 100
-1
2
2 2
23 32 477 88.89 500 0
28 31 477 6.7 500 0

1 20 1.205 0.018
1.01 400 0.5242 0.033

1 550 0.4286 0.037
0
0.03(P(2)-p(24))=Q(2,24)
0.12(P(26)-P(27))=Q(26,27)
Q(26,27)=1.5

400
400
400
530
530
530
530
530
530
530
445
360
530
455
380
530
480
430
530
485
460
275
275
400
250
100
100
495
480
455
360
370
460
440
400
400
400
400

11) 	6, 10)
12)=Q(6, 10)

0(9,13)=0.8(0(6,10)+0(7,11)+Q(8,12))

E

208

Results for Network Sb

Branch from to P in (bar) P out (bar) Flow (kg/s)

1 1. 2 1.01095 1.01094 12.9922
2 2 3 1.01094 1.01089 11.4922
3 3 29 1.01089 1.01079 11.4922
4 29 4 1.01079 1.01056 12.9922
5 4 5 1.01056 1.01040 12.9922
6 5 9 1.01040 1.00850 5.3200
7 5 8 1.01040 1.01040 7.6726
8 	- 8 7 1.01040 1.01027 - 	 5.1151
9 7 6 1.01027 1.01021 2.5575

10 9 13 1.00850 1.01041 6.1381
11 13 17 1.01041 1.01020 4.7982
12 17 21 1.01020 1.00929 4.7982
13 8 12 1.01040 1.00930 2.5575
14 12 16 1.00930 1.00927 2.6323
15 16 20 1.00927 1.00917 3.1538
16 7 11 1.01027 1.00935 2.5575
17 11 15 1.00935 1.00931 2.8759
18 15 19 1.00931 1.00922 2.8011
19 6 10 1.01021 1.00994 2.5575
20 10 14 1.00994 1.00983 2.5575
21 14 18 1.00983 1.00951 2.2392
22 28 31 1.00100 1.01169 1.5000
23 31 29 1.01169 1.01079 1.5000
24 2 24 1.01094 1.01044 1.5000
25 24 25 1.01044 1.01039 1.5000
26 25 26 1.01039 1.01026 1.5000
27 26 27 1.01026 1.01013 1.5000
28 11 14 1.00935 1.00983 -0.3184
29 12 15 1.00930 1.00931 -0.0748
30 13 16 1.01041 1.00927 0.5215
31 21 20 1.00929 1.00917 4.7982
32 20 22 1.00917 1.00916 7.9520
33 18 19 1.00951 1.00922 2.2392
34 19 22 1.00922 1.00916 5.0403
35 22 30 1.00916 1.00905 12.9922
36 30 23 1.00905 1.00898 12.9922
37 23 32 1.00898 1.01096 12.9922
38 32 1 1.01096 1.01095 12.9922

F. L, 1. HF 1c -uc... QETLZOAK

27

18 	 >19 	 - 20< - 	 21

1 4 	 15
	 27

JCKET

KET• s'.

N

JACKET

5

38
	

0

3 	I

2 —t(----- 32

Network 5C (HF3 dynamic network)

1 2 	1 	2 	2300 	.25 	0 400
2 3 	1 	3 	2300 	.25 	.5 	400
3 29 	1 2 2500 	.25 	2 400

29 4 1 	8 	2500 	.25 	2 530
4 5 	1 10 	2500 	.25 	1.1 	530
5 9 1 18 	1000 	.25 	0 530
5 8 1 	2 2500 	.25 	0 530

	

8 7 1 24 1800 	.25 	0 530

	

7 6 1 10 1300 	.25 	0 530
9 13 	1 	4 	1000 	.25 3.25 	530

13 17 1 	5 	1100 	.25 	0 445
17 21 	1 18 	1300 	.25 	6.5 360
8 12 1 	4 	1500 	.25 3.25 	530

	

12 16 1 17 	1600 	.25 	0 455
16 20 	1 	4 	1500 	.25 3.25 	380
7 11 	1 	4 	1500 	.25 3.25 	530

11 15 	1 17 	1600 	.25 	0 	480
15 19 	1 	4 	1500 	.25 3.25 	430
6 10 	1 18 	1300 	.25 3.25 	530

10 14 1 	8 	1100 	.25 	0 485
14 18 	1 	4 	1000 	.25 3.25 	460

	

28 31 1 0 	750 	0 	0 275
31 29 	1 23 	750 	.25 	6.4 	275
2 24 0 0.25 0.0001 	2 -1.009 400

24 25 1 	3 	750 	.25 	0 	250
25 26 	1 	5 	750 	.25 	1.1 	100
26 27 	1 18 	900 	.25 	1.1 	100
11 14 	1 	1 	300 	.25 	1.5 	495
12 15 	1 	1 	400 	.25 	1.5 	480
13 16 	1 	1 	300 	.25 	1.5 	455
21 20 1 	8 	1300 	.25 	0 	360
20 22 	1 	9 	2500 	.25 	0 370
18 19 	1 19 	1000 	.25 	0 	460
19 22 	1 17 	1800 	.25 	0 	440
22 30 	1 10 	2500 	.25 	1.1 	400
30 23 0 	5 	1 	-36 	12 400

	

23 32 1 0 2500 	0 	0 400
32 1 	1 	1 	2500 	.25 	0 	400
-1
1 	27 	2 	0 	0 -1.5 	100
1 30 3100 0 	0 	100
1 	2 3100 0 	0 	400
1 28 	1 	0 	0 	1.001 	100
-1
2
22
23 32 	477 	88.89 	500 0
28 31 	477 	6.7 	500 0

1 	20 	1.205 	0.018
1.01 400 	0.5242 	0.033

1 550 	0.4286 	0.037
-1

It

C-
0

(9
C-

(9
CO
(9
C-

C-

(9
C

IN ' O

(9

(9
C-

(9
Ow 0,

(9
C-

C-

20

Fig. 6.2 : Pressure control at node 29 of HF network.
(Lower graph - pressure at node 29 (in Bar))

Time (sees)

