ERCC
Communications
Notes

Network

NETWORK

note author date title/subject

CONTENTS-1

Protocols

PROTOCOLS

note author date title/subject

CONTENTS-2

TCPs/Workstations

TCPs/WORKSTATIONS

note author date title/subject

1. Scott Currie 23/06/80 DOCUMENTATION: TCP h/w & s/w
configurations.

CONTENTS-3

TCP/WORKSTATIONS note TCP/WS-1

TCP/WS DOCUMENTATION Scott Currie
23rd June 1980

The file ERCMO8.NSICONFIGL contains a list of the hardware and software
configuration for every NSI TCP/Workstation in the RCO Network. As it is
rather large I shall not distribute it, but the file is permitted.

Detailed documentation on the structure of TCPs is available from me - on a
loan basis.

TCP/WS—-1-1

Front Ends

FRONT ENDs

note author date title/subject

CONTENTS-4

Nodes

NODEs

note author date title/subject

CONTENTS-5

PSS

PSS

note author date title/subject
1. - in preparation -
2. John Butler 11/08/80 REQUIREMENTS OF A PSS SERVICE: discussion

paper for JINT to specify the proposed
Gateway machine.,

3. John Butler 21/07/80 X25 GATE TO TASK INTERFACE: the interface

between the PSS Gates and the higher
level tasks.

CONTENTS-6

SS note: PSS-2

Requirements of a PSS service John Butler
11th August 1980

* * *

This note is a copy of a discussion paper prepared for the Joint Network
Team in March, which formed part of the submission to the JNT for a

Gateway machine.
* * *

This paper examines some of the requirements of an ERCC PSS service and how
these may be met. Points for discussion are:

Facilities provided
Protocols
Availability
Reliability

Ease of development
Ease of maintenance
Security

Size

Facilities provided

The ERCC PSS service must initially provide for interactive access to and
from remote sites through PSS and must ultimately allow RJE traffic and file
transfer. It is anticipated that interactive traffic will form the bulk of
traffic through PSS.

Protocols

The service must allow terminals using RCO protocols to use PSS and vice
versa, and so must perform the following protocol conversions:

RCO HDLC <-> X25 level 2
RCO NSI <-> X25 level 3
RCO ITP <-> X3/28/29
RCO ITP <-> TS29 + Transport Station
It must also be transparent to RCO ITP, FTPAand some RJE protocol yet to be

specified. It must also allow for the possibility of RCO NET moving to X25
at some future time.

PSS-2-1

Availability

The PSS service must be available to the whole of RCONET and should not
depend on a particular mainframe to provide a service.

Reliabilitz

The PSS service must be reliable.

1) Hardware should be used which has proved itself in a communications
environment.

2) Software should be written in a high level language, preferably one
which supports the handling of complex data structures.

3
3) An operating system should be used which has proved itself in a
comnunications enviroment and which is well understood.

4) Support software should be available to allow fast diagnosis of
problems and fast alterations to code. This implies

a) Software should be capable of being compiled on the machine on
which it will run.

b) Utilities should provide for:

Straightforward system generation and loading
Intelligent dump analysis
Monitoring

5) The hardware plus operating system should provide adequate
inter-process protection.

6) Software should be written such that different functional units are
completely distinct - ie. the function of a protocol conversion system
or gateway should not be combined with that of a switch, front-end or
mainframe. Ideally the PSS service should be provided via a gateway
located in a separate machine.

Security

Users will be charged for use of the PSS service so the service will have to
maintain accounts.

Accounting files must be secure and free from interference.

Size

As a rough estimate a PSS service will require about 40K words of code
divided equally between

Low-level protocol couversion

High-level protocol conversion
Operator I/0 and accounting

There will be additional overheads due to supervisory software and buffer
space,

PSS=-2-2

Conclusions

1)

2)

3)

4)

5)

6)

The ERCC PSS service should consist of a Gateway system running in a
dedicated machine. There is very little to be gained and a good deal
to be lost by combining the gateway with any other piece of
communications software.

This machine should be a PDP1l running DEIMOS. There is a good deal
of PDP11 expertise in ERCC and PDPl1‘s have proved themselves in
virtually every communications environment. The DEIMOS operating
system has similarly proved itself in the EMAS 2900 front-ends, the
ERTE terminal emulator, a large RJE workstation and now in the new
generation of communications switches. There is a good deal of
knowledge of DEIMOS within the Centre and a good deal of support
software for PDP11 DEIMOS systems including a PDP1ll IMP compiler fully
up to the standard required.

The machine should use currently available communications hardware.

It is tempting to wait for more advanced communications devices.
However these would require Post Office approval which would take time
and effort. Such devices would be new and untried.

The machine will require 64K words of store to accommodate the Gateway
Software.

The smallest machine that meets these requirements is a 64 Kwd PDPll.
PDP 11/03, PDP 11/04 are unsuitable because they lack the memory
management facility needed by DEIMOS. PDP 11/23 is unsuitable as it
uses a Q-bus to which it is impossible to connect currently available
HDLC hardware.

The machine will require two DUPll communications interfaces, two
floppy disk drives (for accounting/accrediting information and for use
during development) and a comnsole.

The Gateway software should be written entirely in Edinburgh. Any
attempt to write an RCONET handler on to the back of a purchased PSS
handler would run into serious difficulties.

1) The purchased package will be written in a ’foreign’ language and
will run under an unfamiliar operating system. In order to
maintain it here we either have to import an operating system and
compiler thus abandoning the DEIMOS/IMP system with all its
advantages or we have to translate it into IMP which rather
defeats the object of the exercise.

2) The PSS level 2 and 3 handlers form only a small part (20%) of
the Gateway software. It would not be worth compromising a
perfectly workable comms software support system for a small

piece of code.

3) There is a good deal of expertise to be gained in writing X25
software - something which has not yet been done in the Centre.

PSS-2-3

Summary
1) The PSS Gateway should be a dedicated Machine.

2) It should make use of the considerable ERCC investment in PDPll
communications software ie. it should be written in IMP and run under

DEIMOS.

3) The Gateway machine must therefore be a 64K word PDP 11/34.

PSS-2-4

PSS note: PSS-3

X25 GATE TO TASK INTERFACE John Butler
2lst July 1980

This note defines the interface between the two "Gate" modules and higher
level tasks within the PSS gateway. The position of this interface and its
relationship to adjoining modules is described in Gateway Note PSS-1. The
interface is intended to be the X25 equivalent of the NSI Gate-to-Task
interface designed by Brian Gilmore (DEIMOS note 3).

The Interface resembles the Study Group 3 transport service in that it uses
the same primitives and the same call setup and cleardown procedures. It
differs in that data is passed in blocks not bytes and that there is an
explicit flow control mechanism across the interface. These differences
were introduced to avoid gross inefficiencies in passing data through the
Gateway.

The interface is designed to be as far as possible protocol independant, and
to allow efficient transfer of data. The Data packet therefore
incorporates a dummy record which allows blocks with different packet header
lengths to be handled without having to move data or obtain knowledge of the
header length.

The content of the data field does not form part of this specification.
This specification does not contain provision for multiplexing data streams,

so this must be done via a higher level protocol if required.

PSS-3-1

Value Function*

Purpose

15
16
17
18
19
20
21

22

(Mandatory fields are indicated by *)

Ack
Connect
Accept
Disconnect
Reset
Address
Data

Expedited

Flow Control

Call Establishment
Call Acceptance
Call Disconnection
Resynchronisation
Address Transfer
Data transfer

Priority data

1
Acknowledgement¥*
Quality

Quality

Reason

Reason
Qualifier
Acknowledgement¥*

Data¥*

Sl

Undefined

Calling Address*

Recall Address

Location
Location
Address
Dummy*

User Data

52

Undefined

Calling Address

Comment
Comment
Comment
Undefined
Data¥*

Undefined

S3

Undefined
Comment

Undefined
Undefined
Undefined
Undefined
Undefined

Undefined

Interface Specification

%ZRecordformat PF(7Zbyteinteger Ser ,Reply,FN,Rprocess,
%Zrecord(MEF)%name M, %byteinteger Sprocess, I)

%ZRecordformat MEF(ZRecord(MEF)%name Link, Zbyteinteger L,Type,
%Zstring (255) S1, S2, S3)

Parameter Area: Ser{Reply |FN|Rprocess|M|Sprocess |1
Data Area: Link [L|Type [S1 [s2 [s3 I
where:
Ser = Service Number of recipient task s
Reply = Service Number of sending task
FN = Function number
Rprocess = Process number within recipient task. If the packet is
identified by the sender’s process alone this field will be
zero.
M = Pointer to the data area if one exists, Null otherwise (ie.
value of M = 0).
Sprocess = Process number within sending task. If the packet is
identified by the recipients process alone, this field will be
zZero. Rprocess = 0 and Sprocess = 0 together constitute a
fault.
I = Numerical qualifier. Value depends on Function.
Link = Link for queueing data packets together.
L = Total length of data field - ie. the total length of the three
strings, plus three for the 3 length bytes. A
value of L not equal to this sum constitutes a fault.
Type = Total length of block. This field is for the exclusive

use of Buffer Manager and should not be altered.
$1,52,S3 = The content of these strings depends on the functiom.
These are distinct strings each with their own length byte
and are not concatenated. The null string is represented
by a single byte of value O.

Description of Functions

The various Functions are summarised in the facing Table, and described in
more detail in the following paragraphs. Undefined fields may take any
value. Trailing undefined strings will not be included in the length
field L. Unused but otherwise defined fields must be set to a sensible
default as defined in this specification except for trailing null strings
which may be omitted. If the data area is missing this will be taken to
imply that S1, S2 & S3 assume their default values (the null string).

PSS-3-2

Connect

This function requests that a call be established from the "calling
address" to the "called address" with a specified "quality". Sprocess
must be specified and R process is undefined. The default quality is
zero. The form of the address fields is specified in Appendix 1.

Accegt

This function indicates acceptance of a call., "Quality" and "recall
address" are included for compatibility with the Tramsport Service and
always take their default values (zero and null respectively).

Disconnect

This function indicates disconnection of a call. 'Reason" contains a
qualifier for diagnostic purposes and has default value zero. Location
always takes its default value null.

Data

This function transfers data across the interface. The "dummy" field is
used to reduce the need for moving data to accommodate different packet
header lengths amd will be constructed by lower levels such that the dummy
packet plus the length byte of the "data" field sit exactly over the
packet header, The Acknowledgement field contains four subfields.

N(R) ., M |N(S) = |Q

N(S) is a sequence number - modulo 7 - which starts at 0 and is
incremented each time a data packet is sent.

N(R) is a response number - also modulo 7 - which represents the next
packet expected. This starts at 0 and is incremented each time a frame
is received.

N(R) and N(S) are used to implement flow control using the principle
adopted in X25 level 3, i.e. N(S)-N(R) modulo 7 must not exceed a
predefined window, currently 2.

M is an indication of more data. If set, this indicates that the packet
is not complete and should be taken in conjunction with one or more
subsequent packets (See PSS Technical Guide Section 3, Paragraph 1.3.4)

Q is a qualifier bit. If set this indicates to the lower levels that

this is a control packet (See PSS Technical Guide Section 3, Paragraph
1.3.5)

PSsS-3-3

Ack

This packet performs flow control. The acknowledgement field contains
one subfield.

N(R)

2 3 1 3 3

N(R) is a response number as described above. An Ack will be sent
immediately on receipt of a data packet unless previous acks or other data
packets are queued, in which case redundant acks will be suppressed and
the acknowledgement "piggybacked".

Reset

This function indicates resynchronisation: N(R) and N(S) are set to zero.
Reason contains diagnostic information as to why the Reset has occurred.
Location and Comment are currently set to Null.

Expedite

This function indicates priority data or interrupt. If the Expedite
function carries a data area, then the interrupt is qualified by the
content of the "user data" field. 1If not, then the interrupt is
qualified by the '"data" byte in the parameter area. The default value
for this parameter is 0.

Address
This function is included for compatibility with the Transport Service.

All fields take the default values 0 and Null. The function is currently
defined to have no effect.

Procedural Considerations

Functions do not have end-to-end significance.

A connection is established by transmission of a connect packet in one
direction, followed by transmission of an accept in the other. A
Connection may be refused by sending a disconnect in place of the accept.

An established connection may be disconnected by sending a discommect in
each direction across the interface. Data may be sent after the Connect
but before receipt of the Accept. This data will be lost if the connection
is subsequently refused.

A connection may be cleared down before it is established by sending a
disconnect after the connect. The connection will be fully cleared down
when the disconnect is acknowledged by another disconnect, possibly preceded
by an Accept.

Procedures are those adopted by the study group 3 Transport service and that
document should be consulted for further details.

PSS-3-4

APPENDIX

Address formats

Addresses are specified at three points within the gateway.
1) Within connections arriving from RCO. These are specified as
three-byte groups containing the binary value of node, terminal and
stream (N T S).

2) Within connections arriving from PSS. These are specified as packed
BCD strings.

3) By human operators and users. These are specified as character
strings.
Addresses will cross the gate-task interface as human-readable character
strings.
RCO addresses will therefore be specified as

address::= N<number> T<number> QXIS(number))

{number> is the node, terminal or stream number as an unsigned decimal
number with lead zeroes suppressed.

PSS addresses will initially be specified as

address ::= <number).

PSS-3~5

Compilers

COMPILERS

note author date title/subject

1. Bill Hay 17/06/80 IMP77 COOKBOOK: converting programs from
WIMP to IMP77.

CONTENTS-7

COMPILER NOTES note IMP77-1

IMP77 Cookbook Bill Hay
17th June 1980

This is a set of recipes for converting to the new IMP77. I have used ECCE
macro’s fairly extensively, and can now convert fairly large programs (>1000
statements) in about 30 minutes, with one or two compilations to catch the

more difficult cases.

1. ‘CONST’ NAMES

The construction:

ZCONSTINTEGERNAME FRED = K’200°
must be changed to:

#ZCONSTINTEGERNAME FRED == K’200’.

I let the compiler find these (ie show them as faults).

2. STRINGS

Strings must be in DOUBLE quotes. For TCP/WS software, strings can be
converted by the ECCE command:

(F/PRINTSTRING/(F/‘/s/"/)2)*

3. CYCLES WITH CONTROL VARIABLES

The construct:
ZCYCLE I=1,1,N
has been changed to:
ZFOR I=1,1,N %ZCYCLE
The following procedure fixes this semi-automatically:
%X = F/ZCYCLE/
%Y = S/%ZFOR/R*1/;/L*T/XFOR/¥/;/1/%CYICLE/

Do X commands until a CYCLE with control variables is found, then a Y
command - and repeat.

IMP77-1-1

4. ‘ELSEIF’
In a statement of the form "ZFINISH.....ZSTART", these two keywords must
now be either both present or both absent. The statement
"ZELSEIF.....4START" is therefore wrong, and must be replaced either by
"ZFINISHELSEIF.....ZSTART" or by "ZELSEIF.....". Thus for example the

construct:
#ZIF <condition> %START

ZELSEIF <condition> Z%START

ZELSEIF <condition> 7%START

4ZFINISH

has become:
ZIF <condition> ZSTART

#ZELSEIF <condition>

#ZELSEIF <condition>

AFINISH
Most occurrences of this are caught by the ECCE command:

(F/ZELSEIF/D/%START/)*

However there is still a problem in the following case:
ZIF <condition> Z%START
ZELSEIF <condition> ZSTART
ZELSESTART
L4 L] * L2 or ZELSE L] Ll L] L d

ZFINISH

MP77~1-2

This has to become:
ZIF <{condition> ZSTART
%ELSEIF <condition>

ZFINISHELSESTART

« o o o or ZFINISHELSE « o« o

ZFINISH
But let the compiler find this.

(See pg. 6.3 of the IMP77 Manual).

5. COMMENTS
Semicolons are not now treated as terminators in comment lines - that is,
comments starting with a ‘!’ now terminate at the following NEWLINE, and
not at a ‘3’. This may cause problems if comments appear before valid

statements on the same line. The solution is to enclose the comment in
curly brackets: {}. The following ECCE macro’s are useful:

ZX = (F/V/T/;/\M)*
2Y = E-11/}/(Lv/!/\)*E1/{/

The X command will display possible candidates: those which need to be
converted can be changed with the Y command.

6. CONTROL
ZCONTROL has changed. The most useful values are:

1 - do not enforce type-checking of ZRECORDNAME assignments.

256 - generate code for systems without the extended instruction set.

7. ADDRESS MAPPING

The new IMP77 contains useful built-in mapping functions, such as ‘ADDR’,
‘INTEGER’, and ‘RECORD’. These should be used instead of mapping record
names with alternative formats.

8. IMP77 MANUAL
The new IMP conforms much more closely than the old IMP (WIMP) to the

description in the IMP77 manual (report CSR-19-77 from the Dept. of
Computer Science, May ‘79).

IMP77-1-3

Deimos

DE IMOS

note author date title/subject

1. Bill Hay 20/06/80 ‘BOOTRL’: bootstrap to load and run a
DEIMOS disc file.

2. Brian Gilmore 02/07/80 Reading paper tapes on to a Deimos disc.
3. Brian Gilmore 04/07/80 The GATE/TASK interface.

4o Brian Gilmore 05/07/80 ‘NSIW’: connects DEIMOS to RCOnet by
simulating an NSI workstation.

5. Brian Gilmore 19/08/80 BLOCK ALLOCATION ON DEIMOS DISCS: the
areas used by the system, directory,
users, etc.

6. Brian Gilmore 19/08/80 FILE SYSTEM HANDLER PRIMITIVES: the

methods by which a DEIMOS task can
access/manipulate files.

CONTENTS~-8

DEIMOS note DEIMOS~1ii

BOOTRL Bill Hay
31st July 1980

Introduction

BOOTRL is a bootstrap which allows named files to be loaded from a DEIMOS
disk into a PDPll for execution in stand-alone mode. It is most useful on
the development machine, as development systems can be transmitted to the
RLO1 disc from EMAS using the development machine under DEIMOS (see note
DEIMOS-4), or put on to disk from paper tape (see note DEIMOS~2); and then
loaded and executed using BOOTRL.

Loading BOOTRL

At present BOOTRL is loaded from the general development disk as follows:
l. Press ‘CNTRL’ and ‘HLT’ buttons simultaneously.
2. Press ‘CLR’.
3. Press "1",
4., Press ‘LSR’.
5. Press ‘CNTRL’ and ‘BOOT’.
6. The console will print ‘@, Type DL(CR). The bootstrap now loads

and prints:

BOOT RL V0.0
*

The ‘*’ is the command prompt.

Command s

Note: 1. No type—ahead is possible.
2. The only permitted line—-editing is RUBOUT.

Commands to load and execute file

1L<{filename> - loads DEIMOS file <filename> into store.

G - GO - start executing at current start address. Fails
if start address is not set.

R{filename> - RUN - same as ‘L’ followed by ‘G’.

S start address - Set or reset start address (which must be in
OCTAL) . Prints old and new address.

DE IMOS-1-1

Commands to examine and modify store

Once a program is loaded using the ‘L’ command, store can be examined and
modified before running the program, as follows:

C

- CLEAR - sets store locations from 0 to 140000 to

zero.

E low:{high} ~ EXAMINE - prints a section of store from ‘low’ to

‘high’, 8 words to a line., If ‘high’ is omitted
just one line is printed, giving store locations
(“low’) to (“low’+16).

M address newcontents -~ MODIFY. Prints out old and new contents

B address

F value

Other Features

ABS loader

of this address.

repeat the last ‘E’ command. Useful after several
‘M’ commands, to check them.

repeats the last “E’ command, but for the section of
store following that displayed by that previous ‘E’
command .

repeats the last ‘E’ command, for the section of
store preceding that shown in the last ‘E’ command.

Set Base for ‘E’ and ‘M’ commands. ‘E’ commands are
normally relative to store location O, Using the
‘B’ command the addresses can be made relative to the
location address — useful for example when working
with load maps.

prints out all store addresses whose contents are
"value", between 0 and 160000. Note that the values
printed are not relative to the base.

The ABS loader is automatically loaded with BOOTRL. The start address is

157500.

TU58 loader and dumper

The TUS8 loader and dumper are held on disk, as LOAD(50) and DUMP(50). To
write a TU58 with a TCP image do the following:

1. BOOTSTRAP BOOTRL

2. L fname
3. L DUMP(50)
4, S 157000

5. G

(fname is TCP image on disk)

The PDPll will HALT when the core image has been written.

DEIMO0S-1-2

Building BOOTRL

All sources are in BOOTSRC. To build it, proceed as follows:

IMP11 BOOTSRC_BOOT, BOOT#REL
IMP11l BOOTSRC_TTY,TTY#REL
IMP11 BOOTSRC_RLO1,RLOI#REL
LINK11

.ALONE 140000 156776
BOOT#REL

TTY#REL

RLO1#REL

.END

BOOT#0BJ

A utility is provided to copy BOOTRL on to the second load site on the RLOl.
This is built as follows:

IMP11 BOOTSRC_WBOOT , WBOOT#REL
LINK11

WBOOT#REL

ERCM09. IMP77PY#REL

«END

WBOOT#0BJ

The OBJ files must be sent to the RLOl by loading the DEIMOS/RJE package,
and then SENDING the OBJ file to .LP155. They will arrive as VLP???7(16)
(where ??? are digits). They should be copied to a safe area. Assuming
they are copied with the names WBOOT and BOOT, then the command

WBOOT BOOT

will write the bootstrap to the second load site.

DEIMOS~-1-3

DEIMOS note: DEIMOS-2

READING PAPER TAPES ON TO A DEIMOS DISC Brian Gilmore
2nd July 1980

A program is available to read either Binary or Source tapes on to a DEIMOS
disc. It is called 'READPR' (source READPS(13)).

It is run by the command:
>READPR /<filename>

The program then prompts 'BINARY FILE?'; reply 'yes' or 'no', as follows:
'Y(CR)' - for all bytes to be transferred unchanged from the tape.

'N(CR)' - for all non-binary files; the effect is to strip all
characters of code value less than 32, except for NL.

On reaching the end of the tape the program will stop. The file is now in

<filename> on the DEIMOS disc, and can for example be loaded and run from
the disc using 'BOOTRL' (see DEIMOS note 1).

DEIMOS-2-1

DE IMOS note: DEIMOS-3

GATE-to-TASK Interface Brian Gilmore
4th July 1980

This note describes the interface between GATE and a TASK which wishes to do
any of the following:

a) Establish a connection

b) Receive incoming conmnections

c) Send/Receive data through said connections
d) Send/Receive messages.

The interface operates by the sending of messages as records, “P’, in the
format:

ZBYTEINTEGER SER, REPLY, FN, PORT,
ZRECORD (MEF) %NAME MES,
ZBYTEINTEGER SO, Sl.

or - for non-data transfers -

%#BYTEINTEGER SER,REPLY,FN,PORT,FACILITY,FLAG,NODE,TERM

where SER = service number of receiving TASK
REPLY = service number of sending TASK
FN = function code
PORT = User or GATE port reference
S0 = various uses (see below)
Sl = returns GATE port numbers etc. (see below)

MES is a record name of format (MEF):

ZRECORD (MEF) ZNAME LINK,
%ZBYTE INTEGER 1EN, TYPE,
ZRECORD (NSI1F) NSL.

where LEN = length of the data block,
TYPE=0 is 256 byte block,=64 is 64 byte block, and
format NSIIF is:

%ZBYTEINTEGER FN, SUFL, ST, SS, SN, DN, DT, DS, FLAG, UFL,
%ZBYTE INTEGERARRAY A(0:238)

(ie. this is an NSI block format. Note that short block formats can be
mapped on to this if required).

DEIMOS-3-1

The various functions available in the two directions across the interface
are as follows: :

TASK to GATE:

1 - ENABLE FACILITY

2 - DISABLE FACILITY
3 = CALL REPLY

4 - ENABLE INPUT

5 = PUT OUTPUT

6 - CLOSE CALL

7 = ABORT CALL

8 - OPEN CALL

9 - OPEN MESSAGE

GATE to TASK:

2 - INCOMING CALL

3 - INPUT RECEIVED

4 - OUTPUT TRANSMITTED
5 = CALL CLOSED

6 = CALL ABORTED

7 - OPEN REPLY A

8 - OPEN REPLY B

9 - MESSAGE

10

MESSAGE REPLY

In detail, these functions are as follows (NSI equivalents in brackets):

DE IMOS=3-2

Interface: TASK to GATE

ENABLE FACILITY

P _S1 = facility number.

Requests that all incoming calls to this facility
mumber be sent to the TASK - will supercede any
other TASK which has enabled the facility.

DISABLE FACILITY

P_S1 = facility number.
CALL REPLY (CONNECT RESPONSE or SENDMESSAGE RESPONSE)
P_Sl1 reply showing success/fail:
0 - reject, with a fail flag of 128,
(both CONNECT and SENDMESSAGE)
128 - set SUFL=0 in reply to a message.,
(SENDMESSAGE only)
0 - accept the comnection, using P_Sl
as NSI flag.
(CONNECT only)
This call is used by the TASK to reply to an
""INCOMING CALL" or "MESSAGE" sent by GATE.

ENABLE INPUT : (SENDBLOCK RESPONSE)
This call is used by the TASK to acknowledge an
"INPUT RECEIVED" call from GATE, and hence allow
the remote end to transmit another packet.

(SENDBLOCK)
P_MES == block of data to be transmitted.

PUT OUTPUT

(SENDBLOCK + DISCONNECT)

To send a last block of data. GATE will reply
with "CALL CLOSED" if it is OK, or "CALL ABORTED"
if it failed to close normally.

CLOSE CALL

(STATUS DISCONNECT)
to close the conmnection (P_MES == nulll). You
will get "CALL ABORTED" in reply.

ABORT CALL

(CONNECT) .

P_PORT = TASK’s reference number.

This will cause GATE to allocate a port, the
number of which it will return as P_S1 in the
return call "OPEN REPLY A". P_S1 = 0 means that
GATE is full - try again later.

When the connection is established GATE will send
"OPEN REPLY B" and the TASK must determine the
success/ failure of the connection.

Thereafter all port references must use the GATE
port number.

OPEN CALL

OPEN MESSAGE

.

(SEND MESSAGE)

P_PORT = TASK’s reference number

MES == message

When GATE receives the response a "MESSAGE REPLY"
will be sent back with P_SO = TASK’s reference
port, MES == message reply. The TASK has to
determine success/failure. (Remember to free the
buffer).

DE IMOS-3-3

Interface: GATE to TASK.

INCOMING CALL : (CONNECT from GATE to TASK)
P_SO0 = forward/reverse buffer limit
P S1 = source terminal number
P_PORT = GATE port
Requests that you accept or fail a call,
P_MES points to the connect packet which you may
reference for extra information, but you must not
free it, The TASK must return a "CALL REPLY" to
GATE.

INPUT RECEIVED : P_MES == incoming block of data.
(TASK must free block)

OUTPUT TRANSMITTED : (SENDBLOCK RESPONSE)

Enables TASK to send another block of data.
CALL CLOSED GATE has received a Send Block + Discomnect, and
""CALL CLOSED" is sent AFTER the last incoming data
block. The TASK should reply "CLOSE CALL" or
"ABORT CALL" to GATE.

CALL ABORTED Obvious. Must reply with ABORT CALL.

OPEN REPLY

(CONNECT RESPONSE)
This GATE reply to an "OPEN CALL" from the TASK
consists of two separate parts:

OPEN REPLY A and
OPEN REPLY B

OPEN REPLY A contains the TASK reference
number in P_PORT, and also a GATE Port
number which must be quoted in all
subsequent transactions (and GATE
responses). This GATE Port number is in
P_Sl: it is zero if either GATE has no
free ports or if the line is dowm.

OPEN REPLY B contains the success/fail
flag in P_Sl.

(SENDMESSAGE from GATE to TASK).

P_SO = NSI_ flag.

P S1 = source terminal number.

P_PORT = GATE port.

P_MES points to the SENDMESSAGE packet, which you
may reference for information - eg. the Node and
Stream numbers - but you must not free it. The
TASK should send a "CALL REPLY" to GATE in
response.

MESSAGE

o

MESSAGE REPLY : This is the GATE response to a TASK’s
"OPEN MESSAGE" call. P _Mes points to a block
containing the SM reply. You may inspect it for
the success/fail field, and must free the block.

DEIMOS-3-4

DEIMOS note: DEIMOS-4

Connecting DEIMOS to RCOnet Brian Gilmore
5th July 1980

There is a package of programs within DEIMOS which simulates an NSI
workstation, thus enabling a DEIMOS system to connect to the RCOnet. The
programs are called by loading a file called 'GO'. This is usually in file
system 60, but for some machines it is in file system 15. Thus the initial
commands are:

¥LOGON 60 (or 15)
¥LOAD GO

When it has finished loading, 'GO' prints the message "SYSTEM LOADED".

Several other messages are also printed; these are produced by the protocol
handler and the network link:

When the protocol handler has got the line up it prints the message:
PRTO: LINE UP

GATE will now attach to the network, and prints the message:

ATTACHED OK

The link to the network is provided by the program 'NSIW'. When this
starts up it prints the message:

LP:ENABLED
SM:DISABLED

showing that: i) the 'LP' facility is ready for use (ie. the system can
accept files from the network), and
ii) Send Messages from the Network are discarded (this is
for compatibility reasons on the 2900 FEPs).

Thus the first command that should be given is "SM/ENABLE", to allow
messages to be received from the network. It should be noted that all
commands to 'NSIW' consist of a 2-character mnemonic, followed by '/T and a
command-specific text. The basic commands are:

SM/ENABLE - allow console messages to be printed.

LP/ENABLE - allow the LP facility (ie. accept files).

TT/<ADDRESS> - set up an interactive connection to a host.

TT/KILL - terminate an interactive connection to a host.

SM/<ADDRESS> - send a message to a network terminal.

OP/<ADDRESS> - send a message to a mainframe OPER.

CR/<specific text> - send file(s) to a mainframe or terminal.

LP/NULL - provides a fast bucket for testing.

LP/FILE - enables the default disc file names to be changed.
* * *

DEIMOS-4-1

DETAILED DESCRIPTION

1. Interactive Terminal Use

A user first logs on to the mainframe by using the command "TT/" followed by
the required host name - ie:

“TT/2980" or "TT/2970" or "TT/2972"

or by specifying the network address - for example "TT/N80T80 " (the SPACE
is necessary). The host will then prompt for "USER:" and "PASS:" as usual.

If "NSIW' succeeds in connecting to the host it produces the message
“TT:CONNECTED". If it fails it prints the message "TT:CONNECT FAILS n",
where 'n' is the NSI fail code. On logging off, 'NSIW' terminates the
connection and prints “TT:ABORTED".

Note: (i) that at no time is type-ahead allowed.
(1i) that a very crude INTerrupt scheme is implemented as:

TT/INT n, where ‘n' is the interrupt character.

However using "TT/INT A" will probably cause more problems
than it cures. If in extreme difficulties, type "TT/KILL"
which terminates the session.

* *

2. Sending messages and Operator Commands

Messages can be sent to remote terminals, nodes or FEPs by using the command
SM/<address> text

where <address> is 'NxTy' for Node 'x' and Terminal 'y'; hence the command
SM/N9T23 message

sends 'message' to SLOW DEVS. In the case of FEPs, the host name can be
used - for example "SM/2980 Hello".

The command OP/<address> text" is identical except that it will send a
message to the mainframe; for example to log on to the 2980:

0P/2980 LOGON T155 - or, identically,
OP/N80T80 LOGON T155

The 'Nx' may be omitted, in which case the node number defaults to zero.

If a message is to be sent to a stream other than 2 (console) or 11 (the
mainframe), a stream number may be appended to the address as 'Sz’'.

In all cases, if the message is accepted at the destination, the message
“SM:0K" is printed; if it is not accepted, the message is "SM:FAILS 'n'".

DEIM0S-4-2

3. Receiving files from the Network on to the Disc.

The 'LP' facility allows other terminals or mainframes to send files to
DEIMOS, and these are written to the disc. The files are given the default
filenames 0.VLP0OO(16), 0.VLP001{16), etc., but some older versions may use
0.VLP100(16), 0.VLP101(16),+... (The '0' is the disc unit number, and '(16)"
is the file system. Within that file system and on that disc, the incoming
files are named VLP00O, VLPOOl, etc.).

The 'LP' facility is enabled on start-up; it is disabled or re-enabled by
typing the ‘toggle' command "LP/ENABLE".

It should be noted that if a file is aborted in transfer for any reason, the
message "LP:ABORTED" is printed and the facility is left in the 'idle' state
- which means that it must be 'enabled' before another file can be received.
The status of the facility can be ascertained by typing "LP/STATUS".

The 3-character name of the default file may be changed (the numbers in the
filename cannot be changed - they are always 000, 001, etc) by the command
“LP/FILE'"™, and then on the prompt 'LP:BASE FILE' giving the new name - that
is:

LP:BASE FILE: 0.xxx000(56)

If a test 'bucket' is required, then the command "LP/NULL" should be issued;
all files are then thrown away until a new "LP/FILE" command is issued.

4, Sending Files into the Network

These commands are in the form "CR/" followed by the appropriate text, as
follows:

to send one file to a mainframe (the file

CR/<address> FILE one
must contain its own JCL).

to send 'n' files to a mainframe as a

CR/<address> FILES n
single unit.

CR/<address> LP to send a file to facility '4' at
'address’.

CR/<address> BINARY LP to send a binary file to facility '4'.

to send a file to facility '9' on the FEP
at 'address'; ONLY USE THIS COMMAND IF
YOU KNOW WHAT YOU'RE DOING!!

CR/<address> FE

DEIMOS-4-3

'NSIW' replies as follows:

CR: connect fails 'n' if it fails to connect. In the case of
an LP file it will print:

CR: WILL KEEP TRYING and do so until it is successful.

CR: CONNECTED
CR: FILENAME:

when successfully connected.

this is the prompt for the file which is
to be sent, and follows any of the above
YCR/' commands. Reply either with the
name of a DEIMOS file (eg. FRED(16) or
1.FRED(16)), or '.TT' for inﬁut from the
console. There are no further prompts
in the latter case, which must be
terminated with "ctrl1+D" {'EOT'). 'NSIW'
will respond with either ‘CR:FILE DONE'®
(if there are more files to come), or
*CR:FINISHED' (on completion). In the
latter case it will terminate the
connection.

This method of input is useful for sending files to SPQOLR, since -
with the 'CR/<addr> FILES 2' command - the JCL can be typed in from the
console for attaching to the front of the file. Similarly there is a

file called 'LP23' on some machines which contains the necessary JCL to
have a file printed on .LP23. Thus (with user commands underlined):

CR/2980 FILES 2

CR FILE: . TT
//DOC DEST=F ILE,USER=ERCM03,PASS=2222,NAME= NENFILENAME(CR)(EOT') (cR)
CR:FTLE DONE

CR FILE:DISCFILE
CR:FINISHED, nnn CHARS

or:

CR//2980 FILES 2

CR FILE:LP23

CR:FILE DONE

CR FILE:DISCFILE
CR:FINISHED, nnn CHARS

At any time the user can type "CR/STATUS" to find out what 'CR' is doing.

Don't forget to terminate the session with "OP/<addr> LOGOFF" !!

DE IMOS-4-4

BLOCK ALLOCATION ON DEIMOS DISCS

DE IMOS

as follows:

BLOCKS

BOOT block:

first System
start:
end:

Block list
start:
end:

DIRECTORY
start:
end:

User Blocks
first:
last:

second System
start:
end:

note: DEIMOS-5

Brian Gilmore
19th August 1980

The disc block allocation for the current implementations of DEIMOS is
DISC TYPE
RKOS RLO1 RX02 AMPEX etc.
octal (dec) | octal (dec) | octal (dec)| octal (dec)
0 (0) 0 (0) 15 (13) 0 (0)
1 (1) 1 (1) 16 (14) 1 (1)
76 (62) 76 (62) 112 (74) 76 (62)
100 (64) 100 (64) 130 (88) 100 (64)
147 (103) 217 (143) 140 (96) 477 (319)
150 (104) 220 (l44) | 141 (97)| 1100 (576)
247 (167) 317 (207) 240 (160) 1177 (639)
400 (256) 400 (256) 241 (161) 1500 (832)
10767 (4599) | 21757 (9199) | 1750 (1000){175000 (64000)
10770 (4600) | 21760 (9200)
11066 (4662) | 22056 (9262)
11100 (4672)

Dump Site:

DEIMOS-5-1

RLo2,

76

j06
337

340
437

5o0
19439

DEIMOS : note: DEIMOS~6

FILE SYSTEM HANDLER PRIMITIVES Brian Gilmore
19th August 1980

This note describes how a task may access files without using the standard
IMP 1I/0 routines.

The interface operates by sending messages as records, ‘P’, in the format:

ZBYTEINTEGER SER,REPLY, ZINTEGER FN, %C
ZRECORD(file descriptor)%NAME B, ZINTEGER C

The format ‘file descriptor’ is as follows: avTE

#ZRECORDFORMAT FILE DESCRIPTOR(%UNTEGER UNIT,FSYS, %C
%ZBYTE INTEGERARRAY NAME (0:5))

where ‘UNIT’ is the logical unit number of the file to be
accessed/created, ‘FSYS’ is the file system number (0-K’77‘) and ‘NAME’
contains the 6 character name of the file (padded out with spaces).

A valid file descriptor should be passed in all cases.

Operations on the file system are carried out by a number of functions (put
in FN) and are detailed below:

o
|

Examine

1 - Get Next

2 - Destroy
3 = Create
4 - Append

5 = Rename
6 - Rename Temp File

7 - Rename Fsys

o
|

Get DIR BLOCK Number

DE IMOS-6-1

Examine

This call is used to determine if a file (described by P_B) exists and
what its first Block Number is.

On reply, P FN = 0 ~ file does not exist.
= n - lst block of the file is ‘n’.
P_C is not used.

Get Next

This call is used to find out the second and subsequent block numbers
of a file. On the call, P_C = last block accessed.

On reply, P FN = 0 - no more blocks in file.
= n - next block in file is ‘n’.

Destroy

This call destroys the file, described by P_B (P_C not used).
On reply, P_FN = 0 - file has been destroyed.

1 - file does not exist.,

-1 - file was corrupt (still destroyed).

nnan

Create
This call creates a one-block file as defined by P_B, (P_C not used).
On reply, P_Fn = Q0 - failed to create, no free blocks
or directory full.

= n- ‘n’ is the block number of the one-
block file.

Note: If the file already exists, a second file of the same name is
created; this will cause problems with ‘examine’.

Append

This call is used to extend the length of a file by one block. On the
call P C = last block of the file.

On reply, P_FN = 0 - failed - no free blocks.
= n - n is the new block.

DE IMOS-6-2

Renane
This call uses a different call format, viz:

ZBYTEINTEGER SER,REPLY,ZINTEGER FN,ZRECORD(FILE DESCRIPTOR) %C
OLD NAME,NEW NAME

and renames the file described by ‘OLDNAME’ into the file described by
‘NEWNAME’. The call will fail if the unit and/or FSYS are different, if
0OLD NAME’ does not exist, or if ‘NEWNAME’ exists already.

On reply, P_FN = 0 - call successful.
0 - call failed.

Rename Temp

This call renames a temporary file (eg. #FRED) to a permanent file (eg.
FRED), destroying the old copy of the permanent file (eg. FRED) if
necessary. P _C is not used.

On reply, P_FN = 0 - call succeeded
= =] = temp file does not exist.

Rename Fsys

Rename PFsys is the same as ‘RENAME’ except that it is prepared to
‘move’ a file from one file system to another. This call was put in

specifically for the Appleton Tower System and its use elsewhere is not
recommended .

Get DIRECTORY BLOCK Number

This call returns the directory block number for the specified file
(just using the UNIT and FSYS parts). It should be used by any program
that wishes to access directories, since the position of the directory
blocks depends on the type of disc being used (see DEIMOS note 5).

On reply, P_FN = directory block number.

DE IMOS=6-3

Info

INFO

note author date title/subject

1. Scott Currie 24/07/79 INFO: the preliminary functional
specification.

2. Scott Currie 07/07/80 INFO: proposed software structure and
interfaces.

3. Scott Currie 07/07/80 INFO: the ITP/TASK interface.

CONTENTS-9

INFO note: INFO-1

PRELIMINIARY FUNCTIONAL SPECIFICATION Scott Currie
24th July 1979

This document is an expansion of the brief specification written in April
1979 for the purpose of fund allocation, and is the result of consultation
with interested parties within the ERCC.

The Network Information Station (INFQ) is the data collection centre for the
network, its primary function being to determine the state of terminals on
the network, either by polling those terminals or by receiving status
reports, and - in the case of failures - to alert the operations staff.

INFO will also permit on-line debugging of specific network terminals and
will gather data for statistical analysis. It is envisaged that INFO will
simply store this data for analysis elsewhere.

Data will be gathered by INFO in two ways, primarily by polling terminals
using NSI SENDMESSAGE packets on a reserved stream, but a facility will also
" be provided to accept asynchronous messages from terminals.

Note that INFO is only an information centre and NOT a control centre. A
malfunction of INFO will not affect normal operation in the network.

INFO will supply information to four types of user:

the "ordinary" interactive console or RJE station user

the operation staff

the systems development staff (chiefly communications), and
ERCC management.

User Facilities

INFO will appear as a HOST on the network. In response to commands it will
present status reports to the user in a suitable format, in particular as
follows:

a) A list of HOSTs on the Network and their status (eg. UP/DOWN), FEP
status and number of users.

b) The above information for a specific HOST plus any current "message of
the day" input by the operations staff.

c) The status of the network Nodes (and Node to Node connections).
d) The status of the TCP's.

e) The status of specific RJE terminals.

INFO-1-1

Operator Facilities

INFO will drive a VDU device at a central point, convenient to the
operations staff, and will provide a continuous display of the status of
mainframes, FEP's, nodes, TCP's, and possibly RJE stations, plus the current
broadcast message.

Any failure of the major components displayed will result in that status
"flashing” on the screen, probably with an audible warning, the operator
cancelling the warning after action has been taken. The status displayed
will be gathered by INFO polling the necessary terminals on the Network - it
is envisaged that everything be polled within a 2 minute period so there
will be a small delay in detecting failures.

The “"broadcast message" is a facility by which operators can send messages
from INFO, both globally (to RJE and interactive consoles)
and selectively.

The operations staff will from time to time require more detailed
information from specific nodes and terminals. The following requirements
have been identified.

a) Nodes

display current noticeboard and the status of lines
and terminals.

b) Mainframes

input appropriate operator commands to the mainframes
(though this is really a control function).

c) FEP's status of lines.

d) TCP's determine state of active buffers.

Another operational requirement is the recording of all

RJE/mainframe jobs such that these jobs can be monitored, and a 1ist played
back or printed if required. This may be seen as a mainframe requirement
however.

Systems Facilities

The following facilites would be “"priveleged", ie. protected by passwords at
least. The facilities required for Nodes, TCP's and FEP's are all similar in
nature, viz:

a) A general debugging package to examine core tables, and possibly modify
them.

b) Regular statistics-gathering by polling terminals and accumulating data
for later analysis.

¢) A method of invoking, interrogating and decoding Node Internal traces.

INFO-1-2

Management Facilites

The statistics gathering function of INFO mentioned above can be extended to
provide more accurate and comprehensive data on the Network than has been
available up to now eg.

- measuring reliability in terms of up/down times of, say, TCP and
RJE stations.

- load statistics on specific lines.

Hardware Considerations

INFO can be split into two broad categories of operation: a "what's up or
down" facility; and a more detailed debugging/statistics gathering facility.

It is relatively simple to provide the status information required by
polling the terminals involved, indeed a prototype INFQ service is now
available which provides the status of the TCP's and 2970 Front End. The

. prototype, which is based on NSI workstation software, also contains a TCP
Debugging Package which has proved its worth over the last few months.

There is however a considerable increase in complexity to support such
facilities as general statistics gathering, node tracing and job recording,
and it is doubtful that a small system (the current INFO in say an
LSI-11/03) could support all these - certainly not all at once.

It may therefore be prudent to develop the system further on a PDP-11 with
memory management (LSI-11/23) under the DEIMOS system, to permit future
expansion. Such a system would require floppy discs and cassette tape for
large scale statistics gathering.

Conclusions

The basic facilities required could be provided by the current INFO system
in an LSI-11/03 with 32K words of store, DUV-11, a VDU and possibly a TU-58
cassette tape for mass storage.

A more expandable system would be an INFO under DEIMOS in an LSI-11/23 with

initially 32K words of store, DUV-11l, a VDU, RX02 floppy discs and TU-58
cassette tape. This system would then be self-supporting.

‘ ~
/T\\JN Q:Kg;wbgi;uidx A&XnAﬁb/thtg %f&liﬁw:\ kﬁﬁmw» NAIE ﬁAA} S
SRS o cbo‘b-é\ \MM&_

INFO-1-3

INFO note: INFO-2

PROPOSED SOFTWARE STRUCTURE AND INTERFACES Scott Currie
7th July 1980

INFO will consist of several tasks running under the DEIMOS system,
the most important being outlined below.

N.B. In this note P is a record with format:

(4byteinteger SER,REP,%integer A,B,C)

or

(%byteinteger SER,REP,Al1,A2,B1,B2,C1,C2)

GATE : NSI handler (bridge) - already exists but will be amended to
pass Sendmessage Responses with data back to the originating

tasks. The interface to GATE is the subject of DEIMOS
note 3.

POLL : Module to do the basic regular polling of TCP's and probably
Nodes, possibly FEP's. It will maintain a small database and
will release information on demand to other tasks with
parameters as follows:

a) Message from task for TCP type terminal

P A : TCP NODE NO.
P B : TCP Terminal No.
PC: 1.

Reply to task is:

P Al : -2 - illegal
- -1 - down
0 -up

P_A2, P B1,B2, P_C1,C2 : no. of users on each host
(up to 5 Hosts).

To pick up TCP base addresses as above with P_C=2.
Response P_A=host address

P B=console address

P_C=port address

b) for other terminals - to be defined.

INFO-2-1

1

TCP DEBUG
NODE_DEBUG

DISPLAY

STATS

Handles user requests to INFO. Will send out first INFO
prompt and select task to handle the user's requirements.

Thereafter will pass data to/from user and specified task.
User inputs will be the subject of a later note. Interface
to other tasks is the subject of note 3.

These are privileged tasks which require a password from
the user. They may access the POLL information or send
their own messages through GATE under user control.

this will handle the normal user requirements - usually

Just the polling information, plus the message of the day
for a given host.

will construct the local VT100 disg]a s (several pages
probably) with access to other tasks {v1a ITP). Will
handle operator input.

statistics gatherers to access GATE and/or other tasks.

INFQ-2-2

INFO note:; INFO-3

ITP_TO TASK INTERFACE Scott Currie
7th July 1980

When a user logs on to INFO the ITP task will allocate a port and send a
HELLO message to the USER task, which will have a few less ports than the
ITP task.

The USER task will output a title and service prompt (or busy message) and
will deal with normal user enquiries as detailed below. If a user requests
a special task the USER task will send a CHANGE TASK message to the ITP task
which will load the required task and send it a HELLO message.

The slot in the USER task will be marked as occupied and any log-off will be
sent to the USER task as well as the current task.

A11 tasks will send data as requested in lengths of less than 121 bytes.
To save buffers it is recommended that tasks do not queue buffers to send
but fill them on request.

N.B. All tasks other than the USER task will handle one console at a time.

INFO-3-1

The interface is defined assuming the record formats specified in the DEIMOS
note on the GATE/TASK interface (DEIMOS note 3).

HELLO

DATA IN

INT IN

SEND DATA
DATA OUT

SEND PROMPT

LOGOFF

CHANGE TASK

SETMODE

ILLEGAL MESSAGE

: Sent from ITP to TASK.

¢ From ITP to task.

: From ITP to task.

: From task to ITP.

: From task to ITP.

: Either direction.

: From task to ITP.

: From task to ITP.

: From ITP to task.

PORT is the ITP reference
number which must be used in all messages for that
console.

LEN = length of data. This is one
Tine as typed in. The task must free the buffer.
LEN = length of data. The user has

typed an INT. The task must free the buffer.

: From ITP to task: requests data out or a prompt.

LEN = length of data. Maximum

length = 120 (it will be truncated).

LEN = Tength of prompt (<16
characters). N.B. there is no type ahead at the user
level.

From ITP to task, it means the user
has typed Setmode EOT. From task to ITP (in response
to SEND DATA) it will cause the user to be logged off
(N.B. any log-off message must be sent as data previous
to a LOGOFF). The task should cease to exist.

Requests that the user be
transferred to another task. SO = task identifier.

Current identifiers are:

0 = User task
1 = TCP debugger
2 = Node debugger.

Normally this will mean that the current task should
cease to exist.

The data must be in the Setmode
format (a routine will be provided to do this). This
is used, for example, to turn echoing on/off.

SO0 = function sent to ITP. This
probably implies a wrong port number etc.

INFO-3-2

Local Networks
(ring, etc.)

LOCAL NETWORKS

note author date title/subject

CONTENTS-10

KENT

note author date title/subject

1. Stephen Binns 30/07/80 An outline of the Kent network.

CONTENTS-14

KENT note: KENT-1

THE KENT NETWORK Stephen Binns
30th July 1980

Configuration

We have currently 2 workstations: a PDP11/20 with 3 DM multiplexors and 2
character printers; and a PDP11/10 with 3 DH multiplexors, paper tape
station, plotter and two printers. Later this summer we will configure in
an 11/34 with DZ multiplexors.

A second 11/10 runs RJE work to ULCC and OXFORD (VME/B). The system is
capable of taking output from EMAS as pseudo-cards to be sent to London or
Oxford, and output from London may be spooled into EMAS. This system is
written in Macro—-1l1 for historical reasons. We plan to replace it with an
X25 gateway when the remote hosts we want to talk to support PSS compatible
X25. The system will also act as a ring to PSS gateway.

We have recently started work on a Z80 based workstation, capable of
supporting 8 terminals and a character printer. This is being programmed
in BCPL as a re-implementation of the IMP workstation, and we are aiming for
a prototype by October 1980.

The ‘hosts’ at Kent are a 2960 with an 11/34 front end and a VAX running
UNIX. The VAX doesn’t have a front end, although we plan in the medium
term to interpose a KMCll-based DMA controller between the VAX and the ring.
This is being developed at Cambridge for an 11 system.

All the workstations and the hosts are connected via the Cambridge ring.
The workstations are booted from the FEP round the ring; there is a dump
facility back to the FEP and thence to EMAS. On EMAS there is a simple
dump analyser for the 11°s.

So far with only one host we have not needed a name server, A version of
the Cambridge 280 name server 1s now being tested to enable host addresses
to change for maintenance and breakdown cover.

KENT-1~1

Software

The initial (January 1980) EMAS service utilised NSI protocol on top of byte
stream protocol on the ring. There was one byte stream between each
workstation and the front end. Since l4th July we have been running our
new NSI-less software, in which a byte stream is used instead of an NSI
stream; after some initial teething problems it seems to work
satisfactorily. This means that GATE in the FEP disappears and a
functionally equivalent (from above) byte stream protocol handler takes its
place. The RJE and ITP handlers in the front end needed slight
modification. BRIDGE has been completely re-writtem for the workstation.
It now incorporates the functions of TRUNK, which has ceased to exist as a
separate module, CONSOLE has been slightly modified to improve the UNIX
user interface. ‘Raw Mode’ (single character, remote echo) access for UNIX
will not be provided because of the load it would impose on the workstations
and the VAX. However as this facility was mainly used within the editor
for line-editing, it has been moved to the workstation. It provides
enhanced local editing of input lines and the facility for the host to prime
the input buffer with text to be edited at the workstation and then
re—input.

We have also implemented bulk setmode and getmode for UNIX. We are

considering withdrawing the local setmode (ctrl+A) and enforcing setmodes by
the host.

KENT-1-2

Monitor

MONITOR

note author date title/subject

1. Nick Stroud 07/07/80 'SHIFTA': monitor program to simulate
bit-shifting.

CONTENTS-11

MONITOR note: MONITOR-1

SHIFTA - simulates bit-shifting errors Nick Stroud
7th July 1980

There is a new program on the monitor which reads in a string of up to 16
bytes and prints them out as they would appear if shifted to the left by 'n'
bits, n=1-7. This simulates the effect of dropped bits on a communications

line, or - by reading upwards from the bottom of the output listing - the
effect of inserted bits.

The program is called 'SHIFTA', and is loaded in the usual way for the
monitor - that is, '(ESC).SHIFTA(CR)'. The command level prompt is "WHAT
NEXT?". On first entering the program type 'D' (NO CR or SPACE), followed
by the bytes to be shifted. These bytes are specified in the same way as
in the monitor programs - that is:

for HEX - prefix the first byte with 'X' (hex is the default mode).
for OCTAL - prefix the first byte with '0°'.
for DECIMAL - prefix EVERY byte with 'T'.

for LITERAL - prefix each byte with 'L', then specify the byte exactly as
it appears on a (SYMBOLIC) monitor listing - eg 'DLE', 'A’,
'n'. The actual code value taken in this input mode
depends on the monitor's setting - ASCII/EBCDIC - set via
the toggle command 'E' in SETMODE.

Separate each byte with a SPACE, and terminate the string with

CARRIAGE RETURN. The program then prints the number of bytes and their bit
pattern, followed by 8 lines of data - showing the original string, then the
result of shifting this one bit to the left (equivalent to one bit dropped),
then two bits to the left, and so on, up to seven bits.. The string is
'wrapped around', in that the last byte is made up with the most significant
bits from the first byte.

The other commands now available are as follows:
D: type in a new string of data.

: enhance bytes as specified (in reverse video or blink).
: enhance all BSC control codes.

show the enhanced bytes.

o =2 ™M m

: set OCTAL mode for all input/output.

(continued...)

MONITOR-1-1

S: enter SETMODE to change display parameters. The options are:

X:
Y:
Z:

C: control code translation ON/OFF (toggle).

E: ASCII/EBCDIC interpretation of data (toggle). Default is ASCII.

0: select OCTAL for all i/o.

P: turn PARITY bit ON/OFF (toggle) - ie. use or drop the parity bit
in interpreting ASCII
characters.

S: turn SYMBOLIC mode ON/OFF (toggle) - ie. display either the
character or its code
value.

U(n): display 'n' as <numeric ASCII EBCDIC>.

X: select HEX for all i/o.

?: review current SETMODE settings.

(SP),(CR): exit from SETMODE.

: print the results on the line printer (no need to use command 'Z'

turn it off

first, but ?rinter stays on subsequently. Use 'Z' to

set HEX mode for all input/output.
print the complete ASCII/EBCDIC conversion table.
turn 1ine printer ON/OFF (toggle).

(ESC): terminate program and restore MUSS operating system.

These commands are available in the program: type 'H' (or make a mistake) at
command level.

The printer 1listing overleaf illustrates the use of 'SHIFTA':

MONITOR~1-2

Lp ON .
IHAT NEXT? D=LSP =LEOT =LSTX =C2 =L.8P =4D =F3 =LMAK =FF =f¢

{UMBER OF GYTFS3 = Y3IA
101000090 varaelgeg 04020910 11@8@010 GvJWﬂUUﬂ quﬂlij 1111um11 Muﬂ10101 11111111
{111111¢

“!.-xf-v-'o . . st e . LELE - LI B

19 .00 e vranoees..o0n 000000000 ac0bobgouosse
0,04 02 2 29 4o F3 15 fF TE
20 et 0 ian0a0atee 0800 00cbbss000 000300

10'_U§' OJ' pd_.fﬁ 9 ?ﬁ';?u 'fr' rC .
O'.o.obo.o.o.'o..oill.:-.o.otlvogoooil

3o, ;a 08, u8 81 37 .€c, .57 FF. FO

".0‘.0.00.'..‘0.000'..Oolot.i..do."'

9 29 16 1y, @2 6F 98 AF TF_F}

e

-.06-..0‘50305....500.-

22 w4 Dr_ 31 _SF

v‘o'c'réc: "F.G .
".A'Oovz-......c.'.oott00000000000 et dB S
3 8o 587 a4 9 BE 62 BF FF Cd
'.."..‘.....;Q.....‘..O;“.Oé“‘ o

TOE T UL S
.#.;.;ﬁ.aa..,a......i;a}.ﬁ
52_.01 .61 }0'.26 Fo 84
tveoisieisceotno.nebonays

AHAT NCXT? 5
SHaS
SHep
SM=C
SM-

SYHBOLIC 7. 8175 - HEX 3

SYMBoL1C 8 BITS HCX > -
SYHBOLIC '©-BI1S CONTROL OHLY HEX »
SYNBQLIC 8 0l1S CONTROL ONLY HEX >

ANAAAA

NUMBLR OF BYTES = 0904,
#0120¢00 P@naeien 0090avie ilededly ‘w0 ieeude ﬂlﬂﬂ|101 llilumll genivle] 1]111111
ti111yta :

SYHOLIc _8,8ITs CONTROL DHLY HEX
IR SN NN TN
40773 ENGTAA 48700 "B D [FFTRE
RTBLE VR e
TR ESETIETI A P I E T i L e I
ST LU L e e
N T L R
559f3j§;5@;';é;jgesfﬁe"gsggﬁff;ﬁffis
R a1 Lk 3R B EE R

,1
v o

b £ e
v

TX 80R 61 "pLE 267 FO @A TFF

-'..'l4...-‘--.-....0'0..p--..o?v LI 3

WHAT NEXT? Z

MONITOR-1-3

Miscellaneous

MISCELLANEOQUS

note author date title/subject

CONTENTS-12

Utilities

UTILITIES

title/subject

note author date
1. George Howat 18/06/80
2. George Howat 23/06/80
3. Roderick MclLeod 21/07/78
4, George Howat 18/06/80
5. George Howat 25/06/80
6. George Howat 18/06/80

COMPARE: program to find whether two
files are identical.

DIGIT: on-1ine DEC/OCTAL/HEX conversion.

EMAS HASH COMMANDS: diagnostic programs
on EMAS. v

SUPERSNAP: to examine and alter EMAS
files.

WHO: to see who of the Comms group are
logged on.

ZAP: to tidy up a process after using
WIMP or IMP77.

CONTENTS-13

UTILITIES 23rd June 1980

The following Comms group utilities are available via
OPTION.SEARCHDIR=ERCMO3.COMMSDIR:

COMPARE filel,file2: to find out if two files are identical. If they are
not, COMPARE stops at the first difference and prints out the
surrounding bytes, indicating the discrepancy. Better than
TEXTCOMPARE as it works with any files (not just character files).

DIGIT: for on-line translation of a number specified in decimal, octal or
hex, into octal decimal and hex. A ‘pseudo command level’ can be
regained from within DIGIT which allows this number-translation to
be performed without coming out of commands such as EDIT, LOOK &

PATCH.

SUPERSNAP file: for the detailed examination and alteration of any of the
user’s files, at the byte level.

ZAP: to tidy away the dead-wood files left by WIMP & IMP77.

UTILITIES~1

UTILITIES note COMPARE-1

COMPARE George Howat
18th June 1980

COMPARE was written to find out whether or not two files were identical - in
particular to see if a master file has been updated - and has since been
extended to show the first mismatch in non-identical files. It is
particularly useful for comparing two binary files, since John Wexler’s
TEXTCOMPARE cannot do this., The command and the two possible results are
as follows:

Command :COMPARE filel,file2
Lengths of files: filel = n, file2 = n
No mismatch found

Command : COMPARE filel,file3
Lengths of files: filel = n, file3d = p
Mismatch in files at I=n

Byte in filel = a(dec) = b (hex)
Byte in file3 = c(dec) = d(hex)
KXXXXXXKXK
XXXXXWWWWW

! (the first difference is marked).

COMPARE-1-1

UTILITIES note DIGIT-1

DIGIT George Howat
23rd June 1980

DIGIT displays 16-bit numbers in decimal, octal and hex. The number is
specified in the format ‘aN’ where ‘N’ is the number, and ‘a’ is ‘0’ for
octal or ‘X’ for hex. If ‘a’ is omitted then ‘N’ is treated as a decimal.

DIGIT can be called in two ways: with a number, to translate the number and
return to command level immediately; and without any parameter, to remain in
DIGIT until the specific command to exit. The latter form not omly allows
further numbers to be translated without having to type the DIGIT command
for each, but also incorporates a ‘pseudo command level’ through which all
the usual EMAS commands can be executed. Thus for example access to the
number-translator could be obtained during an EDIT or LOOK thus:

run DIGIT
enter pseudo command level (by typing ‘>’)
EDIT/LOOK as usual (NO BRACKETS! - ie. LOOK file, not LOOK(file)).

come out of the pseudo command level (by typing ‘<’) to return to
the number—-translator.

return to the EDIT/LOOK via ‘>‘.

exit from the EDIT/LOOK.

exit from DIGIT (‘E’ or “*’).

DIGIT-1-1

An example of the simple case (user commands underlined):

Command :DIGIT 12
D =12 0 = 000014 X = 000C

Command :DIGIT XABC
D = 2748 0 = 005274 X = QABC

And an example of the clever case:

Command :DIGIT

>12 (> 1is DIGIT’s prompt)

D = 12 0 = 000014 X=000C

>XABC

D = 2748 0 = 005274 X = 0ABC

> (“>" to enter pseudo command level)

>>LOOK OUTPUTFILE (’>>’ is the prompt at pseudo command level)
Look :M/DUMP:/

DUMP: 000000 017677 000005 036010 000177 004376

Look:E (exit from LOOK)

>»< (<’ to return from pseudo command level to DIGIT)
>017677

D = 8127 0 = 017677 X = 1FBF

>05

D=5 0 = 000005 X = 0005

>0036010

D = 15368 0 = 036010 X = 3C08

JE or * (exit from DIGIT)

Command : (back to normal)

DIGIT-1-2

UTILITIES note: HASH COMMANDS-1

EMAS HASH COMMANDS Roderick McLeod
21st July 1978

The 2980 ‘#’ commands are diagnostic aids provided by the EMAS group.
There is no guarantee of their long term support.

Command Structure

Each command has a # as its first character. Note that hash commands do not
invoke the Loader and there is no one-to—one correspondence between each
hash command and an external routine. Therefore hash commands cannot be
called from programs.

The parameters to hash commands include numeric constants. These can be
typed as decimal integers in the normal way, or as hexadecimal numbers, in
which case they should be preceded by an ‘X’. For example, the following two
commands would have the same effect:

#SWORD(X840000,256)

{##SWORD(X840000,X100)

* In all relevant cases lengths are expressed in bytes.

Individual command descriptions

The hash commands available are as follows:

#ACR
prints out the current ACR level.

CONNECT(filename)

connects the file, if possible in write mode, otherwise in read
mode. Prints the connect address. Can also be used for a member
of a partitioned data set, but the member is always connected in
READ mode. Since a file connected by #CONNECT remains comnected on
return to command level, it is advisable to disconnect it explicitly
when any operations upon it have been completed.

#DEC(hex value)

converts the hexadecimal value to decimal.

#DUMP(address ,numberofbytes)

dumps the specified area to the line printer.

#DUMPFILE(filename, offset of start, bytes)

dumps the specified area of the file to the line printer.

EMAS HASH COMMANDS-1

#HEX(decimal value)

converts the decimal value to hexadecimal.

#PCOM(integer)

prints out the value of the specified location in COMREG.

#PMESS(integer)

prints out the Subsystem error message associated with the specified
fault number.

#PVM
prints table of comnnected files,

#QUIT
logs off even when the session directory is corrupted.

#REGS
prints out registers at the time of the most recent failure
contingency. Note that information on the last four contingencies is
held; the three previous ones can be obtained using #REGS(-1),
#REGS(-2) and #REGS(-3).

#SBYTE(address,value)
sets the specified byte to value. Clearly the byte must be
accessible in write mode. This can be achieved by connecting the
file using #CONNECT.

#scoM(integer ,value)
sets the specified location in COMREG to value.

#SETBASE(filename)
sets the name of the basefile to be used for subsequent sessions. If
the parameter is omitted the default Subsystem basefile will be
used.,

#SNAP(address,bytes)

dumps the specified area on .OUT. The amount printed on a line will
depend on the current setting of OPTION ITWIDTH.

#SNAPCODE(address ,bytes,out)

decompiles code and prints it on the device or file specified.
Default is .QOUT.

#SNAPCH(address ,bytes)

prints the specified area as ISO characters on .OUT.

EMAS HASH COMMANDS-2

#SSTRING(address,"string")

sets the string at the address specified to the string given. Note
that the string should be enclosed in double quote characters.

#SWORD(address,value)

sets the word at the address specified to value.

EMAS HASH COMMANDS-3

UTILITIES note SUPERSNAP-1

SUPERSNAP George Howat
18th June 1980 -

SUPERSNAP provides a tool for the detailed examination of an EMAS file. It
can also be used as a simple editor by providing a means to alter specified
bytes or words. It incorporates all the facilities of the "hash" commands
#CONNECT, #SNAP, #SNAPCH, #SWORD and #SBYTE (in a neater format), as well as
adding some new features. (For a brief description of the ‘#’ commands, see
the UTILITIES note ‘EMAS HASH COMMANDS’). EMAS files begin with a header
followed by data, if any; all is accessible to SUPERSNAP.

On typing the command ‘SUPERSNAP filename’ an attempt is made to connect the
file in write mode. If this attempt fails there will be either a subsystem
message giving the reason, or a message that the file cannot be comnected in
write mode. In the latter case the SUPERSNAP commands which alter the file
will not work, although the file contents can still be examined.

After connection, the following information is provided:

‘CONAD’ - the address at which the file is connected.
‘DS’ - the data start address in the file.
‘DE’ - the data end address = actually the address of the first free
location in the file.
‘DL’ - the data length, in hex and decimal (DE-DS).

The following SUPERSNAP facilities are available (see Table for command
format):

ALTER B: replace one byte in the file (equivalent to EMAS #SBYTE)
ALTER W: replace one (32-bit) word in the file (EMAS #SWORD)

DUMP: dump a section of the file - specified as a start address together
with either an end address or a number of bytes or words. The
result is in both hex and character formats (an improvement over
EMAS #SNAP), and can be directed to a file or output device if
required.

FIND: search through the file for a particular sequence - specified either
as a character string in the format C"....." or in hex, as Xxxxx.

HEADER: print the file’s header - which includes such information as the
type and size of the file, the amount and format of the data in
it, and the date and time when it was last altered.

RECALL: recall the connect address (CONAD) and the start, end and length
of the data (DS, DE and DL).

END: exit from SUPERSNAP.

SUPERSNAP-1

The commands and their arguments for each of these SUPERSNAP operations are

as follows:

lst ARG

OPERATION COMMAND 2nd ARG 3rd ARG
Alter byte AB or ALTERB start address replacement (hex) —
Alter word AW or ALTERW start address replacement (hex) ~--
Dump D or DUMP start address end address file/device
(default=,0UT)
OR D start address mB (==m bytes) file/device
OR D start address nW (==n words) file/device
End E or END - - -
Find text F or FIND start address text -
Show header H or HEADER - - -
Recall conad R or RECALL -— - -

(the arguments are separated by SPACES - NOT commas).

There are several addresses which are used regularly when examining a file:
these are the fixed addresses ‘CONAD’ (the file’s connect address), ‘DS’
(the data start address), & 'DE’ (the data end address); and the variable
addresses returned after a FIND or DUMP operation. SUPERSNAP allows these
addresses to be specified as mnemonics, to save the bother of looking up and
re~typing the hex address each time. Thus for example the entire file
(together with its header) can be printed by the command:

DUMP CONAD DE .LP

When dumping out small sections of a file, the mnemonic ‘D+’ can be used as
a start address, and means ‘follow straight on from the previous dump’.
Thus the commands:

DUMP CONAD 16B .LP
DUMP D+ 16B .LP

will print the first 16 bytes of the file, then the second 16 bytes. The
command ‘D?’ returns the current value of ‘D+’'.,

The mnemonics ‘P’ and ‘P+’ can be used as addresses in conjunction with the
FIND command, to represent — respectively - the address of the start of the
found text, and that address plus one. The mnemonic ‘T’ can be used to
mean ‘the text of the previous FIND command’, when a search is to be
continued. They are used as follows:

(ie. search the whole file for the first
occurrence of the string "OLD")

FIND CONAD C"OLD"

(move on to the next occurrence of the same
text)

FIND M+ T

SUPERSNAP-2

ALTERB P X20 (replace the ‘0’ of this "OLD" with a SPACE
(hex 20))

The command ‘P?’ is available to discover the current setting of the FIND
pointer.

In summary the SUPERSNAP commands are:
AB a b - replace the byte at address ‘a’ with ‘b’.
AW ¢ d - replace the word at address ‘¢’ with ‘d’.
Di j k - dump the file from address ‘i’ to address ‘j’, on device ‘k’.
DimBk- dump ‘m” bytes, starting at address 'i'.
DinWkORDIink-=-dump ‘n’ words, starting at address ‘1i’.

D? - gives the start address represented by the mnemonic ‘D+’ in the
command ‘dump D+ 10W’,

E - exit from SUPERSNAP.

F p q — find the first occurrence of the text ‘q’ (C"....." or Xxxxx)
following the address ‘p’.

H - for the EMAS file header.
P? - for the address of the FIND pointer: this is the address at which

replacement text will be inserted by the commands ‘AB’ &
‘AW’ if the mnemonic ‘P’ is used for the address.

R - recall the connect address and the data’s start address, end
address and length (’CONAD’, ‘DS’, ‘DE’ & ‘DL).
And the following address mnemonics are available:
CONAD - the address at which the file is commnected.

DE - the address of the first free location in the file - ie. the
location following the last data entry in the file.

DS - the address of the first data byte in the file.

D+ - as the start address in a DUMP command for the dump to follow on
from the previous omne.

P - the start address of the field found by the last successful FIND.

P+ - used in a FIND command to continue a search from the address at
which the previous FIND command was successful.

* * *

SUPERSNAP-3

The following example illustrates the use of SUPERSNAP:

Command :LIST TEST

THIS IS A TEST FILE 1
THIS IS A TEST FILE 2

Command : SUPERSNAP TEST

CONAD=00A80000 DS=00A80020 DE=00A8004D DL=0000002D (= 45)

Op: HEADER
(00A80000) 0000004D 00000020 00001000 00000003
(00A80010) 00000000 29A8E374 00000000 00000000

Op: DUMP X00A80020 X00A8004D

(00A80020) 0A544849 53204953 20412054 45535420
(00A80030) 46494C45 20310A54 48495320 49532041
(00A80040) 20544553 54204649 4C452032 0A000000

Op: D X00A80020 X00A8004D

(00A80020) 0A544849 53204953 20412054 45535420
(00A80030) 46494C45 20310A54 48495320 49532041
(00A80040) 20544553 54204649 4C452032 0A000000

Op: D DS 10B
(00A80020) 0A544849 53204953 20412054 45535420

Op: F CONAD C"THIS"
(00A80020) 0AS544849 53204953 20412054 45535420
Start address: 00A80021 End address: 00A80024

Op: P?
P =-X00A80021

Op: FP+ T
(00A80030) 46494C45 20310A54 48495320 49532041
Start address: 00A80037 End address: 00A8003A

Op: P?
P = X00A80037

Op: ALTERB P X30
(00A80030) 46494C45 20310A30 48495320 49532041

Op: DP IW
(00A80030) 46494C45 20310A30 48495320 49532041

Op: RECALL

M
)t

THIS
FILE
TEST

THIS
FILE
TEST

THIS

THIS

FILE

FILE

FILE

CONAD=00A80000 DS=00A80020 DE=00A8004D DL=0000002D (= 45)

Op: AW X00A80035 X20202020
Address is not full word aligned.

Op: AW X00A80034 X20202020
(00A80030) 46494C45 20202020 48495320 49532041

Op: END

Command :LIST TEST
THIS IS A TEST FILE HIS IS A TEST FILE 2

SUPERSNAP~-4

FILE

IS A TEST
1 THIS IS A
FILE 2

IS A TEST
1 THIS IS A
FILE 2

IS A TEST

IS A TEST

1 THIS IS A

1 OHIS IS A

1 OHIS IS A

HIS IS A

UTILITIES note: WHO-1

WHO George Howat
25th June 1980

The command ‘WHO’ shows which members of the Comms Group are
logged on to the 2980 at the time of asking.

The command ‘WHO name’ returns the specific reply ‘yes’ or
‘no’ according to whether or not (name) is logged on to the
2980. ('name" can be BILL, JOHN, SCOTT, BRIAN, GEORGE, NOEL
or NICK).

WHO-1

UTILITIES note ZAP~1

ZAP George Howat 18th
June 1980

WIMP and IMP77 leave several files lying around. If all seven of us IMP77
together we’d leave around a meg of dead files lying around. The command
ZAP removes this garbage, by destroying the following files:

ss#ol

Ssi#02

ss#03

SS#LIST

SS#IMP770
SS#IMP77D

IMP#INT

TEMP

(No message is produced for those which don’t exist).

ZAP-1-1

