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SUMMARY

The role of the kernel of the operating system EMAS 2900 and the implementation of its
functions are described in some detail. The significance of local scheduling policies and their
implications on the design of the kernel are discussed with particular reference to paging
management and scheduling control. It is shown that the concept of local and global control
of resources can lead to a considerable simplification in the structure of an operating system
kernel. The resulting operating system, EMAS 2900, provides interactive time-sharing
services very effectively and efficiently to a large computing community.
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INTRODUCTION

EMAS 2900 is a multi-access time-sharing operating system for the ICL 2900 series
of computers which was developed by the Department of Computer Science and the
Edinburgh Regional Computing Centre in Edinburgh University. The development
was a re-implementation of the EMAS system, which ran on the IC1. System +-75
computer, using the same underlying philosophy but taking into account the
experience of several years’ use and new insights which had resulted. As with any large
system, the EMAS implementation had become more difficult to maintain as time
went by and as the original team left the scene. A significant goal was therefore to
achieve a simplification of the system in order to facilitate future improvements and to
postpone the point when complexity escalation made further changes difficult. ‘There
was also a strong desire to exploit the architecture of the 2900 series in relation to
multi-access systems. An overall view of this project has been described by Stephens
etal.! ‘T'he purpose of the present paper is to describe the kernel of the system in some
detail, in particular the organization of the virtual memory control and scheduling.
One of the most important design concepts in both EMAS systems has been that of
process-local page replacement policies. (The term ‘process’ is here used to signify the
operation of a virtual machine consisting of a virtual processor, i.e. one which provides
access to the non-privileged instruction set plus various system services, operating
within a virtual address space.) Overall performance in terms of interactive response
and efticiency of use of the hardware has vindicated this choice in comparison with
systems using global policies. ‘T'heoretical studies by Denning also bear out the
wisdom of this choice.? The recognition of the significance of this policy motivated the
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main difference in structure between the two EMAS systems. Whereas in EMAS the
implementaiton of the local policies was intermingled with the rest of the resident
kernel, in EMAS 2900 a very clear separation has been made between local policy
controllers and controllers of global resources. Each process contains an incarnation of
a local controller whose function is to control those resources which have been
allocated to that process from the global scheduling controller. This notion of
completely separated local controllers has also been utilized with very great benefit in
the design of the communications subsystem, described by Laing.?

"I'he implementation of this policy of separation was facilitated by the organization
of 2900 virtual address spaces. Each virtual address space of 232 bytes is divided into
two halves, a ‘local’ half unique to each process and a ‘public’ half common to all
processes. In an EMAS 2900 process the local half contains all the programs and data
used by that particular process together with an incarnation of the local controller, the
director and the subsystem. The director is the innermost layer of software of a
process and incorporates many of the local system services such as the file system
services. The subsystem implements the next layer of the hierarchy which includes
the basic command interpreter, editors, compilers, loaders, etc. The functions of both
these modules remain essentially as they were in EMAS.* 3 As much as possible of
this material is shared between processes using the standard sharing mechanisms of
the system. 'T’he local controller code is shared but it was found convenient to compile
this as a module of the kernel—this will be clarified later. The public half of the virtual
address space contains the kernel of the system, i.e. the global controller, the message
passing dispatcher, device handlers, etc.

The kernel thus appears in every process address space and runs in virtual mode,
unlike most earlier hardware designs such as the 4-75 where it ran in real address
mode. Switching between the current local space and the kernel does not involve
switching virtual machines. Peripheral interrupts can be directed to an address in the
kernel in the same virtual space, while interrupts such as page faults and local process
time-outs can be taken directly by the local controller. There they can immediately be
dealt with according to the resources that have been allocated to that process. The
resources in question are primarily pages of physical storage and CPU time but there
are also various other internally defined resources such as ‘active memory’ sections
(described below) which also have to be controlled.

"I'he page size of the 2900 series is 1K bytes but in the light of the implementors’
experience on EMAS we decided that this would be too small, and in EMAS 2900
these pages were grouped together to form larger units. We had originally hoped to be
able to experiment with different unit sizes but this proved to be infeasible owing to
the difficulties of varying physical block formats on disc and magnetic tape. The unit
size eventually chosen was the same 4K bytes that we had used on EMAS; this gave
compatibility between the systems in addition to being what we felt was a sensible
choice. ‘Pages’ hereinafter refer to these 4K byte multiple pages.

In order to share information, movement of pages is initiated and controlled
globally but in response to requests from local controllers. A local controller is
unaware of any sharing of pages which is taking place between processes. It makes
requests for particular pages to be made available to it in main store which the global
controller then fulfils as best it can. If the page is already being used by another
process or is still in store from a previous usage the global controller can'simply tell the
requesting local controller where the required page is and allow it to continue.
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Alternatively it may have to fetch the page from a disc with consequent delay. This is
all transparent to the local controller, which simply requests the page and gets a reply.
Similarly, when a local controller decides that the process it controls no longer needs a
particular page, it tells the global controller and leaves the global controller to remove
it. If the global controller knows that another process is still using the page it will not
page it out. This method of operation in which the local controller is concerned only
with its own process makes implementation of the local controller much easier and the
result more reliable. 'T'he details of the global controller are described first; its
organization reflects the two functions of paging control and scheduling of resource
allocation. The former can be regarded as including disc and drum handlers but these
will not be discussed here as they are relatively straightforward and not of any great
originality. Each device driver or control function is a separate resident computation
or process which runs uninterruptably to completion. These communicate with each
other and with local controllers using a message passing system exactly as in the
original EMAS.® _

The whole of the operating system is written in IMP, the language used in
Edinburgh University for most systems implementation work. This was described by
Stephens.” The architecture of the 2900 series was designed very much with the use of
high level language in mind (for instance, see Buckle®). In particular, the hardware
defines a stack segment which can be used as the stack for IMP storage allocation and
procedure calling protocols. A potential problem for an operating system kernel is the
size of its internal arrays when the number of users and processes is likely to vary
considerably over a range of computers (such as the 2900 series). This has been
overcome in the EMAS 2900 kernel by making use of virtual space. Each array that
may need to be extended is mapped into a separate segment. Physical store pages
claimed from the free page-frame list can be added onto the end of the segment when
required by amending the appropriate page table.

Extensive monitoring of the performance of the system was carried out during its
development and since it has entered service, both by internal measurement and by
external measurement using the Edinburgh Remote Terminal Emulator (ER'T'E).”
This proved to be of immense value in determining the best approach to certain
aspects of the design and indicated the most fruitful developments to pursue.

PAGING CONTROL

A fundamental feature of EMAS is the way in which virtual memory is used. Files are
mapped into virtual memory such that when a particular virtual address is accessed
the corresponding item in the file is referenced. The action of creating the mapping
between a file and an area of virtual memory, termed ‘connection’, is purely a logical
operation and no file data is transferred at this time. Physical movement of file data is
only initiated when a page fault occurs. This is the ‘one-level store’ concept
implemented in many systems. Furthermore a user normally does not know on which
disc his files are stored. ‘T'he allocation of disc space is handled entirely behind the
scenes by the file system. A file resides on disc storage as a set of disc ‘sections’
(sometimes termed ‘extents’ elsewhere) as a matter of convenience for the file
manager. The connection mapping therefore consists of a table containing the
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locations on disc of all the sections of the files which are currently connected. This
table forms part of the local controller and will be described in detail later. The
significance to paging control lies in this division into sections.

‘T'he file is the unit of shareability to EMAS users and all files are potentially
shareable between any number of processes. Since files may be very large, it is more
convenient to use the section as the basic unit which the global controller handles
rather than the file. When a local controller requires a file page for its process, it must
first ensure that the section within which that page lies is ‘active’. ‘Activating’ a section
takes the form of a request from the local controller to the global controller specifying
the disc address and length of the section together with a ‘new page’ mask. T'he global
controller then sets aside an appropriate data structure for this section (an ‘active
memory table entry’) and allocates a logical section number, known as ah ‘active
memory table index’ (amtx), which is used thereafter to identify the section.
Individual page requests specify the amtx and a page-within-section number. T'he
new page mask allows the local controller to specify that certain pages in the section
have never had data written into them. This allows the global controller to avoid
making a physical transfer from backing store when such pages are requested. A free
store page-frame is simply allocated and cleared to zero. Figure 1 includes the data
structure for such an activated section.

The collection of AM'T entries for all the active sections forms a dictionary through
which sharing can be controlled. It is organized as a hash table using linked lists of
entries and with the disc address as the key. The disc address could have been used
instead of the amtx value to identify the active section but search time is saved by
using the latter. Sections shared between processes appear having a ‘users’ count
greater than one. The ‘outs’ field contains a count of the number of page-out transfers
belonging to this section currently in progress. When the ‘users’ and ‘outs’ counts are
both zero, the section can be removed from the AMT dictionary. ‘The pointer field
shown indicates a collection of entries, one per page in the section, which record the
current status of each page. This area is allocated within a single global array, the
‘Active Page Table’, and since sections may have different lengths, a dynamic
allocation scheme is used.

‘The status information for each page consists of two flag bits and a pointer field.
The first flag bit is the ‘new’ bit distributed from the activation mask and the second
indicates whether there is a copy of the page on drum storage. Where the hardware
installation does not have drum storage this latter bit is always zero. The pointer field
contains a null value if the page only resides on disc, a pointer to a drum table entry if
the on-drum bit is set, or a pointer to a store table entry otherwise. Since drum table
entries correspond one-for-one with page-frames on drum, the pointer also denotes
the position of the page on drum. A drum table entry contains a pointer to a store table
entry if there is also a copy of the page in store, or a null value otherwise. This is also
illustrated in Figure 1.

Each store table entry contains the physical address of the page, a count of processes
currently sharing the page, a set of flags and various links. The flags indicate whether a
backing store transfer is in progress to or from this page, whether the page has been
modified since being paged in (and thus requiring to be written out in due course
rather than discarded) and whether the page is ‘recaptureable’. A page is said to be
recaptureable when it has been discarded onto the free page-frame list and before it
has been used for anything else. In these circumstances, a page-in request for the page
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will recapture the page-frame from the middle of the free list and avoid the need for a
transfer. 'This mechanism has a very significant effect on the performance of the
system: 30 per cent of all page-in requests are satisfied by recapture under heavy load,
and a higher percentage under light load.
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The free page-frame list is formed from the store table by linking together those
entries not in use, 'I'o enable page-frames to be recaptured from the middle of the free
list it is constructed with both forward and backward links. A third link in each entry
is used in two different ways. When the page is recaptureable, it is used to refer back to
the AM'I’ entry so that page-frame numbers can be removed therefrom when the
page-frame is claimed for a different purpose. When the page is in use and a page-in
transfer has been initiated, it is used to point to a list of processes waiting for the page
to arrive in store. 'This is referred to as a page-in-transit list and takes the form of
messages that will be forwarded to the processes when the transfer has been
completed.

The sequence of operations which takes place when a page-in request is made can be
summarized as follows. If a page-frame is already allocated for this file page, a reply
can be generated immediately, except for the case when a page-in transfer is in
progress. In this case an additional entry is made in the page-in transfer list. If a page-
frame has not been allocated to the file page requested, a request is made for a free one.
When a page-frame has been allocated, the AMT entry is examined. If the page is
marked as new the page is cleared and a reply sent. The ‘modified’ marker in the store
table is also set to ensure that the cleared page is written out subsequently. If the page
is not new, the backing store position of the page is determined and a transfer initiated
as appropriate. In the case of page-in transfers, the replies from the device manager
are normally sent direct to the local controller which orginated the request rather than
via the paging manager; this results in a worthwhile reduction in overhead. Only when
a drum read fails is a reply sent back to the paging manager. In this case, the transfer is
requested from the disc site instead and the drum site is marked as ‘bad’. In the case of
disc read failure, the local controller which originated the request is informed and an
error is signalled to the process.

For page-out requests the local controller assumes that the paging manager will be
able to perform the task; consequently no reply is made from the paging manager.
This simplifies the local controller considerably as it enables it to return all its notional
page resources to the scheduling manager as soon as all the page-out requests have
been made. T'his has the effect of maximizing the overlap between a process being
paged out and a new process being paged in. The only slight disadvantage is that very
long queues of backing store transfers can build up.

If a page for which a page-out request has been made has more than one uscr, the
page will remain in store and no transfer will be carried out, although information on
whether the page was modified will be recorded for later use. If the page only had one
user it can immediately be paged out. Here another major simplification from EMAS
can be observed: the drum is now regarded as a higher-speed cache of active disc
pages, so that when a page is transferred out, it is transferred to both drum and disc,
not just to the drum. Subsequent paging-in will take place from the drum site, except
in the rare case of drum failure. The very great advantage is that when a section is
deactivated, only housekeeping actions are required and no transfers have to be made
from drum to disc. Furthermore, in the case of a system crash, the disc file site will be
more up-to-date than if many of the modified pages are only on drum. Clearly there is
more overhead in setting up both transfers but this has to be balanced against the
greater simplicity.

Pages which were not modified will not be transferred out again, with the exception
that if a valid copy of the page does not yet exist on drum, a transfer out to drum alone
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is made. When all transfers out have been completed the page-frame is returned to the
free list but is marked as recaptureable.

SCHEDULING CONTROL

One of the fundamental scheduling problems in time-sharing paged systems is that of
thrashing, the phenomenon of continual page-faulting from processes that are unable
to acquire an adequate number of pages in store. In EMAS 2900, as in EMAS, this is
avoided by carefully controlling the number of processes in the ‘multiprogramming
set’, i.e. those processes allocated main store and potentially able to run on the CPU.
(The period during which a process is in the multiprogramming set is referred to as a
‘store residence’.) By making an estimate of the number of pages each process requires
to run efficiently, the scheduler can ensure that the processes it decides to allow into
the multiprogramming set do not overload the available store. The estimate of how
much store a process will require the next time it enters the muliprogramming set is
made from its previous behaviour. This is a good indicator but clearly a process will
* occasionally begin to exhibit different characteristics. For this reason the scheduler is
designed to be adaptive and changes of behaviour are dealt with automatically. The
adaptation is derived from a table of categories through which processes migrate. Each
category defines a combination of store and CPU-time requirement together with a
priority, a set of transition indicators and various other data. The system attempts to
be fair in the sense that categories which define lower resource requirements are
allocated higher priorities and vice versa. The transition indicators control the route
through the categories which a process takes as a consequence of variations in its
resource requirements. A typical category table is shown in Table I.

Table I
More More Less Runq Rung
Category Pages Time Priority pages time pages 1 2 Strobe
1 20 4 1 2 5 1 1 1 0
2 32 4 2 3 6 1 1 1 0
3 64 4 2 4 7 2 1 1 0
4 128 4 3 4 8 3 1 1 0
5 20 24 2 6 9 5 1 2 0
6 32 24 2 7 10 5 1 2 0
7 64 24 3 8 11 6 1 2 0
8 128 24 4 8 12 7 1 2 4
9 20 64 3 10 9 9 2 2 0
10 32 64 4 11 10 9 2 2 8
11 64 64 4 12 11 10 2 2 8
12 128 64 5 12 12 11 2 2 8

The category table shown is a fairly basic one that has undergone no tuning to fit a
particular installation. Being table-driven, the scheduling is very easy to change but
the system-wide ramifications of local scheduling changes are not always immediately
apparent. ‘I'he regular use of the ERTE remote terminal emulator system was of
particular value in this respect. One modification which is normally present is to
incorporate into a table a disjoint set of categories and their transitions suitable for
Jjobs submitted to a batch stream. EMAS 2900 has facilities which allow a number of
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processes to be created as batch processing streams but these need different priorities
so as not to interfere with the response of interactive processes. When a process is
placed in a certain category the scheduler tells the local controller how many pages it
may acquire on behalf of the process and the number of time-slices of CPU it may
consume (the ‘pages’ and ‘time’ columns of the table). The local controller can then
allow the process to proceed within these limits. If these resources are not sufficient,
the local controller is obliged to request to be rescheduled. In principle this mieans that
that process will be removed from the muliprogramming set in order to give other
processes a chance to make progress. In asking to be rescheduled, the local controller
says which resource it has run out of and how much of the other resource it had used
by this stage. This allows the scheduler to adapt the category of the process to one
which will be more suitable. For example, if the process had run out of time, the
scheduler would assign it to a new category that had a greater allocation of CPU time.
‘T'his category is indicated in the ‘more-time’ column of the category table. In
addition, if there is a category with fewer pages but still with more pages than the
process had used when it ran out of time, that category would be chosen instead in
order to minimize overall resource allocation and to maximize the priority of the
process.

I.ocal controllers endeavour to avoid exceeding their page allocations by examining
the page usage markers in their page tables at certain times. If this indicates that a page
has not been accessed recently then it can be paged out. This activity, known as
strobing, is controlled by the category in which the process resides because its
effectiveness varies considerably depending on the characteristics of the process and
because strobing is an expensive operation.

‘T'he priority given to a process from its category is used by the scheduler to control
when it is to be admitted to the multiprogramming set. The scheme is not pre-emptive
but uses a ‘priority ratio’ table which indicates the priority of process that the
scheduler should load next. Thus higher priority processes will be admitted frequently
but the lower priority processes can never be entirely excluded from making for-
ward progress. Normally when a process changes to a lower priority category it is
removed from the multiprogramming set and requeued. However it is allowed to
change priority and remain in the multiprogramming set if none of the waiting
processes have a higher priority than the one that has just changed its category. This
tends to occur when the system is lightly loaded and avoids the cost of paging a process
out and in again unnecessarily.

I’here are two stages to admitting a process to the multiprogramming set. ‘T'he first
is to allocate pages for it and to page in the local controller stack; the rest of the local
controller is shared and already resident. ‘The second is to allocate the pages for the
process itself and activate the local controller, which then passes control to the process
and deals with its page-faults. Since the local controller stack is only three pages long,
an allocation for this can almost always be made well ahead of sufficient pages
becoming available for the remainder of the allocation. The scheduler then im-
mediately pages in the local controller stack using exactly the same mechanisms and
facilities, described above, that local controllers themselves use. The pages are thus
very likely to be in store by the time that the full allocation is available, and the
potential inefficiency of two stages is largely avoided.

In EMAS and in the initial version of EMAS 2900, a ‘working set reloading’
scheme (also known as ‘preloading’) was used.!® The working set of each process was
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recorded at the end of a store residence and these pages were automatically paged in
again at the start of the next store residence. On the 4-75 this scheme was very
beneficial in improving response. On the 2900s it proved to be rather less so for
various reasons. Firstly, on machines with drum storage there was very little
performance gain since the drums were so fast. Secondly, the inaccuracy of
preloading, i.e. those pages reloaded but never actually accessed, was for some
unexplained reason also rather higher on the 2900s than it had been on the +-75,
which resulted in more wasted effort. Thirdly, an inaccurate preload destroyed
potentially recaptureable pages—a situation that did not occur on the 4-75 where
recapturing was not implemented. In the absence of drum storage the benefits of
preloading might have been expected to reassert themselves but the substitution of
large main stores meant that page recapture tended to be much more effective and to
perform much the same function.

The method of totting up the process page allocations so as not to overload the
available store is effective but has drawbacks. One is that a shared page will be
accounted as a page for each process using it although only one copy will reside in
store; this is trivially overcome. A more serious drawback arises from the fact that any
particular process is liable not to be using the whole of its allocation at any point in
time, a form of internal fragmentation. This disadvantage can be mitigated by
overallocating to a limited extent, say by 20 per cent. Since requests for store pages
cannot always be immediately satisfied (a previous process may still be being paged
out, as mentioned above), a queuing mechanism for requests already exists. With
overallocation, more queuing takes place but the overall gain is noticeable. However
there is now the possibility of deadlock arising: if no more page-frames are expected to
be released when page-outs complete and all the processes are requesting a further
page (via the paging manager) then a deadlock situation has arisen. As long as the
overallocation is kept reasonably small such deadlocks only occur rarely. When one
does occur the solution we adopted was to detect that one has occurred in the store
page allocation routine and arbitrarily to force one local controller to page out its
process. This will release pages for the remining processes to proceed. This is
admittedly somewhat messy but effective. A final imperfection of totting up is that
unless some extra action is taken the store may become dominated by large processes,
even though they have low priority. This would have the effect of limiting the number
of small interactive processes in the multiprogramming set and correspondingly limit
their overall rate of response. The problem can be overcome by arbitrarily limiting
low priority processes to a proportion, such as half, of the total store.

When a process wishes to wait for some external event such as console input, the
local controller has to request the scheduler to suspend it. If there is sufficient store
available the scheduler may allow the process to ‘snooze’ in store without being paged
out, but otherwise the local controller will have to page its process out before
suspending. An intermediate form of snoozing has also been implemented which
consists of retaining just the local controller stack. ‘This occupies much less space and
still improves response to the user when the process is unsuspended.

T'he message-passing scheme adopted in EMAS 2900 is very similar to that
described in EMAS® but a certain amount of extra flexibility has been built in for
paged processes. Basically, messages are addressed to a particular service number but
any one service routine may accept several service numbers. Service numbers can also
be ‘inhibited’. 'This inhibits the message dispatcher from delivering messages on that
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number. A typical usage of this facility is when a device handler cannot deal with any
more transfer requests for the moment.

Dispatcher priorities amongst processes in the multiprogramming set use the ‘run
gl’ and ‘run q2' fields from the category table. The dispatcher maintains two run
queues for paged processes (they are, in fact, message queues and the message
dispatcher is one and the same thing as the paged process dispatcher). Processes on the
first have pre-emptive priority over those on the second and the queue that a process
goes on is defined by ‘run q1' and ‘run q2’. ‘run q1’ indicates the queue that the process
is to go on during its first time-slice in the round-robin CPU-allocation scheme used
for the processes in the multiprogramming set. ‘run g2’ indicates the queue it should
go on during the second and subsequent time-slices of its residence. This control
allows highly interactive processes to be given favoured treatment and improves their
response times significantly. Processes which only ever go on the second queue (i.e.
run g1 = run ql = 2) still make reasonable forward progress since the processes on
the first queue are such that they do not hog the CPU. Most of them do not even use
up the complete time-slice.

THE LOCAL CONTROLLER

The essential functions of the local controller have been described above in the
contexts of paging and scheduling control. The organization of its private data
structures and other details remain to be described.

The incarnation of the local controller for each virtual process consists of shared
code which is common to all local controllers and a private data segment suitably
protected from user access by the ‘rings of protection’ mechanism provided by 2900
series hardware. 'T'his segment is used to hold both the local segment table for the
process and the stack which is required for running the local controller as an IMP
program.

Since a local controller is intimately associated with the global controller, it was
found convenient to compile the local ¢ontroller code as a procedure within the kernel
rather than as a separate entity. This implies that whenever the local controller
procedure is called the stack has to be switched from the one on which the kernel is
running to the local controller’s own stack. 2900 series architecture provides a
mechanism—the ‘outward call’—to do this.® The great advantage of this scheme is
that all the data structures required by the local controller can be allocated by the
normal IMP mechanisms, and on a stack which can be paged out when the process is
not in the multiprogramming set. A subsidiary advantage is that the local controller
can access global controller data structures just as global variables, even though they
are on a different stack. Philosophically this is perhaps undesirable but it makes life
very much simpler. Since outward calls are expensive operations they are only used on
the initial entry to each incarnation of local controller. Local controller thereafter
exits to kernel with a software generated interrupt and is then re-entered at the point
of interruption with all its data intact.

In order to access a file it is mapped into virtual space by being ‘connected’. (This is
one of the functions of the file system.) To make a connection the director writes
mapping information into the local controller’s data structures. A segment is made
accessible to the director for this purpose; the local controller tells the director where
the data structures are within this segment on start-up. This requires co-operation
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between the two layers of the system, local controller and director, to avoid
inadvertent misuse but has not proved to be a problem from the point of view of
reliability. The data structures which define connection mappings consist of a table
known as the ‘secondary segment table’ (parallel to the local segment table), each entry
of which points to a set of records in the ‘connected section table’. Each of these
records describes a section of storage on disc.

The description of each section of storage contains the disc address of its start, its
length and a field which is used to hold either the ‘new’ bits for pages in the section
when it is not active, or the amtx active memory table index received from the global
controller when it is active. The remaining tables maintained by the local controller
are concerned with active sections. For each active section, those pages within it which
are also active, i.e. in use by this process, must be remembered. Furthermore, an
abbreviated history of the usage of active sections must also be maintained. The
structure of the tables went through several iterations during local controller
development. These iterations were entirely local to the local controller and therefore
posed no interface problems with the global controller. This was another benefit of the
modularization into local and global controllers. Originally, linked lists were
extensively used but these proved to take more space than was desirable and so bit
maps, which were more compact, were substituted.

The main bit map consists of an array of 64-bit words, each word of which relates to
some segment and each bit to a page within a segment. One of these words is set aside
when any section within a segment is first activated. This allows up to 32 segments to
be active at any one time, a limit which has proved more than adequate in practice.
Nevertheless, as the context of a process changes this limit would be exceeded through
old segments still being active although not in current use. The local controller
therefore attempts to maintain a working set of active segments and to deactivate
sections within segments that are no longer within that set.

The construction of page tables for each of the segments of local virtual space in use
is a further function of the local controller. For this purpose the local controller is
allowed to claim physical page frames directly from the global allocator instead of
indirectly through the paging manager, but they still must be accounted for in the
local controller’s notional page allocation. Several maximum sized page tables can be
packed into one page and many more when the segments are of the typical small size.

The remaining main function of the local controller is to handle communications
with the director of the process. Interprocess messages are forwarded by the local
controller, for instance, together with an inevitably growing list of specialized services
that have been thought to be desirable as the system has developed.

MULTIPROCESSOR KERNELS

The 2900 series provides for dual processor configurations and there were suggestions
that multiple processors would be available in due course. The attractions of more
than one CPU for improved reliability are obvious and the software design has always
had multi-CPU configurations in mind. Since the attraction of multiprocessors was
seen as the avoidance of interruptions of service rather than obtaining better response,
we aimed for an entirely symmetric arrangement of processors. All processors would
execute the same dispatcher and be able to handle all interrupts. This was essential for
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the system to live through the various halts, power-offs and loops that seem to occur
nearly as often as properly signalled hardware errors.

"I'he actual extension of the kernel to handle several processors was very simple. It is
necessary to ensure that a local controller, or its user process, is being executed by only
one processor at any time and this was done by an extension of the inhibit mechanism
described above. A similar extension applied to kernel services which are performed
by resident processes. The queuing/dispatching operations were protected by a
semaphore.

Peripheral and clock interrupts are broadcast to all CPUs and all try to read and
clear the interrupt flag register. Only one will succeed; it deals with the interrupt,
which involves turning it into a service request and queuing it. T'he other processors
resume their interrupted tasks. The remaining problem area was the three main
tables, Store, Drum and Active Memory: these are all accessed by more than one
process and must therefore be protected by semaphores.

Semaphores are claimed and released by the special 2900 operations provided;
claiming or releasing a semaphore also invalidates the slave store in the processor and
forces any unfinished write cycles to complete. If a semaphore clash is detected a wait
routine is entered until the semaphore has been freed. If the semaphore is not freed
within one second it is assumed that a processor has failed or stopped and recovery
operations commence. T'o avoid a deadly embrace any processor is allowed to claim
only one semaphore; this restriction necessitated some re-ordering of operations in the
paging manager. '

T'he multi-processor kernel described above was operational within 2 weeks of the
delivery of the dual 2972, although some preliminary testing had been done on a dual
2970 at Southampton University. The improved reliability was immediately obvious.
The time spent waiting for semaphores was around 1 per cent of total CPU time.

In the current version of the kernel some improvements have been made. The
global inhibiting of the device servers is rather inefficient so they have been exempted
from the scheme and operate their own semaphores at the device level. Thus one
processor can be starting a transfer on one unit while another is dealing with an
interrupt from another. This licence has also been extended to the paging manager
and communications controller.® The broadcasting of interrupts has also ceased—this
is because interrupts clear the slave stores and consequently a null interrupt is
expensive. ‘I'he current, less elegant, scheme is to route clock interrupts to one
processor and device interrupts to the other. The idle loop is used for each processor
to check and cover for the other. If interrupts appear to be missing the system reverts
to the original method. These changes have improved response and reduced
semaphore wait time to around 0-2 per cent of total CPU time.

T'he aim of increased reliability has been achieved with the system continuing
through a substantial majority of processor failures as a single processor configuration.

CONCLUSIONS

The exercise of transporting EMAS to the 2900 series hardware has been a
conspicuous success as far as its users are concerned. It has proved much more
effective than the manufacturer’s operating system in a University envirohment,
mainly, we believe, because our objectives were clear and because we did not aim to
produce a system that was all things to all men. The opportunity to rethink the design
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of the kernel after a number of years’ experience with EMAS was invaluable and the
resulting design has improved on the original in almost every respect. I'he simplicity
and elegance that we sought has largely been achieved. Though one can always think
of ways one could do it even better next time, by and large we are satisfied with the
outcome of our efforts.
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