UNIVERSITY OF

EMAS 2800:
SUBSYSTEM WRITER'S MANUAL

A guide to the develorment of a
subsystem for the multi-access

operating system EMAS 2200

by J.X. Yarwood

edited by J.M. Murison

Preliminary edition: Jume 1979

EMAS 2900:

SUBSYSTEM WRITER'S MANUAL

A guide to the development of a
subsystem for the multi-access
operating system EMAS 2900

By J.K. Yarwood

Edited by J.M. Murison

June 1979

1 Intro

2 Conve

3 Proce
3.0
3.1
3.2
3.3

3.4

4 Acces

5 Direc
5.0
5.1
5.2
5.3
"S54
5.5

5.6

6 Proce

References

Appendices

CONTENTS

duction

ntions and terminology

ss start—-up and entry to a subsystem
Start-up and entry to Director

Fields in the file index

Work files

Environmental information for the subsystem

Entry to the subsystem

s to Director procedures

tor monitoring facilities
Fields in the file index

Test basefile name

Director monitor filename
Primitive subsystem monitoring
Contingency monitor level
Director monitor level

Director version

ss termination

10

11
11
11
11
12
13
14

15

16

18

CHAPTER 1
INTRODUCTION

Programs running in a user process in EMAS 2900 have access to
* the un-privileged instruction set of the 2900 series
* a virtual memory, currently of 32 Mbytes

* a set of procedures, collectively known as the "Director interface",
which enables the process to do the following:

a) create and access files

b) perform interactive I/0

c) handle error and asynchronous contingencies
d) access "private" magnetic tapes

e) send and accept inter-process messages

The Director interface is described in detail in Appendix 1.

Since the procedures comprising the Director interface do not provide
facilities for program compilation, loading or execution, it is assumed
that most users of the System will wish either to adopt an existing set
of such facilities or to write their own. Such a set of facilities is
known as a "subsystem". The appearance of EMAS 2900 to a user is
determined by the appearance of the subsystem he is using.

There is available with EMAS 2900 the "Edinburgh Subsystem", which
provides facilities for developing and running user programs and
packages. This subsystem 1s used in Edinburgh University; its appearance
to users is described in Ref. 1.

It is not intended, however, that the Edinburgh Subsystem should provide
the only user interface to the System, but that other installatioms
should be free to provide their own subsystems, reflecting their
particular requirements. This manual describes the facilities available
to the writers of such subsystems.

Familiarity with "EMAS 2900: Concepts" (Ref. 2) is essential.

It has been a design principle of EMAS 2900 that a user process may not
interfere, intentionally or otherwise, with any other process., At the
same time, if a subsystem does not correctly use the Director interface,
the process can easily disappear without trace, particularly before
establishing workable contingency handling. The facilities described
here are intended to allow a subsystem to be built in an incremental way
from an interactive terminal, and avoiding such pitfalls.

Since a very considerable amount of basic work has already been

established in the form of the Edinburgh Subsystem, it would be

reasonable to expect that:

a) A new subsystem would be prepared using the facilities of the
Edinburgh Subsystem.

EMAS 2900 Subsystem Writer's Manual 1

b) A new subsystem would be created in the Edinburgh standard object file
format.

However, the extent to which Edinburgh Subsystem conventions have been

assumed at the Director interface is minimal, and is explained where
appropriate in this manual.

EMAS 2900 Subsystem Writer's Manual

CHAPTER 2
TERMINOLOGY AND CONVENTIONS

In general, use should be made of the "EMAS 2900: Concepts" manual

(Ref. 2), which contains a glossary of terms used in this and other EMAS
2900 documents. The following notes supplement that glossary and
describe additional relevant terms.

Local Controller, Supervisor

In this manual the terms "Local Controller" and "Supervisor" are used
to describe resident supervisory code concerned with controlling the
user process.

File system number, disc number

EMAS disc-packs have two decimal digits as the last two characters of
the 6~character label, e.g. EMASO2. The decimal number which the pair
of digits represent is called the disc number or the file system
number (interchangeably).

System disc

System start—up comprises IPL followed by the loading into main store
of a Supervisor (Global Controller, Local Controller and device
handlers) from a specified or default site on a specified disc. That
disc is called the "System disc" for the session, since from that same
disc various System components are used by default: Director,
permanent processes 1, 2 and 3 (respectively called DIRECT, VOLUMS and
SPOOLR), and the Edinburgh Subsystem. The sites containing the code
and GLAP (see below) for these components are comnected into the
virtual memory of each user process, as appropriate, and paged from
their respective sites on the System disc.

GLAP, GLA

In the Edinburgh standard object file format, code and certain other
areas are shareable. However, the area which contains the following
components is fundamentally unshareable; it also needs to be written
to at program load time and during execution:

a) global variables (perhaps having initialisation values)
b) references to code and data areas in other modules
c) code and data entry descriptors in this module

This area in the object file is called the GLAP (Gemeral Linkage Area
Pattern). The initial action of a program load is to connect the
object file into virtual memory, and then to make a copy of the GLAP
into another segment which is writeable, and unshared by any other
user process, leaving the complete object file (including the GLAP)
available for shared use by other processes., The copy of the GLAP in
the unshared segment is called the GLA (General Linkage Area).

EMAS 2900 Subsystem Writer's Manual 3

Main log

System components are able to note chosen events in a System file
called a "main log". When a current main log file is full, or when
the command D/NEWLOGFILE to process no. 1 (DIRECT) is given, a new
file is supplied and the old one is passed to process no. 3 (SPOOLR).
It is queued by SPOOLR until the JOURNAL system (Ref. 3) accepts it
for analysis and long-term storage. When the D/NEWLOGFILE command is
given, a copy of the current file is also sent to the line printer
queue, in SPOOLR.

Director is able to monitor process start-up and other events - as

described in this manual - by writing either to the main log or, if
specified, to a file belonging to the process owner,

IMP programming language

In this manual, programming entities and record formats are described
in terms of the IMP programming language (Ref. 4).

EMAS 2900 Subsystem Writer's Manual

CHAPTER 3
PROCESS START-UP AND ENTRY TO A SUBSYSTEM

3.0 Start-up and entry to Director

Processes are created by communication with the permanent process no. 1,
DIRECT, in three ways:

* By the arrival of a log-on message from the front-end network.
* By a (batch) start-up message from SPOOLR.

* By an operator command to DIRECT: D/START username

DIRECT creates three work files to be used by the new process,
respectively for the process stack, the Local Controller stack and the
Director GLA (see Chapter 2). The disc addresses of the three work files
are passed to the Supervisor as a '"start process" request.

If the start-up is successful, DIRECT sends a message to the new process
with further information, such as the reason for start-up and the
interactive terminal number. The new process also recéives information
direct from the Supervisor as it starts. The Supervisor has connected,
in the virtual memory of the new process, the Director code segment (held
in one of four fixed positions on the System disc) as segment 2, the
Director GLA file as segment 3, and the process stack as segment 4,

Entry to the Director code is at the byte offset in segment 2 contained
in the second word of the Director code file, Director first makes a
copy, into segment 3, of its own GLAP from the (back of the) code file,
and then analyses the "reason for start—up" and other information. It
then prepares to enter the subsystem.

Director prints out on the main log (see Chapter 2) a report of the
process start-up, and then searches for the process owner's file index.
The disc number containing the index may be known (e.g. in the case of
batch start-up); otherwise all on-line discs are searched, starting with
the System disc.

3.1 Fields in the file index

The file index contains several fields which specify how the process
should run. Some of these fields are determined exclusively by the
System Manager; others are controlled by the process owner if he is
running at ACR level 5 or less. These fields can be set by use of the
Director procedure DSFI, invoked either from the System Manager's process
MANAGR or in a previous invocation of the user's process. Some of the
fields may also be set by commands to the DIRECT process.

The following is a list of fields relevant to process start-up:

EMAS 2900 Subsystem Writer's Manual 5

Field DSFI TYPE no. DIRECT command
Basefile name 0 D/SETBASEF
D/BASEF
Interactive and batch 5
passwords
ACR level at which the 7 (priv.) D/ACR
process is to run
Director version number 8 (priv.)
Process stack file size 10
Process concurrency limits 14 (priv.)
Director monitor level 16
Contingency monitor level 17
Director monitor file name 19
Test basefile name 35

The items marked "priv." may be set only by processes running at an ACR
level less than the default subsystem ACR level (currently 6), and in
particular by the MANAGR process. ACR 5 currently gives access to all
Director "privileged" facilities.

The passwords and concurrency limits items are used by DIRECT before
process start—up; the rest are relevant as described below.

3.2 Work files

First, a further work file, #SIGSTK, is created by the new process to
form its contingency (or "Signal") stack. This file is connected into
the virtual memory of the new process, currently as segment 6. When a
contingency occurs, the Supervisor enters (or re-enters) a second
process, using the segment as process stack; this second process is a
"co-process" of the user process. The code executed in the co-process is
the Director routine SIGNAL, which implements the contingency
arrangements defined as part of the Director interface (Appendix 1).

Next, the basefile (see Section 3.1) is connected into the virtual memory
as segment 32, and 33 if necessary. This is the object file containing
the code and GLAP of the subsystem. If the basefile identifier is null
then the default subsystem is used: this is assigned a 512 Kbytes fixed
site on the System disc, currently starting at epage number X380.
Otherwise the file specified must exist and the process being started
must have read and execute access to it. If the basefile is unavailable
for any reason, the default subsystem is entered, a message of the
following form having first been sent to the main Oper console:

BASEFILE CONN FAIL n

6 EMAS 2900 Subsystem Writer’s Manual

where n is an error code specified in the Director interface definition
(see the end of Appendix 1). The basefile name is held in the process
file index (see Section 3.1). It must be of the form

{filename>
or <username).{filename)

where <{username> has 6 characters and <{filename> has up to 1l characters.

3.3 Envirommental information for the subsystem

Next, Director creates and connects two more work files, a "basegla",
#BGLA, and #UINFI, to contain details about the process for the
subsysten.

#BGLA is to be used by the subsystem to contain its GLA (a copy of the
GLAP from the basefile). It is connected at the next available segment
after the subsystem code segment.

#UINFI contains data in the following format:

recordformat UINFF (string(6) USER, string(31) BATCH CMD FILE, c
integer MARK, FSYS, PROCNO, ISUFF, REASON, BATCH ID, SESS IC LIM, ¢
SC IDENS AD, SC IDENS, STARTCNSL, AIOSTAT, SCT DATE, SPAREl, c
SPARE2, SPARE3, AACCT REC, AIC REVS, string (15) JOBNAME, c
string(31) BASEFILE NAME)

Fields in this segment of potential use to a subsystem are as follows:
USER The six-character name of the process owner.

BATCH CMD FILE For a batch process (see REASON) the name of a file
containing commands to be executed.

MARK Currently l; to be used in achieving forward compatibil-
ity if this record format is to be drastically changed.

FSYS The file system (disc number) on which the user’s file
index and files reside.

PROCNO The process number.

ISUFF A single digit, held as an ISO character, which serves as

an "invocation number" for the process. If more
processes than one belonging to a single user are to be
concurrent, a subsystem may wish to create work files
having distinct identifiers by concatenating this
character to a standard file name.

REASON This gives the reason for the creation of the process:
0 = interactive log—on
1 = started from an OPER console

2 = started as a batch (non-interactive) process by
SPOOLR.

EMAS 2900 Subsystem Writer’s Manual ‘ 7

BATCH ID A unique integer identifier associated with the batch job
(for REASON=2).

SESS IC LIM The maximum number of thousands of machine instructions
which may be executed during the current session by the
process. For interactive sessions this is currently a
very large number. For batch sessions it is a number
given when a job is submitted to the SPOOLR process for
queuing and subsequent execution. If this limit is
reached by the process, it is terminated with a message
at the main Oper console:

SIGNAL FAIL 4

A subsystem should preferably guard against this
occurrence by keeping an eye on the number of
instructions executed in the current session, using
Director procedure DSFI (TYPE=21).

SC IDENS AD, These are used to acquire access to the Director
SC IDENS procedures, as described in Chapter 4.
STARTCNSL Gives the logical number of the Oper console from which

the process was started (for REASON=1).

AIOSTAT The address of a record describing interactive I/0
status. The format of the record is:
(integer IAD, string(15) INTMESS, ¢

integer INBUFLEN, OUTBUFLEN, INSTREAM, OUTSTREAM)

SCT DATE This may be used in conjunction with SC IDENS AD and
SC IDENS.

JOBNAME A character string identifier associated with the batch
job when it was submitted to the SPOOLR process (for
REASON':Z) .

BASEFILE NAME The name of the basefile in use by the process.

3.4 Entry to the subsystem

Finally, Director connects the System Call Table and procedure
identifiers (described in Chapter 4), and then enters (i.e. calls) the
subsystem. This it does as follows:

* The processor PC is set to point to the address which is the basefile
segment address plus the contents of the second word of the basefile.

* The processor LNB is set to the start of the processor stack segment,
currently local segment 4.

* The processor SF is set to be 7 words greater than LNB.
* The processor PSR is set to contain the ACR level equal to that
specified in the ACR field of the index (see Director procedure DSFI,

TYPE=7; a zero field in the index specifies the default subsystem ACR
level, currently 6). Settings of other PSR bits are not specified.

8 EMAS 2900 Subsystem Writer's Manual

The subsystem is then entered as though by standard 2900 procedure CALL
with two 32-bit (integer) parameters. The two parameters are:

1) An integer = 1, to be used to achive compatibility in the event of
future changes.

2) The address of the UINFF record, described in Section 3.3 above.
The first action of the subsystem should be to copy the GLAP, which
follows the code in the basefile, into the GLA segment. Apart from the

copying, the code which does this may only access the code segment and
the stack segment.

EMAS 2900 Subsystem Writer's Manual

10

CHAPTER 4
ACCESS TO DIRECTOR PROCEDURES

This chapter describes how a subsystem acquires access to the Director
procedures by forming System Call descriptors from the pairs of values
(i,j) associated with the identifiers of the procedures forming the
Director interface. Knowledge of the 2900 Series System Call mechanism
(Ref. 5) is assumed.

The fields SC IDENS AD, SC IDENS and SCT DATE in the record format UINFF,
described in Section 3.3 above, are relevant.

SC IDENS AD is the address of a record array whose elements have the
following format:

recordformat SC IDF (string(31) IDEN, integer I, J)

SC IDENS is the number of elements in the record array.

In the Edinburgh standard object module format, calls to external
routines in modules compiled separately involve a machine instruction
CALL with a 64-bit operand which is a descriptor descriptor. If the
operand instead is a System Call descriptor then the System Call
mechanism is invoked, providing controlled access to higher-privilege
procedures (such as the Director procedures).

When a version of Director is created, a list of identifiers specifying
permitted procedure entry points is referenced, a new System Call Table
entry is created, and the identifier and (i,j) values are placed in the
record array described above. The task of a subsystem requiring access
to a Director procedure is thus that of selecting the correct (i,j) pair
from the record array, creating a System Call descriptor containing the
(i,j) values, and making that descriptor the operand of a CALL
instruction.

Subsystem writers using the Edinburgh standard object module format
should consult Ref. 6.

The field SCT DATE has been provided to remove the need for a subsystem
to satisfy its references to Director procedures dynamically, and to
enable them to be fixed up when the subsystem is created. SCT DATE is a
unique identifier associated with a given version of Director. 1If the
SCT DATE current at the time a subsystem is entered is identical to that
current when the subsystem was created, then clearly the (i,j) values and
entry identifiers obtaining when the subsystem was created will serve for
invocations of the new subsystem. The new subsystem will of course have
to retain code for fixing up Director references dynamically should it
find that SCT DATE is different from that current when it was created.

EMAS 2900 Subsystem Writer's Manual

CHAPTER 5
DIRECTOR MONITORING FACILITIES

5.0 Testing a new subsystem

This section addressses the practicalities of testing a new subsystem.

In particular it draws attention to the difficulties of testing code
which initially has no access to the terminal I/0 procedures and which
cannot satisfactorily diagnose programming errors (that is, until correct
operation of the contingency mechanisms has been mastered).

We first describe in more detail the fields in the file index (see
Section 3.1) which are specially relevant to this situation, namely:

Field DSF1 TYPE value
Base file name 0
Director version number 8
Director monitor level 16
Contingency monitor level 17
Director monitor filename 19
Test basefile name 35

Director version number, Director monitor level and contingency monitor
level are cleared to default values following a System IPL.

5.1 Test basefile name (DSFI, TYPE=35)

We have stated that "basefile name'" specifies the name of the object file
that 1is to be entered as the "subsystem'", and that the version residing
on a fixed site on the System disc is used if that name is null. For a
process belonging to the file index owner, For a process belonging to the
file index owner, "test basefile name", if non-null, overrides the
setting of "basefile name", even if the latter is null, for the next
invocation only. Thus if the subsystem under test fails disastrously the
next log-on will yield the default or specified subsystem, which can then
be used to study the failure and remake the test subsystem,

5.2 Director monitor filename (DSFI, TYPE=19)
The Director monitor filename, if non-null, specifies a file belonging to
the file index owner, into which Director places the following:

* Process failure messages not diagnosed by the subsystem,

EMAS 2900 Subsystem Writer's Manual 11

* Extra monitoring of Director procedure entries (see Section 5.5:
Director monitor level), or extra monitoring of contingencies (see
Section 5.4: Contingency monitor level).

* Text specified, by the process, to Director procedure DMONITORTEXT.

So that a clear picture of what has happened to a new subsystem can be
obtained, this file should preferably be new (all zeroes except that the
third word must contain the file size in bytess) and be at least 16
Kbytes in size. The format of the file, after Director has placed text
in it, is as follows. The first 32 bytess have format:

recordformat F (integer NEXT FREE BYTE, TEXT REL START, MAXBYTES, c

ZERO, SPAREl, SPARE2, NEXT CYCLIC, SPARE3)
As stated, MAXBYTES must first have been set to the file size in bytess.

TEXT REL START, NEXT FREE BYTE.and NEXT CYCLIC are pointers relative to
the start of the file. They specify the area of the file into which text
has been placed, as follows:

* If NEXT FREE BYTE has been set by Director equal to MAXBYTES, then the
area between TEXT REL START and MAXBYTES is being used as a circular
text file, and NEXT CYCLIC specifies the bytes into which the next
item of text will be or would have been written.

* If NEXT FREE BYTE is less than MAXBYTES then the file has not (yet)
been filled up by Director. 1In this case NEXT CYCLIC is maintained
equal to NEXT FREE BYTE.

If the file is not available to Director for any reason, or if the
pointers are not satisfactory, no text will be placed in the file. If
MAXBYTES is set greater than the actual length of the file, the process
is likely to terminate in disorder.

With regard to "test basefile name" (DSFI TYPE=35), when Director has
connected the monitor file at process start-up it sets the file index
field holding the monitor filename to null so that the next invocation of
a process belonging to the file index owner will be able to inspect the
Director monitor file of the test session which failed,

Likely contents of the Director monitor file for a new subsystem might
indicate:

* Process failed with no contingency information set ("SIGNAL FAIL 1")

* Process failed with repeated contingencies ("SIGNAL FAIL 3"), when
attempted diagnosis of a failure also fails,

5.3 Primitive subsystem monitoring

12

It would be prudent for a new subsystem to place diagnostic messages
itself into the file, by calling the Director procedure DMONITOR TEXT,
for conditions such as being unable to set up the interactive terminal
I/0 (indicated by a non-zero result from Director procedure DENABLE
TERMINAL STREAM).

EMAS 2900 Subsystem Writer's Manual

5.4 Contingency monitor level

For the case of being unable to satisfy correctly references to the
Director procedures, and for other programming errors not otherwise
diagnosable, the file index field "contingency monitor level" will be
useful, This field is zeroed at System start-up; it can be set by a call
of Director procedure DSFI (TYPE=17). Bits in this word have meanings as
follows:

Bit value Meaning and use

2%%(Print a routine trace-back on the occurrence of a
contingency, with values of variables, etc. This bit should
not be used unless the subsystem is being programmed in the
IMP language, since failure in Director diagnostics can lead
to the process stopping in disorder.

2%%] Print text describing the contingency in words and codes
("CLASS/SUBCLASS") .

2%%2 Print a hexadecimal dump of the stack segment at the time of
the contingency.

2%%3 Print a hexadecimal dump of Director GLA at the time of the
' contingency (not useful to subsystem writers).

2%%4 Print the contents of the virtual memory (relating segment
number to filename and to disc address) at the time of the
contingency.

2%%5 Print a de—assembly from the code segment of the area around

the value of the PC register at the time of the contingency.

2%%6 Print out the machine registers at the time of the
contingency.

A minimum useful value for this field is perhaps 66. Values 4 and 32
will be invaluable, and 16 may deliver useful assistance when a subsystem
is becoming established.

In order to diagnose rapidly the situation in which a subsystem has been
unable to satisfy its references to Director procedures, it is useful to
have a recognisable pattern in the places where the System Call
descriptors are intended to be placed. With the contingency monitor
level 64, that pattern will be found in the printing of the machine
registers DRO and DRl 1f the filling of the System Call descriptor was
unsuccessful, '

The contingency monitor level field in the file index can also be set by
typing, at the Oper console, a command of the form:

n/SIGMON m O
where n 1s the process number (as displayed on the Oper screen)

m is an integer specifying the required value of the field, as
above

EMAS 2900 Subsystem Writer's Manual 13

5.5 Director monitor level

The Director monitor level fields in the file index comprise a bitmask
(32 bits) specifying which Director procedures are to be monitored at
entry, and an integer DEPTH, specifying the depth of monitoring to be
supplied. Not all Director entries can be monitored using this
mechanism, partly for reasons of efficiency in a working system, but the
following bits have been allocated:

Bit value Director procedure
2%*] DCREATE
2%%2 DDESTROY
2%%3 DCONNECT
2%%4 DDISCONNECT
2%%5 DFILENAMES
2%%6 DRENAME
2%%7 DFINFO
2%%8 PRIME CONTINGENCY
2%*9 READID
2%%10 DISCID
2%*]1 DPERMISSION
2%%12 DOFFER
2%*13 DACCEPT
2%%14 DSETIC
2%%15 DFSTATUS
2%%16 DNEWGEN
2%%17 DCHSIZE
2%%18 DTRANSFER
2%*19 DSTOP
2*%*20 DSFI
2%%2] DNEW OUTWARD CALL
2%%22 DNEW INWARD CALL
2%%23 DNOMINATE STACK
2%%24 ACREATE

14 EMAS 2900 Subsystem Writer's Manual

Bit value Director procedure

2%%25 ADESTROY
2%%26 DRESTORE
2%%27 DMOD ARCH
2%%28 DMESSAGE

The form of the monitoring is that of the IMP language run-time
diagnostics. In addition, at procedure exit the result of the Director
procedure is printed in the form R=n. n is -1 if a result is not
relevant.

If DEPTH is zero, the Director procedure name is printed and, provided
that a non-optimised version of Director is being used, the values of the
parameters to the procedure are also printed. DEPTH should be zero
unless the subsystem is being written in a language which generates
Edinburgh Subsystem standard diagnostics; a non—-zero value specifies that
an extra trace-back of procedures calling the Director procedure is to be
printed.

5.6 Director version

A System disc has four fixed sites (256 Kbytes each), for up to four
versions of Director. Site zero is used by default, and will normally
contain a Director compiled without symbol tables for run—time
diagnostics. 1In this case the monitoring described in Section 4.5 above
will be of minimal value, as only the procedure name will be printed and
the values of parameters will not appear. It may be possible to assign a
non-default Director site to contain a version compiled to include symbol
tables. Setting the Director version field in the index causes the next
interactive log-on by the process owner to use the specified Director
version (0, 1, 2 or 3) rather than the default version (0). This
facility should only be used after consultation with the System Manager,
as the contents of a given Director site cannot always be guaranteed to
be constant, or even valid.

EMAS 2900 Subsystem Writer's Manual 15

16

CHAPTER 6
PROCESS TERMINATION

When a process terminates under control of Director (as should always be
the case in principle), Director prints a message, both on the main log
and in the process's Director monitor file if applicable, indicating the
reason for stopping. If the subsystem requested termination of the
process by calling Director procedure DSTOP, the integer parameter REASON
is printed. However, if Director initiates the stop sequence, for
example because a contingency has been incorrectly handled, then a REASON
is printed from the list given below.

Since these values are pre—assigned, a suggested convention is that
subsystems use REASON=100 for a normal stop, and values 101-199 to
specify detected abnormal conditions.

REASON Meaning

0 Error condition noted in momnitor printing (main log and/or
monitor file),

1 A contingency occurred, but the Director procedure PRIME
CONTINGENCY (used to specify a subsystem contingency
procedure to be executed) had not previously been called.

2 A program error has occurred during execution of the
subsystem's contingency handling procedure and before a call
of Director procedure DRESUME. (A call of DRESUME indicates
that diagnostic actions are complete, and more specifically
that the contingency procedure itself is again ready to
handle further contingencies.)

3 The number of program error and virtual store contingencies
for the process has exceeded a certain fixed number,
currently 32, The purpose of this limit is to terminate the
contingency loop which will occur if the subsystem
contingency procedure executes satisfactorily but the
computation repeatedly "resumed to" immediately fails.

4 The number of instructions executed by the process exceeds
the limit specified for the session. In the case of an
interactive session this is currently a very large number,
but may be subject to the System Manager's control. In the
case of a batch session, it is the number specified when the
batch job was submitted to the SPOOLR process. A subsystem
should normally arrange, through use of Director procedures
DSETIC and DSFI (TYPE=21), that this session limit is not
violated, in order to initiate the termination under its own

control.
5 Not used.
6 A program error has occurred during execution of a Director

procedure. Currently this may be caused by supplying the
wrong number of parameter words to a procedure; later machine
modification levels will enable this condition to generate a
"subsystem program error" contingency.

EMAS 2900 Subsystem Writer's Manual

7 Illegal call of Director procedure DRESUME: the value of the
LNB parameter is >0 but is not at least 5 words below the
machine register LNB contents at the time of the call of

DRESUME.

8 Illegal call of Director procedure DRESUME: the parameter LNB
specifies Director’s contingency stack segment, which is
reserved.

9 Illegal call of Director procedure DRESUME, specifying

resumption of a computation in which a virtual store error
(address error) has just occurred.

10 Illegal call of Director procedure DRESUME, specifying
resumption of a computation when a contingency has not in
fact occurred.

11 A processor stack-switch has failed to occur, perhaps when a
call of Director procedure DRESUME has specified (through
parameter LNB) a segment which is not the normal or other
nominated stack segment.

12 Illegal call of Director procedure DASYNC INH to despatch
(accept) a queued asynchronous contingency, either when no
contingency is queued, or before the subsystem
contingency-handling procedure has indicated, through a
suitable call of Director procedure DRESUME, that it is able
to accept further contingency notifications.

13 An "emergency stop" command has been sent to the process
Director from the machine Operator console. This REASON for
stopping may be printed in addition to ome of the
above-specified stopping messages when certain of the above
failures occur during processing using the
subsystem—nominated processor stack segment. In this case
the message printed previously specifies the true reason for
stopping.

14 A "stop" command has been sent from the machine Operator
console or from the permanent process no. 1 (DIRECT) as part
of the System automatic close-down sequence, or from the
interactive communications system following line or
network-processor failure.

If a process is terminated by the Supervisor (specifically the Local
Controller) because a program or virtual store error has occurred during
execution of the Director contingency-handling code, the only evidence of
process termination will be on the main log, in the form

PROC:n keyword 6/m

where n is the process number, m is a page number in segment 6 and
"keyword" specifies the contingency type; for example, VSERROR,
INSTRUCTION, DESCRIPTOR, STACK. Process termination in this manner is
exceptional and disastrous as regards restarting a process for the file
index owner, because files belonging to the owner will remain marked as
connected in some virtual memory. This condition can be cleared only by
reloading the System or by running a special procedure under the System
Manager’s supervision.

EMAS 2900 Subsystem Writer’s Manual 17

18

10

References

EMAS 2900: User's Guide (describes the facilities of the Edinburgh
Subsystem). ERCC (1979).

EMAS 2900: Concepts. ERCC, 2nd Editiom (1978).

EMAS 2900: The JOURNAL System. ERCC (1979).

The IMP Language and Compiler. Stephens, P.D., Computer Journal,
Vol. 17 no. 3 (1974).

The Primitive Level Interface. ICL internal document PSD 2.5.1
(1975).

EMAS 2900 Subsystem Note 9: Edinburgh Standard Object File Format,
ERCC (1979).

The EMAS Director. Rees, D.J., Computer Journal, Vol. 18 no. 2
(1975).

EMAS 2900 System Note 4: EMAS 2900 System Calls. ERCC (1977).

EMAS 2900 Supervisor Note 4: Local Stacks. ERCC (1977).

EMAS 2900 Supervisor Note 1: PON Mechanism for Director. ERCC
(1978).

EMAS 2900 Subsystem Writer's Manual

APPENDIX 1

THE DIRECTOR INTERFACE

Contents
Al.l Introduction Al-2
Al,l.1 General notes Al-2
Al.2 Procedures in the Director interface Al-3
Al.3 Introduction to the file system Al-6
Al.3.1 File space allocation and index maintenance Al-6
Al.4 File system procedures Al-8
Al.4.1 Contents of ARCHIVE byte Al-24
Al.4.2 Contents of CODES byte Al=-25
Al.4.3 Contents of CODES2 byte Al-25
Al.5 Interactive terminal I/0 procedures Al-26
Al.6 Contingency-handling procedures Al-31
Al.7 "Outward call" and subsystem "System call" procedures Al-36
Al.8 Message passing procedures Al1-38
Al.9 Magnetic tape procedures Al-42
Al.10 Error messages used by Director procedures Al-44

Director Interface . Al-1

Al.l Introduction

As explained in the introduction to the main text of this document, the
facilities available to a subsystem in EMAS 2900 are provided by a set of
procedures collectively known as the "Director interface". This appendix
describes each of these procedures in detail.

Section Al.2 comprises an alphabetical list of the Director interface
procedures, with a summary of their functions and page number references
to their detailed descriptions.

Section Al.3 describes the EMAS 2900 file system, the creation and
maintenance of which is one of Director’s tasks. The relevant procedures
are then described in Section Al.4.

Each of the remaining sections likewise describes a logical group of

Director procedures, apart from the final section, Al.10, which comprises
a list of all the error messages used by the procedures.

Al.l.1l General notes

These apply where explicitly indicated in this appendix.

Note 1. Except for privileged processes, USER must be the process
owner.

Note 2, Privileged processes may own indexes on several disc-packs.
It is only necessary to specify FSYS for such situations;
otherwise you may set FSYS to -1. However, a subsystem may
know (for example, from a call of procedure DUSERNAME) on
which disc—-pack USER resides, and specifying that disc-pack as
FSYS may speed the search time for the file index for USER.

Note 3. If the file referred to is on archive storage, the TYPE
parameter is used to indicate this, and the DATE parameter
must specify the date of archiving in the form "dd/mm/yy",
where dd, mm and yy represent day, month and year
respectively. The DATE parameter is ignored if the TYPE
parameter indicates that the file is in disc storage rather
than archive storage.

In addition, the reader is referred to Chapter 2 of the main text, which
explains some of the terminology and conventions used in EMAS 2900
documentation, in particular in the procedure descriptions below.

Al-2 Director Interface

Al.2 Procedures in the Director Interface

Procedure Page Description

ACREATE Al1-23 Creates an entry for a file in an archive
index.

DACCEPT Al-ll Accepts a file offered to the caller by
another user.

DASYNC INH Al-35 Causes asynchronous contingencies to be
inhibited.

DCHSIZE Al-10 Changes the size of a file.

DCLEAR INT Al-30 Clears a multi-character terminal INT:

MESSAGE message.

DCONNECT Al-9 Connects a file into the caller’s virtual
MEemory.

DCREATE Al-8 Creates a file.

DDESTROY Al-8 Destroys an on—line or archive file.

DDISABLE TERMINAL Al-29 Suspends or aborts an I/0 stream established

STREAM using DENABLE TERMINAL STREAM.

DDISCONNECT Al-20 Disconnects a file from the caller’s virtual
Memory.

DENABLE TERMINAL Al-26 Sets up the connection between a stream and a

STREAM file to be used for terminal input or output.

DF ILENAMES Al-20 Gives details of all a user’s disc files or
archive files.

DF INFO Al-14 Gives information about a file.

DFSTATUS Al-15 Modifies the attributes of a file.

DFSYS Al-19 Gives the number of the disc-pack on which a
user’s files reside.

DGETDA Al-2]1 Gives the disc addresses of the sections of a
file.

DISC ID Al-34 Discards interrupt data and uninhibits
asynchronous contingencies.

DMAG CLAIM Al-42 Claims or releases a magnetic tape.

DMAG IO Al-42 Carries out an operation with respect to a

previously claimed magnetic tape.

Director Interface Al-3

DMESSAGE Al-41 Sends or receives a messages from or to an
address, or determines whether a user
currently has a process.

DMOD ARCH Al-24 Modifies entries in an archive index.

DNEW ARCH INDEX Al-23 Creates an archive index for a user.

DNEWGEN Al-20 Enables a new version of a file to be intro-
duced while the current version is connected.

DNEW INWARD CALL Al-37 Creates a System Call Table entry for an
inward call.

DNEW OUTWARD CALL Al-36 Creates a System Call Table entry for an
outward call.

DNOMINATE STACK Al-36 Specifies to the caller’s Local Controller
which segment is to be SSN+l1.

DOFFER Al-11 Offers a file to a user.

DOUT Al-39 Sends a System message and causes the process
to suspend pending a reply.

DOUT11 Al-40 Sends a System message and keeps the process’s
pages in main store pending a reply.

DOUT18 Al-40 Sends a System message with various special
effects.

DPERMISSION Al-12 Sets access permissions or gets details of
access permissions with respect to a file or a
complete file index.

DPOFF Al-39. Causes the process to suspend pending the
receipt of a message.

DPON Al-39 Sends a System message and allows the process
to continue.

DPON2 Al-38 Sends a System message.

DPRG Al-22 Moves the contents of a file to a disc site.

DRENAME Al-11 Renames a file belonging to the caller.

DREQUEST TERMINAL Al-26 Requests a terminal output or input message.

OPERATION

DRESET CONTINGENCY Al-35 Causes the first routine nominated via PRIME
CONTINGENCY to be used again henceforth.

DRESTORE Al-23 Passes a restore request, in respect of an
archive file, to VOLUMS.

DRESUME Al-33 1Informs Director of various stages in the
execution of the routine nominated via PRIME
CONTINGENCY.

Al=4 Director Interface

DSFI Al-17 Reads or sets items in the SFI (System File
Information) of a file index.

DSPOOL Al-4] Generates a spool request to SPOOLR in respect
of a file.
DTOFF Al-39 Seeks a System message but does not cause the

process to suspend if there is none.

DTRANSFER Al-2]1 Transfers the ownership of a file from one
user to another.

DUNPRG Al-23 Creates a file and moves the contents of a
disc site into it.

GET AV FSYS Al-22 Gives the numbers of all the disc-packs
currently on-line.

GET USNAMES Al-22 Gives the names of the users whose files and
file indexes are on a disc-pack.

OPER Al-41 (system routine) Causes a text string to be
displayed on an Operator’s console.

PRIME CONTINGENCY Al-31 Nominates a routine to be executed on the
occurrence of a contingency:

READ ID Al1-33 Gives the process’s environment at the most
recent contingency.

Director Interface Al-5

Al.3 Introduction to the file system

This section is intended to be an initial guide to the file system, but
does not comprise a detailed description. The file system closely

follows the philosophy of that for System 4 EMAS (see Ref. 7). The main
principles and features are as follows:

a) Each disc-pack is treated as a unit; all the files (and the file
index) for a given user reside on one disc-pack.

b) The file system is implemented "in process" and comprises provision of
the following primitives, to be called by outer code (higher ACR, less
privileged), in particular a subsystem:

CREATE file
CHANGE file SIZE
DESTROY file
CONNECT file

DISCONNECT file

Interfaces to lower ACR code are limited to the following requests:

* MOVE or CLEAR section of disc space

* CLAIM or FREE semaphore number conventionally associated with a
file index or "bitmap".

* For CONNECT and DISCONNECT, writing into or deleting from the
"Master Page Tables" the relationships between the segment numbers
of the virtual memory and groups of sections of disc space. The
"Master Page Tables" reside in the Local Controller stack for the
process, and the Local Controller organises the virtual memory

hierarchy and the satisfying of page faults from the information
therein.

¢) Just as the user accesses a file by requesting that it be CONNECTed
into his virtual memory and then referencing the appropriate virtual
addresses obtained, so the Director code, which implements the file
system, creates and accesses the indexes and the "bitmaps" by
CONNECTing them also into the virtual memory at a lower ACR level
(more privileged) than that of the subsystem and the user.

Al.3.1 File space allocation and index maintenance

Director organises the file system in terms of epage units (see the
Glossary in Ref. 2). A 100 Mbyte disc pack contains 24000 epages
(approximately X’S5E00’), and currently Director uses from X’40° or X’800°
to X’5000° for the file system. (On a disc which may be used as a System
disc, epages below X‘800’ are used for the IPL supervisor (Chopsupe), 3

Al-6 Director Interface

versions of a main supervisor, 4 versions of Director, and so on.) The
first 128 pages of the file system space are used for the "bitmap" for

the disc pack, and for the file indexes (currently 1 or 2 epages each)

for the users whose files reside on the disc-pack.

The "bitmap" is an area containing one bit representing each epage on the
pack, numbered from O to X’5E00’ approximately. A zero bit means that
the epage is free, a one bit that it is allocated. The bitmap is located
at the start of the file system space, the indexes follow, and the users’
file pages start beyond the indexes. The actual start page numbers are
all constants in Director’s code.

Director allocates the users’ files in maximum—sized units of one
"section", currently 16 epages or 64 Kbytes. A file consisting of

1 segment has up to 4 sections (i.e. 64 epages or 256 Kbytes), and larger
files have more sections as necessary. The file index contains the
string name of the file, and a file descriptor in the index contains a
chain of list cells containing the starting epage number of each section
of the file. When a CREATE request is made, Director searches the bitmap
for a group or groups of the required numbers of free pages and sets the
bits accordingly. For a CONNECT request, Director extracts the starting
epage numbers of the sections of the file from the index and inserts them
into the "claimed block" table and puts pointers from the "secondary
segment" table to the claimed block table entries. The addresses of the
starts of these tables are passed to Director at process start—up.

Users’ file indexes are numbered according to the epage number at which
they start; currently each index comprises one or two epages. A file
system request from a user or subsystem specifies the file owner (6
characters) and the file name (up to 1l characters). In order to
reference the file index for the owner, Director first connects it into
the virtual memory. To do this, Director first searches the "name-number
table", which relates the owner names of the indexes on the pack to the
index starting page numbers. The name-number table currently follows the
bitmap on the disc. When the entry for the file owner has been found,
the corresponding number indicates the disc section containing the file
index; Director then connects it into the virtual memory.

N.B. Director connects bitmaps, name-number tables and indexes "on
demand" into the user’s virtual memory in segments (not accessible
to the user) numbered between 16 and 3l. For efficiency, the bitmap
and name-number table for the pack on which the process owner’s file
index and files reside, and also the section containing the file
index itself, are left connected for the duration of the process.

Director Interface Al-7

Al.4 File system procedures

externalintegerfn DCREATE (string(6) USER, string(ll) FILE, c
integer FSYS, NKB, TYPE)

A file of name FILE is created, for user USER on disc-pack FSYS, of
E Epages, where E is the smallest number of Epages containing NKB Kbytes.

The maximum size of file allowed is 16 Mbytes. Subsystems requiring
larger files should arrange that they be made up of subfiles comprising
files created by this procedure.

Note 1 applies.
Note 2 applies.

Bits in TYPE may be set:

2%%(For a temporary file (destroyed when the creating process
stops if the file was connected, or at System start-up).

2%%] For a very temporary file (destroyed when the file is
disconnected).

2%%2 For a file which is to be zeroed when created.

2%%3 To set "CHERISHed" status for the file.

Temporary files may be created only in the process owner’s file index,
and may be comnnected only into a virtual memory of the process owner. In
particular, temporary files may not be shared.

Temporary files are made into ordinary files (that is, the "temporary"
attribute is removed) on being RENAMEd, OFFERed, TRANSFERred or
PERMITted, and also explicitly by an appropriate call on procedure
DFSTATUS.

Possible error results: 11, 15, 16, 17, 18, 26, 28, 37, 41, 47

khkihkhkkkkk

externalintegerfn DDESTROY (string(6) USER, string(ll) FILE, c
string(8) DATE, integer FSYS, TYPE)

The file, of name FILE belonging to user USER on disc-pack FSYS, is
destroyed. TYPE should be set to 1 to destroy a file from archive
storage; otherwise it should be set to zero. When TYPE=l, DATE should be
set to the archive date. DATE is ignored if TYPE=O0.

Note 1 applies.

Note 2 applies.
Note 3 applies.

Al-8 Director Interface

The procedure fails if the file owner has made access permission zero for
"self’.

Possible error results: 5, 8, 11, 18, 20, 21, 22, 25, 32, 37, 47, 59, 75

kekkidkkhkkik

externalintegerfn DCONNECT (string(6) USER, string(ll) FILE, integer c
FSYS, MODE, APF, integername SEG, GAP)

Provided that the file is suitably permitted to the process owner calling
the procedure, the file of name FILE belonging to user USER on disc-pack
FSYS is connected into the caller’s virtual memory.

Note 2 applies.

The bits in the parameter MODE have the following meanings (when set):

2%%(Read access required
1 Write access required
2 Execute access required
3 Write access by other processes to be allowed
4 New copy of file to be written
5 Communications mode
6 Not to be allocated space on the drum
7 Segment to be used as a process stack

The purpose of bit 2**3 is to allow (read and) write access by more than
one process to be achieved only when each user specifically allows the
situation (by setting the bit in his request).

Bits 2**] or 2**3 may not be set in the request if bit 2#%*2 (execute
access) is also set.

SEG either specifies the segment number at which the file is to be
connected (in the range 34 to 127), or is zero, indicating that the
choice of segment number is to be left to Director. If the result of the
function is O or 34 (file already connected), SEG is set to the chosen
segment number.

GAP specifies the number of segments which are to be reserved for the
file, even though the current size of the file may be less than that
number of segments. Attempts to specify a value of SEG which conflicts
with this GAP, in subsequent connect requests before this file is
disconnected, will be rejected. If GAP is set to zero then no segments
of virtual memory, other than those required by the current file size,
are reserved for the file. If the result of the function is 0 or 34

Director Interface Al-9

(file already connected), GAP is set to the number of segments reserved
for the file.

APF may be used to specify the access permission field in the segment(s)
being connected. The bottom 9 bits are significant:

1 4 4

EXE- | WRITE | READ
CUTE | ACR ACR

The read and write ACR values supplied must be greater than or equal to
the ACR at which the calling program (subsystem) is running. If the APF
parameter is set to zero, a value of X’lnn’ is used, where n is the ACR
at which the caller is executing.

Possible error results: 5, 6, 26, 28, 30, 32, 34, 35, 36, 37, 47

kkkkkhkkkkkk

externalintegerfn DDISCONNECT (string(6) USER, string(ll) FILE, c
integer FSYS, DESTROY)

The file of name FILE belonging to user USER on disc-pack FSYS is
disconnected from the caller’s virtual memory. Parameter DESTROY should
be set either to 0 or 1. 1If set to 1 the file will be destroyed,
provided that it belongs to the process owner (not necessary if the
process 1s privileged) and the "use-count" for the file is zero after
disconnection. Otherwise the parameter is ignored.

Note 2 applies.

Possible error results: 30, 32, 37, 38, 39, 47

kkkkkkhkhkk

externalintegerfn DCHSIZE (string(6) USER, string(ll) FILE, c
integer FSYS, NEWSIZE)

The physical size of file FILE belonging to user USER on disc-pack FSYS
is altered (if necessary) so that its new size (in Kbytes) is NEWSIZE.

The size may not be reduced to zero. The file may be connected in the

caller’s virtual memory (only).

Note 1 applies.
Note 2 applies.

Possible error results: 11, 30, 32, 37, 41

khkkddhkkkhk

Al-10 Director Interface

externalintegerfn DRENAME (string(6) USER, string(ll) OLDNAME, c
NEWNAME, integer FSYS)

The file of name OLDNAME belonging to user USER on disc-pack FSYS is
renamed NEWNAME.

Note 1 applies.
Note 2 applies.

A file may not be renamed while it is connected in any virtual memory.

Possible error results: 5, 11, 16, 17, 18, 32, 40

khkkhkhkkhd

externalintegerfn DOFFER (string(6) USER, OFFERTO, string(ll) FILE, c
integer FSYS)

This procedure causes file FILE belonging to user USER on disc-pack FSYS
to be marked as being "on offer" to user OFFERTO. The file may not be
connected in any virtual memory either at the time of the call of this
procedure or subsequently while the file is on offer. The procedure
DACCEPT is used by user OFFERTO to accept the file from user USER. A
file may be on offer to at most one user. An offer may be withdrawn by
calling this procedure with OFFERTO set as a null string.

Note 1 applies.
Note 2 applies.

Possible error results: 11, 17, 20, 30, 32

hkkdhkhkhkk

externalintegerfn DACCEPT (string(6) USER, string(ll) FILE, NEWNAME, c
integer FSYS)

This procedure causes the transfer to the caller of ownership of file
FILE belonging to user USER on disc—pack FSYS. The file must previously
have been "offered to" the caller of this procedure, using procedure
DOFFER. The file is named NEWNAME under its new ownership, but NEWNAME
and FILE may be identical names.

Note 1 applies.
Note 2 applies.
Possible error results: 5, 8, 9, 15, 16, 17, 18, 32, 37

dededekdedekhkdk

Director Interface Al-11

externalintegerfn DPERMISSION (string(6) OWNER, USER, string(8) DATE, c
string(11) FILE, integer FSYS, TYPE, ADRPRM)

This function allows the owner of file FILE on disc—pack FSYS to set
access permissions, or specific preventions, for file connection to
individual users, groups of users or to all users. It also allows a user
to determine the modes (if any) in which he may access the file.

Note 2 applies.
Note 3 applies.

TYPE determines the service required of the procedure:

TYPE Action
0 set OWNP (not allowed for files on archive storage)
1 set EEP
2 put USER into the file list (see "Use of file access
permissions”, below)
3 remove USER from file list
4 return the file list
5 destroy the file list
6 put USER into the index list (see "Use of file access
permissions", below)
7 remove USER from the index list
8 return the index list
9 destroy the index list
10 give modes of access available to USER for FILE

TYPEs O to 9 are available only to the file owner and to privileged
processes. For TYPE 10, ADRPRM (see below) should be the address of an
integer into which the access permission of USER to the file is returned.
If USER has no access to the file, error result 32 will be returned from
the function, as though the file did not exist. If the file is on
archive storage, TYPE should be set to 16 plus the above values to obtain
the equivalent effects.

ADRPRM is either the permission being attached to the file, bit values
interpreted as follows:

all bits zero prevent access

2%%(allow READ access

2%%] allow WRITE access not allowed for files
2%%2 allow EXECUTE access on archive storage

Al-12 Director Interface

or, except for type 10, it is the address of an area into which access
permission information is to be written, in the format

(integer BYTES RETURNED, OWNP, EEP, SPARE, recordarray ¢
INDIV PRMS(0:15) (string(6) USER, byteinteger UPRM))

where:

BYTES indicates the amount of data returned.

RETURNED

OWNP is the file owner’s own permission to the file, or the
requesting user’s "net" permission if the caller of the
procedure is not the file owner (see "Use of file access
permissions", below).

EEP is the general (all users) access permission to the file
("everyone else’s permission").

UPRM The UPRM values in the sub-records are the permissions for

corresponding users or groups of users denoted by USER. Up to
16 such permissions may be attached to a file.

Use of file access permissions

The general scheme for permissions is as follows. With each file there
are associated:

OWNP the permission of the owner of the file to access it

EEP everyone else’s permission to access it (other than users
whose names are explicitly or implicitly attached to the file)

INDIV PRMS a list of up to 16 items describing permissions for individual
users, e.g. ERCCO0, or groups of users, e.g. ERCC??
(specifying all usernames of which the first four characters
are "ERCC")

In addition, a user may attach a similar list of up to 16 items to his
file index as a whole, and the permissions in this list apply to any file
described in the index along with those attached to that particular file.

In determining the mode or modes in which a particular user may access a
file, the following rules apply:

l. If the user is the file owner then OWNP applies.

2. Otherwise, if the user’s name appears explicitly in the list for the
file, the corresponding permission applies.

3. Otherwise, if the user’s name appears explicitly in the list for the
index, the corresponding permission applies.

4, Otherwise, if the user’s name is a member of a group of users

represented by a list item for the file, the corresponding permission
applies.

Director Interface Al-13

5. Otherwise, if the user’s name is a member of a group of users
represented by a list item for the index, the corresponding permission
applies.

6. Otherwise EEP applies.

In the event of a user’s name appearing more than once (implicitly)

within groups specified in a single list, the actual list item to be
selected to give the permission should be regarded as indeterminate.

Possible error results: 8, 11, 17, 32, 37, 45, 46, 59, 75

ks ke ke do ke kk

externalintegerfn DFINFO (string(6) USER, string(ll) FILE, c
integer FSYS, ADR)

This procedure returns detailed information about the attributes of file
FILE belonging to user USER on disc-pack FSYS, in a record written to
address ADR.

Note 2 applies.

A non-privileged caller of the procedure having no permitted access to

the file will receive an error result of 32, as though the file did not
exist.

The format of the record returned is of successive integers and a
string(6), as detailed below:

NKB the number of Kbytes (physical file size)

RUP the caller’s permitted access modes

EEP the general access permission

APF 1-4-4 bits, right—justified, giving respectively the

Execute, Write and Read fields of APF, if the file is
connected in this virtual memory

USE the current number of users of the file

ARCH the value of the archive byte for the file (see
procedure DFSTATUS, below)

FSYS disc—pack number on which the file resides

CONSEG the segment number at which the file is connected in
the caller’s virtual memory; zero if not connected

CCT the number of times the file has been connected since
the connect count was last zeroed (see procedure
DFSTATUS)

Al-14 Director Interface

CODES information for privileged processes (see the diagram
in Subsection Al.4.2)

CODES2 information for internal use (see the diagram in
Subsection Al.4.3)

SSBYTE information for the subsystem’s exclusive use

string(6) OFFER the username to which the file has been offered (see
procedure DOFFER); otherwise null

Possible error results: 18, 32, 37, 45

kkkkhkiihhih

externalintegerfn DFSTATUS (string(6) USER, string(ll) FILE, ¢

integer FSYS, ACT, VALUE)

This procedure is supplied to enable the attributes of file FILE
belonging to user USER on disc-pack FSYS to be modified, as follows.

Parameter VALUE is for use by the archive/backup program (ACT=13), and by
the subsystem (ACT=18); otherwise it should be set to zero.

The layout of a file’s archive byte is shown in the diagram in Subsection

Al.4.1.

Note 1 applies.
Note 2 applies.

ACT

0 HAZARD

1 CHERISH
2 UNARCHIVE
3 ARCHIVE

4 NOT TEMP
5 TEMPFI

6 VTEMPFI

ACTION
Remove CHERISHed attribute.

Make subject to automatic System back-up
procedures.

Remove the "to-be-archived" attribute.

Mark the file for removal from on~line to archive
storage.

Remove the "temporary" attribute.

Mark the file as "temporary"; that is, to be
destroyed when the process belonging to the file
owner stops (if the file is connected at that
time), or at system start-up.

Mark the file as "very temporary"; that is, to be

destroyed when it is disconnected from the owner’s
virtual memory.

Director Interface Al-15

10

11

12

13

14

15

16

17

18

19

20

NOT PRIVATE May now be written to magnetic tape either for

PRIVATE

SET CCT

ARCH

ARCH

ARCH

ARCH

ARCH

CLR USE

CLR NOARCH

SET NOARCH

SSBYTE

ARCH

ARCH

back-up or archive. May be called only by
privileged programs.

Not to be written to magnetic tape either for
back—up or archive. May be called only by
privileged programs.

Set the connect count for the file to the bottom 8
bits of VALUE.

Operation 0 (PRIVILEGED).

Shift ARCH byte usage bits (2**2 to 2**6
inclusive) left one place. If A is the resulting
value of the ARCH byte, set bit 2%*7 if
(A>>2)&B‘11111’ = VALUE.

Operation 1 (PRIVILEGED).

Set currently-being-backed-up bit (bit 2**1 in
ARCH byte), unless the file is currently connected
in write mode, when error result 52 is given.

Operation 2 (PRIVILEGED).
Clear currently-being—backed-up bit (2**]1) and
has-been-connected-in-write-mode bit (2**0).

Operation 3 (PRIVILEGED).
Set archive byte to be bottom 8 bits of VALUE and
clear the UNAVAilable bit in CODES.

Operation 4 (PRIVILEGED).

Clear the UNAVAilable and privacy VIOLATed bits in
CODES. Used by the back-up and archive programs
when the file has been read in from magnetic tape.

Clear file use—-count and WRITE-CONNECTED status
(PRIVILEGED).

Clear archive—inhibit bit in CODES. PRIVILEGED -

for System
Set archive-inhibit bit in CODES. Library use

Set SSBYTE to be the bottom 8 bits of VALUE (byte
for a subsystem’s exclusive use).

Operation 5 (PRIVILEGED).

Set the WRCONN bit in CODES2. Used to prevent any
user connecting the file in write mode during
back-up or archive.

Operation 6 (PRIVILEGED).

Clear the WRCONN bit in CODES2. Used when back-up
is complete.

Possible error results: 8, 11, 18, 20, 37, 47, 52

Al-16

khkkkhkhkhkik

Director Interface

externalintegerfn DSFI (string(6) USER, integer FSYS, TYPE, SET, ADR)

(Etymology: SFI - System File Information)

This procedure is used to set or read information in the file index of
USER on disc—-pack FSYS. TYPE specifies which data item is to be
referenced (see list below). SET must be 1 to write the data item into
the index, or 0 to read the item from the index. ADR is the address of
an area, which must be available in write or read mode, to or from which

the data item is to be transferred.

Note 1 applies.
Note 2 applies.

TYPE Data item Data type & size

0 BASEFILE name (the file to be connected
and entered at process start-up)

1 DELIVERY information (to identify
slow-device output requested by the
index owner)

2 CONTROLFILE name (a file for use by the

subsystem for retaining control information)
3 ADDRTELE address and telephone number of user
4 INDEX USE (may not be reset)

Gives (in successive integers from ADR):

a) number of files

b) number of file descriptors currently in use

c¢) number of free bytes currently available
for file descriptors (allow say 32 per new
file descriptor)

d) index size (Kbytes)

e) 4 (maxcells, freecells) pairs, each com-
prising 2 integers; unused pairs are zero

5 Foreground and background passwords
(reading is a privileged operation); a zero
value means "do not change"

6 Date last logged—in: (Y-70)<<9 ! (MKK5) ! D
(may not be reset)

7 ACR level at which the process owning this
index is to run (may be set only by privileged
processes)

8 Director Version (may be set only by privileged
processes)

9 ARCHIVE INDEX USE (may not be reset)
Gives (in successive integers from ADR):
a) number of files
b) number of file descriptors currently in use
c) number of free bytes currently available
for file descriptors (allow say 32 per new
file descriptor)

Director Interface

string(31)
string(31)

string(31)
string(63)

12xinteger

2xinteger

integer

integer

2xinteger

Al-17

d) index size (Kbytes)
e) 4 (maxcells, freecells) pairs, each com-
prising 2 integers; unused pairs are zero l2xinteger

10 Stack size (Kbytes) integer
11 Limit for total size of all files in disc

storage (Kbytes) (may be set only by privileged

processes integer
12 Maximum file size (Kbytes) (may be set only by

privileged processes) integer
13 Current numbers of interactive and batch

processes, respectively, for the user (may

not be reset) 2xinteger
14 Process concurrency limits (may be set only

by privileged processes). The three words denote
respectively the maximum number of interactive, batch

and total processes which may be concurrently running

for the user. (Setting the fields to -1 implies

using the default values, currently 1, 1 and 1l.) 3xinteger

15 Privacy of presence and message control (see
Section Al.8)
Bits in this word have the following meanings
when set:

2%%0 process presence may be detected by other

~ users
2%%] allow incoming text messages to be
received
2%%2 gignal arrival of incoming messages via
the contingency mechanism integer
16 Set Director monitor level (may be set only
by privileged processes) 2xinteger
17 Set SIGNAL monitor level (may be set only
by privileged processes) integer
18 Initials and surnames of user (may
be set only by privileged processes) string(31)
19 Director monitor file string(31)

METERING INFORMATION (cumulative over process sessions
except where shown)

20 Thousands of instructions executed, interactive

and batch modes (may be reset only by

privileged processes) 2xinteger
21 Thousands of instructions executed (current

session only) integer
22 Thousands of instructions executed in Director

procedures (current process session only)

(may not be reset) integer

Al-18 Director Interface

23

24

25

26

27

28

29

30

31
32-34
35

36

Page-turns, interactive and batch modes
(may be reset only by privileged processes)

Page-turns (current process session only)
(may be reset only by privileged processes)

Thousands of bytes output to slow-devices
(local or remote) (may be reset only by
privileged processes)

Thousands of bytes input from slow-devices
(local or remote) (may be reset only by
privileged processes)

Milliseconds of OCP time used, interactive
and batch modes (may be reset only by
privileged processes)

Milliseconds of OCP time used (current
session only)

Seconds of interactive terminal connect time
(may be reset only by privileged processes)

No. of disc files, total disc Kbytes, no. of

cherished files, total cherished Kbytes, no.
of temporary files, total temporary Kbytes

(cannot be reset)

No. of archive files, total archive Kbytes
Spare

Test BASEFILE name

Batch BASEFILE name

Possible error results: 8, 37, 45

kkdkdkkk

2xinteger

integer

integer

integer

2xinteger

integer

integer

6xinteger
2xinteger

string(31)
string(31)

externalintegerfn DFSYS (string(6) USER, integername FSYS)

This pmévEFeged procedure may be used to determine on which dick-pack

user USER resides.
it is set with the first disc—pack number on which USER is found.
FSYS is set non-negative, only that disc—pack number is searched.

If FSYS is set to -1 before the procedure is called,
If
If

USER is not found, FSYS is unchanged and error result 37 is returned.

Possibkle error results: 8, 23, 37

dekhkkkhhihkik

Director Interface

Al-19

externalintegerfn DNEWGEN (string(6) USER, string(ll) FILE, ¢
NEWGEN OF FILE, integer FSYS)

This procedure provides a means of introducing an updated version (i.e. a
new generation) of file FILE even though it may be connected in other
users’ virtual memories.

If FILE is not connected in any virtual memory, a call on DNEWGEN is
equivalent to destroying FILE and then renaming NEWGEN OF FILE to FILE,
except that the new version of FILE retains the former FILE’s access
permissions.

If FILE is connected in some virtual memory, then the filename
NEWGEN OF FILE "disappears', and any subsequent connection of FILE into a

virtual memory yields the contents of the new generation formerly held in
NEWGEN OF FILE.

When the number of users of a former copy of FILE becomes zero (i.e. when
it is not connected in any virtual memory), that copy is destroyed.

Note 1 applies.
Note 2 applies.

Possible error results: 5, 6, 11, 15, 18, 32, 37, 40

kkkhkkkkkkk

externalintegerfn DFILENAMES (string(6) USER, recordarrayname INF,
integername FILENUM, MAXREC, NFILES,
integer FSYS, TYPE)

This procedure delivers, in the record array INF (which should be
declared (0:n)), a sequence of records describing the on-line files (for
TYPE=0) or archived files (for TYPE=l) belonging to USER.

Note 1 applies.
Note 2 applies.
Note 3 applies.

MAXREC is set by the caller to specify the maximum number of records he
is prepared to accept in the array INF, and is set by Director to be the
number of records actually returned.

NFILES is set by Director to be the number of files actually held on
on-line storage or on archive storage, depending on the value of TYPE.

Parameter FILENUM is used only for TYPE=l. Filenames are stored in
chronological order (by archive date). FILENUM is set by the caller to
specify the "file-number" from which descriptions are to be returned;
zero represents the most recently archived file. (The intention here is
to allow the-caller to receive subsets of descriptions of a possibly very
large number of files.)

The format of the records delivered in the array INF is as follows:

Al-20 Director Interface

(string(1l) NAME, integer SP12, KBYTES, byteinteger ARCH, CODES, c
CCT, OWNP, EEP, USE, CODES2, SSBYTE, FLAGS, SP29, SP30, SP31)
(32 bytes)

for on-line files, and

(string(ll) NAME, integer KBYTES, string(8) DATE, string(6) TAPE, c
integer CHAPTER, FLAGS)
(40 bytes)

for archived files. TAPE and CHAPTER are returned null to unprivileged
callers.

Possible error results: 11, 37, 45, 59, 61

khkkkhikkikhk

externalintegerfn DTRANSFER (string(6) USER1, USER2, string(1ll) ¢
FILE, NEWNAME, integer FSYSI, FSYS2, TYPE)

This procedure is available only to privileged processes, and transfers
FILE belonging to user USER]1 on disc-pack FSYS1 to the ownership of user
USER2 on disc-pack FSYS2 under name NEWNAME, TYPE should be set to 1.

Possible error results: 3, 5, 8, 15, 16, 17, 18, 32, 37

kkkkkkhhkik

externalintegerfn DGETDA (string(6) USER, string(ll) FILE, c
integer FSYS, ADR)

This procedure, available only to privileged processes, provides the disc
addresses of the sections of file FILE belonging to USER on disc-pack
FSYS. Data is written from address ADR in the form

(integer SECTSI, NSECTS, LASTSECT, SPARE, integerarray DA(0:255))

where SECTSI is the size (in epages) of the sections (except
possibly the final section)

NSECTS is the number of sections, and hence the number of
entries returned in array DA
LASTSECT is the size (in epages) of the final section
In each entry in the DA array, the top byte contains the FSYS number.
Possible error results: 5, 30, 32, 37, 45

Fedecde e s do e ko e ke

Director Interface Al-21

externalintegerfn GET USNAMES (recordarrayname NN, integername N, ¢
integer FSYS)

This procedure, available only to privileged processes, supplies the list
of usernames accreditted on disc-pack FSYS. A series of records of
format

(string(6) NAME, byteinteger KB, integer INDNO)

is returned in the array NN, which should be declared (0:511). N is set
to the number of names supplied, a likely maximum being 512.

Possible error results: 23, 45

kkkhkkkkkhk

externalroutine GET AV FSYS (integername N, integerarrayname A)

This procedure, available only to privileged processes, supplies the
logical disc-pack numbers of disc—-packs currently on—line. Array A,
which should be declared (0:63), is filled from A(0), A(l), e.... with as
many numbers as there are on—line EMAS disc-packs, and N is set to the
number of entries returned.

Note that, when a disc-pack is mounted, it is not considered "on-line"
until a file system consistency check has been performed on it.

kkkkhkhihkk

externalintegerfn DPRG (string(6) USER, string(ll) FILE, c
integer FSYS, string(6) LABEL, integer SITE)

This procedure, available only to privileged processes, moves the
contents of file FILE belonging to user USER on disc-pack FSYS to site
SITE on the EMAS 2900 disc—pack labelled LABEL.

SITE is an epage number which must be X’40°-aligned. The physical size
of the file must not exceed 256 Kbytes (512 Kbytes for sites X“300° and
X’380°).

Note 2 applies.

Possible error results: 2, 5, 27, 30, 32, 37

dededede e Kk ke ke

Al=-22 Director Interface

externalintegerfn DUNPRG (string (6) USER, strimg(ll) FILE, ¢
integer FSYS, string(6) LABEL, integer SITE)

This procedure is available only to privileged processes. It creates a
256 Kbyte file FILE belonging to user USER on disc—-pack FSYS and copies

into it 256 Kbytes from site SITE on the EMAS 2900 disc-pack labelled
LABEL.
Note 2 applies.

Possible error results: 2, 5, 16, 27, 30, 32, 37

dedkdkkkkhkikk

externalintegerfn ACREATE (string(6) USER, TAPE, string(8) DATE, c
string(ll) FILE integer FSYS, NKB, CHAPTER)

This procedure is provided for use by the archive program. A new archive
index entry is created for USER, giving TAPE, CHAPTER and no—of-Kbytes
attributes to be associated with FILE. (Access permission attributes are
given to FILE by separate calls of DPERMISSION.)

DATE should normally be left null, when the current date will be used.

Possible error results: 8, 15, 16, 37, 59, 75

kkkkkkhhikdk

externalintegerfn DNEW ARCH INDEX (string(6) USER, integer FSYS, KBYTES)

This privileged procedure is for use by the System Manager, and creates a
new archive index of SIZE Kbytes for user USER on disc FSYS. The minimum
size allowed is 4 Kbytes, allowing about 80 archive files to be
described.

Possible error results: 8, 12, 15, 16, 17, 23, 37

kkkkihrhhkk

externalintegerfn DRESTORE (string(6) USER, string(1l) FILE, c
string(S) DATE, integer FSYS, TYPE)

This procedure passes a restore request (if FILE exists on archive
storage and is permitted to the caller) to VOLUMS. DATE may be left

Director Interface Al-23

null, when the most recently archived copy of FILE will be restored. The
file is restored into the file owner’s on-line index. TYPE is currently
ignored and should be set to zero.

Possible error results: 8, 15, 16, 32, 37, 59, 75

kkkkkihkkikk

externalintegerfn DMODARCH (string(6) USER, string(ll) FILE, c
string(8) DATE, recordname ENT, integer FSYS)

This privileged procedure is provided for the System Manager to make
amendments to archive index entries. USER, FILE, DATE and FSYS determine
the entry to be modified. Record ENT has the same format as that
supplied by DFILENAMES (TYPE=1). Fields (other than NAME) which differ
from those of the specified index entry will be used to update the entry.

Possible error results: 8, 15, 16, 37, 59, 75

kkkkkkhkhkk

Al.4.1 Contents of ARCHIVE byte

2%%
7 6 3 2 1 0

ARCH/ BACKUP

\ defined / / /
\ /

1= file to be 1= file has been
archived c