
COMPUTER MODELLING OF FLOW NETWORKS 

FRANCES J. DON EGAN 

M. PHIL 

UNIVERSITY OF EDINBURGH 

1988 



Abstract 

Pipe networks are a common feature of chemical and process 
plants, acting as conduits for main process fluids and for 
process utilities such as air, water and steam. For any 
pipe system it is often necessary to calculate flows and 
pressure drops throughout the network in order to assess 
the effect of changes in network structure (such as the 
addition or removal of certain pipes). Design and 
optimisation of pipe networks are dependent on reliable and 
accurate calculation of such flows and pressure drops. 

These calculations are commonly performed using computer 
programs written specifically for the analysis of flow and 
pressure in pipe networks. This thesis firstly discusses 
factors which must be taken into account in the design of 
such programs. It subsequently describes the development 
and testing of three computer programs for the analysis of 
flow and pressure in steady- and unsteady-state pipe 
networks. In the thesis' conclusions the test results are 
discussed and recommendations are made for improvements to 
the computer programs. 
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CHAPTER 1 

FLOW NETWORK ANALYSIS: INTRODUCTION 

Pipe networks are a common feature of chemical and process plants, 

acting as conduits for main process fluids and for process utilities such as 

air, water and steam. For any pipe system it is often necessary to calculate 

flows and pressure drops throughout the network in order to assess the 

effect of changes in system parameters (such as supply/source pressure) 

and changes in network structure (such as the addition or removal of 

certain pipes). Design and optimisation of pipe networks are dependent on 

reliable and accurate calculation of such flows and pressure drops. 

These calculations are commonly performed using computer programs 

written specifically for the analysis of flow and pressure in pipe networks. 

A number are commercially available, including PIPENET [351 PIPEPHASE 

[36] and FLONET (described in Chapter 3). Some programs have a wide 

range of facilities, such as a facility to handle two-phase flow in pipes, or 

a facility to analyse spray and sprinkler systems. Variation occurs in the 

method of data input and the way in which various network fittings (valves, 

orifice plates, pumps, compressors) must be described for data input. The 

essential requirement, however, of any program which performs the 

analysis of flow and pressure in pipe networks, is that the algorithm used 

to solve for flow and pressure drops must be robust and reasonably fast 

when networks of medium and large size are analysed. The algorithm 

needs to be robust because instabilities often can occur in a large network 

where flow in a few pipes is negligible in comparison with flow in the main 

network pipes. This can lead to the solution oscillating between two 

values. 

The formulation and solution of equation sets which describe fluid flow 

in pipe networks have been extensively researched and documented. Early 

work concentrated on the analogy of fluid flow networks with electrical 

networks and used Kirchoff's laws to solve for flows and pressures. The 

main drawback to this method is that convergence of the solution is slow 

and not always guaranteed. Other methods have been developed which 

also use the electrical analogy. A major consideration when using any 

method of pipe network analysis is the ease and reliability with which the 
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set of equations describing the network may be solved. Research has 

focused on linearised network models for this reason. 

This thesis describes work which was carried out on the topic of pipe 

network systems. The aim of the work was three-fold. Firstly, to make an 

appraisal of existing methods for modelling and solving steady-state pipe 

network problems. Secondly, to provide a computer tool to be used for 

the solution of such problems, by employing a modified version of a 

previously described linearisation method. Thirdly, to further develop this 

computer tool so that it would handle network constraints in the form of 

equations, as well as a description of the physical dimensions of the 

network. In addition, a further aim was to enable unsteady-state networks 

to be modelled by the computer program. 

The first aim involved a survey of the available literature on analysis of 

steady-state pipe networks, including methods of describing network 

topology and the physical components incorporated into the network. 

Matrix and linear equation solving techniques were also briefly examined. 

Most recent methods describe a pipe network as a set of linearised 

equations and the computer program which was written to carry Out the 

second aim used a combination of two of these methods, namely the 

Newton method and the Bending and Hutchison method. The program was 

tested on a number of sample networks of varying complexity. In some of 

these networks, flow in certain parts of the network was negligible in 

comparison with the rest of the network and this provided a good test of 

the program's ability to cope with potential instabilities in the final flow 

distribution throughout the network. 

Aim three necessitated that a parser be written to handle additional 

data which is input as a set of linear equations. Syntax and consistency 

checking was incorporated in the parser. A number of sample networks 

were again used to test the program which successfully calculated the final 

flow distribution in all cases. The program was further modified to accept 

data input describing pressure vessels and also time step values, so that 

unsteady-state networks could be modelled. The sample unsteady-state 

problems supplied to test the program were all successfully solved. 

The format of this thesis may be briefly described as follows 
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- Chapter 2 gives an account of the literature survey of 
flow analysis in steady-state pipe networks. 

- Chapter 3 describes the development of a computer 
program to analyse flow in steady-state pipe networks. 

- Chapter 4 describes the sample network problems which 
were presented to the computer program and discusses 
the results obtained. 

- Chapter 5 outlines the development of two computer 
programs which were developed from the program 
described in Chapter 3; the first intended to solve 
network problems where the data sets include network 
equations, the second intended to solve unsteady-state 
network problems. 

- Chapter 6 discusses the performance of all three 
programs in relation to one particular sample network 
problem. 

- Chapter 7 presents the conclusions of the thesis. 

The notation for each chapter is given at the end of that chapter. 
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CHAPTER 2 

UTERATURE REVIEW 

2.1. Introduction 

As stated in Chapter 1, the first aim of the work described in this thesis 

was to make an appraisal of existing methods for modelling and solving 

steady-state pipe network problems. This chapter presents a summary of 

the literature which was reviewed with this aim in mind. 

The topics discussed in this chapter may be summarised as follows. 

Section 2.2 briefly describes how flow network problems are 

mathematically modelled. (It should be noted that the more general term 

'flow network' is used interchangeably with 'pipe network' throughout this 

chapter and in the rest of the thesis). Section 2.3 discusses how the 

physical structure of a network is mathematically 'abstracted'. The next 

three sections are concerned with the analogy between fluid flow networks 

and electrical networks. These sections examine methods which have been 

originally used to model and solve electrical network problems, and their 

extension to fluid flow network problems. These methods use matrices to 

model the basic network and also to transform the network to one which 

is more easily analysed. The significant amount of matrix algebra involved 

in these methods, and those described in Section 2.7, illustrates the 

associated need for efficient matrix solution techniques when such 

methods are employed. 

Section 2.8 discusses techniques which have been used to linearise the 

sets of non-linear equations relating flow and pressure in pipe networks. 

Section 2.9 presents a summary of all other network models covered in the 

literature survey. 

Section 2.10 discusses how individual pipe line elements - pipes, 

pumps, various types of valves, compressors and pressure regulators - can 

be modelled. Sections 2.11 and 2.12 cover sparse matrix methods and the 

influence of supercomputers on the development of sparse matrix methods. 

The conclusions to this chapter are given in section 2.13. 



2.2.. Flow Network Representation 

Flow networks are represented by sets of non-linear algebraic 

equations of the form 

1(') = 0 	 (2.1) 

There are two ways of obtaining the solution of such equations 

Rearrange each equation to x = 4(z) and solve 
iteratively, so that a better estimate of x is obtained 
each time, on the left hand side. 

Linearise the set of equations such that 

1(z) --> Az -i- B 	 (2.2) 

and solve this new set of linear equations, using 
established methods. 

Either approach can include the rearrangement and/or decomposition of 

the set of equations into subsets. 

In general there are two kinds of equation 

Mass balance 

ly i  = 0 
	

(2.3) 

Flow/pressure drop equations 

F, = f(k' P) 
	

(2.4) 

Solution methods can handle either 

The full equation set 

A reduced equation set formed by substituting (2.4) into 
(2.3) to get a node formulation (thus eliminating flows) 

A reduced equation set formed by eliminating pressures 
(mesh formulation) 



In the analysis of flow networks much use has been made of graph theory. 

Graph theory enables network relationships to be deduced and expressed 

in the form of matrix algebra. A short discussion of graph theory follows, 

as an introduction to the methods which are used to model flow networks. 

2.3. Graph Theory 

A flow, or pipe, network is a connected set of physical elements which 

permit or control the flow of fluid. Examples of such elements are pipes, 

pumps, control valves, non-return valves, pressure sources and reservoirs. 

The graph of such a network is a diagram showing the structure of the 

network. It consists of branches, which correspond to individual pipes, 

pumps or valves, and nodes, between which the branches run. A branch is 

said to be incident to its terminal nodes. The graph is directed if assumed 

directions of flow, or pressure rise, for example, are indicated. A graph is 

said to be connected if it is possible to move between any two nodes 

along the branches. 

Any connected graph contains at least one tree. A tree is a set of 

branches connecting all the nodes without forming any meshes (or closed 

paths). The term 'basic mesh' describes any closed path formed from the 

tree by the inclusion of one non-tree branch (or link) in the graph. For 

example in Fig. 2.1, branches 1,2,3,4,5 constitute a tree (heavy lines). 

Consequently, this tree forms three basic meshes containing 3-4-6, 2-4-7 

and 2-4-5-8. 

b 	 e 

3  f! 
C c~< 

Pig. 2. 1 

It follows that if a connected graph has n nodes then any tree will 

contain n-i branches, and the number of basic meshes is rn, where 

m = 6 - n f I and b is the number of branches. In a directed graph the 
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meshes also have directions which may be defined by those of the 

defining links. 

Graph/network characteristics can be represented by matrices. Table 2.1 

shows the augmented branch-node incidence matrix l for the graph in 

Fig. 2.1. An element a of A ' is 1, -1 or 0 if branch i is, respectively, 

incident towards, incident away from, or not connected to node j. The sum 

of elements in any row is zero and the columns are linearly dependent. 

Hence any column may be deleted the node corresponding to this column 

is called the 'datum node' and the matrix so formed constitutes the 

branch-node incidence matrix .4 of the graph. 

Node 

Branch 	a 	b 	c 	d 	e 	f 

2 
3 
4 
5 
6 
7 
8 

Table 2. 1 

Augmented branch-node incidence matrix for graph in Pig. 2. 1 

Ivies/i 

Branch Ot B 	X 
1 0 0 	 0 
2 
3 1 
4 1 1 	 1 
5 
6 • 1 . 

-1 
8 

Table 2.1.1  

Branch-mesh incidence matrix for graph in Pig. 2.1 



The basic meshes of a graph are described by its branch-mesh 

incidence matrix C. Table 2.2 shows this matrix for the graph (and tree) in 

Fig. 2.1. Any element c.. of C is 1,-1 or 0 if branch i has, respectively, the 

same direction as, the opposite direction to, or is not included in mesh j 

It is readily shown that 

ATC=O and  CT.4  =0 

This brief discussion of graph theory leads to the consideration of its 

applications in pipe-network modelling. One of the best-known methods 

for solving network problems, which uses graph theory to model the 

network, is the Hardy Cross method. 

2.4. Hardy Cross 

This method is based on Kirchoff's laws 

The algebraic sum of the flows at any pipe junction is 
zero (this is a statement of the mass balance rule). 

The algebraic sum of the pressure drops around any 
mesh of the network is zero. 

To employ the Hardy Cross method it is necessary to construct 'circuit 

equations', using the matrices described in the section on graph theory. 

A set of basic meshes for the network is selected, the branch-node and 

branch-mesh incidence matrices, 4 and C, are constructed and used in 

conjunction with the equations describing pressure-drop in a pipe and 

mass-balance at a node, to solve for pressures and flows in the network: 

The solution can be obtained in two ways, using either the 'mesh' method 

or the 'nodal' method. 

Both methods have been discussed by Barlow and Markland [21 who 

have suggested modifications for improving convergence by either method. 

In their discussion they consider a network having P pipes connected 

between N nodes at Al of which the head is specified and at each of the 

remaining (M-N) nodes the outflow from the network is specified (Fig. 



2.2). 

Pig. 2.2 Notation at a typical node of the network 

In the mesh method, trial flowrates are assumed along each of the 

pipes, consistent with continuity of flow at the nodes. The head loss 

around each mesh is calculated with the assumed flowrates. In the 

unmodified Hardy Cross method, the flow corrections are applied one mesh 

at a time until Kirchoff's 2nd law is satisfied for all meshes. For network 

elements modelled by 

Ok 
= ctqfqJ)_l 	 (2.5) 

where °k  is head-loss through the element, qk  is flowrate and ak depends 

on friction factor (and roughness, if the element is a pipe), the flow 

correction for mesh C, is given by 

S' c1qJqJ' 
6qC

V flcJqJfh L 
(2.6) 

where the summations are taken in a consistent direction around the mesh 

C.. The exponent n is normally taken to be 2 (although it is somewhat less 

than 2 in the transition region of flow). 

Rewriting eq.(2.6) in the simpler form of eq.(2.7), where AQ C  is the 

linear correction applied to the flowrate in each of the branches of a mesh 

around which the closing error in the head is AIlS 
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Qc - V1nh7 

i q 

then Barlow and Markland's suggested improved correction may be 

expressed as 

n(n-i)/i 	n(n-i)h 
Qc 2 EfI 2 q Z 	 2q2 	 I AHc = 0 	

(2.8) 

where X f  denotes summation over those branches in the mesh where the 

flow direction is in the direction in which the mesh is defined, and 

denotes summation over those branches where the flow is in the opposite 

direction. Assuming that is = 2 gives 

Qc2EfFrI 
&I —7 	fl I1 + 2AQc — I 	Hc = 0 	 (2.9) 

Barlow and Marklanci state that over-correction, with a factor of about 1.25 

has proved particularly valuable. They cite an example where, in a typical 

small network having 10 nodes and 13 pipes, the number of iterations was 

reduced from 13 to 7 when an over-correction factor of 1.2 was used. On 

much larger networks, values up to 1.4 have been used to advantage. 

The major disadvantage of the mesh method is in the selection of basic 

meshes. The rate of convergence can be considerably affected by the set 

of meshes chosen. Barlow and Markland suggest choosing meshes directly 

from the network, according to general rules aimed at dispersing gross 

errors in flowrates rapidly over the whole network and removing local 

inaccuracies in pipes of subsidiary diameters. However this method is 

unsatisfactory when the networks are large and complex. 

In the 'nodal' method, an assumed set of heads is successively 

corrected at each node in turn according to the expression 

= 	
Qn MI   

10 

(2.7) 

In this, Ali n  represents the increment of head ii, at the node in question 

and AQ n  is the amount by which the inflow rate along the pipes into the 
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node exceeds the specified outflow rate Q , at that node. 

Barlow and Markland's improved correction for the nodal method may 

be stated as 

AH 2 	

I ii 	r 	I - 	V I 2_ I 

8 	Lo 	- LiIhz 	2 	h 	+Q = 0 	 (2.11) 

where the expression 1. indicates summation over all the pipes along 

which the flow is away from the node under consideration and L indicates 

summation over all the pipes along which the flow is towards the node. 

Barlow and Markland state that over-correction, using values in the 

range 1.1 - 1.3 again proves useful, but if too large a value is chosen, 

instability of the solution results. They also mention an extrapolation 

method. After a number of corrective iterations from an initial estimate, the 

total of flow errors at each of the nodes - )AQrJ - is compared with the 

initial total. The changes in the heads - - are than extrapolated to 

make the total error equal to zero, on the assumption of linear dependence 

of errors and changes in heads. Barlow and Markland cite an example 

where, in a network having 14 nodes and 25 pipes, the number of 

iterations required for convergence is reduced from 55 without 

extrapolation to 27 with extrapolation. 

In their survey of methods used in network flow analysis, Mah and 

Shacham [261 state that the general consensus is that the nodal method is 

slower than the mesh method, and Barlow and Markland mention slowness 

of convergence, when the network is ill-conditioned. 

2.5. Network Transformations 

Gay and Middleton 1161 investigated methods of solution which 

appeared to be better adapted to computer techniques than the method of 

Hardy Cross. Their methods are based on the relationships which exist 

between nodal, branch and mesh quantities. The function of the previously 

described matrices A and C is to interrelate or transform these quantities. 

For example, if e' is the vector of nodal pressures (measured with 

reference to the datum node) then e = ,1 e' is the vector of branch pressure 

rises. Kirchoff's laws may be expressed using the relationships 
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AT1 	ATCi = 0 	 (2.12) 

CT  = CTAe = 0 	 (2.13) 

where I is the vector of branch flows and i'is the vector of mesh flows. 

Gay and Middleton visualised any branch of the network as consisting 

of three elements an impedance element Z, a pressure source E and a 

flow source I For each branch the following relationships apply 

V = E + e  

J 	1+- I 	 (2.15) 

V = ZJ 	 (2.16) 

J = YV 	 (2.17) 

where E is the vector of branch pressure sources (i.e. pumps), / is the 

vector of branch flow sources, Z and Y are diagonal matrices and V = 

From relationships (2.14)-(2.17) and the relationships between nodal, 

branch and mesh quantities, Gay and Middleton derived expressions for e 

the vector of nodal pressures, and 1 the vector of mesh flows. 

e' = (ATYA) - l(/. ATYE) 	 (2.18) 

I' = (CTZC)-lCT(E ZI) 
	

(2.19) 

These two routes for a solution are analogous to the alternative methods 

developed by Hardy Cross. It can be seen that both require matrix 

inversion, which is a serious drawback for large networks. Gay and 

Middleton suggested that the computational problems could be reduced by 

applying the technique of diakoptics to the network problem. Diakoptics 

originated from the consideration of certain orthogonal transformations 

which could be applied to the network. The network may be converted to 

an all-node or an all-mesh network, described by the square 

transformation matrices C 1  or A 1 , having dimensions b x b (where b is the 

number of branches). 

Gay and Middleton considered an all-mesh network, that is, a network 

in which there are as many fictitious branches as there are non-datum 
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nodes in the original network. If / is the vector of 'primitive' branch flows 

('primitive' signifying that each branch is connected to the datum node), 

then 

/ =C1 )I = C 1 J' 	 (2.20) 

where 1'  and i are the flow vectors for an all-mesh network, 

representing the nodal flow vector which is considered to be flowing in the 

fictitious meshes and i representing the mesh flows. From relationships 

(2.14)-(2.17) and the relationships between nodal (or fictitious mesh), 

branch and mesh quantities in an all-mesh network, two expressions for 

the nodal pressures may be derived. 

e1 ' = Y 	1( i; - V E) - 	 (2.21) 

= (Z; - ZZ'Z )/; -- Z;Z 1  E - 	 (2.22) 

in which the matrices 	and 	are partitions of E;' the mesh pressure 

source vector for an all mesh network, into its nodal (or fictitious mesh) 

and mesh components. V and V are partitions of the admittance matrix 

V 'and Z, Z, Z and are partitions of the impedance matrix Z 

2.6. Diakoptics 

The method of diakoptics takes the concept of orthogonal 

transformations one step further. A transformation matrix can be 

constructed to relate any two systems containing the same number of 

equivalent branches. So, for two such systems, A and B, 

CAB 	 (2.23) 

where CAB  is the required transformation matrix. 

The purpose of using the diakoptics method is to transform a network 

to an intermediate network, whose solution can be found, then to 

transform this solution into the solution of the given network. The matrix 

CAB will be of a particularly simple form if the intermediate network is a 

'cut' or 'torn' form of the original (the term 'cut' is used with reference to 

an 'all mesh' network which has been subdivided into different groups, and 

the term 'torn' indicates a similar subdivision of an 'all node' - or open 
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path - network). An 'all mesh' network may be 'cut' into two groups, 

containing 'Cut segments' and 'cut branch segments'. The branch flows in 

the original 'all mesh' network and the new cut network are equated, giving 

rise to the transformation matrix CAB.  A solution may be found for the 

pressure vector, V , in network it, which can then yield, by a further 

transformation, the vector of nodal pressures, e for network 13. 

The work on orthogonal transformations and diakoptics was developed 

further by Gay and Preece in [171 and [181 They examined the 'mesh' 

method of solution in both orthogonal transformations and diakoptics as an 

alternative to the 'nodal' method (i.e. solving the transformed networks for 

nodal pressures) presented by Gay and Middleton. 

In the 'nodal' method the network is seen as consisting entirely of 

meshes. In the 'mesh' method the network is viewed as consisting of 'node 

to datum' (or open) paths. This leads to the construction of an incidence 

matrix B such that bi,is  equal to 1, -1 or 0 if branch i is included positively 

(dire ctionwise), negatively, or not included in the node to datum path j. 

The positive direction of the node to datum path is away from the datum 

node. 

Because of the referencing of the non-tree branches, the B matrix may 

be partitioned into tree and non-tree parts such that the non-tree part is a 

null matrix 

B 
= BL I   jI 	 (2.24) 

As in the nodal method the flows in the actual network may be related to 

those in the orthogonal network by the linear transformation. 

J = YJ' 	 (2.25) 

This is a parallel to eq. (2.20). J is the vector of branch flows and J 'is the 

vector of path flows. y may be partitioned such that 

I = IIJICI 	 (2.26) 

where C is the branch-node incidence matrix, which may be further 

partitioned into tree and non-tree parts. 
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C = ICTI = JCTJ 	 (2.27) 
CL 	U 

where Uis a unit matrix. 

In the mesh method, the mesh flows can be found from the following 

equation 

= (C.JZ.J.C 1  + Z1)'( EL - CTZTBT/) 	 (2.28) 

where 

EL = C TT EJ. + E 	 (2.29) 

/' is the vector of flows in the node to datum paths. Each node to datum 

path is assigned the flow which enters or leaves at the terminal node of 

the path. ZT  and  ZL  are the tree and non-tree parts of the impedance 

matrix Z. E.g. and EL  are the tree and non-tree parts of E. the matrix of 

branch pressure sources. 

For networks which contain fewer meshes than branches, the matrices 

handled are smaller in the mesh method than in the nodal method (in 

which the numbers of branches and meshes are equal), due to the 

transformation used. The results of a program written by Gay and Preece 

to compare the nodal and mesh methods confirmed that the mesh method 

was faster for networks of this kind. 

In the mesh method as it is applied to diakoptics, the relevant 

transformation matrix (corresponding to. y in eq. (2.25)) is a, where 

a = (1T).1 	 (2.30) 

and 

a = I'li1 	 (2.31) 

A is the branch-node incidence matrix described previously and P is the 

non-tree branch-mesh incidence matrix. P may be partitioned into tree and 

non-tree parts. 
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F=lT 
U L  

where 0 is the null matrix. 

(2.32) 

In Gay and Middleton's presentation of diakoptics using the nodal 

method, an all mesh network was 'cut' into 'cut segments' and 'cut branch 

segments'. In the mesh method, the network may be 'torn' into 

subnetworks. This is accomplished by the removal of combinations of tree 

and non-tree branches, provided that these combinations form continuous 

paths. Figs 2.2 and 2.3 show what is meant by 'tearing' the network. 

'I 
- ------)- - 

- 

- 	-----)----- 4 

	

H 	I' 

	

1' 	 74 
0 	 I 	 12- 

Fig. 2.2 - The connected network that is to be torn apart by the 

removal of the branches indicated by the heavy dashed line. 

59 

i. 	

)Io 

- 	___ 
Daeum 

Fig. 2.8 - The torn network, referenced for solution by the mesh method 

Each subnetwork is viewed as a collection of node-to-datum and mesh 

paths, while the removed branches are viewed as the tree of an additional 

subnetwork. 

As was the case in orthogonal transformations, use of the mesh 

method in diakoptics leads to a solution for the network mesh flows, 1 by 

using relationships (2.14) to (2.17) and the appropriate transformation 

PA 
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matrix a. Again, if the network is not heavily meshed, the mesh method as 

it has been tested by Gay and Preece, proves to be more effective. In both 

the nodal and mesh methods, the relevant authors suggest 'rule of thumb' 

techniques for cutting and tearing the network. 

Gay and Middleton in their study compared the diakoptics method with 

that of Hardy Cross for a network containing 22 nodes and 38 branches. 

The ease with which network alteration effects could be tested using each 

method was investigated. They concluded that the diakoptics method 

converged faster and that changes in the network were more readily 

investigated using this method. However, they found that apparently small 

changes in the network affected the solution time considerably. 

2.7. Other Matrix Methods 

Further matrix methods for the solution of pipe network problems have 

been suggested by Mah and Shacham [26]. They used graph theory to 

investigate the possibility of grouping vertices (nodes) in such a way as to 

yield an advantageous formulation. 

They used the concept of 'cut-sets' (not to be confused with 'cutting' in 

diakoptics) of a network, in their analysis. In a connected graph (described 

in the section on graph theory), a cut-set is a minimal set of branches 

whose deletion from the graph separates some vertices from others 

(resulting in an increase in the number of connected subgraphs). If the cut-

set contains only one branch then it is called a bridge. In the case of a 

tree, every branch is a bridge - its removal creating two subgraphs 

containing subsets of vertices, V A  and V 6. Considering the graph again as 

a whole, the two subgraphs containing VA  and V B are linked by a unique 

cut which contains one tree branch together with possibly some non-tree 

branches (or chords as they are referred to by Mah and Shacham). There 

are (N-i) such cuts corresponding to the (N-i) tree branches. If an 

incidence matrix is constructed based on branches incident with each of 

the (N-i) vertex (or node) subsets, VA,  VB etc., then the cut-set matrix K is 

obtained. If the graph is undirected, i.e. no directions assumed for 

branches, then K = K, where 



K = '' N-1111' 

IN-1 is the identity matrix of order (N-i) and B is an (N-i) x in binary 

matrix corresponding to the chords (in is the number of chords). 

The cut-set matrix K is related to material balances around the (N-i) 

vertex subsets. The rows of K are linear combinations of columns of A 

(where A is the branch-node matrix as before - .4 signifies that the graph 

is undirected). 

Mah and Shacham state that, for an undirected graph 

Kr4T 	
0 	and 	' 0 	 (2.34) 

and 

(2.35) 
_ 	

,.4 	.-• 

where r is C (C is the branch-mesh incidence matrix for an undirected 

graph). 1' may be expressed as 

(2.36) 

where IC is an identity matrix of order C and T is a in x (N-i) binary 

matrix corresponding to the tree branches. 

For a directed graph, the parallel equation to eq. (2.35) is 

B = TT 
	

(2.37) 

This relationship shows the link between basic meshes and Cut-Sets of a 

graph. Thus it may be argued that a spanning tree provides a convenient 

starting point for formulating a consistent set of governing equations for 

network problems. 

If the flow rates associated with the tree branches and chords are 

denoted by q r  and qC  respectively, then the material balance for the (N-i) 

vertex subsets may be stated as 

18 

I .) •,.) 
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- 9Tq = w 
	

(2.38) 

where a component, w., of vector w represents the net output from the 

vertex subset V A  -The matrices K and ' refer to 'internal' branches of the 

network only, i.e. any branches associated with external inputs and outputs 

to the network are ignored. From eq. (2.38) 

qr 
= w +7 Tq 	 (2.39) 

= 	
= (V) 	

T ) c  = 	
= AT  

where w' is the vector of input/output flows. Eq. (2.40) gives, in effect, an 

expression for mesh flows. 

Mah and Shacham do not cite any examples of the performance of this 

solution method in comparison with diakoptics. In both cases a spanning 

tree is the starting point for the problem formulation. However, for a given 

spanning tree, network equations may be more easily obtained via Mah and 

Shacham's method than by the more arbitrary cutting and tearing 

techniques of diakoptics. However, changes to the network are less readily 

investigated with the former method than with diakoptics. 

28. Linearisation Methods 

28.1. Bending and Hutchison Method 

Bending and Hutchison [4] developed a method for calculating steady-

state flows in networks of pipes and pumps, which they called the 

linearisation method. It is simpler in conception than Hardy Cross or 

diakoptics, requires smaller computation times and is more general, in that 

certain design-type calculations can be undertaken. Examples of these are 

problems in which input and output flowrates are determined so as to 

satisfy nodal pressure specifications. 

For a network containing X pipes, X nodes, XPU pumps and 

input/outputs, the linearisation method involves the construction of the 

following set of equations. 

(a) Mass balance over each node 



20-  

A 1V - 	A 1 V. + I Q 1  - 	 - 	j"1 = 
0 	 (2.41) 

iEG. 	iER. 	iH• 	i€S 	iEI 
equations 

(b) Pressure drop for each pipe 

If the flow is turbulent 

- P 1  = 4C1  P(?  V V 1  

If the flow is laminar 

- P 1  = 32 p4 i 	 ( 2.12) 

equations 

(c) Specified pressure drop for some (maybe all) pumps 

- P 1  = x 	 (2.43) 
NPu equations 

(d) Specified input (or output) flowrates 

Fl  = x 	 (2.41) 
N 1  equations 

(e) Additional nodal pressure specifications - sufficient to completely define 
the problem 

I I  = I 	 (2.45) 

Xp u  + X1 - N - N 1  equations 

In (a) the sum for each member i of a set G is indicated by I . In (b) and 

(c) subscripts k and I refer to input and output nodal pressures. 

The above set of equations is linear except for eq. (42.i). If an initial 

guess V 1 101  for the velocity is available, eq. (42a) can be rewritten as 

I, 	- k 	l = 	 ( 2.46) 

This new set of equations is now linear and can be solved to obtain new 

values of pipe velocities, the process being repeated until convergence is 

attained. After each iteration the pipe velocities are taken to be the mean 

of the previous value and the calculated value. Bending and Hutchison 
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introduced this relaxation method, since the basic algorithm converges very 

slowly, due to the fact that pipe velocities oscillate about their basic 

values. 

A problem arises from the size of the set of linear equations that need 

to be solved at each iteration. Clearly sparse matrix methods must be used 

if the linearisation method outlined by Bending and Hutchison is to have an 

advantage over the earlier mesh methods. 

Bending and Hutchison applied their method to the network of Gay and 

Middleton E1611 containing 22 nodes, 38 pipes and 6 input/outputs, and to 

variations of this network- They found that (for Gay and Middleton's 

network) the linearisation method gave faster convergence than the 

diakoptics method. 

One conclusion which they reached in their analysis was that 

convergence does not seem to depend greatly on the network but only on 

the type of flow existing. Thus it may be stated that usually laminar flow 

problems converge in two iterations and mixed flow problems converge in 

10-13 iterations. 

The data input requirements of the linearisation method are more 

simple than for Hardy Cross or diakoptics. Also, although changes in the 

network topology require a complete recalculation, computation times of 

the order of only 3 seconds make this no great disadvantage. 

28.2. Newton-Raphson Method 

This method is based on the Taylor expansion of f (4 about the kth 

iterate, x k 

0 	f(z*) 	f(xk) 	
x 	

- xk) 	... 	 (2.47) 
j  

Neglecting higher order (nonlinear) terms in x*_x k  and replacing x' by the 

(k+1)th approximation, Xk+1 results in: 
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1k+1 = 	taf(rk) 	
(2.48) 

The Jacobian, 	is to be evaluated at z = 

The chief merit of this method is its rapid rate of convergence starting 

witha set of good initial guesses. 

The Newton-Raphson linearisation per se has been applied to the mesh 

formulation of a network by Lang and Miller [231 They state that for the 

solution to converge there must be no discontinuities in calculated 
CK(Utge of 

pressure drop or in the rate ofApressure drop with flowrate. Many practical 

piping networks have laminar or transitional flow in cross-over piping 

between major flow streams which are turbulent so the friction-factor 

correlation must be smooth and continuous. Lang and Miller use the 

Churchill correlation. (Friction factor correlations are discussed in the 

section on modelling of pipeline network elements). 

Referring to Fig. 2.4 the condition for a net zero pressure-drop around 

loop A may be stated as 	 - 

Ai •j 	
(2.49) 

b 	 I .  

where on. is the correction to flow in any given loop I', and 	denotes the 

direction of flow in a pipe relative to the loop flow. For each loop the 

pressure condition may be expressed as the forcing function P 1  where 

= 	
- 0 	 (2.50) 

in, is the mass flow in each pipe i in the loop I, and 4, and n. are functions 

of the friction factor, j 

A 1B 

D 3 

Pig. ".4 Two-loop network 

In order to use the Newton-Raphson linearisation, the F1  and oni 
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values are expressed in vector notation. 

- 

	

= (FA, ''B) 	 (2.51) 

= (am A'  0771 
B)(2.52) 

The solution procedure of Lang and Miller generates am 1  for the iteration 

j-*1 by correcting 0m 1  from the previous iteration. 

j+1 	=
Gm am 

where D is the Jacobian matrix whose elements are defined by 

D=  _E1 	 (2.54) 

For the two loops in Fig. 2.4, the Jacobian is 

A --E 	.±A

6 

 I 
D - I 6 A 6 Om B I 

BI 

 

	

- I-±B 	BI 

	

ISOTIIA 	6 ' 

When Urn = 0, the iteration is complete. 

Lang and Miller claim that this procedure has proved very reliable for 

analysing pipe networks involving all flow regimes. It does however require 

mesh selection prior to the calculation proper. 

Mah and Shacham [261 state that the Newton-Raphson method also 

lends itself very readily to sensitivity analysis, that is, analysis of the way 

in which a network system behaves when certain specifications such as 

delivery pressures or nodal flow rates are changed. For many situations it 

is sufficient to determine the approximate behaviour from sensitivity 

information based on linearized approximation in the neighbourhood of the 

original design solution. Such an analysis is most readily carried out when 

the Newton-Raphson method is used for the steady-state solution of the 

network concerned. 

If the network specifications and parameters are collectively denoted by 

u and the state variables are denoted by x, then the steady-state pipeline 

network equations are 
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f(x, tz) = 0 
	

(2.56) 

The effect of varying 'u' and at the same time satisfying eq. (2.56) is given 

by 

(If = (az)u 	+ 	= fdz ± fu(JU 	 (2.57) 

or 

- - 

	 (2.58) 

where (.r/u) is an (n x rn) matrix of partial derivatives of the n state 

variables with respect to the n 'external' variables (network specifications), 

referred to by Mah and Shacham as the sensitivity matrix. If the 

Newton-Raphson method is used to solve the network, the Jacobian matrix 

(f/.r) is already available. 

Mah [25] uses the Newton-Raphson method, along with algorithms for 

node-arc reassignment and cycle selection, to solve mesh-formulated 

network problems. This formulation is solved by the product form of the 

inverse (a description is given in the section on matrix methods). 

2.9. Other Work 

Wood and Thorley [341 have written a BASIC computer program for 

pressure and flow analysis in pipe networks, which includes extended 

period simulations. They employ an algorithm called the SP method for the 

solution of the mesh equations (they use the mesh formulation of a 

network). Their algorithm makes use of gradient methods to handle the 

nonlinear flowrate terms in the pressure-flowrate equation for each 

network element. The algorithm is similar to the Hardy Cross mesh method 

except that corrections are applied to all meshes simultaneously instead of 

sequentially (SP stands for simultaneous path adjustment). 

Pipeline network problems may, in principle, be solved by transient 

solution methods after allowing sufficient time steps for the solution to 

reach steady-state. Nahavandi and Catanzaro [27] made a comparison of a 

transient solution method with the Hardy Cross method of balancing flows. 
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For the particular 35-node and 45-branch hydraulic network problem 

tested, the transient solution method took 108 seconds compared with 134 

seconds required by the Hardy Cross method. 

Isaacs and Mills [22] have developed a linear theory method which is 

suitable for implementation on a mini- or microcomputer because the 

algorithm is simple. It uses a similar linearisation strategem to the 

Bending and Hutchison method. The nodal pressures are solved for 

simultaneously and the flows are then found from the flow-pressure 

equations using the calculated pressures. The matrix on the left hand side 

of the equations contains the coefficients for each branch which is 

involved in a particular nodal flow balance (or equation). The solution 

method used is iterative and at each step sucessive over-relaxation is used 

to solve the current set of equations. 

The authors state that initialisation presented no problem, and that 

initial flow guesses ranging from 0.001 m 3 /s to 1 m 3 /s were used, without 

affecting the solution. They recognise the problem of zero flow and say 

that when the pressure drop across a branch is very low, that branch 

should be removed from the network. 

A program for the analysis of flow networks was written by G.M. Alder 

[1] at Edinburgh University. The program runs interactively and the user has 

the option of using either the Hardy Cross method or the Newton method. 

The commands available include SOLVE to find the steady-state flows and 

pressures for the present network, or ADJUST to change the pipe 

diameters according to the pressure and flow requirements at the 

discharge nodes. 

Chandrashekar [81 has written a program to analyse hydraulic networks 

consisting of pipes, pressure-reducing valves, non-return valves and 

booster pumps. The Newton-Raphson solution procedure is employed with 

the Hazen-Williams pipe pressure loss equation to find the nodal pressures. 

The program has been used to analyse several networks and the author 

claims that if several valves are present a correct solution may not be 

given, and problems of oscillation or slow convergence may also arise. 

Chandrashekar and Stewart [9] state that Newton's method is the fastest 

method for flow networks, but the step at which the inverse of the 
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Jacobian matrix is calculated is time-consuming. They observe that the 

fraction of non-zeros in the Jacobian may be as low as 2-5%, and they 

describe an LU decomposition method which takes advantage of this 

sparsity. The method required 10 iterations and 3 seconds for a network 

with 191 nodes and 287 pipes. 

A large proportion of pipeline flow analysis methods are for hydraulic 

applications, but could be easily modified for compressible flow situations. 

Hutchison [21] has written a program for the simulation of steam 

distribution networks which is based on the linearisation method of 

Bending and Hutchison. Facilities are included for calculating steam 

properties and also for handling incondensible gases. 

R. Liebe [24) has developed a method for finding the steady-state 

energy and flow distribution in arbitrary networks where, in addition to 

pumps, pipes and valves, the network contains components for the 

generation, transfer and removal of heat. In such networks the nodal 

properties are temperature and enthalpy, and in branches the quantities of 

interest are heat flow and fluid flow. Such networks are described by sets 

of coupled, partially non-linear equations. Liebe's method derives from an 

equivalent network model which employs lumped properties and quantities 

for nodes, branches and components - he describes the model as a 

'discrete structure' model. He uses a Taylor expansion to linearise the fluid 

velocity/enthalpy relationship in all network branches ; the network as a 

whole is described by a set of equations in which nodal flow balances are 

expressed in terms of nodal enthalpies. Liebe's method uses an overall 

Gauss-Seidel iteration procedure to obtain nodal enthalpies. After each 

iteration step, a new coefficient matrix for nodal enthalpies is obtained. The 

elements of the coefficient matrix are further updated by an 'improvement 

step' before the next it-eration. The values obtained in this improvement 

step are derived from the above-mentioned Taylor expansion of the branch 

fluid velocity/enthalpy relationship, using the current and previous values 

of enthalpy at the branch end-nodes. Within the overall Gauss-Seidel 

iteration procedure for nodal enthalpies, there are two sequential iteration 

procedures the first obtains the network heat-flow distribution by solving 

for nodal temperatures, and the second iteration procedure obtains the 

network fluid-flow distribution by solving for nodal enthalpies. Liebe claims 
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that the method has low sensitivity towards physical or numerical ill-

conditioning, due to the formulation of nodal equations using scalar energy 

(enthalpy) type unknowns ; the coefficient matrix for nodal enthalpies is 

positive and diagonally dominant (this aspect is further discussed in the 

section on 'Iterative Methods'). Liebe cites a use of the method in the 

design optimization of an air coolant distribution system in a large, 

prototype water-wheel-generator. He states that it took only 5 to 10 

iterations to produce nodal residual flows which were 1-2 % of the net 

nodal flow. 

The field of dynamic modelling is not so well developed as that of 

steady-state, but commercial programs for unsteady-state analysis do 

exist. An example is the Pan network analysis program developed by 

Goldwater, Rogers and Turnbull [20] for the analysis of gas distribution 

networks. Bender [3] has developed a mathematical model for simulation of 

dynamic gas flows in networks including control loops. He uses the Lax-

Wendroff scheme to solve the coupled hyperbolic partial differentiation 

equations which arise in the dynamic model. 

2.10. Modelling of Pipeline Network Elements 

An important factor in the analysis of pipeline network problems is the 

modelling of network elements, including pipes, pumps and various types 

of valves. The following subsections describe methods for modelling such 

elements. - 

2.10.1. Pipes 

The modelling of pipes in network flow analysis is concerned mainly 

with the choice of friction factor correlation. If there are discontinuities in 

the pressure-drop equation used over different flow regimes this can lead 

to convergence difficulties. 

Estimation of friction factor is usually done by using the Moody friction 

factor chart which is made up of the following equations. For laminar flow 

with Re < 2100, the Hagen- Poiseuille equation is used 
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64 
ID = Re (2.59) 

where fD  is the Darcy friction factor which is four times the Fanning 

friction factor f. 

For fully developed turbulent flow in smooth pipes with 3000 < Re < 

3.4x10 6 , Prandtl's equation is 

/1 	= 2.UloglO(Re/JD) - 0.8 	 (2.60) 

For fully developed turbulent flow in rough pipes with 11)Ic)/(/?e/f)'  > 

0.01, Von Karman's equation is 

= 2 . 01ogo() ± 1.74  

where E is pipe roughness and I) is diameter. 

For transition flow where the friction factor varies with both Reynolds 

number and (c/D), Colebrook's equation is the most commonly used 

2c 	18.7 
,If

= 1.74 - '-)log(± 
	Re 	

(2.62) 

This equation is valid up to a value of [(D/c)/Re/ff ) = 0.01. 

In fact the Colebrook equation covers the fully developed flow regions 

for smooth and rough pipes, as well as the transition region. However it is 

an implicit equation and requires iteration . Various explicit equations have 

subsequently been proposed. Chen [11] compared two of the explicit 

equations, the Wood and the Churchill, with his own suggested equation 

and concluded that the latter gave best agreement with Colebrook over a 

Reynolds number range of 4000 to 4x10 8  and a roughness ratio, (ell)), 

range from 0.05 to 5x10 7 . 

Chen's equation is 

2 01o[T7 
E 	5.0452 	1 	1.1098 = - 	

065D - Re 
-to 

 2.8257 

5.8506 " + 	)J 	 (2.63) 
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2.10.2. Pumps and Compressors 

With regard to the modelling of pumps, Gostoli and Spadoni [19] have 

extended the linearisation method of Bending and Hutchison to include 

pumps with variable head. 

It is usual practice to represent the head-capacity curve of a centrifugal 

pump by a polynomial 

= 1(Q) = aQ 2 	bQ -s- h o 	 (2.61) 

Gostoli and Spadoni propose that a linear characteristic equation be used 

to model the pump. 

Ii = 1(Q) =h - ZhQ 
	

(2.65) 

in which 

= QoQhh 	
(2.66) 

(Eh ZhQO and U < Qh < Qo NO 
is the rnaxirnu in pump through put) 

Eq. (2.66) can be regarded as the equation of a linear element with a 

source L' h  and impedance Zh > 0. According to electrical network theory 

the network with a linear pump has thus a unique solution Qh,1'  and this 

can be found by the linearisation method. 

Gastoli and Spadoni have used this linear pump model successfully in 

the solution of networks including several pumps. They state that 

singularities are never encountered until the impedances Z   of the pumps 

are positive, and this is generally true in a wide range of flows. 

Wood and Thorley [34] in their program for the analysis of pipe 

distribution systems  allow a pump to be specified in two ways for data 

input. The useful power a pump puts into the system can be specified. This 

method of describing a pump is-useful for a preliminary analysis or design 

when the specific characteristics of the pump are not known. 

Alternately a pump can be described by points of operating data input 

to the program. An exponential curve is fitted to this data to obtain a 
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pump characteristic curve describing the pump operation, of the form 

kIlp = il - CQ ° 
	

(2.67) 

where E is the pump head, Q is the flowrate and IL, is the pump shut-off 

head. C and n are determined by passing the curve through two points of 

operating data supplied to the program. The program handles out of range 

pump operation as follows. If flow reversal occurs then the pump operates 

at shut-off head. If the solution indicates that the pump is operating at a 

flowrate above that of the highest flowrate supplied in the input data, then 

the pump operates on a straight line with equation / = .4 - SQ. where S 

is the gradient of eq. (2.67) at the highest flowrate value supplied. 

For compressors, Mah and Shacham [261 state that the modelling 

equation most commonly used is 

qji 	 liP 	 (2.68) 

Pi 

where h is the compressor horsepower, q ij  is the flow through the 

compressor,p 1  and p 1  are the input and output pressures respectively and 

cz 0, c& and a2  are constants. 

2-103. Pipe fittings 

For pipeline fittings such as bends, valves, expansions and contractions, 

the head loss, ilL,  is evaluated from 

ilL = 
iL9V2 	

(2.69) 

where KL  is the loss coefficient and V is a characteristic velocity in the 

fitting. If the network as a whole is modelled by linearised pipeline 

'element' equations then eq. (2.69) will also be linearised according to the 

method used (Bending and Hutchison, Newton-Raphson, etc). 

Eq. (2.69), however, applies only to the turbulent region of flow. Little is 

known about the behaviour of loss coefficients for pipe fittings in the 

laminar region. Edwards, Jadallah and Smith [151 have investigated this 

area and proposed that it is possible to present fittings loss data as 



31 

relationships between the loss coefficient and a generalised Reynolds 

number. 

They performed experiments with various pipe fittings, including 

elbows, gate valves, 1 and 2 inch globe valves, sudden contractions and 

expansions and orifice plates. In all cases they were able to present their 

results in the form, KL = 

2.10.4. Miscellaneous Pipeline Elements 

Another common set of devices used as pipeline elements are pressure 

regulators. These are of two types the downstream regulators (or 

pressure reducing valves) and the upstream regulators (or pressure 

retaining valves). Mah and Shacham [261 state that the idealized 

downstream regulator may be modelled by 

min(p1, p 5) 	 ( 2.70) 

where ps is the regulator set-point pressure. The valve is closed when p > 

Pi (p 1  and p  are the inlet and outlet pressures respectively). For the 

idealized upstream regulator, 

max(p, ') 
	

(2.71) 

and the valve is closed when p 1  < p. 

Wood and Thorley [34] modelled these two types of regulators in their 

network flow analysis program. The downstream regulator was modelled as 

two nodes : at the upstream node the flow demand is set (within the 

program) equal to the flow through the regulator itself. The downstream 

node is a fixed pressure node in which the pressure is set equal to the set 

pressure plus the head due to elevation of the regulator. If flow reversal 

through the regulator occurs, a designated check valve downstream from 

the regulator will close. For the case of a pressure retaining valve, Wood 

and Thorley's simulation uses flow in reverse through a pressure reducing 

valve and the valve can operate in three modes 

1. The valve is fully open and the upstream pressure is 
above the set value. 
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The valve is throttled and the upstream pressure is 
regulated at the set value. 

The valve is closed and the upstream pressure drops 
below its set value but cannot be controlled by the 
valve. 

Wood and Thorley say that if the operation mode is unknown, then two 

simulations will be required to check all three possibilities. 

In their program they also include the facilities to model variable 

pressure sources, storage tanks and pressure switches. These can be 

described briefly as follows. 

Variable pressure source - as an example suppose a pressure main at 

200 metres elevation has the following flowrate-pressure characteristics. 

flowrate(litres/s) available pressure(kPa) head increase(m) 
0 	 1000 	 102 

18 	 690 	 70 
25 	 572 	 58 

This can be simulated by a feed line with a pump connected to a reservoir 

at elevation 200m. The pump characteristics are described by the flowrate-

head data shown above where the head represents the pressure head of 

the source for the associated flowrate. This representation will simulate a 

variable pressure source which operates on a curve which passes through 

three specified points. 

Storage tanks - represented by a fixed pressure node with the pressure 

specified as that due to the elevation of the fluid surface. For an extended 

period simulation the tank characteristics must be specified. 

Pressure switches - this feature is used in extended period simulations 

and allows the open-closed status of lines to be controlled by the head at 

a specified node. 
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2.1 1. Sparse Matrix Methods 

2.11.1. Gaussian Elimination 

Most sparse matrix methods are derived from Gaussian elimination, so 

a brief description of the method is given. 

The equations to be solved are 

a11i1 	'12'2 	 + ... -I- ax 	= b 1  
(2.72) 

a 1 x 1  + a 2z 2  f a 3- 3  + ... + annxn = b 

The first equation is stored for later use and the variable x.1  is eliminated 

from the remaining n-i equations by subtracting an appropriate multiple of 

the other equations. If the original coefficients are given the notation 

(1) ' . 	= 	 , (L 	 = 	1, 	.. 
Ii 	

a. 	i.j 	 . ,n 	 (2.73) 

b. 114  = b. 	i 	= 	1, 2, ... ,n 	 (2.74) 

then the new coefficients are found by using the multipliers 

a 	(1)  
fl 	= __!i_j 	1 	2, 3..... n 	 (2.75) 

and forming the new elements 

a 
I,  
..( 2 ) = 	aH'1 - ?n11a1 (1) 	

2 	2,3, ... 
1 2= 	, 2, 	, n 	 (2.76) 

b 121  = b 111 	 i = 2,3, 	,n 	 (2.77) 

In this way, the first variable, x 1 , is eliminated in the last n-i equations. 

If this procedure is repeated a further n-2 times, the remaining 

equation will have only one unknown and can be solved very easily. 

At each stage in the process when the variable x is to be eliminated 

the multipliers formed are 

(k) 
Tflik = _.!..4k) 	i = k-i-i, k-i-2, ... ,n 	 (2.78) 

and the new elements formed are 
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- rn a (k) 	= k ii, k 2, ... 
Ii 	 ii 	ik kj 	

j = 	k, k F I, ... , n 	 (2.79) 

	

= b1 	- mkbk 	i = kt I, k+2, ... ,n 	 (2.80) 

The result of this elimination process is an upper-triangular set of 

equations given by 

a ll1
(1)x 1 	a 12 1 x 2  + ... + a ln in  

(2) a22 ( 2)  x2 -F ... + a2 n 	Z n  

(n) Z a 11 	n  

b 1 1  

b 2 
(2) 

b(n) 	 (2.81) 

where all the elements below the diagonal are zero. It is easy to solve 

these equations by a process of back substitution. The last equation has 

the solution 

b 

	

Zfl = _..(fl) 	 (2.82) 
nn 

and this value can then be substituted in the next lowest equation to give 

x_ 1 . By working back up the equations the values of all the variables can 

be calculated. 

The basic method can be improved upon by partial pivoting and scaling. 

The aim of partial pivoting is to minimize the build-up of errors. From Eqs. 

(2.79) and (2.80) it can be seen that one operation which occurs many 

times is multiplication by m 1 . In multiplying the number, any accumulated 

error which is present will also be multiplied by rn, therefore these 

multipliers should be made as small as possible, and certainly less than 

one, so that the errors are not magnified by the multiplication. 

This can be achieved if the pivotal element akk M is the largest of all the 

elements ak  in the same column for i > k since then 

	

'< I 	j < i ; 	i = 2, ..., n 	 (2.83) 

The partial-pivoting strategy on its own is inadequate ; the matrix should 

be scaled so that the rows are comparable in some defined way. This is 

usually done by normalizing in one of two ways. The rows can either be 

normalized by dividing the whole row by the element in the row which has 

the largest modulus so that the largest element of the new row is one, or 
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alternatively, each row can be divided by 

d, = a 	 (2.84) 

Williams 1321 states that although it is established that scaling can make a 

significant difference to the accuracy of the solution, there is no standard 

method of scaling which is universally accepted. 

There are several variants of the standard Gaussian elimination method. 

In the Jordan elimination scheme the final form of the matrix after 

elimination is a diagonal form, in which each equation has only one 

variable. Therefore the back-substitution process is avoided and the values 

of the variables can be calculated directly. However Jordan elimination 

needs approximately n /2 operations compared to n 3/3 for Gaussian 

elimination. 

There is another group of methods which can be described under the 

general heading of triangular decomposition ; these include the methods of 

Crout and Choleski. The computational scheme is based on a series of 

multipliers which reduce the matrix to triangular form followed by the 

process of back substitution. Reduction to triangular form means that 

matrix A can be expressed as 

A = L. U 	 (2.85) 

where U is an upper-triangular matrix and L is a lower-triangular matrix. 

Once these matrices have been found the set of equations is solved in two 

stages of forward- or back-substitution. If: 

A X = L . U. X = Ii 	 (2.86) 

vector Yis found such that L. Y= B, then the equations U.X= Yare solved. 

The number of operations is the same as for Gaussian elimination. 

In the case of a symmetric matrix it is possible to reduce the amount of 

computation and storage by taking advantage of the symmetry. If the 

diagonal elements of L and U are made equal then (I = LT and only the 

elements of L need be calculated or stored. This is known as Choleski 
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factorization. 

2.11.2- Product Form of the Inverse 

This is also a matrix factorization and has been applied in one instance 

[251 to the solution of pipeline network problems after node and mesh 

reordering algorithms have been applied. 

The following description of the PFI is taken from Brameller [61 

For the equation 

A X= 6 

the solution is 

X = A 1  b 

In the product form of the inverse, A' is given by 

= 7' ...T 3T 2T 1  

(2.87) 

(2.88) 

(2.89) 

The steps required to achieve this result can be illustrated by considering 

the following 3rd-order problem. 

a ll 	a 12 	a 13 x , 	 b 1  
a 21 	a 22 	a23 	£2 	= 	b 2 	 (2.90) 

"31 	a 32 	a 33 	£ 3 	b 3  

The elements below the diagonal element of the first column are 

eliminated by pre-multiplying the coefficient matrix A by a transformation 

matrix, T 1 , where 

7 1 1 
 = 

- 0 0 
a ll 

I 	0 
a 11  

0 	I 
a ll 

(2.91) 

This operation gives a new matrix A 111  = T 1  A where 
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( 	 (1) 
a 12 1) 	a 13  

= 	0 	a 22 1 	a 23 1 	 (2.92) 

0a32 	a33 

The elements a.. of A 111  are obtained by the method used in Gaussian 

elimination, i.e. 

aJ'1 = 	 i =  2..... n 	 (2.93) 
a  11 	 .= _,...,n 

Therefore eq. (2.87) has been transformed into a related set of equations 

which can be expressed as 

= 'J' 1 AX = T 1 b 	 (2.94) 

This process can be continued using the second diagonal element of the 

new matrix A ll)  as a pivot. Using the same technique, the off-diagonal 

elements of the second column of can be reduced to zero and the 

diagonal element made unity by pre-multiplying the matrix A 111  by a 

transformation matrix T 2, where 

I 
a 22  

7 2  = 	0 	 0 	 (2.95) 

(1) 
0_.i 

a
(i) 

22  

giving I1(2) = T 2 A 111  = T 2T 1 A where 

0 	a 13 121  

A 121  = 	0 	1 	1123 (2) 	 (2.96) 

0 	0 	0 

Eq. (2.87) is now transformed to 

Al 2 X =. T 2A 111X = T 2T 1 AX = T 2T 1 b 	 (2.97) 

If this transformation process is continued, then for a nth order problem, 

eq. (2.87) becomes 



38 

= 7' ..T 2T 1 b 	 (2.98) 

But A 1 ' has been reduced sequentially to a unit matrix, therefore eq. (2.98) 

is 

X = T ... T 2 T 1 b 	 (2.99) 

and by comparing eqs. (2.87) and (2.99) 

.4' = 7 ' ...T 271 1 	 (2.100) 

From eq. (2.100) it can be seen that this transformation process enables 

the inverse of the original matrix A to be obtained implicitly as the product 

of n factor or transformation matrices. 

Each transformation matrix T. (i = 1,2, .. ,n) is a unit matrix except for 

its i th column, therefore, in computer solutions, only the i th column need 

be stored ; all other elements of the matrix are known implicitly. In general 

sparse network problems, the i th column of T will also contain a large 

proportion of zero elements. 

2.11.3. Sparse Matrix Codes 

Duff [131[141 (with Stewart) has made some comparisons of code for 

the solution of sparse sets of linear eqations. The following is a brief list of 

programs with their description. 

MA28 - pivots are selected using the Markowitz scheme with 

threshold pivot. There is an optional block triangularisation routine and the 

program can cope with singular systems. 

YSMP - pivots are chosen from the main diagonal according to a 

minimum degree algorithm on A and A T 

GNSOIN - generates a cycle-free code which performs Crout 

reduction when supplied with the pivot order. 

SLMATH - generates pivot order using the Markowitz method with 

threshold pivoting and has the option of switching to a full matrix code 

when the active matrix is sufficiently full. 
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SSLEST - uses threshold pivoting. User options include the removal 

of all elements below a user-set value, restriction of pivots to the main 

diagonal, or restriction on the number of rows inspected before each pivot 

selection. 

NSPIV - uses partial pivoting to solve a single set of equations. It 

preorders the rows in order of increasing number of non-zeros. The largest 

element from each row in turn is then used as pivot. 

Bending and Hutchison [5] developed TRGB routines for solution of 

sparse matrices, further to their work on linearisation methods. The method 

is based on Gaussian elimination and has two stages. In the primary stage, 

the matrix problem is solved and a first-time 'operator list' is obtained. 

This is composed of the addresses of elements and the operations 

performed. If another system of the same topology is to be solved then 

the secondary stage will solve it in conjunction with the operator list. This 

reduces the computation time and is particularly appropriate for pipe 

network systems, since changing network parameters will alter the matrix 

coefficients, but not their position within the matrix. However, if a 

previously used pivot has become zero, or falls inside a pre-defined 

tolerance, then the primary stage is used again. 

For the TRGB routines the pivot is selected by chosing the column with 

the fewest non-zero elements, or least 'file'. The rows which include the 

variable corresponding to the column of least file are searched, and the 

one with the fewest non-zero elements, or least rank, is chosen. The 

element at the intersection is the new pivot unless it is too small. The 

routines will only accept as many equations as there are variables and will 

reject any extra rows. If there are too few rows, or the matrix is singular, 

the TRGB routines will attempt to solve for as many variables as possible. 

2-11.4. Iterative methods 

Iterative methods often prove useful in the solution of linear systems. 

They use only the non-zero elements and so appear especially attractive in 

the solution of sparse sets of linear equations, since only the non-zero 

elements need be stored. 
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The simplest iterative method is that of Jacobi. The Gauss-Seidel 

method is an improved version of Jacobi's. 

In order to see the way in which the two methods work, the coefficient 

matrix A may be split into three parts. These correspond to the set of 

diagonal elements, the elements above the diagonal, and the elements 

below the diagonal. Thus 

AX= (L-i-D+U)X= B 	 (2.101) 

It is convenient to scale the equation by dividing through by the diagonal 

elements so that 1) becomes equal to the unit matrix I. 

The Jacobi method results from transferring all terms to the right hand 

side except the diagonal terms, and iterating as follows. 

= (- L - U)x(r) -1- B 	r = 0,1, ... 	 (2.102) 

However, the Gauss-Seidel method introduces x1 fn. l), 2 (r +  l) etc., on the 

right hand side as soon as they are available. Thus, the iteration equations 

become 

x (r+1) = -L. x 	11 - 	(r) -I-. B 

or 

(1 + L)x1'' 	= U.X' 1  -i- B 
	

(2.103) 

Williams [321 states that when both the Jacobi and the Gauss-Seidel 

methods converge, the Gauss-Seidel method converges faster than Jacobi. 

If the iterative process converges slowly, the technique of over-

relaxation may be employed. The values calculated from the Gauss-Seidel 

process are modified according to the following equation 

= X(r) -F W(X' - X ( ' 1 ) 	 (2.104) 

is the value calculated by the Gauss-Seidel process. 

If the above equation is written in the form 
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px 	+ C 	 (2.105) 

and the final solution X is given by the equation 

XPX+C 

then the error B 	= x- x' 1  is given by 

X - 	 = P(X - 

P  
= p r+1(0) 	 (2.106) 

For convergence to be achieved, one necessary condition is that the 

eigenvalues of P should have modulus less than one. Williams [321 states 

that the condition I X i  I < 1 is also a sufficient condition and, therefore, a 

knowledge of the eigenvalues of P will determine whether the iteration will 

converge. However, the eigenvalues themselves are difficult to evaluate. 

One condition which is easily checked and which guarantees 

convergence is that of diagonal dominance of the original matrix .1. A 

matrix is said to be strictly diagonally dominant if 

dr < 1 	 r = 1, 2, .. ,n 

where 

n 

d r 	Iü rj I 	 (2.107) 
j=1 

a rr I 

with the prime notation signifying that the value art,  is omitted from the 

summation. If d r  1 for r = 1,2, .. ,n and dr < I for at least one value of r, 

then the matrix is said to be weakly diagonally dominant. This condition is 

sufficient for convergence of the iterative process. It should be noted here 

that, with respect to the network program described in Chapter 3, the 

coefficient matrix has d t, = 1 for all r, which signifies that convergence will 

not necessarily be achieved in all cases. However, as stated, this condition 

is sufficient, but not necessary. 

Another condition which ensures convergence is when the matrix A is 

positive definite. A matrix is said to be positive definite if for every non-

null vector Xthe quantity )A > 0. Since this property is more difficult to 
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investigate, the property of diagonal dominance is more often used to 

check if convergence can be guaranteed. 

2.12.. Supercomputers and sparse matrix strategies 

The coming availability of cheap supercomputing power will greatly 

affect the areas of process simulation and design. Supercomputers differ 

architecturally from present-day "conventional" large mainframe computers 

and can potentially provide very large increases in speed relative to the 

conventional machine. However the amount by which speed can be 

increased depends on problem formulation and the solution strategy 

involved. Speed may be only doubled, or increased by a factor of twenty or 

more if the supercomputer architecture is well exploited. 

The most significant, architectural feature of the supercomputer is its 

ability to perform vector operations. The term vector operation is described 

by Calahan and Ames [71 as 'a sequence of identical arithmetic or logic 

operations performed on elements of one or more arrrays, invoked by a 

single instruction'. Thus, any algorithm which uses a high amount of 

vectorization in the course of its solution is well able to exploit this feature 

of supercomputers. 

Stadtherr and Vegeais [281 have discussed various sparse matrix 

strategies which may be used on supercomputers. 

One approach is the block-oriented approach, in which parts of the 

matrix are treated as if they were dense blocks of non-zeros. The blocks 

are so located that the system can be solved by performing block Gaussian 

elimination. The blocks are given descriptors that identify the size of the 

block and its position in the matrix. Because the blocks are considered full, 

the location of all elements is described completely by the block 

descriptors. The system is then solved by block Gaussian elimination. 

Because of the regular way in which the matrix is stored, the operations 

performed in this approach are vector operations. 

The drawbacks to this method are that, although a high number of 

operations per second may be performed, many of these operations are 

carried out, unnecessarily, on zero elements, and difficulty arises in 
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pivoting to maintain numerical stabilty. If, in the course of performing 

threshold pivoting, it becomes necessary to exchange columns for reasons 

of numerical stability, then this could lead to transfers among a number of 

blocks and possibly the formation of new blocks because of fill-in. Thus, 

the overall performance of the block-oriented solver could be slowed down 

considerably. 

Another approach is the continuous backsubstitution approach which 

tries to exploit the presence of contiguous non-zero elements in order to 

carry out vector operations. The CBS algorithm limits fill-in in the matrix to 

certain columns, called spike columns. Because these spike columns 

normally become completely filled-in in the CBS algorithm, they can be 

stored as a full vector. This means that computations with the spike 

columns can be done as vector operations. The method operates almost 

exclusively on non-zeros and also limits the amount of fill-in that can 

occur. However increased speed occurs only in the spike columns. The 

elements below the diagonal are indirectly indexed and cannot be operated 

on as vectors. Also, when column exchange is necessary in order to 

maintain numerical stability, the spike column must be put into indexed 

form and the pivot column must be "unindexed" into a contiguous vector. 

Another method cited by Stadtherr and Vegeais is a variation of the 

frontal approach, which was developed for use in finite element problems. 

It takes advantage of the fact that each variable only appears in a few 

equations and that pivoting on a variable will only affect a small number of 

equations and variables. Only a small submatrix, called the frontal matrix, is 

stored at any time during the solution of the sparse matrix. In essence, this 

method takes advantage of a banded type of matrix structure. 

The frontal matrix is fairly dense and may be treated as a full matrix, 

thus allowing the use of vector ,  operations during elimination. Another 

advantage of this approach is that the amount of storage necessary for the 

frontal matrix and other needed arrays is small. 

Stadtherr and Vegeais state that for the frontal method it is desirable to 

process small columns first and small rows last. Because of this, a 

reordering method should first be applied to the matrix. They have tested 

various reordering methods and conclude that the best overall method is 
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the BLOKS reordering (which they refer to in [281). 

A disadvantage to this method is that operations are done on zero 

elements (as was the case in the block-oriented approach). So while the 

operations performed are vector operations and are therefore performed at 

a much faster rate, some of this speed is wasted on unnecessary 

computations. 

2.13 Conclusions 

This literature review has described the development of methods for 

modelling steady-state flow networks, beginning with the method of Hardy 

Cross, which was the basis for much later work. The Hardy Cross method, 

in its basic and improved forms, requires mesh selection, which is time 

consuming, since it is largely an ad hoc process. Orthogonal transformation 

of the network also requires mesh selection, and diakoptics involves the 

abitrary cutting or tearing of the network, with only general guidelines 

available for the best way to carry out this operation. The methods 

described in the section on Graph Theory are also dependent on a mesh 

formulation of the network. Such methods as these are largely redundant. 

A number of linearisation methods were examined. The first of these, the 

Bending and Hutchison method, applies to networks which have been 

modelled by sets of equations describing mass conservation at network 

nodes (i.e. a nodal formulation). This model is simpler than mesh- or 

partition-type models and its use allows the effects of changes to network 

structure or conditions to be more easily demonstrated. Various different 

linearisation techniques, including Newton-Raphson or variations of the 

linearisation used by Bending and Hutchison, have been applied to mesh or 

nodal network models. The sets of equations cIe5cribing nodal mass 

conservation or mesh pressure drop are typically large and sparse, and 

require the availability of efficient sparse matrix solvers. With the 

development of more efficient sparse matrix methods and improved 

computing power, the linearisation methods which have been applied to 

network problems appear the most favourable. They allow ease of 

specification and are very reliable, so long as the equations used for flow-

pressure drop in pipes do not contain discontinuities. 

With regard to future developments in flow network simulation, there 
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would appear to be scope for more reliable and accurate modelling of 

network elements in steady- and unsteady-state networks. 



46 

2.14. Notation 

Flow Network Representation 

F 1 	Mass flow along branch i 

k' pj 	pressures at nodes k and j (end nodes of branch i) 

Graph Theory 

A 	 augmented branch-node incidence matrix for graph of network 

A 	 branch-node incidence matrix for graph of network 

C 	 branch-mesh incidence matrix for graph of network 

Hardy Cross 

AHc 	error in head around mesh 

AI-In  	increment in head at node n 

AQc 	linear correction applied to flowrate in mesh 

AQn 	excess inflow/outflow at node n 

q k 	flowrate through network element 

Otk 	 coefficient in flow/head-loss equation 

Ok 	 head-loss through network element 

Network Transformations 

C 1 	square transformation matrix for network 

E 	vector of branch pressure sources 

vector of mesh pressure sources for all-mesh network 

/ 	 vector of branch flow sources 

Ii 	nodal flow vector for all-mesh network 

J 	vector of total branch flows 

vector of total mesh flows for all-mesh network 

Y 	 admittance matrix 

admittance matrix for all-mesh netwok 

Z 	 impedance matrix 
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impedance matrix for all-mesh network 

e 	vector of branch pressure rises 

vector of nodal pressures 

/ 	 vector of branch flows 

vector of mesh flows 

mesh flow vector for all-mesh network 

/ 	 vector of 'primitive' branch flows 

Dia ko plic s 

B 	branch-'node to datum path' incidence matrix 

BT, BL 	tree and non-tree partitions of B 

CA B 	transformation matrix relating networks A and B 

I' 	vector of flows in the node to datum paths 

J, J'8 	generalised flow vectors for networks A and B 

vector of path flows for all-path network 

pressure vector for network A 

vector of nodal pressures for network B 

ot 	 transformation matrix for all-mesh (diakoptic) network 

y 	 transformation matrix for all-path network 

Other Matrix Methods 

B 	partition of K 

K 	cut-set matrix 

K 	cut-set matrix for undirected graph 

r'.J 

7' 	 partition of r 

VA!  VB 	sets of vertices in subgraphs A and 1 

qC 	 flow rate in chord 

q. 	flow rate in tree branch 

W 	 vector of flow balances for vertex subsets 
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W 	 vector of input/output flows for network 

F 	 transpose of branch-mesh incidence matrix for undirected graph 

Bending and Hutchison 

C 1 	coefficient in pipe pressure/flow relationship 

D i 	pipe diameter 

F. 	Volumetric inflow/outflow at node i 

C. 	set of pipes connected to node j where flow direction is away 
from node j 

ii, 	set of pumps connected to node j where flow direction is away 
from node j 

set of nodes where external network flows are input/output 

L i 	pipe length 

N1 	number of volumetric inflow/outflow specifications for network 

NPU 	
number of pumps at which pressure drop is specified 

I'. 	pressure at node i 

P1 	pressure at pipe input/output nodes 

Q j 	volumetric flowrate in pump i 

set of pipes connected to node j where flow 
direction is towards node j 

S3 	set of pumps connected to node j where flow 
direction is towards node j 

V 1 	fluid velocity in pipe i 

number of network input/outputs 

Xn 	number of nodes in network 

X, 	number of pipes in network 

XPU 	
number of pumps in network 

11 	fluid viscosity 

Newton- Raphson 

D 	Jacobian matrix for forcing function P 
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F, 	forcing function for network loop 

rn i 	mass flow in each pipe i in network loop 

arn 	 correction to flow in network loop 

direction of flow in pipe relative to loop flow direction 

Modelling of Pipeline Network Elements 

D 	 pipe diameter 

Re 	Reynolds number 

AD 	Darcy friction factor 

Fanning friction factor 

£ 	 pipe roughness 

Pumps (Castoli and Spadoni) 

H 	pump head 

Q 	 flowrate through pump 

maximum pump throughput 

h 0 	pump shut-off head 

Pumps (Wood and Thorley) 

pump head 

If 	pump shut-oft head 

Compressors 

h 	compressor horsepower 

Pi' Pj 	compressor input and output pressures 

q ji 	flow through compressor 

constants in flow/pressure equation 

Pipeline fittings 

hL 	head loss 

KL 	loss coefficient 

V 	 characteristic velocity in pipe fitting 
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CHAPTER 3 

THE DEVELOPMENT OF A PROGRAM FOR STEADY-STATE FLOW NETWORK MODELUNG 

3.1. Introduction 

The second aim of this thesis, stated in Chapter 1, was to provide a 

computer tool to be used for the solution of steady-state flow network 

problems. In this chapter a description is given of the development of a 

FORTRAN program which was written to achieve this aim. Reference is 

made to methods mentioned in the literature survey of Chapter 2. Some of 

the concepts discussed in Chapter 2 are restated, in order to describe 

clearly the factors involved in program design. 

3.2. Computer Modelling of Flow Networks : Overview 

The modelling of steady-state flow networks by computer program 

depends on the way in which the network is 'abstracted' or numerically 

represented. Most flow network programs are based on representations 

which derive from one of the two following views of a network. The 

network may be seen as consisting of a set of meshes (the mesh 

formulation, described in Chapter 2), or viewed as a set of connected pipes 

and nodes. The choice of representation directly influences the choice of 

solution algorithm and this in turn has an effect on the range of problems 

which may efficiently be solved by the program, for example networks with 

very small flows in certain pipes may prove insoluble by a particular 

solution method. Clearly, it is desirable to have a solution algorithm which 

is robust for all types of flow regime and network topology. 

33. Basis of Program Design 

The computer program described in this chapter was based in part on 

an existing ICI flow network program ; certain features of that program, 

such as data input/output and physical properties utilities, were not 

changed, or modified only slightly. However the solution algorithm was 

replaced by one based on a different network abstraction. The original 

algorithm used the mesh formulation of a network the new algorithm 

applies to a network which is modelled as a set of linearised pipe 

pressure/flow equations. Several workers, e.g. Bending and Hutchison [41 
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quoted in the literature survey, suggest that solution methods based on 

the 'linearised network' approach have superior convergence properties to 

those which are based on the mesh formulation. Consideration of the flow 

network literature thus decided that a version of the former method be 

used. 

3.4. Choice of Network Representation 

For the purposes of the program under discussion, a flow network is 

viewed as a connected set of nodes and links. Links correspond to actual 

physical pipeline elements which may be pipes, pumps or valves, however 

the latter two are considered as 'pseudo-pipes' by the program. The 

following is a summary of the network components and their properties. 

- Node : Nodes in the network may be of two types - 
junction and pendant. A junction node refers to a point in 
the network adjoined by two or more links. A pendant 
node is a point in the network adjoined by only one link 
and which has been assigned either a fixed pressure or 
net inflow/outflow value. Physically a pendant node 
corresponds to a supply/demand point in the network, 
such as a reservoir, pressure source or input to a 
subsidiary network. The properties of a node are pressure 
and inflow/outflow. If a pressure or flow is not explicitly 
specified in the data set, then the inflow/outflow is set 
implicitly to zero. 

- Link : A link, as mentioned above, can refer to either a 
pipe, pump or valve. Pumps and valves are considered, 
for the purposes of data input, to be pipes with zero 
length and bore equivalent to that of the actual pipe with 
which the pump or valve is physically associated in the 
network. Pipes (or pseudo-pipes) have the properties of 
length, bore, roughness ratio, fittings loss and 
temperature, of which only bore and temperature are 
non-zero for pumps and bore, fittings loss and 
temperature are non-zero for valves. 

3.5. Flow Analysis 

An analysis of flow in pipes is necessary as a precursor to the 

description of the algorithm used in the program. The algorithm is based 

on equations describing the flow/pressure drop relation for a single pipe. 

Pressure drop in a pipe passing fluid is a result of 
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friction or drag of the fluid on the pipe walls 

losses due to fittings (localised changes of bore 
and changes of direction of flow) 

kinetic energy changes 

gravity heads due to change in height. 

For incompressible flow, the pressure drop is related to the mean flow 

velocity by the Darcy-Weisbach or Fanning law. This law is only 'true' for 

fully turbulent flow, where the friction coefficient is constant, and it 

becomes the definition of friction or loss coefficients for other flow 

regimes. 

J) - J) = 
2 	d 	

+k) 

Eq. (3.1) is a restatement of eq. (2.42(i)), with an added fittings loss term. 

For compressible flow, the density changes with pressure and eq. (3.1) can 

only be taken as true for short lengths of pipe. A similar expression to eq. 

(3.1) may be derived for compressible flow, using the continuity and 

momentum equations. The compressible flow equation applies for the 

isothermal flow of perfect gases (pressure density). 

- P! 2  L1 
- 	- 	2 	

d + k + 21n() 	 (3.2) 
P O  

Eqs. (3.1) and (3.2) may be rewritten in terms of mass flows (the program 

herein described works internally in terms of mass flows) as 

Pi 
 - P0 = 2s2p 

(_f_1 
-I-. k) 	 (3.3) 

P 	
2 

- 

0 = 2s 
F 

2p ( 1-j- +  k 	 ± 21n( P.1)) 	 (3.4) 
P, 

The friction coefficient, J is determined by the pipe wall roughness and the 

Reynolds number. In the program this is calculated from the Hagen-

Poiseuille law for laminar flow and from the Colebrook-White equation for 

transitional and turbulent flow. The Colebrook-White equation is used when 

the Reynolds number is greater than or equal to 2500. Below 2500 the 

Hagen-Poiseuille law is used. The Hagen-Poiseuille law may be stated as 
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I =  
	 ( 3. 5) 

Re 

The Colebrook-White equation is (restating from Chapter 2, eq. (2.62)) 

2E 	18.7 

77 =1.74 - 2log( -;- + 
	?elf (3.6) 

The gravity heads due to sloping pipes are taken into account by adding 

the term pg(h 0-h 1 ) to the pressure drop where p is the mean fluid density 

and h, , h 0  the node heights at inlet and outlet. 

There now follows a description of the algorithm used in the program 

(the program will be referred to by the acronym FLONET). The flow 

diagrams for the FLONET program and subroutines are given in appendix ii. 

36. FLONET algorithm 

The algorithm involves setting up flow balances for all nodes in the 

network which have a specified or implicit inflow/outflow assigned to them 

(any node which has not been assigned a fixed pressure or inflow/outflow 

in the data set is assumed to have an inflow/outflow specification of zero). 

There is a requirement that at least one fixed nodal pressure be specified 

in the data set. (Nodal flow balances are not applied at fixed pressure 

nodes). Where nodal pressures are specified, their values are used to 

obtain an averaged 'initial' pressure specification for all other nodes in the 

network which are not fixed-pressure nodes. 

The algorithm uses an iterative procedure to construct and solve a set 

of linear equations describing the flow/pressure drop relationship in each 

link. These equations are of the form 

A ij  (Pi - P) + Hij = Fii 	 (3.7) 

and are a linearised version of eqs. (3.3) and (3.4). Whatever linearisation 

method is used, it is necessary, at any rate, to have a value for the friction 

factor which appears in eqs. (3.3) and (3.4). The friction factor at each new 

iteration is calculated from the Reynolds number of the flow at the 

previous iteration. At the zeroth iteration there is, of course, no previous 

flow value, and so the algorithm incorporates an initialization step in which 
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the following points apply (for links which are pipes or valves). 

The flow is assumed laminar and incompressible (thus 
equation (3.3) applies) 

The fittings loss term 'k ' ( if present) is 'absorbed' into 
the friction factor term (fild) by adding an extra length 
to the link length, 1. This extra length is calculated 
according to a rule of thumb and is equal to 50 x k x d, 
where d is the diameter of the link. 

Substitution of f=64/Re into the modified eq. (3.3) and rearrangement of 

terms gives an equation of the form of eq. (3.7) (with the terms /J, equal to 

zero). 

When the link is a pump, then the Aij, B..  and P1, are obtained from an 

analysis of the supplied pump data describing the pump characteristic. A 

liriearisation procedure is applied which permits the flow/pressure 

relationship for a pump (which is described in the input data by a set of 

operating points on the pump characteristic) to be expressed in the form 

of eq. (3.7). This linearisation procedure is outlined in flow diagram form in 

appendix ii (see flow diagrams for subroutines FPUMP,LPLJMP,QPUMP and 

LNPUMP). 

When the A Ii  's, B 'J 's  and 
 FIi

's have been obtained for all links in the 

network then the flow balances are set up for every node in the network 

(excluding fixed-pressure nodes) using eq. (3.7) to express the flow 

entering or leaving a node via the links connected to it. For each node, 

then: 

i G 
IA (P - P) + B 1 I 

- H i 
 A1(P - P) + B1 ] = F' 	 (3.8) 

Having thus set up the nodal flow balances, eq. (3.8) is modified such that 

all terms in P are on the left hand side and all constant terms are on the 

right hand side. The equation for each node j is then normalised by 

dividing through by the sum of the A 11 's so that the coefficient of 

becomes -1. These operations result in a set of linear equations in P to 

which are added expressions for the fixed pressure nodes, of the form 



P. 
J 	 J 

fix 

where P 	isthe fixed pressure value assigned to node J' 	left hand 

side of the set of equations represents a coefficient matrix for the vector 

of network nodal pressures. The pressures are solved for, using a direct 

linear solving method. 

The new pressures are used, in the next iteration, to calculate new 

network flows, P, (using eqs. (3.3) or (3.4)). As already mentioned, the 

friction factor 'f' in eq. (3.3) or eq.(3.4) is calculated from the flow value in 

the previous iteration. New A,,and B 1  must also be obtained. If the flow in 

any link is below 1*10_6  kg/s then the initialization step is again used, for 

that link. Otherwise the .4 and lJ are obtained by using one of two 

linearisation methods - the Newton-Raphson or the Bending and Hutchison 

method. These are fully explained in the next section. The process of 

calculating new pressures, using the new/I ij  and I3, and hence obtaining 

updated flows, is repeated until convergence is achieved. The convergence 

criterion is that the discrepancy between the specified inflow/outflow to a 

node and the calculated inflow/outflow to that node is within a pre-

specified tolerance, for every node in the network. 

37. Linearisation methods 

As already stated, two methods of linearising the flow/pressure drop 

equation in pipes (for transition and turbulent flow) were used, Newton-

Raphson, and Bending and Hutchison. 

If eq. (3.3) (or (3.4)) is written as 

AP ij = P 2 .0 	 (3.10) 

then it can be re-expressed as 

Fii = K. ,IP1 	 (3.11) 

and it is this eq. (3.11) which is to be linearised using the Newton-Raphson 

technique. Actually, a slightly modified Newton-Raphson method is used in 

the program. 

The Newton-Raphson approximation to a function, J(z). may be stated as 
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(3.9) 
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_ 1(i) = f(r) 	L[
1! h )r ± 	2! h)2 

For a linear approximation to a function, the first two terms are used, with 

f (x) representing the actual value of the function at the POiflt x about 

which linearisation is being attempted, and I ' (x 
h)  the value of the first 

derivative at that point. Thus if AP,,O  were the value about which a 

linearisation of eq. (3.11) were being attempted then the Newton-Raphson 

approximation would be 

	

= K./P °  + 	2/AP10 .AI' 
	 (3.12) 

If this is compared with eq. (3.7), then A = K/(2/tI' ° ) and Ii = h'./LX1' ° . 

As already stated, a slightly modified Newton-Raphson method is used in 

the program. At the start of each iteration, k, F. i  is calculated from the 

pressures obtained in the previous iteration, using eq. (3.11). Thus 

p1k) = Kv'l( /)lk- 1) - p1k -  1)) 	 (3 1 3) 

	

Ij 
The coefficient .4.. 	is calculated by the Newton-Raphson method, using 

the pressures from the previous iteration, P1 111  and and 	But B., 

is calculated as 

I ii
II 	 Fij 

	- A (k) k p(k 1) - p(k -  1)) 1 	 (3.14) 

(The appropriate sign is then assigned to B depending on the direction of 

flow between nodes i and j). 

This modification to the method is necessary because of the fact that 

flows are always calculated by the non-linear equation (for transitional and 

turbulent flow regimes) and therefore, in eq. (3.12), the left hand side is 

equal to K./LI' ° . B 1 , in fact, becomes (K/2)./M'.. 0 . 

The Bending and Hutchison method may be described with reference to 

eq. (3.10), which may be rewritten in a linear, iterative form as 

j'(k) 
= 	Cl F -11  I 	

1) = K*.APij 
	

1) 	 (3.15) 

However, due to the fact that the value of K* could oscillate if the 

pressure drop AP remained the same between two consecutive iterations, 
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then p1k)  is defined as 

= 	...J...(  p(k) . 	p,. (k- 1 I) 	
(3.16) 

i.e. the value ofIQ is the average of that calculated in eq. (3.15) and the 

value, 	, calculated in the previous iteration. 

A feature of the Bending and Hutchison linearisation method is that 

when applied to the inflows/outflows to a node from pipes connected to it, 

it forces a material balance at that node. With this in mind, the linearisation 

process used in FLONET was formulated as follows 

Use the Bending and Hutchison method for the first five 
iterations, to force a material balance at all network 
nodes, and thereby enhance convergence. 

Use the Newton-Raphson method thereafter, up to 
iteration 25 (most of the test problems converged 
within 25 iterations). The Newton-Raphson linearisation 
is faster than the Bending and Hutchison method in 
terms of the number of iterations required to achieve 
convergence, though less robust in certain network 
problems. 

If convergence has not been achieved after 25 
iterations, switch to the Bending and Hutchison method. 
(In only one case, case 10, did the solution take longer 
than 25 iterations to converge and this was due to 
precision difficulties, which the Bending and Hutchison 
method was able to overcome if only the Newton-
Raphson method was used, convergence was never 
achieved). 

3.8. Intractable Problems 

Some of the test cases whose solution was attempted using the 

FLONET algorithm, exhibited oscillating flow in certain pipes, which 

prevented convergence of the solution. In case 13, flow oscillation occurred 

in a pipe (23-43) which was between 4 and 8 times as long as the pipes 

adjacent to it in the network, and this difference could have made the 

network ill-conditioned. In case 14, oscillation occurred in the flow around 

a mesh (9-10-11-6-9). 

Two subroutines were written to handle oscillating flow in a network - 

ri 
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QCON and CONCHK. The flow diagrams for these subroutines are given in 

appendix ii. 

3.9. Conclusions 

As will subsequently be shown in Chapter 4, the program FLONET 

performed significantly better on supplied network problems than the 

existing flow program on which it was based. The linearisation method 

used in the program was found to produce flow convergence in all the test 

networks. However, as mentioned in the section above, it was necessary 

to write additional subroutines to deal with the problem of flow oscillation, 

which occurred in two of the test networks. 

A discussion of the supplied network problems and their solution using 

FLONET is presented in the next chapter. Further development of the 

steady-state program to allow data input in the form of linear equations, 

and to enable solution of dynamic problems, is detailed in Chapter 5. 
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3.10. Notation 

r1. 	B ij  coefficients in flow/pressure drop relationship 

F mass flow in pipe 

Fij mass flow in pipe whose end nodes are i,j 

mass inflow/outflow at nodes 

C set of nodes whose pressures exceed that at node j 

H set of nodes whose pressures are less than that at node 

K, K* coefficients in flow/pressure drop relationship 

P i  pipe inlet pressure 

P. P. pipe outlet pressure 

PJ (fI X ) 
fixed pressure at node 

Ap ij  pressure difference across link between nodes i,j 

Re Reynolds number of flow 

d diameter of pipe 

f friction factor 

k fittings loss 

I length of pipe 

S cross-sectional area of pipe 

V velocity of fluid flowing in pipe 

p density of fluid flowing in pipe 

Pi, p 0  density of fluid at inlet/outlet of pipe 
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CHAPTER 4 

PERFORMANCE TESTING OF STEADY-STATE FLOW NETWORK PROGRAM 

4.1. Introduction 

The performance of the steady-state flow network solver, FL.ONET, was 

evaluated by using it to solve 15 network test cases of varying size and 

topological complexity. The largest network tested consisted of 108 nodes 

and 142 pipes. Multiple pumps were incorporated in two of the larger 

networks. Seven of the test cases were compressible flow problems. 

In the last chapter it was stated that FLONET was based partly on an 

existing steady-state flow network program. Solution of the test cases 

mentioned above had previously been attempted using this original 

program. Successful solution was not achieved in all cases. In the 

summary which follows, comparison is made between the performance of 

FLONET and its earlier version, for each test case. 

4.2. Summary of test cases 

Information relating to the test cases is given in appendix iii. Diagrams 

are presented for all the test cases, however data and results are only 

given for small and medium size networks. Graphs of maximum nodal flow 

residuals (after each program iteration) vs. time are given for all the test 

cases. 

4.2.1. Case 1 : Simple Network 

Case 1 is a very simple network which the old version of FLONET failed, 

however, to solve. With the pressure and flow specifications given in the 

data set, the new version of FLONET solved the problem in 7 iterations. 

4.2.2. Case 2 : Simple Network Containing One Pump 

Case 2 is composed of two test problems concerning the same network 

but with different data sets. In the first problem one reference pressure is 

specified at an external node (i.e. a node where flow enters or leaves the 

network) and at the other external nodes the network inflows/outflows are 

specified. (There is no need to specify inflow/outflow at the 'pressure' node 

as the program calculates the material balance for the network internally). 
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In the second problem reference pressures are specified at all external 

nodes. 

The program can in fact handle a combination of external flow and 

pressure specifications, as will be shown in later test cases however, 

these two problems demonstrate the program's ability to cope with either 

type of specification. 

For the first problem, where external flows were specified, the program 

took 9 iterations to converge. For the second problem, where external 

pressures were specified, the program took 6 iterations to converge. 

4.2.3. Case 3 Simple Single-Mesh Network Containing One Pump 

The old FLONET program failed to solve this case, although it 

successfully solved the Case 2 problems, from which this one differs only 

by the presence of a cross pipe going from node A210 to A220. 

This case was successfully solved by the new FLONET program, with 

convergence achieved after 6 iterations. 

424. Case 4 : Network with Multiple Pumps 

The first network in Case 4 demonstrated the problems which the old 

FLONET program had with pumps in parallel. The solution for this network 

was unobtainable using the old algorithm, although each of the parallel 

lines could be solved separately and the configuration without pumps 

could also easily be solved. Using the new algorithm the parallel pumps 

problem was easily solved in 5 iterations. 

The solution of the third network in Case 4 converged after 1 iteration. 

The solution would have converged immediately with laminar flow in all 

pipes (which is incorrect in this particular instance) due to the strategy of 

assuming laminar flow in the network at the zeroth iteration. However, if 

the program detects flow convergence with laminar flow, before any 

iteration has occurred, then the internal convergence flag is reset and, 

although the nodal pressures may have converged, at least one more 

iteration is then required for the achievement of flow convergence. 

The second network in Case 4 is a single line from the first network. As 
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may be expected, the number of iterations required for this network is the 

same as for the first - 5 iterations - due to the feature of parallelism. 

4.2.5. Case 5 : Kiln Network 

This case study examines a network which incorporates a kiln and 

associated piping. The diagram for this network is given in appendix iii, 

however, the data set and results are given in appendix vi (and referenced 

in Chapter 6). Chapter 6 presents a detailed discussion of this network in 

relation to the steady-state program and also to two further computer 

programs which are described in Chapter 5. 

4.2.6. Case 6 : Steam System 

This network is a simplified model of a works steam system. 43 flow 

conditions and 1 pressure condition are specified. 

The solution converged in 8 iterations. 

4.2.7. Case 7 : Network with Gravity Feed 

This network is a model of a drainage system. It was found that the 

drain was not removing liquid fast enough, so it was hoped, by modelling 

the network using FLONET, to find some way of debottle- neckingit. 

As the flow is entirely gravity feed, this network is a good test of 

FLONET's ability to handle the effects of gravity. 

The solution converged in 8 iterations 

4.2.8. Case 8: Water System 

This network models a fire safety water system. The previous version 

of FLONET failed to solve this network problem, predicting a negative 

pressure during the iteration procedure, although increasing all pressures 

by 10 bar (arbitrarily) led to successful solution. 

The current version of FLONET successfully solved the original problem 

in 9 iterations. 
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4.2.9. Case 9 : Furnace Gas Distribution System 

The problem in this case concerns the flow distribution through a 

network of furnace pipes. The gas flows through the furnace along a series 

of parallel pipes. The pipes are connected between two common headers 

(1-36) and (73-108). 

Since the heat flux distribution is even in the furnace it is important to 

have approximately the same flow through each pipe. FLONET was to be 

used to examine the flow distribution of several network designs to see 

which would best be suited. 

The old version of FLONET did not manage to balance the parallel flow 

system properly - the flow along pipe 1-37 differed markedly from that 

along 36-72. However, the new version of the program balanced the flows 

satisfactorily, as can be seen from the results. The solution converged in 8 

iterations. 

4.2.10. Case 10 : Subnetwork of Network 9 

This network is a much smaller version of the network in Case 9. 

With the old version of FLONET, the solution predicted that all the fluid 

is carried across the network through lines 1-5 and 4-8 (zero flow being 

predicted in lines 2-6 and 3-7). 

This network presented a problem for the new version, with respect to 

the precision required to achieve a converged solution. As can be seen 

from the results, the nodal pressures which produce the specified outflow 

of 1 kg/s from the network (for a pressure of 30 bar at node 1) are very 

close in value, and this explains the number of iterations - 42 - required to 

achieve convergence. However the fact that convergence was achieved 

illustrates the robustness of the algorithm used. 

4.2.11. Case 11 : Furnace Gas Distribution System 

This network is similar to that in Case 9 and was one of the 

alternatives considered for the furnace gas piping. It differs from the 

network in Case 9 in that the upper and lower headers are rings. 

The problem was solved in 8 iterations. 
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4.2.12. Case 12 : Water Supply System 

This is a model of a works water supply system, with several 

inlet/outlet points at varying heights. The network includes 4 pumps (2 

pairs in parallel). 

FLONET easily handled the size (97 pipes) and complexity of this 

problem, with flow convergence being achieved in 9 iterations. 

4.2.13. Case 13 

This too is a model of a works water supply system. When an initial 

attempt was made made at the solution of this problem it was found that 

the specified system pressure was too low and several nodal pressures 

became negative. A check for negative nodal pressures was then included 

in the algorithm, with a warning message being printed to advise the user 

to increase the supply pressure, in this event. 

After the supply pressure was increased, however, another problem was 

discovered, in that the occurrence of the maximum flow residuals after 

each iteration, oscillated between two adjacent nodes (23 and 24), without 

convergence being achieved. This necessitated the alteration of the 

solution algorithm to include steps to damp out oscillatating flows in pipes. 

With these improvements the solution converged in 18 iterations. 

4.2.14. Case 14 : Compressible flow network 

This is another example of a network which gave problems with 

oscillating flows in pipes, although these yielded to the improvements in 

the solution algorithm, mentioned in the last case. The oscillating flows in 

the links in ring 9-10-11- 6-9 were damped out and the solution was 

achieved in 19 iterations. However, the program output indicated that the 

Mach number in one pipe in the network exceeds 0.2. The correlations 

used in the program are only valid up to a Mach number of 0.2 and 

therefore the results are to be viewed cautiously. 
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4.2.15. Case 15 : Brinetields network 

This is a model of a subsection of a brinefields network. The data 

supplied is for a compressible fluid, for the purposes of testing FLONET's 

compressible flow algorithm in a complicated network. 

As can be seen from the graph of flow residuals, oscillation of the 

solution occurred, with the largest flow residual being seen alternately at 

nodes BSB3 and WSB3. However the algorithm was able to deal with this 

oscillation, as in previous cases. The results indicate that, with the supply 

pressure of 40 bar given in the problem data, the Mach number in two of 

the network pipes exceeds 0.2. Reducing the supply pressure to 13 bar 

reduced the velocity to beneath the level where the Mach number 

exceeded 0.2, without affecting convergence properties. 

The solution converged in 17 iterations 

4.3. Conclusions 

Flow convergence was achieved in all the network test-cases submitted 

to FLONET, demonstrating the effectiveness of FLONET's solution algorithm 

in general, and especially as compared with the solution algorithm of the 

earlier version of the program. The problems caused by oscillating flows in 

two of the test cases were successfully overcome by the smoothing 

procedure included in the problem. This procedure, however, should be 

further tested on other networks where the feature of flow oscillation is 

present, since the pattern of oscillation is likely to differ from case to case 

(e.g. alternate positive and negative flows at the same pipe, or maximum 

flow residual occurring alternately between two different nodes, adjacent or 

otherwise). 

The program arrays holding flow and pressure values were declared as 

DOUBLE PRECISION Case 10 illustrated the necessity for this degree of 

precision. 

The design and testing of the steady-state flow network program 

FLONET satisfied the second aim of this thesis. The third aim necessitated 

further development of the steady-state network program, to permit data 

input in the form of equations, and to enable solution of dynamic network 

problems. The next chapter describes the design and testing of program 
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modules for the purpose just outlined. 
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CHAPTER 5 

EQUATION PARSER AND DYNAMIC NETWORK PROGRAM 

5.1. Introduction 

Further to the development of a program for the solution of steady-state 

network problems, additional design work was carried out in order to extend 

the programs range of application. Two types of extension to the program 

described in Chapter 4 were examined. The first type was concerned with the 

format of data input for steady-state network problems. The second type 

involved adding to the program a capacity to handle a certain class of dynamic 

network problems. This chapter describes the development of two computer 

programs which were the outcome of the additional design work. Both 

programs were used to obtain the solution of sample network problems and a 

discussion of the results is presented. 

5.2. Data Input for Steady-state Network Problems 

With regard to the first type of extension mentioned above, the current 

steady-state network solver described in Chapter 4 can only handle input data 

of the form 

P(n) = ... fixed value 

F(n) = ... 

i.e. nodal quantities of pressure and flow only can be specified 

One example of additional flow network quantities which could be specified 

as input data would be fixed flows at any given link. This type of specification 

could be used when, for example, it is known that there is a particular coolant 

flow through an exchanger. Here the resistance of the link cannot be specified, 

the flow is achieved by closing a valve and the pressure drop across the 

exchanger is to be calculated. Another example would be the specification of a 

node which does not have a fixed height, as would be the case when the node 

represented a tank with a free surface. 

A very useful extension would be to add the facility to provide, as data, any 

linear relationship amongst flows, or pressures, in the form of an additional 
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e.g. 	F(3) 	= 	F(4) 

or 	F(2) = F(1) - F(6) 

or 	P(5) = P(7) - 4 

A computer program was written to analyse flow network problems which are 

specified in terms of linear equations involving pressures and flows. The 

steady-state program described in Chapter 3 was used as a basis for the new 

program, which is referred to as EQNET. Documentation for EGNET is presented 

in appendix iv. The former program required, firstly, the addition of a module to 

perform parsing of the network equations. Within the program the network is 

described by a matrix of linear equations which represent nodal flow balances. 

Additional modules were therefore required to incorporate the specified 'data' 

equations into this internal matrix. The network parser is described briefly in 

the following (full documentation for the network parser, EQPARSE, is given in 

appendix iv). 

5.3. Input and Processing of Data by Equation Parser 

Data is input to the program EQNET in a similar format to that used in the 

steady-state program, except that network equations are included after the 

physical properties data. The data set begins with a list describing the 

characteristics of the network links (pipes or valves). The first two numbers of 

each line in this list are the input and output node identifiers of the link. The 

third number is either 1 or -99, depending on whether the link is described by 

pipe data (length, bore, roughness ratio, etc) or by a network equation. The last 

number on each line in this list is the link temperature. The letter E at the end 

of a data set indicates that no more network equations are to be supplied. 

The equation parser, EQPARSE, reads in one network equation (line) at a 

time and 'atomises' it, so that the equation is expressed as a set of separate 

entities or atoms. For each atom the parser generates 3 entries - type, label 

and value. The type of an atom indicates whether the atom represents a node 

pressure, link flow, node inflow/outflow or a numerical constant. An atom label 

is the identifier of the node or link to which the atom refers (the label is equal 

to -1 for numerical constants). For atoms which refer to node pressure/flow or 



link flow, the value entry is the coefficient of the flow or pressure term in the 

equation. Where atoms refer to numerical constants, the value entry is the 

actual value of the constant. 

The following description outlines the main steps of the parsing algorithm. 

Read in next equation line to be processed. If the first 
character in the line is "E", then exit from the module. 

Initialise to zero the counters for numbers of atoms and left 
and right parentheses in the equation. Set a flag to indicate 
that the 	sign has not yet been encountered in the 
current equation line. Initialise to 1 the coefficient of P, Q, F 
and constant terms. 

(Start of cycle to atomise each equation line - maximum 
number of atoms allowed in each equation is 10). Look at 
next unread character in equation line and set this to be the 
'current character'. (First time round, see if line begins with 
"+" or "-" sign and set 'sign flag' accordingly). 

If the current character is a digit or a decimal point, go to 
step 11. 

If the current character is a "+" or 	character, check the 
current settings of the two sign flags (one of which refers 
to terms inside parentheses) and alter the settings if 
necessary. If the current character is an "=' sign then set a 
flag to indicate that this has been encountered. 

If the current character is a left or right parenthesis, then 
increment the appropriate counter. 

If the current character is "P" (signifying a pressure term), 
go to step 13. 	 -- 

If the current character is "Q" (signifying a link flow term), 
go to step 14. 

If the current character is "F" (signifying a nodal inflow/out 
flow term), go to step 15. 

If the current character is none of the previous items, then 
write error message to terminal and exit from the parser 
module. 

Read the characters following the current character until a 
non-numerical character (i.e. not a digit, exponent sign or 
decimal point) is encountered. Decode the character string 
to a real number. If the non-numerical character following 
this string is a "+", "-", "=", ")" or a newline character, then 
the character string represents an atom which is a 
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numerical constant. (The atom's type, label and value are 
stored in the arrays itype, ivalue and rvalue). If the string 
represents an atom, then increment the counter for the 
number of atoms and return to step 3. 

If the non-numerical character following the character string 
is a left parenthesis, this indicates that the character string 
is a coefficient. Go to step 13, 14, 15 or 3, depending on 
whether the character after the parenthesis is "P", "0", "F" or 
none of these (in which case it will be a digit, unless an 
error occurs). 

Increment the counter for the number of atoms. Set the 
atom type to 1 (indicates pressure term). Set the atom 
value equal to the current value of the coefficient term (this 
will be either 1, or the number obtained in step 11) 
multiplied by the current values of the 'sign' and 'equals' 
flags. Extract the string delimited by parentheses, which 
follows the "P", "0" or "F" characters. Go to step 16. 

Same as step 13, except that the atom type is set to 2 
(indicates link flow term). 

Same as step 13, except that the atom type is set to 3 
(indicates node inflow/outflow term). 

Decode the character string obtained in step 13, 14 or 15 to 
obtain the identifier of the node or link associated with the 
pressure ("P") or flow ("0" or "F") term. Set the atom label 
equal to this identifier (the identifier is an integer value). 
Return to step 3 and repeat until the end of the current line 
is reached. If the end of the current line is reached, then 
return to step 1. 

Once the equation lines have been read and parsed, then the values stored in 

arrays itype, ivalue and rvalue have to be transferred to the matrix arrays A and 

B used in the linear-equation solving routine which obtains values for flow and 

pressure throughout the network. This transfer is accomplished in routines 

SETUPM and SET UP RM, the listings for which are given in appendix iv. The 

program then procedes in a similar manner to the steady-state program 

FI..ONET, described in Chapter 3. 

There now follows a description of the network problems used to test the 

flow network program with incorporated network equation parser, and a 

discussion of the results in each case. The data sets and results are presented 

in appendix v. 
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5.4. Test Problems for Flow Network Program with Equation Parser 

5.41. Problem 1: All Network Data Supplied as Equations 

The network for this problem is shown in Fig. 5.1 in appendix v. It is a 

simple four node, three branch network for which the input data is given 

entirely as a set of linear equations. The data set for this problem is listed as 

Network 5.1 in appendix v. At two of the external nodes the pressure is fixed 

and at the other node the outflow is specified. Linear valve constants are given 

for all three branches. In the first three lines of the data set, -99 indicates that 

an equation will be supplied for the flow/pressure relationship in the branch 

whose end nodes are specified in the first two columns of each row. The 

results for this problem are listed after the data set (for Network 5.1), in 

appendix v. 

5.4.2. Problem 2: Mixed Input, i.e. Equations and Data List 

This network is identical to the previous one, but the data set contains two 

rows of physical pipe data as well as equations. This was intended to test the 

program's ability to handle network problems with "mixed" data sets. The data 

set and results for this problem are listed under the heading of Network 5.2 in 

appendix v. 

5.4.3 Problem 3: Mixed Data Input for HF 3  Network 

This network problem, and its solution using EONET, is mentioned here only 

in passing. Chapter 6 describes how an analysis of this network was made, 

using three different computer programs, including EQNET. Therefore a full 

description of the data set for this network, and a discussion of the results, is 

deferred till then. 

5.5. Performance of Network Program EQNET 

The three supplied problems tested the effectiveness of the program EQNET 

as an analysis tool for the networks described by linear equations. The parser 

module successfully processed the input equations in each problem, and the 

'atomised' equations were then successfully placed in the program's internal 

matrix of network equations, using modules SETUPM and SET UP RM. 
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5.6. Dynamic Modelling of Flow Networks 

As a conclusion to the work carried out on the analysis and solution of flow 

network problems, a 'dynamic' version of the steady-state program described 

in Chapter 3 was written and tested. This 'dynamic' version was intended to 

solve a limited class of unsteady-state network problems. Four sample 

networks were used to test the program's ability to profile flow/pressure 

control with time. The input data format is identical to that for the steady-state 

program except that non-zero values are assigned to nodal capacities and 

valve (linear) characteristics. 

Before discussing the dynamic version of the program and the solutions of 

the four test problems, a short summary is given of the theory which was used 

in the design of the program. 

5.7. Theory in Dynamic Flow Network Modelling 

At a node in a dynamic flow network (a 'dynamic' node) the net sum of 

flows into the node is not zero. 

- 

— dl 	
(5.1) 

where ink is the mass stored at node k. 

Assuming compressible flow and ideal gas, then 

PkVk 	!kRT 
Wk 	k 

dznk 	-% v  -'k 
- c —a 	 (5.2) 

- 

dt 	RT k  kdt 	dt 
dP 

 

Therefore, eq. (5.1) may be stated in the form 

F, = -1 kC 	 (5.3) 

Eq. (5.3) may be written in finite form as 

F( P) 
= pt_-  po 

k 	 (5.4) 
k 	 5t 

Thus, at a dynamic node, the sum of flows may be expressed as 
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.tkPt - (' ifl 	... = - Cj1i= 	C' 	 (5.5) 

(leaving out the pressure terms due to other nodes connected to node k). 

The four network problems used to test the dynamic program - listed in 

appendix iv as DYNET - incorporate flow and/or pressure control valves. The 

controllers in each case are of the simplest type - proportional controllers. 

The equation used in the program to model the controller is 

k = kp(z - x) + k 
	

(5.6) 

where 

x is the measured variable (a flow or a pressure) 

X. 
is its fixed setpoint value 

kr  is a manual reset (valve position at zero error) 

k is the controller output 

(kLL) expresses the controller "gain" 

The main steps in the dynamic flow program DYNET are summarised in the 

following 

Obtain the flow distribution in the network at time zero 
using subroutine FLOWS. 

Increment the time step (by the user-specified value). 

Using the value of the controlled flow/pressure at the 
previous time step to obtain a 'k' value for the controller 
valve(s), solve iteratively for flows and pressures in the 
network at the current time value. 

If steady-state has been obtained, print the results, plot 
graphs and stop. 

If steady-state has not been achieved, go to step 2 and 
repeat. 

Step 3 is carried out using the following set of subroutines (which are listed in 

appendix iv). 
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SET UP K : Get k' values for all branches in network 

SET UP A : Construct matrix of linearised network equations. 

PRESSURES Solve for pressures in network at current time 
value. 

FLOWS Obtain flows in network at current time value. 

There now follows a description of the network problems used to test the 

dynamic flow network program. 

5.8. Test Problems for Dynamic Version of Flow Network Program 

5.8.1. Problem 1: Simple Row Control 

The network diagram for this problem is shown in Fig. 5.2 in appendix v. 

The flow through the line is to be regulated to 5 kg/s. The data set is listed as 

Network 5.3 and the graph of flow vs. time is shown in Fig 5.4. 

582. Problem 2 : Simple Pressure Control 

The network diagram for this problem is shown in Fig. 5.3 in appendix v. 

The pressure in the pressure vessel at node 2 is to be regulated to 12 bar. 

The data set is listed as Network 5.4 and the graph of pressure (at node 2) vs. 

time is shown in Fig. 5.5. The network pressure and flow values at steady-state 

are listed after the data set. 

5.8.3. Problem 3 : Flow and Pressure Control in Compressor Network 

The network for this problem is shown in Fig. 5.6.The pressure at node 4 is 

to be regulated to 7 bar and the flow in the tine between nodes 3 and 4 is to 

be regulated to 0.6 kg/s. The data set for this problem is listed as Network 5.5. 

The steady-state values of pressure and flow are listed after the data Set. The 

graphs of flow vs. time (for line (3.4)) and pressure vs. time (for node 4) are 

shown at Figs. 5.7 and 5.8 respectively. 



75 

5.8.4. Problem 4: Flow and Pressure Control in HF Network 

As was the case in problem 3 for the program EQNET, a discussion of this 

network problem, and its solution using DYNET, is deferred till the next chapter. 

5.9. Conclusions 

The dynamic network program solved, and produced graphic output for, the 

four test problems presented to it. The HF network problem demonr&e& the 

program's ability to solve medium-size network problems involving flow and 

pressure control, and the compressor problem showed the the program could 

successfully handle networks involving recyc loops. 
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5.10. Notation 

P(n) 	 pressure at node n 

F(n) 	 inflow/outflow at node n 

F. 	 Sum of all mass flows 
k 

F1  into node k 

Pk 	 Pressure at node k 

V k 	 Capacity at node k 

W
k 	 Molecular weight of fluid flowing into node k 

R 	 Gas Constant 

F j(Pk t) 	 Sum of flows F1  into 

node k at time t 

Pressure at node k at time t 

Pressure at node k at time 0 
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CHAPTER 6 

STEADY-STATE AND DYNAMIC ANALYSIS OF KILN NETWORK 

6.1. Introduction 

Chapter 5 described the development of two new flow network programs 

which were based on the steady-state program FLONET. This chapter is 

devoted to a discussion of a particular test network which was analysed using 

FLONET and also EONET and DYNET (with suitable modifications to the steady-

state data set for the latter two programs). 

6.2. HF Kiln Network 

The network, referred to as test case 5 in Chapter 4, incorporates an HF kiln 

and associated piping (the network diagram is given in appendix iii). The kiln is 

heated by passing hot gas through 4 jackets placed round the kiln. The fuel gas 

(methane) is burnt with a large excess of air in the burner. Hot flue gas then 

separates into 4 streams, each of which then passes through a jacket. Once 

through the jackets the streams recombine and pass back via a recycle fan. 

Gas is purged off after the fan, this being replaced at a gas inlet in the burner 

feed line. 

The flow through the jackets can be altered by adjusting any of the 9 

butterfly valves within the network. Valves are situated on the inlet and outlet 

lines of each jacket and on the inlet line of the recycle fan. 

The purpose of using the steady-state program, FLONET, here was to 

develop an appropriate operating schema for controlling the gas flows through 

the jackets using the 9 valves. The pressure in the system must be kept close 

to atmospheric to prevent either suction of cold air into the system or loss of 

gas Out of it. 

6.3. Steady-State Solution using FLONET 

In the FLONET data set two node conditions were specified - the pressures 

at the external nodes '28' and '27' were set to atmospheric pressure. The 

solution to the network then converged in 6 iterations. (The data set and 

results for this test case are given in appendix vi). 
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The results for this network show that the flows in cross-lines '11'-'14% 

'13'-'16' and '12'-'15' are negligibly small in comparison with flows in the rest 

of the network and, in the case of the first two, are in fact negative. The 

results thus demonstrate that these lines are redundant in terms of controlling 

the flows through the jackets and indicate that they should be removed from 

the network. 

6.4. Steady-State Solution using EQNET 

Two versions of the original problem were solved using EQNET. In the first 

version, two lines which listed pipe physical data were replaced by equations. 

In the second version, a design specification was included. The flow in link 

(9,13) was specified as being equal to a fraction (0.8) of the total flow in links 

(6,10), (7,11) and (8,12). (The data set is listed as Case Sb in appendix vi). 

The first version of the problem (Case 5a in appendix vi) is similar to the 

"mixed" network described in Chapter 5 - in neither problem do the equations 

in the data set represent design constraints. Case 5a was successfully solved, 

as might be expected, given the prior solution of the "mixed" network problem. 

In the second version, as stated above, the list of equations included a flow 

constraint. Successful solution of this problem was achieved using EQNET. 

This illustrates the usefulness of the equation parsing facility in allowing such 

design constraints,which could not be specified in the original program. 

6.5. Dynamic Solution using DYNET 

In the dynamic version of test case 5, the steady-state data set was 

modified such that capacity was assigned to nodes 10, 11, 12, 13, 29 and 30, 

and links (2,24) and (30,23) were designated as control valves of pressure and 

flow respectively. The dynamic simulation involves disturbing the pressure at 

node 28 at random time intervals and noting the effect of this disturbance on 

the pressure at node 29 (node 29 is a pressure vessel whose pressure is 

controlled by the valve in link (2,24)). 

Fig 6.2 in appendix vi shows the pressure variation with time at node 29. 

The upper graph shows the randomly generated pressure variation which is 

applied to the pressure at node 28 at randomly generated time intervals (over a 

period of 20 seconds). The lower graph shows pressure versus time at node 29. 
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The specified set pressure for the pressure vessel at node 29 is 1.0013 bar. The 

maximum pressure disturbance introduced was ± 500 Newtons and the time 

step for the simulation was 0.2 seconds. The problem was run for 2 seconds 

before pressure disturbance was instigated and the maximum allowed time 

interval for non-disturbance was set at 2.5 seconds. 

The lower graph in Fig. 6.2 shows that after each perturbation of pressure 

at node 28, pressure control is exerted (by the control valve in link (2,24)) to 

force the pressure at node 29 towards the set value of 1.0013 bar. Only 

proportional control was applied, so there is an offset above 1.0013 bar. 

6.6. Conclusions 

Test case 5, representing an HF kiln heating network, was originally supplied 

as a steady-state problem, to be solved by FLONET. Having obtained a 

successful solution of the problem by the use of FLONET, the data set was 

modified to allow further analysis of the network using the programs EQNET 

and DYNET. 

EQNET was applied to two versions of the steady-state problem. The 

original data set was modified by replacing pipe data by linear equations in 

pressure and flow. In the second of the two versions, a design specification, in 

the form of a linear equation, was included. Successful solution was obtained 

in both cases. The latter version demonstrated the enhanced capability of the 

equation parser to handle design constraints, in comparison with the data 

processing module of FLONET which can handle only fixed values of nodal - 

pressures and flows. 

DYNET was used to simulate pressure control at a node in the network 

where random pressure fluctuation was generated. 

The solution of the original network problem, and of suitably modified 

versions of it, by FLONET, EQNET and DYNET demonstrated firstly the 

improvements made to the program FLONET, as represented by the programs 

EQNET and DYNET. Secondly, diverse aspects of flow network modelling were 

illustrated by the use of the three different programs. 
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CHAPTER 7 

CONCLUSIONS 

The work done in this project may be summarised in two parts. In the first 

part the aim was to produce a computer program which could be used in the 

analysis of steady-state flow network systems. Given fixed values of pressure 

and inflow/outflow at certain points in the network, the program was to solve 

for flows in all network branches and pressures at branch junctions. A network 

model was adopted which described the network in terms of a set of linearised 

equations containing flow and pressure terms. Two different linearisation 

methods - the Bending and Hutchison method and the Newton-Raphson 

method - were used in an iterative procedure to obtain flows and pressures at 

steady-state. The computer program was tested on a number of network 

problems, ranging from simple networks containing of the order of 10 pipes 

and nodes, to large, densely interconnected networks containing about 150 

pipes and nodes and including pumps/fans and non-return valves. The program 

performed well on all the test cases provided. Modifications, however, had to 

be made to the solution algorithm when two of the test cases exhibited flow 

oscillation in certain network branches. A 'smoothing' procedure was added to 

the program to handle oscillation of branch flows. In general, convergence was 

fast and solution was obtained in less than 10 iterations for the medium size 

test networks (between 10 and 30 nodes and pipes), and in about 20 iterations 

for the larger networks tested. 

With respect to the steady-state flow network program, further work could 

be done to determine the optimum switch-point from the Bending and 

Hutchison linearisation to the Newton-Raphson linearisation. Also, the 

program's ability to cope with networks where the solution oscillates needs to 

be tested to a greater extent. In the two test cases where oscillation of the 

solution occurred, it appeared to be caused by a disproportionately small flow 

in one part of the network which was adjacent to, or intrinsic in, a network 

mesh. The program should be tested further on networks of this type. 

The second part of the project concerned work done on a network parser 

and on a program which could solve unsteady-state problems. The network 

parser was tested on two small network problems, one containing a mixture of 

written equations and numeric data. The HF network, tested first using the 
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steady-state program, was modified, with some pipe data being replaced by 

equations. The network parser satisfactorily handled the network specifications 

in the form of equations. Only simple equations were handled - the parser 

should be expanded to cope with more complicated equation forms, and more 

testing should be done to illustrate how much information should be specified 

in the equation list, so that over- or under-specification of the network does 

not occur. 

The dynamic network program was tested on two simple pressure/flow 

control problems and on a network containing a compressor, and finally on the 

HF network mentioned above. Satisfactory solution of flows and pressures at 

steady-state was obtained in all cases. Further work could be done to link this 

program with the network parser so that equation lists could be used to 

describe all or part of the network. 

Viewed as a whole, the project illustrated a variety of requirements which 

must be met in a computer program designed to analyse flow networks. The 

program which was written to solve steady-state flow networks successfully 

solved all the test cases which were supplied ; network specification in the 

form of equation lists was tested using a network parser, and the steady-state 

program was extended to include a capability for dynamic analysis. 

With reference to the three aims stated in Chapter 1, the project can be 

considered to have been successful in all of these, particularly with regard to 

the second aim. The computer program which was designed for the the 

solution of steady-state network problems was a modified version of an earlier 

program. The earlier program had been unable to obtain a solution for several 

of the test networks solved by the new program. The robustness of the 

algorithm used in the new program was thus effectively demonstrated. 

To sum up, this project has examined methods of modelling fluid flow 

networks by computer, and has successfully applied a number of these 

methods in the design of three computer programs to solve flow network 

problems. 
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II. Flow Diagrams for FLONET main program and modules 

In the flow diagrams shown in this appendix, the following conventions 

apply. Boxes which are connected by horizontal lines entering or leaving the 

sides of the box signify sequential instructions at the same program level. 

Boxes which are connected by vertical lines signify nested program levels. The 

symbol 0 in a box indicates that the box contains a conditional statement and 

that lower-level statements beneath the current box will only be executed if 

the conditional statement is true. The symbol * in a box signifies that all 

lower-level statements connected to the current box will be executed 

iteratively, for the number of cycles specified in the box, or until the exit 

condition is satisfied. 

Program FLONET 

NLINK: Gets number of links to each network node. 

PMPCAR Gets number of points supplied on each pump 
characteristic. 

PMPNET: Gets pump equation (calls FPUMP, LPUMP or 
QPUMP), depending on the number of points supplied as 
data for each pump. 

FPUMP :Expresses pump equation as "flow = constant" (only 
one point on pump characteristic has been supplied as 
data). 

LPUMP : Expresses pump equation as 
"(Pin - P ) = A * flow + B" (two points on pump 
characterrstic have been supplied as data). 

OPUMP: Expresses pump equation as 
"(P. - Pout) A * flow  + B" (three or more - up to five - 
pots on pump characteristic have been supplied as data). 

LINNET : Calculates new network flows at the current values 
of nodal pressures, and linearises the flow/pressure 
relationship in all network links. Calls LNPUMP and LINPIP. 

LNPUMP : Obtains pump flow/pressure relationship of the 
form "flow = A * (P.

lfl 
- 

Out) 
+ B". 

LINPIP : Obtains pipe (or valve) flow/pressure relationship of 



the form "flow = A * (P. 
in - Out ) 

+ B". 

FCHECK : Checks whether absolute flow convergence has 
been achieved (flow residuals at all nodes are < 0.001 
kg/s). 

CONCHK : Examines behaviour of maximum flow residuals 
over number of iterations and sets flags for links in which 
flow oscillation occurs. 

QCON Averages out oscillating flows in network links. 

ARRAYS : Constructs matrix of linnearised flow/pressure 
equations for all network links. The matrix also contains 
equations which specify fixed pressures or inflows/outflows 
at nodes. 
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hi.e. >= 90'. 	I 	ICC1 
hof shut—off 	I 	I 
Ihead. 	 I 

Met As 13, 0. I 
I 	 I 
• 	 I 

• 	 I 
• 	 I 

Met As B, 0. 1 

I 	 I 
I 	 I 



LINPIP (P1. P2, L. D, DENAV, DEF4Y1, DENY2, VIS, R'., FIT, N. 0, GO, A, B. PLO, LFLOW) 

Produces a 
Ilineavised 	I 
Iform 	of the 
pipe 	 I 
p 	cx s Ui' c_f low 
Ire lation. 	I 

IPerform 	I 	IEwamine valuel 
UnitialisatioI 	of N 	in main 
Ins 	and 	define! 	Iprogram. I 
Iconstants. 	I 	I I 

I - 

Ilf 01 hf Oh 
IN  I IN>- i 

I 
I 
I 

hf 	 Oh 

I 

hf 	 Oh 	ICheck 	flow 	I I 	Met A. 	B & 0. I 

I 

:Calculate Re. I ICheck 
Ino 	fittings 	I Ifittings 	I 	[regime 	I I I Imagnitude of 	$ 
Ilos. 	I Ilos, I I IRe. 

ICalculate A Zd ICalculate 	A t.I 	Uf 	 DI hf 	 Dl hf Oh 
:o. 	 : :o. 	 previous 	flow I IRe < 2500 	1 Me ) 	2500 

;Is 	zero 

I 

Oh 	If 

I 

ICet 	friction 	I Oh IQet 	lam. flowl 
no 	fittings 	1 	:ftttings loss I 'f I Ifactor. 
110cc 	 1 	I 1 I I 

Calculate 	A &I 	Calculate 	A &I 



FCHECK( 01 FEXX1 LIMk IN, OUT, CP, NN, LFLOW MAX, FTOL, HFTOT, HFNODs CHEC 

R¼CHEC 
Checks for 
node flow 
:convergence 

'In l tial Isat 10; 

!ns 
Sum flow out 
:f all nodes 

31  

om 
;1 = I to NW 

See if 
:convergence 
;achieved 

'Initialise 
node flow to 
:preset 
external node: 
flow 

Examine links,  
:to node I 
S 	 I 

I 	 I 

$ 	 I 

$ 	 I 

;If 	 0: 
links to node 
:1 exist 

1 
	

Get largest 
of the net 
node flows 

:00 

:through all 
;links to node: 
ly 
IL 

;Get the 
identifying 

:no. of the 
:connecting 
;link 

;Add flow in 
:each link to 
:net node flow; 
$ 	 S 

I 	 I 



CONCHK(HFNOD1 PHFNOD1SHFNOD1 HFTOT1 PHFTOTSHFTOT GTOL1 
SCTRI OUR  DCTR1OFLAG1 PFLAG) IT, CHECR2 NOR, FOR, DOR) 

Routlne to 
'examine flow 
convergence 

I 	 I 

,Initialise 
	;Look at 

:convergence 	convergence 
;flag CHEC2 
	

;beav1our 

hf 	 of 

1 possible 
:oscillation 
!between two 
'distinct 
'nodes 

Ipossible 
:oscillation 	I 
!occurs at 
Isame node 

hf 	 07 
maxirnum flow 
land 
associated 
!node are same! 
las before  

hf 
:after 40 
iterations. 

• 	 I 

0: 
none of 
1 previous 
1 conditions 
apply 

I.LT 

hoscillation 
verified 
:increment 
DCTR 

I? 

;oscillation 
!verified 
'increment 
IOCTR 

llncrement 
IS C TR 

istop if 
!change 
;between flow 
reslduals<=0T 
IOL 	 It 

ISet OCTR and 
SCTR to zero 1 

I 	 I 
I 	 I 

I 	 I 
I 	 I 

I 	 S 
I 	 I 



1/ 

OCON(Q GIPVHFTOT, PHFTOT, LIM4, CP, DCTRa OCTR, I-FNOD, PHFNODIIAX) 

;Subroutine to 
:deal with 
!oscillating 
flow in any 
pipes 

Examine 	Is 

charactevjsti 
Ics of 
oscillation 
:pattern 

H 

;if 	 0; 
highest flow 
:residuals 
oscillate 

H 

Find all 
links to 	: 
present and 
previous 
nodes 

;If 	 0; 
'they don't 
:oscillate 

• 	 I 

Get the flows 
:as before 
I 	 I 
$ 	 - 	 I 

1f 	 0 
	

1f oil 

:oscillation 	11 
	

oscillation 
:counter = 1 
	

counter >= 2 

;Get flows in 
links to all 
:nodes 
• 	 I 
• 	 I 

Average 
:present and 
:previous 
flows to node 



ARRAYS( NN, MAX. CC , CP, IN, LINK, A. B. AA, BB. PP.FEXX. DEN. HEIGHT) 

Sets up 
3 1near 	I 
lequations to 
The solved by I 
INag routines. 

:Initialise 	ISet up 
:array BT 	I IcoefficientS 

: for linear 
lequations 

100 	 *1 
Ithrough all I 
Inodes (I 	I 
Is NN) 	I 

i Per form 	1 	1 
l initial isatioi 
Ins for each 	1 	1 
;node 	 : 

;if 	 lif 
:flo links to 	1 	:node 	has I 
.node 'I' 	1 	Uinks 

	

exist 	1 	1 	 1 

hf 	 0; 
:links to node' 
'I' exist 

	

Set BB(l) to I 	'.Go 	 :Get 

I-PP 	1 	through all I 	 1 	 1 	Vnormalised 

	

1 	ll inks (.J1. LIrfl 	 1 	 1 	value of 

I ;K(I) 	 1 	BB(I) 

mote arrays I 	!Calculate 	sum'. Go 	 *1 

:CC, 	CP and AA 	I I 	hOf L.H.S. 	I through all 

1 	1 1 	Icoeffs and 	I ;links to node 
R. H. S total  

1 1 1 

lif 	 DI hf 	 01 IGet 
II 	is 	'in' 	I II 	is 	'out' 	1 I 'normalised' 	I 
'node of pipe 	I Inode of pipe 	I Ivalue of 	I 

ICP(I.J) 	I ICP(X.J) 	I IAA(I.J) 	I 

bet 	 I IGet 
lappropriate 	I lappropriate 
Isign of 	I Isign 	of 	I 
IBT(I.J) 	I IBT(I.J) 	1 



Ill. Data. Results and Diagrams for Steady—State Networks 

This appendix lists information referred to in Chapter 4. Diagrams are 

presented for all network test cases. Graphs of maximum nodal flow 

residuals vs. iteration step are also given for all test cases (except for Case 

4(iii)). Data sets and results are given for Cases 1, 2, 3, 4, 7, 8 and 10 



i 1 20 

A 100 	 : 

CASE 2 

A 20 

1210 	-•-- 

C A S El 

CASE$ 	 ,.. A210- 	 -A215 

AIIm 	 r •-" 
'.- 

A220 	 A 2 2 5 



A21".10 

Al 0 6 
A3 4) !) 

1 41) 	 4 0 

C A E: 4 

C 1) 

I,-.--- 

r2FJ1)H-••-------------- A'500 

___p'_•__  

A1f30- 	- 	
-S 

Ci i I:) 



CASE5 

2 

26 

18 

	

14 	 15 	 16 

	

JACKET 	 JACKET 	 JiCIET 	 JM 

12 	 13 -- 

_____i __________ 	 ________ 
6 (-'-- 	7 f--- 	-- - --•(.f- 5 -•__- 

0 

2 --if- 32 



(ASE6 
-----TA5 

DS21 

31 

CKH1 	-... 
CK2 CK9 - -- R C 2 S 

CKCS R(1MJ. 
CCRR 

CIIfGT CKIPH RLP 

clfcT HS0  
CIDS 

CIPP CKU3 RIW3 

CK:I. it c 12 N 

11" 10SID C1O---GT3 
CKWS---CK2 ck7 
CKDO---C3 CJP1 

CK63---- CKL 
I CKP2 
Iv I' 

.1 
C K's  

CGC6 CKEL 

__......CK5 	6112 

at,, r  __rI  r r' I!? 	 - " I  II 	ri, Sit 1 	 1% .1 1—  in 	in IS  

:8 



CASE? 	
(200 	A300 	 A4,00 	A5,00 

A10IE—*---Ai1O-

CASE8 

A 	 _) B - 	A A -----1-----2----- 3------ 4 ----  H 13 

CASE9 

I . 	)' 	2 	)_•"- 

I 	 1' 
37 	38 	39• 

7:;--(---74--( 75 

'4...  

4---3-------35-----*---36 

•1' 
70 	 71 	 72 

kle 	 It 
sf 
1.06----*--------1137---(----108 

CASE1O 

NI" 

1— 	 2 	 —3 	 •. 4 
/ 



CASE I.I. 

\ 
/ 

/ 

--.2- 	 2-\3I3i 

--32 



ASE 12 

BPF---Ct12 

I3IE---I3PC 

BPIB —  BPC 

PHI _l. 	 N Lr ______ 
F3 

.---I)3 CEA 	N 

AF-- CTF 

Dl 	C  

El 

dc 
'N 

Fl 

JI --Hi 

CM1 —Ki 

	

M2 —HF3 	A113 

C 
E—A22 

	

J..HF2 	)—A115 

Al2—P2-13-- P2 

--HF1B 

—F—HFIA 

--Y-------BCFB 

13 C FL 

1l—.-.--- B " 	
•r- -- 

V — '- BCFA 

IF 	

I1 	
S S A S S B 

Mi----Nl---U1 

A C—  I. 	CM P 	 E 2--B P i--il CC 

CSA 	 MSA MSJ3 



C AS E  i 
46 

---1i-12--1-14---41 

48 

1 

r 	5 -4 1 5 fi  
I 7 	• 	>-.,.-'. 	d. 

iflj 	 7 	.,,.-.. 

I 
L 



26----  28 

13 

27 

4

F  

J 

11 

C A SE 14 

17 

-16 

I. 	

17 

1'4------2"3 	-*.------.-..-- 	 4-.--- . -5 

0
7 

6 ...  ...... 	---11 



CSE15 

BH22-------------- BI}1224 

- 

	

BH1 
B H 221 	 B 1122 J' 	Hi 70",  

	

0H218----- 	-TH21J 

	

B Hl. 7  2--- 	 I !t 1? I 

WH225----- 	--- 

I 	I1SB2 
W H 22 1 	 141220.  

--------------- 
   

WH2ir[ 	 H$1 

Hi17i 	1111117  
IH169 

14SO EX I I 



CASE 1 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG I S 

PRESSURES: 
BARS ABS 

DENSITY: 
KG / CU.M 

VISCOSITY: 
CENTIPOISE 

PIPE BORE: 
MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M/S 

PIPING DETAILS DATA - 

NUMBER OF PIPES = 	3 

NODE LABELS 	PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX 	LENGTH BORE ROUGHNESS COEFF. TEMP. 

(RA1iv) 
1 	 2 	1.00 100.000 0.00100 1.000 1.0 

2 	3 	1.00 100.000 0.00100 1.000 1.0 

2 	4 	1.00 100.000 0.00100 1.000 1.0 

SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 	3 

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE 
LABEL 	 NODE STANDARD LEVEL 

1 	 0.000 	 1.0000 0.0 

3 	 -1.000 	 0.0000 0.0 

4 	 -1.000 	 0.0000 0.0 

FLUID PROPERTIES DATA - 

TYPE OF FLUID: LIQUID 

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY 

1.000 	 1.0 • 1000.0 	 1.0000 

2.000 	 2.0 1000.0 	 1.0000 

3.000 	 3.0 1000.0 	 1.0000 



CASE 1 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX -->XXXX (BARS) (KG/S) ( M / S ) NUMBER 

1 	 2 1.0000 	0.9996 2.0004 0.2547 25471 

2 	 3 0.9996 	0.9995 1.0004 0.1274 12738 

2 	 4 0.9996 	0.9995 1.0004 0.1274 12738 

CASE 2 : Flows Specified 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / S 

PRESSURES: 

BARS ABS 

DENSITY: 

KG / CU.M 

VISCOSITY: 

CENTIPOISE 

PIPE BORE: 

MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CEL5 IUS 

MEAN FLOW VEL: 
M/S 

PIPING DETAILS DATA - 

NUMBER OF PIPES 	6 

NODE LABELS 	PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX 	LENGTH BORE ROUGHNESS COEFF. TEMP. 

(RgLA1NE) 
A100 	A120 	0.00 50.000 0.00000 0.000 40.0 

A120 	A200 	100.00 50.000 0.00050 2.000 40.0 

A200 	A210 	50.00 25.000 0.00025 -5.000 40.0 

A200 	A220 	50.00 25.000 0.00025 -5.000 40.0 

A210 	A215 	25.00 30.000 0.00030 6.000 30.0 

A220 	A225 	25.00 30.000 0.00030 6.000 30.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 5 

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE 
LABEL NODE STANDARD LEVEL 

A100 0.000 1.0100 0.0 

A210 0.000 0.0000 5.0 

A215 -1.000 0.0000 5.0 

A220 0.000 0.0000 5.0 

A225 -1.200 0.0000 5.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 1 

PUMP 	1 	PIPE A100 TO A120 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

FLUID PROPERTIES DATA - 

TYPE OF FLUID LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.380 45.0 998.25 0.59273 

1.725 35.0 992.10 0.71811 

2.068 55.0 983.93 0.50006 

CASE 2 Flows Specified 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX --> XXXX ( BARS  ) ( KG / S) ( M / S) NUMBER 

A100 	A120 1.010 3.396 2.2000 1.1259 86004 

A120 	A200 3.396 3.121 2.1999 1.1259 86000 

A200 	A210 3.121 1.693 0.9999 2.0470 78180 

A200 	A220 3.121 1.315 1.1999 2.4564 93817 

A210 	A215 1.693 1.454 1.0000 1.4014 53440 

A220 	A225 1.315 0.980 1.2000 1.6817 64128 
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CASE 2 : Pressures Specified 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 

PRESSURES: 

DENSITY: 

VISCOSITY: 

PIPE BORE: 

PIPE LENGTH 
AND NODE HEIGHT: 

TEMPERATURE: 

MEAN FLOW VEL: 

PIPING DETAILS DATA - 

NUMBER OF PIPES 6 

NODE LABELS PIPE 
XXXX --> XXXX LENGTH 

A100 	A120 0.00 

A120 	A200 100.00 

A200 	A210 50.00 

A200 	A220 50.00 

A210 	A215 25.00 

A220 	A225 25.00 

KG / S 

BARS ABS 

KG / CU.M 

CENTIPOISE 

MILLIMETRES 

METRES 

CELSIUS 

M/S 

PIPE INSIDE WALL FIT. LOSS MEAN 
BORE ROUGHNESS COEFF. TEMP. 

(RELATIVE) 
50.000 0.00000 0.000 40.0 

50.000 0.00050 2.000 40.0 

25.000 0.00025 -5.000 40.0 

25.000 0.00025 -5.000 40.0 

30.000 0.00030 6.000 30.0 

30.000 0.00030 6.000 30.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 5 

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE 
LABEL 	 NODE STANDARD LEVEL 

A100 	 0.000 1.0100 0.0 

A210 	 0.000 0.0000 5.0 

A220 	 0.000 0.0000 5.0 

A215 	 0.000 0.6000 5.0 

A225 	 0.000 0.4000 5.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 1 

PUMP 	1 	PIPE A100 TO A120 

HEAD 	FLOW 

25.00 	0.0000 
23.77 	0.0060 
21.33 	0.0120 

FLUID PROPERTIES DATA - 

TYPE OF FLUID : LIQUID 

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY 

1.380 	 45.0 998.25 	 0.59273 

1.725 	 35.0 992.10 	 0.71811 

2.068 	 55.0 983.93 	 0.50006 

CASE 2 Pressures Specified 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXx --> XXXX ( BARS  ) (KG / S) (M / S ) NUMBER 

A100 A120 1.010 3.384 2.6607 1.3617 104015 

A120 A200 3.384 2.992 2.6608 1.3618 104019 

A200 A210 2.992 0.986 1.2948 2.6505 101231 

A200 A220 2.992 0.827 1.3661 2.7966 106810 

A210 A215 0.986 0.600 1.2944 1.8140 69176 

A220 A225 0.827 0.400 1.3657 1.9140 72988 
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CASE 3 

DATA AND RESULTS UNITS - 

MASS FLOWRATE5: 

PRESSURES: 

DENSITY: 

VISCOSITY 

PIPE BORE: 

PIPE LENGTH 
AND NODE HEIGHT: 

TEMPERATURE: 

MEAN FLOW VEL: 

PIPING DETAILS DATA - 

NUMBER OF PIPES = 7 

NODE LABELS PIPE 
XXXX --> XXXX LENGTH 

A210 	A220 50.00 

A100 	A120 0.00 

A120 	A200 100.00 

A200 	A210 50.00 

A200 	A220 50.00 

A210 	A215 25.00 

A220 	A225 25.00 

KG / S 

BARS ABS 

KG / CU.M 

CENTIPOISE 

MILLIMETRES 

METRES 

CELSIUS 

M/S 

PIPE INSIDE WALL FIT. LOSS MEAN 
BORE ROUGHNESS COEFF. TEMP. 

(ArI%J) 
25.000 0.00025 2.000 40.0 

50.000 0.00000 0.000 40.0 

50.000 0.00050 2.000 40.0 

25.000 0.00025 -5.000 40.0 

25.000 0.00025 -5.000 40.0 

30.000 0.00030 6.000 30.0 

30.000 0.00030 6.000 30.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 5 

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE 
LABEL NODE STANDARD LEVEL 

A100 0.000 1.0100 0.0 

A210 0.000 0.0000 5.0 

A220 0.000 0.0000 5.0 

A215 0.000 0.6000 5.0 

A225 0.000 0.4000 5.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 1 

PUMP 	1 	PIPE A100 TO A120 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

FLUID PROPERTIES DATA - 

TYPE OF FLUID: LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.380 45.0 998.25 0.59273 

1.725 35.0 992.10 0.71811 

2.068 55.0 983.93 0.50006 

CASE 3 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX -->XXXX (BARS) (KG/S) (MIS) NUMBER 

A210 A220 0.924 0.896 0.1450 0.2968 11337 

A100 A120 1.010 3.384 2.6589 1.3607 103941 

A120 A200 3.384 2.993 2.6589 1.3608 103944 

A200 A210 2.993 0.924 1.3233 2.7090 103464 

A200 A220 2.993 0.896 1.3357 2.7342 104428 

A210 A215 0.924 0.600 1.1783 1.6513 62970 

A220 A225 0.896 0.400 1.4801 2.0742 79097 



CASE 4(i) 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / S 

PRESSURES: 
BARS ABS 

DENSITY: 

KG / CU.M 

VISCOSITY: 

CENTIPOISE 

PIPE BORE: 

MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M/S 

PIPING DETAILS DATA - 

NUMBER OF PIPES 9 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

A100 	A120 0.00 50.000 0.00000 0.000 40.0 

A100 	A130 0.00 50.000 0.00000 0.000 40.0 

A100 	A140 0.00 50.000 0.00000 0.000 40.0 

A120 	A200 10000 50.000 0.00050 - 	2.000 40.0 

A130 	A300 100.00 50.000 0.00050 2.000 40.0 

A140 	A400 100.00 50.000 0.00050 2.000 40.0 

A200 	A500 100.00 50.000 0.00050 2.000 40.0 

A300 	A500 100.00 50.000 0.00050 2.000 40.0 

A400 	A500 100.00 50.000 0.00050 2.000 40.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 2 

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE 
LABEL 	 NODE STANDARD LEVEL 

A100 	 0.000 2.0000 0.0 

A500 	 0.000 2.0000 0.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 3 

PUMP 	1 	PIPE A100 TO A120 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

PUMP 2 	PIPE A100 TO A130 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

PUMP 3 	PIPE A100 TO A140 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

FLUID PROPERTIES DATA - 

TYPE OF FLUID: LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.380 45.0 998.25 0.59273 

1.725 35.0 992.10 0.71811 

2.068 55.0 983.93 0.50006 

CASE 4(i) 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX -->XXXX (BARS) (KGIS) (MIS) NUMBER 

A100 	A120 2.000 4.323 4.7233 2.4173 184647 

A100 	A130 2.000 4.323 4.7233 2.4173 184647 

A100 	A140 2.000 4.323 4.7233 2.4173 184647 

A120 	A200 4.323 3.161 4.7241 2.4177 184676 

A130 	A300 4.323 3.161 4.7241 2.4177 184676 

A140 	A400 4.323 3.161 4.7241 2.4177 184676 

A200 	A500 3.161 2.000 4.7241 2.4177 184676 

A300 	A500 3.161 2.000 4.7241 2.4177 184676 

A400 	A500 3.161 2.000 4.7241 2.4177 184676 



III 

CASE 4(u) 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / S 

PRESSURES: 
BARS ABS 

DENSITY: 
KG / CU.M 

VISCOSITY: 
CENTIPOISE 

PIPE BORE: 
MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M / S 

PIPING DETAILS DATA - 

NUMBER OF PIPES = 3 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

(gEi.Aflv) 
AlO 	A100 0.00 50.000 0.00000 0.000 40.0 

A100 	A200 100.00 50.000 0.00050 2.000 40.0 

A200 	A500 100.00 50.000 0.00050 2.000 40.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 2 

	

NODE 	FLOW INTO 	PRESSURE 	NODE HEIGHT ABOVE 

	

LABEL 	 NODE 	 STANDARD LEVEL 

	

AlO 	 0.000 	 2.0000 	 0.0 

	

A500 	 0.000 	 2.0000 	 0.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 1 

PUMP 	1 	PIPE AlO TO A100 

HEAD FLOW 

25.00 0.0000 
23.77 0.0060 
21.33 0.0120 

FLUID PROPERTIES DATA - 

TYPE OF FLUID: LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.380 45.0 998.25 0.59273 

1.725 35.0 992.10 0.71811 

2.068 55.0 983.93 0.50006 

CASE 4(u) 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
xxxx --> XXXX ( 	BARS 	) ( KG / S) (M / S) NUMBER 

AlO 	A100 2.000 	4.323 4.7233 2.4173 184647 

A100 	A200 4.323 	3.161 4.7241 2.4177 184676 

A200 	A500 3.161 	2.000 4.7241 2.4177 184676 
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CASE 4(11i) 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / S 

PRESSURES: 
BARS ABS 

DENSITY: 
KG / CU.M 

VISCOSITY: 
CENTIPOISE 

PIPE BORE: 
MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M / S 

PIPING DETAILS DATA - 

NUMBER OF PIPES 	6 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

(ft LPIJE 
A100 	A200 100.00 50.000 0.00050 2.000 40.0 

A100 	A300 100.00 50.000 0.00050 2.000 40.0 

A100 	A400 100.00 50.000 0.00050 2.000 40.0 

A200 	A500 100.00 50.000 0.00050 2.000 40.0 

A300 	A500 100.00 50.000 0.00050 2.000 40.0 

A400 	A500 100.00 50.000 0.00050 2.000 40.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 	2 

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE 
LABEL 	 NODE STANDARD LEVEL 

A100 	 0.000 	 2.0000 0.0 

A500 	 0.000 	 1.0000 0.0 

FLUID PROPERTIES DATA - 

TYPE OF FLUID: LIQUID 

PRESSURE 	 TEMPERATURE DENSITY 	VISCOSITY 

1.380 	 45.0 998.25 	 0.59273 

1.725 	 35.0 992.10 	 0.71811 

2.068 	 55.0 983.93 	 0.50006 

CASE 4(iii) 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX --> XXXX ( BARS  ) (KG / S) (M / S ) NUMBER 

AiQO A200 2.000 1.500 3.2815 1.6794 128282 

A100 A300 2.000 1.500 3.2815 1.6794 128282 

A100 A400 2.000 1.500 3.2815 1.6794 128282 

A200 A500 1.500 1.000 3.2815 1.6794 128282 

4300 4500 1.500 1.000 3.2815 1.6794 128282 

4400 A500 1.500 1.000 3.2815 1.6794 128282 



CASE 7 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / 

PRESSURES: 
BARS ABS 

DENSITY: 
KG / CU.M 

VISCOSITY: 
CENTIPOISE 

PIPE BORE: 
MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M / S 

PIPING DETAILS DATA - 

NUMBER OF PIPES = 9 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

(RELATIVE) 
AlDO AllO 8.23 100.000 0.01000 5.550 20.0 

A200 AllO 3.96 100.000 0.01000 5.550 20.0 

AllO A120 6.10 100.000 0.01000 0.000 20.0 

A300 A120 4.57 100.000 0.01000 5.550 20.0 

A120 A130 12.20 100.000 0.01000 0.000 20.0 

A400 A130 4.57 100.000 0.01000 5.550 20.0 

A130 A140 4.27 100.000 0.01000 0.000 20.0 

A500 A140 3.96 100.000 0.01000 5.550 20.0 

A140 A600 2.93 100.000 0.01000 1.650 20.0 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 6 

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE 
LABEL NODE STANDARD LEVEL 

A100 0.000 1.0000 1.2 

A200 0.000 1.0000 1.2 

A300 0.000 1.0000 1.2 

A400 0.000 1.0000 1.2 

A500 0.000 1.0000 1.2 

A600 0.000 1.0000 -1.5 

FLUID PROPERTIES DATA- 

TYPE OF FLUID: LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.380 45.0 998.25 0.59273 

1.725 35.0 992.10 0.71811 

2.068 55.0 983.93 0.50006 

CASE 7 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX --> XXXX ( BARS  ) (KG / S) (M / S) NUMBER 

A100 AllO 1.000 1.116 2.4560 0.3054 31864 

A200 AllO 1.000 1.116 2.7341 0.3400 35472 

AllO A120 1.116 1.111 5.1901 0.6455 67336 

A300 A120 1.000 1.111 3.9924 0.4965 51797 

A120 A130 1.111 1.080 9.1835 1.1421 119146 

A400 A130 1.000 1.080 8.3700 1.0409 108592 

A130 A140 1.080 1.040 17.5544 2.1832 227750 

A500 A140 1.000 1.040 11.9788 1.4898 155412 

A140 A600 1.040 1.000 29.5334 3.6729 383165 



CASE 8 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 

PRESSURES: 

DENSITY: 

VISCOSITY: 

PIPE BORE: 

PIPE LENGTH 
AND NODE HEIGHT: 

TEMPERATURE: 

MEAN FLOW VEL: 

PIPING DETAILS DATA - 

NUMBER OF PIPES = 7 

NODE LABELS PIPE 
XXXX --> XXXX LENGTH 

A 	B 0.00 

B 	AA 1.00 

AA 	 1 180.00 

1 	 2 30.00 

2 	3 130.00 

3 	4 70.00 

4 	H13 1.00 

I cU 

KG / S 

BARS ABS 

KG / CU.M 

CENTIPOISE 

MILLIMETRES 

METRES 

CEL$IUS 

M/S 

PIPE INSIDE WALL FIT. LOSS MEAN 
BORE ROUGHNESS COEFF. TEMP. 

(R.AflV 

260.000 0.00000 0.000 10.0 

260.000 0.00000 0.000 10.0 

260.000 0.00096 3.400 10.0 

260.000 0.00096 1.200 10.0 

206.000 0.00121 0.200 10.0 

206.000 0.00121 1.300 10.0 

206.000 0.00121 1.300 10.0 

I' 



SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 2 

	

NODE 	FLOW INTO 	PRESSURE 

	

LABEL 	 NODE 

	

A 	 0.000 	 1.0000 

	

H13 	 0.000. 	 7.2000 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS = 1 

PUMP 1 	PIPE A TO B 

HEAD 	FLOW 

125.00 	0.0000 
109.30 	0.0430 
106.60 	0.0757 
94.25 	0.1038 
73.71 	0.1290 

NODE HEIGHT ABOVE 
STANDARD LEVEL 

0.0 

0.0 

FLUID PROPERTIES DATA - 

TYPE OF FLUID LIQUID 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.000 10.0 1000.0 1.3000 

2.000 20.0 1000.0 1.0000 

3.000 30.0 1000.0 0.8000 

CASE 8 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXXX -->XXXX ( BARS  ) (KG/S; ( M / S ) NUMBER 

A B 1.000 9.143 116.9339 2.2025 440501 

B AA 9.143 9.142 116.9386 2.2026 440519 

AA 1 9.142 8.722 116.9337 2.2025 440500 

1 2 8.722 8.636 116.9337 2.2025 440500 

2 3 8.636 7.806 116.9336 3.5086 555970 

3 4 7.806 7.286 116.9337 3.5086 555971 

4 H13 7.286 7.200 116.9339 3.5086 555972 
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CASE 10 

DATA AND RESULTS UNITS - 

MASS FLOWRATES: 
KG / S 

PRESSURES: 
BARS ABS 

DENSITY: 
KG / CU.M 

VISCOSITY: 
CENTIPOISE 

PIPE BORE: 
MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 
CELSIUS 

MEAN FLOW VEL: 
M/S 

PIPING DETAILS DATA - 

NUMBER OF PIPES 10 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

1 	 2 0.36 477.800 0.00009 0.000 409.0 

2 	3 0.36 477.800 0.00009 0.000 409.0 

3 	4 0.36 477.800 0.00009 0.000 409.0 

1 	 5 0.40 477.800 0.00009 0.000 409.0 

2 	6 0.40 477.800 0.00009 0.000 409.0 

3 	7 0.40 477.800 0.00009 0.000 409.0 

4 	8 0.40 477.800 0.00009 0.000 409.0 

8 	7 0.36 477.800 0.00009 0.000 409.0 

7 	6 0.36 477.800 0.00009 0.000 409.0 

6 	5 0.36 477.800 0.00009 0.000 409.0 
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SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 2 

NODE 	FLOW INTO 	PRESSURE NODE HEIGHT ABOVE 
LABEL 	 NODE STANDARD LEVEL 

1 	 0.000 30.0000 0.0 

5 	 -1.000 0.0000 0.0 

FLUID PROPERTIES DATA - 

TYPE OF FLUID 	GAS 
RATIO OF SPECIFIC HEATS = 1.100 

PRESSURE TEMPERATURE DENSITY 	VISCOSITY 

29.980 420.0 12.950 	0.18800E-01 

25.840 460.0 10.270 	0.19800E-01 

25.840 460.0 10.270 	0.19800E-01 

CASE 10 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS Xxxx --> XXXX ( 	BARS 	) (KG / S) (M / 5) NUMBER 

1 2 	 30.00000000 29.99999997 0.3911 0.1656 56269 

2 3 	 29.99999997 29.99999997 0.1512 0.0640 21761 

3 4 	 29.99999997 29.99999997 0.0545 0.0231 7847 

1 5 	 30.00000000 29.99999993 0.6089 0.2579 87610 

2 6 	 29.99999997 29.99999996 0.2399 0.1016 34514 

3 7 	 29.99999997 29.99999996 0.0975 0.0413 14034 

4 8 	 29.99999997 29.99999996 0.0537 0.0228 7731 

8 7 	 29.99999996 29.99999996 0.0537 0.0228 7730 

7 6 	 29.99999996 29.99999996 0.1512 0.0640 21758 

6 5 	 29.99999996 29.99999993 0.3911 0.1656 56269 
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IV. Listings for programs/modules referred to in Chapter 5 

This appendix gives the listings for the following programs or modules: 

1. Program EQNET I4- 

2. Module getdata )S. 

3. Module eqparse 

4. Module set up rm 14 

5. Module setupm 

6. Program DYNET 170 

7. Module set up k 171 
8. Module set up a 

9. Module flows 

The programs listed in this appendix are written in IMP80. 
(Ref : "IMP80 Language Manual", 

Felicity Stephens & John Munson, 
Edinburgh Regional Computing Centre, 1981) 

Program Notes 

The symbol '@' signifies the exponent (E). 

In converting temperature values from celsius to kelvin, the factor 
+273 is used. 

The value used for acceleration due to gravity (g) is 9.81 
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I,, III$ III,lII,IuIIt 1q11 1I1t11i1t IIIIIII uI 	 lIiiII 11111t 	III 

Program to solve pipe network problems. Data input may include network 
equations as an alternative to 'number lists' specifying pipe/valve 
characteristics and pressure/flow conditions at nodes. 

IIIII , IIII ,, IIII , II ,, It ,, II , I ,, I , I ,, I , I,II,,II,I,,,IJ,,,I,IIII,,,,,,I,II 

begin 

externalroutinespec pressures(longrealarrayname a,b,p,ffo,c 
integer nn,nf,y, integerarrayname pset,qset) 

externalroutinespec set up a(longrealarrayname k,kb,p,tp,fn,ncap,c 
a,b,den,ht,realarrayname qrterms,integerarrayname qterms,qtctr,c 
u,d,pfix,longreal delta,tcon,integer qlctr,nn,nf,string(20) linmeth) 

externalroutinespec nlink(integer nnodes,nlinks,c 
integerarrayname in,out,ncode,link,cc,cp,longrealarrayname pp,fexx) 

externairout inespec fcheck (longrealarrayname q ,c 
fexx,integerarrayname pfix,link,in,cp,c 
integer nn,longreal ftol ,longrealname hf tot, integername hfnod,check) 

externalroutinespec flows(longrealarrayname p,kv,k,kb, f,fo,l,da,c 
rk,ft,denav,den,ht.,vjs,cd,cv,cl,c2 ,temp, realarrayname qrterms,c 
integerarrayname qtctr,qterms,ipbr,u,d,tlink,pform,jnteger c 
pass ,printit ,nf,nn,npump,nfluid,string(20) linmeth) 

externalroutinespec idenst(longrealarrayname cd, longrealname c 
dens,longreal press,temp,integer nfluid) 

externairoutinespec idfit(longrealarrayname d,p, t, longrealname c 
cdl,cd2,cd3,integer nfluid) 

externalroutinespec ipmpnet(longrealarraynaine pchar,cl,c2,c 
integerarrayname npts,pform, integer npump) 	 - 

externairoutinespec ivfit( longrealarrayname v,p, t, longrealname c 
cvl,cv2,cv3, integer nfluid) 

externalroutinespec ivisco(longrealarrayname cv, longrealname c 
visc,longreal press,temp,integer nfluid) 

externalroutinespec ilnpump(longreal pl,p2,cl,c2,den,c 
integer pform,n,longrealname q,a,b) 

externairoutinespec setupm(longrealarrayname p,fnum,qn,k,kv,kb,a,rhs,c 
realarraynaine qrterms,rvalue,integerarrayname qterms,qtctr,pset,qset,c 
pfix,ffix,qfix,in,out,tlink, ivalue,itype,integername qlctr,ierror,mrows, 
integer pass,nn,nf,sum) 

externairoutinespec set up rm(longrealarrayname ppi,p,k,kb,f,c 
fn,qn,a,b, integerarrayname node,pset,qset,pfix,ffix,qfix,in,out,c 
integer nn,nf, integernanie sum,mrows) 

/ 

externairoutinespec getdata( longrealarraynanie p,c 
kv,l,da,rk,ft,temp,fn,ht,ndtp,tpres,tvjsc,tden,ttemp,pchar,mu,ncap,sfpc 
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integerarrayname node,ltno,in,out,ffix,pfix,npts,jpbr,tljnk,ncode,c 
itype, ivalue,u,d,realarrayname rvalue, integername c 
nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename) 

externairoutinespec set up k(longrealarrayname f,fo,flst,k,kb,kv,p,plst,c 
lidadenav,temp,vis,ht,ft,rk,cv,cd,cl,c2,mu,sfp,integerarrayname C 
ltno,in,out,tiink,pform, ipbr,integer nf,npump,c 
nfluid,pass,string(20) linmeth) 

externairoutinespec emas3prompt(stringname s) 

externairoutinespec emas3(stringname comm,parms.c 
integername flag) 

<<<<< MAIN PROGRAM >>>>> ***** 

main arrays... 
a - matrix for linearised equations 
b - constant vector for 
p - new pressures to be calculated 
po- last pressures 
kv - valve consts for flowkv*sqrt(delta p) 
k - linearised valve constants 
f - new flows 
fo - last flows 
fn - node specified flows 

structure' arrays... 
u(i) - number of node upstream on branch i 
d(i) - 	.. 	.. 	downstream 
pfix(i) - is 1 if pressure at node i is fixed specification, 

0 if variable 
ffix(i) - is 1 if flow at node i is fixed specification, 

0 if variable 
N.B. flow into node is +ve, out of node is -ye 

longrealarray a(l:100,l:lOO),p,b,fo,f(l:100),po,ppj,ncap,tp,.ht,c 
plst,flst,l,da,rk,ft,qn,fn,den,nodtemp,temp,mu,sfp(1:40) 
longrealarray k,kv,kb,denav,vis( 1:40) 
longrealarray tpres,tvisc,tden,ttemp(1:3),pchar(1:10,1:10) 
longrealarray cl,c2(1:10) 
longrealarray cv,cd(1:3) 
realarray rvalue(l:40,l:lO),qrts(l:10, 1:5) 
integerarray in,out,ffix,qfix,pfix,tlink,ncode(1:40),npts, ipbr(1:lO) 
integerarray itype,ivalue(1:40,1:10) ,node(l:40) 
integerarray u,d(1:40) 
integerarray cp,cc(1:40,1:6) ,link(1:40) 
integerarray ltno,pset(1:40),qset(1:40) 
integerarray pbr ,pform( 1:10) 
integerarray qts(1:10,1:5),qtcount(1:10) 
integer nn,nf,npump,ierror,j,j,mv 
longreal ptot,rav,time,hftot,ftol,delta,tcon 
integer hf nod, check, rcheck ,qlcount 
integer nfluid(-ve for gas, 0 or +ve for liquid) 
integer 11, mm, ntotal, tc, y,HH,zz,mcc,qq,ks 
integer sum, mrows, pass, eflag, pcount, zw 
string(20) filename 
string(40) outfile 
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ownstring (20) linmeth='newton" (initial solution method) 

ftol=0.000001 

CHECK P : This routine checks pressures for convergence 
and returns 0 if sum of absolute changes is less 
than specified limit. Also updates po(). 

integerfunction check p(longrealarrayname p,po,integer nn) 

in... p(),po(),nn 
out.. po() 

integer i 
longreal sum 
suin= 0 
for i=l,l,nn cycle 

sum=sum+mod(p( i)-po( i)) 
po( i )p( i) 

repeat 
if sum<0.l then result=0 
printstring('press Error = ',) ; printfl(sum,7) ; newline 
result=l 

end 

initialise values which will be returned by the parser routine 
for i1,1,40 cycle 
qset(i)0 
ppi( i)0 
for j=1,1,10 cycle 
itype(i,j)0 ; ivalue(i,j)0 
rvalue(i ,j)0 
repeat 
repeat 
qtcount(i)=0 for i=l,l,lO 
for 1=1,1,10 cycle 

for j1,1,5 cycle 
qts( 1, j)0 
qrts(i, j )0 

repeat 
repeat 

Initialise pump parameter values 
for 1=1,1,10 cycle 
pform(i)0 
cl(i)0 ; c2(i)0 
repeat 

qfix(i)0 for i=1,1,40 

Get input data file 

filename="name of file : 
emas3prompt( filename) 
readstring(f ilename) 
emas3("define","2,.out,eflag) 
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outfile="name of output file : 
emas3prompt(outfile) 
Get name of output file for results 

readstring(outfile) 
ernas3("define","ll,".outfile,eflag) 

!set value of delta and tcon 
tconO .0 
delta=0.0 

!initialise values of ncap (the capacity of each node in m**3) 

ncap(zz)=0.0 for zz=1,1,40 

Call routine to read network data (and parse network equations if preset 
getdata(p,kv,l,da,rk,ft,temp,fn,ht,nodtemp,tpres,tvjsc,tden,c 
ttemp,pchar, mu ,ncap, sfp, node , itno, in,out ,ff ix,pf ix ,npts, ipbr , tlink 
ncode,itype,ivalue,u,d,rvalue,c 
nn,nf,npump,nfluid,ierror,ptot,rav,fjlename) 

!set value of tp 
tp(zz)=0.0 for zz=l,l,nn 

assign values to elements of array ppi for nodes whose p's are fixed 

for i=l,l,nn cycle 
if pfix(i)=l then ppi(i)p(i) 
repeat 

get no. of links to each node 

nhink(nn ,nf , in ,out ,ncode, link, cc ,cp,p, fn) 

assign average node pressure (returned in 'pLot' by routine getdata) 
to nodes which have not been assigned inititial (fixed) pressures 

for y=l,l,nn cycle 
if p(y)=0 then start 
p(y)ptot 
po(y)=ptot 
ppi(y)ptot 
finish else start 
ppi(y)=p(y) 

p0 ( y ) = p ( y) 
finish 
repeat 

assign initial values to hfnod and hftot 
hfnod is the node identifier of the node with the highest excess 
inflow/outflow after each iteration 
hftot is the value of the excess inflow/outflow. 

hfnod=0 
hftot=0 

select input(0) 

!get pump characteristics if there are pumps in the network 
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if npump>O then start 
ipmpnet(pchar,cl ,c2, npts ,pform,npump) 
finish 

!get viscosity and density fit details 
ivf it (tvisc, tpres ttemp,cv( 1) ,cv(2) ,cv( 3) ,nfluid) 
idfit(tden,tpres,ttemp,cd(l),cd(2),cd(3),nfluid) 

initialise the constants in the pipe flow/pressure equations 

for mv=l,l,nf cycle 
k(mv)=0.0 ; kb(mv)=0.0 
repeat 

call routine flows to get initial flow distribution in network 

flows(p,kvsk,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cic2tempqrtsc 
qtcount,qts,ipbr,u,d,tlink,pform,o,o,nf,nn,npump,nflujd,ljnmeth) 

select input(0) 

ntotal=nn+nf 

for i=l,l,lOO cycle ;! ----------------start iteration ----------------
pass =l 
it i1 then start 
pass =0 
finish 

Get current pressure and flow values for input to routine set up k 

plst(zw)p(zw) for zw=l,l,nn 
flst(zw)f(zw) for zwl,l,nf 

set up k(f,fo, flst,k,kb,kv,p,plst, l,da,denav,temp,vis,ht,ft, rk,c 
cvlcd,cl,c 2 lmu,sfp,ltno,u,d,tlink,pform,jpbr,nf,npump,nflujd,pass,ljflmeth) 

setup rm(ppi,p,k,kb,f,c 
fn,qn,a,b,node,pset,qset,pfix,ffix,qfjx,u,d,nn,nf,sum,mrows) 

first time round call setupm to insert prespecified network equations ir 
full matrix of flow network equations 

if pass=0 then setupm(ppi, fn,qn,k,kv,kb,a,b,qrts,rvalue,qts,qtcount,c 
pset,qset,pfix,ffix,qfix,u,d,tlink,jva1ue,jtype,q1count,ierror,mro50 
pass ,nn, nf, Sum) 

if i=l then start 
p(zz)=ppi(zz) for zz=l,l,nn 
po(zz)ppi(zz) for zzl,l,nn 
finish 

selectoutput (2) 

set up a(k,kb,p, tp,fn,ncap,a,b,denav,ht,qrts,qts,qtcount,u,d,pfjx,c 
delta,tcon,qlcount,nn,nf,linmeth) 

pressures(a,b,p,f,fo,nn,nf,O,pset,qset) 

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,qrtsc 
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qtcount,qts, ipbr ,u,d,tlink ,pform,pass, O,nf,nn,npump,nfluid,linmeth) 
check for convergence 

check for flow convergence 

fcheck(f,fn,pfix,link,u,cp,nn,ftol,hftot,hfnod,check) 

newline; printstring("error = "); print(hftot,3,8) 
printstring(" at node "); write(hfnod,3) 
if (check = 0 and i>2) or i>40 then exit 

repeat ; ! 	 next iteration ---------------- 

newline ; write(i,3) 
flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vjs,cd,cv,cl,c2,temp,qrts,c 
qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth) 

selectoutput(2) 
printstring( 

Used U)  ; write(i,4) ; printstring( 	iterations') 

closestream( 2) 
selectoutput(ll) 
flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,c1,c2,temp,qrts,c 
qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth) 
closestream( 11) 

endofprogram 
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routine getdata 	reads in data for a pipe network,presented as a list 
pipe/pump/valve physical characteristics. 

read in... 
fixed pressures (pfix) 
branches and associated kvs or piping data (u,d,kv,1,da,rk,ft,temp) 

I and set nn and nf 

externalroutine getdata(longrealarrayname p,kv,l,da,rk,ft,temp,fn,c 
ht,nodtemp,tpres,tvisc,tderi,ttemp,pchar,mu,ncap,sfp,c 
integerarrayname node, ltno, in,out, ffix,pfix,npts,ipbr,tlink,ncode,c 
itype, ivalue,u,d,realarrayname rvalue, integername C 

nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename) 

externairoutinespec inoden( integer label ,nnodes, integername index,c 
integerarrayname node) 
externalroutinespec indlis(integerarraynaine lindex,node,instr,outstr,c 
in,out, integername nnodes, npipes) 
externalroutinespec eqparse( longrealarrayname kv, integerarrayname node ,c 
in,out,tlink,itype,ivalue,realarrayname rvalue,integername nn,nf,ierror) 
externalroutinespec emas3( stringname comm,parms, integername flag) 

integer i,fl,f2,f3,nnum, ii ,jj,pcount,srflag,eflag,nnodes,qq,nlab 
real nspec, pspec 
integerarray uu,dd(1:40) 
integerarray lindex,dlindex(1:80) 

ptot=0 (initialise sum of pressures) 
pcount=0 (initialise counter) 

for i=1,1,40 cycle 
pfix(i )0 
ffix(i)=0 
p(i)0 
fn(i)=0 	 - 
ht(i)=0 
tlink( i)=-99 
it no ( i  ) = 0 
mu(i)=O 
ncap( i )=0 
sfp( i ) =0 

repeat 

!Enter branch details 
!upstream node no., downstream node no., 
!if full piping details supplied answer > 0, 
!if only constant is supplied answer 0 for non-linear, -1 for linear const 
!if equation to be read in for this link later, enter <-1 
!terminate with < 0 
nnodes=0 
nf =0 

emas 3 ( °def me" ,"12," . filename, ef lag) 
select input( 12) 
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for i1,1,40 cycle 
read(fl) 
if fl<O then exit 
read(f2) ; if f2<0 thenexit 
read(f3) 
u(i)=(fl) ; d(i)=(f2) 
uu(i)u(i) ; dd(i)d(i) 
nf=nf+l 

if f3>0 then start 
!signify that the link is either a pipe with full piping details 
!supplied or it is a pump (the value of tlink is changed later 
!in this routine if the link is a pump) 

tlink( i)=l 
!read length (assumed to be in meters) 
read(l(i )) 
!read pipe diameter (assumed to be in mm), and convert it to m 
read(da( i)); da( i)=da( i) *l@_3 
!read roughness ratio 
read(rk( i) 
!read fittings loss 
read( ft( i)) 
!read temperature and convert it from celcius to kelvin 

read(temp(i)); temp(i)=temp(i)+273.0 

finish else if f3=0 or f3=-1 then start 

!signify that link is a valve (valve const. supplied) 

tlink(i)f3; (tlink=-1 signifies linear k, tlink=O means non-linear 
read(kv(i)); read(mu(i)) ; read(ltno(i)) ; read(sfp(i)) 
if ltno(i)>O then sfp(i)=sfp(i)*100000 
read(temp(i)) ; temp(i)=temp(i)+273.0 
finish else start 

the characteristics of this link are described in an equation later. 
read(temp(i)) ; temp(i)=temp(i)+273.0 

kv( i )0 
finish 

repeat 

get a list of all the nodes 
for qq=1,1,40 cycle 
in(qq)0 ; out(qq)0 
node(qq)0 
repeat 
dlindex(i)=O for i=1,1,40 
for qq=l,l,nf cycle 
1 index(qq*2_l)=u(qq) ; lindex(qq*2)=d(qq) 
repeat 
indlis(dlindex,node,uu,dd,in,out,nnodes,nf) 
for qq1,1,40 cycle 
1 index(qq)=dlindex(qq) 
repeat 

nn=nnode s 
!Enter node conditions which are fixed 

Answer >= 0 to prompt 'node spec ?' if specifying 
a condition, else answer < 0 

for i=1,1,40 cycle 
read (nspec) 
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if nspec < 0 thenexit 
read (nnum) 

check that the node label is in the list 
i noden( nnum,nn, nlab ,node) 

the nodes are classified according to the following codes 
code 	 type of node 

1 	 fixed pressure node 
2 	 fixed flow node 
3 	 height specified 

read(ncode(nnum)); !read the node code 
read(ncap(nnum));! 	read the capacity of the node in m**3 
read(ht(nnum));! 	read the height of the node in m 
if ncode(nnum)=2 then start; !fixed flow node 

pcount=pcount+l 
read(fn(nnum)); ! note that flow in is +ve, flow out of node is -ye 

fn (nnum) =-fn (nnum) 
ffix(nnum)=l 

finish else start 
read(p(nnum)) 
if p(nnum)>0 then start 
pcount pcount+l 

p(nnum)=p(nnum)*l.05 ;! convert bar to n/m**2 
ptotptot+p(nnum) 

if ricode(nnum)=l then pfix(nnum)=l 
finish 
finish 
read(nodtemp(nnum)) ; ! read the node temperature in C 
nodtemp(nnum)=nodtemp(nnum)+273.0 ; ! convert to kelvin 
repeat 

!read in number of pumps in network 

read(npump) 

if npump>0 thenstart 
for iil,l,npump cycle 

!get the number of points on the characteristic. 
read(npts( ii)) 
repeat 

for iil,l,npump cycle 
read(uu( ii)); read(dd( ii)) 

for jjl,l,nf cycle 
!set value of tlink for appropriate link number. 
!also set value of ipbr (link number of pump in network) 

ifuu(ii)u(jj) and dd(ii)=d(jj) then start 
tlink( jj )=2 

!tlink(. 
.) = 2 signifies a pump 

ipbr ( ii  ) j j 
finish 
repeat 

!head/flow data 
for j]=l,l,npts(ii) cycle 

!read head and flow values on pump characteristic 
read(pchar(iI,jj*2_l)); read(pchar(ii,jj*2)) 
repeat 



repeat 
finish 

rav=O 

!get the physical properties data 
for ii=1,1,3 cycle 
read(tpres(i i)); read( ttemp( ii)) 
read(tden(ii)); read(tvisc(ii)) 

!convert bar to pascal, celcius to kelvin, cp to kg/ms 
tpres(ii)=tpres(jj)*1.0@5 
ttemp(ii)=ttemp(ii)+273.0 
tvisc( ii )tvisc( ii )*l3 
rav=rav+(tpres(jj)/(tden(jj)*ttemp(jj))) 
repeat 

!get value of nfluid (-ye for gas, 0 or +ve for liquid) 
read(nfluid) 

get the average value of the gas constant, ray. 

rav=rav/3 

see if should quit at this point 

read(f 3) 

if f3<0 then start 
ptot ptot/pcount 
return 
finish else start 
eqparse(kv,node,in,out,tlink,itype,ivalue,rvalue,nn,nf,jerror) 
finish 

end 
endoffile 

0 
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ROUTINE EQPARSE : parses input equations describing network 

externairoutinespec S to r(string(40) s,realname x,integername srflag) 
externairoutinespec ucstrg(stringname 5) 

externairoutinespec inoden(integer label,nnodes, integernaine index,c 
integerarrayname node) 

externairoutine eqparse(longrealarrayname kv, integerarrayname node,c 
in,out,tlink,itype,ivalue,realarrayname rvalue,integername nn,nf,ierror) 

For each atom, 4 entries are generated. 
itype - indicates if item is P,Q,F or constant 
ivalue - label indicating location of node/link in network 
rvalue - coefficient of P,Q,F or value of constant 

itype 	meaning 	 ivalue 	rvalue 

1 	pressure term 	node label 	coeff 
2 	link flow term 	link label 	coeff 
3 	node flow term 	node label 	coeff 
4 	constant term 	 -1 	value 

The node identifiers are F (f) and P (p). 
The link identifier is Q (q). 
There are also identifiers for individual nodes and links. 
Links are identified in terms of the nodes between which they run. 

integer eqstat,j,ollen,stsign,lbctr,rbctr 
integer natoms,sign,srflag,indexl,index2,index,eqlen,ll,dpt,am 
integer istr1,15tr2,istr,qq,i,m,j],errcnt 
real x,xstrl,xstr2 ,xstr 
string(l) lcr.ccr,lbr,rbr,nlcar 
string(l) array oper(l :3),nos(l:10) 
string(20) numstr, str, stri ,str2 
string(80) line,ol ine,nline,errmes 

set the newline character 
rilcar=" 

set the array of operator values 
ope r (1) 	+ 0  

oper (2) =0_ 

oper( 3)=•'=" 

set the string values for brackets 
lbr=" (" 
rbr=" )•' 

initialise the array of integers 
nOs(l)'l' ; nos(2) 1 2" ; nos(3)="3" 
nos(4)="4 11  ; nos(5)="5" 	nos(6)="6" 
nos(7)="7" ; nos(8)="8" 	nos(9)="9" 
nos(10) =11 0 11  

start reading in equati on lines (max of 20 lines is expected) 

for m=1,1,20 cycle 
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ierror0 
e r rmes"" 
line= It,,  
nil ne=" H  

oline"" 
ccr" Of 

call routine ucstr to read the line 
ucstrg( line) 
get the line length 
eqlen=length( line) 
if line="E' or line = e" then return 

0 
lbctr=0 
rbct r0 
natoms=0 

initialise eqstat at start of read. eqstat signifies whether 
an "=' has been encountered yet in the line. 

eqstat-1 

cycle for the max no. of atoms expected in equation line. 
initialise the string variable holding the previous character. 
1 cr="" 
oline=l me 
initialise the sign to •+" 

initialise the coefficient of P,Q,and F terms. 
x1 

signl ; stsign=l 
for 1=1,1,10 cycle ; 	start of main cycle to read line 

no blanks allowed 
if oline->(" ").oline then ierror=-1 and -> errorl 

see if line commences with + or 

if i=l then start 
if substring(oline,l,l)='-s-' then start 

oline -> 	oline ; siqn=l ; lcr=+" 
finish 
if substring(oiine,1,1)=-" then start 

oline -> ('-').oline ; sign=-1 ; lcr="-" 
finish 

finish 

numtest : !test for numbers 
see if next char is a number 
if oiine="' then exit 
ccr=subst ring (oline, 1,1) 
for j=1,1,10 cycle 
if ccr=nos(j) then -> numlab 
repeat 
if ccr="." then start 
-> numlab 

finish 
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AMP 

if the next character is not a number 
it may be an operator 

if ccr"+" or ccr="-" or ccr="=" then start 

if lcr=+" or lcr="-' or lcr==' then ierror = -2 and -> errorl 
if lcr="+" or lcr="-" or lcr==" then ierror = -2 and -> errorl 
if ccr=+' and lbctr>rbctr then stsign=sign else stsign=l 
if ccr='+" then sign=l and lcr=+' and oline->(ccr).oline 
if ccr="- and lbctr>rbctr then stsign=sign else stsign=l 
if ccr="-" then sign=-1 and lcr="-" and oline->(ccr).oline 
if ccr="=" then eqstat=l and lcr='= and oline->(ccr).oline 

if ccr"=" then sign=l and x=l 
-> newlab 
finish 

test if left bracket is present. 
if ccr=lbr then start 
oline -> (ccr).oline 
lbct r=lbct r+l 
-> newlab 

finish 

test if right bracket is present. 
if ccr=rbr then start 
rbct r=rbct r+ 1 
if rbctr>lbctr then ierror=-3 and -> errorl 
oline -> (ccr).oline 
-> newlab 

finish 

test whether the next char is an identifier 
if ccr='P or ccr="Q" or ccr='F" then start 

if lcr='" or lcr="+' or lcr="-" or lcr="=" then start 
if ccr="P" then ni ine=ol me and -> plab 
if ccr='Q" then nline=ol.ine and -> qlab 
if ccr="F" then nline=oline and -> flab 

finish else ierror = -4 and -> errorl 
finish 

if none of these things, then error 
ierror = -5 
-> errorl 

numlab : !numbers 

initialise decimal point counter 
dptO 
initialise exponent counter 
am=O 

numst r=' 
look at the rest of the line 
ollen=length(ol me) 

has the line been completed ? 
if ollen=O then -> newlabl 

for jjl,l,ollen cycle 
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ccr=substring(oline, jj, jj) 
for 3=1,1,10 cycle 

if ccr=nos(j) and jjollen then numstr=numstr.ccr and -> numdec 
if ccr=nos(j) and jjo11en then numstr=numstr.ccr and -> ncont 
repeat 

if ccr=".' then start 
if dpt=l then ierror=-6 and -> errorl else start 
dpt=l 
numstr=numstr .ccr 
1 cr=" ." 

-> ncOnt 
finish 

finish 

if ccr="@" then start 
if am=l then ierror=-7 and -> errorl else start 

am= 1 
numstr=numstr."@" 
lcr=hs@fl 

look at nline to see if a valid number follows the exponent 
-> ncont 

finish 
finish 

if am=l then start 
if the next char is a '-i-" or "-" after an 

if 1cr="@ and (ccr="+" or ccr="-") then start 
numstr=numstr . ccr 
lcr=ccr 
-> ncont 
finish 
if (lcr="+" or 1cr=-") and (ccr="+" or ccr"-") C 
then ierror=-8 and -> errorl 

finish 

if the next char is none of these things, then decode the number 
if jj=ollen and ccr=lbr then ierror=-9 and -> errorl 

ic r=ccr 
-> numdec 

ncont : repeat 

numdec 	!decode the number 

s to r(numstr,x,srflag) 
look at rest of line following number. 

if lcr=lbr then start 
lbct r=lbctr+l 
nline=substring(oline, jj+l,ollen) 
-> plab 

finish 

if jjollen then c 
nline=subst ring (oline,jj+l,ollefl) else ni ine" 
ll=length(nline) 

if 110 then ccr=substring(nline,1,1) else ccr=nlcar 
is number a constant ? 

if ccr='+' or ccr="- or ccr'=" or ccr=")" or 11=0 then start 
natoms=natoms4-1 
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itype(m,natoms)=4 ; ivalue(m,natoms)= -1 
rvalue(m,natoms)=stsign*x*sign*eqstat 

if ccr "-"  then sign=-1 else sign=l 
if ccr="=" then eqstat=l and x=l 
if jjollen then exit 
lcr=ccr 
oline=nline 
atom finished, continue atom cycle 

-> newlab 
finish 

the number is a coefficient 

if nline -> (lbr).nhine then start 

plab : ! pressure 

if nline -> ("P(").nhine then start 
natoms=natoms+l 
itype(m,natoms)=l 
rvalue(m,natoms)=stsign*x*sign*eqstat 
riline->str.(")).nhine 

-> nodelab 
finish 

may be link flow identifier 

qiab : ! flow in link 
if nline -> (°Q(").nhine then start 
natoms=natoms+l 
i type(m,natoms) =2 
rvalue(m, natoms)=stsign*x*s ign*eqstat 
nline -> str.(')").nline 
-> nodelab 

finish 

flab 
may be node flow identifier 

if nline -> ('F(").nline then start 
natoms=natoms+l 
i type(m,natoms)=3 
rvalue(m,natoms)=stsign*x*sign*eqstat 
nhine->str.(").nline 
finish 

nodelab 
at this point call the special routine for labels, inoden 

if identifier is 0  there are two labels to be matched 
if itype(m,natoms)2 then start 
str -> strl.(",").str2 
• to r(strl,xstrl,srflag) 
• to r(str2,xstr2,srflag) 
iStrlint(xstrl) ; istr2=int(xstr2) 



inoden(istrl,nn,indexl,node) 
inoden(istr2,nn,index2,node) 
for qq=l,l,nf cycle 
if (indexl=in(qq) and index2=out(qq)) then C 

ivalue(m,natoms)=qq and exit 
if (indexl=out(qq) and indexl=in(qq)) then c 
ivalue(m,natoms)=-(qq) and exit 
repeat 

finish else if itype(m,natoms)=l or itype(m,natoms)=3 then c 
start 
s to r(str,xstr,srflag) 
istr=int(xstr) 
inoden(istr,nn,index,node) 
ivalue(m,natoms)=node( index) 
finish 
lcr")" 

if it's another number. 

see if next char is a number 
oline=nline 
finish 

newlab : repeat 

newlabi : repeat 

errorl : !error handling 
if ierror < 0 then start 

if ierror = -1 then errmes="Blank character not allowed" 
if ierror = -2 then errmes="Invalid character after operator" 
if ierror = -3 then errmes="Brackets not matching" 
if ierror = -4 then errmes="Next character should be P, 0  or F" 
if ierror = -5 then errmes="Invalid character" 
if ierror = -6 then errmes="Error in position of decimal point" 
if ierror = -7 then errmes="Error in position of exponent" 
if ierror = -8 then errmes="Invalid character after exponent" 
if ierror = -9 then errmes="Brackets not closed" 
newline ; printstring(errmes." in line "); write(m,3); newline 

finish 

end 
endoff ile 



external c 
routine set up rm(longrealarraynaine ppi,p,k,kb,f,fn,qn,a,b,c 
integerarrayname node,pset,qset,pfix,ffix,qfix, in,out,c 
integer nn,nf, integername sum,mrows) 

!This routine solves for pressures and flows by setting up the equations 
!for flows into nodes and flows into pipes as separate entities. 

in... 
nn, nf, p, k, f, fn, pfix, ffix, qfix, in, out 

out... 
a, b, pset, fset 

integer nl, i ,j,s, ii, nfl, ln,flag, hh 
integerarray flowval,flowdir(1:6), lmark(l:nf) 

!get total number of equations (=no. of links + no. ,  of nodes) 
nl =nn+nf 

flowval(i)=O for i1,1,6 
flowdir(i)=O for i=1,1,6 
for i=l,l,nl cycle 
a(i,j)=O for j=l,l,nl 
b( i)0 
repeat 

pset(i)=O for i=l,l,nn;qset(i)=O for j=1,l,nf 
imark is a marker for each pipe. It is set to 1 once the flow 
equation in that pipe has been inserted into the matrix. This 
is in order that there can be no repetitions when the same 
pipe is encountered again. 

lmark(i)=O for il,l,nf 

sum is the number of entities in the flow/pressure vector which 
have been 'set so far. ln is the line position marker. 

sumO; 1n0 

go through all the nodes 
cycle hh=l,l,nn 
iinode(hh) 
if pfix(ii)=l thenstart;! fixed pressure node 
ln=ln-s-1 
first examine to see if this pressure is already in the 
vector of flows and pressures (i.e. has it been set' yet) 
if the entity is a new one then note its position in the 
flow/pressure vector (as indicated by the value of 'sum) 
if pset(ii)=O then sumsum+l and pset(ii)=sum 

ln,pset( ii ))1 
ln)=ppi( ii) 

finish 

if pfix(ii)=O thenstart 
nfl=O 
go through all links 
cycle i1,1,nf 
examine which links are connected to node ii 
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if iiout(i) or ii=in(i) thenstart 
if pipe is previously 'unmarked' then mark it and set 
flag to off. 

if lmark(i)=O then lmark(i)=l and flagO else flag=l 
if flag is 'off' increase line no. 

if flag=O and k(i)=O and qfix(i)=l then ln=ln+l 
if flagO and k(i)#O  then ln=ln+1 
nfl=nfl+l; flowval(nfl)=i 
if ii=out(i) then flowdir(nfl)=l else flowdir(nfl)=-1 
get b(ii) 
if flag=O and k(i)#O then b(ln)-kb(i) 

if pset(ii)=O then sum=sum+l and pset(ii)=sum 
is ii downstream or upstream node of pipe i? 

if ii=out(i) thenstart 
if pset(in(i))=O then sum=sum+l and pset(in(i))=sum 

if k(i)#O then start 
if flag=O then a(ln,pset(ii))=-k(i) 
if flag=O then a(ln,pset(in(i)))=k(i) 

finish 
finish elsestart 
if pset(out(i))=O then sumsum+1 and pset(out(i))=sum 

if k(i)O then start 
if flag=O then a(ln,pset(ii))=k(i) 
if flag=O then a(ln,pset(out(i)))=-k(i) 

finish 
finish 

if qset(i)r0 then sumsum+l and qset(i)=sunl 
if flagO and k(i)=O and qfix(i)l then a(ln,qset(i))=1 C 

and b(ln)rqn(i) 
if flag=O and k(i)#-O then a(ln,qset(i))-1 
finish 

repeat 
sum flows at a node if appropriate 
if nfl>=l and ffix(ii)=1 then start 
lnln+l 
a(ln,qset(flowval(j)))=flowdir(j) for j=l,l,nfl 
b(ln)=fn( ii) 
finish 

finish 
repeat 

mrows=ln 

end 
endoff ile 
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ROUTINE SETUPM 

Adds equations in the data input file to the matrix of 
network equations. 

external routine setupm(longrealarrayname p,fnum,qn,k,kv,kb,a,rhs,c 
realarraynanie qrterms,rvalue,integerarrayname qterms,qtctr,pset,qset,c 
pfix,ffix,qfix,in,out,tlink, ivalue,itype,integernatne qlctr,ierror,mrows, 
integer pass,nn,nf,sum) 

!Phis routine is a modified version of set up reqn, which solves 
!for pressures and flows by setting up the equations for flows into 
!nodes and flows in pipes as separate entries. In this routine, 
!the matrix created from network data is added to, using additional 
network equations specified by the user. 

in... 
itype, ivalue, rvalue 

out... 
a, b, pset, qset 

integer nl,i,j,s,mm, ii,nfl,ln,flag,nodl,nod2 
integer inls,onls,nsp,modp,ppl,pp2,m,npts,nfts,nqts 
integer ncts,mdim,jj,kk,natoms,index,cpindex,nodjql,nodjq2 
integer pcon,nindex,pindex,pinctr, fldir,nodiq 
real cpincf,pincf,pplcf,pp2cf 
real cfl,cf2 
longrealarray irhs(l:lOO) 
integerarray flowval,flowdir(1:6),lmark(1:nf) 

initialise the error flag, ierror 
ier ror=O 

initialise the number of link flows which are fixed 
qlctr=O 
qtctr(i)=O for i1,1,10 
for mm=l,l,lO cycle 
qterms(mm,i)=O for i=1,1,5 
qrterms(mm,i)=O for i=1,1,5 

repeat 

the dimension of the (square) matrix = no. of links + no. of nodes. 
mdim = nn+nf 

for rn=1,1,20 cycle ; !read each equation line 
if itype(m,l)=O then -> nextcont 

!increment no. of rows in matrix 
if pass=O then mrows=mrows-4-1 

check that current no. of rows does not exceed mdim. 
if mrows>mdim then ierror=-1 and -> errorl 

a(mrows,i)=Q for i1,l,mdim 
i rhs ( mrows) =0 
nptso ; nqtsO ; nfts=0 ; ncts0 ; natoms=0 
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for i1,1,10 cycle 
if itype(m,i)=0 then exit 
natoms=natoms+ 1 
if itype(m,i)=l then npts=npts+l 
if itype(m,i)=2 then nqtsnqts+l 
if itype(m,i)=3 then nfts=nfts+l 
if itype(m,i)=4 then ncts=ncts+l 

repeat 

is the equation a fixed pressure specification ; i.e. does it 
contain only one pressure term and some constant terms ? 

if npts=l and nqts=0 and nfts=0 and ncts>0 then start 

irhs (mrows )=0 
for j=l,l,natoms cycle 

if itype(m,j)=l then start 
look at the node index. 

index=ivalue(m, j) 
-if pset(index)=0 then sum=sum+l and pset(index)=sum 
a(mrows , pset (index)) =rvalue(m, j) 

- pfix(index)=l 
finish else start 

irhs(mrows)=irhs(mrows)+rvalue(m,j) 
finish 

repeat 

if irhs(mrows)>0 and a(mrows,pset(index))<0 then c 
a(mrows,pset(index))=0-a(mrows,pset(index)) 
if irhs(mrows)<Q and a(mrows,pset(index))>0 then c 
i rhs ( mrows) =0-i rhs ( mrows) 
if irhs(mrows)<0 and a(mrows,pset(index))<0 theii C 

ierror=-12 and -> errorl 
p( index)=irhs(mrows)*l@5 
rhs(mrows)=irhs(mrows)*1@5 
continue 
finish 

is the equation a pseudo fixed pressure spec ; i.e. does it 
contain two pressure terms and some constant terms - ? 

if ripts=2 and nqts0 and nfts=0 and ncts>0 then start 

pirictr=0 
irhs (mrows ) 0 
ppl0 ; pp2=0; pplcf=0 ; pp2cf=0 
for j1,l,natoms cycle 

if itype(m,j)l then start 
pindex=0 ; pincfo 
pinctrpinctr+l 

look at the node index. 
index=ivalue(m, j) 
if pset(index)=0 then sum=sum+l and pset(index)=sum 
a(mrows..pset(index))=-rvalue(m,j) 
if ppl=0 and pfix(index)=0 then start 
ppl-( index) 
pplcf=rvalue(m, j) 
if pinctr=l then pindexindex and pincf=rvalue(m,j) 
continue 
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finish 
if pplO and pfix(index)=l then start 
cpindex=index ; cpincf=rvalue(m,j) 
finish 
if pp1O and pfix(index)0 then pp2-( index) and c 
pp2cf=rvalue(m,j) 

finish else start 

irhs(mrows)=irhs(mrows)+rvalue(m,j) 
finish 
repeat 

see if both nodes are of unspecified pressure 

if ppl<O and pp2<0 then start 
index=-(ppl) 	; 	pfix(index)=pp2 
index=-(pp2) 	; 	pfix(index)=ppl 

finish else start 
if ppl<O then start 
nindex=-(ppl) 	; 	pfix(nindex)=l 
if pindex>O then start 
if pplcf<O and rvalue(m,j)>O then p(nindex)=c 
p( index)+irhs(mrows) 
if pplcf>O and rvalue(m,j)<O then p(nindex)c 
p( index)_irhs(mrows)*l@5 

finish else start 
if pplcf<O and cpincf>O then p(nindex)=c 
p(cpindex)+irhs(mrows) 
if pplcf>O and cpincf<O then p(nindex)=c 
p(cpindex)-irhs(mrows) *1@5 

finish 
finish 

finish 

rhs(mrows)=irhs(mrows)*1@5 
-> contline 
finish 

is the equation a flow specification for a pipe ? 

if npts=2 and nqts=1 and nfts=O and ncts>=O then start 

get the identifiers of the end nodes. 

rhs (mrows )0 
nodl=O ; nod2=0 ; cfl=O ; cf20 

for i=l,l,lO cycle 
if itype(m,i)=l then start 

if nodl=Q then nodl=ivalue(m,i) and cflrvalue(m,i)else c 
nod2=ivalue(m,i) and cf2=rvalue(m,i) 

finish else if itype(m,i)2 then start 
index=ivalue(m,i) ; if index<O then index-(index) 
ppl=in(index) ; pp2=out(index) 
finish else rhs(mrows)=rhs(mrows)+rvalue(m,i) 
repeat 

check that the two nodes are connected by the given pipe no. 
if (nodl=ppl and nod2=pp2) or c 
(nodl=pp2 and nod2=ppl) then start 

U 
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if cfl-(cf2) then ierror=-7 and -> errorl 
finish else start 

ierror-8 
-> errorl 
finish 

check that a 'k' value has not been assigned to this pipe ; if so 
then assume that the coefficient (cfl,cf2) is the 
required 'k' and set up the standard equation for that pipe. 

if k(index)-O then ierror=-9 and -> errorl 
if pset(nodl)0 then sum=sum+l and pset(nodl)=sum 
k(index)=cf 2 
tlink(index)=-1 ; kv(index)=k(index) 
kb(index)=O 
a(mrows,pset(nodl))=-cfl 
a(mrows,pset(nod2))=-cf 2 
if qset(index)=0 then sumsum+1 and qset(index)=sum 
a(mrows,qset(index))=-1 

continue 
finish 

Q terms only 

if nqts>1 and ncts>=0 and nfts=O and nptsO then start 
inls=0 
onls=0 
rhs(mrows )0 

if nqts=l then start ; !look at the end nodes 
for jj=l,l,natoms cycle 
if itype(m,jj)=2 then start 

see if the end nodes of the pipe are pendant nodes 
modp=ivalue(m, jj) 
fldir=l 
if modp<0 then modp=-(modp) and fldir=-1 
for kkl,l,nf cycle 
if in(modp)=in(kk) or c 
in(modp)out(kk) then inls=inls+l 
if out(modp)=in(kk) or c 
out(modp)out(kk) then onls=onls+1 
repeat 
if inls=l and onls=1 then ierror=-9 and -> errorl 
if inls=l or onls=l then start 
if inls=l then nsp=in(modp) else c 
nspout (modp) 
if pfix(nsp)1 or ffix(nsp)1 then ierror=-10 and -> errorl 

I put the line in the coeff matrix 

if qset(modp)0 then sum=sum+l and qset(modp)=sum 
a(mrows,qset(modp))-rvalue(m,jj) 
ffix(nsp)1 

finish 
if inls>l or onls>l then start 



put the line in the coeff matrix 

if qset(modp)=O then sum=sum+l and qset(modp)=sum 
a(mrows,qset(modp))=-rvalue(m,jj) 
qfix(modp)=1 
finish 

finish else rhs(mrows)=rhs(mrows)+rvalue(m,jj) 
repeat 

if a(mrows,qset(modp))>o then start 
if fldir=1 and onls=l then fnum(nsp)=rhs(mrows) 
if fldir=-1 and onls=l then fnum(nsp)=-rhs(mrows) and c 
rhs (mrows ) =-rhs (mrows) 
if fldir=l and inls=1 then fnum(nsp)=-rhs(mrows) c 
and rhs(mrows)=-rhs(mrows) 
if fldir=-1 and inls=l then fnum(nsp)=rhs(mrows) 
if fldir=l and (inls>l or onls>l) then qn(modp)=rhs(mrows) 
if fldir=-i and (inls>l or onls>l) then qn(modp)=-rhs(mrows) 
finish 
finish 

!if there are two q '  terms. 

if nqts>l then start 

increment the counter for the number of fixed flows 

qlctr=qlctr+l 
nodiq=O ; nodiql=O ; nodiq2=0 
mm= 0 
for jjl,l,natoms cycle 
if itype(m,jj)=2 then start 
mm= mm + 1 
modp=ivalue(m, jj) 
fldir=l 
if modp<O then modp-(modp) and fldir=-1 

!get the identifier of flow which is defined in terms of other network 
if mm=l then qtctr(qlctr)=modp 
if mm>l then qterms(qlctr,mm-l)=modp 

!put the line in the coefficient matrix 

if qset(modp)=0 then sum=sum+l and qset(modp)=sum 
a(mrows,qset(modp))=-rvalue(m,jj) 
if mm>1 then qrterms(qlctr,mm-l)=-rvalue(m,jj) 
if pfix(in(modp))=O and (in(modp)=nodiq or c 
ffix(in(modp))=0) then c 
ffix(in(modp))=1 and nodiq=in(modp) 
if pfix(out(modp))=0 and (out(modp)=nodiq or c 
ffix(out(modp))=0) then  
ffix(out(modp))=l and nodiq=out(modp) 
if nodiql=O then nodiql=nodiq else nodiq2=nodiq 

finish else rhs(mrows)=rhs(mrows)+rvalue(m,jj) 
repeat 
if nodiq#O and nodiql=nodiq2 then fnum(nodiq)=rhs(mrows) 
finish 
finish 

contline 	!continue 

repeat ; Ifinish reading each equation line 



nextcont : !next 
check that all k's have been assigned. 

for i=l,l,nf cycle 
if k(i)=0 then ierror=-1 and exit 

repeat 

for iil,l,nn cycle 

check that flow balances have been set up for all nodes 
where the pressure has not been assigned. 

if pfix(ii)=0 and ffix(ii)0 then start 
mrowsmrows+ 1 
rhs(mrows) =0 
for jj=l,l,nf cycle 
if ii=in(jj) or ii=out(jj) then start 
if ii=in(jj) then a(mrows,qset(jj))=-1 c 
else a(mrows,qset(jj))=l 
ffix(ii)=l 

finish 
repeat 

finish 

check that, for any node which has pressure specified in terms 
I of pressure at another node, that the pressure specification is 

now specific 

if pfix(ii)<0 then start 
pcon=-(pfix(ii)) 
if pfix(pcon)=l then pfix(ii)=l else c 
ierror=-6 and -> errorl 

finish 
repeat 

errorl 	!error label 
end 
endoffile 
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***** DYNAMIC NETWORK PROGRAM ***** 

begin 

externairoutinespec flprint(longrealarrayname p,k,kb.,f,c 
integerarrayname u,d,integer nn,nf) 

externairoutinespeC pressures(longrealarrayflame a,b,pf,fo,c 
integer nn,nf,y,integerarrayname pset,qset) 

externairoutinespeC set up a(longrealarrayname k,kb,p,tp,fn,ncap,C 
a,b,den,ht,realarrayname qrterms,integerarrayname qterms,qtctr,u,d,pfix s  
longreal delta,tcon, integer qlctr,nn,nf,string(20) linmeth) 

externairoutinespec emas3cputime(longrealname time) 

externallongrealfnspec logten(longreal x) 

externairoutinespec nhink(integer nnodes,nlinks,c 
integerarrayflame in,out,pfix,link,cc,cp,longrealarravflame pp,fexx) 

externairoutinespec fcheck(longrealarrayname q,c 
fexx,integerarrayname pfix,link,in,Cp,C 
integer nn,longreal ftol,longrealname hftot,integername hfnod,check) 

externairoutinespeC flows(longrealarrayname p,kv,k,kb,f,fo,1,da,rk,ft1C 
denav,den,ht,vis,cd,cv,cl,C2,temp, realarrayname qrterms,c 
integerarrayname qtctr,qterms, ipbr,u,d..tlink,pform,integer pass..printit, 
nf ,nn,npump,nfluid,string(20) linmeth) 

externairoutinespec iaux(longrealname a,rhs,pp,integerflame nn,nz.c 
nm,1icn,1irn,icn,irn,ikeep,ivect,jveCt,iW,idiSP, 
rpt, longrealnarne anag,w) 

externairoutinespec idenst(longrealarrayname cd,longrealname C 

dens,longreal press,temp,integer nfluid) 

externairoutinespec idfit(longrealarrayname d,p,t,longrealname c 
cdl,cd2,cd3,integer nfluid) 

externairoutineSpeC ipmpnet(longrealarraYflame pchar,cl,c2..c 
integerarrayname npts.pform,integer npump) 

externairoutinespec ivfit(longrealarrayname v,p,t,longrealname c 
cvl,cv2,cv3,integer nfluid) 

externairoutinespec ivisco(longrealarrayflame cv,longrealname C 

visc,longreal press,temp,integer nfluid) 

externairoutinespeC ilnpump(longreal pl,p2,cl,c2,den,c 
integer pform,n,longrealname q,a,b) 

externairoutinespec set up rm(longrealarrayname ppi,p,k,kb,f,c 
fn..qn,a,b, integerarrayname node,pset,qset,pfix,ffiX,qfiX,insOUt 
integer nn,nf,integername sum,mrows) 
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externalroutinespec getdata(longrealarrayname p,kv,l,da,rk,ft,c 
temp,fn,ht,ntemp,tpres,tvisc,tden,ttemp,pchar,mu,ncap,sfp,c 
integerarrayname node,ltno,in,out,ffix,pfix,npts,ipbr,tlink,ncode,c 
itype,ivalue,u,d,realarrayname rvalue,integername c 
nn,nf,npump,nfluid,ierror,longrealname ptot,rav,stringname filename) 

externairoutinespec set up k(longrealarrayname f..fo,flst,k,kb,kv,p,c 
plst,l,da,denav,temp,vis,ht, ft,rk,cv,cd,cl,c2,mu,sfp,integerarrayname C 

ltno,in,out,tlink,pform, ipbr,integer nf,npump,c 
nfluid,pass, string(20) linmeth) 

externalroutinespec rsolex eqn(longrealarrayname a,b,p,f,fo,anag,c 
w,integer nn,nf,y,nm,integername nz,licn,lirn,integerarrayname c 
u,d,node,pset,qset,icn,irn,ikeep,iw, idisp, ivect, jvect,string(20) linmeth) 

externairoutinespec emas3prompt(stringname s) 

externalroutinespec emas3(stringname comm,parms,c 
integername flag) 

externairoutinespec opensq(integer m) 

externalrealfnspec random(integername i, integer n) 

Main program starts here ***** 

***** beginning of declarations 

main arrays... 
a - matrix for linearised equations 
b - constant vector for 
p - new pressures to be calculated, or delta p's in Newton solution 
po- last pressures 
kv - valve consts for flow=kv*sqrt(delta  p) 
k - linearised valve constants 
f - new flows. NB max 2*  no.of nodes 
fo - last flows 
fn - node specified flows 

'structure' arrays... 
u(i) - number of node upstream on branch i 
d(i) - 	.. 	.. 	downstream 
pfix(i) - is 1 if pressure at node i is fixed specification, 

o if variable 
ffix(i) - is 1 if flow at node i is fixed specification, 

o if variable 
N.B. flow into node is +ve, out of node is -ye 

longrealarray a(1:40,1:40),p,plst,b(1:40),po,ppi,ncap,ptp,tp.ht,ç 
l,da,rk,ft,fn,den,temp,ntemp,mu,sfp(1:40) 
longrealarray k, kv,kb, fo,f ,flst,denav,vis(l: 40) 
longrealarray tpres,tvisc,tden,ttemp(1:3),pchar(1:10,1:10) 
longrealarray cl,c2(1:10) 
longrealarray cv,cd(1:3) 
realarray rvalue(l:40,l:l0),qrts(l :10,1:5) 
integerarray ltno,pset(1:40),qset(1:40) 
integerarray pbr,pform(l:l0),qts(1:10,1:5) 
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integerarray cp,cc(1:40,1:6),link(1:40),qtcount(1:10) 
integerarray in,out,ffix,pfix,tlink,ncode(1:40),npts,ipbr(1:10) 
integerarray itype,ivalue(1:40,1:10),node(1:40) 
integerarray u,d(1:40) 
longreal ptot 
longreal time2, time, tcon, hftot, ftol, ray 
real delta,deltac,tnext,xmax,xrandom,deltatime,deltaclast,deltaco 
real tmax 
string(40) outfile 
integer nm,hfnod,check,rcheck,ofiag,nodemax,ntstep 
integer nfiuid( -ve for gas, 0 or +ve for liquid) 
integer ll,mm,tc,y,zz,mcc,ks,irandom,nrandom 
integer sum, mrows,pass,eflag,pcount,pcset,pc2s 
integer nn,nf,npump,ierror,i,j,zw,zy,qlcount,ff 
string(20) filename 
string(l) ans 

owninteger seedl=1234567 
owninteger seed2=7654321 
ownreal switch=10 (..after ? iterations switch to Newton) 
ownreal eqset=0 (..solve full set or short set of eqns) 
ownreal eps0.001 (small number for compressibility') 
ownstring (20) linmeth="hutchison" (initial solution method) 
ownstring (20) solmeth="shortset" (solve for pressures only) 

CHECK P 	This routine checks pressures for convergence 
and returns 0 if sum of absolute changes is less 
than specified limit. Also updates po(). 

integerfunction check p(longrealarrayname p,po,integer nn) 

I in... p(),po,nn 
out.. po() 

integer i 
long real sum 
suni= 0 
for i=l,l,nn cycle 

sumsum+rnod(p( i)-po( i)) 
0 ( i  ) = p ( i) 

repeat 

current limit is 0.00001 N/m**2 

if sum<0.00001 then result=0 
new line 
!printstring(press Error = ") ; !printfl(sum,7) ; !newline 
resu it =1 

end 

nm=l 0 
ftol=0 .0000001 

qlcountO 
for i=1,1,10 cycle 

qtcount( i )=0 
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for j=1,1,5 cycle 
qts( i, j )0; qrts( i , j )0 

repeat 
repeat 

for i=1,1,40 cycle 
for jl,l,lO cycle 
itype(i,j)=0 ; ivalue(i,j)=0 
rvalue( i , j )0 
repeat 

p(i)=O 
f(i)=O 
ppi( i)=0 
repeat 

for i=l,l,lO cycle 
pform( i ) =0 
cl(i)0 ; c2(i)=0 
repeat 

filename="name of file 
emas3prompt( filename) 
readstrinq(f ilename) 
emas3("define",'2,.out,eflag) 
outtile="name of output file 
emas3prompt(outf ile) 
Get name of output file for results 

readstring(outfile) 
emas3("define","11,.outfile,eflag) 
ernas3( "def me" ,"20 ,cfkout" ,eflag) 
emas3( "def me" , "21 ,cfout" ,eflag) 
emas3("define","22,cpout",eflag) 
emas3("define",'23,cpkout",eflag) 
emas3("define","25,dy2list",eflag) 

getdata(p,kv,l,da,rk,ft,temp,fn,ht,ntemp,tpres,tvisc,tden,c 
ttemp,pchar,mu,ncap,sfp, node, ltno,in,out,f fix, pfix,npts,ipbr,tljnk,c 
ncode,itype,ivalue,u,d,rvalue,c 
nn,nf, npump, nflu id, ier ror, ptot , rav,filename) 
!get no. of links to each node 
nlirik( nfl ,nf , in ,out ,ncode , link, cc ,cp, p, fn) 

for y=l,l,nn cycle 
if ncap(y)>0 then ncap(y)=ncap(y)/(rav*nternp(y)) 
if p(y)0 then start 
p(y)ptot 
po(y)ptot 
ppi(y)ptot 
finish else start 
ppi(y)=p(y) 

0 ( y ) p  ( y) 
finish 
repeat 

assign initial value to hfnod 
hfnod=0 
hftot=0 
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!get pump characteristics if there are pumps in the network 
if npump>O then start 
ipmpnet(pchar,cl,c2,npts,pform,npump) 
finish 

!get viscosity and density fit details 
ivfit(tvisc,tpres,ttemp,cv(l),cv(2),cv(3),nflujd) 
idf it ( tden,  tpres,  ttemp, cd(l) ,cd(2) cd (3) nf lu id) 

for y=l,l,nf cycle 
k(y)0.O ; kb(y)0.O 
repeat 
flows(p,kv,k,kbsf,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,c 
qrts,qtcount,qts,ipbr,u,d,tlink,pform,o,o,nf,nn,npump,nfluid,ljnmeth) 

****** start of program run with defined data set 

cycle 	 - 
emas3cputime(t ime) 

select input( 0) 
emas3prompt("Switch to Newton:") ; read(switch) 
emas3prompt("Label of node for pressure control:"); read(nodemax) 
if nodemax>0 then start 
emas3prompt("Maximum pressure variation at this node (Newtons):") 
read(xmax) ;xmax=xmax*2 
finish 
emas3prompt("time step : "); read(delta) 

deltatime = 0 
deltac=0 
deltaco=0 

if nodemax>0 then start 
emas3prompt("non-disturbance time(secs) : "); read(deltatime) 
finish 
emas3prompt("no of time steps : "); read(ntstep) 
emas3prompt("value of tmax : "); read(tmax) 

tcon=0; ! initialise time counter 
tp(zz)=0 for zz=l,l,nn 
oflag=l;! set convergence flag to off 

***** read data into file for plotting with "EASYGRAPH' 

only print data for node whose pressure is being controlled. 
for j1,1,nf cycle 
if ltno(j)>0 then start 
selectoutput(22) 
write in time and pressure as data pairs 
newl me 
print(deltac,5,2); print(p(ltno(j))*0.00001,4,10) 
newl me 
finish 
repeat 

closestream(22) 
selectoutput(21) 

only print data for link through which flow is controlled 
for j=l,l,nf cycle 
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if ltno(j)<0 then '1-.ir F 

ltno(j)=0-ltno(j) 
write in time and flow as data pairs 
print(deltac,5,2); print (f ( ltno( 	) , 4, 5) 
ltno( j )=0-ltno(j) 
newl me 
finish 
repeat 

closest ream(21) 
selectoutput (20) 

for j=l,l,nf cycle 
if ltno(j)<0 then start 
write in time and valve constant as data pairs 
print(deltac,5,2); print(kv(j),2,10) 
newl me 
finish 
repeat 

closestream(20) 
seléctoutput(23) 

for j1,1,nf cycle 
if ltno(j)>0 then start 
write in time and valve constant as data pairs 
print(deltac,5,2); print(kv(j) ,2,lO) 
newl me 
f i i i zh 

repeat 

closestream(23) 

!*** set values of fist and p1st for next time round 
flst(zw)=f(zw) for zw=l,l,nf 
plst(zy)=p(zy) for zy=l,l,nn 

deltaclast=0 
tnext=deltat ime 
for tc=l,l,ntstep cyc1e; start of time cycle 
deltac=deltac+delta 

see if time value has exceeded tnext 
if nodemax>0 then start 
if (deltac-deltaclast)>tnext then start 
deltaclast=deltac 
tnext=random(seedl,0)*tmax 

newline ; printstring("time = ');print(deltac,5,2);printstring("secs") 
newline ; printstring("new generated time interval = ');print(tnext,4,2) 

xrandom=random(seed2,0)*xmax 
if xrandom >= 200 then xrandom -> +ve fluctuation in pressure 
if xrandom < 200 then xrandom -> -ye fluctuation in pressure 

xrandom = xrandom - 200 
printstring(" x 	h );print(xrandom*l@_5,2,3) 
if nodemax>0 then start 

newline; printstring("old pressure was ");print(p(nodemax),7,3) 
p(nodemax)=p(nodemax )+xrandom 

newline; printstring("new pressure is ");print(p(nodemax),7,3) 
finish 

finish 
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finish 
for j=l,l,nn cycle 
if ncap(j)>O then ptp(j)=tp(j) and tp(j)=p(j) 
repeat 
newline;!printstring("iteration no. ");!write(tc,3) 
newline; ! printstring("time step = "); !print(deltac,5,3) 
tcondel ta 
if tc=l then tcon=O 

for i=l,l,lOO cycle ;! ----------------start iteration ----------------

set the value of 'pass' for routines 'setupk' and 'flows' 

pass =1 
if tc=l and i1 then passO 
if tc>l and i=l then passO 

selectoutput (2) 
set up k(f,fo, flst ,k ,kb,kv,p,plst, l,da,denav,temp,vis,ht ,ft, rk ,c 
cv,cd,cl,c2,mu,sfp,ltno,u,d,tlink,pform,ipbr,nf,npump,nfluid,pass,linmeth 
selectoutput (2) 

set up a(k.,kb,p, tp,fn,ncap,a,b,denav,ht,qrts,qts,qtcount ,u,d,pfix,c 
delta,tcon,qlcount,nn,nf,linmeth) 

pressures(a,b,p,f,fo,nn,nf,O,pset,qset) 
if i>switch then linmeth="newton" 

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,c1,c2,temp,c 
qrts,qtcount,qts,ipbr,u,d,tlink,pform,pass,O,nf,nn,npump,nfluid,linmeth) 

check for convergence 
fcheck(f,fn,pfix,link,u,cp,nn,ftol,hftot,hfnod,check) 

if (check = 0 and i>2) or i>lOO then start 
!newline ; printstring("check=O") 
!newline;! priritstring("error = ");! print(hftot,3,5) 
!printstring(" at node ");! write(hfnod,3) 
new 1 i ne 
if (check = 0 and i>2) or i>100 then exit 
!if check p(p,po,nn) = 0 or i>100 thenexit 
finish 

repeat ; 	 next iteration ---------------- 

set up k(f,fo, flst,k ,kb, kv,p,plst, l,da,denav,temp,vis,ht,ft, rk ,c 
!cv,cd,cl,c2,mu,sfp,ltno,u,d,tlink,pform,ipbr,nf,npump,nfluid,pass,linmet 

flows(p,kv,k,kb,f,fo,l,da,rk,ft,denav,den,ht,vis,cd,cv,cl,c2,temp,c 
qrts,qtcount,qts,ipbr,u,d,tlink,pform,l,0,nf,nn,npump,nfluid,linmeth) 

!*** set values of flst and p1st for next time round 
flst(zw)=f(zw) for zwl,l,nf 
plst(zy)p(zy) for zy=l,l,nn 
! 

emas3cputime(t ime2) 
!printstring("cpu secs = ");!print(time2-time,5,3) 
!printstring(" 

Used ") ; ! write(i,4) ; ! printstring(" iterations") 
new 1 i ne 
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!read data into file for plotting with "EASYGRAPH' 

closestream(2) 
only print data for node whose pressure is being controlled 
for jl,l,nf cycle 
if ltno(j)>O then start 
selectoutput(22) 
write in time and pressure as data pairs 
print(deltac,5,2); print(p(ltno(j))*0.00001,4,10) 
newl me 

repeat 

closestream(22) 
selectoutput(21) 

only print data for link through which flow is controlled 
for j1,1,nf cycle 
if ltno(j)<O then start 
write in time and flow as data pairs 
ltno( j )=O-ltno( j 
print(deltac,5,2); print(f(ltno(j)),4,5) 
ltno(j )0-ltno(j 
newl me 
finish 
repeat 

closestream(21) 
selectoutput(20) 

for j1,1,nf cycle 
if ltno(j)<O then start 
write in time and valve constant as data pairs 
print(deltac,5,2); print(k(j),2,10) 
newl me 
Fi ,- 	 ,h 

repeat 

closestream(20) 
selectoutput(23) 

for j1,1,nf cycle 
if ltno(j)>O then start 
write in time and valve constant as data pairs 
print(deltac,5,2); print(k(j),2,10) 
newl me 
finish 
repeat 

closestream(23) 
selectoutput (2) 

for zz=l,l,nn cycle 
if ncap(zz)>O then start 
if mod(ptp(zz)-tp(zz))<O.00l then oflagO 
if tc=l then oflag=l 
finish 
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repeat 
if oflagO then c 
start 
printstring(" 
end of time-step cycle") 
newl me 
exit 
finish 

repeat; ! repeat for time step cycle 
select input( 0) 
emas3prompt("Continue (1 or N) ?"); skipsymbol ; readitem(ans) 

if ans ="n" or ans="N" then c 
printstring(" 	 Finish") and -> printlabel 

set all pressures to original values 
p(ll)=ppi(ll) for ll=l,l,nn 

newl me 
emas3prompt("change parameters (Y or N) ?") 
sk ipsymbol ;readi tem(ans) 
newl me 
if ans="y" or ans="Y" then start 
emas3prompt("link or node parameter?") 
read(kv(l)); read(mu(l)); read(ltno(l)) ; read(sfp(l)) 

printlabel: 
!closestream(2) 
selectoutput(ll) 
flows(p,kv,k,kb,f,fo,l,da,rk,ft.denav,den,ht,vis,cd,cv,cl,c2,temp,c 
qrts,qtcount,qts,ipbr,u,d,tlink,pform,l,l,nf,nn,npump,nfluid,linmeth) 
!closestream(ll) 
if ans ="n" or ans="N" then stop 

repeat 

endofprogram 



SET UP K : Routine to get the 'k' values for each link. 
The k' values are obtained from the nonlinear 
kv' values. The equation set up for each link 
is ; Q = K * (P(in) - P(out)) + KB 

external c 
routine set up k(longrealarrayname f,fo,flst,k,kb,kv,p,plst,l,c 
da,denav,temp,vis,ht,ft,rk,cv,cd,cl,c2,mu,sfp,jntegerarrayname ltno,in,c 
out, tlink,pform, ipbr,integer nf,npump,nfluid,pass,string(20) linmeth) 

externairoutinespec ilnpump(longreal pl,p2,cl,c2,den,c 
integer pform,n,longrealname q,a,b) 

externalroutinespec idenst(longrealarrayname cd,longrealname C 

dens,longreal press,temp,integer nfluid) 

externalroutinespec ivisco(longrealarrayname cv,longrealname C 

visc,longreal press,temp,integer nfluid) 

externallongrealfnspec logten(longreal x) 

!in ... kv,p,fo(),nf 
out.. k() 

integer i ,j, vv,ks 
longreal flow,dp,pi, re,ff,pav 
longrealarray den(1:40) 
pi3 .14159 

I limit sets minimum pressure difference or flow below which 
linearisation is not attempted. 

constreal limit=0.0001 
for i=l,l,nf cycle 

pav=0.5*(p(in(i))+p(out(i))) 

get average density in the pipe 
idenst(cd,denav(i),pav,temp(i),nfluid) 
get density at either end of the pipe 
idenst(cd,den(in(i)),p(in(i)),temp(i),nfluid) 
idenst(cd,den(out(i)),p(out(i)),temp(i),nfluid) 

get viscosity in the pipe 
ivisco(cv,vis(i),pav,temp(i),nfluid) 
dp(p(in(i))+9.81*denav(i)*ht(in(i)))_(p(out(i))c 
+9.81*denav(i)*ht(out(i))) 

dpmod(dp) 
if dp<limit then dplimit 
flowmod(fo( i)) 
if mod(flow)<limit then flow=limit 

!for tlink=-1, k does not have to be linearised 

if tlink(i)-1 and kv(i)O then start 
kb(i)=O 
if ltno(i)>O then start 
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is upstream or downstream pressure being controlled ? 

if sfp(i)>0 then start 

k(i)kv(i)+mu(i)*(sfp(i)_plst(ltflo(j))) 

finish else if sfp(i)<O then start 

k(i)kv(i)+mu(i)*(plst(ltno(i))+sfp(j)) 

finish 

if passO then k(i)=kv(i) 
finish else if ltno(i)=0 then start 
k(i)=kv(i) 
kb(i)=O 
ifp(in(i))<p(out(i)) then kb(i)=-kb(j) 
finish else if ltno(i)<O then start 
vv=0-ltno(i) 
k(i)kv(i)+mu(i)*(sfp(i)_flst(vv)) 
kb(i)=O 
ifpassO then k(i)kv(i) 
if flst(vv)<0.0000001 then k(i)=kv(i) 
finish 
finish else if tlink(i)=-1 and kv(i)=0 then start 

k(i)=O  
kb(i)=O 

finish 
if tlink(i)=0 thenstart 
if ltno(i)>0 then start 

is upstream or downstream pressure being controlled ? 

if sfp(i)>0 then start 

k ( i  ) =kv  ( i )+mu ( i  ) * (sfp( i )-plst ( ltno( i ) 

finish else if sfp(i)<0 then start 

k(i)kv(i)+mu(i)*(plst(ltno(i))+sfp(i)) 

finish 

if passo then k(i)kv(i) 
k(i)k(i)/2/sqrt(dp) 
kb( i ) =k  ( i  ) * (sqrt( dp)/2) 
ifp(in(i))<p(out(i)) then kb(i)=-icb(i) 
finish else if ltno(i)=0 then start 
k ( i )=kv( i )/2/sqrt (dp) 
kb( i)=kv( i)*(sqrt(dp)/2) 

if p(in(i))<p(out(i)) then kb(i)-kb(i) 
finish else if ltno(i)<0 then start 
vv=0-ltno( i) 
k(i)kv(i)+mu(i)*(sfp(i)_flst(vv)) 
if passo then k(i)=kv(i) 
k(i)k(i)/2/sqrt(dp) 
kb(i)rk(i)*(sqrt(dp)/2) 
if p(in(i))<p(out(i)) then kb(i)=-kb(i) 
finish 
finish 
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if tlink(i)=l then start 
if pass=O then start 

!get laminar 'k' 
kv(i)=pj/(2*vjs(j))*denav(j)*da(j)**4/((l(i)+50*ft(j)*da(j))*64) 
k(i)kv(j) 
kb(i)=O 
finish else start 
get Reynolds number 
re=(flow*4)/(pj*da(j)*vjs(i)) 

laminar or turbulent flow? 
if re<2500 thenstart 
get friction factor for laminar flow 
ff =6 4/re 
finish else start 
get friction factor for turbulent flow 
use Chen explicit equation 
ff( rk(i)**l.1098)/2 .8257+ (5 .8506/( re**O  .8981) 

ff_2*log t en (( r k ( i ) /3 . 7065 ) _ (5.0452/r)*1Qgefl(ff))  

ff=( 1/ff)**2 
finish 
get k(i) 

kv(i )2*mod( loy(den( in( i ))/den(out( i)) )) 
kv(i)r1/(ff*l(i)/da(i)+ft(i)+kv(i)) 
II I 

if denav(i)<O then start 
newline;printstring("up");write( in( i),4) ;print (p( in( j)),7,3) 
newline;printstring('down") ;write (out(j),4);prjnt(p(out(j)),7,3) 

finish 
II 

kv(i)(pi/2)*da(i)**2*sqrt(denav(i)/2)*sqrt(kv(j)) 
if linmeth='newton" then start 

k( i )kv( i )/(2*sqrt(dp)) 
kb(i)mod((kv(i)/2)*sqrt(dp)) 
if p(out(i))>p(in(i)) then kb(i)=O-kb(i) 

finish 
if linmeth=hutchison" then k(i)=(kv(i)**2)/flow and kb(i)=O 

finish 
finish 

get the pump number corresponding to this link number 
if tlink(i)=2 then start 
for j1,1,npump cycle 
if ipbr(j)=i then start 
ilnpump(p(in(i)),p(out(i)),cl(j),c2(j),denav(i),c 
pform(j),pass,f(i),k(i),kb(i)) 
finish 
repeat 
finish 

repeat 

end 
endoffile 



externairoutine set up a(longrealarrayname k,kb,p,tp,fn,ncap,a,b,c 
den,ht.realarrayname qrterms,integerarrayname qterms,qtctr,u,d,pfix,c 
longreal delta,tcon, integer qlctr,nn,nf,string(20) linmeth) 

Create the a matrix of linearised equations and its vector b 
from the linearised flow/pressure relations involving k. 

integer i, j, fl ,f2, fdl, fd2,vv 
integer fflag,q2def,jj,mm,uu 

for i=1,1,nn cycle 
a(i,j)=O for j=l,l,nn 
b(i)=fn(i)  

repeat 

for i=1,1,nf cycle 
fflagO 
if qlctr>O then start 

for jjl,l,qlctr cycle 
if i=qtctr(jj) then fflag=jj 

repeat 
finish 
if fflag=O then start 
flu(i) ; f2=d(i) 
a(fl,fl)=a(fl,fl)-k(i) 
a(f2,f2)=a(f2,f2)-k(i) 
a(fl,f2)a(fl,f2)+k(i) 
a(f2,fl)=a(f2,fl)+k(i) 

b(fl)=b(fl)+kb(i) 
b( f2 )=b( f2 )-kb( i 
b(fl)b(fl)_(k(i)*den(i)*9.81*(ht(f2)_ht(fl))) 
b(f2)b(f2)(k(i)*den(i)*9.81*(ht(fl)_ht(f2))) 

finish else start 
!look at the related flows 

for mm=1,1,5 cycle 
if qterms(fflag,mm)>O then start 

!examine whether these flows themselves are defined in terms - 
!of other flows 

q2defO 
for vvl,l,qlctr cycle 

if qterms(fflag,rnm)=qtctr(vv) then q2def=vv 
repeat 
if q2def=O then start 

if k(qterms(fflag,mm))>O then start 
fl=u(qtctr(fflag)) ; f2=d(qtctr(fflag)) 
fdl=u(qterms(fflag,mm)) ; fd2=d(qterms(fflag,mm)) 
a(fl,fdl)a(fl,fdl)_(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm)) 
a(fl,fd2)=a(fl,fd2)+(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm)) 
a(f2,fd2)=a(f2,fd2)_(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm)) 
a(f2,fdl)=a(f2,fdl)+(_l)*qrterms(fflag,mm)*k(qterms(fflag,mm)) 
b(fl)b(fl)+(_l)*qrterms(fflag,mm)*kb(qterms(fflag,mm)) 
b(f2)=b(f2)_(_l)*qrterms(fflag,mm)*kb(qterms(fflag,mm) 

finish 
finish else start 

for uu=1,1,5 cycle 
if qterms(vv,uu)>O then start 

If k(qterms(vv,uu))>O then start 
flu(qtctr(vv)) ; f2d(qtctr(vv)) 



fdl=u(qterms(vv,uu)) ; fd2=d(qterms(vv,uu)) 

finish 
finish 

repeat 
finish 

finish 
repeat 

! ************************************************************************ 
finish 

repeat 

for i=1,1,nn cycle 
if pfix(i)=1 thenstart 
a(i,j)=O for jr1,1,nn 
b(i)p(i) ; a(i,i)1 

finish 
if ncap(i)O and tcon>O then start 
a(i,i)=a(i,i)-ncap(j)/delta 

b( i ) b( i )-tp( i )*ncap( i )/delta 
finish 

repeat 
end 
endoffile 



external routine flows(longrealarrayname p,kv,k,kb,f,fo,l,da,rk,ft,c 
denav,den,ht,vis,cd,cv,cl,c2,temp,.realarrayname qrterms,c 
integerarrayname qtctr,qterms,ipbr,u,d,tlink,pform,integer c 
pass,printit ,nf,nn,npump,nfluid,string(20) linmeth) 

externairoutinespec ilnpump(longreal pl,p2,cl,c2,den,c 
integer pform,n,longreàlnanie q,a,b) 
externairoutinespec idenst(longrealarrayname cd, longrealnaine c 
dens,longreal press,temp,integer nfluid) 
externairoutinespec ivisco(longrealarraynauie cv, longrealname c 
visc,longreal press,temp,integer nfluid) 
calculate flows in branches once pressures are known 

in.. p() and pointers u(),d(), kv(),k(),den(), 
deriav( ) , l( ) , da( ) , rk( ) ,ft 
and scalars pass, nf, printit 

out... f() and fo() when pass=O 

integerarray iflow(1:10) 
integer i,j, ii,jj,ifctr,lkflo,lkrflo,uu,vv,yy,zz,nflo,qflo 
longreal flow,dp,s,ff,fp,re,pi ,pav,kreal 

owninteger opO 
opprint it 
pi=3 .14159 

if opi then printstring( 
node 	pressure 

if op=l then start 
for i1,1,nn cycle 

write( i,5) 
print(p(i),4,4) 
newl me 
repeat 
finish 
if op=i then printstring( 
Branch 	from 	to 	flow 	 k 	 kb 

ifctr=O 
iflow(i)0 for i1,1,10 
qfloO 
for 11,1,nf cycle 

pav0.5*(p(u(i))+p(d(i))) 
get average density in the pipe 
idenst(cd,denav(i),pav,temp(i),nfluid) 
get viscosity in the pipe 
ivisco(cv,vis(i),pav,temp(i),nfluid) 

dp(p(u(i))+9.81*denav(i)*ht(u(i)))_(p(d(i))+9.81*denav(i)*ht(d(i))) 
if dp>0 then s=l else s-1 
dpmod(dp) 

!pipe data or valve const only ? 



if tlink(i)-99 then start 

!flow is specified in terms of flow in another link 

for ii=l,l,lO cycle 
if qtctr(ii)=i then start 
ifctr=ifctr+l 
iflow( ifctr)=ii 

finish 
repeat 

finish 

if tlink(i)=l thenstart 
!pipe data supplied 

Us it first time round ? 
if pass=O thenstart 
calculate laminar flow in each pipe 

flow(pi/(2*vis(i)))*denav(j)*da(j)**4/((l(j)+50*ft(j)*da(j))*64)*dp*s 
finish elsestart 
calculate Reynolds number 
re=mod ( f  ( i)  ) *4/( pi*da( i) 	( 
laminar or turbulent flow ? 

if re<2500 thenstart 
get laminar flow 

flow=(pi/(2*vis(i)))*denav(i)*da(j)**4/((l(j)+50*ft(i)*da(i))*64)*dp*s 
finish elsestart 
get flow 

flowrkv( i)*sqrt(dp)*s 

!if linmeth='newton" then flow=k(i)*dp*S + kb(i) 
!if linmeth="hutchison" then flow=k(i)*dp*s 

finish 
finish 

finish else if tlink(i)=O thenstart 
only value for kv supplied 

if passO then flow=kv(i)*s*sqrt(dp) 
if linmeth='hutchison and pass=l then flow=k(i)*dp*s + kb(i) 
if linmeth='newton and pass=l then flow=k(i)*dp*s + kb(i) 

finish else if tlink(i)=-1 then start 
if pass=O then flowkv(i)*s*dp else c 
flow=k ( i )*s*dp; (linear kv supplied) 
finish else if tlink(i)=2 then start 
get the pump number corresponding to this link number 
for j1,1,npump cycle 
if ipbr(j)=i then start 
ilnpump(p(u(i)),p(d(i)),cl(j),c2(j),denav(i),c 
pform(j),pass,flow,k(i),kb(i)) 
finish 
repeat 
finish 

if passO then start 
if tlink(i)=-99 then flow=O 
if tlink(i) -99 then fo(i)=mod(flow) else fo(i)=O 

finish else start 
if linmeth'hutchison' then c 

fo(i)=0.5*mod(fo(i)+mod(flow)) else fo(i)=flow 
finish 
f(i)=f low 
repeat 
!examine flows in links where tlink = -99 (signifies flow is 
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!specified in terms of other network flows) 

if ifctr > 0 then start 
for iil,l,ifctr cycle 
set flag to indicate that recursive flow definition has not (yet) occu 

nflo=l 
lkfloiflow( ii) 
qflo=qtctr(lkf 10) 

initialise value of flow in this link 
f(qflo)0 
for zz=l,l.S cycle 
lkrfloO; yyO; vvO 
if qterms(lkflo,zz)>0 then lkrflo=qterms(lkflo,zz) and yyzz 

is related flow expressed in terms of other flows ? 
if lkrflo>0 then start 
for uul,l,lO cycle 

if lkrflo=qtctr(uu) then vv=uu and nflo0 
repeat 
if vv>O then start 
for uu1,1,5 cycle 

if qterms(vv,uu)>O then start 
f(qflo)=f(qflo)+qrterms(lkflo,yy)*qrterms(vv,uu)*f(qterms(v ,  

finish 
repeat 

finish else start 
f(qflo)=_(l)*qrterms(lkflo,yy)*f(lkrflo) 

finish 
finish 

repeat 
repeat 

finish 

for i=1,1,nf cycle 
if op=l then start 
write( i,5) ; write(u(i) ,7); write(d(i),5) 
print(f( i) ,8,9) 
print(k(i),5,9) and print(kb(i),6,6) 
newl iries (1) 

finish 
repeat 

end 
endoffile 
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V. Data Sets, Results and Diagrams for EQPARSE and DYNET problems. 



FIG 5i. 

flU 52 

FIG 53 

I 3 
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Network 5.1 

1 2 	-99 200 
2 3 -99 200 
2 4 -99 200 
-1 
-1 
Li 

10 200 1000 1 
20 300 1000 1 
30 400 1000 1 
1 
0 
P(1)=10 
P(1)=P(3)+1 
0.0003(P(1)-P(2))=Q(1,2) 
0.0003(P(2)-P(3))=Q(2,3) 
0.0003(P(2)-P(4))=Q(2,4) 
Q(2,4)=15 

Network 5.2 

1 2 	1 	12 	30 	0.003 	2 	200 
2 3 	1 	12 30 	0.004 	1 	200 
2 4-99 	 200 
-1 
-1 
Li 

10 200 	1000 	1 
20 300 1000 1 
30 400 1000 1 
1 
0 
P(1)=3 
P(1)=P(3)+1 
0.0003(P(2)-P(4))=Q(2,4) 
Q(2,4 ) =0.009 
E 



11-0 

Results for Network 5.1 

Branch from to P in (bar) P out (bar) Flow (kg/s) 

1 1 2 10.0 9.25 22.5 
2 2 3 9.25 9.0 7.5 
3 2 4 9.25 8.75 15.0 

Results for Network 5.2 

Branch from to P in (bar) P out (bar) Flow (kg/s) 

1 1 2 3.0 2.4938 1.9658 
2 2 3 2.4938 2.0 1.9568 
3 2 4 2.4938 2.4935 0.009 



Network 5.3 

1 2 -1 	0.5E-5 	0.1E-6 -1 5 	25 
-1 
1 1 3 	20 	0 	20 	25 
1 2 1 	0 	0 	1 	30 
-1 
0 
10 27 	11 	0.018 
10 127 	8.33 	0.018 
20 377 	10 	0.018 
-1 

Network 5.4- 

1 2 0 	0.005 	0 	0 0 30 
2 3 0 	0.005 	0.5E-8 	2 -12 30 
-1 
1 1 1 	0 	0 	20 	30 
1 2 3 	20 	0 	0 	30 
1 3 I 	0 	0 	1 	30 
-1 
0 
29.98 420 	12.95 	0.0188 
25.84 460 	10.27 	0.0198 
30.81 540 	11.34 	0.018 
-1 
E 

Network 5.5 

1 2 -1 	0.001 	1E-7 	4 7 25 
2 3 1 	0 	100 	0 0 25 
3 4 -1 	1E-6 	0 	0 0 25 
4 2 -1 	1E-6 	1E-6 	-3 0.6 25 
4 5 -1 	1E-6 	0 	0 0 25 
-1 
1 1 1 	0 	0 	1 	25 
1 2 3 	5 	0 	0 	25 
1 3 3 	0 	0 	0 	25 
1 4 3 	1 	0 	0 	25 
1 5 1 	0 	0 	6 	25 
-1 
1 
3 
2 3 1.2E6 	0 	8E5 	1 1000 2 
10 27 11 	0.018 
10 127 8.33 	0.018 
20 377 10 	0.018 
-1 
E 



Results for Network 5.4 

Branch from to P in (bar) P out (bar) Flow(kg/s) 

1 1 2 20.00000 14.59973 3.4763 
2 2 3 14.59973 1.00000 3.4763 

Results for Network 5.5 

Branch from to P in (bar) P out (bar) Flow (kg/s) 

1 1 2 1.00000 0.99997 0.0251 
2 2 3 0.99997 11.92359 0.5673 
3 3 4 11.92359 6.25054 0.5673 
4 4 2 6.25054 0.99997 0.5422 
5 4 5 6.25054 6.00000 0.0251 



Fig 5..4 : Simple Flow ConIr'ol 

15.0 

18.0 

14.0 

12.0 

(I) 
1-1 

0) 

*0.0 

0 

Li 

8.0 

4.0 

2.0 

	

0.01 	i 	i 	I I 	I 	I 	I 	I 	I 	I 

	

0 	 10 	
I 	

IC 	 50 	 00 	 70 	 00 	 00 	 400  so 	
Time (sees) 



14.0 

12.0 

10.0 

C- 
a 

e.0 

(t) 
a, 
L 8.0 

3- 

4.0 

2.0 

-4 

Fig 5.5 : Simple Pressure Conirnol 
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Fig. 5.7 Compressor Flow 
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M. Data Sets. Results and Diagrams for HF Kiln Network 

This appendix relates to Chapter 6 and includes the following: 

Data set for HF kiln network analysed using FLONET 

FLONET results 

Data set 1 for HF kiln network analysed using EQNET 

Graph of max. nodal flow residual vs. iteration number for steady-
state network 

EQNET results for data set 1 

Data set 2 for HF kiln network analysed using EQNET 

EQNET results for data set 2 

Diagram for dynamic' HF network 

Data set for HF network analysed using DYNET 

Graph of pressure vs time at node 29 in HF network 



CASE 5 

DATA AND RESULTS UNITS - 

MASS Ft.OWRATEs: 

KG / S 

PRESSURES: 

BARS ABS 

DENSITY: 

KG / CU.M 

VISCOSITY: 

CENTIPOISE 

PIPE BORE: 

MILLIMETRES 

PIPE LENGTH 
AND NODE HEIGHT: 

METRES 

TEMPERATURE: 

CELCIUS 

MEAN FLOW VEL 

MIS 

PIPING DETAILS DATA - 

NUMBER OF PIPES - 38 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN XX)O( --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

1 	2 2.00 2500.000 0.25000 0.000 400.0 

2 	3 3.00 2300.000 0.25000 0.500 400.0 

3 	29 2.00 2500.000 0.25000 2.000 400.0 

29 	4 8.00 2500.000 0.25000 2.000 530.0 

4 	5 10.00 2500.000 0.25000 1.100 530.0 

5 	9 18.00 1000.000 0.25000 0.000 530.0 

5 	8 2.00 2500.000 0.25000 0.000 530.0 



Zco 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

8 7 24.00 1800.000 0.25000 0.000 530.0 

7 6 10.00 1300.000 0.25000 0.000 530.0 

9 13 4.00 1000.000 0.25000 3.250 530.0 

13 17 5.00 1100.000 0.25000 0.000 445.0 

17 21 18.00 1300.000 0.25000 6.500 360.0 

8 12 4.00 1500.000 0.25000 3.250 530.0 

12 16 17.00 1600.000 0.25000 0.000 455.0 

16 20 4.00 1500.000 0.25000 3.250 380.0 

7 11 4.00 1500.000 0.25000 3.250 530.0 

11 15 17.00 1600.000 0.25000 0.000 480.0 

15 19 4.00 1500.000 0.25000 3.250 430.0 

6 10 18.00 1300.000 0.25000 3.250 530.0 

10 14 8.00 1100.000 0.25000 0.000 485.0 

14 18 4.00 1000.000 0.25000 3.250 460.0 

28 31 0.00 750.000 0.00000 0.000 275.0 

31 29 23.00 750.000 0.25000 6.400 275.0 

2 24 14.00 750.000 0.25000 2.200 400.0 

24 25 3.00 750.000 0.25000 0.000 250.0 

25 26 5.00 750.000 0.25000 1.100 100.0 

26 27 18.00 900.000 0.25000 • 	1.100 100.0 

11 14 1.00 300.000 0.25000 1.500 495.0 

12 15 1.00 400.000 0.25000 1.500 480.0 

13 16 1.00 300.000 0.25000 1.500 455.0 

21 20 8.00 1300.000 0.25000 0.000 360.0 

20 22 9.00 2500.000 0.25000 0.000 370.0 



2o 

NODE LABELS PIPE PIPE INSIDE WALL FIT. LOSS MEAN 
XXXX --> XXXX LENGTH BORE ROUGHNESS COEFF. TEMP. 

18 	19 19.00 1000.000 0.25000 0.000 460.0 

19 	22 17.00 1800.000 0.25000 0.000 440.0 

22 	30 10.00 2500.000 0.25000 1.100 400.0 

30 	23 1.00 2500.000 0.25000 1.100 400.0 

23 	32 0.00 2500.000 0.00000 0.000 400.0 

32 	 1 1.00 2500.000 0.25000 0.000 400.0 

SPECIFIED FLOW AND PRESSURE CONDITIONS - 

NUMBER OF CONDITIONS = 	2 

NODE FLOW INTO PRESSURE NODE HEIGHT ABOVE 
LABEL NODE STANDARD LEVEL 

28 0.000 1.0010 0.0 

27 0.000 1.0010 0.0 

PUMP CHARACTERISTIC DATA - 

NUMBER OF PUMPS 	2 

PUMP 1 	PIPE 23 TO 32 

HEAD FLOW 

477.00 88.8900 
500.00 0.0000 

PUMP 2 	PIPE 28 TO 31 

HEAD FLOW 

477.00 6.7000 
500.00 0.0000 

FLUID PROPERTIES DATA - 

TYPE OF FLUID : GAS 
RATIO OF SPECIFIC HEATS 	1.403 

PRESSURE TEMPERATURE DENSITY VISCOSITY 

1.000 20.0 1.2050 0.18000E-01 

1.010 400.0 0.52420 0.33000E-01 

1.000 550.0 0.42860 0.37000E-01 



2c 

Case 5 : FLONET Results for Steady-State HF3 Kiln Network 

NODE LABELS NODE PRESSURES FLOW VELOCITY REYNOLDS 
XXX --> XXX ( BAR  ) ( KG / S ) 	 ( 	 M / S 	) NUMBER 

1 2 1.00192 1.00188 20.1013 9.2981 337203 
2 3 1.00188 1.00174 18.6729 8.6380 313241 
3 29 1.00174 1.00144 18.6729 7.3127 288181 

29 4 1.00144 1.00094 20.1013 9.3224 276574 
4 5 1.00094 1.00060 20.1013 9.3260 276574 
5 9 1.00060 1.00003 3.0515 8.8522 104965 
5 8 1.00060 1.00058 17.0498 7.9116 234588 
8 7 1.00058 1.00023 8.9538 8.0161 171105 
7 6 1.00023 1.00017 2.7035 4.6411 71533 
9 13 1.00003 0.99935 3.0515 8.8574 104965 

13 17 0.99935 0.99925 3.1464 6.7854 105763 
17 21 0.99925 0.99879 3.1464 4.3071 97271 

8 12 1.00058 0.99968 8.0960 10.4399 185664 
12 16 0.99968 0.99939 7.7167 7.9686 176730 
16 20 0.99939 0.99873 7.6218 8.0738 200013 

7 11 1.00023 0.99970 6.2504 8.0612 143331 
11 15 0.99970 0.99950 6.3800 6.8039 142949 
15 19 0.99950 0.99894 6.7593 7.6831 168938 

6 10 1.00017 0.99989 2.7035 4.6418 71533 
10 14 0.99989 0.99978 2.7035 6.1371 87731 
14 18 0.99978 0.99933 2.5739 6.8487 93897 
28 31 1.00100 1.00243 1.4284 5.0999 84439 
31 29 1.00243 1.00144 1.4284 5.0989 84439 

2 24 1.00188 1.00132 1.4284 6.2156 73485 
24 25 1.00132 1.00126 1.4284 4.8757 87225 
25 26 1.00126 1.00113 1.4284 3.4781 111542 
26 27 1.00113 1.00100 1.4284 2.4156 92952 
11 14 0.99970 0.99978 -0.1296 -4.0064 15294 
12 15 0.99968 0.99949 0.3793 6.4719 33993 
13 16 0.99935 0.99939 -0.0949 -2.7865 11586 
21 20 0.99879 0.99873 3.1464 4.3081 97271 
20 22 0.99873 0.99871 10.7682 4.0474 171302 
18 19 0.99933 0.99894 2.5739 6.8514 93897 
19 22 0.99894 0.99871 9.3331 7.4700 192600 
22 30 0.99871 0.99841 20.1013 7.8941 310227 
30 23 0.99841 0.99822 20.1013 7.8958 310227 
23 32 0.99822 1.00193 20.1013 7.8831 310227 
32 1 1.00193 1.00192 20.1013 7.8687 310227 
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Case 5: Kiln 
Nelwork 

00.0 

(0 

0) 
.._ 	60.0 

0 

40.0 

0 

0.0 
0 	 2 	 4 	6 	 8 

Inera ion No 



40+ 

Network 5 CL 

1 	2 	1 
2 3 1 
3 29 1 

29 4 1 
4 5 1 
5 	9 	1 
5 8 	1 
8 7 1 

	

7 6 	1 
9 13 1 

13 17 1 

	

17 21 	1 

	

8 12 	1 

	

12 16 	1 
16 20 1 

	

7 11 	1 

	

11 15 	1 

	

15 19 	1 
6 10 1 

10 14 1 

	

14 18 	.1 

	

28 31 	1 

	

31 29 	1 
2 24 -99 

	

24 25 	1 

	

25 26 	1 
26 27 -99 

	

11 14 	1 

	

12 15 	1 

	

13 16 	1 
21 20 1 

	

20 22 	1 

	

18 19 	1 

	

19 22 	1 

	

22 30 	1 

	

30 23 	1 

	

23 32 	1 

	

32 1 	1 
-1 
1 	28 	1 
-1 
2 
22 

(HF3 network) 

2 2300 .25 
3 2300 .25 
2 2500 .25 
8 2500 .25 

10 2500 .25 
18 1000 .25 

2 2500 .25 
24 1800 .25 
10 1300 .25 

4 1000 .25 
5 1100 .25 

18 1300 .25 
4 1500 .25 

17 1600 .25 
4 1500 .25 
4 1500 .25 

17 1600 .25 
4 1500 .25 

18 1300 .25 
8 1100 .25 
4 1 .000 .25 
o 750 0 

23 750 .25 

3 750 .25 
5 750 .25 

1 300 .25 
1 400 .25 
1 300 .25 
8 1300 .25 
9 2500 .25 

19 1000 .25 
17 1800 .25 
10 2500 .25 

1 2500 .25 
0 2500 0 
1 2500 .25 

0 	0 	1.001 	100 

o 400 
.5 400 
2 400 
2 530 

	

1.1 	530 

	

.0 	530 
0 530 
0 530 
0 530 

	

3.25 	530 
0 445 

	

6.5 	360 

	

3.25 	530 
o 455 

	

3.25 	380 

	

3.25 	530 
0 480 

	

3.25 	430 

	

3.25 	530 
0 485 

	

3.25 	460 
0 275 

	

6.4 	275 
400 

0 250 

	

1.1 	100 
100 

	

1.5 	495 

	

1.5 	480 

	

1.5 	455 
0 360 
0 370 
0 460 
0 440 

	

1.1 	400 

	

1.1 	400 
0 400 
0 400 

23 32 	477 	88.89 	500 	0 
28 31 	477 	6.7 	500 	0 

1 	20 	1.205 	0.018 
1.01 400 	0.5242 	0.033 

1 550 	0.4286 	0.037 
0 
0.03(P(2)-P(24))=Q(2,24) 
0.12(P(26)-P(27))=Q(26,27) 
Q(2627)=1.5 
E. 
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Results for Network 5c 

Branch from to P in (bar) P out (bar) Flow (kg/s) 

1 1 2 1.01095 1.01094 13.0182 
2 2 3 1.01094 1.01089 11.5182 
3 3 29 1.01089 1.01079 11.5182 
4 29 4 1.01079 1.01056 13.0182 
5 4 5 1.01056 1.01040 13.0182 
6 5 9 1.01040 1.01014 1.9585 
7 5 8 1.01040 1.01039 11.0600 
8 8 7 1.01039 1.01023 5.7853 
9 7 6 1.01023 1.01020 1.7529 

10 9 13 1.01014 1.00983 1.9585 
11 13 17 1.00983 1.00979 2.0282 
12 17 21 1.00979 1.00963 2.0282 
13 8 12 1.01039 1.00997 5.2743 
14 12 16 1.00997 1.00985 5.0425 
15 16 20 1.00985 1.00961 4.9729 
16 7 11 1.01023 1.00999 4.0325 
17 :11 15 1.00999 1.00990 4.1230 
18 15 19 1.00990 1.00969 4.3548 
19 6 10 1.01020 1.01007 1.7529 
20 10 14 1.01007 1.01002 1.7529 
21 14 18 1.01002 1.00985 1.6624 
22 28 31 1.00100 1.01169 1.5000 
23 31 29 1.01169 1.01079 1.5000 
24 2 24 1.01095 1.01044 1.5000 
25 24 25 1.01044 1.01039 1.5000 
26 25 26 1.01039 1.01026 1.5000 
27 26 27 1.01026 1.01013 1.5000 
28 11 14 1.00999 1.01002 -0.0905 
29 12 15 1.00997 1.00990 0.2318 
30 13 16 1.00983 1.00985 -0.0697 
31 21 20 1.00963 1.00961 2.0282 
32 20 22 1.00961 1.00960 7.0010 
33 18 19 1.00985 1.00969 1.6624 
34 19 22 1.00969 1.00960 6.0171 
35 22 30 1.00960 1.00949 13.0182 
36 30 23 1.00949 1.00942 13.0182 
37 23 32 1.00942 1.01096 13.0182 
38 32 1 1.01096 1.01095 13.0182 



Network 5b 

1 2 1 2 2300 .25 0 
2 3 1 3 2300 .25 .5 
3 29 1 2 2500 .25 2 

29 4 1 8 2500 .25 2 
4 5 1 10 2500 .25 1.1 
5 9 1 18 1000 .25 0 
5 8 1 2 2500 .25 0 
8 7 1 24 1800 .25 0 
7 6 1 10 1300 .25 0 
9 13 -99 

13 17 1 5 1100 .25 0 
17 21 1 18 1300 .25 6.5 

8 12 -99 
12 16 1 17 1600 .25 0 
16 20 1 4 1500 .25 3.25 

7 11 -99 
11 15 1 17 1600 .25 0 
15 19 1 4 1500 .25 3.25 

6 10 1 18 1300 .25 3.25 
10 14 1 8 1100 .25 0 
14 18 1 4 1000 .25 3.25 
28 31 1 0 750 0 0 
31 29 1 23 750 .25 6.4 

2 24 -99 
24 25 1 3 750 .25 0 
25 26 1 5 750 .25 1.1 
26 27 -99 
11 14 1 1 300 .25 1.5 
12 15 ' 	 1 1 400 .25 1.5 
13 16 1 1 300 .25 1.5 
21 20 1 8 1300 .25 0 
20 22 1 9 2500 .25 0 
18 19 1 19 1000 .25 0 
19 22 1 17 1800 .25 0 
22 30 1 10 2500 .25 1.1 
30 23 1 1 2500 .25 1.1 
23 32 1 0 2500 0 0 
32 1 1 1 2500 .25 0 
-1 
1 28 1 0 0 	1.001 100 
-1 
2 
2 2 
23 32 477 88.89 500 0 
28 31 477 6.7 500 0 

1 20 1.205 0.018 
1.01 400 0.5242 0.033 

1 550 0.4286 0.037 
0 
0.03(P(2)-p(24))=Q(2,24) 
0.12(P(26)-P(27))=Q(26,27) 
Q(26,27)=1.5 

400 
400 
400 
530 
530 
530 
530 
530 
530 
530 
445 
360 
530 
455 
380 
530 
480 
430 
530 
485 
460 
275 
275 
400 
250 
100 
100 
495 
480 
455 
360 
370 
460 
440 
400 
400 
400 
400 



11) 	6, 10) 
12 )=Q(  6, 10) 

0(9,13)=0.8(0(6,10)+0(7,11)+Q(8,12)) 

E 
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Results for Network Sb 

Branch from to P in (bar) P out (bar) Flow (kg/s) 

1 1. 2 1.01095 1.01094 12.9922 
2 2 3 1.01094 1.01089 11.4922 
3 3 29 1.01089 1.01079 11.4922 
4 29 4 1.01079 1.01056 12.9922 
5 4 5 1.01056 1.01040 12.9922 
6 5 9 1.01040 1.00850 5.3200 
7 5 8 1.01040 1.01040 7.6726 
8 	- 8 7 1.01040 1.01027 - 	 5.1151 
9 7 6 1.01027 1.01021 2.5575 

10 9 13 1.00850 1.01041 6.1381 
11 13 17 1.01041 1.01020 4.7982 
12 17 21 1.01020 1.00929 4.7982 
13 8 12 1.01040 1.00930 2.5575 
14 12 16 1.00930 1.00927 2.6323 
15 16 20 1.00927 1.00917 3.1538 
16 7 11 1.01027 1.00935 2.5575 
17 11 15 1.00935 1.00931 2.8759 
18 15 19 1.00931 1.00922 2.8011 
19 6 10 1.01021 1.00994 2.5575 
20 10 14 1.00994 1.00983 2.5575 
21 14 18 1.00983 1.00951 2.2392 
22 28 31 1.00100 1.01169 1.5000 
23 31 29 1.01169 1.01079 1.5000 
24 2 24 1.01094 1.01044 1.5000 
25 24 25 1.01044 1.01039 1.5000 
26 25 26 1.01039 1.01026 1.5000 
27 26 27 1.01026 1.01013 1.5000 
28 11 14 1.00935 1.00983 -0.3184 
29 12 15 1.00930 1.00931 -0.0748 
30 13 16 1.01041 1.00927 0.5215 
31 21 20 1.00929 1.00917 4.7982 
32 20 22 1.00917 1.00916 7.9520 
33 18 19 1.00951 1.00922 2.2392 
34 19 22 1.00922 1.00916 5.0403 
35 22 30 1.00916 1.00905 12.9922 
36 30 23 1.00905 1.00898 12.9922 
37 23 32 1.00898 1.01096 12.9922 
38 32 1 1.01096 1.01095 12.9922 
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Network 5C (HF3 dynamic network) 

1 2 	1 	2 	2300 	.25 	0 400 
2 3 	1 	3 	2300 	.25 	.5 	400 
3 29 	1 2 2500 	.25 	2 400 

29 4 1 	8 	2500 	.25 	2 530 
4 5 	1 10 	2500 	.25 	1.1 	530 
5 9 1 18 	1000 	.25 	0 530 
5 8 1 	2 2500 	.25 	0 530 

	

8 7 1 24 1800 	.25 	0 530 

	

7 6 1 10 1300 	.25 	0 530 
9 13 	1 	4 	1000 	.25 3.25 	530 

13 17 1 	5 	1100 	.25 	0 445 
17 21 	1 18 	1300 	.25 	6.5 360 
8 12 1 	4 	1500 	.25 3.25 	530 

	

12 16 1 17 	1600 	.25 	0 455 
16 20 	1 	4 	1500 	.25 3.25 	380 
7 11 	1 	4 	1500 	.25 3.25 	530 

11 15 	1 17 	1600 	.25 	0 	480 
15 19 	1 	4 	1500 	.25 3.25 	430 
6 10 	1 18 	1300 	.25 3.25 	530 

10 14 1 	8 	1100 	.25 	0 485 
14 18 	1 	4 	1000 	.25 3.25 	460 

	

28 31 1 0 	750 	0 	0 275 
31 29 	1 23 	750 	.25 	6.4 	275 
2 24 0 0.25 0.0001 	2 -1.009 400 

24 25 1 	3 	750 	.25 	0 	250 
25 26 	1 	5 	750 	.25 	1.1 	100 
26 27 	1 18 	900 	.25 	1.1 	100 
11 14 	1 	1 	300 	.25 	1.5 	495 
12 15 	1 	1 	400 	.25 	1.5 	480 
13 16 	1 	1 	300 	.25 	1.5 	455 
21 20 1 	8 	1300 	.25 	0 	360 
20 22 	1 	9 	2500 	.25 	0 370 
18 19 	1 19 	1000 	.25 	0 	460 
19 22 	1 17 	1800 	.25 	0 	440 
22 30 	1 10 	2500 	.25 	1.1 	400 
30 23 0 	5 	1 	-36 	12 400 

	

23 32 1 0 2500 	0 	0 400 
32 1 	1 	1 	2500 	.25 	0 	400 
-1 
1 	27 	2 	0 	0 -1.5 	100 
1 30 3100 0 	0 	100 
1 	2 3100 0 	0 	400 
1 28 	1 	0 	0 	1.001 	100 
-1 
2 
22 
23 32 	477 	88.89 	500 0 
28 31 	477 	6.7 	500 0 

1 	20 	1.205 	0.018 
1.01 400 	0.5242 	0.033 

1 550 	0.4286 	0.037 
-1 

It 
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Fig. 6.2 : Pressure control at node 29 of HF network. 
(Lower graph - pressure at node 29 (in Bar)) 
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