University of Edinburgh
N\, ¥
Department of Computer Science

The
Standard EMAS
Subsystem

by

G.E.Millard, D.J.Rees
and
H. Whitfield

EMAS Report 3 Reprinted 1977

James Clerk Maxwell Building
The King's Buildings
Edinburgh EHS 3J2

031-667 1081

This papor has been accepted for publication
in the British Computer Society publication The
Computer Journal

Summary

The user image of the Edinburgh Multi-Access System (EMAS) is
provided by a subsystem. The structure of the standard Eubsystem and its
relationship to the supervisor and diector is described. A description
is given of conventions introduced by the subsystem for the organisation

of files and the standard facilities with which a user is provided.

The Standard EMAS Subsystem

G.E. Millard*, D.J. Reest and H. Whitfields

#Edinburgh Regional Computing Centre, University of Edinburgh, Scotland.
tDepartment of Computer Science, University of Edinburgh, Scotland.

4Department of Computer Science, University of Edinburgh, Scotland,
Present address: Mathematisch Instituut, Rijksuniversiteit te

Groningen, Postbus 800, Groningen, The Netherlands.

.

Introduction

The Edinburgh Multi-Access System {EMAS) is & virtual memory system
providing a general time-sharing service on an ICL 4-75 computer. Each
foreground or background user runs programs in an independent virtual
memory and each such user process has & share of the resources of the
system (core, CPU, etc.). A central non-paged supervisor provides
virtual memory support, basic device driving and scheduling. Non-time-
critical supervisory functions are performed by a director, which
occupies part of the virtual memory belonging to each user process.

Director also provides basic file system and console communication

services for each process.

When a user process is created director loads-and-enters a standard control
package, referred to as the subsystem. The subsystem is responsible
for the management of the virtual memory, with the exception of ﬁhat part
containing director, and for providing a suitable interface to users, all
privileged cperations being performed by calls on director. The subsystem

introduces conventions for thne orgenisation of files, in perticular program
files. These com{entiona facilitate exploitation of the virtual mesory

organisation. A simple relationship between a user's commands and the

rqutines vhich they activate enable him to easily adapt his interface with

the system.

An overview of the system and a description of the non-paged
supervisor is presented in a paper by Whitfield and Wignt (1973), and

a description of director is given in a paper by Rees (197TL).

This paper describes the standard subsystem which provides a
comprehensive set of facilities for users in both fnreground, i.e.
interactive, and background mode, The commend processor interprets
each command as a call on an external routine with that name. The

- standard subsystem cormands are implemented as & collection of external
routines, to which a user may easily add. The mapping between routines
~ and commands is such that routines written by a user may themselves

invoke subsystem commands simply by calling the apprropriate routines.

A general vrinciple in the design of CMAS has been that no decision
should be made 2t a more 'central' or privileged position then 1is
strictly necessary. Thus while the maintenance of page and segment
tables is performed by supervisor, director is responsible for checking
access permission to files and updating a_user's file index. The
subsysten ralies such decisions as how and vhere files are mapped onto
the user's virtuzl memory and is responsible for the internal

organisation of files.

The director inplements a File System, in which each file is an
unstructured sequence of bytes with a length which is a multiple of
a page (4096 bytes). Before using a file it must be rapped onto the
user's virtual memory by a call on director. Access to the file
theﬁ only requires rc¢fereaces to virtual memory eddresses, the
peripheral transfers required being initiated by the paging mechanisnm
in supervisor. All active areas of a user's virtual memory must be
parts of files. Thus, for examzple, & user program's stack is a

temporary file with cheracteristics such as length and access permission.

-3 -

Explicit input/output requests for interective devices ere
handled by director. Other slow peripherals, e.g. card
readers and .line printers, are handled by & system process
called demons. Information is passed between user processes and

demons by transferring the ownership of files.

Figure 1 illustrates the conceptual organisation of EMAS
processes, In practice the code of direcior and the standard

subsystem is shared by all users.

Subsystem Structure

The principal cogponents of the subsystem are shown in figure 2.
Vhen a user logs onto the system or a background j;b is initieted on
his behalf a process is created containing only director, which is
entered. Director extracts from the user's file index the identifier

of the basefile, which is a program file containing the principal

components of the subsystem, This is loeded and control is transferreg,

in non-privileged mode, to the Besic Command Interpreter (BCI).

Commands are normelly typed in by a user at his corsole and
interpreted by the BCI. Every command hes the same basic format,
the command name optionally followed, in brackets, by a string of
characters, The command neme is essumed to be the name of a routine,
and the Program Loader is called to search through the current library
structure in an ettempt to locate the name of a progrem file conteining
that routine. If such a file exists it is loaded, the routine is
entered and the string of characteras is pessed as a parameter. If
the file is the basefile ther the user hes typed e standerd subsysten

command and the relevant routine is entered directly. This

User User Demons

process 1 seere process n process
| | 1 i —
|
i I i | |
! | l |
I I
User ! 1 User | | Demons |
| programs | | programs code

]| Subsystem || || Subsystem | !
! b :
|
l |
I| Director || | Director | | l Director |
| ' '
- ! !
Supervisor

Fig. 1 Conceptual organisation of EMAS processes.

WizIsAsGNs ayy Jo susuodwod jedioung 2 Bid

age)1a1u) .
10193:1Q
{1udwsbrucwe Asowdw
|enisia put Sasiads 3|1 diseq)
d04d
{ssad0e pue |0J3U0D ‘uoILLIP 314} 43pe0)|
d2a3 we501g
— e s e e -
| saunnol] San1ve} wasAsqns 13|puey
“ Aragqiy “ piepurys buipiaosd sounnoy Aduabunuod
S T
!
l— ! -
—_—— !
i] (1011000 uonnaxa pue
" $aupINos JO swe.iboud $,4950 " —— — —] toneaidiau pucwwod yneg/punoibalog)
' i 198

SPUBWIWOD $,35M)
$1189 UIIN0Y 4=

128 Aq paunwinap swesboid sasn
bc Hod ﬁc

B e

(o H |

-} -

generalised mechanism enebles a user to add o new command simply by

compiling & routine and adding it to his library index.

Two packages play a major role in the functioning of the
subsystem. The File Directory Package (FDP) uses the primitive file
facilities of director to provide a convenient basic set of file
facilities to the rest of the subsystem, and manages the virtual
memory. The Environment Definition and Control Package (EDCP)
provides an interface for the logical file handling requirements. of
programs and compilers, which it provides using FDP and other primitive

facilities of director.

A contingency handler, essentially part of BCI, uses the signal
facility in director to control the action of the subsystem following

asynchronous or internally generated interrupts.

The components of the subsystem are discussed in more detail

in the following sections.

The File System Interface

Direct;)r maintains a file index for each user of the system and
provides an"orthogonal set of primitive file ogerations. These include
file creation, extension and destruction, the setting of access permissions
and the provision of information about files. Director is not concerned
with the content of a file but only its external characteristics, i.e.
its neme, physical size (any multiple of a 4096 byte page up to 1024
pages) and access permission (which may be 'read only' or 'read and
write', in each case 'shered' or tunshared'). A user may only alter
the external characteristics of a file ovned by himself or obiain

information about another user's file if he has been given specific

access by that user.

Before a user can access & file it must be connected to the user's

process, i.e., a mapping must be established between the file itself
and the'user's virtual memory. A file may be connected in more than
one virtual memory, provided that appropriate shared sccess is
vrernitted and that tuc mode of connection is the same in each case.
Director provides & service which will attempt to connect & file at

a point in the virtual memory determined by the subsystem.

Management of space within the virtual memory is a subsystem
function and is concentrated in the File Directory Package. FDP
meintains a map of the virtual memory and retains information
concerning the size in pages and mode of access for all files which
are connected to the user's virtual memory. This avoids the
overhead in calling director whenever information is required
concerning a currently connected file. All requests to director
concerning files are routed through FDP which presents an interface to
the rest of the subsystem which is more convenient to use than that
provided by director. FDP also provides facilities to support the

program loader and to set up and maintain a library index structure,

Internal File Organisation

The subsystem provides for the handling of object progranm files
and library index files, which are discussed later, and for two types

of data file, oriented towards character and record manipulation.

Character files contain an unstructured sequence of characters
with infixed control characters, principally 'newline' and 'newpage',
and are normally read or generated as a character stream. Source

programs are normally held in character files. Record files may

-6 -

contain character or binary information which is written and read

using the sequential and direct access facilities provided either through
library routines (as with the local language IMP (Stephens, 1974))or as part
of the language (as is the case with FORTRAN). It is also possible

to map a user-defined dat.a structure directly onto a file. This is
particularly useful for textual manipulation in the case of cheracter

files.

¢ .

As has been mentioned earlier any information regarding the
content of a file is the responsibility of the subsystem and is held
within the file. Except in the case of object files, which are
discussed below, the first four words of each file have a standard

content as follows:

word O current length of information in the file
word 1 start of information relative to the start of the file
word 2 current created length of the file

vord 3 file type

In the case of record files further words are reserved for the
record size, record format and maximum permitted file length.. Fixed
length records are recorded contiguously and locating a direct access
record involves only a simple virtual memory address calculation.
Va#iable length records are separated by forward and backward length

indicators, thus enabling efficient implementation of back-space

operations. . ‘

Program Files and the Propram Leader

A design objective of EMAS was that the code of programs should

be protected from accidental or deliberate overwriting and that code

-70-

should be shared between users whenever possible, with consequent

savings of core, drum and disc space.

The standard program file format is shown in figure 3. Program
files are shareable and while being executed are normally connected
in virtual memory ir read or read-sharcd mode. The first four words
constitute a 'file header'. This provides the length of the file
and the start of the Code area, the GLAP (General Linkage Area Pattern)
and Linkage date area, each relative to the start of the file. The
code area must be invariant, and usually comprises executable code,

constants and diagnostic tables,

The GLAP contains the information needed for linking this program
file to any file it may require, including other program files. When
a program is loaded the actual program file is left unaltered and
the necessary changes to establish external linkage are made to a .
copy of the GLAP, referred to as the GLA (General Linkage Area). This
approach was suggested in a paper by Arden, Galler, O'Brien and
Westervelt (1966). Any initialised data to be used by the program
may be set up in the GLAP. A particular progrem file mey contain
several sep'arately compiled routines, each of vhich will have a
block of c?.de and a block of GLAP within the appropriate arees of the
file.

Information required by the Program Loader is provided in linked
lists, the heads of vwhich are stored at the front of the linkage

data area.

fite header

-code
area

GLAP

linkage
data
area

Fig. 3 Program file format

code block

“I

code block

code block

GIAP block

GLAP block

List 1 is a list of entry points at vhich the program file may
be entered. These may be a main program or externally accessible
routines, The list iteself is contained in the linkage data area.

Each item in the list has the format shown in figure k(a).

List 2 is a list of external references to be satisfied by the
Loader before the progrem file is entered. The list items are set
up in the GLAP by the compiler which creates the file, with the
format shown in figure 4(b). The loader replaces the three zero-
£illed words with the virtual memory addresses of the start of the code
block, the start of the GLA block and the entry point address

respectively of the program file satisfyving the reference.

List 3 is a list of external references to be satisfied dynamicelly
(i.e. at the time that an external routine is called). The compilers
set up items in this list in the same way as for list 2, but the
Loader action is different. The three zero words are filled with
the addresses of the list item itself, an environment descriptor for
the Loader (i.e. a register set and the program counter), and the entry
point add.réss of a dynamic load sequence. If the program uses this
infomtion' to attempt to enter the external routine it will enter

the dynami¢ lond sequence,
’

A fourth list of data entry points defines initialized data areas
in the GLAP which may be referenced by other routines (e.g. FORTRAN
common ereas), and a £ifth list defines external data references to

be satisfied by the Loeder before the program file is entered.

link

code block address

GLAP block address

entry point address

entry point
name

{a) Entry point list item

link

0

o

0

external reference
name

relative tc start of linkage data area

relative to start of code area

" relative to start of GLAP

relative to start of code area

relative to start of GLAP

) .
{b) External reference list item

" Fig. 4

Run-Tirme Form

When the loading process is complete the code and GLA areas of
a progran are in different segments of the virtual memory. The code
is in one or more segments vhich are connected in read mode, vwhile the
GLA is in a write urshared file. The sume physical copy of the code
may be in use by several other users who have the program loaded at
the same time, though not necessarily at the same virtual memory
address. It can be seen that the shareable part of a program file
must not contain any 'absolute' virtual memory addresses, With
the exception of the external references satisfied by the Loader
all virtual memory addresses have to be established by the program

at run-time,

Calling Sequence

Before entr& to an external routine, the thrce addresses, code
block, GLA block and entry point, inserted into the external
reference item for the called routine by the Loader, are loaded
into three {consecutive) registers. One of the general purpose
registers contains the address of the start of the free space on a
common staék vhich all programs are constrained to use for the
entry sequence to external routines. The calling routine may copy its
registers on to the stack in the 16 words immediately ahead of the
stack free space pointer. These are restored on return by the called
routine, Any parameters to the call are set up beyond the register
save area according to standard conventions. Control is then
transferred to the entry point address with the return address in
another register. In practice this sequence usually requires only

three hardware instructions. In the case of & routine which is to

-10 -

be loaded dynamically this entry sequence, together with the Loader

action defined above, results in entry to the dynamic load sequence.

This sequence finds the program file containing the routine (if it exists),
‘loads it, and cverwrites the relevant three words in the GLA of tie
calling routine with the addresses of the code block, the GLA block

and the entry point of the called routine. Conticl is transferred

to the entry point. The over-writing of the three words enables

the program to use the same code sequence to jump directly to the

external routine on any subsequent call.

The actual sequence used in the standard EMAS external routine

entry is given in Appendix 1.

Librery Index Structure

A livrary index, which is a one page file, contains entry names
and their associated file names, and also a list of pointers to
other library indices. The library Tacilities allow a user to
create library indices referencing his own files and link them,
together with other users' library indices, i~ any chosen structure

(figure 5);

The purpose oi the library index structure is to enable the
Program Loader to associate any external reference with a particular
fidle. Thereafter further information must be obtained from the file
itself. Each reference is satisfied, if possible, from the index
at the heed of the structure, or, failing that, from the list of
libraries apprended to that index in the order ir which they were
appendcd, and so on recufsively. In the example the order of
attempting to satisfy e reference would te Lid 1, Lib 11, Lidb 111,

Liv 12,

Lib 11

Lib1 File and
entry
names
Lib 11
Lib 12

File and
entry
names
Lib111
Lib 111 File and
entry
names

Fig. 5 Typical library index structure

Lib 12

File and
entry
names

-11 -~

The present subsystem uses & dummy index as the head of its
structure and appends to it the current user-nominated library
structure and MANAGR.BASELIB. MANAGR is the user name of the system
manager, who owns the principal files shared by all users. MANAGR.BASELIB
is 8 library index containing the entries of MANAGR.BASEFILE and to which
other generally available libraries, for example those conteining
standard mathematical subroﬁtines, are appended, MANAGR .BASEFILE is
the program file containing most of the subsystem components, including
_the routines supéorting the commands provided by the subsystem., This
structure enables the user to redefine subsystem commands if he
wishes by including rcutines with the appropriate names in his library
index, The user is free to nominate separate library structures

for each problem he may be working on.

The routines required for a particular program do not need to

be included in the same program file as the main program block, but
may be held in separate files provided that they are included in the
current library index structure when the program is run., This is a
great convenience during program development for the interactive user
who gains from the ability to recompile small sections of his program.
A command is provided for linking such files to form one program file
when d;velépment is complete. This could result in improved
performance because of the reduction in active core pages which may

be achieved.

- 12 -
Environment Definition

When & program is run it is necessary that a mapping is defined
between logical files used by the program and actual files, whether
these é.re permenent files, temporary files to be transmitted later to
slow devices or an interactive device. Programs run in foreground mode
‘have certain logical files mapped by default onto the initiating terminal,
These may be over-ridden and others defined by a subsystem command., Such
mappings are retained for the rest of the terminal session or until they

are deleted or redefined.

Mappings may also be established through job control language for a
job submitted in background mode or, as with all other suusystem commsnds,
by a call on the corresponding external routine from within a user's

program,

The Environment Definition and Control Package maintains tables defining
the relationship between logical and physical files. These tables record
relevant characteristics, e.g. the record size for a direct access file, or
the maximum permitted file size, and, when the file is open, relevant virtual

mexory addresses.

EDCP also includes a set of interfacing routines which ensure that
program: and compilers need not be avare of the device with which a file

is associated, or the physical representation of data within a file.
Logical files may be mapped onto

(a) files, either permanent or temporary, neld in the file
system.

(b) magnetic tape

(c) one or more terminals logged into the process

(d) other slow periphersals. .

-13 =~

The handling of files in the file system has already been discussed.

The system supports a set of magnetic tape primitives through
vhich the subsystem provides facilities, in background mode only, for
sequential access to large data files (in excess of 1 megabyte) and
for program and data interchange. The use of magnetic tape for archive

and backup storage is fully discussed in a paper by Wight (1974).

The user's terminal may be used to interact with & program.. A
facility is provided by the director which enables programs to nominate
text to be issued as a prompt when input is required. If the user
anticipates data requirements by 'typing ahead' the prompt is suppressed.
Any terminal logging into an active process will only be recognised by

the subsystem if the initiating user is prepared to map a logical file

onto it.

Slow devices other tha.r; interactive terminals, e,g. card readers
and line-printeré, ar.e handled by the special system process, demons,
which is described in a paper by Hayes (1974). Input files are submitted
as batch jobs which are handled by demons. HNew files are created in the
file system and records of these are entered in the relevant users' file
indices. Output files are generated as temporary files in the file
system, At the end of the curreut foreground commend, or batch job,
the file is transfered to demons with a request to output it using the

appropriate mode and device type.

Contingency Handling

A mechanism is provided by director whereby a user process mey recover
from program failures or other contingencies. The user program may specify

an area of his virtual memory ss a 'save area' and nominate an environment,

- 14 ~

i.e. & set of register values and a program address. If a
contingency occurs director stores the contingency type, program address
and register values at the time of failure in the 'save area' and transfers

contro) to tue nominated environment,

If a number of contingency traps are nominated, director stacks the
information, For program failures the most recently stacked definition
is used, but for asynchreonous interrupts the oldest stacked definition,
or 'outer level', is used., Facilities are also available for unstacking
definitions, for inducing an artificial contingency at either the current
or outer level of the stacked definitions, and for resuning the process
with a nominated environment and program address (usually that at which

the last interrupt occurred).

.The BCI establishes the outer level contingency trap. As well as
trapping all asynchronous interrupts this also acts as a 'backstop'
to the trap which is set on each program entry. Program generated
interrupts and forced contingencies unstack the contingency trap which is

activated, while asynchronous interrupts do not.

In the case of program errors, such as overflow, address error, etc.,
control is normaily transferred directly to a diagnostic routine which

i
has sufficient information to provide source language diagnosties.
An esynchronous interrupt may be caused by the following:-

{(a) message from the machine operator.

(b) local cpu time limit exceeded.

{¢) user console interrupt.

(d) hardware malfunction affecting this process (e.g. disc

transfer failure).

- 15 ~

Following one of these interrupts control is transferred to the BCI.

If a semaphcre is set indicating that a critical part of the subsystem

is active (e.g. modifying tables describing the content of the virtual
memory) then that activity is allowed to continue until the semaphore

is cleared. Action is then taken appropriate to the interrupt. 1In

the case of (a) t;he subsystem normally sends the message to the user's
console and then resumes from the point of interrupvion. Following

(b) a contingency is forced at the .'current level' to provide disgnostics for

the user,

When & user interrupts from his terminal he normally types a single
character identifier to request specific subsystem actioa. This may be
& request to abort the current command, with or without diagnostics, to
_monitor the progress of the current command, or to logout the user's terminal
and allow execution of the current command to continue in background mode.
Multi-character interrupt identifiers are noted for subsequent inspection
by & user program. This is the means by which terminals iogging in to an

active process can make their presence known.

User Facilities

4 summary of the most frequently used subsystem commands is given in

Appendix 2.

The principal compilers available are for IMP (Stephens, 197L4) and
FORTRAN ‘IV (Millard, 1971). In each case great emphasis has been placed
on the provision of good diagnostics, part_i.culerly at run-time, These
include unassigned variable checks, array bound checks and, after an error
has been detected, a traceback through each currently active routine. This
traceback provides, at each st:age, line sequence numbers and & list of

actual source identifiers with their current velues. A program may contain

- 16 -

routines written in either language, subject to the use of a common
subset of parameter types in cross-language calls, A possibly unique
feature of the implementation is that the routine traceback is fully
effective fcr mixed-language programs. For developed programs the
diagnostic facilities may be inhibited, partially or totally, by &
command, PARM, specifying compilation options. These options will

apply to all subsequent compilations in the current terminal session

or until a further call bn PARM. The compilers are invoked by a command

of the form
IMP (source file name, object file name, listing file name).

The listing file name may be omitted, in which case a standard
file, 'SSALIST', is used, or it could be'.LP', in which case a temporary
file is created and passed to demons for printing when compilation is
complete. In each case the terminal is given either a 'compilation

successful' message or a summary of program faults.

A powerful context editor is available. The command has the form

EDIT(filename)

if a new file is to be created or an old one updated, or the form

EDIT(old filename, new filename)
if the original;file is to be retaincd. The editor includes facilities
for issuing repetitive cormands, inserting the content of one file within
another, and moving text around within a file. Since the file being
——edited is wholly conteined within the virtual memory, moving the 'current
pointer' backwards, to the top, or to the bottom of a file involve trivial

operations.

- 17 -

Execution of a user program may be achieved by the commands:

RUN (filename)

vhere filename refers to an object program file containing & main program
block. It is not necessary that this file contains all the routines
required to run the program provided they are entered in the current
library index structure. Use of the dynamic linkege feature considerably
reduces the overhead in loading large programs in which only a part

is active on any single run, e.g. comprehensive statistical packages

or programs under development. As discussed earlier it is not essential
that a user program has a main program block, &s it may be entered at any

external routine simply by typing that routine name as a command,

A user ray create a file containing a sequence of foreground commands
and ask that this be obeyed either immediately or by submitting it as a

background” job for later execution.

The foreground facilities are complemented by a batch processing
provision. The job control language definition vhich has been implemented
is a subset of IBM 360/370 0S job control language which has been supported
by the Regional Computing Centre on each of its generally aveilable batch
operating systems since 1969, Facilities are provided for IMP and FORTRAN
compilations, r}.t.nning programs, editing and creating files containing
information submitted on cards or paper tape in character or binary form.
Jobs are submitted either on cards or paper tape or by preparing a file using
the interactive editor and giving a command to inform the system process

demons, which maintains a list of al) batch jobs outstanding.

Any batch job which has a need to create or extend any permanent
files for a user must be run in that user's process. It must therefore
be run &t a time when the user is not logged on at a terminal, and in

practice such jobs are usually run overnignt. The user may request

.

- 18 -

that & job is run as soon as possible, implying that he is prepared for
the inconvenience of not being able to log on to his process while

his job is being executed.

Alternatively, jobs which require no access to permanent files
other than generally permitted program files or subroutine libraries
are run in special 'batch' processes of which at least one is normally

run in parallel with daytime intersctive use of the system,

Standards for parameter rassing end the lavout of data objects

As mentioned earlier < particular feature of the EMAS subsystem is
the ability to cross call between routines generated by different
language compilers and to obtain mixed language diagnosties. This can

be done without formality and without intermediate couversion routines.

To do this efficiently it is necessary to have standards for the
layout of data objects and particularly for arrays. The FORTRAN layout
for arrays was chosen because FORTRAN specifies how they are to be stored
and IMP does not. It is undesirable for language specifications to include
layout conventions as this restricts the system programmer's choice - Algol -
60, for example, makes no such specificution and could therefore be included
in the above scheme. A language specifying storage in a way contiicting
with FORTRAN would make it necessary to pass accessing routines or

descriptors as well as the data,

Development of new subsystems

As has been mentioned a user's file index contains the identifier
of the basefile, ie. the program file which is loaded by the director

vhen & process is started. This file is usually MANAGR.BASFFILE, which

- 19 -

is & program file permitted to all users in read-shared mode and which contains
most of the code of the standard subsystem (some components, e.g. compilers,

are held in separate files which are loaded when required).

The subsystem includes a command which sends a message to director
noninating & new basefile identifier to be entered into the user's file
index. - Thus it is possible, by setting a new basefile, logging off, and
logging in again, to test & new subsystem without disturbing normal systen
use. Substituting a new, proven, subsystem for all users is done by
replacing MANAGR.BASEFILE with the new version., This must be done by
the system manager when no other users are on the system (MANAGR runs on

a private basefile).

The components of the subsystem which are in separate files, i.e. not
in MANAGR.BASEFILE, are tested simply by creating new files, inserting
them in the developer's librery index and issuing the relevant commands

vhich will use the new components in preference to the 'standard' ones

belonging to MANAGR,

The subsystem is written entirely in IMP, in common with the rest
of the EMAS software. With the benefit of a high level language with
excellent dia@o"stics it is possible to identify an error in the subsystem,

correct it ana try it egaiu in the space of a few minutes.

Acknowledgement

The authors acknowledge the part played by P.D. Stephens in the

development of subsystem standards,

Appendix 1

Ihe use of registers in the EMAS standard subsystem external

routine entry sequence is as follows:-

RO - R3 Scratch registers - not saved
RL - Rl4 Environnent registers - seved and restored

R15 Return address

The following have special uses:-
R11 Stack free space pointer
R12 Code base register
R13 GLA base register

R1l Entry Point Address register

The following are typical call and return sequences:-—

‘CALLING ROUTINE
Store parameters (if any)
beyund the save area

STM h4,14,16(11) Store Rh-R1L in the save area on the stack

LM 12,1k ,EPREF(13)Load code, GLA and Entry Point addresses of the
called routine from an entry point reference in the
GLA of the calling program.

RALR 15,1& Enter the called routine leaving the retan address

in R15.

N
r

STATE OF THE STACK AFTER THE ABOVE CALLING SEQUTINCE

Save area Parameters (if any)

2 [T1T]1

,0,1,2,3

&

R11 16(11) 64(11)

CALLED ROUTINE

It is usual to save the ST 15,60(11)
return address on the stack LR local base, 11
Restore R4-R1lL and pick up IM L4,15,16(local base)

the return address. This
ensures thet R1l has been
reset to its eatry value if
the called routine hes
changed it (vhich it zene-

rally has).

‘Return to the calling routine BR 15

€
It should be observed that with an IBM 360 type order code the
loading of the code base register is not strictly necessary,as
the celled routine can set its own code base using a BALR 12,0
instruction, and subtracting some fixed offset. lowever, the
'present sequence is more general and more efficient. The
restoring df the registers from the save area could teke place
on return to the celling routire with a LM k4,14,16(11) inst:uction,
but the present scheme is more efficient because the celled
routine usually stores the return address in memory to make
R15 available for other uses and the present scheme reloads
R15 at negligible cost. Because we have chosen not to save
RO-R3 and R15 the corresponding positions in the save ares can
be used for other purposes (e.g. & dynamic or stutic enviromment
chain in an ALGOL type lapguege). However it is obvious thet this

is by no meens nccc:sary’end & more generel scheme could use the

vhole seve ares.

Appendix 2

Principal E¥MAS Communds

ACCEPT Accept the transfer of ownership of a file OFFERed by

ancther owner, possibly renaming it.

ALERT List information on the current state of the system.
APPENDLIB Add a library to the current library index structure.
ARCHIVE Nominate file(s) to be moved from on-line disc storage

to magnetic tape.

CHERISH Mark file(s) for which daily back-up copies are required.
A copy is made only if the file has been vritten to in
the preceeding twenty four hours.

CLEAR Clear selectively or totally the file definitions
esteblished by DEFINE.

COPYFILE Make a copy of a file. If the file being copied does
not belong to the user then he must have been granted

access permission to it.

CPULIMIT Modify the cpu time allowed for each individual comzard.
DDLIST List the current file definitions set up by DEFINE.
DEFINE Set uﬁ a relationship between a logical data channel number

and a file. The filename mey take the form of a mnemonic to
indicate particular device destinaticns. e.g. .LP implies a
temporary file which is to be sent to a line printer when it

is closed.

“he maximum permitted size of a file and its internal format
may be specified, but for the majority of users the defaults

are adequate.

DELETEJOB
DELIVER

DESTROY
DETACH

"EDIT
FILEANAL

FINDFILE

FINDJOB

FLIST

FORTE

HAZARD

IMp

IRSERTFILE

LINK

LIST

OBEYFILE

Remove & job from the queue of DETACHed jobs.

Note new delivery information to be added to the top

of all printed output.

Destroy file(s) owned by the current user.

Subtmit & job to be run ia background mode.

A context editor.

Provide t..e status and type of a file, together with
information relevant to its type. For example, a list

of entries and references is produced for an object

file.

Used to obtain informetion about files held in archive
storage.

Enquire the status of a job vﬁich has been DETACHed.
Lists the files belonging to the user and resident in the
on-line file system.

Call the FORTRAN compiler.

Specifies file(s) for which back-up is no longer required.
Provide general or specific assistance in the use of
subsysten commands.

Call the IMP compiler.

Record the name of an object file and the entries associated

with it in the current library index.

Consolidate a numter of object program files.

A character or data file may be listed on the user's
console or any suitable output device, either remote or
central.

Provide information on the user's consumption of
resources.

Execute a sequence of foreground commands contained in e

file.

-3-

OFFER Offer a file for transfer to another user, who musSt
ACCEPT it to complete the transfer.

PARM Nominate compiler options.

PASSWORD Change the foreground and/or background passwords.

PERMITFILE Change the access permission of a file.

REMOVELIB Delete a library reference from the current library
index structure.

RESTORE Request that a file be restored from archive storage

to the on-line file systenm.

RUN Run a compiled program.
STOP The process is stopped and the console disconnected.
USERLIB Nominate a file to be used as the head of the current

library index structure. If the nominated file does not
exist a new file is created.

USERS Enquire how many users are on the system.

REFERENCES

Arden, B.W., CGaller, B.A., O'Brien, T.C. and Westervelt, F.H. (1966).
Program and Addressing Structure in a Time-Sharing Environment.

JACM, Vol. 13, pp 1-16.

Heyes, S.T. (19T4). The EMAS Demons, The Computer Journal, Vol. -,

No, -,

Millard, G.E. (1971). The Edinburgh FORTRAN compiler and its
environment.

Proc. SEAS XVI, Pisa, pp 318-327.

Rees, D.J. (1974). Tae EMAS Director, The Computer Journal,

Vol. -, No. ~.

Stephens, P.D. (1974). The IMP langauge and compiler.

The Computer Journal, Vol. -, No. -.

Whitfield, H. and Wight, A.S. (1973). The Edinburgh Multi-Access

System. The Computer Journal, Vol.16.. No. L, pp331-3L6,

Wight, A.S. (1974). The EMAS Archiving Progran.

The Computer Journal, Vol. -, No. =-.

