University of Edinburgh

Department of Computer Science

The IMP-77 Language
by
Peter S. Robertson

CSR-19-77

December, 1977
Revised May, 1979
Revised May, 1983

Internal Report

James Clerk Maxwell Building,
The King's Buildings,

Mayfield Road,

Edinburgh,

EH9 3JZ.

THE IMP77 LANGUAGE

A Reference Manual

Peter 5. Hobertcon
Lettice Logic Ltd. 1983

Reprinted by permission of
Lattice Logic Ltd.
Edinburgh
May 1983

Introduction
Charscter set. . . .
AtomS.

Compile-time features.

Stetements
Expressions.
Declerstions

Date precision specificetion

Access to structured
Own variebles. . . .
Constant errays. . .
Inftielisation . . .
Assignment
String resolution. .
Conditions . . ., . .
Conditional groups .
Repetition
Block structure. . .
Begin blocks
Procedures
Paremeters

Procedure specification. . . .

External Linkege . .

Progrem file structure

Permenent procedures
Events

Contents

e & o s e
v s e e e =
« s s s e e

e e e v e s
variebles .
e e e e e

.
.
.

R T
.
.

e s s o o

Control transfer instructions, .
Implementation-dependent features.
Appenaix 1 - A note on the gremmar
Appandix 2 ~ Compiler messages . .

Appandix
Appendi x
Append i x
Appendi x
Appenaix

N HW

- Progrem Llistings. . .
— Stendard events . . .
- Permonent procedures.
- Verient ond archeic forms
— ASCII cherscter set .

.
o v .

Introduction

IMP77 18 en V"ALGOL-like" high—-level Llanguage. HRelative to
ALGOL 60, the languege adds program structuring, data
structuring, event signalling, end string handling facilit{es,
but removes (or reteins in 8 modified form) intrinsfcally
inafficient feetures such as tha ALGOL 60 name (supstitucion)
paremeter.

The languege, based on Atles Autocode, wes originelly
designed as the {implementstion languege for the Edinburgh
Multi-Access System — hence its name - but hes since been used
successfully for implementing systems, teeching programming and
as a genersl-purpose progremming Llanguege on many different
machines.

Two of the msjor design sims ware:
1. The language should compile to efficient mechine code.

2. The syntex of the lenguage should be verbose rather than
obscure,

Most IMP77 systems provide comprehensive compile-time and
run-time diagnostice, together with en option to suppress
generation of run-time checks when compiling tested progrems.

Input/output fecilities sre provided through the externsl
procedure mechanism and ere therefore open-ended snd can be
defined as required, though @ standard sect of procedures is
supported.

It is sssumed thet the resder is femitiar with the more
general concepts of high-level programming languages.

The exsmples of gremmar given in the text are simplified in
order to show the general features of the syntax.

Character sat

An I¥P77 progrem i6 a sequence of statements construcced
using the ASCII seven bit character set extended with an
undertined alphabet.

Newline

The NEWLINE (or LINE BREAK) character has ASCII code value 10
(NL).

Quotes

Several language constructions call for one or more
characters (text) to be anclosed in quotes; between quotes all
characters are eignificant ana stand for themselves.

N.B. Spsce, newline, and parcent characters may appesr between
quotes and stend for space, newline, and percent.

Two quote characters are used:

' - cherecter quote
" - string quote

If 1t is required to include the delimiting quote withiu the
text it must be represented by two consecutive quotes: e.g.

B RN}

- the symbol quote
"A “"big"" dog” -~ a string of eleven characters

However, note: '“* and "it's mine"

Spaces

Except when usad to terminate keywords or when between quotes
(q.v.} spaces are ignored by the compiler and may be used to
improve the legibility of the progrem.

Lowec Case Lettars

Except when enclosed in quotes [q.v.) lower case letters are
equivalent to the corresponding uppar case letters.

Control characters

Except for NL (see above] all non-quoted characters whose
ASCII codes are outwith the range 32 to 126 inclusive are
treasted as spaces, but will be sent to the tisting unaltered.
In particular, tha charecter FF (form feed) may be used to
control the pegination of program Listing files.

Atoms

An atom fs the basic unit of 8 program stetement ana is
etther @ keyword, e special symbol, en identifier, or a
constant.

Keywords

A keyword is 8 sequence of underlined Lletters. In source
progrems undertining is achieved by using the shift character,
percent (%), which 1s daefined @8 underlining the subsequent
letters, undertining beftng terminated by any non-alphobetic
charecter. Hence the following stetements are equivelent:

%Zstring(7) %array ¥%neme P
%¥string (7) %arrayname P
and both represent: string(7)arraynems P

In this menual keywords will be written in Llower case send
undertined.

The following is & list of sll of the IMP77 keywords:
aliss and array

cons constgnt continue control

diagnose dynamic

else end evant exit external

false file finish fn for format
unction

if include jnteger

label list long

map mon] tor

neme not

on of option or own
redicate progrem

true
unless untit
while

Special symbols

The special symhols ere:

e ! 1 # " & (...

* L&) + - -> . /

/7 : : < <= <« <=

= == > = > [..] {..) I

Identifiars

An identifier is o sequence of any number of Lletters and

digits starting with a letter, e.g. MAX, X, CASE 1, Casa 2,
case 2b. ALl letters and digits are significant.

With the exception of Lasbels, all identififers must be declared
before they mey be used (see Declarations).

Constants
Integer Constants (Fixed Pojnt)

c)

d)

in quotes.

NUMERICAL constants
A numerical constant ie a sequance of decimsl digits.
For exemple: 7, 43, 2195, 0, 8, 100 000 00D

CHARACTER constants

The ASCII code value of eny character may be obtained as en
integer velue by enclosing the charecter in single quotes.
When tha required character is a single quote it must be
represented by two consecutive single quotes.

Examples: 'Ai' lal' l.',l' |0|. 1lll' llll' [} l' '

]

Note the last three examples, which represent the cade
values for single quote, space, and neqlina respectively.

The predefined named constent NL may be used in place of
the rether cumberscme form of ® nawline character enclosad

.

In genersl, a charecter is an integer in the range 0 <=
character <= 255.

MULTI-CHARACTER constents

The ASCII code values for several charecters may ba packed
together to form a single integer constant, by enclosing
the characters in single quotes and giving the pretix M.

a.g. M'over', M'Max', M'1+2', M'*@e#’

The value of the constant is calculated by evaluating the
expression: ...l (C1<<B + C2)<<B +C3)<<B + where
C1, C2 .. are the charecters in the order specified, and 8
is an implementation-defined constant (commonly 8).

Note that M'?° = °?°

Constant Inteqger Expressions

An integer expression with apsrends which are constants may
bs wused wherever oen integer constent is required (see
Expressions).

Real Constants (Floating Point)

A real constant 18 e sequence of decimal digits optionally
including one decimel point. The constent mey elso be foltowed
by & sceling fector of the Fform @[signed integer constent]
meaning "times ten to the power .(signed {integer constant]".
For example, ignoring eny machine-dependent accurscy problems,
the following resl constents sll heve the ssme value:

120.0, 120, 1.2€2, 12@1, 1200€-1

Note that @ decimal fnteger constent i8 a special case of 8 real
constant.

Redix Specification

Integer and resl constants may be specified to bases other
then ten by adding the prefix "[base] _" to the constant, where

[bese] i8 the base represented to baese ten. The Lletters
A,B,...,Z mey be used to represent the 'digits' 10,11,...,35.
E.g. 2_1010 ten in binary
B8_12 ten in octal
16_A ten in hexadecimsl
3.0.1 one third

In the case of resl constents any sceting factor will remein in
bass ten unless a different base is explicitly requested.
E.g. i0e2 ong hundred

21010 e 2 one hundred

2_1010 @ 2_10 one hundred

St Cons 8

A string constent 18 & sequence of not more than 255
characters enclosed in double quote characters — a double quote
being represented inside a string constant by two consecutive
double quotes. There are no restrictions on which characters
may appear within strings.

E.g. "starting time", "x = y*4+z", "a "Ypad"" hood"

Note i “"a" i{s a string constant of one character.
'a’ is a charactar (integer) constant.
i The null string, a string of no chargcters, is

permitted and is representad by two consecutive
double quotes ("*).

EBCOIC Constents

String and character constants may ba spacifisd as using the
EBCDIC cheractar set rather than ASCII by applying the Prefix E.
In the case of multi-character constants the E pretix replaces
the M prefix.

E.g. E"Ebedic string", E'0', E'VOL1'

The particular variant of EBCDIC used is
implementation-dependant,

Namgd constants

-Nemed constents may be declared using the prefix constant in
front of a simple declaration with {nitialisation (see
Declerstions). A named constant may be uesd wherevear a literal
constent of the same type s required. Note that
implementations may restrict the use of named real and string
. constants as replacements for Literal constants.

[const) ::= gconstant [typel [cinit] § ",% (cinit] 1*
fcinit) ::= [id] "=" [constant) :

constant integer MAX = 17, MIN = 2

canstant real PI = 3.14159
constant gtring (7) VERSION = “Vgn:1.8"

The keyword constant may be ebbreviated to const.

Compile-tims festures

isting Contro

Ouring the compilation of a progrem e Lline-numbered tisting
cen be produced. The stetemsnts L(ist and endoflist may be used
in 8 nested fashion to control this Listing. Following an
andoflist, listing ¥s inhibited until either the end of the
progrem is searched or 8 matching Llist is encountered. The
default 18 for Llisting to be enabled.

Along with each line number in the listing ffle the compiler
may add & marker charecter to provide extre visual information
sbout the nature of the statements being listed. The markers
are:

+ this line is e continuation of the previous line.
& this tine 1{s part of a file being included ({see
include).

" the compiler 18 currently searching for a string

quote to match one given on 8 previous line.

' the compiler 18 searching for 8 chaeracter quote to
match one given on a previgus Line.

Include

A file of statements (terminated by the end of the file or
the statement gnd of file) mey be compiled into a progrem by
piving e statement of the form:

include (file specification]
where [File specification] is a string constent representing a
system—dependent file name. Refer to the relevant
implementetion notes for details of implementation-depsndent
limitetions on the use of include.

E.g. include "ECSC17.LISTVARS"

Statements

A STATEMENI {s a sequence of atoms arrenged sccording to the
syntectic rules of IMP77.

Iarmlnet]nn

Every statement must be terminated by a newline or, except in
the cese of commant statements, a semicolon.

Null Statements

Redundant terminators (newlines or semicolons) effectively
generate null statements which are ignored by the compiler and
may be used to improve the legibility of the program.

Continuation

A statement may extend over seversl physical linas provided
that each Lline breek occure efter a comme, gr, and, or is
precedsd by the keyword ¢ (which i8 otherwise ignored).

7

E.g. ifX=Y then P=1¢g
alsa P =0
15 exactly aquivalent to: jf X =Y then P =1 glse P = 0
Note 1 The tine breek following ¢ ceuses unuertining to be

terminated.

i %#c betwsen quotes stends for the two characters
percent and c.

ii4 Comments (q.v.) may not be continued.

Instruc ns

An instruction is any imperative statement which may be made
conditional, and is either an assignment, @ routine call, a
control transfer, or a compoung instruction.

Compound instructions

Two or more instructions mey ba joined using the keyword and
to form e compound {nstruction: a.g. A=0 gnd B=C-1. Within a
compound instruction a control transfer may only occur as the
final instruction. A compound instruction may eppear wherever
en instruction is required, and results in the component
instructions being executed in the ordar given.

Comments

A comment is e sequence of cheracters which is ignored by the
compiler, and is intended to permit ennotation of programs.

Comments are eny sequence of characters, excluding right
brace and newline, enclosed in e peir of breces, { and }. A
comment may eppear between any two stoms, but mey not occur
within an stom. For convenience the closing brace may be
repleced by 8 newline,

The following is & valid fragment of & progrem containing
commants:

LIMIT = 100 (only 100 cases}
MINIMUM = 0 {etl positive
PROCESS(X [ceses), Y {total cost])

and will be seen by the compiler es:

LIMIT = 100
MINIMUM = O
PROCESSIX , Y)

For historical ressons, any physicel tine which starts with an
exclamation mark, and is not e continuation Line, is considered
88 a comment and is {gnored by the compiler.

Ex 88 8

A_[' thmetic EXE[QBB!QDB

An arithmetic expression is 8 sequence of operators end
integer or real operands obeying the elemsntary rules of
algebra. An operand is either a constant, & varieble, a
function call, e map csll, or an arithmetic expression enclosed
in parentheses or vertical bars (sae Declerations end
Procedures).

a) Integer Expressions
ALl the operands and oparators in an integer
expression must yield integer values.
The operators available are:

+ addition

- subtrection or unary minus

* multiplication

// integer division (the remainder of the division,
vhich is of the seme sign as the dividend, is
ignored). .

integer expanentiastion. The secono oparend (the
exponent) must be s non-negative velua.

b} Real Expressions
ALl the opersnds and operators fn a real
expression must yield resl or 1{nteger values.
Integer values will sutometically be converted into
their real equivatlents before being used.
The operators availeable are: .

+ addition

- seubtraction or unary minus
* multiplication

/ division

real axponentiatian

c) Ambiguous expressions

Certain operators, such as + and -, may take
either integer or real operands. If the two operands
are of the same type the result of the operation will
be of that type. If the types differ, the integer
operand will Ffirst be converted to real and the
operstor will yield a real result. Hence in the
expression (7.4 + 22 * 6), * will perrorm an integer
muttiplication and +- will perform & real addition
(eae Preceduonce of operators).

10

d) Modulus
The modulus or absolute velue of en expression
{integer or real) mey be obtained by snclosing that
expression between verticel bars. E.g. IX-Y]
The type of the expression is unchanged.

t-Vector Expressions

ALl opesrends must yield bit-vector (integer) values.
The operstions sre parformed on 8 bit-by-bit basis using
the operators:

& end

! inclusive or

It exclusive or

<< Lleft shift (Llogicall
>> right shift (logical)
complement (unary not)

It is permissible to mix integer end bit-vector expressions
but the full implications of this mey be machine depenoent.

The shifting operators (<< end >>) mey only be used to
shift by a non-negetive amount which 18 Lless then the
number of bits in en integesr variable.

ALl opersnds are converted to integer precisfon before use.

String Expressions

ALl oparands of 8 string expression must yield values of
type string. The only operstor aveilsble is "." for
concatenation {joining together) and no sub-expressions in
parentheses are permitted. The result of the operatfon is
8 string value whose actust length is the sum of tha actuel
lengths of the originel operands.

E.g. "Mr ".surname

11

Pracedencg of oparators

Highast: 1.

Lowest: 4,

= {ueary not)
2. -, t, < »
3. */,//,8
+, - (unary and binary), 1, !

The precedence rules may be overridden by means of
parenthoses.
Note: -2 =0-(1""2) =1

{-1)""2 =1

2°°2°°3 = (2°°2)°"3 = 4°°3 = 64

Order of evaluation

Excluding the operator precedsnce rules described above, no
essumptions may be made aebout the order of savaluation of
expressions; the compiler {8 fres to use the commutative,
associative, and traensitive properties of aperstors to reorder

expressions.
Note i Unary minus is treated as O-...
ii An expression may not contain two edjacent operators;
they must be separated by parentheses E.g. 23%(-14)
it Integer values will be converted to real whera
necessesry, but real values will never be converted to
integer unless this is explicitly specified using the
predafinad functions INT or INTPYV.
iv Integer (or real) values may be explicitly converted
to real values using the predefined function FLOAT.
v byteintener and shortinteger values will

sutomatically be converted into their nte
representations before being used.

12

Declarations

ALt identifiers except labels must be declered at the start
of 8 block before they mey be used, The scope of en identifier

is the rest of

the block in which {t is declared, including eny

blocks subsequently defined therein (see Block Structure end
note 3 on Lebels end Jumps). 1In the following discussion the
phrase [typs] has the definition:

[typa) ::= integar,
real

8t£i;‘g "(ll [max] 'llli'
record “(" [fm] ")"

and [max] 1s wen integer constent in the renge

[fm]

when uged

1<=max<=255 defining the maximum number of
cherscters which may be held in the string.
defines the structure of the record (see
Records) .

to define pointer variables or meps(q.v.) ((max])

and ([format]) may be specified es (*) meaning that the
defined object may reference eny string varieble or any
record veriable.

1. Scalar Varisbles

a) Simple Variables

fsimplel t:= [typel
[simple dec) ::= (simple] [idents])

integer J,K,COUNT

real PRESSURE

string (30) COUNIRY, TOWN
racord (CARFM) MINI, ROVER

Esch veriable is slloceted an appropriete (machine
dependent) amount of storege to hold & values of the
appropriete type.

b) Simple Pointer Verisbles

typel name

[simple pointer] =
= (simple pointer] [idents]

[simple pointer dec] ::
integer name P)
real namg DATUM

string {15) name WHO,WHERE

record (CARFM) nams CAR

Each varieble 1s slloceted enough storage to hold a
pointer to (i.e. the sddress of) a simple varisble of

the

specified type. The use of 8 simple pointer

varigble is generelly equivelent to the use of the
simple varisble to which it currently points.

13

c)

d)

General Pointer Variebties

[genaral pointer] ::=
[general dec) ::= [ganeral pointer] [idents)

namg NA, NB

Each varieble is ellocated enough space to hold a
general pointer to a veriable of any type. Such
pointers may be decomposed into an address, a size
and a type by means of the built-in Ffunctions ADDR,
SIZE OF, end TYPE OF (ses Permanent Procedures).
Ganeral pointer verisbles may not be used in o
context where a value is required.

Array Pointer Variablaes

{atyps]l [anamal

[arrey pointer) =
= [array pointer] [1dents)

[arrey pointer dec)

e o

[atypel ::= [type) array,
[type] name array,
name array
[aneme) := array (" [dim] ")" peme,
array name
[dim) ::= [intager constent]

jnteger array name AN

real array name VALUES

string (20) array name NAM:S, ADDRESSES
record (CARFM) array name MAKE

integar name array name POINTERS

name array nsme GEN POINTERS

real array (4) name SPACE TIME

Each variable is alloceted enough storage to hold a
pointer to (i.e. the eddress of) en array of the
specified type.

The three forms of [atype] permit access to arrays of
simple verisbles, simple pointer variebles, and
general pointer variebles.

The firet form of [aneme] specifies the dimension,
[dim}, of the sort of array to be accessed; the
sacond form is an abbreviation for the case where
[din) =1,

14

2.

Arrays

note 1

W

[array)

fadefn)
[bounds]
{bound pair]
[tower bound] :
{upper bound] :

. ee se e
. 00 e ee 0o
nwuwna

integer array Al1

{etypel ledefn] <"," [edefn]>*

[idlist] "(" [bounds) ")"

[bound pair] < "," {bouna pair] >*
[tower bound] ":" {upper bound]
[integer expression]

linteger expression]

:10),8,C(-4:LIMLT)

real arrgy Q(1:04K, 1:9-K)

string (12) array CLASS(-7:16)

record (CARFM) array TABLE(LOWER:UPPER)
integer name erray FREQ('A':'Z')

nama array WHAT(D:1)

The bound paire sre aveluated and the required smount
of storage is allocated to esch identifier.

In eech bound pair the values of the bounds must
satiefy the condition:

Upper bound - Lower bound + 1 »>= 0
This mweans that arreys mey contain zero or more

elements.

if The number of bound pairs (the dimension of the
erray) usually mey not exceed sfx, but this is
implementation depenaent.

15

Records

A rocord is a named collection of data cbjects. The
components (elements) of a record may be any of the farms
discussed in (1) and (2) above, with the fol lowing
Limitations:

i Arrays within records must be one dimensional and
have constant bounds.
i A record may not contain simple records (or record

arrays) of its own formst. [lHowever it mey contain
record pointer varisbles of its own format.

The internal structure of 8 record is defined using a
record format statement:

{format) ::= rocord format (fm] “(" [format List) ®)®
(fm] ::= [id}
(format list] ::= (altaernativel < gr (alternative] >*
[alternative) ::= [dec Llist],
“(" {format List] *)¢
[dec list]) ::= [dec item] < "," [dec item] >*
[dec item] 1:= [siople] [idents), :
[pointer]} [idents],
[general pointer] [idents],
larray pointer) [identsl],
{array]
racord format Flintegar X, recard(F)name LINK)

record (F) HEAD
racord (F) array CELL(1:15)
record format ASlbyte array CHAR(0:12) or string(12) TEXT)

Alternatives, a8 in the definition of AS above, provide a
means of imposing different interpretations on parts of a
record. Each alternative within a format List will start
et the seme address within the record end will be padded
out with anonymous variables to the size of the Llongest.
The relation between pairs of elements 1in different
alternatives is machine~dependent. Alternatives may be
nested to any depth.

16

Note 1

ii

Each element in @ formet must have sn identifier
which is unique within that format; there sre no
restrictions on the use of identifiers which have
been used outwith the format. For exsmple, the
following progrem fregment i8 valid:

Integer J, K
record formst FM(integer J, K, L)

When space i8 allocated to & record varieble the
elements are laid out in the order in which they
were declared. However ©Bee the relevent
imptementation notes for mechine-depenaent
elignment considerations.

Occesionally it is necessery to be shie to refer to a
recordformst before it is possible to define it, as in the
example below. A statement of the form:

recordformatspec [fm]

mgy be used to declere the format {dentifier. Until the
format is declered fully in 8 recordformat stetement the
identifier msy only be used in the declarstion of record
pointer verisbles.

recordformatspec Y
racordformat X{record(Y)name P, real VALUE)
recordformat Y(record(X)name @, integer VALUE)

17

D c c n

Cn some machines {t is possible to offer a range of sizes end
precieions for varisbles of type inteqer or real, end so a
mechenism is provided for extending the sat of arithmetic datas
types. The size of jnteger varisbles mey be changed by adding
cne of the prefices byte, short, or long to the keyword integer,
and the precision of real variebles mey be changed by edding the
prefix long to the keyword raeal. The pretix 1{is added
immedistely in Front of the jinteger or real keyword, and gives
rise to constructions such as:

byte integer

short integer neme
onn long real
external byte integer

The exact meenings of these prefices are machine-depenaent
but may be described epproximstely as:

byte -~ large enough to hold a character {unsigned)
short - e signed subset of integar values

long - a targer renge than intsaer,
or greater precision then rea]

Commonly byte gives 8 bits, short 16 bits, and long 64 bits.

Where values ere required hyte integers and Bhort integers are
cansidered equivalent to normel-integers, hence INTEGER=BYTE is
e valid instruction. However, where refersnces are concarned
the types must be identical, hence INTEGERNAME==BYTE is not a
vatid instructfon. See Assignment.

Before use, byte velues will be zero-extendad to integar
precision and short values will be sign-extended to integar
precision.

If the host machine cannot support different data sizes the
prefices will not effect the stlocation of variables.

Refer to the relevant implementation notes for detsils of
specific implementatiaons.

The keywords byteinteger and shortinteger may be sbbreviated
to byte and short respectively.

18

Access to structursd vaerisbles

Arrays

Access to particuler elements of en array is sechieved by
following the array {dentifier by e Llist of subscript
expreseions exclosed in breckets.

e.g. Q{1, K-3] AlY)
The number of subscript expressions must equel the number of
bound pairs given in the declaration of the arrsy and the velue

of the expressions must be integers within the range specified
by the corresponding bound pairs.

Record element sglectjon

Selection of & specific element from s record is echieved by
foltowing the record by:

¢ "[glement id)
where [element id] refers to an identifier within the format
essociated with the given record. Clearly, if the record had
been declared using * &8s & format, no such selection is
possible,

Given the declarations:

racord tgrma Flinteger X, record(F) name LINK)
record (F) R

some_velid references toc varisbles would be:

R a record of format F

A_X en {nteger

R_LINK - 8 pointer to & record of format F
R_LINK_X an integer
R_L

A_L.

INK_LINK - a pointer to & record of format F
INK_LINK_X - an integer

R R_X f R_LINK |

v

| R_LINK X | R_LINK_LINK |

1

v

1 R_LINK_LINK_X | R_LINK_LINK_LINK |

19

n yariab

Each varisble dectered in @ block (q.v.) is allocated storage
whan that block is entered, the storage being released when the
block is left. This mesns that Local variebles (ana the values
in them) are lost between traverses of the block.

If, however, tha prefix gwn is applied to a decleration the
variables are allocated statically (at loed time) and so retain
their values when the block 1is not being executed (see
Procedures). The scope of the identifier is unchanged.

Opn arrays must be one-dimansjonal and have constant bounas.

Constent arrays

The prefix constant mey be used in plece of awn in the
declaration of an f{nitialised arrey (see initialisation) to
indicate that thas initiel values connot be altered. constant
arrays must be one-dimensionel and have constant bounds.

A strict definition shoultd prohibit the use of elements of
constaent arrays wherever there is the possibility of their being
assigned new values. Unfortunately this is not convenient in
practice es it would prevent pessing constant arrays as
paremeters to routines which never attempt to write to them.
Accordingly in the context of == assignments (q.v.) the compiler
treets constant arrays es though they were own arrays and leaves
checking to hardware protection mechaenisms.

20

Initialisation

Simple verisbles and pointer variables may be given initiel
velues when they are crested; 1f no inftial velue is specified
the content of e verisble 1s initislly undefined. Note that
pointer variebles must be essigned using "==" and simple
variables using “=" or "<-" (see Assignment).

integer A,B=4, C=-1-B (value in A is undefined}
real R=1.234€-5

string (7) wWHO="anon"

jnteger name P ==

Own veriebles are initialised once (effectively before the
progrem begins execution) but ordinary veriables are initialised
each time the conteining block is entered. Arrasys mey only be
initialised if they are own or constant (q.v.}. If an pwn or
constant errey i8 to be initielised, every element in the array
must be given 8 value. In order to simplify this, each initial
value may be followed by & repetition count in parentheses, snd
a star, (*), mey be used to represent the number of remaining
elements in the array. For convenience a repetition count of
zero is permitted and means that the tnitialising constent is to
be ignored. For example the following declarations ere all
equivalent:

own integer srrey Al2:5) =7,7,7,7
own integaer erray Al2:5) = 7(4)
awn integer srrey A(2:5) = 7(¥%)

The List of constants may extend ovar several physical Lines
without the need for a continustion mark {f esch Line ends with
a comma; 8 line bresk is also sllowed sfter the equaels sign.

constant string (3) array MONTH(1:12) =
liJANli R "FEB" , “"AR“ .
liAm " . "MAY " , I'JUN" .
NJUL'I N HAUGH R IISEPII R
IIUGT“ ' "NWH , |lDEC|I

own integer array OPCODE(0:20) = [opcode values)
16_5800, 16_4800, 16_5000, 16_4000,

(L LH ST STH }
16_5A00, 16_5B00, 16_5C00, 16_5000,

(A s H D]
16_1A00, 16_1800, 16_1C00, 16_1D0Q,

{ AR SR MR DR)

-1(*) {all the rest)

21

8 ent

Assignments are instructions which csuse tha contents af
variables to be eltered., Note that the compiler is free to
choose the order of evaluation of the left and right hana sidaes
of assignments, and so the use of procedures (q.v.) with
side-effects i8 to be discouraged.

There ara three forms of assignment:
1. [variable] “=" [expression)

X=Y

A(P) = A(P)+1

Y = BIT<12 1 MODE_FLAGS
PERSON = INITIALS.SURANAME

The expression is evaluated and the resulting value is
stored in the given veriable. The expression may be of
typs integer, real, or string, and the variable must be of
a compatible type; in the cese of a real varieble an
intager expression will heve its result converted to real
before tha assignment. Note that if N and M are (for
example] jnteger nams varisbles, the statement N=M copies
the velue in the varisble pointed st by M into the variable
pointed at by N.

2. [pointer vartiable] "==" [raference to a variable]

The pointer variable i8s dynemically made equivelent to the
given varieble; the types of both sides of the assignment
must be identical - this includes the formats of records,
and the maximum lengths of strings. The assignment may be
thought of as the assignment of the eddress of the variable
to the pointer.

Once equivelenced the pointer variable mey be used as a
synonym for the variable.

integer name N

integer X

integer array A(1:6)

X =1

N == A(X) {N is now equivalent to A(1}]
X =2

N=20 [seme affect as A{1) = 0}

3. {varisble] "<-" [expression)

This 18 similar to 1. above except that the value of
the sxpression will be trunceted if necessary (see
Data Precision Specification).

E.g. stringl4) S

S = "12345" {feils String Overflow at run-time)
§ <~ "12345" [will assign “1234" to S)

22

Record assignment
" Two speciel assignments exist for records:
1. (record variable) "“=" [record verisble)
The ares of storsge associsted with the right-hend record
is copied into that essociated with the Left-hand record in
a simple-minded feshion, i{gnoring the structure of the
records. The formets of the two records must be idantical.

2. {record vsrisble] "=0"

The storage area essocieted with the record is set to zero,
ignoring the structure of the record.

23

] n esglu

The contents of & string varieble may be sesarched for a
sub-string and decomposed accordingly.
The format of a resolution is:

{resolution]) ::= [source} "->" [dest]

[dest]) i:= {dest1]? (" [pattern) “)" [dost2]?
(sourcal t:= [string varieble]

[pattern) ::= [string expressionl

{dest1) ta= [string variable] ".*

{dest2] $i= "M [string variable]

S ->T.",").U
TITLE(J) -> ("Sir").REST
WHO -> WHO.[LETTERS."B.Sc.")
S -> ("HELLO".T)

[pattern) is eveluated and [scurcel is searched fram left to
right to find the string of characters, [pattern].
If {pattern] can be found the resolution ie deemed to have
succeedad otharwise it is deemed to have failed.

If the resolution succeeds, [scurce] can be considered to be
of the form: (left).{pattern).[right), where [left] and [right]
are the fragments of (source) respactively to the left and right
of the first occurrance of (pattern). If [dest1) has been
spacified it is assigned the value (left]l. If [dest2] has been
specified 1t is essigned the velue [right).

Hence after executing the following ststements:

string(15) A, B, C, D
A = "123456789456123"
A -> B.("458").C
A-> ("81%).D

B witl contein ™23", C will contain "789456123", end D will
contain “23%,

A resolution may occur in two contexts:

1. 88 an instruction, in which case failure of the
resolution causes an event to be signalled (see
Events)

WHO -> {"Mr ").WHO; WHDO = “Dr ".WHO

2. as a simple condition (see Conditions), in which case
the simple condition {s satisfied if end only if the
resolution sBucceeds, resulting {in the resclution
being performed end the necessary assignments being
made,

SAYING = A.“#*¢v 8 while SAYING -> A.(RUDE WORD).8

24

Condjtions

Conditional statements sare specified wusing the phrese
[condition], which is defined as:

{condition] ::= [simple cond) <and [eimple cona)>*,

[simple cond] <or (simple cond)>*

"and” conditions sre satisfied if all of the component simple
conditions are satisfied; “or" conditions sre satisfied if any
one of the component simple conditions is satisfied.

[{simple cond] hes seven forms:-

1.

[expression] [comp] [expression)

[comp) ::= ot - 18 equal to
nge, ~ {8 not equsl to
e, — is less than
=", - is less than or egual to
", - is greater then
=", - is greater than or equal to

The given expressions ere evaluasted end compared. The
simple condition is satisfied 1f the relation specified by
the comparator holds. Both expressions must yield velues
of the same type.

Complete records or arreys may not be compared.

{expression]) [comp) lexpression) {comp] (expression)

This form of simple condition may be thought of es a
contraction of the form:

{ [x1) [comp1) [x2] and {x2) [comp2} [x3})

except that the middite expression (x2) fs only eveluated
once. Note that the third expression, [x3], s only
evaluated if the condition specified by the first two
expressions ic setisfied.

Such 8 simple condition is freguently used to check for a
range of velues, E.g. 17 <= VALUE <= 100

Note that these double-sided conditions are only eveileble
for velue comparisons.

{reference to 8 varisble] "==" [reference to » varisble],
{referaence to e veriable] "##" [reference to a varioble]

The two varisbles, which must be of identical type, are
compered for equivslence, that s their eddresses are
compared. Note that the address of 8 pointer verisble is
the address of the varigble to which it is equivelent.

The simple condition is setisfied if the eddresses are
equal (== specified) or not equel (## specified).

25

4. (predicete calll - sea Procedures

The given predicate is called and the simple condition is
satiefied {f aend only if the predicate terminates by
executing the instruction trua.

6. [resolution] ~ sea String Resolution

The resolution {is attempted. If 1t fails the simple
condition 18 not satisfied, otherwice the resolution is.
performed and the condition {s satisfied.

6. “(" [condition) 61"

This form of simple condition is provided to enable the use
of both and and ar in a condition, 86 these connectives are
considered to have equal precedence. The connectives and
and gor mey not eppear 1in the seme condition unless
separsted by levels of parentheses.

'E.g. A0 gr (B=1 and C=2) gr D=3
7. npot [simple cond]
This simple condition is satiefied if and only if the
simple condition fotlowing mot is not satisfiad. Far

example, the following simple condaitions are exsctly
equivelent:

no

Ag
not A=0

stin cond ng

The testing of a condition proceeds from Left to right,
simple condition by simple condition, termineting as soon as the
inevitable outceme of the condition is known.

For'axamplo, considering the condition:

A=0orB/AfC

If the variable A has the value zero the whole condition will be
satiefied without "B/A # C" being tested.

26

Conditional aroups
{see Alock Structurs)

The most general form of e conditional group is @ sequence of
statemants of the form:

if (condition1] then start

(statements to be executed 1f)
[{conditionl) is satisfied])

finish else if [condition2] then start

{statements to be executed f§f)
{{condition1] 18 not satisfied and)
{[condition2) is satisfied}

finish else {f (condition3] then start

..............

finish else start

(stotements to be executed if all the)
{previous conditions are not satisfied)

finish

Note that “if start" and "finish else start" etc. sre
complete statemsnts in their own right and as such must be
terminated by a newline or semicolon.

Any or sll of the @lse statements mey be omitted, and the
start-finish groups mey be nested to any depth.

a7

Altornative forme

then start may be elided into start.

If the start-finish brackets enclose only one instruction
the complete start-finish sequence may be replaced by that
instruction.

E.g. .. if [condition] than [instruction]
OF tivereeranscasenne alsg [instruction]

The keyword jf may always be repleced by unless with tha
effect of negating the whole of the condition. For

. example, the following two statements are equivalent:

1f X =0 then Y= 1 glsg Z = -1
unless X =0 then Z = -1 glsa Y= 1

In a stetement of the form: “finish start" both of the
keywords finish and start may be cmitted,

e.g. if A =0 stact
FLAG
slsg i€
FLAG
alsa if
FLAG

alag
FLAG =

finish

12

-4

H>»i>»1
DAN YV =

1§
§
-

A stetement of the form:
if (condition] then [instruction]
may be rewritten in the more natural form:
{instruction) jf [condition]
E.g. NEWLINE if CHARS >= 60

Note that glse is not evailable in this varient.

28

Repetition {loops or cycles)
{888 Block Structure)

Indefinjte Repetition

A group of stetements may be repeated indefinitely by
enclosing them between the statements cycle and repeat.

cycle
GET DATA
PROCESS DATA
repeat

Subsequently the group of statements between cycle end repeat
will be referred to es the ‘cycle body'.
cycle-repeat groups may be nested to any depth.

Conditional Rspetition

The number of times the cycle body is executed can be
controlled by modifying the cycle and repest statements.

8. while [condition] cycle

Before each execution of the cycle body the specified
condition f8 tested. If the conditfon is satisfied the
cycle body is executed, otherwise control is pessed to the
statement following the matching repeat.

The cycle body witl be exscuted zero or more times.

b. for [eontrol] "=" [init] *," [inc] “,* [finel] gcycle

where

{control)::= [integer varieble] - control verisble
[fnit) ::= [integer expression] - initial value
[inc] :2= (Integer expression] - increment
[finel) ::= [integer expressfon] - finel value

On each entry to the cycle the address of the control
varisble and the values of the three expressions sare
evaluated and saved; execution of the cycle body cannot
change them. The control veriable is assigned the velue
"[init)-linc)", .

At the stert of eaoch {terstion the value in the control
verieble is compared with the velue (finall. If they are
equasl control is pessed to the statement following the
matching repeat, otherwise the velve [inc] is sdded to the
control verisble and the cycle body is executed.

This definition may be {nformelly described by the
following program:

integer Temp Inc Inc,
Temp Final = Final
2??nomeg Temp Control == Control ({same type ss Controll

29

Temp Control = Init-Temp Inc

whils Temp Control # Temp Final cycle
Temp Control = Temp Control+Temp Inc
{cycle body)

repeat

The cycle body will be executed zero or more times.

On exit from the cycle the control varieble will contain
the value it held immediately prior to the point at which
the cycle terminated, usually [finall.

The exacution of the cycle body must not altter the value of
the control varisble.

The final form of conditional cycle is:

cycle
{cycle bodyl
repeat untiil [condition]

After sach exacution of tha cycle body the condition is
tested. The loop 18 repeated if the condition 18 not
satisfied.

untjl Loaps always execute the cycle body at least once.

) Note that until does not mean whijle ngot [.....).

Simple forms of loop

If the cycle body comprises only one instruction the Loop may

be rewritten jn the form:-

[instruction] {loop clausel

i.e. [instruction] while [condition)

[instruction) for [control"="init}","[inc)","[Final]
[instruction) until [condition)

For example

AlJ) =0 for J =1, 1, 20
READSYMBOL(S) until § = NL
SKIPSYMBOL while NEXTSYMBOL = * *
B =8+ and N= N2 whilg N # D

a0

Cycise_control jﬁatruc;igna

Two instructions ere provided to control the exacution of e
cycle from within the cycle body.

1. exit — causes the cycle to be terminated and
control to be passed to the stetement
following the matching repeat.

The while end until forme of loop may be
expressed using exjt:

cycle {white)
exit unless condition

cycle lunti}

exit if condition
repest

2. continue - ceuses control to be passed to the repest
of the current (oop, where any until
conditions will be tested.

a1

Blugk structure

An IMP?7 progrem {is constructed using one or more hlocks,
which mey be nested one within another; the depth to which this
nesting may be performed 16 implementation dependant,

Note that start - finish (see Conditional Groups) and cycla -
repgat (soe Repetition) do not define blocks, they merely define
the scope of conditions and loops.

When control passes into & block all non-gwn variebles
declared in that bltock (but not in blocks defined within it) are
allocated storage, and remain in existence holding their values
until control pesaes out of the block. At this point the
variebles are destroyed end the storage space is released for
later use.

Begin blocks

The simplest type of block is enclosed batween the statements
beain -and end and ts referred to as a hegin block.

A beajn block is entered by executing the begin and is left by
passing through the end to the following statement. Thay are
enonymous routinas (q.v.) which heve one implied call et the
point of definition, The main uses of bepgin blocks are to
declere arrays with bounds calculated at run-time, and to enable
the re-use of space taken up by large errays which are only
needed for part of the progrem.

E.g. begin
integer UPPER
UPPER = ... (calculate upper bound)
beain
integer arcay CASES(1:UPPER)

cosaa
ERR Y

.....

32

c nd Global veriables

An identififer is described ss being local to e block {f it
wae declered in thet block. Any identiffers which sre in scope
but which were not declared in the block in question are
referred to es being globel to the block.

Clearly, identifiers mey be local to only one block but mey be
global to many.

beain {start of ocuter block)
integar X {X is local to this block)
begin {stert of inner block)
integer Y (Y is Local to this block)
X=0 {X 1e globsl to this block)
and {of inner block)
end (of outer block}

Identifiers may always be redeclared in any block to which they
gre global - the locel incarnation teking precedence over the
globatl one.

begin
jnteger X
beain
integer X
X=0 {uses the X of the previous line}
nd

nd

Any sttempt to redeclere s local variable will be faulted by the
compiler.

a3

cedu

A procedure is a block which has an associated identifier; s

complete procedure block may be considered as the declaration of
the procedure identifier.
Unlike bedin blocks, procedures are not entered simply by
reaching their first statement; this results in control being
transferred to the statement following the matching end.
Instead, procedures are activated whon they are called by giving
the. procedure identifier in a context determined by the types of
procedure. The effect of a call 18 to suspend the current flow
of control and to pass control to the procadure. When the
procedure terminates normally, the previous flow of control is
resumed.

There ara four forms of procedure, the exact form required being
specified by the heading of the block.

The phrase [param defl? stends for the optionsl parameter
definition and will be described later (see Parameters),

1. routine (id} (parem defl?

A routine call may occur wherever an instruction is
required.

When the cell is executed, control is transfered to the
routine which executes untit either the end 18 reached or
the instruction raturn is executed. This causes the
routine to terminate and the previous flow of control to be
rasumed.

integer X, Y

routine CONVERT
If X <Y start
X = X+Y

finjsh else start
X = X-Y¥

finish
and

..

ééNVERT

CONVERT unless X = 0

34

[typel function {id)[param def]?

A function is a procedure which calculates a value of the
specified type [integer, real, string, or racord) and mey
be used wherever an operand of the specified type is
required.

When 8 function is called its statements are axecuted untjl
the execution of an instruction of the form:

rasult “=" [expression]

This ceuses the function to terminate, returning the velue
of the expresaion.

jnteger X,Y,2

integer functijon SUM
result = X+

end
Z = SUM (same offsct as “Z=X+Y")
The keyword function mey be ebbreviated to fn.

[type] pap [id) [parem defl?

A map ie a procedure which calculates s reference to a

varigble of the spacified type (intesger, real, string, or
cecord), end may be used wherever a variable of the
spacified type 16 required.

When o map is called 1ts statements sre executed until the
exacution of an instruction of the form:

rasult "==" [reference to a verisblal

This ceauses the map to terminate, returning a reference to
(1.e. the address of] the given varisble.

E.g. jnteger X,Y
integer map MIN
if X <Y then result == X glse rasulf == Y
end
MIN = 0

{the above statement is exactly equivalent to:l

(if X <Y then X = D glsg Y = 0}

35

4, predicete [1d] [parem def]?
A predicate is & procedure which tests the velidity of an
hypothesis and mey be used wherever a simple condition {s
required. When 8 predicate is called ite statements are
executed until either the instruction true is executed, in
which case the predicate returns and the simple condition
it constitutes ie setisfied, or the instruction false 1s
executed, in which case the predicete returns and the
simple condition is not setisfied.
Note that s predicate does not return eny value.
E.g. integer N
predicate SINGLE DIGIT
- trua if0 <=N<= 9
falsg
end
N = N//10 unless SINGLE DIGIT
Ndtes

i

ti

it

iv

A routine mey terminsts by reaching end; ell other types of
procedure must not be eble to reach and, otherwise the
compiler will report s fsult.

Procedures may be nested within any form of block.

Procedures mey be recursive, that 1is, @8 procedure
definition mey contain a8 reference to {tself.

It is not possible to jump out of & block. Similarly a
procedure can not be terminated by executing the
appropriete statement (return etc.] contained in an {inner
btock. If it is required to force ® return from seversl
blocks the signal mechanism should be used (q.v.).

Functions, meps, end predicates mey altar variebles global
to themselves, but such side-effects should be avoidad or
used with caution ss, in general, no assumptions mey be
made sbout the order in which parts of statemsnts wmill be
executad.

36

In the previous discussion sabout procedures the phrase
[parem def)? was used. This stands for an optional paremeter
List definition.

[parem def]l ::= "(" (param List] *)®

whers [param Llist] fe a List of declarations defining the
'formal' parameters. The declarations may ba of any data type
except array ; arrays may only be passed to a procedure as
array namg paremeters. .

E.g. routing SWOP(integar name P, Q)
integer fr MAX(integer array name A, intager F, T)
predicate EQUIV(record(FM)ngme LEFT, RIGHT)

Parameters have the seme properties as any variebles declared
inside the procedure, except that the parameters are givan
values at the time the procedure is cailed.
¥When 8 procedure is calted 'actual' paremeters must be supplied
which match the formal parsmeters exactly in number, order, and

type. Parameters are effaectively essigned using “==" for those
passed by name (E.g. integer name, real array neme) and using

“=" for those passed by velue (E.g. string(10), integar).

For example assuming the declarations:

integer L, M, N

real R

integer array V(-7:7)
record (FM) ONE, TwO

valid calls on the procedures mentioned in the previous aexample
are:

SWOP(L, M)

SWOP(VIL), V(M))

N = MAX(V, -1, 0)

M = MAX(V, L, 7)

N =M jif EQUIVIONE, TwO)

N.B. IMP77 name type parameters are passed by raference end not
by substitution (c.f. ALGOL §O).

a7

Procedure parsmsters

In sddition to being sble to pess verisbles to procedures it
is possible to pese proceduraes es pasrsmatars. This 18 achieved
by using the procedure hesding as the ‘'declaration' of the
formel parameter.

E.g. routine TRY{poutine R{integer X))

integer J

R(J) for v =1, 1, 10

end

The routine TRY mey now be celled with a single parsmeter which
must be the name of 8 routine which {tself hes one integsr
paremeter. In this context the formal parsmeter nemes used to
specify the paraemeters of 8 procedure parsmeter are otherwise
fgnored.

Note: If the routine try is itself to be passed as e perameter
the hesding of the recelving routine would be something tike:

routine CHECK(pouting X(routina Y(jinteger Z)))
and the cell would be:

CHECK(TRY)

34

1
'

cead! specific n

On occasions it mey be necessary to use a procedure before it
is possible (or desireble) to define it. For example, where two
or more procedures call each other (mutual recursion) or where a
procedure is to be defined externally (see External Linkage).

As all 1identifiers must be declsred before use, a procedure
specification stetement is {ntroduced.

This tekes the form of the normal procedure heading with the
keyword spac inserted before the procedure identifier.

E.g. routine spec MAX(real SIZE)

This has no effect other than declaring the identifier to be
a procedure of the specified form which takes the given
paremeters. Except in the <caese of sgxternal procedure
specifications the procedure must be defined later on in the
block to which the spec is local.

For exempla:
routine spec B(integer X)
routjne A(integar Y)
BIY-1)
ggg.
routing B{integar X)
A(X+3)
ggg.
Note that the spec etatement and the procedure hesding must
correspond, that is, the type and form of the statements must

match, es must the typa, form, order end number of any
parameters.

as

External_Linkage

A complete progrsm mey be divided into several sepsrately
compiled modules which are connected together in some way before
(or possibly while) the progrem is executed. Thie Llinkage {8
requested by giving the prefix externsl to the retevant
declerations. The keywords system and dynamic may be used n
plece of external; refer to ths relevant implemantation notes
for deteils of the effect of these keywords.

1. externgl vertebles

An external veriasble hes all the properties of an gwn
varisbte, but is declered with the keyword own replaced by
external.

externgl integer CHOICE=4, WAIT = -5
external reel array MEAN(-6:6)

The identifiers ere then svailable for use by any progrem
that references them., A separately compiled module that
requires to use eny of these variables must first declare
them using an external specification.

external integer spec WAIT, CHOICE
external real array spec MEAN(-6:6)

note i No initietisation mey be given in an external
specification,

i1 External arreys must be one—dimensionsl end have
constent bounds.

§it Even though all of the chseracters 1in the
identifier of en externsl entity are significent
to the compiler, system software might {mpose
constrefnte on the number of characters
significant for linkage purposes. HRefer to the
relevent implemantetion notes for
system-dependent restrictions.

40

axternal procedures

A procedure may be made aveilable to other modules by
prefixing the procedure heading with the keyword external.

external routine TRIAL(atring(63) S)

External procedure definitions may not ba nested within any
blocks.

If a module requires to use an externally defined
procedures it must first supply an axtgrnal procedure
specification. For example:

extarnal predicate spac LETTER(integar S)

This 18 similar to e procedure specification but onty
requires the specified procedure to have been defined by
the time the module is executed.

An axternal ... spac may be given wherever other declarations

would be valid.

Alles

Any identifier being declared as extarnal may be followed by
aliss [string const) where the string constant epecifies the
string to be used for extarnal linkage. From within the module

the external abject will be identified in the usual way.

E.g. extarnalrealfnspgc SIN alias "MATHSDSIN® (real ARG)

S§X = SIN(0.3)

a

Proarsi structure

A complete file of statements which may be processed by the
compiler comprises © sequence of ons or more blocks and is
terminated by the statement:

ndoffile

There mey be no more than one beain block in this sequence
funless nested within other blocks). Such s begin hlock must be
the lest block. In this cese the final two statements:

end
endoffile

may be replaced by the single stetement:

endofprogrem

Declaretions may be made globel to these blocks with the
restriction that variebles must be own or externsl.

Examples of complete program files:

The null program:

andoffile

The most trivisl program:

begin
sndofprogram

A more reasonsble file:

owninteger IN=0, OUT=0

extarnalroutine GET([integernams SYM)
READSYMBOL(SYM)
IN = INH

end

external routing PUT(integer SYM)
PRINISYMBOL(SYM)
OUT = QUT#

and

begin

extaernslroutingspec PROCESS
PROCESS

WRITELIN, 1)
PRINTSTRING(" characters in")
WRITE(OUT, 5)
PRINTSTRING(" characters out"}
NEWLINE

endofprogram

42

anen ocedures

€ach file processed by the compiler i8 conceptually prefixed
by a set of declarations, which introduce the commonly used
procedures, making them available to every fila without any
explicit action by the programmer. The compiler treats these
daclarations as being global to the whole file and hence the
identifiers may be redeclared without error.

While the actuel declaretions may vary from mechine to
mechina, the following are standard and may be assumed present:

constant jnteger NL = 10

foutine OPEN INPUT(integor STREAM, string(127) FILE)
routine CLOSE INPUT
outin SELECT INPUT(integer STREAM)
roeuting READSYMBOL(ngms S)
routing SKIPSYMBOL
integer function NEXTSYMBOL
routine READ(nome N)
routing PROMPT(strina(45) S)
outin OPEN OQUTPUT(integer STREAM, string(127) FILE)
Fouting CLOSE QUTPUT
outin SELECT OUTPUT(intager STREAM)
routing PRINTSYMBOL(intagar N)
routing PRINTSTRING(8tring[255) S)
routine WRITE(integar N, PLACES)
routing NEWLINE
routine NEWLINES(inteqar N}
routing SPACE
routine SPACES(intagaer N)

integer functjon AEM{integer A, B)
long real function FLOAT(long real N)
long real function FRAC PT{long real L)
integer function INT PT(long reai L)
integer functjon INT{long real L)

string(1)function TOSTRING(integar SYMBOL)
integer function LENGTH(gtring(*)pame S)
byte integer map CHARNO(string(*)name S, jnteger N)

strina(2565) fn SUBSTRING(string(®)name S, integer F,T)
record format EVENT FM{integer EVENT, SUB, EXTRA)

record(EVENT FM)pap EVENT

jonteger function
integer map
byte map

short map

real map

long real map
string(*}map
record(*)map
integer function
integer function

ADDA(nemg V)

INTEGER(integer ADDRESS)
BYTEINTEGER(integer ADDRESS)
SHORTINTEGER{ integer ADDRESS)
REAL(integer ADDRESS)
LONGREAL[jntegar ADDRESS)
STRING(intager ADDRESS)
RECORD(integer ADDRESS)

SIZE OF(pnamsg N)

TYPE OF(pama N}

A definition of these procedures cen be Found in appandix 5.

44

Events

During the execution of o progrem several ({synchronous)
events may cccur, such as arithmetic overflow, array bound fault
etc. (see Errors). Normally such events will csuse the progrem
to be terminated with an error report and possibly diagnostic
information. However events may be trepped and used to control
the subsequent execution of the program.

The first non-dectarative statements of any block may be of
the form:

on gyent [event List] start
(on-body stetements)
finish

where [event List) is a List of integer constents in the range 0
to 16 inclusive, reprasenting the events to be trapped, or an
" asterisk (*) in which case all events are to ba trapped.

On entry to the block the on-body is skipped snd execution
continues from the statements following the finish. If an event
specified in the [event Llist) is signatled during the execution
of the statements between the finish of the on gvent group and
the end of the block, control will be psssed to the on-body [and
may well pass through the finish to the following statements).
If the event is not trapped in the current block a 'return' is
forced and the event is signalled in the new block at the point
from which the old biock wes entered. The process i repeated
until either the event is trapped or the outermost block of the
program 18 reached, in which case the event is reported as a
fault and execution terminates.

Note that some events may or may not be signalled
autcmatically in certein implementations or when the progrem hes
been compiled with the compile-time checks inhibited. Refer to
the relevent implementation notes for details.

45

Signatting events

At sny time during the execution of e progrem sn event may be
signalled by exscuting en instruction of the form:

signal event [n]lsub])?

[n] ::= [integer expression]
[sub] 3= "% [integer expression) (extral?
[extra) ::= "," [integer expreseion]

The instruction causes svent [n] to be signslled with sub-event
(default zero) and extra information {defeult zero). The value
of [n) must be in the renge 0 to 15 inclusive.

signel svent 15 {event 15,0,0}

sfgnel svent 14,7 {E X < O (event 14,7,0)

signs vent 13,1,Y if Y #0 {event 13,1,Y]}

Note i In both the on end signal statements the keyword
avent 18 optional eand mey be omfitted.

ii An event signalled 1inside en incarnation of en
on-body will never ba trepped into thet incernation.
Ingtead the search for a trap will start from the
previous block.
The pre-defined record map EVENT provides access to o
system-defined record containing information ebout the Lest
event to have besn signalled., While the exact definftion of the
record mey vary from i{mplementetion to {mplementetion the
following fietdo will always be present:

record format EVENT FM(integer EVENT, SUB, EXTRA)

If no event has been signalled these fields will esch contain
the value zero. .

Contro r jnstructions

Labels and Jumps
1. Simple Lebels

_Any stetement, excluding declarations, may be given one
or more simple labels. Optionally, the lebels may be
declared at the hesd of the block in which they are to be
usad, with the declsration taking the form:

lebel [idents)
e.g. laebal NEXT, ERROR1, ERROR2

Each label is located by writing it followed by a colon to
the Left of the statemsnt to which it refers:

NEXT: P=P+1 ifP <O
ERROA1 : ERROA2:FAULTS = FAULTSH

Control is passed to a lesbelled stetement by executing e
Jump instruction of the form:

Hoy (id]

E.g. -> NEXT
—>ERROR1 if DIVISOR = 0

2. Switch Vectors

A vector of labels may be declared in a similar manner
to a one-dimensional array, using the declarator switch.
The vector must have constant bounds.

switch SwW(4:9)
switch S1, S2(1:10}, S3(11:20)

Once declared, switch labels may be located in the sams way
as simple labels, the particular label required being
selected by an integer constant.

SwWi4): CHECK VALUE(1)
SW(6):SW(7): ERROR FLAG = 1
LAST: SW(9): (all finished)

An asterisk {*) may be used when Locating a switch Label to
define any elements within the vector which would otherwise
be undefined.

syitch LET('a':'z")

47

Note

iET[‘a'l:LETl'e'l:LET['1']:LET('0']:LETI'U'I:

{deel with vowels)

.

LET{*):(all the rest i.s. consonants}

Control is pessed to one of these statements by executing
instructions of the form:

"->" [ewitch id] "(" [integer expression] "}¥

E.g. ->SW(N} §f N> D

i)

i)

i)

tv)

v)

—->SWIN+2)
->SW(6])

Not all of the declared switch labels need be located
(in the previous examples SW(5): and SW(8): sare
undefined) but sn error will occur at run time {f en
ottempt is mede to Jump to e non-existent switch
label. -

Labels mey be used before they are located.

—-> MISSING if HERE = 0

MISSING:

The scope of both types of label is limited to the
block in which they are defined, excluding eny blocks
defined therein. Thet is Labels cannot be global to
e block end therefore it 18 not possible to jump into
or out of s block.

The 1dentifiers'used for lebels must not conflict
with other locel identifiers.

The results of entering @ for Loop other than via the
for statemsnt are undefinsd.

48

r contro nstruc n

B8top

monjtop

This {8 an abbreviation for:
aignal svent 0,0,0

and usually results in the normal termination of the
program, although the event may be trapped in the
usual way.

This instruction passes control to the run-time
diagnostic package which should then generate a trace
of the state of the progrem. On implementations
without a diagnostic package monitor is & null
operation. Following the trace the previous flow of
control is resumed.

49

Implementation-dependent festures

The following features are highly dependent on the particular
imptementation of the tenguage and the machine on which the
progrems are to be executed, If used st all they should be used
with extreme cere.

Constant _pointers

Constent name-type veriebles may be declared and
initislised to point et fixed mechine sddresses.

e.g. constant integer name CLOCK == 16_3C
subsequent reference to CLOCK will be i{dentical to
raeferences to INTEGER(16_3C)

Address Modifiers
References to simple pointer varisbles mey be followed
by en intsger expression enclosed in square brackets: e.g.
N{2]. The effect of this is effectively to interpret the
pointer variable ss pointing to the zero'th element of an
infinite one-dimensional arrey of simple objects of the
type of the pointer variable. The value of the integer
expression 18 then used to index {into this arrsy to select

a8 particuler simple variable.

€.g. integerarray A(1:12]
integernsme N, M

M == N[3] (sems as M == A(7))
Nl{-1] = [seme as A{3) = 0)

Option

The statement: Option [string:constant] may be used to
saelect implemantation-defined options. Refer to the
relevant implementation notes for details.

Control
The statement: control [integer:constent] mey be used to

set implementation-depondent compitler options, Aefer to
the relevent implementation notes for detsils.

Disanose

The stetement: diagnosa [integer:constent] may be used
to control the production of disgnostic information ebout
the operetion of the compiler ttself. Refer to the
relevant compiler documentation for details.

50

Machine code

There are two methods of sdding in-line machine code
sequences to an IMP77 program.

1 v*=" [integer:constent]

Statements of this Fform plent the given integer
constant as an inatruction.

2 v®t [machine-coda)

Statements of this form ensble pssudo assembler
statements to be included which refersnce the
program—deciared objects. Refer to the ralevant
implementation notes for detsils of the syntax of
[machine—code) .

51

.

A
v

()

i3]

not

Appandix 1

the

[:]

— introduces the definition of a phrase

- indicetes a rule is optional

- indicates zsro or more instences of a rule
- indicetes one or more instances of 8 rule
— separates alternatives
- define the scope of the sbove {tems

~ enclose phrese identifiors
~ enclose titeral strings
keywords ere underlined

"All

HA"

"Al!

"Al,

llAll

<llB" llcll>?

(an npUye

<"B" . ncli>

("B Il' llcﬂ >‘

("e n R I'C">+

->
or

->
or
or

=>
or

=>
or
or
or
or
or

or
or
or
or

A
ABC

A
ABC
ABCBC

A8
AC

A
AB
AC
ABB
ABC
ACB

AB
AC
ABB
ABC
ACB

52

atec,

etc,

etc.

ndix
Compile as

During the compilation of e progrem the cempiler may generate
messages which are generally sent to the Listing file and
poesibly to an interactive report stream. These messages are
eithar error indications or warnings,

Ecrore

An error message indicates that the current statement does
not cbey the rutes of the language or that a necessery statement
has been omitted from the previous stetemant sequence.

Once an error has been datected the compiler ignores the rast
of the faulty statement and continues compiling with the naxt.
This may result in consequential errors which will dissppear
once the original error is corrected. For example the compiler
will object to the following declaration:

integer A,8,,C,D

The extra comms will couse the declarstion of C and D to be
1gnored and so subsequent references to them wili be faulted
(NOT DECLARED). In general it i good prectice to correct
errors in the order in which they occur in the listing.

Error meceages stert with an asterisk {*) end where possible
they contain 8 marker which points into the of fending statement
at the position at which the compiler detected the error.

The error messages are:

Aton An unknown atomic element has been encountered. This
18 commonly ceused by mistyping o keyword.

E.g. intger, rutine, strat etc.

Bounds The size of an array or switch vector is negetive,

E.g. switch S(10:1)
own integer array X(-1:-10)

Context An otherwise correct statement has been given in a
cantext where it is meaningless.
E.g. exit not contained within a cycle -~ repeat.
raturn not inside s routins.

Context (ID)
[ID} is the identifier of & record format which has
been used to define a racord or record arpay within
the daefinition of [ID] itself. Note that it is valid
to declare record name and record array name
variables in this context.
E.g. record format F(integer X, recard(F) Y)

Duplicate

Form

Format

Index

Match

A local identifier is being redeclared.
E.g. rsal SUN,MON, TUE,WED, THUR,FRI ,SAT,SUN

An unexpected atom has been encountered. This is
usually cesused by the omission of ean stom or the
insertion of an extre atom.
E.g. integer A,8,,C

PRINTSTRING({ "BYE") NEWLINE (semicolon missing)

Iltegael use of & record with 8 formet which (s
currently undefined.
E.g. recordformatspec FM

record(FM)pnama PT

PT=0

A switch label has been given an index ocutwith the
declared bounds,
E.g. Bwitch S(1:5)

S(6]:

The definition of e procedure does not match @
previous specification,
E.g. routinespec PROC(integer X)

routine PROC(real X)

Not e verishle

An attempt hes been made to use an object with s
constent velue in 8 context where it could be
modified. This {is commonly ceused by using named
constants as though they were variebles,

E.g. constent integer TBN = 10
TEN = TEN#H

Not declered

An undeclared identifier has been used. This error
is elso commonly generated by omitting the percent
from the beginning of certain keywords (usuvally: if,
finish, and repest].

€.g. integer SWOP
SWAP = 0

Note the following common error:

string(7)neme P
This declares @ simple string varisble “namep"
insteed of what wes probebly intended: & string
pointer verisble "P". The reason is that the keyword
"nama" has not bsen underlined.

654

Order This is similar to Context but 1is reserved for
statements which are given before they are vslid or
after other stetements which invalidate them. Thers
are three common causes:

1 The declaration of variables other than gwn or
gxtarnal global to the outermost btocks of a
progrem.

E.g. integer X
: bagin

csces

2 The daclaration of an array following a label.
E.g. beain
LAB: integerarray Al1:5)

3 Declarations following an on statement.
E.g. on avent 7 start
stop
finish
integerarray XX(2:7)

Size A constent has a value outwith the permitted range.

E.g. string(300) S

Too complex
The stetement is too large or complicated to be
analysed. This error {5 quite rare and can
invarisbly be cured by splitting the offending
statement into two or more simpler statemants.
Note that putting redundant continuations (g} at the
end of each Llina of a Llarge List of array
initisliaing constants may provoke this srror.

Type The type of a given varieble or expression does not
match the type of sbject required by the context.
E.g. integer X

byte integer name P
P ==

or X=1.2

%¥begin missing
An gnd has been found which has no mstching begin (or
fouting etc.).

Xcycle missing
A repgat has been found which does not have a
matching cycle in the current block.

¥end missing

The end of the progrem file has been reached before
all blocks have been terminated.

55

%finish missing

The gnd of a block has been reached end it contains a
start which has no matching finish.

%repeat missing
The end of 8 block has been reached and ft contains e
cycls which has no matching repeat.

result missing
This occurs 8t the gnd of a function, mep, or
predicate when it {8 not manifestly evident that
control must be passed back from the procedure at
run-time.
E.g. integer functjon F(integer X)
result =0 If X <=0
‘end

or predicate EVEN(integer N)
true {1F N&1 =0
false if N&1 1 0
(this will give the error as the compiler)
(is unlikely to be clever enough to detect)
{the 'completeness' of the conditions)
end

%start missing

The compitler has found @ finish for which there is no
matching start.

"[1d)" missing
The object identified by [{d) has been specified in

the preceeding block {by e gpec or & label statemant)
but has not subsequently been defined.

E.g. hegin
routine spge CHECK
CHECK
end

66

¥Yacnipgs

A warning indicates that the compiler has detected scmething
which, although not en arror in itself, may indicate logical
errors elsewhera.

Warning messages start with a question mark {?) and are:

Access Control cennot reach the current statement. That is,
the previous executsble statement was or implied an
unconditional transfer of control, and the current
statement 8 not labaelled.

Non-locat The control variable of & for loop is not Llocal to
the current block. Such use of globals can Lead to
unexpected infinite loops:
€.9. integer P

routine A
for P =1,1,10 cycle

end
R for P = 1,1,20
[id) unused

The given identifier has been declared but naever
used.

57

Catestrophic errors

Under certain circumstances the compiler will be unsble to
continve efter discovering en error, ususlly because the
compiler's tebles will heve been fitled or corrupted.

These errors are:

Compi ler error
There 18 8 fault in the compiler itself.

Switch vector too large

A switch vector has been declared with a8 very largs
number of elements.

Too meny names
The compiler has no room left to describe new named
ocbjects.

Dictionary full
The compiler has no room left to hold the text of new
identifiers. This 18 ususlly csused by declaring e
large number of long identifiers.

Input ended
The end of en input file has been reached without
endoffile or endofprogram being detected. This is
most commonly caused by mistyping endofprogram, or
laaving out & closing string quote.
Some compilers may choose to treat this es a warning
and complete the compilation.

String constant too long
A string constent has been discovered to contsin more
than 255 characters. This is commonly ceused by
leaving out the termineting quote.

Included file does not exist
The compiler cannot gain eccess to 8 file specified
in an jnclude stetement.

Program too complex
The progrem 15 so complex that the compler has filled
its internal tebles.

Too many feults! i
This is generated when the compiler discovers a high
feult rate in the program. It is used to terminate
compiletions which would otherwise gensrate @& lerge
number of faulte. This is commonly ceused by feulty
declerstions, or by attempting to compile something
which i8 not en IMP77 program.

68

Sam stings

1 %begin

2 Xconstinteger PAGE SIZE = 63, (lines on a page)
3+ FF =12 {ASCII Form Feed)
4 %integer SYM, LINES LEFT = PAGE SIZE, LINE = 0

5 %Xon %event 9 %¥start {end of file)

6 NEWLINE

7 tstop

8 %finish

]
10 keycle
1 READSYMBOL(SYM) [provoke input ended before
12 {printing the Line number)
13 LINE = LINE+1

14 WRITE{LINE, 3); SPACE

15 ¥cycle

16 PRINTSYMBOL(SYM)

17 %exit Xif SYM = NL

18 READSYMBOL(SYM)

18 %repeat
20 LINES LEFT = LINES LEFT-1

21 i€ LINES LEFT = 0 %start
22 LINES LEFT = PAGE SIZE; PRINTSYMBOLIFF)
23 Xfinish
24 %repeat

25 %endofprogrem

24 Statements compiled

59

1 %begin
2 %begin
3 %reslname Q
4 %integer VALUE, X, X
* ! duplicate
5 %8tring(256) S
* size
6 %switch SA(1:4), SB(5:2)
* bounds :
7 %routine ¥spec CHECK
B %integer %functionspec KEY(%integer LOCK)
9 ¥if X = 4 %stary
* | atom
- 10 VALUE = KEY
® : I form
" X = VALUW
* t not declered
12 X = X+
13 en(5):
* {ndex
14 VALUE = 0
15 %finish
* g%stert missing
16 Fexit FIf X < 0
* context
17 %stop
18 X=0
? access :
19 ¥on %event 4 ¥start
* order
20 %integarfn KEY(%real LOCK)
* match
21 NEWLINE
22 PRINTSYMBOL('=') %for X = 1, 1, 12
? Non-locsl
23 Yend
* result missing
? LOCK unused
24 Q == VALUE
s I type
25 X = Q&7
* I type

26 %endofprogram
* %end missing
Zfinish missing
CHECK missing

LI S

Program conteins 17 faults

60

event sub-class

10
11 - 15

W= oW =

- -

NoOoLsLN W=

W=

W=

Appendix 4

Standard nts
meaning (+extra)
AMINATIO

abandon program
stop
user genarated error

integer overflow

real overflow

string overflow

divisian by zero

truncation

EXCESS RESOURCE

not enough store

output exceeded

time exceeded

OATA ERROR

dats transmission error
INVALID DATA

symbol in data (+symbol)
INVALID ARGUMENTS

for cannot terminate
illegal parameter type
array inside—out

string inside-out

itlegal exponent (+exponent)
OUT OF BANGE

array bound fault (+index]
switch bound fault (+index)
illegal event signal

CHARND out of range [+index)
TOSTRING cut of range (+symbol)
Illegal shift (+shift)
RESOLUTION FAILS

UNDEFINED VALUE

unessigned verieble

no switch tabel (+index)
for varisbtle corrupt °
INPUT/CUTPUT ERRCA

input ended

illegel stream [(+stream)
file system error (+error code)
LIBRARY PROCEDURE ERROR
GENERAL PURPOSE

61

Appendix &

Permanent_procedures

In the definition of 1/0 procedures the term "symbol" 15 used
to represent the unit of trensfer. Normally thits is eight bite
but this may vary on certain machines. Refer to the particular
implementation notes for datails.

routine OPEN INPUT(integer STREAM, string(127) FILE)

Effect:

Errors:

The specified stream {8 first closed (See CLOSE
INPUT) eond then {8 essociated with the spacified file
(or device). This routfne does not Lleave the
specified stream celected unless it was elready
selected,

Event 9,2 {s signelled 1f STREAM does not correspond
to e velfd {nput stream.

Event 9,3 is signalled §f the specified FILE (or
device) cannot be accessed,

routine SELECT INPUT{integer STREAM)

Effect:

Errors:

The input streem jdentffied by the psremeter STREAM
is made the currently selected input stresm. This
may be considered ss setting e defeult parsmeter
which s implied by all other input stresm handling
procedures, and has no effect on either the old or
newly~selected current input streem. The currently
selected input streem is unaffected if an error is
signalled.

Event 8,2 is signalled if STREAM does not correspond
to 8 velid {nput stream. Refer to the relevant
implementation notes for details.

routine READSYMBOL(name N)

Effect:

Errors:

The next symbol is teken from the currently selected
input streem end is assigned to the paremeter.

Event 9,1 is signalled {f the end of the currently
selected input streem has been reached.

Event 5,5 is signalled {f the paremeter does not
corrgspond to e simple variable which mey be assigned
en integer value.

82

routine SKIPSYMBOL

Effect: This routine may be considered as:
routine SKIPSYMBOL
ouMMy
READSYMBOL(DUMMY)
end

Errors: As for READSYMBOL.

integer function NEXTSYMBOL

Effect: A copy of the next symbol in the currently setected
input streem is returned as the result. The symbol
ie not removed from the input stream and cen be
accessed by snother call on NEXTSYMBOL or & call on
READSYMBOL .

Errors: Event 9,1 ie signelled if the end of the currently
selected input stresm has been reached.

routine READ(neme N)

Effect: This routine is used to {input integer, real, or
string values from the currently selected input
etresm. Symbols are input until one is found which
is not o space and is not a control cherscter.
Depending on the type of the parameter N the
following actions are then taken:

N 1s a string variable.
Symbols are input and built up into a string
which is sessigned to N. The string is
tarminated by the first space or newline symbol.
N is en integar variable.
Symbols are input and built up into an integar
velue. The input is terminated by any character
(including spaces and newlines) which does not
conform to the informal syntex:
[input] :3= [eign)? [digitl+
[sign] s u,'_n' n_n
(digit] : uugu' u1n' ugn' ngn
Note that some imptementations mey also allow
the BASE_VALUE form of integer constents to be
input using READ.
N is a real variable.
Symbols are input and built up into a8 real
value. The input is terminated by any charactar
(including spaces and newlines) which does not
conform to the informal syntax:
linput] ::= [sign]? [digit]* {frac)? [expl]?
[frac) ::= “. " [digit)+
[exp) t:= "@" [spacel® [signl? (digit)+
In all cases the terminating character is not removed
fran the input stream, but is Left availeble as
NEXTSYMBOL..

H
=
.

1=

63

Errors: Event 9,1 is signalled 1f the end of the current

input stream 1is reached while Lleading spsces and
newlines are being sekipped, or when the first
significent cheracter of the input is being input.
The end of the input stresm masy be used to terminate
the input without ceusing the event to be signalled.
In the cese of resl constents the exponent following
"@" may be considersed {nput using & recursive cell of
READ,

Event 6,5 will be signelled 1f the parsmeter does not
correspond to an integar, real, or string variable.
Event 1, x will be signalled if the value fnput is
too large to be held in the parsmater (integer: x=1,
regl: x=2, string: x=3).

Event 4,1 will be signelled {f the input doss not
conform to the required syntax.

routing CLOSE INPUT

Effect:

The currently selected input stream is closed. If
the currently selected input stream 18 not stream O
the streem ic left sssocieted with the nult file.

routine OPEN OUTPUT{integer STREAM, string(127) FILE)

Ef fect:

Errors:

The apecified streem is first closed (see CLOSE
OUTPUT)}. The streem {s then sscsocisted with the
specified file {or device). This in genersl implies
creating or overwriting the fite. This routine does
not leeve the specified streem selected unless it was
already selected.

Event 9,2 is signelled {f STREAM does not correspond
to 8 velid output stream.

Event 9,3 is signalled 1f the specified FILE cennot
be opsned for output.

routjne SELECT OQUTPUT(integer STREAM)

Ef fect:

Errors:

The output stream {identified by STREAM 1s made the
currently selected output streem. Refer to
SELECT INPUT,

Event 8,2 is signelled {f STREAM does not correspond
to 8 velid output stresm. Refer to the relevent
implementation notes for deteils.

64

routing PRINT SYMBOL(jintsger N)

Effect: The symbol contained in N is sent to the currently
selected output stream.

Errors: Event 2,2 i5s signalled if the output stream is full.

routing PRINT STRING(string(255) S)

Effect: The contents of the psrameter are sent to the
currently selected output stream. The routine may be
considered as:

routineg PRINT STRINGIstring(255) S)
integer N

PRINTSYMBOL(CHARNG{S, N)) for N = 1,1,LENGTH(S)

end :

Errorse: As for PRINTSYMBOL.

routing WRITE(integer N, PLACES)

Effect: The value contained in the paremater N is sent to the
currently selected output stresm as 8 sequence of
characters represanting its dacimat value. PLACES is
used to control the size of the output field. The
precise effect of WRITE may be defined assuming a
hypothetical string function DIGITS which returns a
string of decimal digits (with no leading zeros)
corresponding to the value of its paramster, e.g.
DIGITS(123) = 123",

Then:
routjne WRITE(integer N, PLACES)
string(255) S
S = DIGITS(INI)
1€ N <O gtart
s = Il_ll‘s
alse if PLACES > 0
s = ll.s
ﬁm——ns .
if PLACES <= 0 then PLACES = -PLACES ¢
alse PLACES = PLACES+
§=" "8 while LENGTH{S) < PLACES
PRINTSTRING(S)
end

Errors: As for PRINTSYMBOL.

65

-

routine NEWLINE

Effect: A newline character (ASCII code 10) is sent to the
currently selected output stream:
routing NEWLINE
PRINT SYMBOL(NL)
nd

Errors: As for PRINT SYMBOL.

routing NEWLINES{integer N)

Effect: A number of newlines {5 sent to the currently
selacted output stream. This routine has no effect
if N is Lless then or equal to zero.

routine NEWLINES(integer N)
while N > 0 cycle
N = N-1
NEWLINE
repeat
d

Errors: As for PRINT SYMBOL,

’

routins SPACE

Effect: A space character is sent to the currently selected
output stream:
routine SPACE
PRINT SympoL{®' ')
end

Errors: As for PRINT SYMBOL.

routing SPACES(integer N)

Effect: A number of epace cheracters is sent to the currently
selected output stream. This routine has no effect
if N is less than or equal to zero:

routine SPACES(integer N)
while N > 0 cycle
N = N-1
SPACE

repeat
and

Errors: As for PRINTSYMBOL.

routing CLOSE OUTPUT

Effect: similer to CLOSE INPUT.

66

integer function REM(integer A, B)
Effect: The function returns the remainer of dividing A by B.
The sign of the remainder i8 the seme as the sign of
thae dividend (A):

integer functjon REM(integer A, B)
rasult = A-A//B*B

end

Errors: Event 1,4 is signalled if B=0.

long real functiogn FLOAT{long real N)

Effect: The paremeter is converted into its floating-point
equivalent and returned as the raesult.

Errors: None

long real function FRAC PT(long raesl L)

Effect: The fractional part of the parametsr L i8 returned as
the result. The fractionsl part is calculated as
L-Intpt(L).

Errors: None

integer function INT PT{long real L)

Effect: The function returns the integer part of L, any
truncation being towards minus infinity. Hence
INT PT(-1.5)=-2,

Errors: Event 1,1 is signalled if the result cennot be held
in an integer variable.

integer function INT(long real L)

Effect: This function returns the nearest integer to the
paremeter.

integer function INT{long resl L)
result = INT PT(L+0.5)
and

Errors: Event 1,1 is signallaed if the result cannot be hald
in sn integer varjable.

67

string{1) function TOSTRING(integer SYMBOL)

Effect: The parsmeter SYMBOL is converted into the equivalent

one—character string, which is then returned as the
result.
Hence: TOSTRING('a') = "g"

Errors: Event 6,5 16 signalled unless D <= SYMBOL <= 255.

integer function LENGTH(string(*)name S)

Effect: The current tength of the string is returned.

byte integer map CHARNO(string(*)name S, integer P)

Effect:

Errors:

A reference to the byte integer holding the P'th
character of the string is returned.

Event 6,5 18 signelied unless 1 <= P <= LENGTH(S]

string(255) function SUBSTRING(string{*)name S, integer F,T)

Effoct:

Errors:

The sequence of characters from positions F to T
inctusive in the string § is returned es the result.
The Llength of this string will be T-F+1.

E.g. if § = "1234567890"

then SUBSTRING(S, 4, 7) = “4567"

The position of the first cheracter in the string
must satisfy the condition: 1 <= F <= LENGTH(S)+1,
and the position of the final cherecter must satisfy
the condition: 0 <= T <= LENGTH(S). The length of
the result must be greester then or squal to zero.
The function mey be thought of es:

string(255) fn SUBSTRING(gtring(*)name S, integer F,T)
string(255) TEMP
intager P
TEMP = "
for P=F, 1, T cycle
TEMP = TEMP.TOSTRING{CHARNO({S, P))
repest

result = TEMP
d

Event 5,4 18 signelled unless:
1 <= F <= LENBTH(S)+1

and 0 <= T <= LENGTH(S)

end T-F+1 >=0

recordformat EVENT FM(integer EVENT, SUB, EXTRA)
recard(EVENT FM)map EVENT

Effect: This map returns 8 reference to a system—provided
record which conteins the paresmeters of the Llast
event to have been signalled. If no event hes been
signalled all the fields of the record are set to
zaro. Implementations are frea to add extra fields
to the record.

Errors: None.

integer function ADDR({nams V)

Effect: Tho machine address of the varieble V is returned as
an integer value.

Errors: None.

integoc map INTEGER[intsger ADDRESS)

Effect: This map returns a reference to the integer variable
at machine address ADDRESS.

Errors: Machine-specific errors can occur if ADDRESS does not
satisfy certain range and elignment considerations.
byte map BYTEINTEGER{inteqgar ADDRESS)

Effect: This map returns a reference to the bytainteger
veriable at the given sddress.

Errors: As for INTEGER.

short map SHORTINTEGER(jinteger ADDRESS)

Effect: This map returns & reference to the shocrtinteger
variable at the given address.

Errors: As for INTEGER.

real map REAL{jnteger ADDRESS):

Effect: This map returns 8 reference to the real varisble st
the given address.

Errors: As for INTEGER.

69

long real map LONG REAL(jinteqer ADDRESS)

Effect: This map returns e reference to the longreal verisble
at the given eddrass.

Errors: As For INTEGER.

string(*Imap STRING({nteger ADDRESS)

Effect: This map returns @ reference to the string variable
at the given eddress.

Errors: As for INTEGER.

racord(*)map RECORD(inteqer ADDRESS)

Effect: This map returns a reference to the record varjebls
(of indeterminete format) at the given .address.

Errors: As for INTEGER.

integer function SIZE OF(namg N}

Effect: The number of storage units occupied by the given
variable is returned., The unit {e machine-dependent
but commonly is a byte.

Errors: None.

integer function TYPE OF(nams N}

Effect: A code it returned which indicated the type of the
pargmeter. The code velues are:

- unknown type
- integer

- real

- string

- record
byteintegsr
- shortinteger
- longinteger
- longreal

- arrey

- label

QUWEANAUNHMWN-O
'

-

70

Appendix 6

n d_archaic forms
Standard form Variant
byteinteger byte
constant const
function fn
map name function neme fn
shortinteger shert
<O
- RN
. \

- A\

n

NO oW =0O

32
33
34
35

37

as
39

a2

58

58
59
60
61

63

ASCII character set

space

“DWR » ™

o ——

N .

NoGaWnn-Q

WV E A= v O@

Appendix 7

es

72

1)
92

94

Vewe SN <€ X T<CCT~NDOT [i - HTMOOD >

!

97
88
99
100
10
102
103

104
105
106
107
108
109
110
11

112
113
114
1156
116
117
118
119

120
121
122
123
124
125
126
127

’

Q3T »Xm=T O aQaOTO

T <SSO 18D

U - o am N X

DEL

