.= . Edinburgh

=+ Regional

5% Computing
s+ Centre

The IMP80 Language

A description of the programming language IMP80

First Edition
December 1982



EDINBURGH REGIONAL COMPUTING CENTRE

The IMP80 Language

A reference manual for the programming language IMP80,
with notes on the two main implementations, IMP77 and EMAS IMP80

by
Felicity Stephens

John Murison

(© 1982 Edinburgh Regional Computing Centre



CONTENTS

PREFACE : ‘ 111

HISTORICAL INTRODUCTION: EVOLUTION AND PHILOSOPHY OF IMP iv
Evolution
Philosophy and Style

Recent Developments

CHAPTER 1: ELEMENTS OF THE LANGUAGE 1
1.1 Character set 1
1.2 Statement components 3
Identifiers
Constants
Special’ symbols
Keywords

1.3 Statements 5
Continuation

l.4 Miscellaneous statements 7
Comments

include statement
list and end of list

CHAPTER 2: TYPES, VARIABLES, CONSTANTS AND EXPRESSIONS 9
2.1 Types 9
2.2 Variables 10

Arithmetic variables

String variables

Record variables

Reference variables

own, constant and external variables

2.3 Constants 19
Decimal constants
Base constants
Character constants
String constants
Named constants

2.4 Operators and expressions 21
Arithmetic operators
Arithmetic expressions
Logical operators and expressions
String operators and expressions
Record operators

CHAPTER 3: BLOCKS AND PROCEDURES 29
3.1 Block structure and storage allocation 29
3.2 Events 32
3.3 Procedures 34

Parameters
Routiunes
Functions
Maps
3.4 External linkage 41
External files
alias

IMP80 Language



Contents

CHAPTER 4: EXECUTABLE STATEMENTS 44
4.1 Conditions 44
4.2 Instructions 46

Conditional instructions
Labels and jumps

Switches

stop

monitor
4.3 start/finish 49
4.4 cycle/repeat 50

Conditional repetition
Simple forms of loop
exit and continue

CHAPTER 5: INPUT/OUTPUT FACILITIES 54

5.1 Character I/0 54
Input of character data
Input of numeric data
OQutput of character data
Output of numeric Data
Closing streams

5.2 Binary I/0 59
CHAPTER 6: STORE MAPPING 60
6.1 Reference variables and user-written mapping functions 60
Examples
6.2 ADDR and the standard mapping functions 63
RECORD
CHAPTER 7: STANDARD PROCEDURES 65

Standard Procedures
EMAS IMP80-specific standard procedures
IMP77-specific standard procedures

APPENDIX A: IMP80 SYNTAX Al
Notes

APPENDIX B: IMPLEMENTATION~SPECIFIC INFORMATION Bl

B.1 EMAS IMP80 Bl

Compile-time errors
Event numbers
Differences from IMP80

B.2 IMP77 Bl4
Compile-time errors
Event numbers
Differences from IMP80

INDEX

ii o IMP80 Language



PREFACE

This manual describes the programming language IMP80, which is a common subset of several
extant versions of IMP. The reason for the existence of these different versions is
explained in the "Historical Introduction" (below).

It is intended that for the foreseeable future implementations of IMP will foliow IMP80 as
far as possible; however, this does not preclude implementation dependent extensions.

Separate sections of Appendix B are provided for each major implementation of IMP8O0.

These detail departures from or extensions to IMP80, and include relcvant implementation
dependent information. Such implementation dependent informationm is also included
occasicnaily within the main body of the manual, where it was felt that to have excluded
it would have been inconvenient or even misleading. Such material is clearly flagged as
not describing IMP80 itself, and is always repeated in the relevant section(s) of Appendix
B.

There are two implementations of IMP80 at the time of writing: EMAS IMP80, implemented on
the ICL 2900 range by Peter Stephens, ERCC; and IMP?7, implemented on several different
machines by Peter Robertson, Lattice Logic Ltd., Edinburgh.

This is primarily a reference manual, and it is hoped that the contents list and index are
detailed enough to enable it to be used as such. In addition, however, it is felt that
guidance on the use of language features should be given, as their utility might not be
apparent from a statement of their syntax and semantics alone. The programming examples
included for illustrative purposes are also intended to indicate good programming
practice.

This manual specifies what constitutes a legal IMP80 program, and in so doing describes
various constructions or usages as "illegal" or "invalid", or simply "wrong". This does
not imply that all implementations would fault such constructions or usages. For example,
optimising compilers may omit to check that a variable whose value is used has in fact
been assigned a value; nonetheless, if an attempt is made to use an unassigned variable
then the program is wrong.

When an error is detected in an executing IMPSVU program, an event is signalled. IMP8U
provides a mechanism to enable the programmer to specify, optiomally, what actiomns are to
be taken on the signalling of any event. The event machanism is described in Chapter 3.

A Backus-Naur Form (simplified) specification of the complete syntax of IMP80 is given in
Appendix A. An explanation of the conventions used in the syntax definition is given at
the end of Appendix A.

This manual was written by Felicity Stephens and John Murison, apart from the Historical
Introduction by Peter Stephems. Much of the text is based on earlier documents, in
particular: "The Edinburgh IMP Language Manual" (second edition) edited by Roderick
McLeod, ERCC (1974), and "The IMP-77 Language" (third edition) by Peter Robertson,
Department of Computer Science, University of Edinburgh (1980).

Please report any suspected errors or omissions in this manual to the ERCC Advisory
Service, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh EH9
3JZ.

John M. Murison
Editor
December 1982

IMP80 Language iii



HISTORICAL INTRODUCTION

EVOLUTION AND PHILOSOPHY OF IMP

Evolution

The IMP launguage evolved from Atlas Autocode, which itself is a direct descendant of
Algol 60. Although Algol 60 had only moderate success as a programming language - it was
hardly used in the United States — no other language before or since has achieved more
than a fraction of its influence on programming language design.

At the same time as Algol was being devised and revised, in Manchester another event
was taking place which was also to have wide influence. The University was building its
fourth machine, the Atlas, which - true to tradition - was at the very limit of the
technology of the time. This machine was to introduce paging to the world; the idea being
that memory management, provided by the operating system with hardware support, was
cheaper and more efficient than allowing each programmer to overlay or shoehorn his
program into the space available. After a slow start, this idea was to change the
appearance of computing. Since Atlas was a revolutionary machine, Manchester had to write
their own software, as they had done for the Manchester Mark 1l and Mercury. This led them
to consider the attractions and disadvantages of Algol.

Algol’s principal attraction is its block and stack structure: by collecting space
together on a stack and re-using it for successive procedure calls, an Algol program
causes less paging than the same program written in (say) Fortran.

The disadvantages of Algol are the lack of standard input/output and the difficulties
that some features of the language present to the compiler writer. The tragedy of Algol
was that so little was gained from the features which presented most of the problems.
Almost nothing of real power was gained either from call by substitution or failure to
specify formal proccedures adequately, and little was gained by the enormous generality of
the for statements. Yet the problems these areas posed caused all early Algul compilers
to produce cowmparatively low quality object code.

All this and more was obvious to the Manchester team and although Algoul was to be
implemented on Atlas, the prime language was a new one - Atlas Autocode. This was a
simplified Algol with changes to the block, loop and procedure structures to remove the
worst problem areas. It contrived to deliver YU% of the power of Algol to the programmer
while only requiring 25% as much effort from the compiler writer. (Further details can be
obtained from The Computer Journal, Vol 8, pp 303-310 (1565/66},) In retrospect, the name

was unfortunate since autocodes were normally low level languages, and "Atlas" indicated
quite wrongly a degree of machine dependence.

Edinburgh University started its computing with a data link to the Manchester Atlas,
and this happy accident began the long association between the University and the
language. When Glasgow and later Edinburgh obtained KDFY computers it was necessary to
write a compiler for Atlas Autocode; this was carried out in a short time by Mr (mow
Professor) Harry Whitfield and his associates. This compiler was in advance of its time
in that it was written entirely in Atlas Autocode and developed on Atlas. It was
transferred to KDF9 by the elegant technique of self-compilation. The compiler thus
produced compared exceedingly well with the manufacturer’s Algol compiler, both in
compilation time and in object code efficiency. This project also confirmed that Atlas
Autocode was free or implementation trouble spots and very suitable for large scale system
programming.

In 1966 there began a large scale project with a joint University/Manufacturer team to
write a time-sharing operating system for the ICL 4-75 computer. The project was based in
Edinburgh and the final system was required to support Atlas Autocode, among other
languages. The recent success of the Atlas Autocode compiler project led to the decision
to implement tne time-sharing system (later called EMAS) in a high level language called
IMP. 1IMP was to be a superset of Atlas Autocode, containing additional features for
system programming. Lt was at this point that almost all the main language changes were
made and the distinctive philosophy of IMP originated.

Philosophy and Style

IMP was to be primarily a system programming language; in 1966 that was perceived to
require:

* effieient objeect code. System programs are liable to be executed millioms of
times. Thus features that could not be implemented efficiently should be omitted.

iv IMP8U Language



Aistorical introduction

* early compiler availability. The compiler should be available as soon as the
hardware, otherwise programmers would program in something else. Consequently
features that would or might cause implementation trouble spots must not creep into
the language.

* minimum run-time support. Some system programs like supervisors and loaders have
to run in an environment almost devoid of support software. The language should be
free of features requiring run-time support. (The Atlas Autocode fault statement
conflicted with this aim and had to be banned from system programs, although
retained in the language for user programs.)

* readability. System programs have a long life and require maintenance. It is more
important that the program be easy to understand than quick to write. Optional
keyword omission or abbreviations should be banned. (The language should be
"verbose rather than obscure".)

* access to bizarre hardware features. System programs require access to funny
features - to blow the hooter or ring the gong on hardware failure, for example.
However the language would not be compromised here. Instead machine coding would
be allowed at any point in the program, with access to the IMP variables and
arrays.

Even with fifteen years of hindsight this list still seems relevant, although the need
for efficient object code was more pressing then than now. The real key to the long life
of IMP is the last item in the list. By allowing machine code in extremié almost no
machine-dependent features were included except the underlying one of a byte address
structure. Consequently IMP has been successful on a dozen or so machines, unlike the
main competitors of the era (PL360U, Burroughs Extended Algol).

In accordance with the language philosophy, the following changes were made to Atlas
Autocode to produce IMP:

* The internal character code was changed to 1S50.

* Logical operations were added to the language.

* The additional declarators byte integer and short integer were introduced.
* Structured data objects - records — were introduced.

* Text handling features were added specifically to aid the writing of command
interpreters.

* Reference variables and additional features were added to enable programmers to
operate on storage areas outwith the compiler controlled stack.

It proved possible to write EMAS, a high performance multi-access operating system,
almost entirely in IMP. (Those requiring further information should read I7#e Computer
Journal, Vol 17, pp 216-223 (1974).)

Recent Developments

After the successful completion of EMAS, responsibility for maintenance of the system
and the IMP compiler passed from the department of Computer Science to the Edinburgn
Regional Computing Centre. Over the next ten years the language evolved very slowly -
even a move of EMAS from ICL 4-75 to ICL 2900 hardware scarcely disturbed the stability of
the language.

However the Computer Science department, in pursuing its diverse research interests,
encountered a variety of machines and wrote IMP compilers for a substantial proportion of
them. As befits an academic department these compilers contained novel features and
gradually diverged trom EMAS IMP and from each other. In 1980 a stock-taking was
instituted, from which there gradually emerged the common core of features described in
this manual. Most compilers will have some additional features but will support this
common base, and it should be possible to write most programs in the common subset. Such
programs should be readily portable in the Edinburgh eavironment.

P.D. Stephens

IMPB0 Language v



CHAPTER 1

ELEMENTS OF THE LANGUAGE

IMP80 is a high-level block-structured language. Relative to Algol 60, it adds program
structuring, data structuring, event signalling and text handling facilities, but removes
(or retains in a modified form) intrinsically inefficient features such as the Algol 60
name-type parameter.

1.1 Character set

An IMP80 program is a sequence of statemerits constructed using the IS0 seven bit character
set extended with a special alphabet. The special alphabet is used to construct keywords

The ISO seven bit character set is given on the next page. The use of the character set
is summarised in the sections below and described in detail in the rest of the manual.
However, some general points about certain characters should be noted at the outset:

a) Quotes

Several language constructions call for one or more characters to be enclosed in
quotes. Within quotes all characters are significant and stand for themselves; thus,
for example, space, newline, and percent characters may appear between quotes and stand
for space, newline, and percent.

Two quote characters are used:

’

- character quote

" -~ string quote

Examples:
'A" I.l. 200, ry

; !
"String", "sealing wax", "!"

If it is required to include the delimiting quote within the text it must be
represented by two consecutive quotes.

Examples:
vras

- the character quote
"A ""big"" dog" - a string of eleven characters

However, note ‘"’ and "it’s mine".

b) Spaces

Except when used to terminate keywords or when between quotes, space characters are
ignored and may be used to improve the legibility of the program.

c) Lower case letters

Except when enclosed in quotes, lower case letters are equivalent to the corresponding
upper case letters.

d) Non-graphic characters

The ISO characters with no graphic representation have code values less than 32 or
greater than 126. Any nou-graphic characters can be included within quotes in an IMP80
program, but only one, the newline character (NL), is included in the syntactic
definition of the language (see Appendix A). This has the IS0 code value 10.

The handling of non-graphic characters by different implementations is detailed in
Appendix B.

IMP80 Language 1



Character set

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS

HT

LF(NL)

FF
CR
S0
SI

DLE

DC2
DC3

DC4

SYN
ETB
CAN
EM
SUB
ESC
Fs
Gs
RS

us

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

SPACE

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127

DEL

IMP80 Language




Statement components

1.2 Statement components

An IMP80 program consists of an ordered sequence of statements. IMP80 statements are made
of atomeé., An atom is an identifier, a constant, a special symbol or a keyword.

Identifiers
An identifier is a sequence of any number of letters and digits, starting with a
letter. For example: C1900 TO 1970, NUMBER OF BLUCKS, MAX, x, iteml, Item 2, item 2b.
Spaces within identifiers are permitted but ignored, as is the case of the letters;

thus Item 2 and ITEM2 are not distinguished.

It is recommended that meaningful identifiers be used whenever possible, to improve the
clarity of programs.

In this manual, identifiers are alwaye given in upper case. It is stressed that this
18 merely a convention.

Identifiers are used to name the following entities:
Arithmecic, string and record variables and arrays
Reference variables
Record sub-fields
Procedures (i.e. routines, functions, maps)
Record and array formats
Named constants
Simple labels and switch vectors
ldentifiers in an 1MP80 program must be declared before they may be used. The only

exception to this general rule is that simple labels are not declared. Further rules
relating to the uniqueness of identifiers are given in the relevant sections.

Constants

IMP8U includes the following types of constant:

Integer constants (decimal) e.g. 2243, -16, 1 06U UVUO

Base constants e.g. 2 1001, 8 7720, 16_AO06C,
B'1lull’, X"1A6Y’

Real constants (decimal) e.g. 120.0, 120, 1.2€2, 1281,
12008-1

Character constants e.gs ‘A7, Ta’, '+, M, 7
" 'll', l6l

Multi-character constants e.g. ' Four’, M'MAX", M’1+l=",
MR

String constants e.g. "Here is a string", "A",

"123", "a "Ilgood"" boyl'

Named constants e.g. constant integer PRICE=23

IMP80 Language 3



Statement componente

Special symbols

These are as follows:

! 1 ‘ " # (or \= or <>)
## (or \==) & ( ) *

\ (or %) \\ (or **) + s -

=> . / 1/ :

; < <= <« <=

= == > >= >

@ \ (or ™) _ { }

newline space

The special symbols are used in IMP80 in various ways:
* as operators (arithmetic, string, record, relational, logical)
* as separators, e.ge. (+¢) {¢.+} : ; , newline space
* in constants, e.g. 3 201, +27@4, -17.6, X’8F’, "Constant”
* in record subfield references, e.g. TAX(MONTH) OVERTIME

* ! as an alternative to the keyword comment

Keywords

The following is a list of all the IMP80 keywords:

alias dynamic half of signal
and end if or spec
array event include own start
begin exit integer program stop
byte external list real string
c file long record switch
comment finish map repeat system
const fn moni tor result then
constant for name return unless
continue format not routine until
cycle function on short while

A keyword is a sequence of letters in a special alphabet. In programs stored in a
computer in text form ("source" programs), representation of this alphabet is achieved
by using the percent character (%), which is defined as causing the subsequent letters
(upper or lower case) to be shifted into the special alphabet. The effect of the %
character is terminated by ary¥ non-alphabetic character, including space and newline.

4 IMP80 Language



Statements

Hence the following statements are equivalent:

Zstring(7) Z%array Zname P
#ZSTRING (7) ZARRAYNAME P

and both represent string(7)array name P

In this manual keywords are rendered in bold type, and by convention in lower case.

1.3 Statements

An IMP80 program is composed of statements, and typically has the following general form:
begin

declaration statements
and procedure descriptions

on event .... start
executable statements

finish
executable statements
procedure descriptions

end of program

Only the delimiting keyworde begin and end of program must be present. However, assuming
that all the types of statement above are represented in an IMP80 program, the effect of
running the program on a computer is as follows:

First, storage space for the declarations is obtained. The procedure descriptions are
skipped, as are the statements in the on event block, and the first of the executable
statements is obeyed. Thereafter, the statements themselves define the sequence of
execution ("flow of control"). Control passes to the on event block if one of the
events defined in the on event statement occurs whilst executing a statement. The on
event block is optional and often omitted.

Here is an IMP80 program:

begin

integer A, B, SUM, DIFFERENCE, MAX V, MIN V,
MAX N, MIN N, N

N=20
cycle
READ(A)
exit if A=—~1; ! End of input - exit from loop.
N = N+l
READ(B)

WRITE(N, 2)

PRINTSTRING(" Input values: ")
WRITE(A,1); PRINTSYMBOL(',’
WRITE(B,2)

SUM = A+B; DIFFERENCE = A-B
PRINTSTRING(" ..... Sum is ")
WRITE(SUM, 1)

PRINTSTRING(", Difference is ")
WRITE(DIFFERENCE, 1); NEWLINE

{Continued on next page}

IMP80 Language



Statemente

if N=] or SUMDMAX V start
MAX V = SUM; MAX N = N

finish

if N=1 or SUM<CMIN V gtart
MIN V = SUM; MIN N = N

finish
repeat

! Now print out the maximum and minimum of the sums of all
! the pairs of numbers read in.

1f N=0 start

PRINTSTRING("No data read.")

NEWLINE

finish else start

NEWLINE

PRINTSTRING('"Maximum sum is ")

WRITE(MAX V,1)
PRINTSTRING(",

NEWLINE

data pair

no. "); WRITE(MAX N, 1)

PRINTSTRING("Minimum sum is ")

WRITE(MIN V,1)
PRINTSTRING(",

NEWLINE
finish

end of program

comment
include

list & end of list

declaration
assignment
begin

end of program

on event

data pair

procedure specification

procedure heading
procedure call

end of file
jump & label
start/finish
cycle/repeat

Continuation

no. "); WRITE(MIN N, 3)

The different types of statement in IMP80 are listed below, with references to the
chapters describing them.

Chapter

S L WLWWWWWWWNN - -~

Statements are normally terminated by a newline or semi-colon character. However, a
statement may extend over several physical lines provided that each line break occurs
after a comma, or is preceded by the keyword ¢ (which is otherwise ignored). 1In
addition, blank lines between the lines of a continued statement are ignored.

Thus:

if X=Y then P = 1 ¢

else P = 0

is exactly equivalent to

if X=Y then P =] else P = 0

and

own integer array X(1:10)

is exactly equivalent to

own integer array X(1:10)

10, 9, 8, 7, 6,

5, 4, 3, 2, 1

10,9,8,7,6,5,4,3,2,1

IMP80 Language



Miscellaneous statements

l.4 Miscellaneous statements

Certain statements are described here rather than in subsequent chapters, as they are
different in kind from the other statements of the language and do not fit into the
categories used in the rest of the manual.

Comments

Textual comments can be included in an IMP80 program. They have no effect on the
program when it runs, but may be used to render it meaningful to the originator and to
others. A comment is a statement; it must be separated from the preceding statement by
a newline or semi-colon, and from the succeeding statement by a newline - not by a
semi-colon. The keyword comment is used to introduce the text of the comment, which
may contain any character except newline. comment may be replaced by the symbol “!’.

EMAS IMP80: Note that the continuation rules described above apply to comment
statements.

IMP77: comments cannot be continued onto subsequent lines by any of the methods
deseribed.

Example:
begin
comment This program sorts a list of names
comment into alphabetical order

end of program

The IMP80 language also allows comments to be embedded within other statements. An
embedded comment is any sequence of characters, excluding ‘}’ and newline, enclosed in
a pair of braces, ‘{’ and “}’. This form of comment may appear between any two atoms,
but may not occur within an atom. The closing brace may be replaced by a newline.

Example:
! This is a portion of a test program
COUNT = 0; ! Note the semi-colon before Lhe ‘!’; note this one

! (in the text of the comment).
LIMIT = 100 {Only 100 cases}

MINIMUM = O {all positive
PROCESS(X {cases}, ¥ {total cost})

This fragment of program is exactly equivalent to

COUNT = 0

LIMIT = 100
MINIMUM = 0
PROCESS(X,Y)

1

The {...} type of comment never counts as a statement in its own right, even when given
on a4 line by itself. Thus it can be interposed between lines of a continued statement.
include statement

A file of IMP80O source statements (terminated by the statement end of file) may be
included in a source program by giving a statement of the form

include file specification
where file specification is a string constant representing an implementation dependent
file name. Refer to the relevant section of Appendix B for details of any
implementation dependent limitations on the use of include.

include is particularly useful for inserting procedure specifications.

IMP8U Language 7



Miscellaneous statements

Example:
begin
include "WXYZ83.EXTSPECS"
integer TIME, DISFLACEMENT, ...

In this case WXYZ83.EXTSPECS is the name of a file containing (presumably) external
procedure specifications (see Chapter 3).

Note that the include statement normally appears in the program listing generated by
the compiler, followed by the contente of the file referred to (including the end of
file). The include statement should not be followed on the same line of the source
program by other statements, since the complete source line might appear in the program
listing before the statements included, while in the actual program the statements
following the include statement follow the statements included.

liet and end of list

Normally the compiler generates a listing of a program as it compiles it. The precise
layout of this listing is implementation dependent. The production of the listing can
normally by controlled by setting a system option prior to the compilation. In
addition, however, the programmer can control the generation of the listing by use of

the statement end of list, which inhibits the listing until the end of the program or
the statement list is encountered. The default is for the listing to be generated.
The statements end of list and list may appear anywhere witihin an IMP8U program.

Note that when listing is inhibited, incorrect statements and the accompanying fault
messages are still listed.

IMP?7: end of list and list are nested - see Appendix B.

8 IMP80 Language



CHAPTER 2
TYPES, VARIABLES, CONSTANTS AND EXPRESSIONS

2.1 Types

Each data item (i.e. each constant or variable) used by an IMP80 program has a type
associated with it which determines what sort of item it is or can have as a value.

There are five categories of type:
1) Arithmetic
These comprise integer and real types, as follows:

byte integer
short integer
half integer
integer

long integer
real

long real

long long real

Some implementations of IMP80 might not provide all of these types; see Appendix B for
details.

The size of an item of type integer always corresponds to the word length of the
computer.

The modifiers byte, short, etc. relate to the size or precision of items of the
appropriate type. For byte-addressed machines, the ranges and (where appropriate)
precisions associated with arithmetic types are as follows:

type normal range {inclusive) precision

storage (decimal
allocation digits)

byte integer 8 bits 0 to 255

(or just byte)

short integer 16 bits -32 768 to 32 767

(or just short)

half integer 16 bits 0 to 65 535

(or just half)

integer 16 bits or -32 768 to 32 767 or
32 bits -2 147 483 648 to 2 147 483 647

long integer 64 bits -9 223 372 036 854 775 808 to

9 223 372 036 €54 775 807

Note that integer arithmetic involving values outside the range
which a vartiable of type integer can hold may not be permitted.

real 32 bits 7 digits
-7.2x10"° to -1.2x10777, g
long real 64 bits 0, -77 75 16 digits
1.2x10 to 7.2x10
long long real 128 bits 36 digits

IMP80 Language



Variables

2) String
The type string relates to sequences of characters. An item of this type has two

numbers assoclated with it, the actual and the maximum number of characters which the
item comprises or can have as a value.

3) Record
An item of type record is a composite of (in general) several sub-items, each of which
has an associated type. When a variable of type record is declared, its precise
composition must be specified.

4) Array
An item of array type is a composite of (in general) several sub-items, each with the
same associated type, which must be one of those listed above. The name of the array

type is obtained by appending the keyword array to the name of the type in question.

For example:

type corresponding array type
byte integer byte integer array
record( format) record( format)array
stfing(n) string(n)array

5) Reference

An item of this type is, or has as its value, a reference to a variable of a specified
type. For each of the foregoing types there is a corresponding reference type, the
name of which is obtained by appending the keyword name to the name of the type in
question.

For example:

type corresponding reference type
byte integer byte integer name

record( format) record( format)name

string(n) string(n)name

real array real array name

Variables of this type are known as reference variables or pointer variables.

2.2 Variables

Variables are named store locations used to hold numeric or textual information. Each
variable must be defined in a declaration statement which specifies its type and an
identifier to name it. The amount of storage allocated to a variable depends on its type.
All variables must be declared at the head of the block in which they are to be used, or
in an outer block (see Chapter 3).

A value can be associated with a variable when it is created, but usually it is
"unassigned". The method of indicating that a variable is unassigned is implementation
dependent; in some implementations a specific bit pattern is taken by convention to be the
"unassigned pattern", and any variable with this pattern as its value is said to be
unassigned. See Appendix B for details. Any attempt to use a variable which is
unassigned will cause an event to be signalled.

IMP77: all variables can be assigned initial values; see Appendix B.

10 IMP80 Language



Variables

Variables can be divided into four categories:

Arithmetic
String
Record

Reference

The following standard integer function 1s provided (a ’‘standard’ procedure is one which
is predefined; see Chapter 7):

integer function SIZE OF(name A)

The number of storage units occupied by the given variable is returned. The

variable can be of any type. The storage unit is implementation dependent but
commonly is a byte.

Arithmetic variables

Arithmetic variables may be of two types: integer and real. The first holds whole
numbers and the second holds numbers with fractional parts. For more efficient use of
store, short, half, byte and long integer types may be provided, whilst greater
precision can be obtained when long real and long long real variables are available.
However, the provision of different lengths is necessarily hardware dependent, though
type integer will always be available; it corresponds to the word length of the

machine. Furthermore, it is possible that on some restricted implementations for small
machines, type real will not be supported.

Where implementation is on a byte-addressed machine (e.g. IBM 370, ICL 2900 ranges)
short integer and half integer would be 16 bits in lemgth. integer 16 or 32 bits long
integer 64 bits; and real types would be 32 bits, 64 bits and 128 bite in length. On
such machines, vreal variables can only hold values to a precision of 7 significant
decimal digits whereas long real variables are precise to 16 decimal digits and long
long real variables (if available) to 36 deeimal digits. Further details of the
representation of variables can be found in the relevant hardware manuals.

The following example illustrates the declaration of various arithmetic variables.

Example:
begin
integer I, J
real P, Q

begin
byte integer Z

= I+J+Q

P
2=20

end of program
Arithmetic variables can be grouped into arrays. The array bounds separated by the
symbol ‘:” are given in brackets after the array identifier when the array is declared.
Example:

integer array IN(1:10), OUT(1:20)
Where two or more arrays of the same type are to have the same bounds, the bounds need
only be specified once, after the list of array identifiers.
Example:

long real array X, Y, z(l:4, -13:0)

IMP80 Language 11



Variables

Multi~dimensional arrays can be used. The maximum number of dimensions is
implementation dependent.

Example:
integer array BITLIST(-4:4, 1:2, 10:100, 1:2)

When an individual array element is accessed, the array identifier is followed by an

ordered list of integer expressions (one for each dimension) enclosed in brackets.
These integer expressions are called subscripts.

Examples:
BITLIST(3, 1, 54, J)

BITLIST(I+K, I, 10, 1)

Each of these integer expressions must evaluate to an integer which lies within the

range described by the bounds for the relevant dimension. The program is faulty if the
array bounds are exceeded.

An array can be declared with integer variables instead of constants for the acray
bounds. Obviously, the variables used in such a declaration must be declared and given
a value before the array declaration occurs.

Example:
begin
integer TOP

READ(TOP); ! TOP is given a value from the input data.
begin

integer array TABLE(l:TOP)

.
.

end

end

String variables

12

A string variable is one which holds textual information. The maximum length of a
string is implementatiovu dependent but is not normally less than 255 characters. When
the string variable is declared, the maximum number of characters which the string may
hold is specified, in parentheses, after the keyword string.

Example:
string(24) S

.
.

§ = "Results of last test"; ! Length of S is now 20.

As the string of characters may vary in length within the given location while the

progrum executes, an indication of the current length is stored along with the current
conteuts.

In all implementations on byte-oriented machines to date, the current length is held in
an extra byte at the front of the string location. Thue the string S declared in the
above example would be allocated 25 bytes of storage.

As can be seen from the above example, the character " (double quote) is used to
delimit textual information to be stored in a string location. Where one double quote
character is part of the text, two consecutive double quote characters should occur in
the text, to distinguish it from the terminating delimiter.

Example:
MESSAGE = "Peter says Mige''™

IMP80 Language



Variables

String variables can be grouped into arrays; the maximum number of dimensions is
implementation dependent. Each element of a string array must have the same maximum
length, which is specified when the array is declared.

Example:
string(63)array FIELDS (1:5)

FIELDS consists of five strings, each of maximum length 63 characters.

The occurrence in an IMP80 program of a semi-colon or newline character normally
terminates a statement. However, both are permitted in string constants.

Example:
S = "a; B; C"
SNL = "
"

A string may be regarded as having a value based on the ISO code values of the
characters of the string. Thus the relational operators >, <, =, #, <=, >= may be used
to compare strings. In particular, strings composed entirely of alphabetic characters
can be regarded as having a dictionary ordering for the purposes of comparison.

Example:
"AB" < "¢" is true
"AB" < "ABC" is true
"IMP80" < "FORTRAN" is false

Record variables

A record is a variable comprising a collection of entities which may be of different
types. It has an identifier which refers to the whole collection and each entity has
an identifier; an entity, or "sub-field", can be referenced by using the record
identifier together with the required sub-field identifier.

The collection of sub-fields which makes up the record is described in a record format
statement, which specifies the identifier and type of each sub-field.

Arrays with constant bounds may be used as sub-fields.

Example:
constant integer FROM=3, TO=5
record format F(byte integer A, string(8) S,
integer array M, F(FROM:TO, 1:400), real Y)

Record format statements are placed with other declarations at the head of a block or
procedure. They do not cause allocation of storage; they cannot be passed as
parameters to procedures.

Note that the sub-field identifiers need not be distinct from other identifiers in use
in the program, as they are always associated with a specific record identifier. They
must, however, be unique within the record format in which they are defined.

Records are declared at the head of a block or procedure. Space is allocated according
to the associated record format statement whose identifier occurs in parentheses in the
record declaration. The amount of space occupied by a record of given format is the
total number of bytes occupied by all the sub-fields plus the minimum number of

’zqdding' bytes required to achieve alignment of sub-fields appropriate to their types.
This alignment ie implementation dependent. The actual space occupied by a record can

be determined by use of the standard integer function SIZE OF, described at the start
of Section 2.2,

Example:
record format F(integer A, string(8) S)
record (F) R
record (F) PP, QQ, RR

Note that, as in this example, more than one record may be declared having the same
record format.

IMP80 Language 13



14

Variables

Each sub-field of a record can be referenced as a location of the appropriate variable
type by subscripting the record identifier with the sub-field identifier, the two being

v

separated by the underline character “_’.

Examples:
record format F(integer A, string(8) S)
record (F) R

.
.

1f R_S="INC" then R_A = R_A+l

record format PE(integer I, real array X(0:10))
record (PE) P
integer J

.
.

P_X(J+1) = P_X(J)*2

A record format may include alternatives,

Example:

record format AS(byte integer array CHAR(0:12) or string(12) TEXT)
record (AS) A

The space allocated to record A can be regarded as holding a byte integer array of
13 elements or a string of maximum length 12 characters.

Alternatives provide a means of imposing different interpretations on all or part of a
record. Where only part of a record is to have an alternative format, brackets must be
used within the record format statement to enclose the alternatives.

Example:
record format AT(real X,
{byte integer A, B, C or real R or integer E),
string(10) F)

Every sub-field in the record format must be distinct. Each alternative will start at
the same address within the record and will be padded out to the size of the largest.
(In the example above padding will be added, as the three alternatives are not all of
the same size). The amount of padding required depends on the amount of store
allocated to each sub-field, which is implementation dependent (as is any
correspondence between elements in different alternatives).

Where a procedure (see Chapter 3) is required to perform several different tasks, on
different calls, a record whose format contains alternatives can be passed to it as a
parameter. Within the record a sub-field common to all the alternatives can be used to
indicate for the particular call which alternative is to apply. It is thus possible to
ugse a record to pass different sets of parameters to a procedure.

A record format may contain several sets of alternatives, and alternatives may be
nested to any depth.

Arrays of records are permitted; they are analogous to the arithmetic and string types
of arrays already described. Each element of a record array is a record of format
specified in the record array declaration.

Example:
record format F(integer A, real array X(1:5))
record (F) array RA(1:100)

The fifth element of sub-field X in the 76th element of the record array may be
referenced as follows:

RA(76)_X(5)

IMP80 Language



Variables

As with other types of array, several record arrays having the same bounds and format
may be defined in a single declaration.

Example:
record (F) array RR1, RR2(1:100)

A sub-field may be of type record. In this case its format must have been already
declared. 1In particular, its format may not be the record format being described
(cf. record name sub~fields, described below).

Example:
record format P(integer array X(0:4), integer I)
record format Fl(integer A, B, record (P) D)
record format F2(record (P) J, K)

record (Fl) ENT
record (F2) JAK

An arbitrary depth of subscription can thus obtain. Using the above declarations, the
following are valid references to record elements:

ENT_D_X(1)
JAK J_1

A sub~field of type reeord is word-aligned in most implementations, irrespective of the
format of the sub-field.

Whilst sub-fields of records may be used exactly like IMP80 entities of corresponding
type, it is also possible to assign a whole record from one location to another. Two
assignment operators are permitted: ‘=’ and “<~’. Both operators require that operands
on each side of the assignment refer to record locations, except in the case where zero
occurs on the right~hand side of the ‘=’ operator: this results in the space allocated
to the record referenced by the left-hand operand being set to binary zeros.

When the ‘=’ operator is used, the record formats associated with the left-~hand and
right-hand operands must be the same.

EMAS IMP80: differences in the two formats are not faulted if they have the same
overall length.

The ‘<-’ assignment operator transfers as many bytes from the record referenced by the
right-hand operand as will fit into the record referenced by the left~hand operand.
The ‘<=’ operator takes no account of record formats.

Example:
record format F(integer X, Y, Z)
record format Q(byte integer array B(0:15))
record (F) J
record (Q) array K(1:100)

J.<— K(1)
K(1) = 0; ! K(1)_b\0), K(1)_B(1), +.., K(1)_B(15) all set to binary zeros.

IMP?77: 4 record format spec statement is provided to enable a record format to be
referred to before it has been declared. oee Appendix B for details.

Reference variables

A reference variable (or "pointer variable") is one wnich has as its value, not a
constant, but a reference to a variable of a specified type. Reference variables are
declared in the same way as the variables to which they can refer, but with the suffix
name added.

Example:

integer A
integer name AREF

IMP80 Language 15



16

Variables

When a reference variable is declared, space is allocated for a reference to a variable
of the corresponding type and precision. The operator "==" is used to establish the
reference. Once a reference is established, all references to the reference variable
will be redirected to the variable which it references. Note that the reference can be
established before the referenced variable has been assigned a value. Reference
variables are often used in conjunction with store mapping facilities (Chapter 6).

Example:

integer name N
integer B

N == B; | Reference established

N = 10; ! Assigns 10 to B

.
.

In exactly the same way, a reference to an array can be set up in an array name
variable of the appropriate type.

Example:
real array name P
real array Q(0:27)
real name Z

P == Q; ! Reference established.

.
.

P(25) = 10.3; ! This puts 10.3 into Q(25).
Z == P(27)
Z = 0; ! This sets the 27th element of Q to zero.

The examples above have been of reference variables of arithmetic types. However,
string and record reference variables may also be used.

Example:
string(20)name SREF
string(20) S

SREF == §

A maximum size must be specified for a string reference variable, as for a string
variable. A string reference variable can only refer to a string variable whose
maximum size is equal to that of its own. However, to accommodate the situation where
a string reference variable may be required to refer to several strings of different
maximum sizes, the form

string(*)name var

is provided.

In the case of record reference variables, the format of the record to be referenced
must be specified in the reference variable declaration.

Example:
record format RECFORMR(eoe..)
record (RECFORMR) REPORT
record (RECFURMR) name REP2

A reference variable of type record name is assigned to by using the ‘==’ operator (as
before), where the right-hand operand is a reference to a record location with the same
format as that specified for the reference variabile.

IMP80 Language



Variables

Example:
record format F(.....)
record (F) mame Fl
record (F) Q, R
record (F) array A(1:10)
- record (F) array name Z, W

Fl == Q; ! Makes Fl1 a synonym for record Q
Fl == A(10); ! Makes Fl a synonym for the 10th element of A
Z == A; ! Makes Z a synonym for A

Records may contain sub-fields of type record name. In this case the format of the
record name sub-field may be the record format being described (cf. sub-fields of type
record).

The following example illustrates how the recursive nature of the format and sub-field
format definitions facilitates the creation of a list structure:

Example:
record format F(integer DATA, record (F) name LINK)

record (F) array P(1:1000)

The structure may be initialised as follows so that the ‘link’ field of each
element of the record array P ‘points’ to the subsequent element:

record format F(integer DATA, record (F) name LINK)
record (F) array P(1:1000)

record (F) END

integer J

P(J)_LINK == P(J+1) for J=1,1,999
P(1000)_LINK == END

ié P(J)_LINK == END then ....

Note how the link field of the last record in the chain is set to point to the
record END.

Arrays of reference variables are not available in IMP80.
IMP?7: Such arrays are available; see Appendix B.

own, constant and external variables

Additional properties can be given to variables by means of the prefixes own, constant
(which can be abbreviated to const) or external added to the type in their
declarations.

An own variable is allocated storage in such a way that it preserves its value between
successive entries to the block or procedure in which it is declared. 1t can be
initialised in its declaration statement. An own variable can be used in any
circumstances in which a normal variable of the corresponding type can be used.

A constant variable is declared in a similar manner to an own variable, but it cannot
be changed from its initial value. Constant variables are also known as "named
constants”, which better describes them, in that they have all the attributes of
constants, Note that they do not have addresses (see the function ADDR, described in
Chapter 6).

Wherever a constant is permitted in an IMP80 program, a "constant expression" can be
used instead. A constant expression is one which can be evaluated at compile-time,
i.e. its operands are constants or named constants.

Example:
string (73) DELIVERY

can be replaced by
constant integer MAXNAME=20, MAXADDRESS=52
string (MAXNAME+1{for the newline}+MAXADDRESS) DELIVERY

IMP80 Language 17



Variables

The constant integer NL is predefined: it contains the code value for the newline
character.

The constant long real PI is predefined. It is the value of pi to the long real
precision of the implementation; where 64 bits are used to hold a long real, this is
3.141592653589793.

The initial values to be assigned to own, constant and external variables are specified
when the variables are declared. A variable identifier can be followed by =cexpr ,
where cexpr is a constant or constant expression of the appropriate type. The variable
is initialised to the value of cexpr.

If no initial value is specified, the value assigned by default is implementation
dependent; see Appendix B.

Examples:
constant byte integer NUL=0, CR=13, DEL=127, FF=12

own long real RMIN = -3,5@-4,
RMAX = 17.23614@10

An external variable is a special form of own variable which is used to provide
communication between sections of program compiled separately (see Section 3.4). An

external variable can be used in any circumstances in which a normal variable of the
corresponding type can be used. :

Any identifier being declared as external may be given an "alias". The details of this
facility are described in Section 3.4.

An own, constant or external array is initialised by appending a list of values to its
declaration. Only one array may be declared per statement. Each element of the array
must have a corresponding value with which it is to be initialised. In order to

simplify this, each value may be followed by a repetition count in parentheses, and an
asterisk, (*), may be used to represent the number of remaining elements of the array.

Examples:
external integer array VALUES(~3:7) = ¢

17, 4, 23, -2, 3(4), 7, 1(2)

constant integer RED=1, ORANGE=2, YELLOW=4, GREEN=8,
BLUE=16, INDIGO=32, VIOLET=64, WHITE=127

own byte integer array COLOUR(1:22) = ¢

RED, VIOLET(3), BLUE+GREEN, VIOLET, INDIGO+ORANGE+BLUE,
YELLOW(2), WHITE(*)

own, constant and external arrays are normally one-dimensional, but need not be. If
the array is multi-dimensional, the order in which the array elements are assigned the
initial values is implementation dependent.

IMP77: own, constant and externmal arrays can only be one-dimensional.
EMAS IMP80: in a two-dimensional array whose first element was (1,1), the order would
be (1,1), (2,1), (3,1), i.e. firet subseript changing fastest.

The {...} form of comment is useful for commenting array initialisatiom.

Example:

own integer array OPCODE(0:20) = ¢ {opcode values}
16_5800, 16 4800,  16_5000,  16_4000,

{ L LH ST STH
16_5A00,  16_5B00,  16_5C00,  16_5D00,

{ A S M D
16 _1A00, 16 1BOO, 16 1C00,  16_lDOO,

{ AR SR MR DR
-1(*) {all the rest}

IMP80 Language



Constants

own, constant and external strings can be likewise initialised with string constants
or constant expressions at the time of their declaration.

Example:

own string(19) FILENAME = "ERCC0OQ.TEST"
constant string(5)array F(0:4) = "Peter", '"Mac", ""(3)

Records méy also be declared as own, constant or external, but these cannot be
initialised at the time of declaration.

Variables v’ type eonstant record cannot be assigned at all, unless some implementation
dependent method is provided; see Appendix B.

Reference variables may also be declared as own, external or constant.
Initialisation of such variables, if permitted, establishes the initial reference in an
implementation dependent manner; see Appendix B.

2.3 Constants

Constant values can be assigned to variables. In general, the type of the constant must
be the same as the type of the variable, although an automatic type conversion is carried
out on a constant of integer type before assignment to a variable of real type.

Decimal constants

Decimal constants are written in a straightforward notation:
2.538 1 «25

The exponent, where present, consists of the symbol @ followed by an optional sign and
decimal digits:

-17.280-1 1@7

The type of a decimal constant depends on its value. It is of integer type if it has
no fractional part, i.e. no decimal point in its specification and the exponent (if
present) is non-negative; otherwise it is of real type. The particular real or integer
type depends upon the magnitude or precision of the constant.

Base constants

A base constant may be constructed by using the prefix decimal eonstant  to specify
the base (up to a maximum of 36) of the subsequent constant. The letters A, B, ..., Y,
Z are used in the constant to represent the digits 10, 11, ..., 34, 35.

Example:
2 11 0lo twenty six in Binary
8 32 twenty six in Octal
fE_IA twenty six in Hexadecimal

Spaces are allowed in this form of constant, and the case of any letter used (see the
last example) is not significant.

An alternative form is provided for constants to bases 2, 8 and 16. The constant is
written with the digits enclosed in single quotes and preceded by a code letter for the
base, the codes being B for base 2 (Binary), K for base & (Octal) and X for base 16
(Hexadecimal).

Example:
B’11010’ twenty six in Binary
K’32° twenty six in Octal
X"1A° twenty six in Hexadecimal

Either upper or lower case letters may be used in this form of constant, but spaces may
not occur within the quotes.

IMP80 Language 19



Constants

When a program is to be used on other machines, care should be taken in the use of
constants as the values of the constants may vary, particularly in a transfer from a
machine using ones-complement arithmetic to one uging twos-complement arithmetic and
vice-versa.

Base constants are of type integer.

Character constants

The ASCII code value of any character may be obtained as an integer value by enclosing
the character in single quotes. When the required character is a single quote, it must
be represented by two consecutive single quotes.

Examples:
4 ’ , ’ ’ ’ ’ ’, a1 K4 A Y AN 4 ’, ’ ’,
'A ’ a 3 + ’ o b ] L] ?

Note the last three examples which represent the code values for single quote, space
and newline, respectively. The predefined named constant NL may be used in place of
the rather cumbersome form of a newline character enclosed in quotes.

The code values for several characters may be packed together to form a single integer

constant by enclosing the characters in single quotes and giving the prefix M. This is
known as a multi-character constant.

Examples:
M’over’, M'MAX’, M’ 1+2°, M'*@@#’

The value of the coanstant is calculated by evaluating the expression:

(+ee(cl<<b + ¢2)<<b + ¢3)<<b + ...

where cl, c2... are the characters in the order specified, and b is an implementation
dependent constant (commonly 8). The number of characters which can be packed into a
variable of any integer type in this way is

(no. of bits in the variable)//b

A compile-time fault normally occurs if a multi-character constant contains more
characters than this.

Character constants are of type integer.

String constants

A string constant is a sequence of characters enclosed in double quote characters, a
double quote being represented inside a string constant by two consecutive double
quotes. The maximum number of characters allowed in the string is implementation
dependent, but is not usually less than 255.

Examples:
"starting time"
llx_y*4+2ll
"ted"
‘'"HooD"

The null string, a string of no characters, is permitted and is represented by two
consecutive double quote characters ("").

A string constant of ” characters is of type string(n).

Named constants

These are treated in this manual as variables with the attribute constant; they are
described along with own and external variables at the end of Section 2.2.

20 IMP80 Language



Operators and expressions

2.4 Operators and expressions

Arithmetic operators
There are two assignment operators for use with arithmetic expressions:

= equals
<~ jam transfer

Where the = operator is used, the expression on the right-hand side is evaluated and
the value obtained is assigned to the destination indicated by the left-hand side,
provided that the lengths and types are compatible. The program is faulty if an
attempt is made to assign too large a value to a variable by use of this operator.
In most implementations an event will be signalled.

Where the <~ is used, only as many bits as will fit the location designated by the left
hand side are assigned, starting with the least significant bits.

In general the arithmetic assignment instruction assigns the result of evaluating am
arithmetic expression to a variable. Only the result of an integer expression may be

assigned to an integer variable, but the result of an integer oy real expression may be
assigned to a real variable.

An event is signalled if an attempt is made to assign to an integer variable an integer
value outwith the range which the variable can hold (see the table in Section 2.1).

The following operators may be applied to real and integer variables in arithmetic
expressions:

+ addition

- subtraction

* multiplication

/ real division

// integer division

\ (or *) real exponentiation

\\ (or *™) integer exponentiation

The established order of precedence for the arithmetic operators is given in the
following table, starting with the highest. Operators on the same horizontal line of
the table have equal precedence.

\ (or *) \\ (or *")
* / /!

<+ -

Parentheses may be used to override the natural order of evaluation of an expression or
to remuve ambiguity. Where operators are of equal precedence, left-hand precedence
pertains as in normal mathematical usage.

Examples:
A-B+C  is equivalent to (A-B)+(C)

A-(B+C) (A)-(B4+C)
A/B*C (A/B)Y*(C)
A/ (B*C) (A)/(B*C)
A\B*C (A\B)*(C)
A\(B*C) (A)\(B*C)

IMP80 Language 21



Operators and expressions

Arithmetic expressions

An arithmetic expression is a sequence of operators and integer or real operands
obeying the elementary rules of algebra. Expressions may be real or integer according
to context. Apart from the rules for operator precedence given above, no assumptions
may be made about the order of evaluation of expressions.

a) Integer expressions

An expression or sub—expression is evaluated as integer if it consists of integer
operands and operators. It may be converted to real, depending on the context. It
is not converted to real if it is being assigned to an integer variable, or passed
as an integer value parameter, or occurs in a position where an integer expression
is mandatory.

All the operands and operators in an integer expression must yield integer values.
The operators available for use in integer expressions are:

+ addition

- subtraction

* multiplication

1/ integer division. This operator always yields an integer result.

The result consists of a quotient whose sign is determined
algebraically and a remainder which is ignored. Note that dividend
and divisor must both be integer expressions.

\\ (or *“") integer exponentiation. This operator only operates on integer
variables and always yields an integer result. The exponent must be
a non-negative integer expression.

The precision used in evaluating integer expressions depends on the operands.
Variables of type byte integer, short integer and half integer are expanded to

normal integer precision before the operation is carried out. An operation between
an integer variable and a long integer variable will be carried out by long integer

arithmetic.

The following standard integer functions are provided (a ‘standard’ procedure is
one which is predefined; see Chapter 7):
integer function IMOD(integer I)

This function returns the modulus (absolute value) of the parameter.

integer function INT PT(long real L)

This function returns the integer part of the parameter L, any truncation
being downwards.

Examples:

INT PT(-5.01) = =6
INT PT(-1.8) = -2
INT PI(0.3) = 0
INT PI(3.9) = 3

An event is signalled if the result cannot be held in an integer variable.
integer function INT(long real L)

This function returns the nearest integer to the parameter value. Thus
INT(L) = n, where n—-0.5 ¢ L < nt0.5 .

22 IMP80 Language



Operators and expressions

Examples:
INT(-1.8) = -2
INT(-1.01) = -1
INT(-0.99) = -1
INT(0.3) = 0
INT(1.499) = 1
INT(1.501) = 2

integer function TRUNC(long real L)

This function returns the integer part of the parameter L, any truncation
being towards zero. Note the difference between TRUNC and INT PT.

Examples:
TRUNC(-5.01) = =5
TRUNC(-1.8) = -1
TRUNC(0.3) = 0
TRUNC(3.9) = 3

b) Real expressions

All the operands and operators in a real expression must yield real or integer
values, and assignment can only be made to a real variable. Integer values will
automatically be converted into their real equivalents before being used.

The operators available for use in real expressions are:

+ addition

- subtraction

* multiplication

/ division

\ (or ~) real exponentiation. This always yields a real result. A negative

exponent, e.g. X\(-4), is evaluated as 1/(X\4).

A real expression is evaluated to single precision until a long real variable is
encountered. Thereafter the expression is evaluated to double precision. poubie
precision work ig time and space consuming and should only be used when strictly
necessary to preserve accuracy. However, it is often required with floating-point
arithmetic where loss of accuracy may occur in addition and subtraction due to
cancellation of significant figures.

The following standard real functions are provided (a “standard’ procedure is one
which is predefined; see Chapter 7):

long real function FRAC PT(long real L)

The fractional part of the parameter L, i.e. L-INT PT(L), is returned as
the result. Note that the fractional part is always greater than or equal

to zero.

Examples:
FRACPT(-5.01) = 0.99
FRACPT(=4.6) = 0.4
FRACPT(3.9) = 0.9

long real function FLOAT(integer N)

The floating-point equivalent of the integer parameter is calculated and
returned as the result.

long real function MOD(long real L)

This function returns the modulus (absolute value) of the parameter.

IMP80 Language 23



Operators and expressions

Logical operators and expressions

24

Logical operations are performed on bit patterns stored in integer variables, which may
be of any of the permitted lengths. Before the operation is carried out, byte, short,
and half integer variables are made up to full integer length in one of two ways,
according to the type of the initial variable: a) byte and half integers are made up by
filling the left hand bits with zeros; b) short integers are made up by sign extension,
i.e. the leftmost bit of the variable - the sign bit - is propagated leftwards until
the necessary number of bits have been obtained. Where necessary, integers are made up
to long integer precision by sign extension.

There are two assignment operators available for logical expressions.

= equals treats the result of the logical operation as a signed integer and
attempts to perform an arithmetic assignment to the designated variable. Hence
it may be wrong to attempt to put the result into a variable of the same
precision as that of an operand in the logical expression.

<~ jam transfer copies the bit pattern of the expression indicated by the right
hand side into the variable indicated by the left hand side, starting with the
least significant bits and stopping when the variable has been filled.

The following is a list of the logical operators available, excluding the assignment
operators discussed above.

<K left shift
>> right shift
& and

! or

L exclusive or
\ (or ™) not

The shift operators allow the programmer to move the bit pattern of anm integer of any
length to the left or right by a number of places less than the number of bits in a
variable of type integer. Note that a shift of more than this might not cause an event
to be signalled but will result in a value which is implementation dependent, not
necessarily zero—-filled.

Example:
J = I>ON

This causes integer I to be shifted to the right the number of places specified by

N and the result stored in integer J. If I or N are of less than integer precision
they will be made up to integer precision, as described above, before the operation
takes place.

In a left shift, bit positions vacated at the right hand end are filled with zeros and

bits shifted off the left hand end are lost. 1In a right shift, bit positions vacated
at the left hand end are filled with zeros and bits shifted:-off the right hand end are
lost.

The operators &, !, !! are carried out on a bit-by-bit basis between the patterns

stored in two integer variables. Where one operand is a long integer, the other will
be made up to long integer by sign extension.

and (&) produces a pattern containing a 1-bit where the two source
patterns both have l-bits and containing O-bits elsewhere.

inclusive or (!) produces a pattern containing a O-bit where the two source
patterns both have 0O-bits and containing l-bits elsewhere.

IMP80 Language



Operatore and expressions

exclusive or (1!) produces a pattern containing a l1-bit where the bits in the
source patterns are different and contains 0-bits elsewhere.

These rules are summarised in the following table:

Operands & ! 1
0 o0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The logical not operator, \, operates on a single operand to invert the value of each

bit; that is, O-bits become l-bits and vice versa. ~ can be used in place of \.

Example:
If X contains the bit pattern 01....0100110011
then \X is 10....1011001100
thus \X + X is 1l....1111111111

Arithmetic and logical operators may occur in the same arithmetic expression.
established order of precedence, starting with the highest, is:

\ (logical not)

\ \\ > <«
* / !/ &
+ - ! ]

Operators given on the same line in the above table have equal precedence.

The

It is syntactically incorrect to have two operators adjacent to each other in an IMP80

expression. Thus, in cases where two operators would be adjacent, e.g. A&\B, it is

necessary to use brackets, e.g. A&(\B).

Example:
integer I, J

| Variables of type integer are assumed to have 32 bits in this example.

byte integer array B(0:3)

I=....

B(J//8) = I>>(24-J) & X'FF’ for J = 0,8,24

.

In this example, a 32-bit integer I is copied, in groups of 8 bits, into the byte

integer array B.

Note that X’'FF’ represents a bit pattern of eight ls in the least significant end

of the specified location and zeros elsewhere.

IMP80 Language

25



Operators and expressions

String operators and expressions

26

There are three assignment operators available for use with strings: =, <- and ->.

Where = is used, the string expression on the right-hand side is evaluated and assigned
to the string location specified on the left-hand side. The string expression must
evaluate to a string constant no larger than the maximum which the left-hand string
location can hold. An event will be signalled if the left-hand string location
overflows.

<- is known as the "jam transfer" operator. It will assign to the location specified
on the left-hand side only as many characters of the right—-hand string as will fit.

Any remaining characters from the right-hand end of the string being assigned will
simply be omitted and no error will occur.

~> 1is known as the "string resolution" operator. It is used exclusively for the
manipulation of strings. 1Its effect is described below.

Another operation exclusive to strings is "concatenation". This allows strings to be
joined in a prescribed order. The strings to be concatenated are listed in the

o s

required order and separated by the symbol ‘. .

Example:
begin
string(100) S
string(15) NAMEl, NAME2, NAME3
string(20) ADDRESS

NAMEl = "Peter "
NAME2 = "John "
NAME3 = "Smith

ADDRESS = "12 Bothwell Drive"
S = NAME1.NAME2,NAME3.ADDRESS
PRINTSTRING(S)
NEWLINE

end of program

String S is assigned the concatenated characters of the four strings NAMEl, NAME2,
NAME3 and ADDRESS. Thus the printed output would read

Peter John Smith
12 Bothwell Drive

Note that the string NAME3 has a newline character in the text after the name
Smith.

The only type of string expression in IMP80 is that produced by concatenation, for
which bracketed expressions are neither required nor permitted.

String resolution allows a string to be searched for a specified substring of
characters. If this substring does not occur in the string being resolved, an event is
signalled. If, however, the substring is found on searching the string from left to
right, then all characters to the left and right of the substring will be stored
respectively in two string variables specified to the left and right of the substring
in the resolution instruction. An event is signalled if either of the string variables
is too small to store the characters being assigned to it by the resolution. The
substring, which may be a string expression (a constant, a variable or a
concatenation), is enclosed in parentheses with a string identifier on either side,
each of these three elements being separated by ‘.’ .

Example:
S = "ERCCO00.FLAG"
S -> A.(".").B
! A now contains "ERCCO0" and B contains "FLAG".

Thus string S has been resolved into two smaller strings, neither of which include
4 ’

+° +« The same exercise would be accomplished by the following:

IMP80 Language



Operators and expressions

S = "ERCCOO.FLAG"

e oo

X ="

S => A.(X).B

The substring may be a concatenation:

Example:
FIRST NAME = "John"
SURNAME = "Smith"
NAME AND ADDRESS = "Peter John Smith, 12 Bothwell Drive"
NAME AND ADDRESS -> A.(FIRST NAME." ".SURNAME).B

The strings used to store the characters which occur before and after the specified
substring may be omitted, in which case the characters are discarded.

Examples:

= "ERCCO0.FLAG"

~> ("o").B

B now contains "FLAG".

-

S = "ERCCO0.FLAG"
-> A.(".")
A now contains "ERCCO0".

—

= "ERCC00.FLAG"

-> (u.n)

Resolution would fail if "." did not occur in S.
There are no other products of this resolution.

v s U WD

Since a resolution must either succeed or fail, it may be used as a simple conditiom.

Examples:
S = A.B while S _> Ao(" ")OB
! This statement removes all spaces from string S.

if S -> A.("/").B then T = A." or ".Belse T = §

Note that, although the string resolution is used here as a condition, it is
nonetheless carried out if it can be (i.e. if the condition is true). No event is
signalled in this case if the resolution cannot be carried out.

There are four procedures provided for the manipulation of strings.
byte integer map CHAR NO(string(*)name S, integer N)

This map returns a reference to the Nth character of string S. An event is sig-
nalled 1if N is less than or equal to zero, or greater than the current length of S.

byte integer map LENGTH(string(*)name S)

The result is a reference to a variable containing the current length of the string
S.

Example:
string(80) S
byte integer name L

.
.

L == LENGTH(S)
L = L-1 while L>0 and CHARNO(S,L) = ’ '
! This example shows how to delete trailing spaces from a string.

IMP80 Language 27



Operators and expressions

string(*)function SUBSTRING(string(*)name S, integer I, J)

The result is the substring of S comprising the Ith to Jth (inclusive) characters
of S. An event is signalled unless

I <= LENGTH(S) and

J <= LENGTH(S) and
J+1

O
AN AN
]

If I=J+1 then a null string is returned.

Note that the string parameters to CHARNO, LENGTH and SUBSTRING are all name-type.
(See Chapter 3 for details of the different types of procedure parameter.) Thus string
constants and expressions cannot be passed to these procedures.

string(1l)function TO STRING(integer I)
The result is a string of length 1 comprising the character defined by the least
significant byte of integer I.
Record operators

The only record operators taking complete records, rather than record sub-fields, as

their operands are the assignment operators =, <~ and ==, These are described above,
in Section 2.2.

The integer function SIZE OF, described at the start of Section 2.2, applies to any
type of variable but is particularly useful when applied to records.

28 IMP80 Language



CHAPTER 3

BLOCKS AND PROCEDURES

3.1 Block structure and storage allocation

IMP80 is a block-structured language. A block is a sequence of statements of which the
first is begin or a procedure heading, and the last is end. The program itself is
regarded as a block, and the first begin encountered is interpreted as the start of the
program. The statement end of program, rather than end, is used to indicate that the end
of the program has been reached. Blocks may be nested to a depth determined by the
particular implementation.

Within each block, variables and constants to be used must be declared at the head of the
block (and before any on event statement), unless they have already been declared at the
head of an outer block. Labels and switch labels are always local to a block; thus it is
impossible to jump from one block to another. Keywords which occur in pairs such as cycle
+es repeat must have both elements within the same block.

Example:
begin
integer I, J
real array A(1:10)

.

real X, Y

begin
real Z, P
I =4

end of program

I and J have been declared at the head of the outermost block and may thus be referred
to from any inner blocks of the program.

If, however, a variable is declared which has the same identifier as a variable already
declared in an outer block of the program, then use of that identifier will refer to the

variable most recently declared.

Example:
begin
integer I, J, K
real X, Y
I =23

begin
real 1
I =4,106

.
.

begin
X=1

.
.

end
end

end of program

IMP80 Language 29



Block structure and storage allocation

I is first declared as an intkger type and will be allocated storage accordingly. The
first use of 1 refers to this integer location. Within the next block, however, I is
redeclared as a real variable. Now space is allocated for a real variable and within
this block (and any deeper blocks of the program — unless I is again redeclared) use of
I refers to the real location and the integer location of the outer block remains
untouched.

When a variable is accessible it is said to be in scope. A variable is global to a block
within the block in which it is declared if it is accessible o ithe inner block. In the
example above, X, Y, J and K are global to both inner blocks.

The redeclaration of variables is permissible because of the way in which storage space is
allocated to a program. Each program can be considered to have space allocated to it omn
what 1s called the &tack, The stack is an area of store and the stack space given to each
program has the layout shown in the following diagram,

stack pointer

Program Constants, own variables,| Cells in Free
Code named constants, own arrays use cells
constant arrays

v’ N

read only read and write

Note that this deseription of a stack is for explanatory purposes only - it may not be
accurate for speeific implementations.

The "read only" area contains the object code of the program as produced by the compiler,
and also any of the named constants declared by the program. This area cannot be altered
during execution of the program. The "read and write" area has own variables stored first
and thereafter space is allocated according to the requirements of the program. Each cell
will be as big as required by the cvntity stored in it: thus an integer variable occupies
only a small cell, whilst a complex record variable may require a very large cell.

The stack pointer indicates the next free location in store.

The following example illustrates Ihe <iack nechanism.
Example:
begin
real A,B,C

integer I,MAX
real array X(1:3), Y(1:4)

As a result of the above declaration, the stack might lookx like this:

ST1 ST2

V, 4
alslcli[rax A x| x| x(3H V7 v [y vy [rea) j(
\ % %

STl is the position of the stack pointer before the begin, and ST2 is its position
after the declarations. The shaded areas indicate portions of store which contain
information essential to the program (such as array dimensions) but which are not used
directly by the programmer.

The stack pointer may be advanced by any further declarations or by activity initiated
by the instructions of the program. On entry to a new block or procedure, the stack

30 IMP80 Language



Block etructure and storage allocation

pointer is advanced as necessary to cope with new declarations, etc. On exit from the
block (or procedure) it returns to its last position prior to entry to that block (or
procedure).

Storage space for fixed variables such as real or integer types is determined at
compile time, but arrays with dynamic bounds cannot be allocated space until the values
of the bounds are determined at run time.

Since the block structure of a program is so closely related to the allocation of
store, skilful use of blocks can lead to economical use of store. Consider the
following examples.

Example:
begin
integer N

cycle
READ(N)
exit 1f N=0

begin
integer I
integer array A(1:N)
READ(A(I)) for I=1,1,N

.
.

end
repeat
end of program

The required size of the array is read in the outer block and the array itself declared
in the inner block. Thus the space used by any one set of data will be recovered when
the inner block is left, so allowing one to repeat the process without incurring
successively increasing demands for storage space.

Example:
begin

begin
real array XYZ{1:5000)

end

begin
integer array IJK(1:20, 1:250)

end

end

Since the declarations at the head of a block are cancelled on executing the end of the
block, it is often possible to economise on storage space if a program consists of several
distinct tasks, each requiring large amounts of space. The above example illustrates the
point. Procedures can be used in a similar way to economise on store.

IMP80 Language 31



Events

3.2 Events

During the execution of a program, events may occur which normally cause the program to
terminate with an error message. However, there is a mechanism which allows events to be
intercepted and used to control the subsequent execution of the program. This mechanism
is activated by the use of the on event statement.

The on event statement (which may occur only once in any block) is used to introduce a
group of statements which is only executed if one of the specified events occurs during
execution of the code in the block including the on event statement. The form of the on
event group of statements is:

on event nlist start
executable instructions
finish

The keyword event may be omitted.

nlist is a list of integer values in the range 1 to 14 inclusive, where each number refers
.0 a specified class of error, as follows:

Overflow
Excess resource
Data error
Invalid data
Invalid arguments
Out of range
Resolution failure
Undefined value
1/0 error
10 Library procedure error (e.g. SQRT negative)
11-14  Available for programmer defiaition

L OONCUVESWN -

Variations to this list and details of related factilities for specific implementations are
given in Appendix B.

Up to 255 sub~events may be defined for each event, but these cannot be specifically

intercepted and are necessarily implementation dependent. For example, not all machines
distinguish integer overflow from real overflow.

Sub-events defined for some implementations are listed in Appendix B.

The on event group must follow the declarations at the head of a block and may be regarded
as the last declaration of the block. The code within the start ... finish is not
executed by entry through the head of the block, but is jumped to on the occurrence,
during the execution of the block, of an event referenced by the event list. Following
such a jump, the flow of control is determined by the contents of the on event group; the
program does not resume at the point of the failure.

In addition to events such as "integer overflow", "resolution failure", etc. occurring, an
event can be forced to occur by the programmer, by use of the instruction

signal event const, exprn

where const specifies the event required and exprn is an optional integer expression

(evaluating to an integer within the range 0-255) which may be used to specify sub-event
information.

The use of the signal event statement is the only way of causing a user~defined event
(i.e. one which is not predefined by the implementation) to occur, although it can also be
used with the predefined events (1-10).

If an event occurs (or is caused by a signal event statement) in an on event group which
includes the occurring event in its event list, a branch is not made to the head of that
group, since such a branch would probably cause looping. Instead, the event is traced up
the stack through each superior block until either an on event statement including the
occurring event in its list is found, or the user e¢nvironment is left. If a suitable on
event statement is found, control is transferred to its start ... finish group.

32 IMP80 Language



Events

In parallel with these language statements, the following standard integer function is
provided to enable the programmer to determine further information when an event occurs.
It may only be meaningfully called in a block which has an on event statement within it.

integer function EVENT INF
This function returns
(event no<<8) ! sub-event no

for the last event which has occurred.

If an event is not intercepted in the block in which it occurs, then it is traced up the
stack through each superior block until either a suitable on event statement is
encountered or the user environment is left, a diagnostic package (if one is provided in
the implementation) being entered in the latter case. When a suitable on event statemen
is encountered in an outer block, program control is transferred to its start ... finish
group.

As a result of these facilities it follows that, for example, "input ended" may be
detected and dealt with from within an external routine or a routine within a main
program.

Examples:
System defined events

integer SUBCLASS
constant string(2l)array MESSAGE(1:2) = "Capacity exceeded",
"Array bounds excecded"
on event 6 start
SUBCLASS = EVENT INF&255; ! Mask off event number.
1f 1<SUBCLASS<=2 then PRINTSTRING(MESSAGE(SUBCLASS)) else ¢
PRINTSTRING("Invalid subclass")
NEWLINE
->ERROR EXIT
finish

ERROR EXIT: «...

User defined events

integer SUBEVENT
on event 12 start
PRINTSTRING("Event 12 has been intercepted, with subevent")
WRITE(SUBEVENT, 1)
NEWLINE
->EVENT 12
finish

SUBEVENT = 2

.

signal event 12, SUBEVENT

EVENT 12: .....

IMP80 Language

t

33



Procedures

on event 10 start

if EVENT INF&255#8 start; ! enter start/finish if subevent is not 8
signal event 10, EVENT INF&255
! Thus all subevents except 8 are passed to outer block

finish

! Code to deal with subevent 8 of event 10

finish

3.3 Procedures

A procedure takes the form of a block in which the first begin is replaced by a procedure
heading. However, a procedure can only be entered by execution of a procedure call
statement, whereas a block is entered when the begin statement at the start of the block
is executed.

There are three forms of procedure - routine, function (or fn) and map.

Example:
begin
integer array A(1:40)

e oo

routine CLEAR A

integer I

A(L) = 0 for I=1,1,40
end {Of routine CLEAR A.}

.
.

CLEAR A

.
.

end of program

In this example, a procedure - routine CLEAR A - is described and then used by means of
the procedure call statement ‘CLEAR A’. '

CLEAR A is effectively a named block: if the procedure heading were replaced by begin and
the procedure description moved down to take the place of the procedure call statement,
the effect would be exactly the same. However, by making the block a routine - and thus
giving it a name - it is possible to call it at different places in the program without
repeating the description each time.

In addition, procedures can have parameters, passed to them via a parameter list enclosed
in brackets in the procedure call statement.

Example:
begin
integer F, T
string(31) array A(0:99)

routine STRINGSORT(string(*)array name X, integer FROM, TO)
integer L, U
string(255) D

end {Of routine STRINGSORT.}

STRINGSORT(A, F, T)

end of program

34 IMP80 Language



Procedures

In the above example, the procedure heading specifies the form of procedure (routine)
being described, gives the procedure an identifier (STRINGSORT) and describes the
number, order and types of variables passed as parameters, using dummy names. The
procedure is entered when the call statement STRINGSORT(A, F, T) is executed.

The first line of a procedure has one of the following forms:

routine name (parameter list)

type function name (parameter list)
type map name (parameter list)

where tyPe is one of the arithmetic types, or string(”) or record(format),
and (parameter list) is optional.

A procedure must be declared before it is called, unless it is a ‘standard’ procedure; see
Chapter 7. If the procedure itself is placed at the head of a block (as above) no further
declaration is needed. Otherwise a specification (spec) statement must be placed amongst
the other declarations at the head of a block, with the procedure included later at the
same textual level. The spec statement is exactly like the procedure heading with spec
inserted after the keyword routine, function or map.

Example:
routine spec STRINGSORT(string(*)array name X, integer FROM, TO)

It is most important to give the specification accurately: in particular, the number and
types of the parameters must be correct. However, the names of the parameters in a
specification statement are not significant.

IMP?77: the identifiers of parameters in a spec statement must be distinct.

Variables used in procedures may be declared locally (as is the case for L, U and D in the
above example), but any information stored in them becomes inaccessible on exit from the
procedure. If the information calculated by the procedure is to be preserved for use on
subsequent entries, it must be stored in global variables or own variables declared
locally.

Global variables should be used with care in procedures. Note that such variables must be
declared globally to the procedure itself: it is not sufficient that they be declared
globally to the call(s) of the procedure.

Example:
begin
integer X, Y

routine CONVERT
X = saee
Y= cees

end

CONVERT

.

begin
integer X

CONVERT

end

end of program

IMP80 Language 35



Procedures

The routine CONVERT, which has no parameters, operates on variables X and Y. The first
call of the routine uses X and Y as declared at the head of the program. The second
call occurs from within an inner block in which X has been redefined. However, the

procedure again uses the X declared at the head of the program, ignoring the redefined
X of the inner block.

Information calculated by a procedure and stored in global variables is, of course,
accessible on exit from the procedure.

There are three categories of procedure which may be called by a program:

1) standard procedures, which are automatically available to all programs
(see Chapter 7); for example, READ, INT PT;

2) procedures described within the program;

3) external procedures, which are compiled separately from the program (see
Section 3.4).

Procedures can be nested: that is, a procedure can be defined inside another procedure.
The scope rules apply as before.

Procedures can be used recursively: that is, a procedure can be called from within itself.
The example given below of a sorting program demonstrates the recursive use of routine
STRINGSORT. Obviously, some criterion within the body of the procedure must eventually
prevent the procedure calling itself endlessly. In the example, the recursive calls of
STRINGSORT are embedded in conditional instructions, thus providing the necessary
opportunity to stop the recursion process.

Parameters

When a procedure with parameters is described, the procedure heading contains dummy
names for the parameters to be passed. These dummy names, known as formal
parameters, are allocated local storage within the procedure, and are used within the
procedure as though they were local variables.

When a procedure is called, the actual parameters are specified in the call
statement; they must correspond in number, order and type with the formal parameters in
the procedure heading.

Parameters are passed either by value or by name.
When a parameter is passed by value, the local storage in the procedure allocated to

the corresponding formal parameter is initialised to the value of the actual
parameter, which can thus be an expression of the appropriate type.

Example:
begin
real Z, Y
real function AUX(real X) ; ! Call by value: X is a formal parameter.
end
Y = AUX(Z) ; ! Z is an actual parameter.
Y = AUX(4.5*%Z) ; ! 4.5*Z is an actual parameter.

end of program

Function AUX has formal parameter X of type real. Execution of the first call
of the function will assign to X the value to be found in Z. On executing the
second call, the expression 4.5*%Z will be evaluated and the result assigned to
formal parameter X.

36 IMP80 Language



Procedures

Parameters passed '"by name", however, are treated differently. The local storage
allocated for a parameter passed by name is a reference variable of the appropriate
type. In this case, when a procedure is executed, the effect is that the local
variable is pointed at the actual parameter, which must therefore be a variable (or
reference to a variable) of the appropriate type, and not an expression. Thus, every
reference in the procedure to the formal parameter is treated as if it were a reference
to the actual parameter. Parameters passed by name can be used to preserve information
calculated by the procedure, for use on exit.

Note that arrays can only be passed by name.
Example:
Given a procedure with heading
routine ALPHA(integer BETA, real name GAMMA)
the call
ALPHA(J*K+4, R(M))

implicitly causes the following assignments to be carried out on entry to the
procedure:

BETA = J*K + 4
GAMMA == R(M)

(Note that the normal scope rules do not apply to these assignments, because
they use variables in scope at the point of the call to assign to variables local
to the routine body.)

Example:
begin
constant string (1) SNL = "
"
string(31)array NAMES(1:99)
routine spec STRINGSORT(string(*)array name X, integer F, T)
integer I, N

READ(N) until 1 <= N <= 99; ! Reject value if not in range.
READSTRING(NAMES(I)) for I=1,1,N

STRINGSORT(NAMES,1,N)

PRINTSTRING(NAMES(I).SNL) for I=1,1,N

routine STRINGSORT(string(*)array name X, integer FROM, TO)
integer L, U
string(255) D

return if FROM >= TO
L = FROM; U = TO
D = X(U)

cycle
L = L+] while L < U and X(L) <= D
exit 1f L =U
X(U) = X(L)
U = U-1 while U > L and X(U) >= D
exit if U =1L

X(L) = X(Uu)
repeat
! Now L = U.
X(U) =D

L =1-1; U= U+l
STRINGSORT(X,FROM,L) if FROM < L

STRINGSORT(X,U,T0) 1if U < TO
end

end of program

IMP80 Language 37



Procedures

This program sorts a set of strings held in array NAMES. Note the routine
spec statement at the head of the block, with the routine description occurring
later at the same textual level.

There are three parameters passed to the routine STRINGSORT; the two integers

are passed by value, and the string array is passed by name. (Arrays can only be
passed by name.) When the routine is called the first time the parameters are
treated as follows. The string array NAMES is passed by name and thus all
references to the formal parameter X within the body of the routine become
references to NAMES; the actual value 1 will be assigned to formal parameter F; and
the value stored in N will be assigned to formal parameter T. On exit from the
routine, NAMES will have its elements sorted, but the value of N will be unchanged.

Strings may be passed as parameters to procedures. Where a string name parameter is
used, the length specified in the procedure heading can be replaced by * so that
strings of any length (up to the allowed maximum) can be passed to that procedure. In
this situation run-time overflow checking is applied to the actual string passed to the
procedure.

In IMP80, parameters called by name are assigned at the time of call. Thus if a
routine with parameter list (real name X, integer name I, ...) were called with
parameters (A(J), J, ...) where A is the name of a previously declared real array, then
on execution of the procedure every reference to X will refer to the element of A
determined by the value of J on entry, no matter how J varies during execution of the
procedure.

Procedures, too, may be passed as parameters:

Example:
begin
routine ONE(routine PARAM(integer X) )

e oo

end

routine TWO(integer P)

.
.
.
.

end

routine THREE(real X)

end

ONE(TWO)
end

Routine ONE has a single parameter, a routine with a single parameter of type
integer.

Note that routine THREE cannot be passed as parameter to routine ONE because THREE
has a parameter of type real. That is, the parameter list of the actual

procedure passed must correspond with the parameter list of the corresponding
formal procedure parameter.

A formal parameter can be any of the following types:

1Y)
2)
k)]
4)
5)

38

any arithmetic type (e.g. long real, byte integer)
string(n)

record(format)

any of the above followed by name or array name

any type of procedure (i.e routine, function of any type, map of any type)

IMP80 Language



Procedures

Items (1) - (3) correspond to call by value; items (4) and (5) to call by name. The
actual parameter in a call by value must be an expression of the appropriate type; in a
call by name it must be a "reference" to an entity of the appropriate type.

EMAS IMP80: those standard procedures which are "intrineic" (see Appendix B) cannot be
actual parameters.

Note that arrays can only be passed by name, not by value.
The three different forms of procedure will now be examined in more detail.

Routines

A routine call may be used exactly like an instruction. When the call is executed,
control is transferred to the routine, which executes until either the end statement is
reached or a return statement is encountered. Flow of control is resumed at the
statement after the routine call.

Example:

integer X,Y

routine CONVERT
if X < Y start
X = X+Y
finish else start
X = X-Y
finish
end

CONVERT
CONVERT unless X = 0

.
.

Note that CONVERT uses global variables X and Y and that the result is stored in X
on exit from the routine. Note also the use of CONVERT in a conditional statement.

Functions

A function calculates a value of the specified type (integer, real, string or record),
and may be used in an expression exactly like an operand of that type. The function
terminates when an instruction of the form

result = expression

is executed, and the value of the expression, which must be of the same type as that of
the function, is returned to the statement making the call. The result statement may

not be used in an inner block within the function.

Example:
integer function SUMSQ(integer A, B)

result = A**2 4 B**2
end

integer X, Y, 2

Z = SUMSQ(X,Y) - 3

Unusual side effects may result from changing the values of global variables inside
functions. Such side effects are often implementation dependent.

IMP80 Language 39



Procedures

Example:
begin
integer I, J, K

integer function SIDE

I = I+l
result = J
end
K = I+SIDE

end

In the statement K = I+SIDE, there is no defined order of evaluation of operands in
the expression on the right hand side of the assignment, but the value of I used in
the expression depends upon the order of evaluation. Thus the value of the
expression is indeterminate. The actual value computed depends on the
implementation of IMP80 used.

Functions may be of string type; in this case the maximum length of the string

which may be returned by the function is included in the specification and heading of
the function.

Example:
string(20)function FIELD(integer I)

Functions may be of record type; in this case the format of the record returned
must be included in the specification and heading of the function.

Example:
record format RFA(integer ONE, TWO, THREE)

record (RFA) function TRIPLES(integer ITEM)

EMAS IMP80: the format aesoctiated with a record funetion may not exceed 256 bytes
in length.

Maps

A map (or "mapping function") calculates a reference to a variable of the specified
type (integer, real, string or record) and may be used exactly like a variable of that
type. The map terminates when an instruction of the form

result == reference to a variable of the same type as the map

is executed and the address of the given variable is returned to the calling
instruction. The "reference to a variable" on the right hand side of the result
statement can be a normal variable, a reference variable or a mapping function call.

Example:
integer X, Y, K

integer map MIN

if X < Y then result == X else result == Y
end

MIN = 0

! This statement is exactly equivalent to
! if X< Y then X =0 else Y =20

K = MIN

Note the use of a map on the left-hand side or right-hand side of an assignment
statement.

40 IMP80 Language



External linkage

Where a map is of string type, the specification and heading must include a length
- the precise maximum length of any string to which the map may refer.

Example:
string(3)map XA(integer I)

If a string map might refer to strings of varying length, then the procedure heading
and declaration may have the symbol “*#° in place of a specific length. The map may
then reference strings of any length up to the allowed maximum.

Example:
string(*)map XA(integer 1)

Where a map 1s of record type, the specification and heading must include a record
format. The right hand side of a result statement within a record map must refer
to a record of the same type as the map, or to the standard record map RECORD
(described in Chapter 6).

Example:
record format RF(integer X, string(10) TITLE)

record (RF) map RM(integer I, J)
record (RF) name CURRENT

CURRENT == ...

.

result == CURRENT if ...

end {0f record map RM

string(15) HEAD
integer P, Q

HEAD = RM(P,Q+l) TITLE
RM(17,3)_X = 24

IMP?77: the record format givem in the specification or heading can be replaced by
(*), meaning that the reference returned by the map may be to a record of any format;
the actual record format used depende on the context.

A number of standard maps are provided. These are described in Chapter 6.

3.4 External linkage

A complete program may be divided into separately compiled modules which are linked before
(or possibly during) program execution. This section describes the language facilities
provided for setting up or accessing a separately compiled module.

A procedure compiled separately from a program which uses it is called an external
procedure. 1f a program uses an external procedure it must contain an external

specification statement. This is of the same form as the spec statement described in
Section 3.3, but with the prefix external.

Example:
external string(*) function spec WEEKDAY(integer NO)

IMP80 Language 41



External linkage

An external...spec statement has the same effect as a normal spec, except that there is no
description of the procedure later in the program. external ... spec statements may be
given vherever other spec statements would be valid.

The keywords system and dynamic may be used in place of external; refer to the relevant
system docunentation for details of the effects of these keywords.

External variables are also availabla. 1If a program uses an external variable it must

include an external specification., This is of the same form as the variable declaration
statement but with the keywords external and spec added.

Examples:
external integer spec WAIT, CHOICE

external real array spec MEAN(-6:6)

External files

A file of external procedures and variahbles may be compiled. Such a file differs from
the structure of a program file (described in Section 1.2) in several respects:

* There is no initial begin.
* end of program is replaced by end of file.

Variables declared outside any procedures must be own, constant or external
(described below).

* The first statement of any prucedure description within an external file can be
preceded by the keyword external; such a procedure can then bYe made accessible to
other programs, as explained above, 1If a procedure in the file is not external
then it is accessible only within the file, in accordance with the normal scope
rules.

* begin/end blocks are not allowed, except within procedures.

* Where an external ... spec statement in the file specifies an external procedure or
variahle described later in the same file, the keyword external may be omitted.

An external variable has all the properties of an own variable, but is declared with
the keyword own replaced by external.

Examples:
external integer CHOICE = 6, WAIT = -5

external real array MEAN(-6:6) = 2.7(5),0.3,1.5(%)

External variables can be declared in an external file or in a normal program file,
wherever other declarations arz valid. They are normally declared in the outer block
of an external file.

Note that external variables may be initialised, like own variables, when they are
declared, but not when they are specified in an external ... spec statement.

Exampla of an external file:
external integer IN=0, OUT=0

routine GET(integername SYM)
READSYMBOL(SYM)
IN = IN+1

end

routine PUT(integer SYM)
PRINTSYMBOL(SY™)
OUT = OUT+I1

end

{Continued on next page}

42 IMP80 Language



External linkage

external routine PROCESS

integer CH

GET(CH) until CH="#*"

PGT(CH)
end i0f PROCESS)
end of file

A progranm making use of the external file:

begin

external routine spec PROCESS

external integer spec IN, OUT
integer DATA, DMAX

for DATA = 1,1,DMAX cycle
IN = 0; OUT = 0O

PROCESS
PRINTSTRING('"Calculation no.'")
WRITE(DATA,2)

PRINTSTRING(": ™)

WRITE(IN,1)

PRINTSTRING(" characters in;")
WRITE(OUT, 1)
PRINTSTRING(" characters out.,")
NEWLINE

repeat

end of program

alias

Any identifier given in an external declaratisa or specification may be followed by
alias s&tring constant, where the string constant specifies the string to be used for

ext=rnal linkage. This has no effect on the use of the identifier within the progran.

Examples:

external long real fn spec EI(GEVVALUE alias "D¥REFEIGENS" ¢
(long real array name MAT)

external integer RESULT alias "ICLICERETURN" = 4

Note that the striag constant cannot be a named constant or coastdant expression.

IMP80 Language

43



CHAPTER 4

EXECUTABLE STATEMENTS

4.1 Conditions

In IMP80 a condition can form part of any executable statement. Conditions are
therefore described before the various types of executable statement.

The commonest form of simple condition in IMP80 is made up of two expressions separated by
a comparator. The expressions are evaluated and compared. The condition is true if

the relation specified by the comparator holds. The expressions must yield values of the
same type; the only exception to this rule is that an integer expression can be compared
with a real expression. Complete records cannot be compared; this restriction includes
comparison with 0.

Examples:
J=20
A = “END"

X+23.7 <= F(J+2,Y) - 2*Z/pP
REF == K

The comparators are:

= is equal to

# (or \= or <>) is not equal to

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== refers to the same variable as

## (or \== does not refer to the same variable as

In the case of the last two comparators, == and ##, the items being compared are
references to variables, which must be of identical type. The condition is true if the
addresses of the variables referred to are equal (==) or not equal (##). (Note that the
address of a reference variable is the address of the variable to which it refers; see
Chapter 6.)
The other forms of simple condition are as follows:
a) expression comparator expression comparator expregsion

This is known as a double-sided condition.

Example:
AtB <= C+D < E+F

This condition is true if A+B <= C+D and C+D < E+F .
The second expression is only evaluated once. The third expression is only evaluated
if the condition between the first two expressions is true.

The comparators == and ## (or \==) may not be used in double-sided conditions.

44 IMP80 Language



Conditions

b) String resolution

Example:
A -> B.(C).D

The resolution is attempted. If it succeeds the condition is true and the resolution
is performed. If it fails the condition is false, but no event is signalled.
c) Compound condition (see below) enclosed in brackets
Example:
(A>0 or B<=0)
d) Any of the above forms preceded by the keyword not

The effect of preceding a simple condition with not is to reverse the truth value of
the simple condition.

Examples:
not A <=0 (equivalent to A > 0)

not 23 <= I+J <= 99 (equivalent to I+J < 23 or I+J > 99)

Compound conditions can be produced by combining simple conditions using the keywords and
and or:

simple condition and simple condition and ....

simple condition or simple condition OF eeeees
Examples:

A+B <= C+D and C+D < E+F

I =20o0r A -> Bo("oo")oc or X > Y >= Z+3.47

It is not valid to combine and and or, as in
X<Yand B =Cor D= 24

However a compound condition enclosed in brackets is treated as a form of simple condition
(see above). Thus

(X<Yand B=C) orD=24
is valid. WNote that the form
not (X <Y and B = C)

is also permitted.

By combining and and or and brackets, conditions of arbitrary complexity can be produced:

Example:
(A<=Bor C==D)and § -> ("Jim").T and (X <= Y <= Z or (P_K = 23 and Q < 0))

The testing of conditions proceeds from left to right, simple condition by simple
condition, terminating any clause as soon as an inevitable outcome for the clause has been
established. Thus, in the example above, if A <= B were true then C == D would not be
evaluated; if A <= B were false and C == D were false then the remainder of the condition
would not be evaluated.

IMP80 Language 45



Instructions
Example:
A=0or B/A=C

If the variable A has the value 0 the whole condition will be true without B/A = C
being tested.

B/A=CorA=20

In this case an event will be signalled ("overflow") if variable A has the value O.

4.2 Instructions

An instruction ig an imperative statement which may be made conditional. The following
IMP80 statement types are instructions:

statement deseribed in
assignment Chapter 2
routine call Section 3.3
monitor Section 4,2
signal event Section 3.2
return Section 3.3
result= Section 3.3
jump Section 4.2
stop Section 4.2
exit Section 4.4
continue Section 4.4

In addition, a compound instruction can be formed by use of the keyword and:
instruction and instruction and ......

Example:
X = 23 and continue

The last of the series of instructions in a compound instruction can be any of those

listed above; the other component instructions can only be assignments, routine calls or
monitor statements.

Conditional instructions
An instruction can be made conditional as follows:
if condition then ingtruction

or
unless condition then instruction

In the first form, the instruction is executed if the condition is true; in the second,
the instruction is not executed if the condition is true. 1If the instruction is not
executed, nothing is done.

Examples:
1£ 0 < 1 <=9 and K > 0 then B(I) =K

unless J = I then A(I1,J) = O

if and unless statements can be elaborated to allow specification of an alternative
instruction, to be executed if the first one is not:

1f condition then instruction elge conditional instruction

unless condition then insetruction else conditional instruction

46 IMP80 Language



Instructions

Example:
if X < 47.2 then Y = Z+3 else Y = 0.0

Note that the second instruction in these elaborated if and unless statements can be
conditional.

Example:
if STATE < O then ERROR = IN else ¢
1f STATE = O then ERROR = CALCULATION else ERROR = OUT

The simple forms of if and unless statements (i.e. those without the else) can be made

simpler still:
instruction 1f condition
instruction unless condition

Examples:
B(I) = K41f 0 <= I <= 9 and K>0

A(1,J) = Ounless J =1

Labels and jumps

Any statement, excluding declarations, may be given one or more labels. A label is an

identifier but it is not declared; however, it does have to be distinct from other
local identifiers.

Each label is located immediately to the left of the statement to which it refers,
followed by a colon.

Examples:
NEXT: P = P+1 1f P < O

ERRl: ERR2: FAULTS = FAULTS+l

Control is passed to a labelled statement when a jump instruction of the form
-> label
is executed.

Examples:
->NEXT

if DIVISOR = 0 then ->ERRI

As indicated, jump instructions can be made conditional (as can all instructions).

Switches

A set of labels, known as a switch, may be declared in a manner similar to a

one-dimensional array, but using the keyword switch. The switch must have bounds which

can be determined at compile-time (i.e. constants, or integer expressions comprising
constants and named constants).

Examples:
switch TYPE(4:9)

switch S1, S2(1:10), S3(‘A’:°Z2")

Once declared, switch labels may be located in the same way as simple labels, the
particular label of the switch being specified by an integer constant.

IMP80 Language



Instructions

Example:
switch SW(4:9)
constant integer FAULTY = 6

.

SW(4): CHECK VALUE(1)

SW(FAULTY): ERROR FLAG = 1

.
.

.

LAST: SW(9): ! All finished.

Control is passed to a statement labelled by a switch label when a jump iastruction of
the form .
-> switch ( integer expression )

is executed.

Not all of the labels in the switch need be located; in the example above SW(5), SW(7)
and SW(8) are not, and do not need to be elsewhere in the program. An event is
signalled if an attempt is made to jump to an undefined switch label.

Instead of an integer constant, an asterisk (*) may be used when locating a switch
label. This has the effect of defining any labels in the switch not defined elsewhere
in the program block.

Example:
switch LET(‘a’:’z’)
LET(“a” ):LET( e’ ):LET( i’ ):LET(‘0"):LLT( u’):
! Deal with vowcls here.
LET(*): ! All the rest, i.c. consonants
Notes

* A label can appear on a line without being followed by a statement. This is
sometimes done to improve readability. Strictly, the label ts labelling a null
statement,

Example:
LAST STAGE:
if Y < 23.7 and ....

The use of both types of label is limited to the block in which they are defined,
excluding any blocks described therein. That is, labels cannot be global to a
block and therefore it is not possible to jump into or out of a block.

* The identifiers used for labels must be distinct from other local identifiers.

* It is wrong to jump into a for loop (see Section 4.4); the effect is implementation

dependent.

stop

This instruction causes the execution of the program to be terminated.

monitor

48

This instruction passes control to a run-tiime diagnostic package which then generates a
trace of the state of the program. In implementations of IMP80 without a run-time
diagnostic package monitor is a null instruction. In some implementatione the amount
of trace information can be controlled by the programmer.

Following the trace the program resumes at the point where it left off.

IMP80 Language



start/finish

4.3 start/finish

start/finish statements are used to make the execution of a group of statements
conditional. The most general type of conditional group is a sequence of statements of
the form:
if condition 1 then start
statements to be executed if condition 1 is true

finish else if condition 2 then start

statements to be executed if condition 1 is false
and condition 2 is true

finish else if condition 3 then start

-
.

finish else start

statements to be executed if all the previous
conditions are false

finish
Any or all of the statements containing the keyword else may be omitted. When they are
all omitted, the form becomes:

if condition 1 then start

statements to be executed if
condition 1 is true

finish
Other simple forms:
if condition 1 then start

statements to be executed if
condition 1 is true

finish else start

statements to be executed if
corndition 1 is false

finish

if condition I then start

statements to be executed if
condition 1 is true

finish else if condition 2 then start

statements to be executed if
eondition 1 is false and
condition 2 is true

finish

IMP80 Language



cyecle/repeat

Notes

* "{f ... start" and "finish else if ... start" are complete statements in their own
right and as such must be terminated by a newline or semicolon.

* Each start and the next finish effectively bracket the statements between them, which
are all controlled by the same set of conditions.

* gtart/finish groups may be nested to any depth.
* then start may be elided into start.
* finish else start may be elided into else.

* If a start and the next finish enclose only one instruction then the complete
start...finish sequence can be repltaced by that instruction.

Example:

else if K = 0 then start
X = 4*SQRT(Y**2 + Z2%*2 - 4)
finish else start

can be written as

else if K = 0 then X = 4%*SQRT(Y**2 + Z**2 - 4) else start

* The keyword if may always be replaced by unless, with the effect of negating the
subsequent condition. Thus the following two statements are equivalent:

if X = 0 then ¥ = 1 else Z = -1
unless X = () then Z = -1 else Y = 1

* Wherc a small group of unconditional instructions is to be made conditional, a compound
instruction (Section 4.2) can be used instead of a start/finish construction.

Example:
if K<U then X = 4 and return

is equivalent to

if K<O start
X =4
return

finish

4.4 cycle/repeat

cycle and repeat statements are used to bracket statements which are to be repeated. In
the simplest case, a group of statements may be repeated indefinitely by enclosing them
between the statements cycle and repeat.

Example:
cycle
READ DATA; ! Get next set of data
PROCESS DATA; ! Carry out calculation
OUTPUT DATA; ! Print results
repeat

The statements between a cycle statement and the correspondiny repeat statement are known
as the cycle body. cycle/repeat groups can be nested to any depth, i.e. a cycle body can
contain further cycle/repeat groups.

50 IMP80 Language



eyele/repeat

Conditional repetition

The number of times the cycle body is executed can be controlled by modifying the cycle
statement or the repeat statement.

a) while condition cycle

b)

.
.

.
.

repeat

The specified condition is tested before each execution of the cycle body. If the
condition is true the cycle body 1s executed; otherwise control is passed to the
statement following the matching repeat.

The cycle body will be executed zero or more times.
for control vartiable = init , ine , final cycle

repeat

where control variable is a variable of type integer, and init, inc and final are
all integer expressious.

This is a special form of while...cycle, in which an integer variable takes a
series of regularly spaced values in a specified range. Each value corresponds to
an execution of the cycle body.

Example:
for I = 1,1,10 cycle
A(I) = I+l
B(1) =0
repeat

The cycle body is executed 10 times, the control variable I taking the values
1, 2, 3, «ee, 9, 10 in succession. :

In detail, the execution of a for loop entails the following stages. A test is
first made that Ih¢ is non-zero and that (final - init) is exactly divisible by
inc. An event is signalled if it is not. This test may be carried out at
compile-time, if the three expressions permit; a compile-time fault may then be
gliven.

If the test is successful, the total number of times that the cycle body could be
executed is calculated; this is ((final - intt) // ine) + 1.

EMAS IMP80: 1if thie number is less than or equal to zero, tle control variable is
set to be unassigned and control ie passed to the statement following the matching
repeat. Otherwise the control variable ig assiyned the value of init and the cycle
body is executed. When the matching repeat ie reached the value of the control
variable is tested, and if it ie equal to final, control is passed to the statement
following the repeat. Otherwise the control variable has inc added to its value
and the cycle body is executed again.

IMP77: an event ig signalled if the total number of times that the cycle body could
be executed is less than 0. Otherwise the control variable is assigned the value
init - inc. Before each execution of the cycle body the value of the control
variable is compared with final. If they are equal control is passed to the
statement following the matching repeat; otherwise inc is added to the control
variable and the cycle body is executed. It follows that if the cycle execution is
terminated by means of thie test, the control variable will thereafter be equal to
final in all cases.

It follows that the cycle body will be executed zero or more times.

IMP80 Language 51



eycle/repeat

Notes

* inc can be negative.

* The control variable must be of type integer - a byte integer or long integer
etc. is not allowed.

* It is wrong to jump into a for loop; the effect is undefined.

* It is wrong to change the value of the control variable within the cycle body;
the effect is undefined.

* The three expressions tnit, inc and final are evaluated once only, before the
cycle body is executed. It is permissible, within the cycle body, to change

the value of any variable appearing in one of these expressions, but it has no
effect on the execution of the for loop.

c) cycle

repeat until condition

After each execution of the cycle body the condition is tested. If false the cycle
body is executed again.

until loops always execute the cycle body at least once (cf. while loops).

Simple forms of loop

If the cycle body comprises only one instruction (which can be a compound instruction),
the loop may be written in the fora:

instruction locp clause

i.e.
instruction while condition
instruction for control = init, ine, final
instruction until condition
Examples:

SKIPSYMBOL and SP = SP+l1 while NEXTSYMBOL = *
A(J) = 0 for J = 1,1,20

READSYMBOL(S) until S = NL

exit and continue

Two instructions are provided to control the execution of a cycle from within the cycle
bodyo

a) exit

This instruction causes execution of the cycle to be terminated., Control is passed
to the statement following the matching repeat.

b) continue

This instruction causes control to be passed to the matching repeat, where any
until condition will be tested. The effect is thus to terminate this execution of
the cycle body, but not of the complete cycle.

52 IMP80 Language



eyele/repeat

Notes

* exit and continue can only be used within cycle/repeat loops.

*

exit and continue are instructions, and can thus be made conditional.
Examples:
continue if P J = 0

X =5 and exit if CPU TIME > 50
Within nested loops, continue and exit operate with respect to the innermost Lloop

in which they are contained; i.e. control is passed to the repeat of the innermost

loop containing the continue or exit or to the statement following it,
respectively.

continue and exit may not be used inside a block defined within the relevant cycle
body.

IMP80 Language 53



CHAPTER 5

INPUT/OUTPUT FACILITIES

Input/Output (I/0) facilities are provided to enable programs to read data from files or
input devices, and send data to files or output devices. These facilities take the form
of standard procedures, described below. (As explained in Chapter 7, standard procedures
do not require to be specified before use; they are defined implicitly). All the
procedures described refer Lo logical 1/0 channels to which numbers in the range 0-99 have
been assigned. In some implementations certain channel numbers are reserved for system
use.

EMAS IMP80: channels 0 and 81-99 are reserved for system defined devices. Channel numbers
in the range 1-80 can be used for purposes defined by the user, subject only to the rule
that a channel number can only refer to one channel at a time.

IMP77: input channel n and output channel n are logically distinct.

Each implementation of the language provides facilities for linking these logical channels
to particular files or 1/0 devices; refer to the relevant User Guide for information on
this subject.

The primary 1/0 facilities in IMP80 use character information, that is, information that
can be represented as sequences of characters.

All the routines and functions use an Internal Character Code based on the IS0 Code for
the interchange of data (see Chapter 1).

Facilities are also provided to handle binary information, as a direct copy of the
representation of values in the computer store. Two types of binary I/0 are provided:
Sequential Access for use when data is accessed (read or written) in the order in which it
is held in the store, and Direct Access for use when data is accessed randomly from the
storc. All the binary I/0 routines and functions are explicit, and so must be declared in
each program in which they are used (see Section 5.2).

5.1 Character I/0

All character handling routines and functions operate with respect to either the currently
selected input stream or the currently selected output stream. An input or output stream
corresponds to a logical 1/0 channel (described above), and is referenced by the
appropriate channel number. All character I/0 streams act upon continuous streams of ISO
characters. Thus an input stream consists of a continuous stream of characters with an
associated pointer which at any instant points to the next character to be input.
Similarly, an output stream is able to accept a continuous stream of ISO characters.
Naturally, there has to be some implementation dependent mechanism for transferring these
characters to and from files or physical devices, but this is hiddea From the user.

IMP77: INP77 works with streams of 8-bit codes.

On entry to a program, default streams are selected for input and output. At any point in
the program it is possible to redirect character input or output by a call of the standard
procedure

routine SELECT INPUT(integer 1)
or
routine SELECT OUTPUT(integer I)

Each of these routines takes one integer parameter, the value of the logical channel
number corrcsponding to the stream being selected. An event is signalled if the specified
channel does not correspond to a valid input or output stream, as appropriate.

Examples:

SELECT OUTPUT(3)
SELECT INPUT(I+17)

54 IMP80 Language



Character I/0

After a call of SELECT INPUT, all calls of character input routines will operate on the
selected input stream, until another call of SELECT INPUT is made or the end of the

program is reached. The same rule applies to SELECT OUTPUT and character output routines
and functions.

Input of character data

The procedures described below operate on the currently selected input stream. In all

cases an event is signalled if an attempt is made to read beyond the end of the input
stream.

EMAS IMP80: the following ISO codes (see Chapter 1) are ignored by these procedures:
DEL (value 127), and all codes with values less than 32 apart from NL (10), B (25) and
SUB (26). If it is desired to read these codes, rather than ignore them, then the
procedures READ CH and NEXT CH (deseribed below) should be used.

routine READ SYMBOL(name A)

This routine transfers the internal value of the next symbol from the current input

stream into the integer variable parameter, which way be of any permissible length
(byte, long, etc).

Example:
READ SYMBOL(IN); ! IN has been declared as an integer variable.

IMP?77: eight bits are transferred from the input strewn to the parameter.

IMP77: the actual parameter supplied can be of type string, of any length, in which
cage a single character is read and held intermally as a one-character string.

EMAS IMP80: all non-printing characters, excluding NL (ISO code 10) but including
CR (ISO code 13) are ignored by READ SYMBOL. Cf. READ CH, deseribed below.

integer function NEXT SYMBOL

This integer function retucrns the internal value of the next symbol on the current
input stream. It does not move the poilnter to the stream, so the next call of this
or any other character input routine will access the same character again.

Example:
if NEXT SYMBOL = ‘a’ then .....

routine SKIP SYMBOL

This routine moves the pointer to the current input stream along one symbol without
transferring any information to store. 1In the following example, SKIP SYMBOL and
NEXT SYMBOL are used together to skip over a series of space characters.

Example:
SKIP SYMBOL while NEXT SYMBOL = ° *

routine READ STRING(string(*)name S)

This routine is used to read a string into the string variable location specified
by the parameter. The string should be in the format of an IMP80 string comstant.
Any spaces and newline characters which precede the double quote character at the
start of the string will be ignored. An event will occur if the input stream does

not contain a string constant, or if the input string overflows the location
specified by the parameter.

IMP?77: READ STRING is not provided. Instead the routine READ, deseribed below, is
extended to accept a string name parameter and to read a string into it.

IMP80 Language 55



Character I/0

routine READ ITEM(string(*)name S)

This routine reads the next symbol from the current input stream and stores it as a
string of length 1 in the string variable specified by the parameter.

IMP77: READ ITEM i8 not provided. Inetead the routine READ SYMBOL has been
extended, as deseribed above, to accept a string name parameter.

string(*)function NEXT ITEM

This function reads the next symbol from the currently selected input streanm

without moving the pointer to the input stream (as with the function NEXT SYMBOL).
The symbol is returned as a string of length 1.

IMP?7: NEXT ITEM is not provided.

FMAS IMP80: the following '... CH' procedures are provided. They have the eame effect
as their '... SYMBOL' counterparts described above, except that they do not ignore any
ISO characters.

routine READ CH(name I)

This routine transfers the intermal value of the next symbol from the current input
stream into the integer variable parameter. All characters of the ISO character
set, ineluding control characters, are passed back by READ CH.

READ CH will pass back EM (the end message character) when end-of-file is reached
and will signal an event if further reads on this file are requested.

integer fumetion NEXT CH
This funetion reads the next character from the input stream without moving the

pointer to the stream (as with NEXT SYMBOL). ALl characters of the ISO character
set, including End Message character (EM), are passed back by NEXT CH.

Input of numeric data

56

routine READ(name I)

This routine is used to read numeric data into an arithmetic variable. The single
parameter should be of type integer or real and of any length. The numbers being
read should be written as described for decimal constants, except that no space
characters may be included in the constants. Any space or newline characters which
precede the number will be skipped by the routine; thus spaces and newlines can be
freely used as separators between numbers. The number is terminated by any
character in the input stream other than digit, +, -, . or @, On return from READ,
the input stream pointer will be pointing to the character immediately following
the number just read.

Note that if an attempt is made to read either a real number, or a number with an
exponent, into an integer variable, then the reading will stop at the decimal point
or the "@" symbol, but no event will be signalled. However, an event will be
signalled if the first character of a number is neither a sign, nor a decimal digit
nor a decimal point. The same event will occur if the initial character is a
decimal point but the parameter passed to READ is an integer.

The range of values which can be read depends on the given parameter and on the
implementation.

IMP?77: the parameter to READ can be the name of a string, of any length. In this
cage READ reads in a string of characters, as follows: any ISO control characters
plus spaces and newlines are first skipped, then all charactere excluding DEL, up
to but not including the next control character or epace or newline are read and
built up into a string which is assigned to the string parameter. Enclosing quote
delimiters are "not" required.

IMP80 Language



Character I/0

Output of character data

A number of procedures are provided to write individual characters or sequences of
characters to the currently selected output stream.

Note that when an interactive terminal is used, the symbole will normally be
transmitted only when a 'trigger' character, usually newline (NL) or form feed (FF), is
sent to the output stream.

The basic character output procedure is PRINT SYMBOL; most of the other character
output procedures operate via this procedure.

routine PRINT SYMBOL(integer I)

The parameter passed to this routine must be an integer expression which is
evaluated by the routine. Any character whose value lies in the range 0-255 is
transmitted to the output stream.

EMAS IMP80: The least significant 7 bite only of the parameter are used by

the routine. If the value of the expression corresponds to that of a symbol which
could be read by READ SYMBOL (see above) then it is eent to the output stream; if
not, the character SUB (ISO code value 26) is sent.

Examples:
PRINTSYMBOL('A’)
PRINTSYMBOL( I+J+32)

EMAS IMP80:

routine PRINT CH(integer I)
This routine behaves exactly like the standard version of PRINT SYMBOL, i.e. any
character whose code value lies in the range 0-255 is transmitted to the output
stream.

routine PRINT STRING(string(255) S)

This routine transmits to the currently selected output stream the string
expression specified by the string parameter.

EMAS IMP80: PRINT STRING operates effectively as a series of PRINT SYMBOL

calls. Thus certain characters will be replaced by SUB, ae explained above.
There are a few other standard procedures provided to simplify the output of text.
SPACE transmits one space character to the currently selected output stream

SPACES(N) transmits N space characters to the currently selected output stream, where
N is an integer expression. No spaces are transmitted if N is negative.

NEWLINE transmits one newline character to the currently selected output stream.

NEWLINES(N) transmits N newline characters to the currently selected output stream,
where N is an integer expression.

NEW PAGE transmits one Form Feed (FF) character to the currently selected output

stream. No newlines are transmitted if N is negative.

EMAS IMP80: in the case of the procedures SPACES and NEWLINES, only the least

significant byte of the parameter is used. Thus a maximum of 255 spaces or newlines
can be transmitted by a eingle call.

IMP80 Language 57



Character I/0

Output of numeric data

Three routines are provided to allow output of numeric information. WRITE is used to
transmit the value of integer expressions; PRINT and PRINTFL transmit the values of
real expressions in floating point form.

routine WRITE(integer I, J)

This routine transmits the value of the integer expression 1 to the currently
selected output stream. The second parameter specifies the number of positions to
be used. To simplify the alignment of positive and negative numbers, an additional
position is allowed for a sign, but the sign is only printed in the case of
negative numbers. If the number to be printed needs more positions than are
specified by the second parameter, then more positions are used.

Examples:
WRITE(L, &)
WRITE(TOTAL+SUM+ROW(I), 6)
WRITE(SNAP, POS+4)

IMP77: the total number of print positions to be used ie defined by the modulus of
the second parameter. If this parameter i8 negative, no space character is output
before a positive value.

routine PRINT(long real X, integer I, J)

This routine transmits to the currently selected output stream the value of the
real expression specified by the first parameter. The second and third parameters
should be integer expressions specifying the number of places to be allowed before
and after the decimal point. If the integer part needs more positions than are
specified by the parameter, then more positions will be taken. One position is
allowed for a sign which is printed only in the negative case. If necessary, the
fractional part will be vounded.

Examples:
PRINT(A, 2, 3)
PRINT(COS(A-B), 1, 10)

IMP?7: The second parameter is interpreted in the same way as the second parameter
of WRITE (deseribed above).

routine PRINT FL(longreal X, integer 1)

This routine transmits to the currently selected output stream the value of the
teal expression specified by the first parameter. The second parameter speclfies
the nunber of places to be allowed after the declmal point. The printed number
takes up the specified number of places, plus 7 additional places.

Example:
PRINT FL(X,4)

If X has the value 17.63584, this would be printed as 1.7636@ 1. The number {is

standardised in the range 1 <= X < 10. One position each is allowed for signs for
mantisga and exponent; in each case the sign is only printed when negative,

Closing streams

58

All input and output streams are closed automatically when the program terminates.
However, if it is necessary to close a stream during the running of a program, then a
call of the appropriate routine is necessary.

EMAS IMP80:
routine CLOSE STREAM(integer I)

The parameter must be an integer expression which will evaluate to the number of the

stream to be closed. The currently selected input or output stream cannot be closed,
and any attempt to do so will cause an event to be signalled.

IMP80 Language



Binary I/0

EMAS IMP80:

If a stream is closed and then reselected for input, the pointer to the stream will be
positioned at the start of the file. Thus a file can be re-read, or a file written
earlier in the program can be read.

In the same way, if a stream i8 closed and then reselected for output, the pointer to
the file i8 left at the start of the file. Thus any information in the file at the
time it 18 reselected will be overwritten by data tranemitted to the file after
regelection. :

IMP?77:
routine CLOSE INPUT
or
routine CLOSE OUTPUT

In each case the routine closee the current stream, input or output as appropriate.
The input or output stream then becomes null (except for stream 0, which i8 unaltered),
until another channel is selected by use of SELECT INPUT or SELECT OUTPUT.

routine RESET INPUT
Thie routine resets the current input stream to the start of the file.

routine RESET OUTPUT

This routine throws away all output on the current stream.

In some systems it is poseible to specify that output is to be appended to an existing
file. In this case the effect of closing and then reopening a corresponding output
stream might not be as deseribed above.

5.2 Binary 1/0

Binary I/0 facilitiee are provided by procedures which must be specified explieitly. They
do not form part of the IMP80 language, but a list and brief explanation is given in
Appendix B for some implementations. A more detatiled description of the procedures can be
found in the appropriate User Guide or Library Manual.

IMP80 Language 59



CHAPTER 6

STORE MAPPING

It is possible to give an alternative name to a variable declared in an IMP80 program. It
is also possible to refer to an arbitrary store location, not necessarily associated with
a declared variable, and operate on it as though it held a variable of a specified type.

"Store mapping" is the name given to this technique. It is useful for the following
reasons:

* to enable entities not declared within a program to be accessed and operated on by
the program, without recourse to machine code or other machine specific features

* to save space in main store (see first example below)
* to access a variable both as declared, and as a set of sub-variables; for example,

a variable of type integer can be accessed as several separate variables of type
byte integer

* to access an array element as a simple variable, with consequent saving of machine
time

* to improve the clarity of a program

The store mapping facilities in IMPB0 are provided by means of several components:
* reference variables

* user-written mapping functions

* the ADDR function

* the standard mapping functions

6.1 Reference variables and user-written mapping functions

Two of the fundamental entities from which programs are constructed are constants and
variables (Chapter 2). A variable comprises an identifier (its name), and a type which
specifies what type of value it may have. Its value is a constant, or a reference to a
variable. Thus, the value of a variable of type integer is an integer constant, while the
value of a variable of type integer name is a reference to an integer variable.

A function (Chapter 3) is similar to a variable in that it has an identifier, and a type
which specifies what sort of value it returns. A mapping function (or map) is analogous
to a reference variable in that its type (the type of the value that it returns) is a
reference to a variable; for this reason maps are sometimes called "name functions",

The difference between a variable and a function, of course, is that a variable has its
value stored while a function computes its result.

Examples

1) Use of a reference variable with a map.

In this program, a two-dimensional array is accessed by means of a map, because the
array is symmetrical: i.e. X(i,j) = X(j,i) for all valid i and j. Thus to save storage
space only the values of X(i,j) with i >= j are stored. By keeping only these values
in a one-dimensional array A - which is global to the map - we can make economical use
of store without losing the symmetrical appearance of the array X.

The array is first assigned values and then various references to it involving integer
ALPHA and integer name BRAVO are made.

60 ' IMP80 Language



Reference variables and user-written mapping functions

begin

integer array A(1:210)
integer ALPHA, I, J
integer name BRAVO

integer map X(integer I1,J)
signal event 6 unless 1{=1<=20 and 1<{=J<=20; ! Array bound check.
result == A(I*(I-1)//2 + J) 1f I>J
result == A(J*(J-1)//2 + I)

end

for I = 1,1,20 cycle
X(I,J) = IN\2 + 2%1%J + J\\2 for J = 1,1,I
repeat

ALPHA = X(17,10) {ALPHA assigned the value of the variable returned
{by the call X(17,10) of map X.

BRAVO == ALPHA {BRAVO made to refer to ALPHA (thus BRAVO is now
{synonymous with ALPHA).

BRAVO = 4 {BRAVO (i.e. ALPHA) assigned the value 4.

BRAVO == X(16,9) {BRAVO made to refer to the variable returned by
{the call X(16,9) of map X.

BRAVO = 4 {BRAVO (i.e. the variable it currently refers to)
{assigned the value 4.

ALPHA = BRAVO {ALPHA assigned the value of the variable to which
{BRAVO currently refers. From the previous statement,
{this value is 4.

X(6,15) = 17 {The variable to which reference is returned by
{the call X(6,15) of map X is assigned the
{value 17.

ALPHA = X(15,6) {ALPHA set to the value of the variable returned

{by the call X(15,6) of the map X. From the
{previous statement, and bearing in mind the
{symmetry of X, this value is 17.

end of program

2) Reference variable used as a parameter to a procedure

3)

When a procedure is called, its formal parameters - in the example below SIZE and
STATUS - are assigned initial values according to their types and to the actual
parameters used in the call. SIZE is of type integer and so has the current value of
TOTAL assigned to it; STATUS is of type integer name and so i1s "pointed at" the integer
variable RETURN.

This example is included because procedures with parameters called by name provide a
method for renaming variables, and as such represent a common application of store
mapping techniques.

routine spec TEST(integer SIZE, integer name STATUS)

integer TOTAL, RETURN

.
.

TOTAL = 3

TEST(TOTAL, RETURN)

! TEST called: formal parameters assigned values.

! TOTAL cannot be changed as a result of this procedure call.
! But RETURN can be, since it is called by name.

Mapping a direct access file

The following map enables the programmer to treat a direct access file held on backing
store as though it were a real array with declaration real array FILE(1:NBLOCK, 0:255),
where NBLOCK is the number of blocks in the file.

In use, the only difference from a normal array is that a closing call

real var = FILE(0,n) must be made.

IMP80 Language 61



Reference variables and user-written mapping functione

It is assumed that the direct access file has been associated with channel number 1
prior to the execution of this program.

In this implementation of IMP80, real variables are 32-bit entities, and each block
of a direct access file consiste of 1024 8-bit bytes.

Note that when a virtual memory operating system is being used, a simpler and better
method for mapping arrays onto files may be available - see example in the EMAS IMPSO
seetion of Appendix B.

real map FILE(integer BLOCK, ELEMENT)

! The external routines specified below relate to the use of direct-access
! (DA) files. They are the standard routines provided in most implementations
! of IMP80, but do not form part of the language definition. Further details
! for some implementations are given in Appendix B.
externalroutinespec OPEN DA(integer CHANNEL)
externalroutinespec CLOSE DA(integer CHANNEL)
externalroutinespec READ DA(integer CHANNEL, integername BLOCK,

name START, FINISH)
externalroutinespec WRITE DA(integer CHANNEL, integername BLOCK,

name START, FINISH)

constant integer NO=0, YES=1
own integer CURRENT BLOCK = 0, BLOCK CHANGED = NO
own integer LAST ELEMENT
own real LAST VALUE
own real array BUF(0:255) = 0(256)

unless BLOCK>0 and O<=ELEMENT<=255 start
! Could be an error, or the closing call.
! In either case, tidy up and close the file.
WRITE DA(1l, CURRENT BLOCK, BUF(0), BUF(255)) if BLOCK CHANGED=YES
CURRENT BLOCK = 0

if BLOCK=0 start; ! Closing call.
CLOSE DA(1)
result == BUF(0); ! Irrelevant in this case.

finish

! Error - parameters out of range.
signal event 6
finish

1f CURRENT BLOCK=0 start; ! First call.
OPEN DA(1)
CURRENT BLOCK = BLOCK
READ DA(1, CURRENT BLOCK, BUF(0), BUF(255))
finish elge start; ! Not the first call.
! Has the value of the last element returned by the map been
! changed? If so, note the fact so that the block is written back when
! no longer required by the map.
BLOCK CHANGED = YES if BUF(LAST ELEMENT) # LAST VALUE

if CURRENT BLOCK # BLOCK start
! Block required differs from that currently held in BUF.
! Write curreantly held block back if it has been changed.
WRITE DA(l, CURRENT BLOCK, BUF(0), BUF(255)) if BLOCK CHANGED=YES

! Now get block required.
CURRENT BLOCK = BLOCK
READ DA(l, CURRENT BLOCK, BUF(0), BUF(255))
BLOCK CHANGED = NO; ! Reset change flag.
finish
finish

LAST ELEMENT = ELEMENT
LAST VALUE = BUF(ELEMENT)

result == BUF(ELEMENT)

end; ! Of real map FILE.

IMP80 Language



ADDR and the standard mapping functions
6.2 ADDR and the standard mapping functions

A variable has an identifier, a type and a value. A fourth attribute of an accessible
variable is its address. This is an integer which uniquely specifies its location in the
computer store. The address of a variable can be obtained by use of the standard integer
function ADDR.

Example:

string(27) S
integer ADDRESS OF S

.

ADDRESS OF S = ADDR(S)

The parameter of ADDR can be a varlable or arcay element of any type; in the case of a
reference varlable parameter, ADDR returns the address of the variable to which it refers,
not the address of the reference variable itself.,

Given a variable, it is thus possible to find its addcess. Conversely, given an address,
it is possible to construct a variable of any type, subject to certain restrictions
detailed below. This is achieved by the use of the standard mapping functions.

For each arithmetic and string type there is an associated standard map whose name is the
same as that of the type; thus BYTE INTEGER, LONG REAL, STRING, etc. A standard map has a
single parameter of type integer, which is an address; Lt ceturns a reference to a
variable of the appropriate type, located at that address.

The standard map RECORD is described later in this Chapter.

Example:
integer I, J
byte integer array B(0:3)

I = M’ABCD’

B(3-J) = BYTE INTEGER(ADDR(I)+J) for J = 0,1,3

.

In this example the integer 1 has been unpacked into its four component byte integers
(implementation using 32-bit integers assumed),

Example:

byte integer array IN(0:80)
string(*)name LINE

LINE == STRING(ADDR(IN(0)))

From this point onward the array can be referenced either as an array of bytes or as
the string LINE. Obviously the length byte of the string, normally the flrst byte of
the string location, will have to be set to an appropriate value.

There are a number of points to note about the use of the standard mapping functions:
* They are efflclent,
* An address error will occur {f the address passed to a standard mapping function is not
aligned correctly with respect to the type of reference lmplied.
On some byte addressed machines, for example:
SHORT INTEGER requires the address to be divisible by 2
INTEGER (if 32-bit integers used) requires the address to be divisible by ¢
REAL requires the address tv be livisible by ¢
The maps for the longer arithmetic types may have corresponding requirements.
* In Chapter 3 it was explained that variables declared in a program are allocated

storage on the 8tack, However, if the computer system being used enables an IMP80

IMP80 Language 63



ADDR and the standard mapping functions

program to obtain store addresses of items not on the stack (e.g. items within the
operating system, or a connected file in a virtual memory system), then the standard
mapping functions can be used to refer to them as variables. This is an extremely
powerful facility.

It is possible to cause a location in which, for example, a real constant is stored to
be treated as an integer or a string, etc. While this facility may be useful on
occasions it should be used with care, because: 1) misuse can lead to errors which are
hard to diagnose; 2) it requires a knowledge of the precise format of data types and is
necessarily implementation dependent; 3) the purpose of providing types in IMP80 is to
enable checks to be made that dissimilar items of data are not being erroneously
combined. Use of the standard mapping functions merely to avoid such checks is bad
programming practice.

EMAS IMP80: a standard map, ARRAY, is provided for mapping all array types. It is

deseribed in Appendix B.

RECORD

64

The main use of the standard map RECORD i1s to assign a reference to a record reference
variable. The format of the record in question is that of the reference variable on
the left-hand side.

Example:
record format F(integer A, B, C, real D, string(ll) E)
record (F) R
record (F) array RA(1:50)
record (F) name N1, N2, N3
integer ADDRESS
ADDRESS = address of some store location
Nl == R; ! Record name N1 now synonymous with record R.
N2 == RA(20); ! Record name Nl now synonymous with element 20 of
! record array RA.
N3 == RECORD(ADDRESS); ! Record name N3 now synonymous with a record of format
! F located at address ADDRESS.
Example:
integer J

integer array II(1:100)
record format A(byte integer I, J, K, L or half integer P, Q)

1 Implementation dependent type
record(A)name X

.

x'== RECORD(ADDR(II(J)))

K

Now, for example:

X_I is a reference to a byte of II(J)
X P is a reference to a half-word of 1I(J)

Implementation dependent notes concerning the standard map RECORD are given in
Appendix B.

IMP80 Language



CHAPTER 7

STANDARD PROCEDURES

The standard procedures are those provided automatically, i.e. no specification (spec)
statements are required for them. The standard procedures are listed below, with an
indication of where their descriptions may be found: either a chapter number of this
manual, or "I-S" meaning that the procedure’s precise effect is implementation-specific.
The relevant documents for various implementations of IMP80 are given in Appendix B.

Notes

*

At the time of writing, existing implementations of IMP80 do not have a complete common
set of standard procedures. The first list below includes procedures common to all the
implementations. The other lists relate to specific implementations.

A standard procedure will not be provided in an implementation if it is a function or
map, or has a parameter, of a type not provided in the implementation.

Implementations of IMP80 may provide procedures other than those listed here which do
not require specification statements. In addition, various libraries of external
procedures may be provided. These are not included here; consult the relevant
documentation for details.

Two named constants are predefined:

constant integer NL = {code value for newline character. The ISO value is} 10

constant long real PI = 3.141592653589793 {if 64 bits allocated to a long real}

EMAS IMP80: a standard procedure can be intrinsic. An intrinsic procedure ig one which
is compiled as part of the program (for reasons of effieiency) rather than being
separately compiled. Intrinsic procedures cannot be passed as parameters. The
standard procedures which are intrinsic are noted in Appendix B.

Standard Procedures

Type Name and parameter list Reference
integer function ADDR(name A) 6
byte integer map BYTE INTEGER(integer I) 6
integer map CHAR NO(string(*)name S, integer I) 2
long real function FLOAT(integer I) 2
long real function’ FRAC PT(long real A) 2
half integer map HALF INTEGER(integer 1) 6
integer function IMOD(integer I) 2
integer function INT(long real A) 2
integer function INT PT(long real A) 2
integer map INTEGER(integer I) 6
integer map LENGTH(string(*)name S) 2
long integer map LONG INTEGER(integer I) 6
long long real map LONG LONG REAL(integer I) 6

IMP80 Language 65



Type

long real map
long real function
routine

routine

routine

integer function
routine

routine

routine

routine

routine

routine

real map

record map
routine

routine

short integer map
integer function
routine

routine

routine
string(*)map
string(*)function
string(*)function

routine

EMAS IMP80-specific standard procedures

Name and parameter list

LONG REAL(integer 1)

MOD(long real A)

NEW LINE

NEW LINES(integer I)

NEW PAGE

NEXT SYMBOL

PRINT(long real A, integer I, J)
PRINT FL(long real A, integer 1)
PRINT STRING(string(255) S)
PRINT SYMBOL(integer 1)
READ(name A)

READ SYMBOL(name I)
REAL(integer I)

RECORD(integer 1)

SELECT INPUT(integer I)

SELECT OUTPUT(integer I)

SHORT INTEGER(integer I)

SIZE OF(name A)

SKIP SYMBOL

SPACE

SPACES(integer 1)

STRING(integer 1)
SUBSTRING(string(*)name S, integer I, J)
TO STRING(integer I)

WRITE(integer 1, J)

BEMAS IMP80-specific standard procedures

66

Type

long real function
long real function
long real function
array map

routine

Name and parameter list

ARC COS(long real A)

ARC SIN(long real A)

ARC TAN(long real A, B)
ARRAY(integer I, array format A)

CLOSE STREAM(integer I)

IMP80 Language

Reference

Reference



IMP?7-specific standard procedures

Type Name and parameter list Reference
long real function C0S(long real A) 1I-s
long real function COT(long real A) I-S
long real function EXP(long real A) I-S
integer function EVENT INF(integer I) 3
integer function EVENT LINE(integer I) 3
long integer function LENGTHEN I(integer I) I-S
long long real function LENGTHEN R(long real A) 1-S
long integer function LINT(long long real A) 1-S
long integer function LINT PT(long long real A) I-s
long real function LOG(long real A) I-S
integer function NEXTCH 3
string(*)function NEXT ITEM 5
routine PRINT CH(integer 1) 5
long real function RADIUS(long real A, B) I-S
routine READ CH(name I) 5
routine READ ITEM(string(*)name S) 5
routine READ STRING(string(*)name S) 5
integer fuaction SHORTEN I(long integer I) 2
long real function SHORTEN R(long long real A) 2
long real function SIN(long real A) I-S
long real function SQRT(long real A) I-S
long real function TAN(long real A) I-S

IMP?77-8pecific standard procedures

Type Name and parameter list Reference
routine CLOSE INPUT 5
routine CLOSE OUTPUT 5
routine RESET INPUT 5
routine RESET CUTPUT 5
record format EVENT FM(integer EVENT, SUB, EXTRA) 3
record(EVENT FM)map EVENT
integer function REM(integer A, B) I-S
integer function TYPE OF(name A) I-S

IMP80 Language

67



letter

digit

space

newline T

bar HH

character

comstart

comment

integer T

letdig
name

namelist

int const

.

frac

dec const 12

base const

charnl

char const ::

str const

const

unop
assop
plusminus
eompl
comp2

op

app

recel

operand

APPENDIX A

IMP80 SYNTAX
A|B|C|D|E|F|G|H|I|J|K|L]|M]
NlolP|Q|R|S|T|U|V|Ww]X]Y]|2Z]
a|blcld]el|f|lg|h|i]ilk]l]m]
nfoelplalrls]tlufv]w]x]|y]|z
o|1]|]2|3]&4]|5}6]7]|8]3F9
{space character}

{newline character}

{| character}

L I 2 T B O R A I O 0 N B O P
cl /sl = >tz e Ll N
‘U5 4y | { | letter | digit | space | bar
comment | !

comstart [character]... newline
digit...

letter | digit

letter [letdigl...

name [, namel...

[plusminus] integer

+ linteger]

(int constl] [fracl (@ int const)
int const _ letdig--- | letter ' letdige-+ '
character | newline

‘ eharnl * | M’ charnl... ’

" [charnl]... "

int const | dec const | base const | char const |
str const

+ -1\ T

SRR

+ | -

eomp2 | => | == | \== | ##

Sl =] O >>= <] <=

I A R AN B I BN B A N N o RS
LI T I T

C expr [, exprl... )

__ name [app]

name [app] (recel]... | const | ( expr )

IMP80 Language

Al



expr
count
exprcount
constlist
narr
arrf
decln
adecln

rfelmnt

rfdeclistor ::

rfdeclist
rfdec
rfref
btype

type

namea
namealist
ownlist

owndec

fm
rt

frdel

fop
range
bpair
xTown
%sed
endlist

8c

restofecond

wf

Biu

[}

W

IMP80 syntax

[unop] operand [op operard]...

( expr ) | (*)

expr [count]

= exprcount [, exprcount]...

array

narr

arrf adecln | [[narr] name] namelist

nameligt bpair [, namelist bpair]...

[(narr] name] namelist | narr adecln

( rfdeclist [or rfdeclist]... )

rfdec [, rfdecl]...

type rfelmnt | rfdeclistor

( name )

integer | real | long real

integer | real | long btype | byte [integer] |
short (integer] | half [integer] | string count |
record rfref

name (alias str const]

namea s nameal...

namealist [= expr]

[{narr] name] [spec] ownliet [, ownlist]... |
arrf [spec] namea bpair [constlist]

fn | function | map

routine | type fm

type [[array] name] namelist |
rt [name] namelist (fppl |
name namelist

( fpdel [, fpdell... )

expr : expr

( range [, rangel... )

own | external | constant | const
system | external | dynamic

of program | of file | of list
expr compl expr lcomp2 exprl |

( sc restofeond ) |
not se¢

[and 8c]... | [or s&c]...

while sc restofcond |
for name = expr , expr , expr

if | unless

IMP80 Language



IMP80 syntax

ut ::= name [app] [recel]l... [assop expr] land ui] |
=> name [app]
return |
result assop expr |
monitor [and wui] |
stop |
signal [event] const [, exprl] |
exit |
continue

3

et 1= %4y se restofeond restofiu

restofiu [then] start | them ui [else]

i}

else ::= elge start |
elge ci |
elgse ut

restofes ::=  %iu 8¢ restofeond |
until sc restofeond |
wf

s = 3 | newline

88 ::= begin s |
type decin s |
record format name rfdeclistor & |
[%sed] rt (spec] name [fppl s |
xoun type owndec 8
include str const |
switch namelist bpair |, namelist bpairl... & |
on [event] [, integer]... start & |
ut [restofss] s |
el & |
finish (else] & |
elge s |
[#0f) cycle s |
repeat [until gc restofeond] s |
name [appl : |
name (%) : |
1list s |
end [endlist] & |
comment
8

IMP80 Language



IMP80 syntax

Notes

*

Ab

In the above syntax, items in italics are non~terminals, ‘|’ separates alternatives,
*:1:=’ means ‘is defined as’, items enclosed in [..] brackets are optiomal, and items
followed by ‘...” can be repeated one or more times. All other characters stand for
themselves, except that {...} indicates a "descriptive" definition, involving a newline
character or a character used in the statement of the syntax itself.

If a string of characters does not satisfy the definition of 88 then it is not a valid
IMP80 source statement.

The case of letters is ignored in IMP80 programs except within quoted constants.

Space characters are only significant within character, string or base constants or
following a keyword (real, if, unless, end, not, etc.).

Text preceded by ‘{’, terminated by “}’ and appearing between syntactic elements of a
program is treated as a comment. Such a comment is also terminated by a newline
character; 1t may not include a newline or ‘}’ character.

IMP80 statements are continued on the next line if the current line is terminated with

the keyword ¢. The ¢ is not required if the break comes immediately after a comma.
IMP77: comment statements cannot be continued.

There may be differences between the syntax given above and that used by specific
implementations. See Appendix B for details. For example: 1) the definition of type
may not be as given above, since not all the types are available in some
implementations; 2) implementation dependent extensions may involve modifications to
the above syntax.

IMP80 Language



APPENDIX B

IMPLEMENTATION-SPECIFIC INFORMATION

Bl: EMAS IMP80O

Bl.l Compile-~time errors

The EMAS IMP80 compiler can generate any of the following messages while compiling a
program. The following points should be noted:

* The symbols ‘#’ and ’‘##° appearing in any of the messages below are replaced by
appropriate integer values when the message is output by the compiler.

* The symbols "&° and ‘&&’ appearing in any of the messages below are replaced by
appropriate names (of program variables, routines, switches, etc.) when the message
is output by the compiler.

* Messages numbered 1-100 relate to standard compile-time errors. Messages numbered
101-200 relate to various compile~time limits (compiler table sizes, etc.) being
exceeded. Messages with numbers greater than 200 are warnings — they do not in
themselves indicate an error in the program being compiled.

1 repeat is not required

2 Label & has already been set in this block

4 & is not a Switch name at current textual level

5 Switch name & in expression or assignment

6 Switch label &(#) set a second time

7 Name & has already been declared

8 Routine or fn & has more parameters than specified
9 Parameter # of & differs in type from specification
10 Routine or fn & has fewer parameters than specified
11 Label & referenced at line # has not been set

12 cycle at line # has two control clauses

13 repeat for cycle at line # is missing

14 end is not required

15 # ends are missing

16 Name & has not been declared

17 Name & does not require parameters or subscripts
18 # too few parameters provided for &

19 # too many parameters provided for &
20 {# too few subscripts provided for array &
21 # too many subscripts provided for array &
22 Actual parameter # of & conflicts with specification
23 Routine name & in an expression
24 Integer operator has real operands
25 Real expression in integer context
26 # is not a valid event number
27 & is not a routine name
28 Routine or fn & has specification but no body
29 function name & not in expression
30 return outwith routine body
31 result outwith fn or map body

34 Too many textual levels

37 Array & has too many dimensions
38 Array & has upper bound # less than lower bound

39 Size of Array & is more than X'FFFFFF’ bytes
40 Declaration is not at head of block
41 Constant cannot be evaluated at compile time
42 # is an invalid repetition factor
43 constant name & not in expression
44 Invalid constant initialising & after # items
45 Array initialising items expected ## items given #
46 Invalid external, extrinsic or variable spec
47 else already given at line #
48 else invalid after on event
49 Attempt to initialise extrinsic or format &

50 Subscript of # is outwith the bounds of &

IMP80 Language Bl



B2

EMAS IMP80-specific

finish is not required

repeat instead of finish for start at line #
finish for start at line # is missing

exit outwith cycle repeat body

continue outwith cyecle repeat body
externalroutine & at wrong textual level

Executable statement found at textual level zero

Program among external routines

finish instead of repeat for cycle at line #
Name & has already been used in this format
& is not a record or record format name
record length is greater than # bytes

Name & requires a subname in this context
Subname & is not in the record format
Expression assigned to record &

Records && and & have different formats

Subname && is attached to & which is not of type record

String declaration has invalid max length of #
& is not a string variable

Arithmetic operator in a string expression
Arithmetic constant in a string-expression
Resolution is not the correct format

String expression contains a sub expression
String variable & in arithmetic expression
String constant in arithmetic expression
String operator ‘.’ in arithmetic expression
Pointer variable & compared with expression
Pointer variable & equivalenced to expression
& is not a pointer name

&& and & are not equivalent in type

Global pointer && equivalenced to local &
format name & use in expression

Untyped name & used in expression

for control variable & not integer

for clause has zero step

for clause has noninteger number of traverses
Name & not valid in assembler

Operand # not valid in assembler

Assembler construction not valid

Source line has too many continuations
Workfile of # Kbytes is too small

Dictionary completely full

Dictionary completely full

Too many textual levels

String constant too long

Compiler tables are completely full
Condition too complicated

Compiler incomnsistent

Long integers are inefficient as subscripts
Name & not used

Label & not used

Global for control variable &

Name & not addressable

Semicolon in comment text

Compiler failure: contact Computing Centre Advisory Service

IMP80 Language



EMAS IMP80-specifiec

Bl.2 Event numbers

Failure Event/Subevent
Integer overflow 1/1
Real overflow 1/2
Zero divide : 1/3

SIN, COS, TAN arg out of range 1/4
or inappropriate, COT arg out
of range or inappropriate

TAN too large 1/5
EXP arg out of range 1/6
Int pt too large 1/7
Program too large 2/1
SUB character in data 3/1
Symbol in data 4/1
Symbol instead of string 4/2
Illegal cycle 5/1
SQRT arg negative 5/2
LOG arg negative or zero 5/3
Illegal exponent 5/5
Array inside out 5/6
Capacity exceeded 6/1
Array bounds exceeded 6/2
Resolution fault 7/1
Unassigned variable 8/1
Switch label not set 8/2
Input ended 9/1
ARCSIN arg out of range 10/1
ARCCOS arg out of range 10/2
ARCTAN args zero 10/3
HYPSIN arg out of range 10/4
HYPCOS arg out of range 10/5
RADIUS args too large 10/6
Graph fault 11/1

Bl.3 Differences from IMP80

The following notes are given in the same order and under the same headings as the
descriptions in the body of the manual of the IMP80 items to which they refer. The
notes attempt to describe the EMAS IMP80 departures from and extensions to IMP80.
will be updated from time to time as necessary.

CHAPTER 1: ELEMENTS OF THE LANGUAGE

1.1 Character set
All characters with code values less than 32 are treated as spaces, apart from

NL (ISO code 10)
EM (ISO code 25) - terminates program
SUB (ISO code 26) - causes a syntax fault

It ignores DEL (ISO code 127) and maps all codes greater than 127 according to the

extended Regional Network Code (which is detailed in Regional Communications Memo
JID/78/M20.4).

IMP80 Language

They

B3



B4

EMAS IMP80-specific

1.2 Statements

Continuation

Blank lines between the lines of a continued statement are ignored.

1.3 Statement components

Special symbols

\ and \\ can be replaced by ** and **** respectively.

1.4 Miscellaneous statements

Comments
Note that the continuation rules apply to comment statements.

Machine code

Any source statement starting with an asterisk (*) is taken to be a machine code
instruction. The use of machine code within IMP80 programs is beyond the scope of
this manual.

CHAPTER 2: TYPES, VARIABLES, CONSTANTS AND EXPRESSIONS

2.1 Types
The types provided in EMAS IMP80 are as follows:

1) byte integer
half integer
integer
long integer
real
long real
long long real
string(n)
record( format)

2) Reference types corresponding to each of the types given in (1), designated by
the keyword name appended in each case.

3) Array types corresponding to each of the types given in (1), designated by the
keyword array appended in each case.

4) Array reference types corresponding to each of the types given in (1),
designated by the keywords array name appended in each case.

2.2 Variables

Arrays (all types) can have up to 12 dimensions.

Record variables
Alignment within record formats.
In general the layout of sub-fields within a record is such as to require the
minimum number of padding bytes consistent with sub-field alignment requirements

(detailed below). This can mean that the relative alignment of alternatives is
dependent on the preceding part of the format — it cannot be deduced by

IMP80 Language



EMAS IMP80-gpecific

examining the alternatives alone. Padding bytes may be appended to a record
format to ensure that the alignment would be correct if it were used by a record
array; the amount of this padding depends on the size of the format and the
types of the sub-fields it contains.

If it is necessary to know the size of a record whose format is complex, then
the standard integer function SIZE OF should be used.

Sub-field alignment requirements

{Word boundary: address divisible by ¢
Half-word boundary: address divisible by 2)

Byte integer and string: no alignment requirements.
Half integer: must start on a half-word boundary.

Integer, long integer, real, long real, long long real, record, reference
variable of any type: must start on a word boundary.

Arrays: requirements as for corresponding scalars.

It is stressed that these alignments are carried out automatically; they are
only given here to enable programmers to determine how much padding, if any,
will be used in a record format.

In a record declaration it is permissible to give the actual record format instead
of giving the name of a record format.

Example:
record (integer I, J, string(7) S) A, B, C

It is also permissible to give the name of a record already declared in place of a
record format name. The format of the specified record is then taken as the
required format for the record being declared.

Example:
record (A) D; ! A is the record declared in the previous example.

In record assignments using ‘=’, differences in the formats of the left-hand and
right-hand operands are not faulted if they have the same overall length.

Reference variables

In the declaration of string reference variables, the string variable maximum size
may be omitted. Whether it is or not, the EMAS IMP80 compiler treats the size
specification as ‘(*)’, meaning that can refer to a string variable of any maxinmum
size.

When a record reference variable is assigned to by use of the ‘==’ operator, the
record location referenced by the right-hand operand does "0t have to have the same
format as the record reference variable. In such a case the sub-fields associated
with the reference variable are those in its own format, not those in the format of
the right-hand operand.

own, constant and external variables

own, constant and external variables which are not assigned initial values are set
to binary zeros.

In a two-dimensional array whose first element was (1,1), the order of elements
would be (1,1), (2,1), (3,1), i.e. first subscript changing fastest. It is
necessary to know this when initialising such arrays.

The space allocated to records declared as own, external or constant is filled with

IMP80 Language -5



B6

EMAS IMP80-specific

binary zeros, unless the declaration is followed by = 7, where 7 is an integer
constant in the range [0-255]. 1In this case every byte of the record is initialised
to the given value.

Reference variables may be declared as own, external or constant. They are
initialised as shown in the following example:

constant integer name K INST PER SECOND = X’80C000C0’

The value to which the integer name variable is being initialised specifies a
particular storage location, and is therefore system dependent.

An own, external or constant array name is initialised to refer to a particular
location if its declaration is followed by = 7, where 7 is the address of the
location.

Example:
constant integer array name A = x’AA0022°

The array referred to is one-dimensional, with bounds (0 : 223-1).

2.3 Constants

Character constants
The following form of character constant is additionally provided:
Cluess’ a character constant, like M’....’ but held internally in EBCDIC

code instead of ISO code.

String constants

The following form of string constant is additionally provided:

E"...." a string constant, like "...." but held internally in EBCDIC
code rather than ISO code.

Decimal constants
The following forms of decimal constant are additionally provided:

D’decimal constant’ like decimal conetant but held internally as a
128-bit constant (i.e. as a long long real).

R’ hexadecimal constant’ like hexadecimal conetant but held internally as a
real constant of length 32, 64 or 128 bits depending on the

number of hexadecimal digits specified, which must be exactly 8,
16 or 32.

2.4 Operators and expressions

Arithmetic expressions

\\ is anomalous in that long integer\\integer is carried out by repeated long
integer multiplication but integer\\long integer is carried out by repeated integer
multiplication.

Where the exponent is an integer expression, the operation is carried out by
repeated multiplication.

Where the exponent is a real expression, the result is obtained by using the

standard functions LOG and EXP, and events relating to these functions may be
signalled.

IMP80 Language



EMAS IMP80-gpecific

String operators and expressions
Multiple resolution is permitted; it is treated as a series of simple resolutions.
Example:
S = "WINSTON SPENCER CHURCHILL"
S => A.(" ").B.(" ").C

The above resolution will be treated as
S => A.(" ").PRIV and PRIV => B.(" ").C

The standard string function SUB STRING(S,I,J) returns a null string if I>J - an
event is 1ot gignalled.

CHAPTER 3: BLOCKS AND PROCEDURES

3.1 Block structure and storage allocation

Events
Event 11 is used by the ERCC Graphics Package.
The following two functions are provided:
integer function EVENT INF

This function returns
(event no<<8) ! sub-event no

for the last event which has occurred. An error occurs at compile time if
the function is called in a block with no on event statement, and an
undefined value will result at run time if no event has in fact occurred
when the function is called.

integer function EVENT LINE

This function returns the program line number at which the last event

occurred during execution of the block in question (provided the program was
compiled with line number updating; otherwise 0 will be returned). If no
event has occurred, an undefined value will result.

When EMAS IMP80 programs are "optimised" (a compilation option), it is possible that
an event signalled immediately prior to exiting from a block might 70t cause a
branch to an on event statement in that block, even when it specifies the relevant
event number. This usually affects result statements only. It is a comnsequence of
the computer hardware design (“pipelining").

3.2 Procedures

Those standard procedures which are "intrinsic" (see notes on Chapter 7, below) cannot
be actual parameters.

Functions

The format associated with a record function cannot exceed 256 bytes.

IMP80 Language B7



B8

EMAS IMP80-specific

Maps
A result statement in a map can be of the form
result = integer expression

The effect is to return a reference to a variable of the same type as the map, with

address specified by the integer expression (which usually includes a call of the
function ADDR, described in Chapter 6).

CHAPTER 4: EXECUTABLE STATEMENTS

4.1 Conditions

The == and ## comparators cannot be used to compare references to arrays.

4.2 Instructions

Labels and jumps

The rule that label identifiers have to be distinct is not enforced, but compliance
is recommended.

4.4 cyclefrepeat

For technical reasons on ICL 2900 Series computers, cycles which count down to unity
are more efficient than other types of cycle. Thus

A(1) = 0 for I = N,-1,1
is more efficient than the more common

A(1) = 0 for I = 1,1,N

Conditional repetition

The number of times that a cycle body could be executed is calculated prior to
execution of the cycle. If this number is less than or equal to zero, the control
variable is set to be unassigned and control is passed to the statement following
the matching repeat. Otherwise the control variable is assigned the value of intit
and the cycle body is executed. When the matching repeat is reached the value of
the control variable is tested, and if it is equal to final, control is passed to
the statement following the repeat. Otherwise the control variable has inc added to
its value and the cycle body is executed again.

IMP80 Language



EMAS IMP80-specific

CHAPTER 5: INPUT/OUTPUT FACILITIES

1/0 channels 0 and 81-99 are reserved for system defined devices. Channel numbers in
the range 1-80 can be used for purposes defined by the user, subject only to the rule
that a channel number can only refer to one channel at a time.

5.1 Character I/0

Note that in addition to the standard I/0 procedures described in Chapter 7, some I/0
procedures which require to be explicitly may also be available in the implementation.
See the current System Library Manual for details.

Input of character data

The following 1SO codes (see Chapter 1) are ignored by the character input
procedures: DEL (value 127), and all codes with values less than 32 apart from NL
(10), EM (25) and SUB (26). If it is desired to read these codes, rather than
ignore them, then the procedures READ CH and NEXT CH (described below) should be
used.,

routine READ SYMBOL(name A)
All non-printing characters, excluding NL (ISO code 10) but including CR (ISO

code 13) are ignored by READ SYMBOL. Cf. READ CH, described below.

The following ‘... CH’ procedures are provided in EMAS IMP80. They have the same
effect as their ‘... SYMBOL’ counterparts described above, except that they do not

ignore any ISO characters.

routine READ CH(integer name I)
This routine transfers the internal value of the next symbol from the current
input stream into an integer variable. All characters of the IS0 character set

are passed back by READ CH.

READ CH will pass back EM (the end message character) when end-of-file is
reached and will signal an event if further reads on this file are requested.

integer function NEXT CH

This function reads the next character from the input stream without moving the
pointer to the stream (as with NEXTSYMBOL). All characters of the ISO character
set, including End Message character (EM), are passed back by NEXT CH.

Output of character data

routine PRINT SYMBOL(integer 1)

The least significant 7 bits only of the parameter are used by the routine. If
the value of the expression corresponds to that of a symbol which could be read
by READ SYMBOL (see above) then it is sent to the output stream; if not, the

character SUB (code value 26) is sent.

routine PRINT CH(integer I)
This routine behaves exactly like the standard version of PRINT SYMBOL, i.e. any
character whose code value lies in the range 0-255 is transmitted to the output
stream.

routine PRINT STRING(string(255) S)

This routine operates effectively as a series of PRINT SYMBOL calls. Thus
certain characters will be replaced by SUB, as explained above.

IMP80 Language B9



EMAS IMP80-specific

routine SPACES(integer N)
routine NEWLINES(integer N)

In the case of the procedures SPACES and NEWLINES, only the least significant
byte of the parameter is used. Thus a maximum of 255 spaces or newlines can be
transmitted by a single call.

Closing streams
routine CLOSE STREAM(integer I)

The parameter must be an integer expression which will evaluate to the number of
the stream to be closed. The currently selected input or output stream cannot
be closed, and any attempt to do so will cause an event to be signalled.

5.2 Binary 1/0

The following binary I/0 procedures are provided in the implementation. They have to
be explicitly specified. Full details of their use can be found in the current System
Library Manual.

external routine OPEN SQ(integer I)

external routine CLOSE SQ(integer I)

external routine READ LSQ(integer I, name K, L, integer name J)
external routine READ SQ(integer I, name K, L)

external routine OPEN DA(integer I)

external routine CLOSE DA(integer I)
external routine READ DA(integer I, integer name J, name K, L)

external routine WRITE DA(integer I, integer name J, name K, L)

CHAPTER 6: STORE MAPPING
6.2 ADDR and the standard mapping functions
ARRAY

There is only one standard mapping function, ARRAY, for all the array types. It
takes two parameters: an address, and an array format to specify the type of the
array being referenced. array format statements are analogous to record format
statements in that they enable an identifier to be associated with a type and a
structure. They can then be referenced by name in subsequent statements.

array format statements declared outside any procedures in an external file (see
Section 3.3) must be given the attribute own.

ARRAY can only be used to assign to a reference variable of the appropriate array
type.

Example:
integer array AONE(1:10 000)

integer array name ATWO
integer array format AFORM(1:100, 1:100)

ATWO == ARRAY(ADDR(AONE(1)), AFORM)

ATWO(27, 43) = 928

The array format statement is used to describe the characteristics of the array
ATWO - if.e. the number of dimensions and bounds for each dimension.

As an alternative to using an array format for the second parameter, the name of
another array (of the appropriate type) can be used, if one with suitable
characteristics has been declared and is in scope.

B10 IMP80 Language



EMAS IMP80-specific

In order to map record arrays, the second parameter of ARRAY must either be an
existing record array variable, or a record array format. A record array format
must specify both the dimensions of the array and the format of each (record)
element of the array:

record (record format) array format name (array dimensions)

Example:

This example is of a record array format being used in an IMP80 program running

under the operating system EMAS 2900. The integer function SMADDR returng the
address of a file connected in the virtual memory of the user process.

routine PAYCHECK(integer CHANNEL, RECNO)

integer I, J, K, START, LENGTH

string(11) NAME

externalintegerfnspec SMADDR(integer CHANNEL, integername L)

record format PAYF (string(1ll) SURNAME, integer AGE, SEX, YEAR,
integerarray SALARY (1:12))

! Each record thus formatted contains 72 bytes.

record(PAYF)array format PAYAF(1:RECNO)

record(PAYF)array name PAY

.. ee

! Assume that a file was associated with channel CHANNEL,
! prior to the execution of the routine.

START = SMADDR(CHANNEL,LENGTH); ! File now connected.

if LENGTH < 72*RECNO start
PRINTSTRING("File too small:")
WRITE(LENGTH,1); NEWLINE
PRINTSTRING("Must be at least")
WRITE(72*RECNO,1); NEWLINE
return

finish

PAY == ARRAY(START,PAYAF)
! Now record array name PAY has been mapped onto the file.
! Note that START was set by the SMADDR call.

.
.

NAME=PAY(I)_SURNAME
if PAY(I)_SALARY(J)>350 ....

PAY(K)_YEAR=1978

end; ! Of routine PAYCHECK.
RECORD

The standard record map RECORD returns a reference to a record whose format is
unspecified but "very large". This is acceptable when assigning a reference to a
reference variable, as described above, since in EMAS IMP80 the format of the
reference on the right—-hand side of such an assignment statement does not have to
match that of the reference variable on the left-hand side. However, a record
variable cannot be assigned by a statement of the form

RECVAR = RECORD(ADDRESS)

Since the sizes of the records on each side are not equal. On the other hand, the
form

RECVAR <- RECORD(ADDRESS)
is permitted; as many bytes as RECVAR can hold (determined by its format) will be

transferred.

IMP80 Language Bll



Bl12

CHAPTER 7:

A standard procedure can be intrinstic.

EMAS IMP80-specific

STANDARD PROCEDURES

An intrinsic procedure is one which is compiled

as part of the program (for reasons of efficiency) rather than being called by the

normal mechanism.

Intrinsic procedures cannot be passed as parameters.

procedures which are intrinsic are as follows:

integer

function ADDR(name I)

array map ARRAY(integer I, array format name J)

byte integer map BYTE INTEGER(integer I)

byte integer map CHARNO(string(*)name S, integer I)

long real function FRAC PT(long real A)

integer
integer

function IMOD(integer I)
function INT(long real A)

integer map INTEGER(integer 1)

The standard

integer function INT PT(long real A)
byte integer map LENGTH(string(*)name S)
long integer map LONG INTEGER(integer I)

long long real map LONG LONG REAL(integer I)
long real map LONG REAL(integer 1)
long real function MOD{longreal A)

routine

routine
routine
integer

NEWLINE

NEWLINES(integer I)
NEWPAGE
function NEXT CH

string(l)function NEXT ITEM

integer
routine

function NEXT SYMBOL
PRINT CH(integer I)

routine PRINT STRING(string S)
routine PRINT SYMBOL(integer I)

routine READ CH(name I)

routine READ ITEM(string(*)name S)

routine READ SYMBOL(name I)

real map REAL(integer I)

record map RECORD(integer I)

routine SELECT INPUT(integer I)
routine SELECT OUTPUT(integer I)

routine SKIP SYMBOL
routine SPACE
routine SPACES(integer I)

string(*)map STRING(integer I)
string(l)function TO STRING(integer I)

EMAS IMP80-specific standard procedures

Note that the given reference is either the number of a chapter of the manual or it

is "I~S", meaning "Implementation-Specific".

Library Manual for 2900 Compilers" (ERCC 1978) for further details.

Type

long real function
long real function
long real function
array map

routine

long real function
long real function
long real function
integer function
integer function

long integer function
long long real function
long integer function
long integer function
long real function

Name and parameter list

ARC C0S(long real A)

ARC SIN(long real A)

ARC TAN(long real A, B)
ARRAY(integer 1, array format A)
CLOSE STREAM(integer I)
CcoS(long real A)

COT(long real A)

EXP(long real A)

EVENT INF(integer I)
EVENT LINE(integer I)
LENGTHEN I(integer I)
LENGTHEN R(long real A)
LINT(long long real A)
LINT PT(long long real A)
LOG(long real A)

IMP80 Language

In this case refer to the "System

Reference

I-S
I-S
I-S
App B
5

I-S
I-§
I-S

3

App B
I-§S
I-s
I-S
I-S
I-5



EMAS IMP80-specific

Type
string(1l)function
routine
long real function
routine
routine
routine
integer function
long real function
long real function
long real function
long real function

APPENDIX A: IMP80 SYNTAX

Name and parameter list
NEXT ITEM
PRINT CH(integer I)
RADIUS(long real A, B)
READ CH(name I)
READ ITEM(string(*)name S)
READ STRING(string(*)name S)
SHORTEN I(long integer I)
SHORTEN R(long long real A)
SIN(long real A)
SQRT(long real A)
TAN(long real A)

Reference

=
[} [}
[N N SRR R R R

HTH

The syntax of the machine code instructions mentioned in the EMAS IMP80-specific
notes on Section 1.2 are not included in the IMP80 syntax given in Appendix A.

The definitions of some phrases in EMAS IMP80 differ from those given in Appendix A:

type ::= integer | real | long btype | byte [integer] |
half [integer] | string [count] | record rfref

op CEE R AN I A B R A
!

AN R P od IR

| 10| & | .| % | kkxx

arrf ::= narr [format]

(This permits array format declarations, used in conjunction with the standard map

ARRAY.)

]

rfref ( name ) | rfdeclistor

char const ::= ‘' charnl * | M’ charnl,,. ’ | C ' charnl,.. ’
E " charnl... " | D’ dec const * | R ' letdig... ’

IMP80 Language

BI3



IMP?77-gpecific

B2: IMP77

B2.1 Compile-time messages

During the compilation of a program the compiler may generate messages which are
generally sent to the listing file and possibly to an interactive report stream. These
messages are either error indications or warnings.

Errors

An error message indicates that the current statement does not obey the rules ot the
language or that a necessary statement has been omitted from the previous statement
sequence.

Once an error has been detected the compiler ignores the rest of the faulty statement
and continues compiling with the next. This may result in consequential errors which
will disappear once the original error is corrected. For example, the compiler will
fault the following declarationm:

integer A,B,,C,D
The extra comma will cause the declaration of C and D to be ignored and so subsequent
references to them will be faulted ("not declared"). In general it is good practice to
correct errors in the order in which they occur in the listing.
Error messages start with an asterisk (*), and where possible they contain a marker

which points into the offending statement at the position at which the compiler
detected the error.

The error messages are as follows:

Atom An unknown atomic element has been encountered. This is commonly
caused by mistyping a keyword.
Example:

integer, rutine, strat

Bounds The size of an array or switch vector is negative.
Example:
switch S(10:1)
own integer array X(-1:-10)

Context An otherwise correct statement has been given in a context where it is
meaningless.
Examples:
exit not contained within a cycle/repeat loop

return not inside a routine

Context recf recf is the identifier of a record format which has been used to define
a record or record array within the definition of reef itself. Note
that it ig valid to declare record name and record array name variables
in this context.

Example:
record format F(integer X, record(F) Y)

Duplicate A local identifier is being redeclared.

Example:
real SUN, MON, TUE, WED, THUR, FRI, SAT, SUN

Form An unexpected atom has been encountered. This is usually caused by the
omission of an atom or the insertion of an extra atom.
Examples:
integer A, B,, C

PRINTSTRING("BYE") NEWLINE {semicolon missing}

Bl4 IMP80 Language



Format

Index

Match

Not a variable

Not declared

Order

Size

Too complex

IMP?77-gpecific

A record with a format which is currently undefined has been used.
Example:

record format spec FM

record(FM)name PT

PT = 0

A switch label has been given an index outwith the declared bounds.
Example:
switch S(1:5)

826):

The definition of a procedure does not match a previous specification.

Example:
routine spec PROC(integer X)

routine PROC(real X)

An attempt has been made to use an object with a constant value in a
context where it could be modified. This is commonly caused by using
named constants as though they were variables.
Example:

constant integer TEN = 10

TEN = TEN+1
An undeclared identifier has been used. This error is also commonly

generated by omitting the percent from the beginning of certain
keywords (usually 1f, finish and repeat).

Example:
integer SWOP
SWAP = 0
Note the following common error: string(7)name P

This declares a simple string variable NAMEP instead of what was
probably intended, a string reference variable P.

This is similar to Context but is reserved for statements which are
given before they are valid or after other statements which invalidate
them. There are three common causes:
1) The declaration of variables (other than own or external) global to
the outermost block of a program.
Example:
integer X
begin

2) The declaration of an array following a label.
Example:
begin
LAB: integer array A(l:5)

3) Declarations following an on event statement.
Example:
on event 7 start
stop
finish

integer array XX(2:7)
A constant has a value outwith the permitted range.
Example:
string(300) S
The statement is too large or complicated to be analysed. This error
is quite rare and can invariably be cured by splitting the offending

statement into two or more simpler statements.

Note that putting redundant continuations (c) at the end of each line
of a large list of array initialising constants may provoke this error.

IMP80 Language - BlS



IMP?7-gpecific

Type The type of a given variable or expression does not match the type of
object required by the context.
Example:
integer X
byte integer name P
P == X
X = 1.2

begin missing An end has been found which has no matching begin (or procedure
heading).

cycle missing A repeat has been found which does not have a matching cycle in the
current block.

end missing The end of the program file has been reached before all blocks have
been terminated.

finish missing The end of a block has been reached and it contains a start which has
no matching finish.

repeat missing The end of a block has been reached and it contains a cycle which has
no matching repeat.

result missing This occurs at the end of a function, map, or predicate when it is not
evident that control will always be passed back from the procedure at
run~time.
Examples:
integer function F(integer X)
result = 0 1f X <= 0
end

predicate EVEN(integer N)
true if N&l1=0
false 1f N&l#0
! This will give the error as the compiler
! is unlikely to be clever enough to detect
! the ‘completeness’ of the conditions.

end

start missing The compiler has found a finish for which there is no matching start.

proc missing The procedure identified by proc has been specified in the preceding
block (by a spec statement) but has not subsequently been defined.
Example:
begin
routine spec CHECK

CHECK

end

Warnings

A warning indicates that the compiler has detected something which, although not an
error in itself, may indicate a logical error elsewhere.

Warning messages start with a question mark (?) and are as follows:
Access Control cannot reach the current statment. That is, the previous

executable statement was or implied an unconditional transfer or
control, and the curreant statement is not labelled.

Bl6 IMP80 Language



IMP?7-gpecific

Non-local The control variable of a for loop is not local to the current block.
Such use of globals can lead to unexpected infinite loops.
Example:
integer P
routine R

for P = 1,1,10 cycle (P is global to routine R.}

end
R for P = 1,1,20

ident unused The given identifier has been declared but never used.

Catastrophic errors

Under certain circumstances the compiler will be unable to continue after discovering
an error, usually because its tables will have been filled or corrupted.

These errors are as follows:

Compiler error There is a fault in the compiler itself. Contact the Computing Centre
Advisory Service.

Switch vector too large
A switch vector has been declared with a very large number of elements.

Too many names The compiler has no room left to describe new named objects.

Dictionary full
The compiler has no room left to hold the text of new identifiers.

This is usually caused by declaring a large number of long identifiers.

Input ended The end of an input file has been reached without end of file or end of
program being detected. This is most commonly caused by mistyping end
of program, or leaving out a closing string quote.

Some IMP77 compilers may choose to treat this as a warning and complete
the compilation.

String constant too long
A string constant has been discovered to contain more than 255
characters. This is commonly caused by leaving out the terminating
quote.

Included file file does not exist
The compiler cannot gain access to a file specified in an include

statement.

Too many faults!
This is generated when the compiler discovers a high fault rate in the
program. It is used to terminate compilations which would otherwise
generate a large number of faults. This is commonly caused by faulty
declarations, or by attempting to compile something which is not an
IMP80 program.

IMP80 Language Bl7



IMP?77-8pecific

B2.2 Event numbers

The details of an event can be obtained when it occurs by use of the record map EVENT,
described in the IMP77-specific notes on Section 3.1. Where appropriate, EVENT EXTRA
is given in brackets in the descriptions below.

event sub-class meaning (+extra information)

0 TERMINATION
-1 abandon program
0 normal termination; equivalent to stop
>0 user generated error

1 OVERFLOW

integer overflow
real overflow
string overflow
division by zero

SN -

2 EXCESS RESOURCE
not enough store
output exceeded
time exceeded

wN -

3 DATA ERROR
1 symbol in data (+symbol)

4 CORRUPT DATA
1 data transmission error
corrupt control variable

5 INVALID ARGUMENTS

for cannot terminate

illegal exponent (+exponent)
array inside-out

string inside-out

illegal parameter

VSN -

6 OUT OF RANGE

array bound fault (+index)
switch bound fault (+index)
Illegal event signal (+event)
CHARNO out of range (+index)
TOSTRING out of range (+symbol)

WV s WwWN

7 RESOLUTION FAILS

8 UNDEFINED VALUE

unassigned variable

no switch label (+index)
for variable corrupt

W N -

9 1/0 ERROR

input ended

illegal stream (+stream no)
file does not exist

W N -

10 LIBRARY PROCEDURE ERROR

11-15 GENERAL PURPOSE

B18 IMP80 Language



IMP?77-specific

B2.3 Differences from IMP80

The following notes are given in the same order and under the same headings as the
descriptions, in the body of the manual, of the IMP80 items to which they refer. The
notes attempt to describe the IMP77 departures from and extensions to IMP80. They will
be updated from time to time as necessary.

CHAPTER 1: ELEMENTS OF THE LANGUAGE

1.1 Character set

Except for NL all characters not enclosed in quotes and with ISO codes outwith the
range 32 to 126 inclusive are treated as spaces, but will be sent to the listing
unaltered. The character FF (form feed) may be used to cause a new page to be taken in
program listing files.

1.2 Statements

Continuation

Continuation is implied if a line break occurs after the keywords or or and.

1.4 Miscellaneous statements

Comments

Comments cannot be continued onto subsequent lines by any of the methods described.

list and end of liset
end of 1list and 1list are nested, so that two end of list statements require two
matching 1ist statements to switch on the listing again. This means that it is
possible within an included file to control the listing of the contents of the file,
without changing the listing status of the rest of the program.
Machine code
There are two methods of adding in-line machine code sequences to an IMP77 program:
1) *ainteger constant
Statements of this form plant the given integer constant as an instruction.
2) *machine code
Statements of this form enable pseudo assembler statements to be included which

can make use of program-declared objects. Refer to the relevant implementation
notes for details of the syntax of machine-code.

IMP80 Language B19



IMP?77-specific

CHAPTER 2: TYPES, VARIABLES, CONSTANTS AND EXPRESSIONS

2.1 Types

The types provided in IMP77 are as follows:

1) byte integer
short integer
integer
long integer
real
long real
string(n)
record( format)

2) Reference types corresponding to each of the types given in (1), designated by
the keyword name appended in each case. A general reference type, designated by
the single keyword name, is also provided.

3) Array types corresponding to each of the types given in (1) and in (2),
designated by the keyword array appended in each case.

4) Reference types corresponding to each of the types given in (3), designated by
the keyword name appended in each case.

2.2 Variables

All variables can be assigned initial values. The syntax is as for own variable
initialisation. Stack variables are re-initialised whenever they are re-created.

Record variables

A record format spec statement is provided to enable a record format to be referred
to before 1t has been declared. A statement of the form

record format spec name

specifies a record format identifier. Until the format is declared fully in a
record format statement the identifier may only be used in the declaration of record
reference variables.

Example:
record format spec Y
record format X(record (Y) name P, real VALUE)
record format Y(record (X) name Q, integer VALUE)

Record formats of this sort are useful in list processing when the items in the
list are records of alternating format X, then Y, then X, etc.

Alignment of record format alternatives.

The start of each of a set of alternatives within a record format is aligned as
though its first element were the most ‘demanding’ within all the alternatives,
so far as alignment is concerned. Thus, if a set of alternatives contains a
long real element aanywhere within it, the alternatives are aligned as though
they started with the long real. This can of course cause padding bytes to be
required in the record just before the bracketed alternatives, and it may
result in further padding being required within the alternatives. It is done
this way because it means that the alignment of aiternatives is not affected by
anything outside the brackets, and so curious effects concerning alignment
within the alternatives do not occur as a result of some other part of the
record format being changed.

B20 IMP80 Language



IMP?77-specific

Example:
record format(byte integer A,
{byte integer D, short integer X or c
string(2) S)

would not be aligned

as might be expected, but as follows

0 1 2 3 4
;/’ /.
A//lnéx

The integer function SIZE OF should be used with a record of the format in
question as parameter if there is any doubt about the amount of space required.
Reference variables
When a record reference variable is declared, the format can be specified as (¥*),
meaning that the variable can refer to a record of any format. Such a reference

variable has no associated sub-fields; it is only of use when it is pointed at
subsequently by a reference variable with a specific format.

When an array reference variable is being declared, the number of dimensions of the
array to which it can refer is specified in brackets:
Example:

real array (4) name SPACETIME

The bracketed integer can be omitted if the dimensionality is 1.

In IMP77 reference variables can be grouped into arrays.

Examples:
integer name array FREQ('A’:"2")

record (CARFM) name array TABLE(-5:22)

Furthermore, reference variables which can point at such arrays are provided.

Examples:
integer name array name FREQP

record (CARFM) name array name TABLE REF

IMP77 also provides a ‘general’ reference variable type which can be pointed at a
variable of any type. Arrays of general refereunce variables, and reference
variables which can point at such arrays, are also provided.

IMP80 Language B2l



B22

IMP?77-gpecific

Examples:
name NA, NB

name array WHAT(0:6)

name array name GEN POINTERS

own, constant and external variables

own, constant and external variables which are not assigned initial values are
undefined, and any attempt to use them before they are assigned will cause an event
("unassigned variable") to be signalled.

The ‘<-’ assignment operator can be used in own, constant and external variable
initialisation,

own, constant and external arrays can only be one-dimensional in IMP77.

The values of the sub-fields of records declared as own, external or constant are
undefined, unless the whole record is initialised to binary zeros in the declaration.

Reference variables may be declared as own, external or constant. They are
initialised as shown in the following example:

constant integer name CLOCK == 16_3C

The value to which the integer name variable is being initialised specifies a
particular storage location, and is therefore system dependent.

2.3 Constants

Base constants

The base can have any positive integer value. However, if it is greater than 36
then not all the digits will be representable by 0...9 and A...Z.

Example:
I = 256 1234

where I is a four-byte integer, assigns the values 1, 2, 3 and 4 respectively to the
four bytes of I.

A base constant can include a decimal part, in which case it is of type real.

Examples:
3 0.1 {=1/3}

16_3.102A9

2.4 Operators and expressions

Arithmetic expressions

The modulus of an integer expression can also be obtained by enclosing the
expression between vertical bars; e.g. |I-J| .

The modulus of a real expression can also be obtained by enclosing the expression
between vertical bars; e.g. |X-Y| .

IMP80 Language



IMP?77-gpecific

CHAPTER 3: BLOCKS AND PROCEDURES

3.1 Block structure and storage allocation

Events

There are two extensions to the range of event numbers:

Event 0 1is defined - Termination (see Section B2.2)
Event 15 is available for user definition

The form
on event * gtart

is permitted. It is a shorthand way of specifying every event number,
t.e¢ 0, 1, ..., 14, 15.
A standard record map is provided to enable the programmer to determine further

information when an event occurs.,

record format EVENT FM(integer EVENT, SUB, EXTRA)
record(EVENT FM)map EVENT

EVENT returns a reference to a system—provided record which contains the

parameters of the last event to have been signalled. If no event has been
signalled then all the fields of the record are set to zero.

3.2 Procedures

The identifiers of parameters in a spec statement must be distinct.

Maps
The keyword map may be replaced by name function or name fn.
The record format given in the specification or heading can be replaced by (%),
meaning that the reference returned by the map may be to a record of any format; the
actual record format used depends on the context.
Example:
record(*)map SURVEY(integer I, real X)

The standard map RECORD (described in Chapter 6) is of this sort.

Predicates

A predicate is a procedure which tests the validity of an hypothesis and may be used
wherever a simple condition is required. When a predicate is called its statements
are executed until either the instruction true is executed, in which case the
predicate returns and the simple coandition it constitutes is true, or the
instruction false is executed, in which case the predicate returns and the simple
condition is false.

Note that a predicate does not return any value.
The first line of a predicate has the following form

predicate name (parameter list)

IMP80 Language B23



B24

IMP77-gpecific

Example:
integer N

predicate SINGLE DIGIT
true 1f 0 <= N <=9
false

end

N = N//10 unless SINGLE DIGIT

3.3 External linkage

External files

A single begin/end block at the outer level is allowed, so long as it immediately
precedes the end of file statement. The block’s end statement and the end of file
statement can then be replaced by the single statement end of program.

CHAPTER 4: EXECUTABLE STATEMENTS

4.2 Instructions

stop

stop is event 0 and can therefore be trapped.

4.4 eycle/ repeat

Conditional repetition

An event is signalled if the total number of times that a cycle body could be
executed is less than 0. Otherwise the control variable is assigned the value
init - ine, Before each execution of the cycle body the value of the control
variable is compared with final. 1If they are equal control is passed to the
statement following the matching repeat; otherwise nc is added to the control
variable and the cycle body is executed. It follows that if the cycle execution is
terminated by means of this test, the control variable will thereafter be equal to
final in all cases.

The control variable of a cycle can be an integer of any type.

Any statement containing the keyword cycle can be matched with any statement
containing the keyword repeat.

Example:
while I<=100 cycle

.
.

repeat until J=4

The cycle-termination test implied by each statement is made when that statemeant is
executed.

IMP80 Language



IMP?7-specific
CHAPTER 5: INPUT/OUTPUT FACILITIES

Input channel 7 and output channel 7 are logically distinct, and can thus be open
simultaneously.

5.1 Character I/0

IMP77 works with streams of 8-bit codes.
Input of character data

routine READ SYMBOL(name A)

Eight bits are transferred from the input stream to the parameter.

The actual parameter supplied can be of type string, of any permitted maximum
length, in which case a single character is read and held internally as a
one-character striang.

routine READ STRING(string(*)name S)

READ STRING is not provided. Instead the routine READ, described below, is extended
to accept a string name parameter and to read a string into {it.

routine READ ITEM(string(*)name S)

READ ITEM is not provided. Instead the routine READ SYMBOL has been extended, as
described above, to accept a string name parameter.

string(*)function NEXT ITEM

NEXT ITEM is not provided.

Input of numeric data
routine READ(name I)

The parameter to READ can be the name of a string, of any length. In this case READ
reads in a string of characters as follows: any 1SO control characters plus spaces
and newlines are first skipped, then all characters excluding DEL, up to but not
including the next control character or space or newline, are read and built up into
a string which is assigned to the string parameter. Enclosing quote delimiters are
"not" required.

OQutput of Numeric Data

routine WRITE(integer N, J)

The total number of print positions to be used is defined by the modulus of the
second parameter. If this parameter is negative, no space character is output
before a positive value.

routine PRINT(long real X, integer J, K)

The second parameter is interpreted in the same way as the second parameter of WRITE
(described above).

IMP80 Language B25



IMP?7-gpecific

Closing streams

routine CLOSE INPUT
or
routine CLOSE OUTPUT

In each case the routine closes the current stream, input or output as appropriate.
The input or output stream then becomes null, until another channel is selected by
use of SELECT INPUT or SELECT OUTPUT.

routine RESET INPUT

This routine resets the current input stream to the start of the file.

routine RESET OUTPUT

This routine throws away all output on the current stream.

CHAPTER 6: STORE MAPPING

6.2 ADDR and the standard mapping functions
RECORD

The standard map RECORD is of the form
record(*)map RECORD(integer AD)

i.e. the reference returned by RECORD may be to a record of any format; the actual
format is determined by the context. Thus RECORD can be used to assign to a
complete record.

Example:
record format AF(integer array X(1:20), string(10) TITLE)
record{AF) A
integer AD

A = RECORD(AD) {The record format used is that of A, i.e. AF}

-
.

Note that statements of the form

RECORD(I) = RECORD(J)

are not allowed, since no format is indicated from the context.

B26 IMP80 Language



IMP77-speecific

CHAPTER 7: STANDARD PROCEDURES

IMP77-specific standard procedures

Note that the given reference is either the number of a chapter of the manual or it
is "I-S8", meaning "Implementation-Specific". 1In this case refer to "The IMP-77
Language", by Peter S. Robertson, Internal Report CSR-19~77, Department of Computer
Science, University of Edinburgh, for further details.

Type Name and parameter list Reference
routine CLOSE INPUT 5
routine CLOSE OUTPUT 5
routine RESET INPUT 5
routine RESET OUTPUT 5
record format EVENT FM(integer EVENT, SUB, EXTRA) App B
record(EVENT FM)map EVENT
integer function REM(integer A, B) I-S
integer function TYPE OF(name A) 1-s

APPENDIX A: IMP80 SYNTAX

Comment statements cannot be continued onto subsequent lines by any of the continuation
methods described in Chapter 1.

The syntax of the machine code sequences described in the IMP77-specific notes on
Section 1.2 are not included in the IMP80 syntax given in Appendix A.

The definitions of some phrases in IMP77 differ from those given in Appendix A:

operand := name [app] [recel],,. | const | (expr) | ! operand |

btype ::= integer | real

type ::= 1integer | real | lomg [btype] | byte [integer] |
short [integer] | string [count] | record rfref

narr ::= [name] array [( integer )]

(This permits type name array declarations, i.e. arrays of reference variables, and
of reference variables which can be pointed at such arrays.)

8e add the following alternative:
[ narr] name namelist

(This permits the declaration of general reference variables, described elsewhere in
the IMP77-gpecific notes.)

rt ::= routine | predicate | type fm

ui add the following alternatives:
true | false

IMP80 Language B27



% convention (keywords) 4
! 24
11 25
" 20
# 44
## 44
& 24
‘ 20
(*) 16, 19, 41, 48
+ 21
- 21
-> 26
. 26
/ 21
/1 21
< 44
<~ 21, 24, 26
<« 24
<= 44
<O 44
= 21, 24, 26, 44
== 15, 16, 40, 44
> 44
>= 44
2> 24
\ 21, 25
\= 44
\=e 44
\\ 21, B6
° 21
~e 21
19
T...} 7
~ 25
actual parameter v 36
ADDR 63, 65
address 63, 65
address comparison 44
Advisory Service iii
Algol 60 iv
alias 18, 43
alternative 13
and 45
ARC COS 66
ARC COS arg out of range (event) B3
ARC SIN 66
ARC SIN arg out of range (event) B3
ARC TAN 66
ARC TAN args zero (event) B3
arithmetic
expression 22
operator 21
precedence 21
variable 11
ARRAY 63, 66
array 9, 10
dynamic bound 12
array bounds exceeded (event) B3
array format Bll
array inside out (event) B3
assignment 6, 21, 24, 28
Atlas Autocode iv

IMP80 Language

INDEX

) S 19
base constant 19
begin 5
binary I/0 59
block structure 29
BNF 111
built-in see intrinsic
Burroughs Extended Algol v
BYTE INTEGER 63, 65
byte integer 9
C' LR ’ BG
c 6
call by name 36
call by value 36
capacity exceeded (event) B3
channel 54
CHAR NO 27, 65
character
constant 20
input 55
1/0 54
non-graphic 1
output 57
set 1
character constant 20
character 1/0 54
input 55
output 57
character set 1
CLOSE INPUT 59, 67
CLOSE OUTPUT 59, 67
CLOSE STREAM 58, 66
closing streams 58
comma 6
comment 7
comparator 44
# 44
#it 44
< 44
<= 44
<O 44
= 44
== 44
> 44
>= 44
\= 44
\== 44
compiler iii
compile—-time message
EMAS IMP80 Bl
IMP77 Bl4
compound instruction 46
concatenation 26
condition 44
and 45
comparator 44
compound 45
double-sided 44
not 45
or 45
order of testing 45
simple 44
string resolution 45
conditional instruction 46
conditional repetition 51
Index 1



constant
array
record
reference variable
string
constant
base
character
decimal
integer
multi-character
named
real
string
variable
contents
continuation
continue
corrupt data (event)
cos
coT
cycle
cycle
continue
endless
exit
for
repeat until
simple form

D'.'.’

data error (event)
data type

decimal constant
direct access

dynamic

E" oo (1)

Edinburgh

else

EMAS

EMAS IMP80
ADDR
arithmetic expression
ARRAY
binary I/0
block structure
character constant
character data

input
output

character I/0
character set
closing streams
comment
compile-time error
compile-time fault
condition
conditional repetition
constant
constant variable
continuation
cycle/repeat
decimal constant
differences from IMP80
event

ARC COS arg out of range
ARC SIN arg out of range

ARC TAN args zero
array bounds exceeded

array inside out
capacity exceeded

Index 2

Index

17
18
19
19
19
19
19
20
19
3
3
20
3
20
17
i
6
52
B18
67
67
51
50
52
50
52
52
52
52

B6

B18

9

19

see binary 1/0
42

B6
iv
49
iv, v
111
B10
B6
B10
B10O
B7
B6

B9
B9
B9
B3
Bl10
B4
Bl
Bl
B8
B8
B6
B5
B4
B8
B6
B3
B7
B3
B3
B3
B3
B3
B3

B3,

EMAS IMP80, event (continued)
EXP arg out of range
graph fault
HYPCOS arg out of range
HYPSIN arg out of range
illegal cycle
illegal exponent
input ended
INT PT too large
integer overflow

LOG arg negative or zero

program too large
RADIUS args too large
real overflow
resolution fault

SIN, COS, TAN arg out of ramge

SQRT arg negative

SUB character in data
switch label not set
symbol in data

symbol instead of string

TAN too large
unassigned variable
zero divide
expression
external variable
function
instruction
Jump
label
machine code
map
mapping function
miscellaneous statements
operator
own variable
procedure
RECORD
record variable
reference variable
special symbol
standard procedure
statement
storage allocation
string constant
string expression
string operator
syntax
type
variable
end of list
end of program
endless cycle
ERCC
error message
EVENT
event
system defined
user defined
EVENT FM
EVENT INF
EVENT LINE
event list
excess resource (event)
executable statement
exit
EXP
exp arg out of range (event)
expression
arithmetic
logical
string

IMP80 Language

33, 67,

B3

B18



external 17, 41, 42
array 18
record 19
reference variable 19

external file 42

external linkage 41

external variable 17

false B23

fault iii, Bl, Bl4

finish 32

FLOAT 23, 65

for 51

for cycle 51

formal parameter 36

format 13

FRAC PT 23, 65

function 39
intrinsic 65
side effect 40

general purpose (event) Bl18

global 29

global variable 30

grammar Al

graph fault (event) B3

HALF INTEGER 63, 65

half integer (type) 9

HYP COS arg out of range (event) B3

HYP SIN arg out of range (event) B3

IBM 370 11

ICL 2900 11

identifier 3, 10

if 46

illegal cycle (event) B3

illegal exponent (event) B3

IMOD 22, 65

IMP
evolution iv

IMP77 1ii
ADDR B26
arithmetic expression B22
base constant B22
block structure B23
catastrophic error B17
character data

input B25
character I/0 B25
character set Bl19
closing stream B26
comment B19
compile~time message Bl4
Access B16
Atom Bl4
begin missing Bl6
Bounds Bl4
Compiler error B17
Context Bla
cycle missing B16
Dictionary full Bl17
Duplicate Bl4
end missing Bl6
finish missing Bl16
Form Bl4
Format B15
ident unused B17
Included file does not exist B17
Index Bl5
Input ended B17
Match B15

Index

IMP77, compile-time message (continued)

Non-local
Not a variable
Not declared
Order .
proc missing
repeat misgsing
result missing
Size
start missing
String constant too long
Switch vector too large
Too complex
Too many faults!
Too many names
Type
conditional repetition
constant
constant variable
continuation
cycle/repeat
differences from IMP80
error
event
corrupt data
data error
excess resource
general purpose
invalid arguments
i/o error
library procedure error
out of range
overflow
resolution fails
termination
undefined value
event number
external file
external linkage
external variable
instruction
list/end of list
machine code
map
mapping function
miscellaneous statements
numeric data
input
output
operators and expression
own variable
predicate
procedure
RECORD
record variable
reference variable
standard procedure
statement
stop
storage allocation
syntax
type
variable
warning
IMP80
comparison with Algol60
comparison with Atlas Autocode
history
implementation
machine code
object code
philosophy

IMP80 Language

B17
B15
B15
Bl15
Bl6
B16
Bl6
Bl5
B16
B17
B17
B15
B17
B17
B16
B24
B22
B22
B19
B24
B19
Bl4
B23
B18
B18
B18
B18
B18
B18
B18
B18
B18
B18
B18
B18
B18
B24
B24
B22
B24
B19
B19
B23
B26
B19

B1S,

B25
B25
B22
B22
B23
B23
B26
B20
B21

B27
B19
B24
B23
B27
B20
B20
Bl6

67,

iv
v
iv
iil
v
iv

iv

Index 3



IMP80 (continued)
readability
recent developments
run—-time support
syntax
implementation
EMAS IMP80O
IMP77
include
input
input ended (event)
input/output
instruction
conditional
INT
INT PT
INT PT too large (event)
INTEGER
integer expression
integer overflow (event)
integer (type)
intrinsic function
invalid arguments (event)
1/0
binary
character
1/0 error (event)
IS0

jam transfer
Jump

KIOOO'
KDF9
keyword

label
Lattice Logic Ltd
LENGTH
LENGTHEN I
LENGTHEN R
library procedure error (event)
LINT
LINT PT
list
local variable
LOG
LOG arg negative or zero (event)
logical expression
logical operator
!
1
&
&=~
K
>
with arithmetic operator

\

~

LONG INTEGER

long integer (type)
LONG LONG REAL

long long real (type)
LONG REAL

long real (type)

loop

lower case

Manchester University

Mark 1
Mercury

Index 4

Index

Bl4

54
B3
54
46
46
22, 65
22, 65

63, 65
22
B3

B18
54
59
54

BI18
20

21
47

19
iv

47
111
27, 65

see cycle
1

iv
iv
iv

manual 1ii
conventions in 5
map 40
mapping function 40, 60
example 60
result statement 40
standard 63
user-written 60
message Bl, Bl4
niscellaneous statements
MOD 23, 66
monitor 48
name 15
name 10
named constant 20
name-type variable 15
NEW LINE 57
NEW LINES 57, 66
NEW PAGE 57, 66
NEXT CH 56, 67
NEXT ITEM 56, 67
NEXT SYMBOL 55, 66
NL 1, 18
not 45
null string 20
numeric data
input 56
output 58
on event 5, 32
ones—complement 20
operator 21
arithmetic 2]
or 13, 45
out of range (event) B18
overflow (event) Bl18
own 17
array 18
declaration 18
inftialisation 18
record 19
reference variable 19
string 19
paging iv
parameter 36
actual 36
by name 36
by value 36
formal 36
procedure 38
philosophy and style (IMP80) iv
P 18
PL360 v
pointer variable see reference variable
precedence 21, 25
precision 9
predicate B23
preface 1ii
PRINT 58, 66
PRINT CH 57, 67
PRINT FL 58, 66
PRINT STRING 57, 66
PRINT SYMBOL 57, 66

IMP80 Language



procedure
external
global variable
heading
parameter
recursive
spec statement
standard
user-written
procedure as parameter
program
example
structure
program too large (event)

quotes (' and ")
B ...’
c‘...l
) R
E"O-l"
K'.."
R ees’
) S

R'eed’
RADIUS
RADIUS args too large (event)
READ
READ CH
READ ITEM
READ STRING
READ SYMBOL
REAL
real expression
real overflow (event)
real (type)
recent developments (IMP)
RECORD
record
alternative format
array
assigment to 0
assignment operator
format
format spec
list processing
name
operator
sub-field
type
variable
record format
RECORD (mapping fn)
record (type)
recursive procedure
reference type
reference variable
assignment to
REM
repeat
repeat until
RESET INPUT
RESET OUTPUT
resolution fails (event)
resolution fault (event)
result
Robertson, Peter
routine
routine call

Index

34
36
35
35
36
36
35

36
38

64, 66

15, 60

IMP80 Language

scope 30
SELECT INPUT 54, 66
SELECT OUTPUT 54, 66
SHORT INTEGER 63, 66
short integer (type) 9
SHORTEN 1 67
SHORTEN R 67
signal event 32, 33
SIN 67
SIN, COS, TAN arg out of range (event) B3
SIZE OF 66
SKIP SYMBOL 55, 66
SPACE 57, 66
space character 1
SPACES 57, 66
spec 35
spec statement 35
special symbols 4
SQRT 67
SQRT arg negative (event) B3
stack 30
standard procedure 36, 65
intrinsic 65
list of 65
start 32
start/finish 49
statement 5
component 3
continuation 6
types of 6
Stephens, Peter 114
stop 48
storage allocation 29, 30
store mapping 60
gtream 54
closing 58
STRING 63, 66

string
comparison 13
concatenation 26
constant 20
expression 26
name 16
operator 26
resolution 26
type 9
variable 12
string (type) 10
SUB character in data (event) B3
sub-event 32
sub-field 13
SUBSTRING 27, 66
switch 47
switch 47
switch label not set (event) B3
symbol in data (event) B3
symbol instead of string (event) B3
syntax Al
notes on Ab
systen 42
TAN 67
tan too large (event) B3
termination (event) B18
then 46
TO STRING 28, 66
true B23
TRUNC 23
twos—complement 20
Index 5



type
arithmetic
array
byte integer
half integer
integer
long integer
long long real
long real
real
record
reference
short integer
string

TYPE OF

unassigned variable

unassigned variable (event)

undefined value (event)
unless

until

user-written procedure

variable
arithmetic
global
local
pointer
record
reference
string
unassigned

while cycle

Whitfield, Prof. H.
WRITE

X...'

zero divide (event)

Index 6

Index

O WO OVW O O

NW OO OO OO

58, 66
19

B3

IMP80 Language



