University of Edinburgh

i,
Department of Computer Science

Notes on
IMP
Programming

by
P D. Schofield
Lecture Notes
James Clerk Maxwell Building Revised :
The King's Buildings October 1977
Mayfield Road
Edinburgh

EH9 3JZ

R

PROGRAMMING IN IMP

These notes started as lecture notes for students of Computer
Science 1, using the IMP language on E.M.A.S. (The Edinburgh Multi-
Access System), but have been revised slightly in an attempt to make
them also of some use to other groups. There are still some references
to special facilities provided for the Computer Science 1 class, but

the text makes it clear when these occur.

It is particularly important that anyone intending to input
IMP programs on cards should look at Appendix A, note (3), and find
out what convention they have to observe in regard to the quotation
mark character (").

More detailed descriptions of IMP as implemented on any
particular Computer Science or E.R.C.C. machine may be obtained from
the Computer Science Department or E,R.C.C. respectively.

P.D. Schofield.

CONTENTS

SECTION 1 - INTRODUCTION

SECTION 2 - DECLARATIONS

SECTION 3 - SOME BASIC ROUTINES

SECTION &4 - CONDITIONAL INSTRUCTIONS

SECTION 5 - REPETITION LOOPS (cycle, while, until)
SECTION 6 - LIBRARY ROUTINES AND FUNCTIONS
SECTION T - MORE OPERATIONS ON STRINGS

SECTION 8 - NUMERICAL AND STRING EXPRESSIONS
SECTION - 9 - INNER BLOCKS - LOCAL AND GLOBAL VARIABLES
SECTION 10 - DEFINING NEW ROUTINES AND FUNCTIONS
SECTION 11 - RECURSIVE ROUTINES AND FULCTIONS
SECTION 12 - EXTERNAL ROUTINES AND FUNCTIONS
SECTION 13 - OWN VARIABLES

SECTION 14 - BYTE INTEGER, LONG REAL VARIABLES
SECTION 15 - RECORD VARIABLES

SECTION 16 - ROUTINE- AND FUNCTION-~TYPE PARAMETERS
SECTION 17 - INPUT AND OUTPUT STREAMS

SECTION 18 - SYMBOLS

SECTION 19 - POINTER VARIABLES

SECTION 20 - MAPPING FUNCTIONS

SECTION 21 - JUMPS, LABELS AND SWITCHES

APPENDIX A - INPUT CONVENTIONS AT CONSOLES AND CARD PUNCHES
APPENDIX B - NOTES ON FAULT FINDING

-1 -

SECTION 1 : INTRODUCTION

A complete PROGRAM is used to describe the details of some computation
that we wish to have carried out. Programs can be written in a variety of
different programming languages, and these notes describe one such language,
called IMP. In practically every programming language, there are some
details that vary slightly from machine to machine, and also from time to
time as improvements are made to the language. These notes refer primarily
to the version of Imp available in October 1976 on the I.C.L, 4-75 computers,
operating under the Edinburgh Multi-Access System. Users of Iup on otker
machines will need to note a few mincr variations. Also, the method of
submitting a& program to the machine and having that program run will vary
from machinre to machine.

A minirum Imp program consists of:
(i) The keyword begin.]
(ii) A list, in order, of the instructions we want carried out.
(iii) The keyword end of program.

. Of the different types of instruction that may be given urder (ii) sbove,
the most important is the call of a ROUTINE. A routine call is an instruction
to carry out some standard sequence of operations, achieving some frequently
required end. Many routines have been defined as a basic part of Imp; and

are permanently available for all to use; later on, we shall see how

additional routines can be defined by the progremmer (and his colleagues) to
suit the needs of their particular field of interest. In the case of students,
yet another set of routines is sometimes defined by a lecturer and made
available to his class.

To call a routine, we simply write down the NAME of the required routine,
followed in most cases by some supplementary information that is placed in
brackets after the name. Very often, the name of the routine will give a
good idea of what is does. If we are exceptionally fortunate, or our needs
are very simple, there is the slight chance that the combination of just one or two
of the routines available to us will correspond exactly to the whole computation
we require. An example is given on the following page.

- 1.2 -

kegin

PRINT TABLE OF (9)

end of program

The routine PRINT TABLE OF, used here to provide an exceptionally brief first
example, is clearly of extremely limited value; although it does happen to be in the
liorary of special routines availatle to Computer Science 1 students in Edinburgh,
it is not generally available to, nor likely to be required by others. It causes
a simple multiplication table (es met in ones earliest schooldays) to be printed
at the appropriate output device (the censole, if the program is teirg run from a

information

console; wusually a Line Printer in other cases). Thne supplemantary
given in brackets (officielly called a PARAMITER) determines that it will be a
J-times tablie that is produced, though any other integer (i.e. whole number) could

rave been given.

To write more useful prograzs, we shall have to study a list cf the more

trary routines avail

able, and build up what we require from these. In

[

common 1

addition, we shall need to consider:

(i) Eow to allocate names to storage space (VARTABLES) in which numbers,

strings of characters, etc., can te placed by one isstruction, ready

for subisequent use ty a2 later instruction(s). {(Section 2).

(ii) How to cause a cholce to 52 mads teiween <wo courses of action,

(%

epending upon the progress of tre program so far. (Section U).

(iii) How to cause one, or a group, of instructions to be carried out

several times. (Section 5).

(iv) How to ercate new routines of our owr, ani use them. (Section 10)

Before looking at any of these in detail, let us cornsider a very slightly more
cemplex pregram. Suppose that we wish to write & progrex to print out an N-times
zable, but do not know at the time of writing what value we shall want for X.
tutie, cur program rends as

The solution is tc arrange that before printing the .

DATA a number giving the value of N required. Tris is done by using a stanudard
routine, whose rame is READ, This routine will cause Gata to be isken from
whatever is the appropriate source of input (the conscle, if the program is being

run {rom a console; from an extra card added after end of progrem if the program

-1l3-

is being submitted on cards). Our program now begins to look like this.

READ (N)
PRINT TABLE OF (N)

The first routine reads s number as data, and stores it in a place called K;
the second uses this value of N to determine whet multiplication table to print.
But before using the VARIABLE called N, we must DECLARE our wish to have a storage
location set up for this purpose. Since, in this example, we shall only store
integers in N, we write our declaration:

integer N

Our whole program then is as follows:

begin
integer N
READ (N)
PRINT TABLE OF (N)

end of program

This is perfectly satisfactory, but let us add 2 more routine calls:

begin
integer N
READ (N)
PRINT TABLE OF (N)
PRINT STRING("THAT CONCLUDES MY FIRST PROGRAM")
NEWLINE -

end of program

The PRINT STRING routine causes a string of characters - in this case
it is THAT CONCLUDES MY FIRST PROGRAM - to be sent to the output, after
the N-times teble, of course, Wnen printed on an output device, lines of
output are stored until terminated by the cheracter wanich indicates the end
of a line and the start of & ney one. This character is sent to the output
by calling the standard rouytine NEWLINE.

- 1.k -

Comments

In addivion to conteining instructions to be obeyed, any worth-while program
will always include CCMMENTS. These are pieces of program which have NO EFFECT
vhen the program is executed, but ere inserted to servé a different but MOST IMPCRTANT
function - to make the program more legible to human readers, both the author and
others, A comment consists of the keyword comment, followed by any sequence of
characters. Note that if comments extend over two or more lines, each line will

have to start with the keyword comment.

Begin
comment. The purpose of this program is to print
cormant out an N-times multiplication table.
integer N
READ (N}

PRINT TASLE OF (N)
PRINT STRING (“THAT CONCLUDES MY FIRST PROGRANM. ™)

NEWLINE
end of program

Since comments are used very widely, it is convenient to have an alternative
and sherter way of writing the keyword comment. An exclamation mark is used for

this purpose.

begin
! The purpose of this progranm is to print
] out an N-times multiplication table.
integer N
READ (K)

PRIN? TABLE OF (N)
PRINT STRING (YTHAT CONCLUDES MY FIRST PROGRAM.")
NEWLILE

end of program

- 1.5 -

The structure of a simple program

A program consists of a sequence of STATEMENTS. We may distinguish four main
classes of statement:

(i) DECLARATIONS. These are preparatory statements, allocating
names to various entities, chiefly variables.
(e.g. integer N)

(ii) INSTRUCTIONS. These are the statements that cause things to
happen: data to be read in, values to be stored
in variables, calculations to take place and
results to be output.

(iii) COMMENTS. Statements that are inserted for the benefit
of the human reader, but have no effect at run-time.
(iv) BRACKETING STATEMENTS. Staterments that mark the beginning and end of
certain groups of statements. For example,

bezin and end ¢f program mark the beginning and

end of a whole program. Shortly we shall meet
others, such as cycle and repeat, which mark the

beginning and end of a group of instructions to be

executed several times over.

The correct order of statements in a simple vrogram.

Comments may be placed anywhere. Apart from this, the correct order is:

(i) Dbegin
(ii) The declarations.

(iii) The instructions, interspersed with bracketing statements as necessary.
k]

(iv}) end of program.

Two (or more) statements on one line.

In our progrems so far, each statement has been written on a separate line.
If desired, however, two or more statements may be written or one line, provided thkey

are separated by semi-colons, For example:

READ (N) ; PRINT TABLE CF (N)

It is often convenient to put one instruction and a short comment upon that

instruction on the same line. For example:

READ (N) ; comment K determines which table is to be printed.

-
- 1.5~

EEVWORDS, HAMES AND STRINGS

In our first progranm, we had examples of letters of the alphsbet being used in

three different contexts:

(a) In Keywords.
In many books on programming languages, our attention is drawn to the

keywords of the language by printing them in lower-case letters and either printing
them in bold type, or by underlining them. Throughout these notes, underlining

. will be used (e.g. begin). When we come to input to the computer, however, most
devices have neither lower case nor underlining; instead we shall represent keywords
with upper case letters and prefixing with a % character (e.g. %BEGIN). See
Appendix A for details; and note that if a keyword is broken up into separate words,
as it may be for legibility, then a % character is placed in front of each. (e.g.
SEND ZOF ZPROGRAM).

(b} In Names.

In our earlier example, we saw that we refer to routines by their NAMES.
Shortly we shall alsc need to allocate names to VARIABLIS and, later on, to a few
other entities in the language. A name always starts with an upper-case letter of
the alptabet (A,B,C.....Z) ané may be followed by one or more digits (0,1,2,.....9),

or ty further letters, or a mixture of the two,

Examples X, SUM, A2B3, PRINTSTRING
Notes (i) There is no limit on the length of a name.
(ii) Note the distinction: keywords consist of underlined

letters (zarked by %), names consist of non-underlined

letters and digits.

{c) In Strings.

In our earlier example, we were concerned with the string of characters:—
THAT CONCLUDES MY FIRST PROCRAM. It was not a keyword, nor was it the name of
anything; it vas simply a sequence of 32 characters (27 letters, 4 spaces and one
full stop) which we wanted manipulated as one - in this case it was to be printed
out. We mark out the extent of the string by enclosing it between gquote characters.
A string may consist of anything from O to 225 characters. (Some further details

are given in the section on string constants).

Note As convenient for legibility, spaces may be freely inserted
almost anywhere in a program, without altering the meaning.
Hence, the routine name PRINTSTRING, is more legible if written
PRINT STRING. Two exceptions to this are:
(i) Spaces within a string count as characters of that string.

{as one would wish).

(ii) If spaces are inserted within keywords, additional ¥

characters are required, as sbove.

-2.1-

SECTION 2 — DECLARATIONS

(i) SCALARS
Before we can use a variable we must specify what sort of variable we want and
‘what its name is to be. The main types of variable are:

(a) numerical (subdivided into resl and intezer - see below)
(v) string A string variable can store a sequence of characters.
DECLARATION MEANING

integer A, B3 I intend to use two variables which I will call A and B3.
They must be capable of storing integer (vhole number) values
in the range - 21474836L8 to + 2147483647, (That is -2+ to 231—1).

real C I intend to use a variable which I will call C. It must be
capable of storing "real"” values, that is a number which may be
either an integer (e.g. 17) or a number with a fractiorel part
(e.g. 12,261). On many current machines, the range of real
numbers that cen be stored is (approximately) +7Tx 1075; and
they are stored to (about) T significant decimal digits.
(This can be changed to 1T significant digits if long real

variables are declared),

string (16) S,T I intend to use two variables which T will call S ané T. They
" must be capable of storing strings of anything up to 16
characters each. For example:

WEDINBURGH" (9 characters)
YCOMPUTER SCIENCE" (16 characters - the space counts)

When declering a string ve.riablei, one gives an upper limit on the
length of string that can be stored. (16 in this example),

The largest upper limit permitted is 255, Thus, string (256) S
would be an illegal declaration.

Notes

(1) The compiler automatically allocates locations to the variables as they are
declared. The programmer does not need to concern himself with where the variables
are located - he always refers to them by the names he has declared for them.

(2) vnhen the values stored in integer variables are multiplied or added the exact
answer is produced. When doing arithmetic on real variables the answers are
"rounded off” to {about) T significant figures.

-2.2-
(ii) AR2AYS

We can also declare a whole array of variables, all having the same neme, but
distinguished frox one another by means of a "subscript", which is written in

orackets alter the name of the array.

Exanvles

intezer array D(1:2)
rezl array B(1:9),F,0(=3:2)
strinx (25) array P(1:50)

These cause the allocation of space to four integer variables D(i), (2), b(3)
aad D(4), nine real variables B(1) to B(9), twelve real variabdles F(=3) to F(2)
and G(-j) to G(Z), and fifty string variables (each of mexizum length 25) P(I) to

?(50). :

Fote the difference beiween : interer arrav D(I:4)

and

interer D4

The former creates four variables, of which one is referred to as D(4); the

latter creates one variable D4.

UNIQUE UCE OF MAME

would be faulted by the cocpiler.

Giher types of declaration, associating nazes with multi-subscript arrays and
with the user's own routires, functions and predicates ete. will be explained leter.
The sase prohibition on simultaneous use of a name for two purposes applies to all

such declarations. (Bowever, see later sectiion on locel and global variables). -

(iii) MULTI-SUBSCRIPT ARRAYS

We have already seen how to declare arrays with one subscript. Arrays with

tvo subscripts cen also be delcered.

. Example

real array A(1:2,1:3)

A(1,1) 4(1,2) A(1,3) a(2,1) a(2,2) a(2,3)

Meaninc
Zeaning

Declare 6 real variables

to be known as follows:~-

|

l

[

J

It is often casier to think of these in two dimensions, and it may be our *

desire to do so that motivates the declaration of a two-subscript array:—

A(r,1)

A(1,2)

A(1,3)

al2,1)

a(2,2)

a(2,3)

Arrays with more than two subscripts can be declered ir a similer way:-

real array B(¥:N+1,1:5,-1:3),C,D(-10:10)

integer array P(1:3,1:5,1:20,1:30)
string (20) array @,H(1:3,1:3,1:10)

Nctes

(1) The maximum number of subscripts is 6.

(2) Any of the array bounds may be given as integer expressions, for exampie
see B above, but in this case we have to ensure that M arnd N have values

assigned before reaching the declaration.

structure).

(41so see later section on block

(iv) DECLARATION OF CONSTANTS

In generel, the declaration of a variable is a preperatory statement, causing
& storage location to be allocated and to be given a name. At this stage, no
valus is stored in this locetion, Subsequently, instructions will be given (see
next section) to store a value, change it, etc. '
Scmetimez it is convenient to have a storage location ellccated and to be
given a value which will not be altered during the subsequent stages of the
rogram., In such cages we can meke the declsration and assigr this fixed value

in one statement, by declaring a const integer, real or string. For example:

eonst real E = 2,7182818, ¢ = 9.80665
const string (25) VEXUE = "LEVEL 3 of APPLETON TOWER"

coast Inteaner CLASS SIZE = 152

Arreys cf const's cazn also be useful, and mey be declared as follows:-
const 3tring (4) array DAY (1:7) = "MoON", "TUES", "WED", “THUR",
"FRI", "SAT", "gN"

const integer array P{il:%0) = 3(.0}, &, & (19)

Te Tirst sets DAY {1) equal to "NIX", DAY (2) egual to "TUIS", cte. Thae

-

second Jeclaration sets the first 10 elements of P {i.e. P{11) to P{20) inclusive)
to the vaiugz 3, the next one {i.e, P(21))to the value 6 azd the remaining 19 to
whe value L. ’

notes (1)

(see the two const reals above), a separate declaration is needed for

alihough two or more coust scalars may be Jeclared in one statement

each const array.

{2) Const errays ere limited to one dimension (one subseript).

{3) Tne bounus of & const array must be constvants - taus in the last
exanple, tiae constant bounds (21:40) could rot ve replaced by dynemic
bounds such as (M:N).

(L) fThe values assigned to the elements of a coast array are separsted
by commas. If the list spreads over two or more lines, the continuation
symbol {c) is not necessery (though permittec), provided the line ends

with & comza.

- 3.1 -

SECTION 3 ~ SOME BASIC ROUTINES

Having declared the variables we shall need, we now give a sequence of
instructions. A program is normally supplied with a file of DATA upon which to
act, and we shall clearly need routines to read information from our data file
and place it in our variables. As indicated in section 1, the data file may
consist of characters typed in at the console or it may be supplied on punched
cards. It may also consist of a file already stored on EMAS (The Edinburgh
Multi-Access System).

The data consists of a sequence of characters. These can' be read
individually, but more often we wish to read a group of characters forming either
an integer (e.g. 17), a real number (e.g. 3.l) or a string (e.g. "MORRIS 1300").
Routines to read such sequences and place them in variables of appropriate type
are given below.

(1) INPUT ROUTINES
MEANING

READ (A) Take the next (unread) number from the data file
and place its value in A, which may be an integer or
a real variable. If A is an integer variable, then
it is essential that the next number occurring in the
data is an integer. If A is real, then any number
is acceptable,

READ STRING (S) Take a string of symbols from the data and place
it in string variable S, In the data, the beginning
and end of the string must be shown by quote marks,
although the quote marks themselves do not count as
part of the string. (Also see page 8.4).

Note It is often inconvenient to have to place
quotes around every string in our data, as required
by the READ STRING routine. An alternative routine
which inputs non-numerical data one character at a
time is:-

" READ ITEM (8) i Take ;'.me character from the data, and place it
in the string variable S. The single item read may
be a lett:qr, a digit, a punctuation mark, a space
(occurring between printing characters) or even the
"nawline” character which is deemed to exist between
the end of one line and the beginning of the next.
Since it is known that only one character is to be

read, no quotes are used.

- 3.2~

Notes (1) Once a character has been read (as part of a string or number), we
move forward along the data file and cannot read that character again,
(Except by re-running the progrem.)

(2) When reading a succession of numbers from a data file, the numbers
must be separated by spaces, or placed on séparate lines. Other characters

such as commas or semi-colons between numbers will cause & fault,
(ii) OUTPUT ROUTINES

At some stage of the program we shall need to print out some results of our
calculetion. These will go to an OUTPUT device (this may be the computer console,
or a Line Printer) or an OUTPUT file to be stored on EMAS. Where the results
go depends upon the system being used (and can also be affected‘by instructions
described in section 1), but does not affect us here. Irrespective of where they

g0, we use the same output routines.
MEANING
WRITE (I*J+3,k4) Eveluate the numerical value of the first
INTEGER expression {i.e. I*J+3) ané write this
value to the output (device or file), using 1
position for the sign and b for the digits of the
number; that is 5 positions in all. This routine

can only deel with integer expressions. (The

figure 4 can, of course, be varied).

PRINT {X+Y,3,2) . Evaluate the REAL expression (i.e. X+Y) and
priat its value, usiné 1 position for the sign,
3 for the digits before the decimal point &nd 2
for the digits after the decimal point taking
1+43+1+2=7 positions in all. (The figures 3 and

2 can of course be varied).
PRINT FL (X+Y,3) Evaluate the expression X+Y and print its

value in floatirg point form, witn 3 digits after

the decimal point. {In floating point form, —

6.321€ -3 means 6.321 x 1073).
PRINT STRING ("MORRIS 1300") Evaluate the expression in brackets (which
PRINT STRING (S."AND".T) will be of type string), and print it. In the

first example, the expression consists of a
constant string of 11 characters (the quotes mark
the beginning and end, but are not printed
themselves). 1In the second example, the

expression consists of the string presently stored

. -3.3-

in S followed by the constant 3-character
string AND, followed by the string presently
stored in T.

SPACE Write one or more 'space' characters to the

SPACES () output. When a space character is printed, it
causes the printer to move 1 column to the right
across the page.

NEWLINE Write one or more 'newline' characters to the
NEWLINES(3) output. When a newline character is printed,

it causes the printer to move to the start of
a8 new line.

NEWPAGE Write a 'newpage' character to the output.
When printed, this causes the line printer to move
to the top of a new page. At a console, it has

no effect.

(iii) ASSIGNMENT ILSTRUCTIONS

One operation very frequently required is to work out scme expression
involving the values currently stored in one or more of our variables, and
perhaps also some constant values. Instead of sending the answer to the output
device or file (as with WRITE end PRINT STRING), we may wish to place the answer
back in a variable for use again later. Since this operation wili be required

frequently, a special concise notation is used for it:-

INSTRUCTION MEANTNG
A=8B8B+C Work out the expression on the right (i.e. the

value of B plus the value of C) and then rcake A have
this value. If the contents of A,B and C before
carrying out this operation were

A B c

5107’

then on completion the contents would be

A B ¢
15] 10] 3
(1) =D(3) + B=17 Work out D(3) + B = 7 and then make D(1) have this

value,

Sote (1) When a value is assigned to a varisble, any value previously stored

in that varisble is lost. (e.g. The value 5 in A in the example above).

(2) The 'equals' sign (=) is used in a slightly unusual way in assignment

instructions. In particular, rote:

(i) 4a=B+C is 2 normal assignment.
3+C=A is meaningless. (The left-hand side must be the
name of & variable previously declured.)
(ii) B = means: put & copy of the value now in C, into B.
C=3 means: put a copy of the value now in B, into C.
(iid) A=A +3 is quite normal, resulting in 3 being added to
the value stored in A.

3) On the right-hend sids of an acsignment, we may write any expression
? = »

thet will wore out to give & velue ol the correct type, & follows:—

ur. inteser variatle can only siore integer values,
a reul variable can only store real values. (But if the value

czloulated is an intager (3, say)ihis will autonctically

23

o’

2 converted to the corresponding real value 3.000000000

pae

£ required for storage in a real veriable.)

& striny variablie can only stere string values.

(L) Tn: operutions of edditieon, suburaction, multiplication and division

are Tepresented oy +, -, ¥ enc /[Fer fuller
.. .~ 2
¢zialls, se2 Jecticn .
(iv) ASSICNMENT OF STRING EXPIESSICNS. (also see Section T)

Arithmetic operations sre not meaningful tc eprly tc strings. A

ctage, we ere soncernad wita enly one operstion on strings, called
CONCATENATION (represented in expressions by a full stop;, which places

cne string immediately after arother. For example, the instructiens:

S = "TIMBUXTOO" s "TIMBUKTOO"
s ror o
= "ESTBURGH" will store as follows: " EDINBURGH"
A subsequent instruction T =8S§," IS FAR FROM ".T

will result in this:
S "OIMBUKTOC"

"2IMBUKTOO IS FAR FROM EDINBUHGHJ]

.

L

SECTION U (A) - CONDITIONAL INSTRUCTIORS

(i) if...then...else

Sometimes, at some point in the computation, we shall need to make a choice
between two courses of action. In our earlier program to read a number (N) as data
and print the corresponding multiplication table, we might feel that if N turns out
to be 0, it would not be worth printing a O-times table, but that instead we should
print a brief explanatory message. To achieve this, we should need to arrange that
once a value for N has been read, we test to see whether or not N equals 0. The
flow of control would be:

does N=0

PRINT START OUTPUT ON
SHORT A NEW PAGE
MESSAGE

1

PRINT MULTIPLICATION
TABLE

Y

and one way of writing the program would be:

begin
comment This progrem follows the flow diagram above,
integer N
READ (N)
if N =0 then start
PRINT STRING ("NOT WORTH PRINTING O-TIMES TABLE")
NEWLINE
finish else start
NEWPAGE
PRINT TABLE OF (N)

It is worth noting that the above program would have exactly the
same output in all cases if we swopped over the two alternative routes, and

at the same time negated the condition; that is wrote: it N¢#0

-k2-

comment The condition has been negated,
integer N
READ (N)
AL N # 0 then start
NEWPAGE
PRINRT TABLE OF (N)
finish else start
PRINT STRING("NOT WORTH PRINTING O-TIMES TABLE")
NEWLINE
finish

end of program

(ii) Cmitting else

It quite often happens that one of the two alternative paths involves taking
no action. In the above program, for example, we might dccide that in the N = 0O

case we should refrain from printing enything at all, even the 'NOT WORTH PRINTING'

message. If there ere no instructions to g5 tetwsen the second start and finich,
the whole of this section, inciuding the keyword else, are omitted. This gives:
tegin

comment This program will produce nc output if
coment N turns out to be 0.

intezer ¥

READ (X)
if N # 0 then start
NEWPAGE
PRINT TABLE OF (N)
finish

end of vrogram

(iii) Omitting start and finish

IP there is only one simple instruction between the start and finish, then the
start and finish can themselves be omitted, and the one instruction is put in place of
the start. Thus, if we decide to omit the NEWPAGE instruction, we can use the

following very useful ard simple form of conditional instructions.

if N # O then PRINT TABLE OF (N)
and arother useful abbrevieted form permits if.... then else in one line,

if N = O then PRINT STRING (“NOT WORTH IT*) else PRINT TABLE OF (N)

-4,3 -
(iv) Further conditions.

So far, conditional clauses have involved comparison of two numerical quantities
either for equality (=) or for non-equality (#). The four other natural comparisons
will be written in normal mathematicel notation, namely: 3,3 ,<{ , { meaning
Ygreater than", "greater than or equal to", "less than" and "less than or equal to"
respectively. For input to the computer, however, the non-availability of the
characters 2 and £ leads us to represent these by two characters each.

Thus:

Written form Form for input to computer
if Ay B then %IF A»=B %THEN
ir P+Q £ C-1T then $IF P+Q&= C-1T #THEN

(v) Comparison of strings.

Two strings may be compared in the same six ways. It should be remembered,
however, that any spaces present count as part of strings. Hence the 3-letter string
®CAT" is NOT equal to the 4-letter string "CAT ", as the latter has an extra space.

In the context of strings, "greater than" is teken to mean "comes LATER IN
DICTIONARY ORDER than". Hence

if S) SMITH" then PRINT STRING (S)

would cause the string stored in S to be printed only if it came later in dictionary
order than YSMITHY. A "dictionary order"” relationship between strings that contain
characters other than letters of the alphabet does exist, but will not be discussed
at this stage. ’

(vi) Use of unless

Any condition written with an if clause may-alternatively be expressed in the
negative form using an unless clause.

if N # 0 then)
) are exactly equivalent
unless N = 0 then)

ir A DB then)
.)} are exactly equivalent

unless AL B then) (Bote: & HOT &)

- -

(vii) The instruction stop

The execution of & program automatically terminates upon reaching end of program.

In certain cases it is convenient to terminate prematurely if some special

circumstance arises (say, if N = 0), and for this imrpose the instruction stop is

provided,
YES ? NO
does N = 0
?
PRINT
'SHORT
MESSAGE - ALL THE

INSTRUCTIONS WE
WANT IN NORMAL
CASES,

@ i.e, WHEN N # 0

At first sight, we might think that this calls for an "if then else"

construction, but since execution of a stop instruction causes the program to stop,

the following is simpler,

begin
intezer N
READ (N)
if N = 0 then start
PRINT STRING ("NOT WORTH PROCEEDING")
NEWLINE
stop
finish
cesescsssresnsne ;5 ! We only reach this point if N # 0

Tsesssessecenrre

esessscvsansssase

end of program

If we are prepared to omit the warning message when N=0, the whole

start/finish group might be contracted to:

if N = O then stop

- k4,5 -
SECTTON 4(B) - FURTHER FORMS OF CONDITION

(i) Writing conditions on the right.

In the case of conditional instructions that do not make use of start, fimish
or else, we may write the instruction first, followed by the condition. Thus the
following are exactly equivalent:

if § # 0 then WRITE (N,2)

WRITE(H,2) if K #0

and, of course, both are also equivalent to the following two:

unless N = O then WRITE (X,2)

WRITE(4,2) wunless K = 0

The form to be chosen depends uvon individual taste and upsn which best zirrcrs the
wvay we wish to think about the condition being tested., Most pecple would regard

the third version above as inelegant, and therefore gesnerally to be avoiled,

Remember Those alternative forms with the condition
on the right are NOT permitted when start,
finish or else is involved.

(ii) Concatenating two instructiens

If stert/finish bruckets enclose a very small (normuily no more than

two) unconditional instructions, a concise form is permitted.

if N # O then start

READ (X)
SUM = SUM + X
finish

may be written in one statement:

if N# O then READ (X) and SUM = SUM + X

Note This is only allowed if both the instructions to be corcatenated are
unconditional instructions. If one itself involves another condition, .

ve cannot avoid the start/finish . For example:

if N# O then start

READ (X)

if X > O then SUM = SUM + X
finish

- 4.6 -

(iii; Compound conditions.

Exanples are:-

X> Y ard 2 = 13 then eeeee
X> Yor Z =13 then eceoe

'S

X>» Y and 13 ard A+ B
(X>Y and 2=13) or A+8B

C+D then
C+D then......

it
1]

H«lH
(ZY (2

n

A&B{LC then.....
A€BE C and C&D then

I s

Noies

1. The tnird exaople gives three simple conditions connected by and. The

nurber ¢f and's is not limited. The same applies to a sequence of or's.

2. ‘Where 2nd and or are both used within the seme condition, brackets are

required (as in the fourth example) to avoid ambiguity.

3. Following normal mathematical notation, the fifth example is a more
compact way of writing:

it ACB and B £C then «veee

4. Eowever, this contraction canrnot be extended, and the following would be

faulted (But see the sixth example above for an acceptable form)

if ALBL C D then cev.e

5 The components of a multiple condition are examined from left to right
and testing ceases as soon as sufficient is known to decide whether or not to
carry out the main instruction, Thus, supposing in the first example above, that
the test for "X > Y" shows this condition to be unsatisfied (i.e. X is not
greater than Y) then it is unnecessary to test for Z = 13 and so the value

stored in Z will not be examined.

6. or means "inclusive or". Thus the second condition above means:-

"if X>»Y or 2=i3 OR BOTH"

(iv) Conditions involving string resolution.

See Section T .

! - 51-

SECTION 5 (A) - REPEATING GROUPS OF INSTRUCTIONS
(cYCLES)

If a group of instructions is placed between the bracketing keywords cycle and
repeat, then as soon as the last instruction of the group is completed, we shall start
all over again with the first instruction, and so on

begin
comment This first version is unsatisfactory, because
comment there is nothing to make it terminate.

integer N

cycle
READ (N)

PRINT TABLE OF (N)

repeat
end of program

There are many ways of writing in the arrangements to terminate the loop.

(i) . Using a control variable

8uppose that we know exactly how many times we wish to go round the loop; let
it be 10 times. We must declare an extra integer to be used to count 1,2,3,k.....10.
Let us give it the name COUNT.

begin
comment The meaning of the cycle below is as follows
comment “First time round, set COUNT equal to 1,
comment Each time round, increase CQUNT by 1 and
comment Stop the cycle at the end of the time when COUNT = 10"
integer N, COUNT
cyele COUNT = 1, 1, 10
READ (N)
PRINT TABLE OF (N)

repeat -
end of program

. - 5.2~

The coatrol variable (COUNT in the above case) must be an integer, but there
is no need for it to start with the value 1, nor for it to go up in stéps of 1.
Furthermore, we can use the value of the control variable to make slightly different
things happen each time round the cycle.

begin
cozmznt The control variable, let us call it 'I' this time,
comment will teke in turn the values 2, T, 12, 17 and 22,
corment Thus we get 2-times, 7-times....22-times tables printed.

integer I

cy:le I =2, 5, 22
PRINT TABLE OF (1)

ropest
ernd of program
(ii) Using a conditionel exit.

Any cycla/repest loop will be terminated if an exit instruction is obeyed.

comment Below, when N turns out to te zero, the exit will
cczment cause the cycle/repeat ioop to be terminated. By
ccxment putting it before the printing instruction, we avoid
corment putting out the O-times table.
integer X
gycle

READ (N)

if N =0 then exit

PRINT TABLE OF (N)
repeat ’
comtent When exit occurs, the program resumes from
comment immediately after the repeat (i.e. from here). .

PRINT STRING ("STOPPING NOW BECAUSE N = 0.")

NEWLIKE
erd of progrem
liote: The instruction exit is only valid inside & cycle/repeat loop and

causes an exit from that loop. If it appears between start/finish
brackets {which ere themselves necessarily enclosed inside cycle/repeat),
it causes an exit frem the enclosing cycle/repeat.

-9%53-

(iii) Using an until clause.

If, in the above, we decided to allow the O-times table to be printed before
exiting from the cycle, we should need to move the line with the conditional exit
down one:

cyele
READ (K)

PRINT TABLE OF (N)
if N = O then exit
repeat

In a case like this, where the conditional exit comes immediately before the
repeat, we are allowed to write the loop in a slightly more compact form:

until N = O cyecle
READ {N)
PRINT TABLE OF (N)

repeat

Note that, although the condition is written on the line with the cycle, the test is
actually made at the end of the loop, which will therefore always BE EXECUTED AT
LEAST ORCE. The flow diagram looks like this:

> *
READ (N)

2

PRINT
TABLE

Condition

is not (yet)
satisfied
(i.e. ¥ 4 0)
Condition
is
satisfied

(¥ = 0)

(iv) Using a while clause.

while and until clauses are negatives of one another in much the seme vay as if
and unless. {Remerber that "if N # C" and "unless N = O" are equivalent), but they
also difer in the TIME at which the test is carried out. When controlling a cycleé
with a wkile clause, the test for existing is made BEFORE carrying out the first

instruction of the loop.

Condition katisfied

INSTRUCTIONS
?) Condition
MORE NOT
TNSTRUCTION satisfied

IR

comment This program reads a PCSITIVE integer (K), then
comment calculates and prints the remainder vhen N is
comment @divided bty 7. This is done by repeated subtraction
comrent of 7, continuing as long as N is; T. In case
comment N is originally less than 7, we need to test BEFORE
cczment the first subtrection is carried out.

intsger W

RIAD ()

while N) 7 cycle
N=N-17

repeat

comzest This program assumes POSITIVE irput data.
PRINT STRING (YREMAINDER = ")

WRITE (N, 1)

NZULISE

end of nrocran

Note Tre above example is intended to be sicple to understand.

This is not generally an efficient method of finding a -
remeinder (urless N is known to be small).

) = 5.5~

Some restrictions in the use of cycles.

(1) In the case of a cycle with a control variable (i.e. cycle I = M,N,P+3) the
controlling variable (I) must be an INTEGER variable. The three integer expressions
for first value, increment and final value (i.e. M, N and P+3) may contain variables
as this example shows, but they must work out so that the cycle terminates. That is,
the difference between (P+3) and M must be an exact non-negative multiple of K.

(2) A cycle may be controlled by ONLY ONE of (i) a control variable, (ii) a

while clause, (iii) an until clause. In other words it is invalid to write:

until X = 0 cycle I = 1,3,K

1

On the other hand, a cycle controlled by any one of the above three may also have an

exit instruction within.

NESTING OF CYCLES
A cycle/repeat group may itself be enclosed in a further cycle/repeat. A
common need for this arises when operating on 2-subscript arrays.

A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

This cycle will read three numbers from
the data file into A(1,1), A(1,2) and
A(1,3), thus filling the first row.

cycle COL =1,1,3
READ (A(1,COL))

re geat

s e

These nested cycles will read six numbers
into A(1,1), A(1,2), A(1,3) followed by
A(2,1), A(2,2) and A(2,3).

cyele ROW =1,1,2

cycle COL =1,1,3
READ (A(ROW,COL))
repeat
repeat

we
o t= em

-

cycle COL =1,1,3 But by reversing the order of the cycles,

we

s8ix numbers would dbe read in, column by
column, That is in the order A(1,1), A(2,1)
followed by A(1,2), A(2,2), followed by
A(1,3), A(2,3) ‘

gcycle ROW = 1,1,2
READ (A(ROW,COL))
regeat
repeat

e we
om Gm tm tm e

- 5.6 -

SECTION 5(B) - SHORTENED FORMS OF while/until

Cycles controlled by while or until clauses and containing a small number
(usually one) of simple unconditioral irnstructions, may be written in abbreviated

forms, analagous to those used in place of start/finish groups.

(i) Consider the previous example of teking a remainder when K is divided by T.

while N 3 7 gcycle
N=N-T

repeat
——

This can be contracted to either of the following equivalent forms:

(a) while K 3 7 then N=1K -7
(v) N=K-T7 whileN T
(ii) A cycle to read and sum a set of numbers which are known to be terminated

with a zero, is (assuming SUM and X have been declared):

SUM = 0
until X =0 cycle
READ (X)
SUM = SUM + X
regeab

Two possible and exactly equivalent contractions are:

(=) SUM = 0
until X = O then READ (X) and SUM = SUM + X

(v) sS4 = 0
READ (X) and SUM = SUM + X until X = 0

- 6.1~

SECTION 6 : LIBRARY ROUTINES & FUNCTIONS

These may be clasaified as follows:=

(a) Routines e.g. READ STRING (S)
FEWLINE
YRITE (I*J,3)
SORT STRING ARRAY (X,1,50)
PRINT STRING (S.T)
READ (I)

(b) Functions (i) integer functions e.g. LENGTH (S)
) mwe (Y + 3.1)

(i1) resl functions e.g. SQ RT (Y*2)

(iii) string function e.g. DATE

A routine call is a complete instruction. A function, on the other hand, is
used as part of an instruction. Its purpose is to generate ONE VALUE. This value
- mst then be used as part (or the whole) of an expression of appropriate type -
integer, real or string.

- For example, suppose the following declarations had been made:-

integer I,J,K ; realY,Z ; string (50) S,7,U

Then the following would be possible statements:-

I = LENGTH (S) + 17
Z = SQRT (Y * 2)
PRINT STRIRG (YTODAY IS “.DATB) .

Note that we describe a function as an integer function, real function or string
function, depending upon the nature of the value it produces as its result; this
has nothing to do with the types of the parameters given in brackets., In fact,
neither of the examples of integer functions given above takes integer-type
parameters. LENGTH takes the name of a string as parameter (but gives as its
result an INTEGER giving the number of characters currently stored in that string
variable). INT takes a real expression as parameter (but gives as its result
the INTEGER value nearest to the real expression.)

. -6.2 -
SPECIFICATIOR

Before we are able to use a library routine or function, we need to'be told:

(2) Its type: routine, integer function, real function or string function.
(b) Its NAME.

(c) The number and type of parameters required.

(d) wWhat it does. ‘

These first three are sometimes written as a'"specifice%iony in the:form:-

routine spec SORT STRING ARRAY (strirg array nane X, integer A,B)
intezer fn spec LENGTH (string name S)

strins fn spec DATE
routine spec PRINT (real EXPR, integer DP1, DP2)
routire spec WRITE (intecer EXPR, DP)

routine spec SWOP INTEGERS (intecer name I,J)

In this context, the names used for the FORVAL PARAMETERS are of no significance,
and only serve to show how many actual parameters of each type are required when we

call the routine. We have (so far) nine types of formal parameter:

Actual Parameter Needed
integer array naze)) The name of an array of appropriate type

real array name) (integer, real or string) e.g. A
string array name

interer naze) The nane of a single variable (or single
real rane) elezent of an array) of appropriate type (integer,
strirs naze) real or string) e.z. § A(7) B(I,J)

irteger) An expression of appropriate type (integer,
real) real or string), except that an integer expression
string ()) may be used in place of a real expression - (but

not vice versa). e.g. I*J Y + 3.1 S.T

Note that WRITE takes two integer (i.e. integer expression) parameters, while
SWOP INTEGERS takes two integer name parameters. Hence we can use the expression
(1%3) in

WRITE (I*J,3)
but NOT es a parameter to the routine READ . In any case, it would be hard
to ascribe & meaning if we did write:
READ (I%J)

- 6.3 -

SUMMARY OF LIBRARY ROUTINES & FUNCTIONS AVAILABLE

(i) Common input and output ROUTINES,

These were described in Section 3: READ READ STRING READ.ITRM
WRITE PRINT PRINT FL
PRINT STRING
KEWLINE NEWLINES REWPAGE
SPACE SPACES

(ii) STANDARD INTEGER FUNCTIONS

In the tables below, ti:e type of parazeters taken by each function will
be indicated in brackets after the NAME of the function.

Name Parameters Tre value calculated is:
INT {reel X) The neesrest integer to the real expression

|

given as parareter, X.

INT PT (real X) The integral part of X. Note that
’ INT PT(3.73) is 3, but that
INT PF(-3.73) is -k,

IMOD (integer 1) The modulus {absolute vezlue) of I.
Hence, IMOD (-3) gives +3,

REM (integer I,J) The rexainder when I is divided by J.
*#% Drovided for Computer Science 1
students ~ not in standard IMP, #¥#

LENGTH (string name S) The number of characters in the string
variable S,

" (iii) Standard STRING FUNCTION

FROM STRING (string neme S, integer 1,9) A copy of the Ith to the Jth
characters (inclusive) of S. The string
variadle S is itself unaltered. Also see-

section T.

- 6. -

(iv) Standard REAL FUNCPION

Loume Parsmeters The value it calculates:
SQ RT {real X) The (non-~negative) square root of X.
MOD {real X) The absolute value of X.

e.g. MOD (-3.73) = 3.73
FRAC PT (zezl X) Tre fractional pert of X

e.g. FR4C PT (3.73) = 0.73

FRAC PT (-3.73) = 0.27

LCG (real X) Tre logarithm to base e.
foyd (real X) e*.
sin (real X) The usuel trigonometric functions, but
oS (rezl X) rcte that X is in radians.
TAN {rezl X)
ARCSIN {real X)

LYY
Fa o

- to +i. if X > 0, the resuit is in

the 1st or Lih quadrant. If X < O, the

result is in the 2ad or 3rd quedrant,

{v)

#EMNOTE

{vi)

(vii)

- 6.5 -

TIME, DATE & CPU TIME

Name Parameters
TIME NONE
DATE NORE
CPU TIME NONE

The value it calculates is:

The time of day when the function is
called,given as an 8-character
STRING, For example: "14:27:31"
(24-hour elock) '

The date when the function is callead,
given as an 8-cnaracter STRING.

For example: "27/10/76"

This gives a RTAL number, for the
amount of time in seconds spent by
vihe Ceniral Processing Unit on tre
execution of this prograz, up to th
time of calling the function. Since
the starving time for this "clock"
is undefined, this function should
alvays be called TWICE, and the
difference between the two values
taken. The result is accurate

to 0.001 seconds.

Users other than Computer Science 1 students will need to give an

external specification before using any of the above three functions.

This tekes the form:

exterral string fn spec TIME
external String fn spec DATE
external real fn spec CPU TIME

PRIVATE LIBRARIES

Computer Science 1 students should also look in the supplement of
additional library routines and functions provided for the class.

OTHER STANDARD LIBRARIES

Information on these is issued by the ERCC, but, will not be required

by Computer Science 1 students.

-7 -

SECTIOX T : NMORE OPERATIONS ON STRINGS

STRING RESOLUTION

This is an instruction peculiar to strings and it allows us to search a string
for tne (first} occurrence of soze sequence of characters. For example, suppose we

have made the assignment

S = “JO4N SMITH, 8 BLANK TERRACE, EDINBURGH. TEL 668 1212%

then

S=> T.(*, "L.U
will assign to T a copy of the characters found in S before the first occurrence of
the expression in brackets (i.e. comza space) and to U a cory of those after it.
S will REMAIF UNALTERED. More generzlly, we have on the right & sequence of
alternzie string expressicns in brackets and strins variables. Returnirg to the

avove,
S -» NA¥E.(®, *).ADDRESS.(¥ TEL "). PZONE NO
will cause JOHN SMITE to be assigned to string variatle KNaME,

8 BLANX TERRACE, EDINBURGH. +tu ADIRESS
and 658 1212 to PHONE XO.

(a) The exprecoiors in trackels muy be general siring expressions (variacles.
constants, funciions, ete.) but ‘he siring variable nares wiich aliernate with

witnout trackets, zey only be variadbles since values are to

(v} iIf the expreszion gought dces net occur, the program is terzinated with a

run-time fault.

CONDITICNS TMVOLYING STRING EZSOLUTION

The condition

if S<»P.("*").Q tren

tests 10 see if S can e resclved im this way. IS it can, copies of the cozponents
B

are assigned 16 P, § and, of course, the instruciion at is carried out, If

not, ncne of these eventis tukes place.
The resoluticn orerator (<) is not allowei irn a two-sided condition. Hence

m . a olwenY Ao
T = lep A dew LI N e

1s invalid, but could correctly be written

if T =5 g2nd S-p P.(V*").Q then

-T.2 -

TAXING A FIXED PORTION OF A STRING { FRCM STRING)

The string function FRCM STRING (parameters: string rame S, integer I,C),
gives as its result a copy of the Ith to the Jth characters (inclusive) of the
string S.. It LEAVES S UNALTERED, For example, if string variable P is

currently storing:
MARY QUEEN OF SCOTS

then the instruction: Q = FROM STRING (P,6,10)

will assign to Q the S-character string: QUEEN

LENGTH OF A STRING (LENGTH)

The integer function LENGTH (parameter: string neme S) gives as its
result the number of characters in the string currently stored in S. Thus
with the value in P as above, an instructicn:

I = LENGTH (p)
would result in the value 19 being assigred o I,

LOOK-AHFAD IN THE DATA FILE (N2XT ITEM)

Sometimes we shall wish to'look snead' to see what the next character
in the data file is, without actually reading it. For example, to find out
whether or not it is safe to try to read a number with the READ routine.
(If the next character in the data is a letter, then an attempt to use READ

will cause the program to be faulted.)

The string function NEXT ITEM gives as its result a l-character string
corresponding to the next character in the data file, BUT LEAVING THAT
CHARACTER OFFICIALLY UNREAD, so that it is still there to be used again when
vwe give an instruction to read it officially, This function takes KO PARAMETERS.
The value of the function may be assigned to a string veriable, but rather more
frequently our idea of 'looking ahead' is o decide whether or not it is safe to

proceed. For example:
if Y0¥ NEXT ITEM £ “5" then RDAD (X
Note that although the above check is sufficient to ensure that it is safe %o

use "READ", it is not always necessarily what we want - the next item night be
& space or newvline, and the character AFTER THAT could still be a digit 0-"

-7.3-

SPECIAL STRING CHARACTFRS.

(i)

il

).

%#*% The facilities on this page are not part of standard IMP “#w#

NEWLINE CHARACTERS. . (sNL)
If we wish to write down the string constant consisting of one
newline character, this can look & bit awkward and inelegant.

READ ITEX (S)
E S="

" then COUNT = COUNT + 1

To avoid this inelegance, we can write SNL (standing for STRINC
NEW LINE) instead. Thus the above becomes:

HEAD ITEM (S)

if S = SRL then COUNT = COUNT + 1

END OF DATA FTLE. (sEM)

If we wish to test to see whether we have reached the end of our

data file, we can read an item, and test to see if it is the end of file

marker, written SEM (standing for STRING END of MESSAGE).

READ IT2M (S)
if S = SEM then stop

SKIPPING ITEMS IN THE DATA FILE. {SKIP ITEM)

The routine SKIP ITEM (parameters NONE) simply reads a character
from the éata file out makes no use of it ('throws it asway') so that

the next character after it in the file is now next in line to be read.

while NEXT ITEM = " " or NEXT ITEM = SNL then SKIP ITEM

- &.1 -

SECTICN 8 : RMMERITAL AND STTING ENDRESSIONS

We have alread seen eny places where integer, real and string
expressions are written in IMP programs - on the right-hand side of
assignment instructions, in conditions and as actual parameters to routines
(when parameters are called by value). Integer expressions are also used
as bounds in array declarations, as array subscripts and as bourds for
cycles. String expressions can also be used between the brackets of string

resolution instructions such as: S o> Tulereennennnad) U

While noting that in all the above cases we can use any expr-—
ession of the correct type, there some cases in the language where we are
constrained to write a constant, rather than an expression. Such places

are indicated by in the following:
(a) As the maximum length in string declarations.
string (....) array PETE (M : N+1)

(b) In the bounds for CONST arrays {also OWK arrays, described later).
In the list of initial values given to CONST and OWN arrays.

const integer array TABLE (.... 2 +vee) 2 tiur h cvne y vene

INTEGER EXPRESSIONS Consist of:
Integer variables connected by the operators:
Integer constants (e.g. 45) + - % [/ #% yhere * is multi-
Integer functions plication, // division and *# is for

exponentiation (raising to a powver).

NOTE The result of integer division (using the operator //) is rounded
down. The result of 7//2 is the integer 3.

REAL EXPRESSIONS Consist of:
Real OR integer variables connected by any of the operators:
Real OR integer constants + - % [/ or

Real OR integer fu.nctions_
NOTES (1) Real division (using /) involves no more rounding than is
necessary to match the precision availeble in real variables.

(2) Integer operands (variables, constants and functions) may be

used in real expressions, but not vice versa.

e~

vin s mommasem ~ s e e
3 DHERESIICND consisn ol

<

- 8.2 -

NOTE {3) Tae exgonentiation operstor {**) raises operands to & power,
but this power must be an integer (positive or negative). Thus
X*#3 represents x3.

(L) Apart from an initial + or - sign, all arithmetic operators

nust appear cirectly betweszn a pair of operands; two adjacent

operztors &re not ailowed. Thus x'3 will have to be written as

X %% (-3) anpd not as X ** -3,

{5) Real constants may be in either fixed point form: 3.725
or in floating point form: 1,73283 =meaning 1.732 x 103

1.7328-3 meaning 1.732 x 10~

The constant 7 {i.e. 3.14159265.....) may be written in IMNP

prograums as PI (or n or £ or $, depending upon the particular

3

compiler and input device in use).

~

Ciring varisbles
trirg coastants {e.g. "MORRIS 1300")}
String functions

connected by the operator
for coacatenating, which is
a full stop (.)

NOTE OF STRINS COUSTARTS,

String constants are written between quotes, and may consist
of up to 255 cheracters. The quotes werxing the begining and end of
the string do not form part of the siring. lence

"THE CAT"

is & string of length T (6 letters and 1 spuce).

The empty or NULL string (of length O) is of course represented
by two quotes witl1 notning between them, i.e. "

Tais should not be confused with a string consisting of one or
more spaces, wihich might be " " one space

or "™ " two spaces, etc.

Newline characters can appear in strings like this:
i3I8 STRIKG IS SPREAD
OYER TWO LINES"

IZ a quote character is raquired in a string, it is immediately
followed by another, to show it is rot a terminating marker,
"WHO SAID ""xo""2" is the way to write the string: WHO SAID "NO"?

-8.3-

PRECEDENCE OF ARITHMETIC OPERATORS.

If we consider the expression A+B*C we migrkt think of eveluating it in two
ways, i.e. as (A+B)*C or as A+(B'C). It is easily seen that these do not in gfeneral
give the same value. So we have precedence rules which define the order of evaluation
in the absence of brackets. For two adjacent operators (like * and + above), the

operation of the higher precedence in the table below is carried out first.

L (highest precedence)
*or /or//
+ or - (lowest precedence)

Where two adjacent operators are of equal precedeace according to the tsble
the one appearirg to the left in the expression to be evaluated takes precederce.

We can always use brackets to over-ride the above rules of precederce. ¥ken
in coubt it is wise to insert Yrackets for safety and clarity. Extra brackets do
no hacm.

The 'left-hand precedence' between + and - agrees with normel (mathemaiical)
usage,

e.g. By A-B+C we mean (A-B)+C ani not A-{B+C)

EXAYPLE xeauey
A/B*C {a/B)*C
4/(=+C) (a)/(3*¢c)
A**B*C (a*=3)*C
A**(B*C) (a)=+(B*c)

Note that it is necessery to bracket denominators containing more than one ternm.
A common mistake is to write A/2*B wnen A/(2*B) is intended.

MODULUS SIGNS ##% WARNING ~ SEE BELOW %##

If we wish to take the absolute value of an expression, we enclose the
expression between exclamation marks. Thus
1X-Y!

‘yields the (positive) difference between X and Y. Tris operation may te applied
to either integer or real exgressions, and gives a result ol the saze type as the
original expression.

#%% WARNING *¥* This modulus operator may soon be removed from some
IMP compilers. Use MOD and IMOD instead. (See section 6.)

-9.1 -

SECTICN 9 : INIER BLOCKS — LOCAL AND GLOBAL VARIABLES.

Inside a prograex we may use an inner block. ts structure, witn its local
declarations at the head, and its instructions following, is identical to that of
the zain program, except that it is terminated by end instead of end of program. An
inner block may be regarded as a compound irstruction.

berin)
e declarations)
essee)
)
veeen))
osvos))
Ltocin))
ceeee ; declarations g ;)

) inner btlock) instructions) MAIN PROGGRAM
reees ; irstructions)) ;
erd))
))
))
end of prosran))

Ore case where thi:s is useful is when we require to declare an array whose

bound is not kncun until some part of the calculation has been completed. For example:-

begin
integer N
READ(X) 3! N is the size of array required

begin
integer array A (1:N)

er.d

€28 cf vrogram

LCCAL AND GLCBAL VARTABLES

It is important to appreciate the sphere of influence of the declurations male

in the inner and outer blocks.

A declaration appears at the head of a block and norzally remeins valid shrouglout
that block until cancelled by the end terminating the block. It also remains in
force upon descent to an inner block, UNIESS the szme rame is declared ir the irner
block. In the latter case, the variable is held in abeyance while the machine is
Aéfégﬁging the inner block, comirg into force again when the end of the irner block
is reached.

Within any particula» block, we call a verizble declared within that blecck
a LOCAL VARIABLE while one declared in any exterior block is called a GLOBAL
VARIABLE. '

These points are illustrated iz the followingz exaxple:

(1) degin (1) esin
integer A integer A
- A=1 A =1
intezer A,E,C in‘crer B,C
B=1 3=1
C =4 C =4
A=B+C A=34+¢C
WRITE (A,2) WRITZ (A,2)
erné of program end of progran
Here the name A refers to quite distinct dere A is global to the inner block since
variadles in the inner block and the this time A has not been re-declared. 1In
outer block. The WRITE instruction will this case the WRITE instruction will print
print the value 1. the value 5.

SCOPE OF VARIABLES.

It is important to realise that on leaving a block, all local variables

declared within that block are lost. Thus in the examples above, if the WRITZ

instruction on the penultimate line had attempted to write B or C, the program
woulcd have been faulted.

Although inner blocks will not be needed very often, the idea of local

and global variables and their scope, is most important. In the next section

on defining our own ROUTINES and FUNCTIONS, the same principle applies.

- 10.1 -

SECTION 10 : DEFTNTNG QUR OHNAEQUTINES & FUNCTIOCHNS
{A) ROUTINES

When designing a program to solve a problem, we first try to decompose the

proolew into sazaller elemeats, This enables us to view the structure of the program
as a whole, without initially having to bother about the fine detail of all the
steps. Also, it often turns out that esseantially the same sequence of instructions
is required in several places in the program. We may also recognise that particular
sejuernces may be of use in the future for similar progrems. It is therefore very
convenient to be avle to define our own routines, which may then be used in our
progra: in the same way es the library routines,

Before we can call one of our own routines in a program, we must make sure
its name, and the number and type of paramcters required, is declared. This may
be dore by placing a -specification (goec)among the declarations at the head of the

pro~raz. The forz of the anec is exactly as used in the discussion on library
routines, ard indlcates that the details of the routine will be given in a routine
tlocz later on in the program. Alternatively, we can, in all but exceptional cases
descrited later, place the whole body of the routine at the head of che prograz,
whore it may e thouckt of as a declaration of naze, parazeters ani what the routine
éces. The body of the routine has a siructure similar to that of a main program
except that in place of begin and end of program, we have routifng eeecccesess

end erd., Between these we put the local declerations (if required), followed ty
the instructions. For example, anyone not having access to the Computer Science 1
library routine "“SWOP INTEGERS" could add it for himself by inserting four lines

as follicws:=-

routine SWOP INTEGERS (integer name I,J)
integer K ! local variable for a copy of I
K=l ;3 I=J ;3 J=K 3! while value of J is moved to I

comment The above routine for swopping any two integers is now

cormment available throughout the program to follow

Introar Paq
integer array A (1:10)

SWOP INTEGERS (P,Q)
SwWOP INTEGERS (A(1),A(10))

-this first routine call causes

e 0w 0@ o= 0w

the routine above to be carried out
but with P and Q in place of the
durmy names I and J, respectively.
second time: A(1) and A(10).

e

e

end of nrozrem

- 10.2 -

HNote that the positioning of the routine body at the head of the program

hes nothing to do with the time the routine will be executed — the routire
will be executed vhen it is CALLED, that is at the line "SWOP INTSGERS (P,Q)".
In the call, we are told that the ACTUAL PARAMETERS P & Q are to be used in
place of the dummy FORMAL PARAMETERS (I and J).

-+ Another example:

begin
routine READ REAL ARRAY (resl erray name X, integer A,B)

! This routine reads real numbers from the data file into
! the real array X, from X(A) to X(B) inclusive.
integer I
cycle I =4,1, B
READ (X(I))

repeat
end

real array A,B (1:100), C (0:20)

READ REAL ARRAY (B, 1, 100) ! read 100 numbers into array B.
READ REAL ARRAY (A,51, 100) 3! read 50 numbers into array A.
(]

READ REAL ARRAY (C, O, 20) read 21 numbers into array C.

®escessececorccnses
e0scscccsssscsoves

®essecsccsecncces

end of program

Kote This routine is defined with a formal parameter real array nere.
This weans that it can only be used to act upon a real array, and
furthermore only upon a l-dimensional real erray. Unfortunately,
separate routines will have to be defined if we wish to read
& sequence of integers into an integer array, or real numbers into
a 2- or 3-dimensional array.

RETURNING FROM ROUTINES

See notes two pages on for the use of the instruction return

- 10.3 -

B) FUNCTIONS

These may be added at the head of the progrem in a manner almost identical to
that for a routine. The first line of the function indicates the type of function

it is (integer, real or string) and since the purpose of a function is to produce

ONE VALUE to be used (e.g. in an expression), we need a special form of instruction
to indicate wken the result has been calculated. This takes the form:

begin

result = ,co0e

integer fn LARGER OF (integer P,Q)

this function finds the larger of two integer values,

if P»Q then result = P else result = Q

&ad

real fn LARGEST IN (real array neme X, integer A,B)

1
.

This function finds the largest member of X from X(A) to X(B), 1nc1ua:.ve

integer I 3 real LARGEST

LARGEST = X(A)

cycle I = A+, 1, B 3¢ This assumes A€ B, See note over page.
if X(I)>LARGEST then LARGEST = X(I);! On finding bigger one, take it,

repeat

! Try this, compare all others with it
1

result = LARGEST

end

integer I,J,K,L, M; real Y,2
real array A(1:100)

cesee

o

MAIN PROGRAM STARTS HERE

I

LARGER OF (J,X) + LARGER OF, (1~1,M)
z

LARGEST IN (4,51,100)

sceos

end of prosram

- 10.4 -

NOTES ON FUNCTIONS

(a) On reaching "result =" in a function, this result is accepted as the
value, and no further instructions in the function are performed. Hence the first

function above could equally well be written:—

integer fn ILARGER OF (intezer P,Q)

if P> Q tren result = P

result = Q
end

since the line "resgult = Q" is orly reached if the condition "P % Q" has failed.

(b) 1In the second example, it is for the same reason that we must defer giving

“"result = " wuntil after completing the cycle/repeat.

(¢) The second example assumes that B is strictly greater than A, If we wish
to allow for the possibility of them being equal, we could add, as the first

instruction of the function:-

if A =B then result = X(A)

(d) since the purpose of a function is to produce ONE VALUE, we should not want
to assign new values to any of the parameters during the ciurse of executing the
function, For this reason, we should expect to call all parameters bty value.

In fact, Imp only allows arrays to be called by neze., This forces us to call
X as a real array name in the second function above.

RETURNING FROM ROUTINZS

We have seen above that we leave a function on executing the
instruction result = ,,.. , and that this need not necessarily arise at

the textual end of the function.

The event that causes the program to leave & routine may be
either reeching the textual end of the routinme
or executing the instruction return. This instruction may, like the
result = of a function, be made conditional. For example, if we have a
routine to sort an array into some order from X(A) to X(B), say, we may wish
to insert a conditional return at the begining to deal with the possibility
that the arrsy has only ome (or even less) elements:

if A » B then return

-11.1 -

SECTION 11 : RECURSIVE ROUTINES AND FUNCTIONS.

To write a routine to sort an array (say, an integer array) into
ascending orcer by the method 6f 'selecting the largest', we might start
planning as follows:

(i) Pind the position of the largest member of the array.
(ii) sSwop this largest member with the right-hand member.

Position of the largest

x(a) $ - x(»)
| |
4 A

swop

We now have one element (the right-hand one) in its final resting
placei it can now be disregarded and the rest of the problem is simply to
sort the remaining members of the array. Now, this is exactly the same in

nature as the original problem, but one smaller, so that step (iii) is:
(iii) Sort an array one smaller than the original one.

The Computer Science 1 library contains a function and a routine
to carry out stéps (i) and (ii) above. Step (iii) can be carried out by
calling owr main sorting routine from within itself, a process known as
RECURSION.

routine SELECT SORT (integer array name X, integer A,B)
integer P

! Using C.S.) special routines.

.

P = POS BIG INTEGER (X,A,B) Find posn. of largest.

SWOP INTEGERS (X(P),X(B))
SELECT SORT (X,A,B-1) if A < B-1 ;' Leaving the end one
alone, sort the rest.

Swop it with the end one.

s
-

end

NCTES (1) It is important to make sure that a routine or function written
recursively will not carry on calling itself indefinately. In this
case, each call on SELECT SORT acts on an array of one less elements
than in the previous call, so that it will suffice to insert a simple
condition to miss out the recursive call when the array consists of

one element (which, of course, cannot help but be in the correct order).

-11.2 -

NOTE (2) 1In this case, the recursica can, if we wish, easily be avcided bty
using a simple cycle instead. In more complex situations, this may not
be so easy, and recursion can provide a great simplification in our
thinking.

(3) The avove version of the routine will fail if called with A and 2
initially 'inside out', thet is A > B, It is instructive tc re-wriis

it as follows:

routine SELECT SORT (integer array name X, integer A,B)

integer P
return if A > B 3! Nothing needs to be Jone.
P = POS BIG INTEGER (X, A, B) ;! Find largest.
SWOP INTEGERS (X(P), X(B)) ;' Swop it with the end one.
SELECT SORT (X, A, B-1) ;! Sort the remairder.

erd

RECURSIVE FUNCTIONS.

Similerly, functions may be written recursively. Consider the
problem of finding the Highest Common Factor of two integers, P and Q, =ay,

usirg the Euclincan algorithnm,

(i) Find the remazinder (R), when P is divided by Q.
(ii) If R = 0, then the H.C.F. is §.

(iii) Otherwise, we need to find tne #.C.F. of Q and R.

integer fn HCF (integer P, Q)

integer R

R=P-P//Q*Q ;! Same as the CS1 function REM

if R = 0 thea result = Q 3! The HCF required.

result = KCF (Q, R) 3! We only reach here if R # C
end

NCTE Once again, our recursive functicn has an escape clause (if R = 0)

to ensure that it does not call itself indefineately.

- 12,1 -

SECTION 12 : EXTERNAL ROUTINES AND FUNCTIONS

DEFINING EXTERNAL, ROUTINES AND FUNCTIONS.

A file of external routines and/or functions takes the following form:

external routine A(integer array name X)
end

external routine PRINT DECODED (string(3l) S)

end :

external real fn CUBE ROOT (real x)

result = ., . . . o
end

end of file

This file is compiled in the normal way. After this, the routines A and PRINT DECODED,
and the real functiion CUBE ROOT may be used in any program, provided that program
contains an appropriate "external spec" (see next page).

*% WARWING When stored by EMAS, the names of your external routines and functions
are TRUNCATED to the first 8 characters. You must take care, therefore, to avoid
using twvo names with the same first 8 characters.

Kotes (1) Unlike a main program, a file of external routines has no begin
statement. Instead of end of program , it terminates with end of file .

(2) If we require any global variables, accessible from two or more of the
routines or functions, these have to be declared as own or const variables
(see next section). (There is a third possibility, external variables,
described in the IMP language manusl, but these are not normally to be
recomzended) .

-12.2 -

CALLING AN EXTERNAL ROUTINE OR FUXCTION.

To use an external routine or function in a program, we give an “external spec" -
this is the same as the first line of the routine (or function), with the keyword

spec added.

begin

external routine spec PRINT DECODED{string(31) S)

external real fn spec CUBE ROOT (reel X)

real X,Y
READ (X)
Y = CUBE ROOT (X)

PRINT DECODED ('#A233!PZTR')

« e e e e

end of program

#*% YARNING Be very careful that the parameters you give for your external szec
are identical to those given for your externel routize (cr function). N3 JEECK
is made when the progrem is run, and if the parazeter liite dirfer, then chaos

will usually result. ("ADDRESS ERROR" at run-time is a likely consequence).

GLOBAL VARIABLES FOR A FILE OF EXTERNAL ROUTINES.

If we require some global variables accessible from several external
routines in one file, it is no good declaring an ordinary veriable at the
head of the file - being outside of a program or external rcutine, this would
be illegal. We are, however, allowed to declare either CONST or OWN variables
at this point. See section 2(iv) for CONST and sectior 13 for OWN variables.
Note that it is also permissible to put a reccrd format statement at the head
of a file of external routines in the same way, and the format will epply
to all the external routines.

- 13,1 -

SECTION 13 : OWN VARIABLES.

OWN variables are almost the same as CONST variables (which were
described in section 2(iv) - but avoiding the word 'variables' because we
were describing things thet could not be varied). Storage space for both OWN
arnd CONST variables is allocated and initial values are assigned when the
program starts execution; the difference is that OWN variables can subsequently
be altered by the program.

On leaving a routine {or function or inner block), all variables .
declared locally within that routine become inaccessible. However, whereas
ordinary varisbles then cease to exist (the space allocated to them is normally
re-usea for some other purpose), OWN and CONST variables continue in existance
"behind the scenes". Thus if and when the program returns to execute this
routine on a later occasion within the same run of the program, OWN and
CONST variables will oance again become accessible and will contain the values
left there &t the end of the previous visit to the routine. Note that the
initial value given with the declaration of OWN variables is assigned once,

ané once only, each time the program is run.

routine ANYTHING
ovn integer I =0
I=I+1

end

Like any other local variable, I is of course only accessible from
within the routine (or from within any routine/function/block embedded within
the routine). When the program starts, I takes the initial value O, as in the
declaration. On reaching the instruction I =1 +1 for the first time, I
will increase to 1. Assuming that none of the later instructions within the
routine alters I, it will still be 1 on leaving the routine; thus on entering
the routine the next time, I will start with the value 1 and immediately be
increased by 1 to 2. Thus I will always be storing en integer corresponding
to the number of times the routine has been entered. (Note that it will be
the number of times the routine has been entered since we started this
present run of the program - the fact that we ran it several times earlier
to-day has no bearing.)

Note An OWN variable declared at the head of a file of external routines
may be accessed from within any of thenm.

-1k -

SECTION 14 : BYTE INTEGERS, SHORT INTEGERS, LONG REALS

BYTE INTEGERS, SHORT INTEGERS
To economise in storage it is sometimes convenient to declare:

! occupies 2 bytes (16 bits).
! range of values stored: -32768 to +32767.

ws

short integer I

occupies 1 byte (8 bits).

byte integer J
! range of values stored: O to 255.

Notes (1) Although short integers are seldom used, byte integers are useful for
storing symbols. See section 18.
(2) Short integers and byte integers may be used in any integer expression.

(3) The value of an integer expression (including normal integer variables)
may be assigned to a short or byte integer, provided the value obtained lies

in the ranges given above.

(L) ** WARNING, Short or byte integer variables may not be used as the
control variable for cycles.

(5) Arrays may be declared in the obvious way:

short integer array A{0:999)

byte integer array 8(1:2000)

(6) Neame-type or value-type parameters to routines may be of type short

integer or byte integer.

LONG REALS

long real X,Y +¢ each occupies 8 bytes (64 bits).
long real array Z(=-1000:1000)

Long real variables can store the same range of values as real variasbles, but to
a greater precision (between 1l and 15 decimal digits instead of between 6 and 7).

Hote If the special statement reals long is placed at the head of a program:

reals long

begin
this has the effect of turning all declarations and parameters of type
real into the corresponding ones of type long real. (Computer Science 1
students need not do this, as it is inserted for them automatically.)

-15.1 -

SECTION 15 : RECORD VARIABLES,

Suppose that we wish to store the following data about some

children:
(a) Name ~ Up to 20 characters. Use a string(30).
(b) Age in mcatas - A pyte Integer will serve (iax. value = 255).
(¢} Height in inches - Kept %o ncarest 0.1%". We need a real.

I: will be convenient if we can store these three pieces of infor-
maticn in one variadble, which can be manipulated as a whole. For this we
need to define & new type of veriable, known as a record. To define & new
type of variable, we first give & record formst ; havirg done that, we are
&ble to declare scalars and arrays as follows:-—

reserd forzat BABY (striagi{3C; YAME, tyre inteser AGE, real HEIGHT)

rocerd F1, R2 (Basy)
reasrd srrey KID (3:160) (Razy)

. Because thay Lave been declared as of type BABY, records Rl, R2 and
81l elements of record array KID consist of 26 bytes, like this:

AT field AGE field H:IiGET field
(1+3D bytes) {1 tyte) : pytes)
Rl
R2
Kip{1)
)
I. [! | :
[!]
L] (
kIn(100) | |]

A complete record is referred to by its name {e.g. R2 or KID(12)),
Assigoments to complete records must have on the right-hand side either
ancther reccerd of the sazme format, or 0. For example:

RZ = KID{13) ;! All fields of KID(13) are copied to R2,
R1=0 3! All fields of Rl are set to O (for numerical

3! fields) or to the null string (string fields).

Individual fields may be referred to separately, as showr on the

nex: page.

- 15,2 -

FIELDS WITHIN RECORDS.

To refer to an individual field, we give the name of the whole
record, followed by the underline character (_) and the name of the field

required.
R1_NAME is the NAME field of record Rl. It can be treated as any
other string variable. For example:
PRINT STRING (R1_NAME)
Rl NAME = "A,B. SMITH"
R2_HEIGHT is the HEIGHT field of record R2. It can be treated as any
other real varisble. For example:
R2_HEIGHT = R2_HEIGHT + 2.5
KID(3)_AGE is the AGE field of record KID(3). It can be treated as

any other byte integer variable, For exanmple:
KID(3)_AGE = R2 AGE
WRITE(KID(3)_AGE,3)

ARRAY FIELDS WITHIN RECORDS.

Suppose that we wish to store records, each containing (a) the nanme
of a student and (b) an array of his marks in each of 12 exeminations. A

suitable set of declarations might be:

begin
record format STUDENT (string(30) NAME, integer array MARK(1:12))
record array CS1 (1:200) (STUDENT)
record A,B (STUDENT)

We can now refer either to a whole record (e.g. A or CS1(34)),
or to the MARK field (which is an integer array) or to an individual
" “element of of a MARK array. ’

A_MARK is en integer array, giving the twelve marks stored in
record A.. It can be treated as any other integer array,
for example, it can be passed as a parameter to a sorting
routine:

SORT INTEGER ARRAY (A_MARK,1,12)

€s1(1)_MARK(J) is an integer variable, giving the mark in the Jth exam
of the student whose record is in CS1(I).

-15.3 -

RECORDS AS PARAMETERS PASSED TO ROUTINES/FUNCTIONS.

Records and record arrays passed as parameters to routines or
functions may only be passed by name. In addition, each such parameter must
be folloved by a record spec statement, indicating what type of record it is,
In the following example, note that the one record format statement at the
begining of the program is valid within both the routines that follow it,
in accordance with the normal scope rules. It is also valid for the
declaration at the start of the main program.

begin .
record format BABY (string(30) NAME, byte integer AGE, resl HEIGHT)

routine SWOP RECORDS (record name X,Y)

record spec X (BABY)

;! Note that unfortunately, a separate gpec
record spec Y (BABY) ;! statement is needed for each parsmeter.
record Z (BABY) 3! A dump variable, needed as usual.

Z=X ; X=Y ; Y=2

end

routine SORT RECORD ARRAY (record array neme R, integer A,B)

record spec R (BABY) =~ ;! Takes same form as for scalars above.
integer I '
cycle I = A,l,B-1)

if R(I)_HEIGHT > R(I+1)_HEIGHT then SWOP RECORDS (R(I),R(I+1)) -
repeat

SORT RECORD ARRAY (R,A,B-1) if B-1 > A
end ’

..

MAIN PROGRAM STARTS HERE

record array KID (1:1000) (BABY)
record P,Q (BABY)

ete, ete,

- 16.1 -
SECTION 18.

ROUTINES/FUNCTIONS AS PARAETERS

Suppose that we wish to have one routine that will print a table of square rocts,
or cube roots or cosines, etc. as required. We clearly need the name of the required -
function to be passed as a parameter, for example:—

TABULATE (SQ RT)
TABULATE (CUSE RT)
TABULATE (COS)

In another case, we might wish to write a routine that would see how long some
nomineted sorting routine took to sort an array of 100 rendom nurbers. In this case,
a routine would need to be passed as a parameter. For example:-

TIME SORTING BY (QUICKSORT)
TIME SORTING BY (BUBBLESORT)

In a realistic exa;nple we should almost certainly need some further parameters
(e.g. a string to be printed as a heading for the table, the size of the teble o te
printed, or of the arrey to be sortes, ete., etc.). For clarity, hcwever, these will
be omitted in the examples below.

The routine/function is pessed as a parareter in a fairly natural way, excest
that one extra statement is needed: if the function or routize being passed as

" "

spec
F itself takes. And, of course, the actual functions used (e.a. SQ,RT, CUBE 27 C0S

paraxeter has the formal name F, we reed a

statement to say what paraxeter(s)

in the above) will have to conform.

routine TABULATE (real fa F)
gpec F (real X) ;! The actual funciion passed es
parapeter must conform to this and

integer I take just one real value parameter.

- cycle I =0,1, 10
NEWLINE
WRITE (I,2) H
PRINT (F(I),l,k)
regea.t
NEWLINES(2)
end

Tebulates the function F(I) for
I=0,1, 2, coeesss.10.

- 16.2 -

An example of a ROUTINE passed as a parameter to d routine:~

routine TIME SORTING BY (routine ANYSORT)

spec ANYSORT (integer array neme X, integer A,B)
integer arrey P (1:100) ;! Stores the numbers to be sorted.

integer I
real T

To measure the time taken.

e

Fill an array with 100 random
numbers, using the function from
the CS1 library.

cyele I =1, 1, 100
P(I) = RANDOM INTEGER
repeat

T = CPU TINE

ANYSORT (P, 1, 100)

PRINT (CPU TIME - 7, 3, 3)
e :

ANYSORT is the dummy name for any

ws

sorting routine, whose actual name

e
e o=

will be given when the routine is called.

.

MINOR NOTE.

In the example on the previous page, the routine TABULATE requires
as actual perameter a real function., In fact, the standard functions SQ RT
and COS are defined as long real functions. Although this distinction has
been irrelevant to us so far, it is significant when a function is passed as
a paraxzeter. If we regquire to pass any of the long real standard functions to
our TABULATE routine, a simple way to reconcile the parameters is to place the
special statement reals long at the head of each program or file of external
routines concerned. This has the effect of turning all declarations and
parameters of type real into the corresponding long real types. In fact,
this is done automaticelly for Computer Science 1 students.

T T T .

- 17.1 -

SECTION 17 : INPUT AND OUTPUT STREAMS.

In all our discussion so far, we heve assumed that all the dete
teing read by our input routines {READ, READ STRING, etc.) ccmes in one
STREAM {rom just one file (or input device); and similarly that &ll cur cui-
Fut is sent in one stream to just one file (or output device). Depending
upon the computer we are using and the operating mode, there will be LEFAULT
OPTIONS vhiéh, in the ebsence of instructions to the contrary from the
program, determine the devices to be used for the input and outpu: streaxzs.
These, and the methods of over-riding them, are not part of our IMP program
and do not concern us here, However, we may wish to include instructions
in our program to arrange for input data to be taken from two or more
different streams (coming from different files/devices), or to sand our
output to two or more streams (being stored or printed on different files/
devices), To arrange for this, we use the routines SELECT INPUT end

SELECT OUTPUT, which both take an integer value as parsmeter.

begin
real X

READ (X} This ccmes from the delault input

-
.

.-

streax, as no instruciicas to the

we

sesseres

SELECT INPUT(2) Fronm now on, until changed again,
READ (X) 3! irput comes from STREAM 2.

contrary have been given.

-
Py

sesennene

end of rremram

NOTES (1) Output streams are selected in just the same way with the
routine SELECT OUTPUT. :

{2) Computer Science 1 students can choose siream as follows:
For input: Input stream 1, 2, 3 or O. (Input O is the console).
For output: Output stream 1, 2, 3 or O. (Output O is the console).

(3) Other users will have to use one set of numbers for input

streams and a different s¢b for output streams.

(k) ®* VWARNING ** Both input and output streams are buffered lin
by line. Unfortunately, when we select & new stream we lose any
deta remaining in any half-read line oxn the olé input stream. A

subsequent re-selection of the old stream will resume reading st

tane beginning of the following line. On calling SELECT OUTPUT, any

helf-complete lire on the old stream is terminated with a newline.

String variables, functions, eic., are designed to fscilitate
operations upor non-rumerical juarntities. ticwever, they suffer from the incon-
venient limitation of having a maximum length of 255 characters., Moreover, tc
access an individual character (say the Tth) of string S, we have to use the
unweildy function

T = FROM STRING (S, T, T)

We can, of course, store information in an array of l-character
strings:
string (1) arrey S{1:1000)

but if we are going'to have to store our non-numerical characters in one-
cheracter units anyway, there is the alternative of storing them as what are
grewn as SYMBOLS. This is more eccoromical in storage than using one-cnaracter
strirgs, but denies the facilities of concatenation and resolution., Each
symbol is regarded as equivalent to an integer in the range O - 127, and thus
symools can be stored in integer or, for cconomy of storage, byte integer
variables. Corresponding to the routines and functions so far considered

for input and output of strings, we have equivalent ones for operating

on symbols being stored as integers.

string (1) S, 7, U integer I, J, K

READ ITEM (S) READ SYMBOL (I)

T = NEXT ITEM J = NEXT SYMBOL
** Y = NEXT SIG ITEM #* K = NEXT SIG SYMBOL
*% SKIP ITEM SKIP SYMBOL

PRINT STRING (S) . PRINT SYMBOL (I)

PRINT STRING ("Q") PRINT SYMBOL ('Q')

U =" K = 'A'

if "A" & S & "2" then ... if 'A' $ I & '2' then ...
* if S = SHL then ... if I = NL then ...
* if S # SEM then ... “ if I # EM then ...

Notes (1) ** indicates facilities that are not part of standard IMP.
(2) Constent symbols are written single primes; constant strings
are written between double primes (quotation marks) as shown
in the examples above.
(3) The ictegers I,J,K above could » for economy of storage, have been

declared as byte integers.

- 18.2 -

CONVERSION BETWEEN ONE-CHARACTER STRINGS AND SYMBOLS.

string fn spec TO STRING (integer N)

integer fn spec CHAR NO (string name S, integer I)

TO STRING takes the symool whose equivalent numerical
value is N, and gives as its result the same character, in the

form of a l-character string.
CHAR NO does the -inverse: it takes the Ith character of

string S and gives as its result the same character as a symbol.

Examples of use.

integer I,J 3 string (1) 8 ; string(10) T

I = CHAR NO (T,3) ! I now stores a symbol

]
.
o

3 TO STRING (J) ! S now stores a l-character string

e
.

Note
From its rame, one might expect that FROM STRIKG would be the

inverse of TO STRING , but it is in fact a quite different thing. (FROM
STRING copies a part of a string to form another string).

ARITHMETIC RELATIONSHIPS BETWEEN SYMBOLS.

Although we do not normally need to know what numerical values
correspond to different symbols, it is useful to know that successive letters
of the alphabet correspond to successive integers. Since symbols are
stored in integer, or byte integer, variables, we can carry out addition

and subtraction operations to convert from one letter to another. Thus:

the expression A' + 1 gives 'B’

the expression 'Yt + 1 gives '2!

~18.3 -

One case where this property is useful is in the declaration of an array whose
subscripts can be written as symbols.

integer array COUNTER ('A':'Z')

This would be the natural declaration if we wished to count the frequency of occurrence
of the different letters of the alphabet in a piece of text. Another natural use
would be to cycle from 'A' to 'Z' setting these counters to O.
cycle i = 'A',1,'2!
COUNTER (i) = O

repeat
LOWER CASE LETTERS

Lower case letters (a,b,....z) can also appear as symbols. They have different
. numerical values from those of upper case letters, but are themselves ordered in the
natural way. Thus:

the expression 'a' + 1 gives 'b'

the expression 'w' + 1 gives 'x'

CONVERSION BETWEEN UPPER AND LOWER CASE

Because of the above relationships, it is clear that:

the difference between 'A' and 'a’
is the same as the difference between 'B' and 'b'

and as the difference between ‘'Z°' and 'z°,

If, therefore, an integer I stores an upper case letter as a symbol,

then the corresponding lower case symbol is given by:
I+ 'a' - 'A',

For example, we might write:

if 'A* <I<1'2" then I=1I+ 'a'~"A

EXAMPLE Counting the letter frequency in one sentence of text.

- 254 -

In order to count

upper and lower case letters together, we first convert all lower case letters intc

corresponding upper case letters.

begin

integer array COUNT ('A':'2')

integer I

cycle I =

IAI, l’ IZI

COUNT(I) = O

repeat

cyele

READ
if I =

it 'a’

j__f:’Al‘Ilel

renSsat
cycle I =

MOLIT e

w
AW hd

€I g2

SYMBOL (I)

'.' then exit
then I =TI + 'A' - 15!

then COUNT(I)=COUNT(I)+l

lA!, l’ IZI

PRINT SYMBOL(I)
WRITE (COUNT(I}, 6)

repeat
——tcr

REWLINZ

end of progrem

RUMERICAL VALUE OF TEE DIGITS 0-9

ws
3

for counting letters

initialise counters

seatence 2nds cn a Tull sicp
convert lower case to upper
increment corresponding

counters.,

tadbulate resulis.

Rather unfortunstely, the "numerical value" of the symbol '2' is not the decizal

integer 2.

However, the usual relationship holds:-

the expression '0' + 1 gives the symbol e

the expression

'0' + 9 gives the symbol '9’

Thus if we have an integer variable holding an integer known to lie in the range
0-9, we can get the corresponding symbol by adding '0°,

integer I,J
I=7
J=1I+"'0

1

3¢ I stores the integer 7.
;3! J stores the symbol 7.

- 19_1 -

SECTION 19 : POINTER VARIASLES.

Suppose that we have a rcutine

routine A (inteser P, inteser nzme Q)

then on eatry to the routine, we assign to P the value of the actusl parameter
given, but place in @ a POINTER to the actuel parameter corresponding. When-—
ever the routine refers to Q, we actually use the location to which Q is
pointing. In a rather similer way, we can declare POINTER varisbles (integer

rare, real neme, record npame, ete., and elso integer array name, string

erray rame ete.).

bezin

intesger arrsy A (1:100,1:100)

intezer neme Q 3! a POINTER variable
integer neme
R tun LoW e zmede tO point to any integer veriadle (say, A(I,J+3)) by

Q== A(I, J+3)
Q is row synonymous with A(I, J+3), and provides a concise may of writing it.
G=a+1 urless @ =0

is a mor: concise wey of writing the seme instruction with A{I, J+3) and it
also saves the progrem from having to evaluete the address of the same two-

iimensionsl erray element three times in rapid succession.

378 (1) It is clearly necessary to meke Q point to sn integer location
!’
{

using 3 = = ...} before it is meaningfil to meke an ordinery assiga-

begin
record format STUDENT(string{20) NAME, integer array MARK(1:12))
rocord errar CS: (1:200) (STUDENT)

record name R (STUDENT)

integer arrsy name M

cs1 (1) ;' B is short for the 1kth record.
! €Sl (I) _ MARK 3! M is an integer array

<4
]
]

;' M(6) is an-integer

- 20.1 -

SECTION 20 : MAPPING FUNCTIONS.

Mapping functions have some features similar to those of pointer variables,
in that they allow us to define how a whole set of "aliernative names" are to
be allocated to certain variables.

As a practical example, note that scme IMP compilers orly allow us to
declare 1-dimensional arrays. In such cases, we are generally able to obtain the
convenience of 2-dimensional arrays by declaring a 1-dimensional array and

allocating second names by means of a mapping function.

A(0) A(1) a(2) A(3) A(4) A(5) als) A(7)

B(0,0) B(0,1) B(0,2) B(0,3) 3(1,0) =B(1,1) B(1,2) 3(1,3)

real array A0:7)
real rap B(integmer I,J)

result = = A (4*I + J) ;! NOTE: use the = = gign, ss
end 3! with pointer variables. #¥#

Any reference to B(1,3), for example, will cause &n erntry to the mzpping
function B; this will evaluate the resuvliing address you want to use, nzrely

"the same 2s the address of A(4*143)", which is A(7).

Lotes (1) Girer types of mar (s2rin~ cnn, interer mear, etc.) are written in

a similar fashion.

(2) A map has the same structure as a function, except thet the
instruction that causes the calculation to cease is regult = = , rather

than result = . The righi-hand side of this resuli instruction zust be
something that gives the address of a variable of the correct type. (i.z2.
a string variable for a string map, etc.)

(3) Since the result of a map'is the address of the varisble you want,
the map may (unlike a function) be used on the left as well as the right-

hard side of an assignment., For example:
B(1,0) = B(1,0) + 3

(4) Since each reference to B involves executing the body of the
mapping function, it is somewhat slow.

- 2.1 -

SECTION 21 ; JUMPS, LABELS AND SWITCHES

In earlier sections, a nuxmber of methods have been described for controlling
the order in which instructions are executed. These have involved:

-
[

) Af ceeves thED sieeene €18€ caconese

—~
He
e
Al

(iii) while eeeeeenes
{iv) until ccevaeeen
(v) gycle & repeat

(vi) exit, stop, return, result =

In a well-structured program, these will suffice for nearly all purposes.
If we wisk to make a test to determine which of two alternstive paths is to be
followed, then "if then else", together with "start & finish"
will be quite convenient, If we have more than two possidbie routes, however,
we can be forced into testing on a succession of conditions. To avoid great
inefficiency, ve shall probably need nested start / finish groups, and this can
soon become cumbersome.

Suppose the following program structure is required. (Only three possible
routes are shown, for simplicity, but there could of course be many more,)

(a)

value of I + J
?

()

L+7=10

{c)

(D)

- 2.2 -

To meet this requiremert, we need the following:-

(i) At point (A), to be able to choose between going to one of points

(B), (C) or (D).

If the choice involves testing for the value of &an

integer expression, one convenient way of doing this is *~ use a

SWITCH JUMP.

(ii) Having Qivided into three (or more) raths, a properly structured

program will normally require to merge again, to point (E), say.

This can be achieved with SIMPLE JUMP instructions. Being simpler,

these will be described first.

JUMPS TO SIMPLE LABELS

Jump instructions

=> L2

Simple labels

L2: NEVPAGE
PRINT STRING(® ... %)

etc,

zeaning

JUMP TO the latel LZ, That is, instead cf

going on to the next instruction in sequernce,
break off from here and resume fren the sfiatument
labelled L2,

The simple label, L2 say, is followed by a cclen
and placed on the left of the statezent frez which

ve wish to resume execution.

Notes (1) A simple label can be any legal Imp rame. Such names do NOT have %o

be declared. (But see next paragraph for switch label names that do.)

(2) The label can come either earlier or later in the program text than

the corresponding jump instruction (i.e., we can jump either forwards

or backwards), but both must be withirn the same routine, function or block

(3) Owing to the high risk of introducing errors that can be very hard to

locate, jump instructions should NEVER be used when any of the methods

listed at the top of the page would be eppiicable in & conveniert way,

(1) As an alternative to a name, it is possible with some Imp compilers to

use a positive integer as & label.

(5) The arrov (=) is printed with a "minus"” and "greater than" sign.

_— i

-21.3 -

SIMPLE JUMP INSTRUCTIONS (WITH CONDITION)

if N =0 zhen -> L2

READ (X)

JUMPS TO SWITCH LABELS

This is exactly the same as the previous
example, except that the jump only takes place °
if N = 0. Othervise the program naturally
continues with the next instruction, say
READ (X).

If we wish to be able to jump to one of many points in the current block,

depending upon the value of an integer expression (I+J, say), then we must DECLARE

(ir the usual place at the head of the routine, function or block) an array of

labvels. For examplie:

and the juwp is written

ani the labels are

switeh ${6:10)

= S (I+J)

ssssoe

The structure of the program to implement the flow diagram given eariier

weuld now be like this:

begin
switeh S (6:10)

cesee

=> 5 (T+J)

5{€):

-> L99

S{7):

-> LS9

§{10):.....

RS

sacss

199:

secre

a declaration of labels S(6) to s{10)

-

30 evaluate I+J end jump e correct label

;¢ szart here if I+J=6

.-

NGTE THIS IS USUALLY WANTED ##s%#

we

start here if T+J=7

o

and here if I+J=10

all routes meet together again here

-

(1)

(2)

(3)

)

-21.4 -

Some notes on SWITCH LABELS

As with simple jumps, the jump instruction and all the
corresponding labels must be inside the seme biock, routine
or function. In addition, the switch declaration must
also be in the same block, routine or function. That is,
there is no possidbility of using a "global® switch name,

The bounds of the switch declaration must be CONSTANTS.

Hence
switeh S (M:N)

would be invalid.

It is not necessary for all the lebels in the range declared
to appear in the program. For example, S{8) arnd S{9) do

not appear in our exsmple above. On the other hand, if, in
that example, I+J were to evaluate to 8 or 9 upon reaching
the switch jump, then a run-time fault would naturally ocecur,

Without the => L99 jumps, our exaxple would have resulted

in the program running oa from the instructions at 316

..’

to continue with those that foliow latels S{7) eand

(2]

This is not the structure normally reguired. Ko such
Jump was needed st the end of *he instructicns at 5(10),
since label L99: was on the next line anyway.

- Al -

APPENDIX A

eparing IMP Programs on Card Punches and On-Line Consoles

Certain symbols used in the written version of the language are not available
on card punches and On-Line Consoles. Special conventions must be adopted as
follows:

(1) Reywords .

(a) Keywords (bezin, end, etc) are punched with a % character izmediately

rreceding the letters. The word must then be separated from other symbols ‘
by something other than a letter.)

No spaces are permitted within one keyword, but, integer array name may for

exauple be regarded as ome or three keywords and hence may be punched

as FINTECER FARRAY FFANE
or PINTECERARRAYNAME

(v) The # symbol acts as a shift character denoting that the sequence of
letters immediately following are to be interpreted as keyword lotters. It
is cancelled by anything which is not a letter.

(2) ©Use of Spaces

Within the prosrenm (but not always within Job Control or data) spaces may be
inserted anywhere on & line to improve legibility. Such spaces are disregarded by
the cozpiler except that

(&) A space marks the end of the 'underlining' in keywords.

(b) Certain sequences of characters, known as STRINGS, are indicated
by placing them between quote characters ("). Between quotes, spaces DO
count, so that

"THE CAT"
is a string of length 7 {six letters and one space).

(3) String conventions on card input.

Anyone inputting IMP programs on cards chould check on the curreat
conventions regarding quotation marks., In many cases, the gquote character
on cards is taken to meean that the previous character is to be disregarded.
If such a convention is still in force, quote marks must obviously not be
used to delimit strings. In these cases, the single prime (') is used instead.
Example:
'THE CAT!

(!‘) Maximum length of line

Lines of program and data should be limited to 72 characters, as the 735rd
and later characters will be disregarded. Most consoles onliy print 72 ckaracters
on a line, s0 you normally see when information is going to be lost. Beware,
however, when using cards as they can take up to 80 claracters - although the
card punches can and should be set to prevent you going beyond column 72.

(5) Continuation onto a further line (program only)

Normalily, each instructior in a prosraz will be written on a separate line.
However, long instructions or declarations zay be continued onto a secord (or
further) line by punching $C before reaching the 72nd positicn on the lize. Tris
facility is ‘availa.ble in program only, not within Job Control carés, nor data.
Its chief use is for punching long instructions of more tian 72 characters.

(6) Composite characters

Certain composite characters Lave to be represented by a pair of

characters as follows:-

is represented by the two charecters =
is represented by the two characters <& =

is represented by the two characiers =»

2 I MY

is represented by the two characters <=

(7) Cheracters not available on card punches and some consoles

If the input keyboard does not have the following characters, they are
represented as follows:-

is input as § -
o is input as £ or §

~ is input as =

- B,]1 -

APPENDIX B ~ Motes on Fault Finding.

« COMPILE TIME FAULTS,

(=) Recoznised (numbered) Faults.

If the compiler recognises whet appears to be the intended syntactical
structure of a statement, dbut detects a violation of some rule of the language,
a Tfault number and a short message describing the nature of the violation will
be printed out, The message normally gives enough information for us to identify
the fault, There are two possible messages that are worthy of further comment
here.

(i) FAULT 163 (= CHAR IN STMNT) DISASTER

This means "End-of-message character in statement", and arises when
the coxpiler reaches the end of the source file without recognising our
2nd of wrogrsm. We may iave mis-spelt it, omitted it. This fault can also

erise i we try to cozpile an empty or nen-existent file,

(i1}

o

AULT 19 (WRASHG NUMEBIR OF PARAMETERS)

This can mean either the wrong number of parameters given for a routine
or the wrong number of subscripts given for an array access,
Either of these can sometimes occur through the omission of & comma in,

for example, PRINT (X+Y, 3 5) since spaces do not count in program, and the

3 5 will be mistaken for 35 decimel digits being demanded oefore the decimal point.

{5) Syrtax Faults,

This means that the compiler hes encountered a statement which does not

conform to any of the acceptable syntacticel structures. To the human, the fault

cfion appears ridiculously trivial. For exaxple:-—
too few closing trackets: READ (A(N)
excess of commes: real X,Y,Z,
{c} Sile-elfects of earlier faulis.

Example 1: cyclee I=1, 1, 10

reveat

Here the first line will te fauited for syntax (faulty spelling of cycle).
As a consequence, the compiler will be unaware of our intention to start a cycle
and will find a spurious fault:

FAULT 1 (REPEAT TOO MANY)

e et

- B.2 -

Example 2: reall TOTAL
TOTAL = O

TOTAL = 0,7

Here the first line has a syntax fanl'.c and so the declaration will not be
acknowledged. Hence the second line will be faulted for "name not declared™. In
an attempt to avoid the saze fault message each subsequent time you use TOTAL, the
compiler will declare "TCTAL" for you. Unfortunately it will guess you intended
it as an integer and subsequeat attempt to assign a real value (0.7) to a suppo:edly
integer variable will cause yet another spurious fault (Real quantity used in
integer expression.).

2. RUN TIME FAULTS.

If your program fails at run time, you will receive the message
MONITOR ENTERED FROM IMP

The MONITOR will then proceed to give you several valuable items of
diagnostic information, as follows

(i) A message briefly describing the type of fault. Scme notes on
interpreting these messages is given on the next page. (3.3)

(ii) The line number in your program where the failure occurred., ALWAYS
IDENTIFY THIS ON YOUR PROGRAM LISTING.

(iii) A list of the scalar variables in force at the time of failure,
and the values stored in them, if any. (Arrays are not printed,
as they are liable to be large, and hence time-consuming to print.)

DO NOT RUSH to alter your program until you have made use of the above
information to discover why it went wrong. If the cause of the failure
does not come easily, it often Lelps to work through part of the program
with pencil and paper, writing down the values you would expect to be
stored in the different variables at each stage of the computation.

- B.3 - b
RUN-TIME FAULTS (continued)

It may be useful to give the following few notes in explanation of the
run-time fault messages. For further details, see the "Edinburgh IMP Language
Hanual", section 13.

(i) ARRAY BOUND FAULT 21
Attempt to use A(21) when array A was declared only (1:20), for example.
(ii) INPUT ENDED

You have tried to read more data (using READ, READ STRING, etc)
than you provided in the data file. This is often caused by getting the
program into an unintentional loop.

s s s Y NT e P Ty - . T
{iii) UHASSISHED TARIANLE

You rave tried to use the contents of a variable which has had nothing

put in it.
(iv) SIMBOL IN DATA 'R’

While trying to read a number, you have come across a symbol which
cannot form part of a number, for example: R.

(v) TLLEGAL CYCLE

You have tried to start a cycle with control variable which will

never terminate e.g.

cycle I = 2,K,10

where K = 3.
{vi) CAPACITY EXCEEZDED p

Phe string you are trying to assign is longer than the maximum length

declared for this variable. .
(vii) NOT ENOUCH STORE

You are tryirg o use more of *he store than is available to you.

Note tha: multi-dimensional arrsys run away with a lot of space.
(viii) DIVIDE ERROR

Usually a division by zero.

