= =, Edinburgh
<7t Regional
Zpz= Computing

EMAS User’s Guide

A GUIDE TO THE USE OF THE
EDINBURGH MULTI-ACCESS SYSTEM

December 1976



Edinburgh Regional Computing Centre

EMAS User’'s Guide

This Guide describes the Edinburgh Multi-Access System with
particular reference to its appearance to the user.

(©) 1976 Edinburgh Regional Computing Centre



PREFACE

This manual describes the Edinburgh Multi-Access System (EMAS), and in particular the user
interface to the System - the Standard Subsystem. The first five chapters describe those
parts of the whole System that support the Subsystem; the remaining chapters describe the
Subsystem itself and the way in which it can be used. Appendices to the manual include a
list of standard error messages, character code translation tables and a glossary of words
and abbreviations used in EMAS user documentation.

It has been the policy of those responsible for running the System that its appearance
should be developed to reflect the needs of its users. This process is continuing and as
a result this manual will become out of date. It is unlikely that any future changes will
invalidate information in the manual, but new facilities will be added and extensions made
to the existing ones. The EMAS HELP command provides an up-to-date description of the
facilities currently available.

One of the characteristics of EMAS is the ease with which users can add their own features
to the standard facilities. Further they can readily make their additions available to
their colleagues and to the wider user community. Apart from the facilities described in
this manual there is a large amount of user-contributed material including commands,
routines and packages. Information about what material is available can be sought from
the Advisory Service, in the first instance.

The manual was typed by Mrs Anne Tweeddale and printed by the ERCC Reprographics
Department. It is dedicated to all the members of the EMAS user community who by their
suggestions, formal or otherwise, have created the present appearance of the System.

Roderick McLeod
December 1976



CONTENTS

Chapter . Page

1 Paging and Virtual Memory 1

2 Introduction to EMAS : 5

3 The File System 11

4 Input and OQutput of Files 17

5 Interactive Temminals 23

6 Introduction to the Subsystem 27

7 General File Utility Commands 35

8 Type-Specific File Utility Commands 45

9 Compilers and Object Files 49

10 Program Loading and Library Structure 53

11 Data File Handling 61

12 The Subsystem Editor 69

13 Store Mapping 79

14 Magnetic Tape File Handling 85

15 IMP on EMAS 89

16 FORTRAN on EMAS 99

17 ALGOL on EMAS 107

18 Calling Commands from within Programs, and Writing Commands 109

19 Running Work in Background Mode 115

20 Accounts and Usage Information 119

21 Ancillary Commands ’ 123
Appendi x

1 Subsystem Error Messages 127

2 Character Codes 131

3 Glossary 133

References 137

Index



CHAPTER 1
PAGING AND VIRTUAL MEMORY

This chapter contains a brief introduction to paging mechanisms and virtual memory. For
two reasons it is felt necessary to explain these features of EMAS: first because they
form a vital part of the system, and secondly because they are still comparatively unusual
in large general-purpose operating systems.

Conventional storage allocation

A11 computers have some form of storage for programs that are currently being executed and
for the operands they access. This storage, referred to here as main store, has to be
allocated in some way. In a simple single-programming computer all the main store can be
allocated to one program (figure 1). In a multi-programming computer main store has to be
shared between more than one program according to the requirements of the programs. Even
when the number of programs being multi-programmed is small there are problems:

*  Available programs may not conveniently fit into store; for example, if the store
has 500K bytes available for user programs and all user programs currently awaiting
execution require 200K bytes then 100K bytes of store will be wasted.

* If programs have a wide variety of storage requirements the main store may quickly
become fragmented; for example, if in figure 2 program A temminates and the only
available programs to run require 250K bytes, one will be loaded as in figure 3
leaving a gap of 50K bytes at the top of the store. If program B now terminates
there will be a total of 250K bytes of store free, but a single program requiring
250K bytes will not be able to run because the store which is free is not in one
contiguous area.

50Kb unused

USER PROGRAM A USER PROGRAM A USER PROGRAM D
{500Kb) 300Kb 250Kb

USER PROGRAM B

200Kb 200Kb unused
operating system operating system operating system
Figure 1 Figure 2 Figure 3
A1l available sfore Available store A second 250Kb job
allocated to one allocated to two cannot run because
user program user programs store is fragmented

Further problems in a multi-access environment

Further problems of storage allocation arise in the case of a multi-access system:

*  Whereas in a multi-programming batch system it is normal to allow typically 4
programs to share the available resources at any one time, in the case of a
multi-access system 40 or more users may wish to use the computer simultaneously.

*  The division of computing into discrete jobs of fixed size, which is feasible in a
multi-programming service, is not possible in a general purpose multi-access system

1



where, for example, one user may be editing a program one minute, requiring very
little store, and compiling it a few minutes later, requiring a large amount of
store.

* As well as making varied demands for store each user will make varied demands for
computing. Thus, whereas in a batch system each job normally runs to completion
and is only delayed by waiting for peripheral transfers (e.g. blocks to be read
from tape), in a multi-access system a user may take several minutes considering a
reply to a prompt at his terminal. During this time no computing is being done for
him and any store allocated to him is wasted.

Thus storage allocation in a multi-access system is concerned with many processes, each of
varying size and making intermittent use of the central processor.

PAGING

To allocate storage effectively EMAS uses paging. This involves some special hardware and
part of the code in the supervisor (see chapter 2). The main store of the 4-75 can be
divided into pages of 4096 bytes each. Pages of store can be allocated to a program in
any part of the store, wherever they happen to be available. The purpose of the paging
mechanism is to modify the addresses of the pages so that to the running program they
appear to be contiguous. Thus a simple user program might use four pages which it
addresses as 0, 1, 2 and 3, although these pages might in fact be located at pages 8, 3,
14, and 1 in the main store (see figure 4).

The name 'virtual store' is given to the effective store addressed by the program.

Virtual Store Main Store

15 15
14 14
13 13
12 12
11 11
10 10
9 9
8 8 |
7 7
6

5 5
4 4
3

2 2
: /0N

Figure 4 Example of Paging

One of the problems not considered so far is the great difference between the total
storage requirement of all 50 processes and the size of the main store. EMAS has
typically 200 pages of main store available to user processes. During any period of a few
minutes user processes may access more than 1000 different pages. The pages not in main
store are held on backing store and are brought into main store as required. Each page
used by a user process must have a location on the backing store to which it can be
returned when its space in main store is required by another process. The backing store
consists of a discfile for the storage of fairly permanent copies of material, and a
number of fast drum stores which hold, usually for short periods, transient copies of
recently accessed pages.

Page faulting and virtual memory

An important characteristic of paging is the ability to deal with the varying demands of a
program for storage. If a program starts to access an array which it has not accessed for
several seconds the page containing the array may have been moved from main store to the
backing store. As a result a 'page fault' occurs and the program is held up while the

2



supervisor locates the page and reads it into main store. The program is then allowed to
continue. In almost all cases the user knows nothing about this and need take no special
action. A second effect of paging is that it allows any user to have a virtual memory
(i.e. an addressable space) far larger than the real main store. In the case of EMAS each
user can address an apparently contiguous area of 13 Mbytes.

The effect of paging on user programs

One of the attributes of paging is that its operation is transparent to the user program.
The program behaves as if it were running in a normal main store and most users do not
have to take any special steps. The large virtual memory makes it possible to run far
larger programs than would be the case if paging were not used, without having to resort
to overlaying. Furthermore, programs which would otherwise manipulate work files on
magnetic tape or disc can use large areas of work space in the virtual store.

Mapping files

One fundamental difference between EMAS and many other operating systems concerns file
handling. Whereas in a conventional system files are read, block by block, into buffers
in main store and then moved to the user's area, in the case of EMAS files are 'connected'
in the virtual memory. This activity, described more fully in Chapter 3, involves
locating a 'hole' in the virtual memory and mapping the file pages on the disc into that
hole. The effect is that the file can be accessed as if it were a part of the main store.
It is important to understand that there is thus no distinction, to the system, between
data files and program files and even work areas such as the stack, used by IMP programs
to hold variables and arrays. Each file has an address in the virtual memory and consists
of one or more pages, of which there is always a copy on the discfile; there may also be a
copy on a drum, and when being used there will be a copy of some of its pages in the main
store. /An address in virtual memory is referred to as a 'virtual address'.

As explained in chapter 11, file handling routines have been made available which simulate
those nommally provided, in order to simplify the transfer of programs to and from EMAS.
In addition however, there are user-level routines to enable users to map files onto
arrays in their programs. These routines make possible efficient and powerful data
manipulation with a minimum of code (see chapter 13).

Limiting page turns

. In one important respect the use of a paged store is different from the use of a

conventional store. Whereas in a conventional store variables can be accessed in a random
order with no variations in the time required to access each one, in a paged store there
will be a page fault each time a variable on a new page is accessed. This page fault will
not affect the results of the program but will affect the time taken to complete the
program. In the case of programs which require a total of less than 1/4 Mbyte for the
whole program and data area this is unlikely to be important. The programs that are
affected are those which access, for example, elements of large matrices in a random
order. Such programs are likely to have elapsed times far longer than programs which use
equivalent amounts of central processor time but which do not access a large number of
different pages. This is particularly relevant for large programs that are to be run in
foreground mode, since the elapsed time is then the time the user will have to sit at a
terminal awaiting the completion of his program.

Further information

This chapter contains only a simplified description of paging. Further details of the
paging hardware and software are contained in references 4, 5 and 6.






CHAPTER 2
INTRODUCTION TO EMAS

EMAS is a large, general purpose, multi-access operating system run on two ICL 4-75
computers at ERCC. Its important characteristics are:

*  Multi-user - up to 120 users in theory, and typically 90 in pract1ce can access
the dual machine system simultaneously.

*  Interactive - its primary use is from interactive terminals, although batch
computing is also supported.

*  Paged - store is accessed via paging, resulting in each active user being able to
have a large virtual memory (see chapter 1 for a description of paging).
The system is divided into two levels (figure 5):
*  The resident supervisor - which remains in the main store all the time.

*  The virtual processor - of which there is one for each active user or systems

process.
System processors User processors
(One for each active user)

Paged Demons Yolumes Subsys tem Subsys tem Subsys tem
Virtual Programs Programs and User and User and User

Processors Programs Programs Programs

Director Director Director Director Director
Non-Paged Resident Supervisor

THE RESIDENT SUPERVISOR

The resident supervisor is permanently in main store; that is, it is not paged.
responsible for:

* allocation of resources between virtual processors

Figure 5 Simple Overview of EMAS

*  scheduling virtual processors

*  moving pages to and from backing store

* controlling all peripherals

It is




VIRTUAL PROCESSORS

Each active user has a virtual processor. This consists of a virtual memory containing
two levels of software (see figure 6):

* a paged supervisor (called the director)

* a Subsystem and usually some user programs

The director maintains a table of information about the contents of the virtual memory;
this is used to locate pages on the backing store. Whilst it is running the director can
access the whole virtual memory, but when it hands over control to the Subsystem or to a
user program then part of this table of information is cleared out, to prevent access to
the director code and tables. This mechanism ensures that faults in the Subsystem or in
user programs cannot result in corruption of director tables. Since these tables include
information about, for example, other users' files, this mechanism is essential to
preserve the security of the system. There is no hardware protection, however, between
user programs and the Subsystem. This means that both unintentional and intentional
corruption of Subsystem tables is possible. This can result in corruption of the user's
own files and, at times, in his process termminating completely. What is important however
is that no matter how serious the corruption in his own virtual memory, it cannot affect
other users of the system.

Virtual
Addresses
(Mbytes)
16 7
. Bifeciay Cote’/

Subsys tem, Note: The shaded areas are not accessible
User Programs to the process when the Subsystem or a
and Files user program is being executed.

iz

Figure 6 Layout of the Virtual Memory of a Virtual Processor

The director

Apart from maintaining the table of information about files connected in the virtual
memory, the director also performs the following tasks:

* organisation of the immediate file store (see chapter 3)
*  communication with system processors (see below)
*  communication with an interactive terminal (see chapter 5)

*  dealing with failures in the Subsystem or user program such as 'Time Exceeded' and
‘Divide Error



System processors

Apart from virtual processors occupied by users there are a number of system functions
that run in their own virtual processors. In many ways they are similar to user
processors but they have some special attributes:

*  they are privileged - that is, they can access information and obtain services fram
the resident supervisor which are not available to user processors

*  they normally run without any interactive terminal

The two most important system processors are the demons processor and the volumes
processor. The demons processor is responsible for

* handling input files from slow devices, e.g. card readers (see chapter 4)
*  handling the output of files to line printers etc. (see chapter 4)

*  scheduling batch jobs (see chapter 19)

*  the verification of names and passwords at log on (see chapter 5)

*  controlling communications to remote temminals (see chapter 4)

The vo]um?s processor is mainly concerned with the organisation of the archive store (see
chapter 3).

Scheduler

Part of the supervisor, known as the scheduler, is concerned with sharing available main
store and central processor time between the various processors competing for these
resources. Since EMAS is primarily intended as a multi-access system for interactive
computing, the scheduler is designed to give priority to processes which make
comparatively small demands for store and processor time. Put another way, the scheduler
gives a lower priority to jobs which require large amounts of either resource. Thus
processes which display characteristics of batch jobs, or are in fact started as batch
Jjobs, only get resources when other processes are not waiting for them; see also reference

HARDWARE CONFIGURATION

This manual does not contain a detailed description of the hardware configuration, or of
any part of the hardware. The overall structure is summarised in figure 7.



Paper Tapa 1/0
Graph Plotter

Interactive Terminals

ANNAN

3Loca)

Processors

Terminal Control

Matrix Plotter

Local Siow
Devices Processor

|

1 Mbyte
Core Store

4-75
CPU

Interactive Terminals 3Line
4 Remote
Terminal Control * Regional Communications
Processors Netwerk T
|
| Node
| Processor
|
|
Network Control
Processor
PDP 11/45
/
British Standard
Interface (BSI)
' EEEEEE—— ] X
6 Drum units PDP 156 | —Anelogue
I
78 Mbyte Seomioat
2 Fixed Core Store
Disk units
700 Mbyte
each

Roplaceabls
Digk Drives

4 x 9 Track
1600bpi
Tepe units

3
Replecesble
Disk Drives

3 Line Printers

| 4=75
CPU

——

Card Reader

—

Card Punch
Paper Tape |/0

Figure 7 Simplified Diagram of EMAS Hardware




The System runs on two ICL 4-75 computers each having associated with it a fixed discfile
with a capacity of about 700 Mbytes. The communications with interactive termminals and
remote medium speed terminals (card readers and line printers) is via a Network Control
Processor (a DEC PDP11/45 computer) and a series of Terminal Control Processors (mainly
DEC PDP11/10 computers). The Network Control Processor is connected via fast links with
both of the 4-75s, which means that any terminal can provide access to either.

Apart from the items mentioned above, there are
*  Six drums between the two 4-75s, normally configured as three on each machine.

*  Four 9 track magnetic tape decks, used almost exclusively for archive and back-up
storage purposes (see chapter 3).

*  Five replaceable disc units, used exclusively by the system.

*  Various slow peripherals connected either to the 4-75s or the Network Control
Processor. The precise configuration can vary, but provides paper tape and card
input and output, and line printer output.

References 6 and 7 contain full details of the ICL hardware.

The whole configuration is interconnected in such a way that it is possible to run an EMAS
service for all users, albeit degraded, in the event of a failure of almost any coamponent,
including a central processor, but excluding the file store.

Interactive graphics

In addition to the system described above there is a Digital PDP15 computer connected via
fast links to the two 4-75s. This is used to provide, amongst other things, interactive
graphics facilities on EMAS.

System integration

To a large extent EMAS can be seen by the user as one system. Normally he does not need
to know that it runs on a pair of computers. The architecture of the 4-75 precludes
complete integration, although this limitation has been partly overcome by use of the
Network Control Processor. Each user is assigned to a particular machine and during
normal service he can only use the system if there is room on his machine. Further he is
not able to write to files belonging to users on the other machine even if they have given
appropriate access permission; in practice this is not a serious restriction. On the
other hand he can log on to either machine from any interactive terminal connected to an
EMAS Terminal Control Processor.






CHAPTER 3
THE FILE SYSTEM

This chapter describes the EMAS file system. Files are used in EMAS for a wide variety of
purposes. They can contain programs and data as in conventional systems but also they are
used to hold temporary information such as the variables and arrays for a running program.
The file system can be divided into two parts: immediate files, which are held on the
discfile and are available for use whenever the user logs on to the system; and archive
files, which are held on magnetic tape and which have to be transferred to immediate
storage before they can be used.

A1l files are made up of one or more pages of information, the size of each page being
4096 bytes. As explained in chapter 1, when they are being accessed these pages are
mapped onto pages in the user's virtual memory, and access to any particular part of the
file is then achieved by addressing the apropriate part of his virtual memory. One way in
which EMAS differs from some other systems is that it frees the user from any concern
about the physical layout of his file. The system controls the way in which a file is
stored on disc or on tape.

IMMEDIATE FILE STORE

The immediate file store is organised by the director. The director is only concerned
with files as sequences of pages; it is not concerned with the internal structure or
contents of files. The effect of this is that a number of Subsystem functions - those
which are passed straight on to the director - are not concerned with file types; for
example those functions initiated by the commands DESTROY and RENAME.

Naming files

Each file in immediate storage has a unique name which comprises two parts - the name of
its owner (the 'ownername') and a file name given by the owner to distinguish it from his
other files (the 'filename'). The two fields are separated by a full stop. Files created
by users should have filenames of between 1 and 8 characters which should all be upper
case letters or numerals, the first character being a letter. Examples of valid full
filenames are:

ERCCO6.FILEABCI
ERCCI9.N
LMPTOL1.FIRE

The filenames of files created by the Subsystem usually start with the characters 'SS#' to
avoid conflict with files created by the user. For example:

ERCCO6.SS#STK
ERCC99.SS#LIST

Note that when referring to his own files a user does not normally have to prefix the
filename with his ownername. Thus user LMPTOl would refer to the file in the example
above as FIRE. When referring to files belonging to other users, however, he must always
use their full names.

Security of files

The information contained in a file can only be read or altered if the file is connected
in the user's virtual memory. The Subsystem can only cause a file to be connected by
making a call on the director, and the director will only connect a file if appropriate
access permission to the file has been given by its owner (see below). There is thus no
way in which a fault in the Subsystem or in a user's program can enable him to access or

11



corrupt information not intended for him. This arrangement makes it possible to store
confidential information in EMAS without risk of corruption or illegal access.

Access permission

Each file has associated with it access permission information. Four different types of
access are possible:

READ (unshared)
WRITE (unshared)
READ SHARED
WRITE SHARED

Any or all or none of these modes can be given to the file in respect of

the owner

all other users
a specific user
a group of users

% % % ok

When created, a file has all modes of access permitted to its owner and none to anyone
else. Thus, unless a user explicitly permits a file to someone else, it is only available -
to himself.

The Subsystem command PERMITFILE is used to set access permission information for a file.
Its use is described in chapter 7. When determining what access permission is allowed to
a user who wishes to connect a file, the director follows these rules:

* If connecting a file belonging to self then use the access pemission explicitly
for self.

* If connecting a file belonging to another user then use the first of the following
which applies:

1. If specific permission has been granted to this user then use it.

2. If group permission has been granted to a group that contains this user then
use ijt.

3. \Use the 'everybody else' permission.

Note that if this user is included in more than one group of users the resulting
permission is undefined.

Connect modes

A file can only be connected in a particular mode in a user's virtual memory if both the
following conditions are satisfied:

* It is permitted to the user in the required mode.
* It is not connected in another virtual memory in a conflicting mode.
The following connect modes can be used:

*  READ (unshared) - the file can only be connected in this mode if it is not
connected in any other virtual memory. Whilst so connected it cannot be connected
in any other virtual memory, even if permitted. Whilst connected in this mode it
cannot be written to.

*  WRITE (unshared) - all the attributes of READ (unshared) apply except that it can
be written to or modified.

*  READ SHARED - the file can be connected in a virtual memory in this mode if it is
connected in one or more other virtual memories in the same mode or if it is not
connected in any other virtual memory. Whilst so connected it can be connected in
further virtual memories but only in READ SHARED mode. It cannot be written to or
modi fied.

12



WRITE SHARED - the file can be connected in a virtual memory in this mode if it is
connected in one or more other virtual memories in WRITE SHARED mode or is not
connected at all. Whilst so connected it can be connected in further virtual
memories in WRITE SHARED mode. It can be written to or modified.

The above information is summarised in the following table:

Connect Whether allowed if Can be read Can be written
Mode already connected in from or executed to or altered
another virtual memory

READ Never Yes No
WRITE Never Yes Yes
READ Yes if connected in Yes No
SHARED Read Shared Mode
WRITE Yes if connected in Yes Yes
SHARED Write Shared Mode

Notes
*  WRITE and WRITE SHARED modes allow both writing and reading.

* There is no separate access mode for executing a program. If a file is permitted
to a user for reading and it contains a compiled program then it can be executed by
him.

The mode chosen for access by the Subsystem, when necessary, depends on:

*  the use to which the file is being put; e.g. if an attempt is made to EDIT a file
then it will have to be connected in a WRITE mode

*  the access permissions allowed to the user
*  the connect mode, if any, of the file in other virtual memories

If a suitable mode cannot be used the file is not connected and a failure occurs. Further
details are given in the chapters describing the Subsystem facilities relating to files.

The structure of the file system

The immediate file store is divided into a number of separate parts, each of which is
stored on a discrete part of the discfile. One result of this is that the effect of a
discfile fault can often be confined to the users who have files on the faulty part.

This modularity of the file system is not of great significance to the user and normally
he does not need to know which part of the file system contains his files. As explained
in chapter 2, however, EMAS users are divided between two machines and at times it is
necessary to know which files are on which machine. Subject to access permission being
granted (see above) a user can access any files on the same machine as his own in any
mode. Access to Files on the 'other' machine is restricted to READ and READ SHARED modes
only. In practice this should not be much of a restriction since most files are permitted
to other users only for reading. It is, however, possible to transfer a file between
users on different machines using the commands OFFER and ACCEPT (see chapter 7).

13



The user file index

Each part of the file store has a directory which is divided into a number of separate
user file indexes. Each user's file index contains three parts:

*

System File Information (SFI) - this contains information about the user's process
which has to be retained between sessions, such as the size of his STACK (chapter
10) file, the OPTIONS (chapter 21) he has selected and the USERLIB (chapter 10) he
has selected.
File descriptors - there are 32, 64, or 128 of these, depending on the size of the
index. One is required for each file owned by the user in the immediate store.
These files include those created explicitly by the user and those created on his
behalf by the Subsystem. Each file descriptor in use contains, for one file:

* its name

* its size

* jts access permissions to its owner and to 'everyone else'

* jts current connect mode

* the number of virtual memories in which it is connected

* jts CHERISH status (see below)

* usage information about it (see archive storage, below)

List cells - this area, which contains a linked list of cells (32, 96 or 224
depending on the size of the index), is used to contain additional information
about some of the user's files. Cells are used thus:

* for each file currently on OFFER to another user (see below): 1 cell

* for each file larger than 1 segment (16 pages): 1 cell for each segment

* for each file permitted to a specific user or user group: 2 cells for each
separate pemmission

Information about a user's file index in respect of a particular file or of all his files
can be obtained from various Subsystem commands; see chapters 7 and 8.

File creation and extension

Many Subsystem functions make calls on the director to create files. File creation will

fail if:
*  the user's file index is full
*  the part of the file system containing the user's index is full
*  the user already has a file of the same name
*

an attempt is made to create a file in another user's file index

The director imposes a limit of 1024 pages (4 Mbytes) on each file. At the time of
writing a lower limit is applied by the Subsystem because of the limited amount of
immediate storage available.

The size of an existing file can be altered, to a value between 1 and 1024 pages. This
function is requested by the Subsystem, as required.

14



Transfer of ownership of a file

The Subsystem commands OFFER and ACCEPT result in a file being transferred from one user
to another. The information relating to the name, the size, the location on the discfile
and the CHERISH status is transferred from one file index to another. Note that all other
information normally held in the file index (usage information and access permissions) is

not transferred. Note also that the OFFER/ACCEPT mechanism can be used between users on
the same or different machines.

Back-up of immediate file store

In order to protect users' files from hardware and system faults, they are copied onto
magnetic tape once each day ('backed up'), subject to the following rules:

* A file must be marked for this purpose by use of the CHERISH command. Note that
files created from card or paper tape input are automatically CHERISHed but
otherwise files are created without the CHERISH marker being set. Note also that
un-CHERISHed files will be DESTROYed by the system after a period (currently 4
weeks) of non-use.

* A file will only be backed up if it has been altered since the last time it was _
backed up. (Strictly, it is sufficient to have connected the file in WRITE or WRITE
SHARED mode to cause back-up to take place.)

If, because of a failure, it is necessary to recover users' files from back-up tapes, the
files are replaced on the discfile with the CHERISH status and any access pemmissions in
force at the time they were backed up. Note the following points:

*  Any alterations made to the file between the time of the latest back-up and the
system failure will be lost.

*  Files which have recently been DESTROYed may be copied back to the immediate file
store. It will thus be necessary for the user to DESTROY them again.

THE ARCHIVE FILE STORE

The Archive File Store is held on magnetic tape, quite separately from the back-up tapes.
Files are moved from the immediate store to archive store in the following circumstances:

* as a direct consequence of using the command ARCHIVE in respect of the file

*  jndirectly as a result of CHERISHing a file but not accessing it for a period
(currently 4 weeks)

The command ARCHIVE and related commands for restoring archived files to immediate store
are described in chapter 7. Unused files are moved onto archive storage in order to free
the limited space on immediate store for material which is being actively used.

There is currently no limit to the number of files a user can have on archive store, nor
to the length of time they are left there. On the other hand users are encouraged to tidy
up their archive file list periodically.

Unlike files on immediate store it is possible to have two files on archive with the same

name. In such cases the date of archiving is used to indicate which file is to be
restored.

15






CHAPTER 4
INPUT AND OUTPUT OF FILES

The Input and Output of files to and from EMAS is controlled by the DEMONS systems process
(see chapter 2). It is not possible for users to access directly file input and output
devices, e.g. card readers or line printers. Instead they can instruct the DEMONS process
to carry out operations on these devices with reference to particular files,

INPUT

It is possible to read files into immediate storage from cards or paper tape. This is
usually achieved by submitting the file, with appropriate Job Control Language (JCL)
statements, to be read on a card reader or paper tape reader attached directly to EMAS.
Alternatively, input can be sent from terminals connected to the medium speed network;
files can also be transferred from other processors connected to the network. The details
of these operations are subject to changes as the network is developed; the user is
referred to the current HELP information.

Card reader input

Cards can be read in one of two modes:
*  Normal mode, involving translation from IBM 029 card code to ISO internal code.

*  Column binary mode, in which the punchings in each column of each card are stored
in 12 bits in the file.

When reading in normal mode, the file produced is a standard EMAS character file (see
chapter 11). By default the following rules apply:

* A1l 80 columns are read.
*  Translation is carried out according to the table in Appendix 2.

*  Trailing spaces are deleted; that is, all the spaces following the last non-space
character on a card are not included in the file.

* A NEWLINE character (ISO 10) is inserted in the file to signify the end of each
card.

*  The double quote character is treated as a delete character and it and the
character preceding it are not transferred to the file. A series of double quotes
can be used to delete preceding characters, as far back as the beginning of the
card.

As explained below, some of these actions can be altered by including appropriate keywords
on one of the JCL cards.

When reading in column binary mode a standard data file is produced with a fixed record
length of 160 bytes (see chapter 11). Each record in the file contains 80 short .integers,
one for each column. The punchings in a column are represented in the least significant
12 bits of the corresponding short integer, with one bit set for each hole punched. The
mapping used is:

Card Row 12 11 0 1 2 3 4 5 6 7 8 9

Corresponding bit 11 10 9 8 7 6 5 4 3 2 1 0

17



The bits in the short integer are numbered from right to left, starting with bit 0. Bits
12 to 15 are set to O,

Using this mode, any combination of punchings can be read.

Paper tape input

Paper tape can be read in one of two modes:
*  normal mode, for reading 1SO-coded 8-track even-parity tape

*  binary mode, for reading any punchings on 8-track tape

When reading in normal mode the following rules apply:
* all characters with odd parity are converted to the SUB (ISO 26) character
*  the parity bit is set to O on input, whatever its value on the paper tape
*  null (no holes punched) and delete (all holes punched) are ignored ‘
*  CARRIAGE RETURN (ISO 13) characters are ignored
*  trailing spaces (SPACE characters immediately before a NEWLINE character) are

ignored

As explained below some of these actions can be altered by including keywords in one of
the JCL statements.

When reading in binary mode all characters, including run-out (0), are read into the file,

which is created as a standard data file (chapter 11) with a fixed record length of 80
bytes.

Job control for file input
The following JCL statements are needed for file input:
//username FILE  (PASS=back)

//filename DD *
<contents of file>

where  username is the name of an accredited EMAS user
back is the user's background password (see chapter 20)
filename is the name to be given to the file (see chapter 3)

Notes
* The format of the statements is fixed. Each statement should start on a new line;
this means that for paper tape input there should be a line feed character before
the first statement and between statements. One or more spaces should be inserted
where indicated, but nowhere else.

*  The name chosen for a file should not be the same as the name of an existing file.
If it is, the existing file will be left and the one being read in will be ignored.

* Files are CHERISHed automatically on input.

18



More than one file can be input, the form then being:

//username FILE  (PASS=back)
//filel DD *

<contents of filel>
//file2 DD *

<contents of file2>

.

etc.
/7
When reading in normal mode the following options can be used. The options
selected should follow the asterisk on the DD card, separated fram it and each
other by commas:

*  NOIDENT - ignore the contents of columns 73-80; this is useful for removing
sequence numbers

*  QUOTES - do not do double quote deletion; i.e. double quotes in the input stand
for themselves

*  TRAIL - do not delete trailing spaces
Example

//TEXT DD *,NOIDENT,QUOTES

When reading cards in column binary, or paper tape in binary mode, the following form is

used:

OUTPUT

//username DD  (PASS=Back)
//filename DD  BINARY
<PATTERN>

contents of file
<PATTERN>
//

On the line following the DD statement the user should give some sequence of
characters which he knows does not appear in his data. The data will be read until
a line containing only that pattern is detected again. Note that the two pattern
lines are not transferred to the file. The options described above do not apply
when reading in BINARY mode.

Information can be sent to output devices by two methods:

*

*

By an explicit Subsystem command such as LIST or SEND (see chapter 8).

Indirectly by using the DEFINE command to link a logical output channel to a
particular device. The effect of this is to put the output in a temporary file
which is sent to the output queue automatically when the file is closed (see
chapter 11).

In neither case is the device accessed directly by the user. His output is held in an
output queue until the required device is available; it is then listed. This may take
place minutes or even hours after the user has requested the action. The command QUEUES
is available to tell the user whether any files of his are waiting in output queues (see
chapter 21).

19



Output device mnemonics

Output devices are referred to by mnemonics, for example .LP for the line printer. The
dot is used to distinguish the device from a file name, since in many situations a device
mnemonic or a file name can be used for a particular parameter in a command. If the
output device is not connected directly to EMAS then its mnemonic is followed by the
number of the remote temminal to which it is connected; e.g. .LP15 is the line printer
connected to terminal 15. Note that since the terminal numbers are liable to change a
list is not included in this manual. It can be found in the current HELP information.

Table of output devices

The following table gives the names and mnemonics of available output devices, with file
types and record formats required (where relevant). File types and record formats are
described in chapter 11. The final column gives the maximum size of file that can be sent
to the device, in pages (each of 4096 bytes).

Device Mnemonic File type Record format | Max file size
required (in pages)

Line Printer .LP Character or Data 255
Line Printer with upper LLLP Character or Data 79
and lower case
Money Line Printer MLP Character or Data 255
Card Punch .CP Character or Data 48
Binary Card Punch .BCP Data F160 48
Paper Tape Punch .PP Character or Data 48
Binary Paper Tape Punch .BPP Data F80 48
Graph Plotter .GP Data F80 48
Graph Plotter for liquid .SGP Data F80 48
ink jobs
Matrix Plotter .MP Data F300 48
Notes

*  For remote devices there is a limit of 79 pages on the size of output files. It
should be noted that because of limitations in the communications mechanisms binary
files are expanded before being sent, so the effective limit is half of this.

*  The record format is described fully in chapter 11. In this context it is the
format that should be used when writing files to be sent to the specified device.
Additionally it is the record format implied by default when using DEFINE for these
devices.. For example, if the command

DEF INE(SQ27, .BCP)
is used then each record written on sequential file 27 must be 160 bytes long.

*  The significance of '.MLP' is explained below.

20




CHARACTERISTICS OF INDIVIDUAL OUTPUT DEVICES

Line Printer

* If the device is defined as .LP or .MLP then lower case letters are converted to
upper case, if the device does not print lower case letters.

* Lines longer than 132 characters are split and continued on the following line.

*  CR (carriage return) is ignored if it is adjacent to line feed.

achieve over-printing if it appears within text. Note however that not all line
printers accessible from EMAS are able to do this.

* If the device is defined as .MLP then the ISO character 33 is printed as pound
sterling £, instead of hash #.

Card Punch

It can be used to

* If the device is defined as .CP then a translation is performed from internal code
to IBM 029 card code (see Appendix 2).

* If the device is defined as .CP then any lines longer than 80 characters are split
and continued on the next card.

* If the device is defined as .BCP then the information is punched as column binary
output. The 160 byte record is treated as 80 short integers, of which the least

significant 12 bits of each are mapped onto card rows, as shown below:

Bit number

11

10

Card Row Punched

12

11

The bits in the short integer are numbered from right to left, starting with bit O.

12 to 15 are ignored.

Paper Tape Punch

Bits

*  When the punch is defined as .PP, paper tape is punched using the characters sent,
made up to even parity where necessary by punching in the 8th hole. Characters
with values greater than 127 are converted to the SUB character (IS0 26).

*  When the punch is defined as .BPP all eight bits of each byte in the file are

punched on the tape.

Graph Plotter

The graph plotter should be accessed via the graphics routines provided; these are
described fully in reference 8.
facilities are required, such as liquid ink.

Matrix Plotter

The software for operating this device is currently being written. Further information

The device .SGP is used to indicate that 'special’

should be obtained from the Advisory Service.

21






CHAPTER 5
INTERACTIVE TERMINALS

The primary method of accessing EMAS is via an interactive temminal. Initially all
interactive termminals connected to the system were teletypes - hence the mnemonic .TT.

Eore rzgent]y a variety of hard copy terminals and cathode ray tube display terminals have
een added.

Method of connection

As explained in chapter 2, interactive terminals are connected to EMAS via small computers
called Terminal Control Processors (TCP). These, in turn, are connected to a Network
Control Processor (NCP), which is itself connected to both the main EMAS computers. 1In
due course this NCP will be connected to other computers to enable users to access them
from the same terminals as they use to access EMAS.

Direct connection and dial-up connection

Most terminals are connected permanently to a TCP and can be used immediately to access
EMAS. Others are connected via a telephone, a Modem (Modulator/Demodulator) or acoustic
coupler, and a GPO telephone circuit to the switched public network. Before this
arrangement can be used to access EMAS it is necessary to establish a 1ink to a TCP, by
dialling the appropriate telephone number (031-667 1071) and switching the telephone to
‘data'. The precise method of doing this varies fram one terminal to another and
information should be sought from the person responsible for the teminal.

Mode of communication

A11 terminals are connected in full duplex mode. In this mode input from the temminal and
output to the terminal are quite separate and can be simultaneous. This has two effects:

*  Normally the characters typed on the temminal keyboard are printed immediately on
the terminal. This is done by the TCP, which reads the characters typed and then
'echoes' them back to the temminal. It is however possible for the TCP to respond
with different characters on the terminal from those typed. For example, during
log on this facility is used to suppress printing of the password.

* It is possible to type input whilst the terminal is printing output. The input
characters are stored and echoed when the output line has been printed.

APPEARANCE OF TERMINAL

The detailed characteristics of the terminal are detemmined by the terminal itself and the
TCP to which it is connected. Below are described the details of the facilities provided
by a standard TCP.

Control character functions

The following table gives those characters which have control functions. On some
terminals they have individual keys. On others they are produced by holding down CONTROL
(CTRL) and then typing a letter. For example

End Message = EM = CTRL+Y

23



Character Type as CTRL+ Effect ' Response | Message Notes
CR Terminate current line CR-LF sends LF
EM Y Terminate current input * CR-LF sends EM
CAN X Cancel current line tCR-LF
ESC Escape to INT: 1
HT I Tabs to next tab position spaces spaces

if available

Tabs set at 6,9,12,15,18,

40,45

(Thus HT at start of

line causes 6 spaces)
DEL (RUBOUT) Cancel previous character \char 2
SOH A Enter SET mode 3
Notes

1. The effect of ESC is to discard any characters typed on the current line and to

prompt 'INT:'. The reply should be:

* CR to ignore the INT:. This should be used when ESC is pressed in error.

* A single letter followed by CR. This is interpreted by the director or the
Subsystem; see chapter 6.

*  Text of between 2 and 15 characters followed by CR. This constitutes a user
interrupt which can be detected by using the IMP function TESTINT (see chapter
15).

2. When DEL is pressed the terminal enters delete mode and outputs *\' followed by the
previous character, which is deleted from the input line. Each successive DEL
deletes an earlier character and echoes it, as far back as the beginning of the
1ine. When a character other than DEL is struck the terminal echoes '\', exits
from delete mode, and the character itself is then echoed.

For example if the third and fourth characters of DELIVER were typed in the wrong
order and then corrected, the output would look like this:
DEILM.INLIVER
3. SET mode is used to send commands to the TCP itself to change characteristics of

24

its operation. The effect of tyPing SOH is to discard any characters on the
current line and to prompt 'SET:'. The following replies are valid; each is
followed by CR.




Reply Effect

u Upper Mode - A1l lower case letters are translated on input by the TCP to upper
case. (default)

L Lower Mode - No lower case translation is carried out on the input.

G Graphic Mode - No lower case translation is carried out, and, with respect to

terminal output, all format controls are disabled, thus allowing any character
[values in the range 0-255] to be sent to the teminal.

Pn Pads - n should be a number in the range 0-9. Used to specify number of pad
characters to be inserted at start of each output line. Normally 0. It is only
needed for a few special termminals, which require a delay to allow the carriage
to return to the beginning of the line.

Type ahead

An important characteristic of the terminal support mechanism on EMAS is the ability for a
user to type ahead. This means that it is not necessary to await the completion of one
operation before typing the next command. There are a number of points to bear in mind:

*  When typing ahead it must be appreciated that mistakes in typing earlier commands
can have disastrous results later on. It is suggested that until users are

conversant with the system they await the ocutcome of each command before typing the
next.

*  Because the prompt is not printed (see below) and because output and input will be
interleaved, it is not always easy to decipher a listing produced on a hard copy
device, such as a teletype, when extensive type-ahead is used. The RECALL facility
(see chapter 12) avoids this problem.

Prompt mechanism
Whenever input is requested by the system or by a running program a prompt is ocutput on
the interactive temminal. This acts as a reminder to the user that input is required, and
can also serve to indicate what sort of input is required. The prompt text is set by

*  the Subsystem

* a Subsystem facility, e.g. EDIT

* a user program calling the routine PROMPT or FPRMPT (see chapters 15 and 16)

Note that the prompt is not output if the required input has already been typed ahead.

Logging in

Before a user can log on to the system from an interactive temminal he has to obtain an
accredited username (see chapter 20). The username has associated with it two passwords
(see chapter 20). The first of these is used for interactive access. In order to log on
the following steps should be taken:

*  Switch on the temminal, and, if using a dial-up line, also the modem or acoustic
coupler.

*  Switch the terminal to full Duplex.
* If using a dial-up line dial the correct number (031-667 1071) and if a data tone

is heard (high pitched tone) switch to data. (The exact method depends on the
terminal and MODEM or coupler being used.)

25




*  Press the space bar. If there is no response pres the CR key.

*  To the prompt 'HOST:' reply EMAS.

*  To the prompt 'USER:' reply with the username.

*  To the prompt 'PASS:' reply with the foreground password.

A1l three replies should be terminated by CR.

In response the TCP and NCP will attempt to log the terminal on to the appropriate EMAS
main computer. If this is successful the message

PROCESS STARTED

will be printed, sometimes followed by a message of the day, and eventually a prompt

COMMAND: will appear.

Alternatively one of
printed:

SYSTEM FULL
CANNOT START PROCESS

PROCESS RUNNING

NO USER SERVICE

INVALID USER

INVALID PASSWORD

26

the following messages, or some other explanatory message, will be

try later.

possibly because the process is just stopping - try again, and if
the problem persists contact the Advisory Service.

a background job is running which you DETACHed earlier (see chapter
19), or another person who shares the username is currently logged
on. Try later.

this indicates an attempt to log on outwith the service period, or
a machine fault. Ring the answering service (031-667 7491) for
information.

this may be caused by mis-typing the username or because one of the
EMAS computers is unavailable (see above).

this means that the password was typed incorrectly.



CHAPTER 6
INTRODUCTION TO THE SUBSYSTEM

This chapter provides an introduction to the standard EMAS Subsystem. It explains the
Subsystem's command language, describes its interactive terminal interrupts, introduces
the file types provided, gives sources of further information, summarises its functions in
logical groups and indicates how these are covered by the rest of this manual.

The standard Subsystem

The phrase ‘'standard Subsystem' is used to emphasize that the Subsystem described is the
one provided as a standard part of EMAS. It is not, however, the only Subsystem and it
should be appreciated that it is possible to use subsystems which differ slightly or even
fundamentally from the standard one, without interfering with other users, and without
having to make changes to other components of the system. Chapter 18 shows how it is
possible to add commands to the standard Subsystem. More fundamental changes require
information outwith the scope of this manual.

The Subsystem command language
The Subsystem command language is used to communicate with the Subsystem, both fram
interactive terminals and from background jobs (see chapter 19). Commands are typed
according to the following rules:

*  Each command should start on a new line.

* If the command requires one or more parameters, these should be typed after the
command, enclosed in parentheses.

*  Parameters should be separated by commas.

*  To indicate that a parameter has been omitted an extra comma should be inserted, if
more parameters follow.

*  Spaces and newlines within parameters are ignored.

*  After removing spaces, newlines and parentheses the total length of the parameters
should be not greater than 63 characters.

Examples of commands

ALERT
LIST(ABC)
LIST(ABC,.LP)
FLIST(,ALL)
DESTROY(ABC,DEF ,GHI)

In the rest of this manual the following format is used for commands:

COMMANDNAME (PARAME TERL[ ,PARAMETER2])

Note that the square brackets are used to indicate optional parameters - they are not
typed when the command is used.

27



The full details of the parameters required for each command are given with the
description of the command. There are, however, a number of common features:

* List - this is used for commands that can operate on a number of items of the same
type. The list can consist of one item, or more than one, in which case all but
the last are followed by a comma. For example, DESTROY can be used with a 1ist of
filenames:

DESTROY (NABC)
DESTROY(NABC,TYPE ,FILE27)

*  Qutput device - this is used for commands that generate output. In almost every
case the default output device is the interactive termminal. Output devices are
described in more detail in chapter 4. The name of a device consists of a full
stop followed by a mnemonic; for example, .LP means line printer:

LIST(TEST27,.LP)

*  Output file - this is often an alternative to an output device. It is sometimes
useful to direct the output from a command into a file, for subsequent examination
using the editor or a user program. For example, the command FILEANAL can be used
to obtain information about a file. If a second parameter, not an output device,
is given then the information is put in the file named by the second parameter:

FILEANAL(FILEABN,OUT)

Other parameters are described in the context of particular commands.

Messages output by the Subsystem
In general, simple commands do not produce any output if they work successfully. A few,
indicated in the table at the end of this chapter, produce confirmatory messages. Even
these may be suppressed if preferred by use of the OPTION facility - see chapter 21. All
commands produce failure messages if they do not work correctly. Subsystem failure
messages are described in two places:

*  Messages specific to a particular command are described with that command

*  General error messages are described in Appendix 1

Operator messages

Apart from messages generated by the Subsystem there are messages sent to interactive
terminals by the EMAS operators, or on their behalf. These messages are of the form:

**0PER hh.mm message

It is hoped that these messages will be self explanatory, but since they are restricted to
19 characters in length they are likely to be somewhat terse.

CONSOLE INTERRUPTS

Apart from normal interactive terminal input and output there is a mechanism whereby any
operation can be interrupted. The method, described in chapter 5, allows the user to
input a message of up to 15 characters. Single character input messages are used to
control the Subsystem in the following manner: ’

28



Interrupt

Effect

A

Abort current command or program and return to
read the next command.

As for A except that additionally any input that
has been typed ahead is lost.

Use during printing of diagnostics to return to
calling program. This is only of use when
diagnostics have been printed as a result of a
call of MONITOR from IMP or DIAG in FORTRAN.

Make disc consistent; i.e. ensure that all copies of
files in immediate store include all changes

made to date. It can be used at any time

without otherwise affecting the command that is
currently being obeyed.

Abort current command, print diagnostics and
return to command level.

Print out the time and number of page turns
since the start of this command and the
number of users locgged on, without affecting
command being executed.

SUBSYSTEM FILE TYPES

There are five types of file recognised by the Subsystem. The type of a file is
determined from information held at the beginning of the first page of the file.
types are listed below with an indication of the main chapter describing their use.

Type Use Chapter

CHARACTER Contains characters - 11
e.g. program source.

DATA Contains binary data in 11
discrete records.

OBJECT Contains compiled programs and 9
routines.

L IBRARY INDEX Contains information to 10

STORE MAP

associate routine entry names
with 0BJECT files - used by
the loader.

Unstructured file used for 13
direct mapping of data.

SUBSYSTEM INFORMATION

Apart from this manual the primary sources of information about the Subsystem are:

*

*

*

the commands HELP and ALERT

the EMAS Information Card

the ERCC Advisory Service

The file

29



The command HELP

This command provides on-line information for EMAS users. If the command is typed with no
parameter then the output is a 1ist of current commands and a brief description of their
purposes. If a parameter is given which is the name of one of these commands then fuller
information about the chosen command is typed. For example

HELP(FILEANAL)
would give information about the command FILEANAL.

Apart from commands, there are a number of general headings about which information is
available. Currently these are:

ADVISORY
FILE INDEX
FILES
GRAPHICS
INPUT
INTERRUPT
L IBRARIES
MAGNETIC TAPE
NEWS
REMOTES
SCHEDULE
TERMINAL

Finally, HELP can be used with a parameter '.LP', '.LLPnn' or '.LPnn' (see chapter 4), in
which case the whole of the current HELP text is pr1nted on the local line printer or
remote line printer specified.

The command ALERT

This command provides information about recent changes to the system and any serious
faults that have been reported or corrected. If the command is typed with no parameter
then the output is given on the interactive temminal. Otherwise it can be directed to a
local or remote line printer; for example:

ALERT
ALERT(.LP)

EMAS Information Card

This quick reference information card provides a list of the currently available commands
and their parameters and also details of remote terminals. It is intended to reprint it
at least once each year, so it should reflect changes more qu1ckly than this mamual.
Copies are available from the ERCC Library.

30



ERCC Advisory Service

The Advisory Service is available to users of EMAS, and Advisors will endeavour to answer
questions about the Subsystem and the main programming languages.

Full details of the Advisory Service are contained in the current edition of the ERCC
Advisory Guide.

Subsystem facilities
The facilities and commands provided by the Subsystem are divided in this manual into the
following groups:

*  General File Utility commands - these commands operate in respect of files as
units. They operate on any type of file.

*  Type Specific File Utility commands - these are used to carry out functions such as
copying and listing files.

*  Compilers and associated commands.

*  Commands associated with program loading.

* Commands related to manipulating user data.

* File editing commands.

*  Commands concerned with running work in background mode.

*  Commands concerned with accounts and usage.

*  Information and other commands that do not conveniently fit into other categories.
The table following gives a 1ist of the commands in each group and for each the following
information:

* A brief description of the purpose of the command.

*  Whether the command produces any output (other than a failure message).

* A page number in this manual of the main description of the command.

31



TABLE OF COMMANDS

Group Command Purpose Qutput | Page
General File ACCEPT Transfer file from another user 38
Utilities

ARCHIVE Mark file for transfer to archive 40
store
ARCHLIST Obtain 1ist of files in archive * 42
store preparatory to deleting some
CHERISH Mark file for backing-up 40
DESTROY Destroy file 36
DISCONNECT Remove file from virtual memory 37
FINDFILE Locate file(s) in archive store i 41
FLIST Obtain list of files in immediate i 35
store
HAZARD Un-CHERISH file 40
OFFER Mark file for transfer to another 38
user
PERMITFILE Allow other users access to a file 38
RENAME Change the name of a file 36
RESTORE Copy a file from archive to g 41
immediate store
Type Specific CONCAT Join two or more character or data * 46
File Utilities files
COPYFILE Copy a file X 46
FILEANAL Obtain details of type, contents and * 45
access permission of a file
L IBANAL Obtain details of contents of library * 59
index file
LIST List file on output device * 47
SEND List file on output device and i3 48
destroy it
Compilers and ALGOL Compile ALGOL 60 source file * 107
associated commands
FORTE Compile FORTRAN IV source file & 99
IMP Compile IMP source file % 89
L INK Join two or more OBJECT files i 52
PARM Set compiler options 51
Manipulating Data CLEAR Break 1link set up by DEFINE 67
or DEF INEMT
DDLIST Print 1ist of current logical 68

channel definitions

32




Group Comma nd Purpose Qutput { Page
Manipulating Data DEF INE Set up link between logical channel 63
contd. and particular file or output device

DEF INEMT Set up 1ink between logical channel 86
and user magnetic tape file
NEWSMFILE Create new file to be accessed via 79
store mapping facilities
File Editing EDIT Edit character file & 69
LOOK Examine contents of character file o 75
Program Loading APPENDLIB Nominate additional library index 56
and Execution for searching during program 1oading
INSERTFILE Insert details of object file in 55
current library index
PERMITLIB Allow access to a library index and 59
inserted files
REMOVEFILE Remove reference to object file 56
from current library index
REMOVELIB Remove library index from current 56
search list
RUN Execute program 53
USERLIB Nominate new library index S 55
Background Mode DELETEJOB Remove job from background job & 117
queue
DETACH Put job into background job 5 115
queue
FINDJOB Find information about jobs in * 117
background job queue
Commands associated METER Print usage information for current * 121
with accounting session
PASSWORD Change foreground and/or 119
background password
PROJECT Set project code 120
USERS Print number of currently active = 121
users
Information and ALERT Obtain information on state of System *® 30
other commands
CPULIMIT Set time limit for each command ® 123
DEL IVER Set text for heading of line 2 124
printer output, etc.
HELP Get advice on using Subsystem X 30
OBEYFILE Execute a sequence of commands = 124

33




Group Command Purpose Qutput | Page
Information and OPTION Set user options 124
other commands
contd.

RECALL Examine file containing record % 76
of interactive temminal 1/0

QUEUES Print information about files waiting x 125
in output queues

STOP Terminate foreground session * 125

SUGGESTION Send suggestion to System Manager 126

34




CHAPTER 7
GENERAL FILE UTILITY COMMANDS

In chapter 3 the concept of a file was introduced and the conventions relating to EMAS
files were described.

As explained there, the basic file handling facilities are provided by the director.
These facilities act on files as sequences of pages, the contents of which are not
significant. Thus, for example, to the director there is no distinction between a file
containing character data and a compiled object file. This chapter describes the file
manipulation commands provided by the Subsystem which make calls on the director, and
which act on all types of file. The different types of file provided by the EMAS
Subsystem are described in the chapters following.

The command FLIST

FLIST is used to find the names of all the files belonging to this user. Optionally,
extra information can be obtained about each file and some summary information about all
files. FLIST provides no information about the contents of a file - the command FILEANAL
(chapter 8) should be used instead.

The form of the command is
FLIST([out][,options])

If the command is typed without a parameter then the filenames of all user-created files
belonging to this user are printed on the interactive temminal, in alphabetical order one
to a line. Those that are CHERISHed (see later in this chapter) are preceded by an
asterisk. For example

* ABC

* CTEST
08JC
TEMP

Instead of output being set to the interactive temminal it can be directed to an output
device or to a file, by typing the device or filename as the first parameter; e.g.

FLIST(.LP)
FLIST(FLFILE)

Note that if a file of the given name already exists, the command will fail; i.e. a new
file should always be specified.

The second parameter can be 'V' if it is required to print the filenames across the page.
This is particularly useful when using a video terminal which displays a limited number of
lines. Alternatively the second parameter can be 'ALL', in which case the output takes
the following form:

USER: ERCCO6
4 USER FILES + 4 SUBSYSTEM FILES
76 PAGES (9 CHERISHED)

FILE LIMITS: 64

FREE LIST CELLS: 95

FILE PAGES OWNP EEP ACC
*  ABC 8 15 0 0
*  CTEST 1 15 8 0
08J 1 15 0 0
SS#BGLA 16 15 0 3
SS#GLA 16 15 0 3
SS#LIB 1 15 0 2
SS#STK 32 15 0 3
TEMP 1 15 0 2

35



The purpose of the list cells is described in chapter 3. The headings have the following
meanings: :

PAGES size of file in pages.

OWNP access permission for owner. This is a four bit field where the bits take the
following meanings:

2°  WRITE

2'  READ

22 WRITE SHARED
2%  READ SHARED

In the example above all files are permitted to their owner in all modes.

EEP everyone else's access permission. The bits have the same meaning as in OWNP.
In the example above the file CTEST is permitted to everyone else in READ
SHARED mode (see PERMITFILE below).

ACC this indicates the current connect mode of the file. If it is not connected in
the owner's virtual memory it has a value of 0. Otherwise its value is
constructed from the following bits:

2°  WRITE
2'  READ
22 SHARED

Hence, in the example above, the file TEMP is connected in READ un-shared mode.

Further information about access permissions and connect modes is given in chapter 3, and
later in this chapter.

CREATING, RENAMING AND DESTROYING FILES

Files can be created, renamed or destroyed only by their owners. There is no general
command used to create a file. Files are created as a result of using certain commands or
facilities. For example the command EDIT can be used to create a new character file. If
this file is compiled using the command IMP an object file may be created. If the output
from FILEANAL is directed to a file and a file of that name does not exist, one will be
created. In general the following rule applies in relation to commands that create files:

If a file of the requested name exists already, it is overwritten - destroying any
information it currently contains. If not, then a new file is created with the
requested name.

The command RENAME
A file can be renamed using the command RENAME. This takes two parameters:
RENAME ( 01dname ,newname)

oldname is the current name of the file
newname is the name to be given to the file

RENAME will fail if a file with the name 'newname' already exists, or if the file being
renamed does not exist or is connected in another user's virtual memory or is on OFFER

(see below). Note that access permissions and the cherish status of the file are not
affected by renaming.

The command DESTROY

One or more files can be destroyed by a call of DESTROY. It takes the name of one or more
files as its parameter(s):

DESTROY (ABC)
DESTROY( TEMP,COBJ ,BACL3)

36



The command will fail if the file being destroyed is connected in another user's virtual
memory or is on OFFER (see below). Also if a file is permitted to its owner with an
access permission of 0 (i.e. no access at all) it cannot be destroyed. This fact could be
used to protect a file from inadvertent destruction - but see also CHERISH below. .

CONNECTING AND DISCONNECTING A FILE

Before any use can be made of the contents of a file, e.g. before a character file can be
edited or an object file can be executed, it must be connected in the user's virtual
memory. This operation is described in chapter 3. There is no general command for this
purpose - connection occurs as a result of the use of a wide variety of commands or
facilities. For example, a file is connected when:

* it is analysed by FIFEANAL

* jt is listed on the interactive terminal using LIST
* it is edited

* it is read from by a FORTRAN program

Normally, once a file has been connected, it remains connected for the rest of the session
- j.e. until the user logs off. There are however a number of commands which cause
disconnection, and there is also an explicit DISCONNECT command. The following commands
disconnect the file on which they are operating if it is connected at the time:

DE STROY

RENAME

OFFER

PERMITFILE

PERMITLIB

SEND

COPYFILE (disconnects the input file if it belongs to another user)

The command DISCONNECT

This command can be used to disconnect one or more files from the user's virtual memory.
It takes as its parameter the name of one or more files that are currently connected.
There are several situations in which it is useful:

*  To protect the file. By disconnecting it the user can be sure that its copy on
immedi ate store (the discfile) is up to date {this can also be achieved by INT:M -
see chapter 6). Also, since it is no longer connected in the virtual memory it
cannot be corrupted by programs being run by this user that might be faulty. In
fact this form of corruption is unlikely, since user files are normally left
connected in READ mode (and are therefore protected) when they are not currently
being used for output.

* To free the file for use by another user. For example, after a user has executed
an object file belonging to another user, the file will remain connected in his
virtual memory. If the owner attempts to alter the file (by re-compiling it) a
failure will occur, because it is not possible to write to a file connected in READ
mode in another virtual memory. If the user who has run the program DISCONNECTs
the file, the recompilation will then be possible.

* To free space in the virtual memory. Although large (13 Mbytes) the virtual memory

can be filled during a session. To free some space the user should use DISCONNECT
to disconnect some of the files that are no longer being used.

37



TRANSFERRING OWNERSHIP OF A FILE

The two commands OFFER and ACCEPT can be used to transfer a file from one user to another.

The owner of the file should use the command OFFER, which takes two parameters: the name

of the file to be transferred, and the name of the user to whom it is to be transferred.
OFFER{ABC,ERCC98)

would offer the file 'ABC' to user 'ERCCI8'.

Note that once a file is on it cannot be connected in any virtual memory, regardless of
access permissions

An OFFER can be revoked, if necessary, by using the command OFFER with only one parameter
- the name of the file.

A file can be offered to any user on either machine.

Accepting the file

The user to whom the file is offered can accept it at any time by using the command
ACCEPT. This takes as its first parameter the full file name of the file to be accepted.
For example, if the user OFFERing the file in the example above was ERCC38 then the user
ERCC98 would type

ACCEPT(ERCC38.ABC)
The effect of this would be to transfer the file 'ABC' from user ERCC38 to user ERCCI8,
giving it the new name ERCC98.ABC. This command will fail if user ERCC98 already has a
file 'ABC'. However this problem can be overcome by typing a second, optional, parameter
to ACCEPT, which is the new name to be given to the file. For example,
ACCEPT(ERCC38.ABC,NEWABC)

In this case the file will be transferred and given the new name ERCC98.NEWABC.
SETTING ACCESS PERMISSIONS ON FILES

In chapter 3 there is a description of the access permission mechanism. This section
describes the use of the command PERMITFILE. This command, which can only be used in
respect of one's own files, takes three parameters:

PERMITFILE(file,user,mode)
file is the name of a file belonging to this user
user is ane of the following

null meaning give access to all other users

& username meaning give access to a particular user (can be the owner)

a user-group meaning give access to a group of users. The given parameter
should contain up to 5 '?" characters. For example, EGNP??
means give access to any user with a username containing 'EGNP'
as its first four characters.

Mode is one of the following modes:

RS or null READ SHARED

R READ

WS WRITE SHARED

W WRITE

NONE no access.

CANCEL used to cancel an access pemmission given previously to an
individual user (other than the owner) or a user group.

ALL all modes (see below).



In some situations it is necessary to combine more than one mode. This is done by using a
single hexadecimal digit for the mode. This consists of a four-bit field, where the bits
have the following meanings

2° WRITE

2' READ

22 WRITE SHARED
2° READ SHARED

The table below shows the complete range of possible combinations:

MODE UNSHARED SHARED

WRITE READ WRITE READ
0 (NONE) |
1 (W) *
2 (R) *
3 *x *
4 (WS) *
5 * *
6 %* *
‘] * * *
8 (RS) , *
9 * *
A * *
B * * *
C * *
D * * *
E * * *
F (ALL) * * * *

Notes

* When a file is created it has default access permissions of all modes to its owner
and no access to anyone else.

*  There is no overhead associated with access permissions to self and everyone else.

Permissions to individuals and groups, however, require space in the file index
(see chapter 3).

Examples
PERMITFILE(ABC)

This permits the file to everyone else with the default access permission READ SHARED.

PERMITFILE (DOUBLE ,ERCC23,KS)
This permits the file DOUBLE to user ERCC23 with WRITE SHARED access permission.

39



Multiple pemissions

It is possible to use PERMITFILE more than once in respect of a file. For example in the
following sequence a file is permitted to all users with READ SHARED access pemmission,
but access is withdrawn from users with user numbers starting with 'Y'. Finally access in
all modes is granted to ERCC28.

PERMITFILE(PERTEST)
PERMITFILE(PERTEST,Y??272?,NONE)
PERMITFILE(PERTEST,ERCC28,ALL)

Note that even if a file is permitted to another user in WRITE mode he cannot alter its
size.

The command PERMITLIB (see chapter 10) can be used to control the access pemissions of
library index files and the object files to which they refer.

COMMANDS RELATED TO BACKUP

As explained in chapter 3 some files are copied onto a back-up store. All files which are
likely to be difficult to reconstruct in the event of file system corruption should be
marked by use of the CHERISH command. This command can be used to mark one or more files:

CHERISH( SNAP)
CHERISH(ABC,MINE ,COBJECT)

The command HAZARD can be used to remove the CHERISH status.

Notes

*  When first created, files are not normally CHERISHed. It is the user's
responsibility to CHERISH his important files.

*  The CHERISH status of a file also affects its disposal when it is left unused for a
significant period - see below.

COMMANDS RELATED TO ARCHIVE STORAGE

The archive store is held on magnetic tape, quite separately fram the backup store. It
contains files that have been moved there from immediate storage for one of the following
reasons:

*  Because the owner has indicated that he wishes the file to be moved by using the
ARCHIVE command.

*  Because the file has not been used for a significant period (currently about four
weeks) and it has been moved by the system in order to free space in the immediate
store. Note that this only applies to files that are CHERISHed: un-CHERISHed files
arekdistrqyed if they remain unused for a significant period (currently about four
weeks).

Once in the archive store there is no distinction between files moved in for different
reasons.

The command ARCHIVE

This command, which takes one or more filenames as a parameter, is used to mark files
which the user wants to move from the immediate store to the archive store. Note that
this command does not take effect immediately: there will be a delay of up to a week
before the file is moved. There are a number of reasons for using this command:

40




*  to clear space in the file index

* gotdispose of files that are not currently required but may be needed at some later
ate

*  to reduce the charge for keeping files on the system (see chapter 20)

The command FINDFILE

This command is used to obtain information about the user's files in the archive store.
It can be used in one of two modes:

*  to locate all files of a particular name

* to list the names of all files belonging to the user in the archive store

In order to locate a particular file the command is typed thus:
FINDFILE(filename)
For example:

FINDFILE(KERN27S)

If a file of the required name is found, information about it will be output; e.g.
ERCCO6.KERN27S  27/10/75 17

The date indicates when the file was moved from immediate store to the archive store. The
last number on the line gives the size of the file in pages (4096 bytes). Since there may
be more than one file in the archive store of the same name, the opportunity is given to
continue scanning the directory to locate earlier copies. The reply to the prompt
‘CONTINUE SEEK?' should be 'Y' or 'YES' if the user is interested in earlier copies of the
file. Otherwise the reply should be 'N' or 'NO'. This sequence of printing out
information about one file of the specified name and prompting for further searching
continues until no further copies of the file are found when the message 'SEARCH ENDS' is
typed. For example

COMMAND: FINDFILE(PRINTO1S)
ERCCO6.PRINTO1S  20/10/75 12
CONTINUE SEEK? Y
ERCCO6.PRINTOLS  13/04/75 11
CONTINUE SEEK? Y

SEARCH ENDS

If a list of all of a user's files in the archive store is required than the first
parameter to FINDFILE should be omitted. In this case an optional second parameter can be
used to specify an output device or file. For example :

FINDFILE(,.LP)

;ile information is listed in reverse chronological order, i.e. the most recent files
irst.

Moving files from archive store to immediate store

The command RESTORE is used to copy a file from archive store to immediate store. Note
that the copy in the archive store is not altered by this command. The command takes two
parameters. The first is the name of the file being restored, and the second, which is
optional, is the date of archiving. This should be typed exactly as it appears in-the
FINDFILE output. By default the most recent copy of a file is restored. The date is only
needed when an earlier copy is required.

41



Example
RESTORE(KERN27S)
RESTORE(IMPS07A,23/12/75)
RESTORE(DATA27,01/07/74)

RESTORE will fail immediately if:

* A file of the same name already exists in the user's immediate store file index.
To avoid this it is necessary to rename the existing copy before restoring the old
one.

* The date is typed in incorrect format.

*  There is no file in the archive store of the requested name, or, if a date is used,
no file of the requested name is held for that date.

If the RESTORE command is successfully interpreted then a request is sent to the VOLUMES
process to carry out the operation. The user can then proceed to give other commands to
EMAS. The file should be recovered from the archive store within 15 minutes and if the
user is still logged on an operator message will be typed on his interactive temminal
telling him that the file has been restored. If he is not logged on he can check for the
existence of the file with FILEANAL or FLIST when he next logs on.

The RESTORE operation can fail when the VOLUMES process attempts to copy the file to the
immediate store. This will occur if:

*  There is insufficient room in the user's file index.

*  There is a file of the same name in the user's file index. This would only occur
if the user had created a file of the same name after typing the RESTORE command.

If the user is still logged on an appropriate operator message will be typed on his
interactive termminal.

Files restored ‘in this way are un-CHERISHed and have default access permissions.

Destroying files in the Archive store
The present method of destroying files in the archive store involves the use of the
command ARCHLIST. This command, which takes no parameter, creates a file called SS#DARCH
which contains a list, similar to that produced by FINDFILE, of the names of the user's
files in the archive store. The most important difference in the list is that each line
begins with an asterisk. In order to delete files from the archive store the user should,
by using the EDIT command or some other means, remove the asterisks from the lines
:p$cifying the files he wishes to destroy. No other alterations should be made to the
ile.

Within 24 hours the file SS#DARCH will be removed from the user's file index and the
requested changes will be made to the directory of archived files.

For example, if after typing ARCHLIST the file SS#DARCH contained:

*ERCCO6.ABC 27/03/76 4 10848
*ERCCO6.NEWCA 21/03/76 4 10820
*ERCCO6.SPCO3PN  21/03/76 4 10812

and if the user wished to delete the files ABC and SPCO3PN in the archive store he should
edit the file to become:

ERCC06.ABC 27/03/76 4 10848
*ERCCO6.NEWCA 21/03/76 4 10820
ERCCO6.SPCO3PN  21/03/76 4 10812

42



Note that if any other alterations are made to the file no files will be deleted. If the
command ARCHLIST is used again before SS#DARCH has been removed from the user's file index
then it will fail with the message 'SS#DARCH ALREADY EXISTS'. If the user wishes to
delete more files then he need only edit SS#DARCH again, removing more asterisks from the
file as necessary.

It should be appreciated that FINDFILE and RESTORE work from the archive store directory.
This is not altered directly as a result of editing SS#DARCH. It is only altered when
this file is removed from the user's file index and processed by the system. Hence, if a
user types FINDFILE immediately after editing SS#DARCH, he will find that the changes he
has made will not have taken effect. Normally they will be made by the following day.

Whilst the principle of the archive and back-up stores will remain the same, their
precise operation and the user commands provided for manipulating them are likely

to alter in the near future.

43






CHAPTER 8
TYPE-SPECIFIC FILE UTILITY COMMANDS

Chapter 7 describes the Subsystem functions that operate on files as units, without regard
to their contents. This chapter describes a number of type specific file utility commands
that carry out simple operations on files or provide information about their contents.

The table below shows the available functions, relevant commands and allowed file types:

Function Commands Valid File Types
Library Store

Character Data Object Index Map
Provide information FILEANAL * * * * *
about contents LIBANAL *
Copy COPYFILE * * * * *
Join together CONCAT * *

L INK *

List on output LIST * *
device SEND * *

COMMANDS FOR OBTAINING INFORMATION ABOUT THE CONTENTS OF FILES

The command FILEANAL

This command is used to obtain information about a particular file. The file may belong
to this user or, if permitted to him, to any other user. The first parameter is the name
of the file, and the second parameter is an output file or output device. By default
output goes to the interactive terminal.

Examples:

FILEANAL(TEMP)
FILEANAL(ERCC27 .BASEFILE,.LP)

For all file types the output includes the size of the file, in pages, the number of other
virtual memories in which it is currently connected, i.e. the number of other users
currently accessing it (if any), and all the current access permissions. The remaining
information depends on the type of the file. The type is determined from the header (the
first part of the first page of the file), and the following table summarises the
information given for each:

45



Type Information Chapter

Character Length (in bytes) of user data 11

Data Length (in bytes) of user data, maximum 11
allowed length, record format

Object Routine and Data entries 9

Library Index Files inserted and other library indexes 10
appended

Store Map Length in bytes 13

Non-Standard None

Note that the command LIBANAL can be used to give fuller information about library
index files (see chapter 10).

COMMANDS FOR JOINING AND COPYING FILES

The command COPYFILE

This command is used to make a copy of a file. It can be used to copy any type of file,
and, subject to suitable access permission having been granted, can be used to make a copy
of a file belonging to another user. It takes two obligatory parameters: the name of the
file to be copied, and the name of the file into which it is to be copied. For example:

COPYFILE(KERN27 ,BACKUP)
COPYFILE(ERCC27.TEST23,TEST23)

Notes

* If a file of the name of the new copy already exists its contents will be
overwritten, but its cherish status and access permissions will be preserved.
Otherwise a new file will be created, with default cherish status and access
permissions.

* COPYFILE should not be used to copy a library index file from one user to another.
Instead a new 1ibrary index file should be created using the USERLIB command and,
if required, the appropriate calls of INSERTFILE and APPENDLIB. This restriction
is made because a library index file contains within itself the name of its owner.

* If successful, COPYFILE produces a confirmatory message.

The command CONCAT

This command is used to concatenate a number of character and data files and create an
output character file. It reads the names of the files involved either from the

interactive termminal or from a control file; in the latter case the control file name is
given as a parameter to CONCAT. Hence either:

CONCAT when reading file names from the terminal
or

CONCAT (CFILE) when reading file names from file CFILE

In either case the filenames should be typed one to a line, the list being terminated with
the keyword '.END'. This should be followed by a line containing the name of the output
file. When reading file names from the interactive terminal the prompt is 'CONC:'. The
prompt for the output file is 'FILE:'. For example:

46



COMMAND : CONCAT
CONC:ERCC27.LIST
CONC :MINE
CONC :L ISTSTOP
CONC:.END
FILE:NEWLIST

Notes

* The files used for input are not altered by this command.

*  The rules concerning the creation of output files are as for COPYFILE.

*  The output file cannot have the same name as that of any of the input files.

* The output file is always a character file - regardless of type of input file.

* If any of the input files is a data file with a record format of VA or FA, the
carriage control characters in it will be replaced by newline characters.

* If successful, CONCAT produces a confirmatory message.

*  There is a concatenation operator '+' which can be used when specifying parameters
for the commands DEFINE, DETACH and with the commands which call the compilers:
ALGOL, IMP and FORTRAN.

The command LINK

This command is used in a similar way to CONCAT, but to link OBJECT files together. It is
described fully in chapter 9.

LISTING FILES ON OUTPUT DEVICES

The commands LIST and SEND are used to produce listings of files on output devices, such
as the interactive terminal or the line printer.

The command LIST

This command takes an obligatory parameter and three optional ones:

LIST(filenamel[,device,][,copies][,special forms])

filename

device

copies

special forms

Examples

This should be the name of the file being listed; it can belong to this
user or, if suitable access permission has been granted, to another user.

This should be the abbreviated name for the device - see the table in
chapter 4. The default is .TT (the interactive temminal). Both local
devices and those connected to the Regional Communications Network can be
used.

This parameter can be used to specify the number of copies to be listed.
It should be an integer in the range 1-15. The default is 1.

This parameter can be used when listing files on line printers connected
the Regional Communications Network which support special forms printing.
Details of the special forms codes currently available can be obtained fr
the Advisory Service.

LIST(ALIST,.LP)

LIST(MND1136)
LIST(ERCCO6.FILELIST,.LP15,2)
LIST(MYPROG, .GP)

to

am

47



The LIST command does not access devices directly, other than the user's terminal.
Instead it makes a copy of the file and sends it to the DEMONS process to be listed when
the required output device is available. This may be minutes or hours after issuing the
command. The command QUEUES (described in chapter 21) can be used to detemine whether
any files are still awaiting listing in the EMAS output queues.

The command SEND

The command SEND is similar to LIST but is more efficient, since it does not make a copy
of the file being listed. Instead, it sends the file itself to the DEMONS process. Thus,

the file is effectively destroyed by this conmand. When a file is not required other than
to produce a listing this command should be used.

Notes

*  SEND uses .LP (line printer) as its default output device; hence

SEND(SS#LIST)

means 1ist the compiler default listing file on the line printer and destroy it.

*  SEND cannot be used for listing a file on the interactive teminal (.TT).

*  Otherwise the parameters are identical to those of LIST.

48



CHAPTER 9
COMPILERS AND OBJECT FILES

The standard EMAS Subsystem includes campilers for the programming languages IMP, FORTRAN
and ALGOL. The relevant language manuals (references 1, 2 and 3) contain full details of
the languages; the environments provided by the Subsystem for programs written in these
languages are described in chapters 15, 16 and 17 respectively. This chapter introduces
the commands that invoke the compilers, and the associated commands PARM and LINK.

OBJECT FILES

The compilers generate object files of a standard format. This makes it possible, subject
to restrictions imposed by the parameter-passing characteristics of each language, to mix
object files generated from different source languages. Hence, for example, it is
po?sib1e tg call an IMP routine from a FORTRAN program. This facility is described in
reference 9.

Sharing code

EMAS compilers generate code which can be shared. Before this sharing can be exploited
the object file has to be given READ SHARED access permission to other users. In the case
of most user programs this attribute is not very important. In the case of facilities
such as the Subsystem base file, heavily used packages and the compilers, however, this
shareability is very important in reducing the number of pages that have to be moved
between the backing store and the main store. Al1 the users sharing an object file
execute the code in that file. The same file is connected in all their virtual memories
and thus the number of times any one of them is delayed waiting for a page is reduced.
Clearly this sharing can only be used for code and constants. Each user must have his own
area for variables and arrays.

The director code too is shared by all processes, although, as indicated in chapter 2,
each process has its own director.

The fact that code is shareable imposes no restraints on the user. It is the
responsibility of the compiler writer to determine which parts of a program to campile
into the shared area and which to put into the unshared area.

The general linkage area (GLA)

Each user has a file, created by the Subsystem, with the name SS#GLA. This contains, as
its name suggests, linkage information for each object file currently loaded; for example,
the address of each routine. Since the object file may be connected at different
addresses in different users' virtual memories it is not possible to share this
information - hence each user must have his own copy. Apart from linkage information, the
GLA also contains variables which exist all the time that the program is locaded. In IMP
this includes, for example, %OWN variables, and in FORTRAN, COMMON blocks. Temporary
local variables, on the other hand, are stored on the STACK (see below).

Part of the loading process (see chapter 10) involves initialising the area of GLA which
is to hold the linkage information and initialised variables for the object file being
Toaded. This is done by copying part of the object file (the general linkage area pattern
- GLAP) into the next free area of the GLA. The GLA therefore holds the accumulated
linkage information and initialised variables for all the object files loaded thus far.

49



The stack

Each user has a file, created by the Subsystem, with the name SS#STK which contains the
stack for running programs. This is the area used by IMP and ALGOL to store all local
variables and arrays and by all three languages to store registers and parameters when
making routine calls. The use of the stack by IMP programs is explained more fully in the
IMP Language Manual - reference 4.

Summary

The three areas used at run time are as shown shaded in the diagram below.

Object File GLA STACK
GLAP free GLA free stack
;;/ / Copied
across
f /
// i i
/ Y / is, /
, Y, |
' GLA for Stack used by
previously 1oaded Subsystem
/// routines
/
Notes

*  The object file contains primarily the code and GLAP. The file may be shared with
other users. The GLAP is only used at load time to initialise the GLA.

* A separate GLA and STACK are needed by each user using the program.

Using the compilers

Before using a compiler it is necessary to prepare a character file containing the program
to be compiled. This will have been read in from cards or paper tape (chapter 4) or
created using the EDIT command (chapter 12). This file, known as the source file, is
compiled into an object file; normally a listing file of the program is also produced.
This 1isting contains a list of the program statements being compiled, with 1line numbers
added by the compiler, information about any compile time faults and optionally, in the
case of FORTRAN, a cross reference table for all the names used in each subroutine. By
default this listing is created in a file called SS#LIST.

Prior to compilation, information about the object file is removed from the current
library index, if any exists: see REMOVEFILE (chapter 10). If compilation is successful
the information about the object file is put into the current library index, by an
automatic call of the INSERTFILE command (see chapter 10).

50



The commands IMP, FORTE and ALGOL
These commands are used to compile IMP, FORTRAN and ALGOL programs, respectively.
In each case the parameters are:

1. The name of the source file containing the program or routines tb be campiled.
Several files can be concatenated with the + operator; for example A+B+C.

2. The name of the object file; if a file of this name exists it will be overwritten,
if not a file will be created. The keyword .NULL is a valid alternative if no
object file is required. This is a useful facility if the program is known to
contain faults, since it reduces the compile time.

3. The name of a listing file or device. If this parameter is omitted a file created
by the Subsystem with the name SS#LIST will be used. Valid alternatives include
output devices (see chapter 4). Again, .NULL can be used if no listing is
required. Note that SS#LIST is destroyed when the user logs off.

4. A supplementary output device, for error messages only, is available for IMP and
ALGOL. This is nommally used to provide a list of error messages on the
interactive terminal (device code .TT). If omitted no separate list of faults is
produced.

Examples of calling compilers
FORTE(ENGP77.FORTP4,P4Y, .LP)

This would compile the FORTRAN source file ENGP77.FORTP4 into an object file P4Y and would
print a listing on the local line printer. :

[

ALGOL(A,AY)

This would compile the source file A into an object file AY and generate a listing file
with the name SS#LIST. Note that if SS#LIST contains a listing from a previous
compilation in the current session it will be overwritten.

IMP(ERCC77.BASE+MINE ,ABCOBJ, .LP14,.TT)

This would compile the source file contained in files ERCC77.BASE and MINE into the object
file ABCOBJ, producing a listing on the remote line printer .LP14 and a list of campile
time faults on the interactive terminal.

The command PARM

Various compile time options can be used and these are set by a call of the command PARM.
A call of PARM takes effect for all future compilations until the next call of PARM or the
user logs of f, whichever is sooner. PARM has the effect of resetting all values to the
default settings, and then setting the ones selected. Hence PARM with no parameters
merely resets the defaults. The following parms are described in the language manuals:

LABELS NOCHECK NOTRACE
MAP NOGDIAG OPT
NOARRAY NOLIST STACK

Additionally the following parms are specific to EMAS:

*  NOENTRIES - when this is selected information about the object file is not inserted
in the current library index (see chapter 10).

*  DYNAMIC - this controls dynamic loading for FORTRAN programs (see chapter 16).

51



The command LINK

This command can be used to link object files together to produce a campound object file.
It is useful in the following situations:

*  to reduce the number of separate files in the user's file index

*  to ensure that a particular version of a routine is used to satisfy a particular
call

The user should note however that, since program linking is automatic when a program is
being run, it is usually unnecessary to use this command.

The command operates in a similar way to CONCAT (see chapter 8). It prampts for input
files using the prompt ‘LINK:'. The 1ist should be termminated with '.END', whereupon the
prompt 'OBJECT:' will be typed, to which the reply should be the name to be given to the
single output file. The following example shows how the command can be used:

COMMAND:L INK

L INK:P4Y

L INK : ABCOBJ
LINK:.END
OBJECT:L INKFIL2

A confirmatory message is normally printed. If PARM(MAP) is set at the time of the call
of LINK then a short link map is printed as well. This contains information about the
relative start addresses of the object files in the cambined file.

Notes

* It is not possible to extract an object file from a linked file.

* LINK can read its control information from a file, as for CONCAT (see chapter 8).
The filename would be specified as a parameter to the cammand.

52



CHAPTER 10
PROGRAM LOADING AND LIBRARY STRUCTURE

Having successfully compiled a program into an object file, the next stage is to load this
object file prior to executing the code contained in it. This chapter explains the
mechanism by which the Subsystem loader carries out this task in respect of a complete
program. As explained in chapter 18, it is possible to execute a suitably written routine
as a command, and the loading mechanism described here is equally applicable to loading
such a routine. .

The loader is called automatically by:
*  the command RUN

* a call of any command except those in the list of standard cammands (see chapter
6), unless the FULLSEARCH option has been selected (see below)

The command RUN is used to load and execute a compiled program. It takes one parameter,
the name of an object file'which contains the compiled program.

Example:

RUN(MYPROG)
RUN(EGNP99. SUMX08B)

Before running a program it may be necessary to use the cammand DEFINE to establish links
between 1/0 channels and particular files or devices (see chapter 11). Also a call of
CPULIMIT may be required to set an appropriate time 1imit (see chapter 21).
When running a program belonging to another user, the object file must be permitted to
this user in READ or READ SHARED mode. The RUN command loads the object file and then, if
loading is successful, executes the code contained in the object file. The loading
process involves the following sequence:

1. loading the object file containing the required program or routine

2. détennining what external routines it calls

3. locating each routine and following steps 1, 2 and 3 for the object file in which
it is found

This process continues recursively until all external references are satisfied. Step 1
involves the following:

*  Connecting the object file in the user's virtual memory, in READ or READ SHARED
mode

*  Copying the initialised variables and external reference information from the

general linkage area pattern (GLAP) into the next available space in the general
linkage area (GLA) (see chapter 9)

Step 2 involves examining tables in the object file to determine the names of the external
references it requires.

The order of searching used for step 3 is as follows:

*  the current object file - because the routine might be in the same file as the
routine referencing it

*  the library index structure - see below

53



THE LIBRARY INDEX STRUCTURE

The library index structure consists of one or more library index files which contain
information about object files. The existence of library indexes makes it possible to
locate compiled routines automatically without the necessity for the user to naminate
explicitly the object files to be used.

[f, for example, a user compiled a routine R into an object file called 0BJ1 and then ran
a program which needed to call the routine R, it would be necessary in some way to
identify the appropriate object file. There are three possible methods:

*  The user could nominate, in the RUN command, the names of all the object files to
be used. This would involve a lot of extra work since, for example, many programs
require ten or more separate object files.

*  The loader could search all object files in the user's file index. This would
involve a large overhead and would be impracticable if the user wanted to use
object files belonging to others. It would also prevent a user having more than
one compiled version of the same routine.

*  The loader could search for the routine name in one or more library index files
linked in a predefined structure; having located the name a pointer associated with

it in the library index file could indicate which object file to use. This is the
mechanism used.

Library indexes

A library index file has all the attributes of a normal file - it can be connected in the
virtual memory, renamed, destroyed, cherished and so on. It contains two sets of
information:

* a table of entry points, each with a 1ink to an object file name

* a list of names of other library index files to be searched if the entry is not
found in this one

The layout of a library index file is effectively:

Entry names Object file names
Al
RT2 ERCC06.0BJ2
TESTR
LOG
ALOG ERCCO8.TESTLOG

Appended Library Index Names

ERCCO6.TESTLIB
MANAGR.SYSLIB

54



Notes:

*  The object files and appended library indexes can belong to the owner of the
library index file or to someone else.

* In order to locate an entry name quickly the entries are inserted and searched for
using a hashing technique.

Size of library index

A library index file is always 1 page (4096 bytes) long. The table of entry names
contains 238 cells. Each cell can contain 1 entry name or 1 file name, except that if the
file belongs to another user 2 cells are required. Hence, for example, a library index
might contain information about 18 different object files which contain between them 220
different entries.

Additionally, a library index can contain links to up to 16 other library indexes.

The current library index

Whilst a process is running there is always a current library index. By default this is a
library index created by the Subsystem called SS#LIB. The commanc USERLIB can be used to
select another library index.

Example:

USERLIB(TESTLIB)
If no file called TESTLIB exists then a new 1ibrary index TESTLIB will be created. If
TESTLIB does exist then a check will be made to ensure that it is a library index file.
TESTLIB now becomes the current library index and remains so until the next call of

USERLIB. Note that if USERLIB is called with no parameter it has the effect of selecting
the default library index SS#LIB to be the current library index.

The current library index is used in the following ways:

* it is the first library index searched for routine entry names during the loading
process '

* it is the library index modified by calls of the commands INSERTFILE, REMOVEFILE,
APPENDLIB and REMOVELIB

The command INSERTFILE

This command is used to insert information about an object file into the current library
index. The parameter to INSERTFILE should be one or more object file names about which
information is to be inserted into the library index.

Example:

INSERTFILE({ABC1)
INSERTFILE(FILE27 ,ERCC18.SSTT,MOBJ)

Note that although the command INSERTFILE can be used explicitly, as above, it is most
commonly called (automatically) at the end of a successful compilation {see chapter 10).

Apart from general failures concerned with connecting files - see Appendix 1 - failures
will occur if:

* the file being inserted is not an object file
* the file being inserted is currently inserted (use of REMOVEFILE will enable

INSERTFILE to be used; this would only be necessary if the names of entries in the
object file had altered since it was last inserted)

55



*  there is a conflict between one or more entry names in the file being inserted and
entry names already in the -library index

*  the table of entries is full

Note that a reference to a file will remain in a library index even though the file has
been archived; if it is DESTROYed the current library index is modified automatically.

The command REMOVEFILE

This command is used to remove information about an object file from the current 1ibrany
index. The parameters should be one or more object file names currently inserted in the
library index.

Example:

REMOVEFILE(FILE29Y)
REMOVEFILE(TEST1,TEST2,ERCC22.AB0OBJ)

A failure will occur only if an attempt is made to remove information about a file which
is not currently inserted. No check is made on the existence or type of the object files
referenced.

This command is called automatically at the start of every compilation in order to remove

information about the object file which is being compiled into. In this case no error
message is printed if the information is not in the library index.

The command APPENDLIB

This command is used to add the names of one or more library indexes to the end of the
list of library indexes in the current library index. This list detemmines the order of
searching to be used if an entry name is not found in the current library index (see
below). The command takes the library index names as a parameter.

Example:

APPENDLIB(TESTLIB)
APPENDL IB(MANAGR.SYSL IB,CONLIB.GENERAL )

This command will fail if:
* 16 library indexes have already been appended to the current library index

* the file being appended is not a library index, or is not permitted in READ or READ
SHARED mode to this user

* the file being appended is already appended to the current library index
* an attempt is made to append the current library to itself
Note that no check is made to ensure against a closed loop of appended library indexes;

e.?. ? appended to B appended to A. This situation can cause failure during loading (see
below).

The command REMOVEL IB

This command is used to remove the name of one or more library indexes from the list in
the current library index. The parameter should be the names of the library indexes.

Examples:

REMOVEL IB(ABC1,ERCCO1.TSSLIB)
REMOVEL IB(TESTLIB)

The command will fail only if an attempt is made to remove the name of a library index
which is not in the list.

56



ORDER OF SEARCHING LIBRARY INDEXES

When searching for an entry the loader first searches the current library index. If the
entry is not found it then searches the appended library indexes, in the order in which
they were appended. If any of these library indexes have library indexes appended then
these are searched before going on to the next library index in the original append list.
The diagram below shows an example of this:

CURRENT LIBRARY INDEX

LIB1
LIB1 LIBA
LiB2
LIBA
LIBB
LIBB
LIBC
LIBC
LIB2

The search order would be:
Current library index, LIBl, LIBA, LIBB, LIBC, LIB2

Knowledge of this order of searching is of importance when more than one entry of the same
name exists in different object files (such object files cannot of course be referenced in
the same library index). It enables the user to determine which object file will be
1oaded.

The command LIBANAL should be used to examine the contents of a library index file (see
below).

Failures during loading
The following faults can occur during loading:

*  Failure to find an entry. If this entry is the main entry point of a program being
accessed by RUN, or is a routine being loaded as a Subsystem command then this
fault causes a return to command level. Otherwise an error message is produced and
the program is allowed to execute. A failure will occur if a call on the missing
routine is encountered during execution of the program.

* Inconsistent library index. This failure will occur if a library index contains

information about the entries in an object file inconsistent with the actual
contents of the object file. This fault causes immediate return to command level.

57



*  Too many COMMONS. 128 separate named commons or external data references have been
processed, and an attempt has been made to process another one.

* Inconsistent length for COMMON. This fault occurs if a named common is initialised
in a BLOCK DATA statement with a length less than one of the other references to
the same common block.

*  Cannot extend GLA. The space currently available for the GLA (a file called
SS#GLA) is 12 segments. The GLA is created with 1 segment and extended as
required. This is normally encugh; although it could be extended it should be
appreciated that programs requiring a data area of this size are likely to have bad
paging characteristics (see chapter 1). This fault could also occur if the user's
file index were full.

*  Too many library index searches. This fault will occur if the library index
structure has more than 16 levels - the most likely cause being a loop in the
structure; e.g. A appended to B appended to C appended to A.

Loading standard commands

Commands in the standard command 1ist (see chapter 6) are used very frequent]y, and in
order to avoid the overhead of searching the library indexes in the user's library
structure every time a standard command is used, the foilowing action takes place:

If 'QUICKSEARCH' is selected (see OPTION in chapter 21) then whenever a command is read by
the command interpreter it searches the list of standard commands before calling the
loader. If the command is among those in the standard list then it must be in the
Subsystem basefile, which is always loaded; a jump is then made direct to the required
command. If the command is not in the standard list the loader is called to locate it in
the normal way.

If the user wishes to retain the full generality of providing commands with the same names
as those in the standard 1ist he can do so by selecting the OPTION 'FULLSEARCH'. In this
case all commands called are loaded by the normal method. This includes searching the
user's own library structure first. There is a delay associated with this, and most users
have chosen to accept the slight loss of generality which goes with the more rapid
initiation of standard commands. Note that QUICKSEARCH does not apply to commands called
from within programs {see chapter 18).

QUICKSEARCH is the default option.

DYNAMIC LOADING

In some cases the process of satisfying all external references before starting execution
involves unnecessary work. If, during any one run, a program accesses only a few of the
external routines it references then it may be better to use dynamic loading. In this
case the program is loaded and allowed to start executing, and no attempt is made to
locate or load any external routines. As soon as a call is made on an external routine
the execution is interrupted and the loader is called to load the required routine.
Execution continues until the next call is made on a routine that has not been loaded and
the process is repeated.

The method of creating object files which include references to be satisfied dynamically
is described in chapters 15 and 16.

Notes

* There is an overhead involved in making the additional calls on the loader. Once a
routine has been loaded, however, there is no difference in the time taken for each
call on that routine.

*  There is little point in using this facility in a program that uses all the
routines it calls. It will have the effect of making the program start execution
more quickly but causing execution to be interrupted periodically to satisfy
additional references.

58



The command LIBANAL

This command is used to examine a library index file. It takes two cptional parameters.
The first should be the name of a library index file, by default the user's current
library index (see above). The second is used to specify a file or device to be used for
the ocutput; the interactive terminal is used if this parameter is omitted. The output is
in two parts:

* A list of the object files referenced by this library index, together with the
program and data entries in each.

* A list of other library index files which have been appended to this one, in the
order in which they would be searched by the loader.

The command PERMITLIB

This command is used to set access pemissions for a library index file. It takes
parameters as for PERMITFILE (see chapter 7).

Notes

*  The access permissions are applied to the library index file itself and to all the
object files currently inserted in it which belong to its owner.

*  Any object files subsequently inserted in the permitted library index file will
have the same access permissions automatically given to them.

59






CHAPTER 11
DATA FILE HANDLING

This chapter introduces the subject of manipulating data in files on EMAS. It describes
the structure of the two types of file used most frequently for this purpose:

*  Character files

* Data files

In additionally it gives details of the following commands:
* DEFINE - links a logical I/0 channel in a program to a particular file
*  CLEAR - clears one or more links set by DEFINE
*  DDLIST - lists current file definitions

Chapters 15, 16 and 17 describe the .handling of data within the programming languages IMP,
FORTRAN and ALGOL respectively. Chapter 13 describes data manipulation via direct mapping
of files, and chapter 14 the use of user magnetic tapes.

CHARACTER FILES

Character files are used widely to hold textual information. They are created in the
following situations:

*  When the EDIT command is used - when creating a new file or as a result of use of
the Editor command F (chapter 12)

*  From cards or paper tape read in, other than those defined with the BINARY option
(chapter 4)

*  When using STREAM output from an IMP or ALGOL program
*  When compiler listing files are generated

* As optional output files from commands; for example, FINDFILE(,OUT) produces a
Character file OUT

* As output from the CONCAT command

The information held in a character file consists of a header, which contains length and
file type information, followed by a sequence of data characters with no record separators
or other system control information. For example, if a file contains the text

FIRST LINE
LAST LINE

in its only two lines then the length of the file would be the length of the header plus
21 characters for the data, a newline character following the word LINE in both
occurrences. The newline characters are part of the file, and when the file is read they
are used to divide it into records. There is no restriction on line length imposed by the
structure of the file, but for reading using READSYMBOL in IMP a line should contain a
maximum of 160 characters.

Character files provide efficient storage in that they do not have to contain trailing
spaces, as do, for example, card image files used on some other systems. Furthemmore,
they contain no record separators, other than the newline characters themselves. They
have the restriction that to be meaningful they can only be used to contain character
information. If binary information were stored in a character file then it would be

61



impossible to distinguish between newline (internal code 10) énd the binary value 10 as
part of a record.

Character files as input
Character files can be used as input in the following situations:

* as STREAM input to IMP and ALGOL programs; this includes source file input to the
IMP, FORTRAN and ALGOL compilers, since they are IMP programs

* as input to FORTRAN programs, when using the READ statement under FORMAT control

* as EDIT input files - both for editing and for insertion using the I<filename>
facility in the Editor

* as input to the commands CONCAT, DETACH and OBEYFILE

DATA FILES

Data files are distinct from character files in that they are divided into discrete
records, in a way that makes it possible to store any information in them; for example,
textual or binary information. They are created in the following ways:

* as output files from FORTRAN programs, written with or without FORMAT control
* as IMP Sequential or Direct Access binary files created by OPENSQ or OPENDA

* as files read in BINARY mode from cards or paper tape

Format of Data files

Data files can have either fixed (F) length or variable (V) length records. A fixed
format data file consists of a header followed by one or more records with no separators
between them. For some forms of data they provide a very efficient form of storage in
that there is no redundant record separator information. On the other hand, for
variable-length lines of text, for example, they are inefficient because they contain
redundant trailing spaces.

Variable format data files contain records which are separated by control information. A
file consists of a header followed by one or more records.

Apart from the user data each record contains 6 or 7 bytes of control information. For
files which have long records this is not important but for files with short records this
can consitute a considerable overhead on the size of the file. This should be seen in
perspective however. For a file of a few pages this is not usually important. It is for
applications involving large files that it is worth considering making changes, such as:

* increasing record lengths such that the control information becomes a small
percentage of the whole file

* using fixed record length files

Data files for input

Data files can be used as input for FORTRAN programs and for binary sequential and direct
access files in IMP. Additionally they can be used in all situations where character
files are used as input, subject to the following:

*  They should only contain valid character codes (see Appendix 2)

* A newline character is generated at the end of each record. However if a newline
character appears within a record, it and any characters following it in the record
will be ignored

62



Print control characters

There is an option in FORTRAN whereby the first character of the user data in a record is
used to control the line spacing of the output device - for example, line printer or
interactive temminal. This option can be selected in defining a file by appending an A to
the record format. Hence F and V become FA and VA. When output is directed to the line
printer or interactive termminal this option is selected by default. The user need only be
concerned about it when writing output to a file for subsequent listing on a line printer.
In this case the file should be written with a record format of FA or VA. See also
'Sequential Output', in chapter 16.

THE DEF INE COMMAND

This command is used to establish a link between a 1dgica1 Input/Output channel and a
particular file or output device. The command takes the following parameters:

DEF INE{ddname,file/dev[,size][,record format and length])

The DEFINE parameter: ddname

This parameter is used to determine the access method and logical channel number of the
definition. The valid access methods are shown in the table below.

Valid Access Methods

Type Allowed abbreviation Use

STREAM ST IMP stream 1/0, ALGOL I/0

SQFILE SQ IMP sequential binary file I/0
DAFILE DA IMP direct access binary file 1/0
FT FORTRAN file 1/0

SMFILE M ' Mapped file handling

The channel number should be a one or two digit integer in the range 1-80. Note that only
one definition can exist for a particular channel number. Hence definitions for SQFILE27
and STREAM27 cannot exist at the same time. If a channel number specified in a DEFINE
command has already been defined, then the previous definition is lost. Examples of valid
ddnames:

SQFILE36
ST1
FT07

The DEFINE parameter: file/dev

This parameter is used to nominate the file or output device to be used. In its simplest
form it can be a filename; for example:

DEFINE(ST1,DATA0576)

The file can belong to another user if it has been pemitted to this user. This facility
is normally restricted to files used for input:

DEF INE(SQ18,ERCC28.TRIAL)
63



The various output devices available are described in chapter 4. If an output device is
used it should be specified with the appropriate mnemonic; for example:

DEFINE(FT37,.LP)
The interactive terminal can be used as an input or output device, and is defined thus:

DEFINE(ST8,.TT)

If it is required to concatenate input files they they should be connected with '+'
characters; for example:

DEFINE(SQ18,FILEL+FILE2+FILE3)

The files used should all be of the same type and, in the case of DATA files, should all
have the same record format (see earlier in this chapter).

The existence of a file can be checked by the DEFINE command, by appending -NEW or -OLD to
the filename. The command will fail if the attribute given is incorrect. For example the
command:

DEFINE(ST27,TESTOUT-NEW)

would fail if TESTOUT already exists. Conversely the command:
DEFINE(ST26,TESTIN-OLD)

would fail if the file TESTIN did not exist.

The qualifier -MOD can be used when defining an output file when it is required to write
additional data to the end of an existing file. This is ignored if the file does not
exist or is empty.

Temporary and dummy file definitions

The keyword '.TEMP' can be used instead of a file name. The effect is to generate a file
definition for a temporary file. The file will be created when a program is run which
sends output to the defined channel. The file will remain in existence whilst its
definition is valid - that is until the command CLEAR is used (see below), or DEFINE is
used again for the same logical channel,

In the following example, the program CREATE is used to write data to stream 3 (it
contains a SELECTOUTPUT(3) statement), and program VALIDATE reads from stream 3 (it
contains a SELECTINPUT(3) statement).

DEFINE(ST3, .TEMP)
RUN(CREATE)

RUN (VAL IDATE)

DEF INE(SQ3,STORECOP)

The temporary file is created when the first program is run. It is read by the second
program, and destroyed when channel 3 is redefined for use with OPENSQ etc. In any event
.TEMP files are destroyed at the end of a session. More than one .TEMP file can exist at
a time. Each is associated with a particular channel number.

64



T?g alternative keyword '.NULL' can be used whilst testing programs. It has the following
effects:

* On input - gives input ended when first accessed
*  On output - all output directed to it is lost

Note that .NULL cannot be used in the case of Direct Access files, either for IMP or
FORTRAN.

The DEFINE parameter: size

This parameter can be used to control the size of an cutput file. It should be an integer
in the range 1-1023 and defines the size of the file in units of 1 Kbyte (1024 bytes).

Its precise effect varies depending on the access method being used and on whether the
file is new or old. The table below summarises the effect:

Effect of size parameter
DDNAME New File 01d File
STREAM determines maximum size of determines maximum size of
file for duration of current file for duration of current
definition definition
SQFILE and determines maximum size of ignored
FT (Sequential) file until it is destroyed
DAFILE determines actual size of ignored
file
FT (Direct access) | ignored - size extracted from ignored
DEFINE FILE statement in
FORTRAN program
SMFILE ignored ignored
Notes

*  The default value for size is 255 (Kbytes).

* The size parameter should be used when directing cutput to a device, for example
the line printer, if more than 255 Kbytes of data are being sent. For example:

DEFINE(ST18,.LP,500)

Note however that there are additional limitations for certain output devices; see
chapter 4.

The DEFINE parameter: record format and length
The fourth parameter to DEFINE can be used to set the record format and length for an

output file. It is only relevant for some access methods (see table below), and is
ignored if the file already exists.

65



DDNAME Record information taken from DEFINE Note

STREAM No Character files do not
have record format

SQFILE Yes

DAFILE No IMP DA files always have
fixed 1024 byte records

FT (Sequential) Yes

FT (Direct Access) No Information taken from
FORTRAN DEFINE FILE
statement

SMFILE No

The parameter is in two parts - a format and a length. The format can be one of the
following:

Format Meaning
F Fixed length
FA Fixed length; first character used
for carriage control
v Variable length
VA Variable length; first character used

for carriage control

The use of the carriage control characters is explained in chapter 16.

The record length is specified in bytes. In the case of fixed length records it specifies
the number of bytes in each record; hence

F80
is used for 80-byte records.
In the case of variable format records, the length includes the four bytes of record
control information at the beginning of the record, and is a maximum record length. Hence
if a program generates records, each containing up to 200 bytes, the user could use a
format

V204

In fact automatic record spanning is used, and so if a longer record were written it would

be divided into more than one record on output and then re-created as one record when it
was read back in.

66



Notes

The default record format for files is V1024. This can be used for almost all
applications. It is rarely necessary to specify this parameter at all.

Certain output devices impose other formats automatically - see the table in
chapter 4.

If files are written for listing on one of these devices at a later stage, the
correct record format and length must be specified. For example, if creating a
file for sending at a later stage to the column binary card punch, it should be
defined as, say

DEF INE(SQ27,BCPOUT, ,F160) ‘

However if it is going straight to the column binary card punch it is not necessary
to use the fourth parameter:

DEFINE(SQ27, .BCP)

Summary of DEFINE parameters

Parameter Position Default Contents Examples
ddname 1 None 1/0 type and channel no STREAM3
file/dev 2 None filename ERCC27 .HELP15
ABCTE
device .CP
.GP29
concatenated file ABC+TEST37+END
temporary file +TEMP
dummy file NULL
size 3 255 file size in Kbytes 500
record format 4 V1024 record format code and F80
and length record length VA133

The command CLEAR

This command is used to clear one or more file definitions that have been established
using DEFINE. It can be used in one of three ways:

*

*

*

With no parameter, in which case all current definitions are cleared.
With a list of ddnames, in which case the selected definitions are cleared.

With a list of group names from the following list, in which case all definitions
in the selected groups are cleared:

'STREAMS', 'SQFILES', °'DAFILES', 'FTFILES', ‘'SMFILES'.

Examples:

CLEAR
CLEAR(ST1,STREAM27 ,DAFILE42)
CLEAR(SQFILES,DAFILES)

67




Notes
* A1l definitions are cleared automatically at the end of a foreground session.

* If a DEFINE is used for a logical channel for which there is already a definition,
the earlier definition is automatically cleared.

The command DDLIST

This command is used to provide a list of current file definitions. It can be used
without a parameter, in which case output goes to the interactive teminal, or with a
parameter to specify an output device or file:

DDLIST

DDLIST(.LP)
DDLIST(DDFILE)

Typical output from DDLIST:
SQFILEOL TESTSQ

DAFILEO7 TRYPACK
FT14 .LP

68



CHAPTER 12
THE SUBSYSTEM EDITOR

The standard Subsystem includes a context editor which is invoked by a call of the command
EDIT. This chapter describes the EDIT command and the command language used to control
the editor. At the end of the chapter there is a section describing the commands LOOK and
RECALL, which use a subset of the editor command language.

THE EDIT COMMAND

This command can be used to examine or alter the contents of a character file. There are
four ways in which the EDIT command can be used:

*  EDIT (newfile) - in this case 'newfile' is the name of a file that does not
currently exist. The editor will create a file with the name ‘newfile' and insert
text as instructed by the use of appropriate editor commands. A confirmatory
message 'newfile IS A NEW FILE' will be printed.

*  EDIT (oldfile) - in this case the file 'oldfile' does already exist. The effect is
to make changes in the file 'oldfile' according to the editor commands used.

* EDIT (oldfile,newversion) - in this case the 'oldfile' will be copied into
'newversion' and will not be altered itself. Editor commands used will alter the
copy in 'newversion'. Note that if 'newversion' does not exist it will be created,
and if it does it will be overwritten.

*  EDIT (oldfile,.NULL) - see 'LOCK' at the end of this chapter.

Method of editing

Editing is accomplished by moving a cursor through the file and inserting and removing
text with respect to the current position of the cursor. On entry to the editor the
cursor is positioned at the top (beginning) of the file.

COMMAND STRUCTURE

A1l editor commands are single letters. In some cases they are followed, immediately, by
one of the following:

*  An integer which must be typed as a sequence of numeric characters optionally
preceded by a minus sign.

* A text string which is a sequence of any characters (including newline) delimited
by a pair of one of the following characters: / . ?, optionally preceded by a minus
sign.

Examples:
/ABC/  ?12%23(A/27)? .IS
THIS.

Note that if the delimiter character appears in the text it must be typed twice in
order to distinguish it from the closing delimiter.
Example:

.A=2..3*(B/PI).

69



* A filename which should be enclosed in the characters '<' and '>'.
Example:
<MYFILE>
<ERCCO6.EDITTEST>

*  The single character ' (quote). This is used to indicate the same text string as
that last used in the use of this command. Hence the sequence TM/%END/MIM’' has the
effect of moving the cursor to the second occurrence of the text '%END'.

There is a table later in the chapter which indicates the valid parameter types for each
command. Commands can be typed one to a line, or concatenated, without separators, on a
line.

Example:

TP10M/%ENDOF /

Note that a failure in a command within the sequence will result in the termination of the
sequence, at the point of the failure. Spaces within commands, apart from those in text
strings, are ignored - hence the following example would have the same effect as the last
one:

T P10 M /%ENDOF/

Commands used to alter the position of the cursor

The following commands are used to move the cursor around within the file in preparation
for inspecting the contents or altering some part of it. They do not alter the contents
of the file.

T - Top. This command takes no parameter. It moves the cursor to the top (beginning)
of the file.

B - Bottom. This command takes no parameter. It moves the cursor to the bottom (end)
of the file.

M - Move. This command can be used with an integer parameter, in which case the effect
is to move the cursor from its present position the number of lines specified by the
parameter and position it at the beginning of the selected line. Thus M4 means move
down the file four lines..

M-1 means move to the beginning of the previous line.

MU means move to the beginning of the current line - i.e. the line currently containing
the cursor. If there are insufficient lines in the file the cursor is left at the
bottom or top of the file, depending on the sign of the parameter.

Move can also be used with a text string, in which case the cursor is moved from its
present position down the file to the beginning of the specified text string. Hence
M/%END/ means move the cursor from its present position to the beginning of the next
occurrence of the text '%END', and M/4/ means move to the first occurrence of the
character '4'. Note the difference between M4 and M/4/. If the text is not found the
cursor is left at the bottom of the file. If the delimited text is preceded by '-' the
effect is to move up the file to the beginning of the required text. If the text.is
not found the cursor is left at the top of the file.

Example:

M-/%BEGIN/

A - After. This command used with an integer parameter alters the position of the
cursor the number of characters specified by the value of the parameter. Hence A3
means move the cursor three characters down the file and A-3 means move the cursor back
three characters. All characters in the text are counted, including newline.

If there are insufficient characters in the file to allow the command to complete, the

cursor is left at the bottom or top of the file, depending on the sign of the
parameter.

70



The command A can also be used with a text string, in which case it has an effect
similar to Move, with the difference that the cursor is moved to after the first
occurrence of the specified text. Hence

A/%ENDOFPROGRAM/

would move the cursor to after the 'M' of '4ENDOFPROGRAM'. If the text is not found
the pointer is left at the bottom of the file. As with MOVE the delimited text can be
preceded by '-' to cause the search to move up the file from the present position.

G - Go to character. This command is used with an integer parameter and has the effect
of moving the cursor to before the character position on the current 1ine specified by
the value of the parameter. If the requested position is beyond the end of the current
line the line is extended with space characters up to the cursor. Hence if it is
required to put a comment starting at column 40 in an IMP source file, the command G40
would position the cursor correctly for making the insertion. If the value of the
gggameter is less than 1 it is treated as 1 and if greater than 132 it is treated as

H - Hold. This command is used to move the cursor to the position it was in at the
beginning of the last sequence of commands. This is particularly useful when a mistake
is made in typing a text parameter.

Example:

EDIT: M/%EMD/
*B*

EDIT: HM/%END/
%END

Command used to insert text

The command I is used to insert text immediately before the present position of the
cursor. When used with a text string, this is the text to be inserted. Hence 1/276/
would insert the text '276' immediately before the present position of the cursor.

Alternatively 'I' can be used with a filename parameter, in which case the contents of the
specified file are inserted before the current position of the cursor:

I<HEADFILE>
The file 'HEADFILE' is not altered by this operation.

Deletion of text
Two commands are provided for deleting text:

D - Delete. This can be used with an integer parameter to delete the number of lines
specified by the value of the parameter. For a positive value the lines are deleted
from the current line down the file, and for a negative value the lines preceding, but
not including, the current line are deleted. Hence:

Dl delete the current line
D3 delete the current and two following lines
D-7 delete the seven lines immediately before the current Tine

If an attempt is made to delete more lines than exist before or after the pointer, the
lines that do exist are deleted.

The command D can also be used with a text string, in which case the effect is to

delete all the text from the current position of the cursor up to and including the
first occurrence of the specified text. Hence in a textual file the sequence:

M/There/D/./

would have the effect of deleting the whole of the first sentence beginning with
'There' after the present position of the cursor.

[}



After use of the D command the cursor is left in the position previously occupied by
the deleted text. If the specified text is not found no text is deleted and the
pointer is left at the bottom of the file.

R - Remove. This is used with an integer parameter to remove a specified number of
characters, from the present position of the cursor. Hence R3 means remove the 3
characters immediately after the cursor and R-10 means remove the 10 characters
immediately before the cursor.

If an attempt is made to 'Remove’ more characters than exist before or after the cursor
the characters that do exist are removed.

'R' can also be used with a text string, in which case the effect is to remove the
first occurrence of the specified text, after the present posiFign of the cursor.

Hence M/There/R/./ would have the effect of removing only the '.' following the first
occurrence of 'There'. Note carefully the distinction between D/./ and R/./.

After use of 'R' the cursor is left in the position previously occupied by the deleted
text. If the specified text is not found the cursor is left at the bottom of the file.

Terminal output from the editor

After each command or each sequence of concatenated commands, the current line (the line
containing the cursor) is listed on the terminal. Alternatively the editor command P can
be used to Print lines.

P can take an integer parameter, in which case the effect is to print the specified
number of lines - P10 means print 10 lines starting at the current line and P-10 means
print the 10 lines before the current line and the current line.

P can take a text string parameter, in which case printing starts at the current line
and goes on to the line containing the first occurrence of the specified text.

Note that the cursor is not moved by the 'P' command.

The cancel command

If an error is made in typing editor commands the normal rules apply for deleting
characters or a whole line (see chapter 5). Additionally the editor command 'C' can be
used to Cancel editor commands -in the current command string. 'C' must be followed by an
integer to specify the number of editor commands before the 'C' to be cancelled. For
example:

TI/TEXT HERE/M27C21/** TEXT/M20
This would have the effect:

TI/** TEXT/M2U
If the value of the integer is greater than the number of commands in the current string
then they are all cancelled. It is not possible to cancel the effect of commands in
command strings that have already been completed.
If command repetition is used (see below) it should be noted that, when calculating the

parameter for 'C', a closing bracket and the integer that follows it are counted as one
command and that opening brackets are not counted.

Terminating an edit session
There are two commands for temminating editing:

E is used with no parameter as the normal exit command. The effect is to return to
normal Subsystem command level.

72



Q is used as an exit when for some reason the editing done during a session is not
required. The effect is to leave the file or files being edited in the state that they
were in before use of the EDIT command. In order to reduce the risk of a user
inadvertently pressing Q and losing his editing unintentionally this command does not
cause an immediate exit but causes the prompt 'QUIT': to appear, to which the user
should reply 'Q' or 'Y' if he really does want to exit. Any other reply will result in
the edit session continuing.

MORE ADVANCED FACILITIES IN THE EDITOR

The commands described so far provide most of the commonly required functions of a context
editor. There are three further facilities described here which may be of interest to
some users:

*  repeated commands
* moving a section of text within a file

*  extracting part of a file and putting it into another file

Command repetition

A single editor command or group of commands can be obeyed repeatedly a specified number
of times. The commands are enclosed in parentheses followed by an integer repetition
factor. For example, if it is required to remove all occurrences of the text 'REAL' in a
file and to replace them with the text 'INTEGER' one could type

(R/REAL/I/INTEGER/)1000

This assumes that there are not more than 1000 occurrences of the text 'REAL'. Another
use of this facility might be to find out the names of the next 10 subroutines in a
Fortran program. The command sequence to do this would be:

(M/SUBROUTINE/P1M1}10

Note that strictly this example would print the next 10 lines that contained the text
‘SUBROUTINE'. Since this word might appear in a comment the command sequence might not
achieve the required effect. Note also the 'Ml' in the command sequence. If this were
not included the effect would be to print the next line containing 'SUBROUTINE' ten times.
This example illustrates the need to consider carefully the effect of repetitive editing
commands.

Bracketed commands may be nested.

The nommal rules concerning failures within commands are followed. If a failure occurs
the whole sequence of commands is aborted.

The separator *S*

The editor command 'S' is used to set a separator before the present position of the
cursor. This separator is used to indicate the destination of text being moved (see
below). Additionally it has the effect of a separator in the file. Three commands can be
used to move the cursor past the separator:

* T. This moves the cursor to the top of the file, if necessary passing the
separator

* B. This moves the cursor to the bottom of the file, if necessary passing the
separator

* 0 (Over). This command, which takes no parameter, moves the cursor to immediately
before the separator. This is a more efficient operation than, for example,
TM1000, which would be the form needed if the cursor were positioned after the
separator.

73



A11 other commands which move the cursor can only move it as far as the separator. This
fact can be utilised when it is required to search only part of a file for text strings.
Before starting, the user positions the separator at the end of the text to be searched.
The position of the separator is indicated by the text

*S*
This text does not actually exist in the file.

The separator can be moved from the file by use of the command 'K'. This command takes no
parameter and leaves the cursor at the point previously occupied by the separator.

Moving a section of text within a file
The process of moving part of a file from one place to another within the file involves
*  setting a separator at the destination of the file, using the command 'S’
* moving the cursor to the top (start) of the text to be moved
*  using the command 'U' to move the text
*  removing the separator with the command 'K’

The commands 'S' and 'K' are described above. The command 'U' takes either an integer
parameter or a text string parameter. When used with an integer the value of the
parameter specifies the number of lines to be moved, counted from the current line. When
a text string is used the text moved extends from the current position of the cursor up to
and including the first occurrence of the specified text. In the following example the
routine B is to be moved to before routine A. A

Initial state of file:

*Tk
%BEGIN
ZROUTINE A

TEXT OF ROUTINE A
%END
%ROUTINE B

TEXT OF ROUTINE B
%END

TEXT OF PROGRAM
SENDOFPROGRAM

*B*

EDIT:M/%ROUTINE A/S Set separator
*S*

t%ROUTINE A

EDIT:M/4ROUTINE B/U/%END Move text

/:/

t  TEXT OF PROGRAM
EDIT:K clear separator
t%ROUTINE A

Final state of file

%BEGIN
%ROUTINE B
TEXT OF ROUTINE B
%END
%ROUTINE A
TEXT OF ROUTINE A
%END
TEXT OF PROGRAM
HENDOFPROGR AM

74



Extracting part of a file

The command 'F' is used to extract part of a file and to put it into another file or send
it to an output device. The parameter must be of the form

<filename>
or <output device>

The abbreviations used for output devices are given in chapter 4. The text which is
extracted is that which lies between the present position of the cursor and the 'S’
separator, if it is positioned lower in the file than the cursor; ctherwise, between the
cursor and the bottom of the file. The cursor is not moved by this command and the text
in the file being edited is not altered. If the parameter specifies a file that already
exists, the file will be over-written; otherwise a new file will be created. This command
can be used, for example, for extracting one routine from a file for use in another
program, or for listing a part of a long file on the line printer. In the previous
example the YROUTINE B could be listed on the line printer using the following sequence of
commands:

EDIT:M/%ROUTINE B/M/%END/M1S Set separator at bottom of routine
*S*

t%ROUTINE A

EDIT:0M-/%ROUTINE B/F<.LP> List routine on line printer

t%ROUTINE B

THE OPERATION OF THE EDITOR

Although it is possible to'use the editor with no knowledge of its internal workings some
users might appreciate a brief description. The editor makes use of the virtual memory
and handles its files by directly addressing them (see chapter 1). When editing one file
to another it first connects the file in the virtual memory and sets up pointers to the
top and bottom. Any text that is inserted is stored in a work area in the virtual memory
and each section of text has pointers to the top and bottom. Any operation which divides
a section of text - for example removing a character from the middle of it, results in
additional pointers being set up pointing to the beginning and end of the 'hole'. All
these pointers are linked together in the logical order in which the sections they point
to appear in the file. Note that this order may bear no resemblance to the order in which
the sections are laid out in the store. When the edit command 'E' is reached, an output
file is created, if necessary, and the sections of text are moved into it in th2 correct
order, as determined from the linked list of pointers.

Note:

*  Since the output file is not constructed until the E command is executed all
editing is lost if a system failure occurs during editing.

*  Since there are pointers to the top and the bottom, moving the cursor to these
points with T and B is efficient; thus when moving from the top of a long file to a
point near the bottom it is more efficient to do

BM-/TEXT/ than
M/TEXT/

When relevant 0 is also an efficient command.

The command LOOK

The command LOOK is used to activate the editor for the purpose of examining, rather than
altering a file. It takes one parameter - the name of the file to be examined - with a
default of 'SS#LIST', the default compiler listing file (see chapter 9).

A similar effect can be achieved by typing

EDIT (filename,.NULL)

15



There are two differences between using LOCK and EDIT:
*  the editor commands I, R, D, U, and G are not allowed since they alter the file
*  the prompt at editor command level is 'LOOK:'

Otherwise the facilities available are identical.

The command RECALL
This command is used to interrogate the file containing a copy of all interactive temminal
Input/Cutput operations for this user; see also chapter 21. It takes no parameter. There
are three differences between RECALL and EDIT:

*  the editor commands I, R, D, U and G are not allowed since they alter the file

*  on entry the cursor is at the bottom of the file - i.e. pointing at the end of the
most recent information

*  the prompt at editor command level is 'RECALL:'

The table below shows the available commands and the parameter types that can be used with
each. The final column shows which commands can be used with LOK and RECALL.

76



Valid Parameters

Text - Text Allowed
Command Use None | Integer | stringl string | Quote | Filename | in LOOK
RECALL
A After * * * * *
B Bot tom * *
c Cancel * *
D Delete * * *
E Exit * *
F File * *
G Go to *
H Hold * *
I Insert * * *
K Kill * *
M Move * * * * *
0 Over * *
P Print * * * *
Q Quit * *
R Remove * * *
S Separate * *
T Top * *
U Use * * *

77






CHAPTER 13
STORE MAPPING

Accessing data by direct mapping

This chapter describes the facilities provided for accessing the contents of files by
mapping them onto data structures in IMP programs FORTRAN and ALGOL users can make use of

t?ese facilities most easily by writing an interface routine in IMP (see references 3 and
9).

Principle of operation

As explained in chapter 3, all files (except those held on magnetic tape) are accessed by
connecting them at an address in a very large virtual memory. The supported languages
include routines such as READSQ to enable user programs to access the contents of files in
a conventional manner and this provision expedites the transfer of programs to and fram
EMAS. On the other hand these routines are unnecessarily inefficient, in that each
character that is accessed has to be moved from one address in the virtual memory (within
the file) to another address in the virtual memory (within the user program's data area).
The facilities described in this chapter remove the requirement for this intermediate
movement of the data, and at the same time free the user from the restraints imposed by
file formats; for example, the restriction that IMP direct access files must have 1024
bytes per block.

Direct mapping can be used most readily with IMP mapping facilities and the user is
referred to the IMP manual (reference 1) for further information. In particular the use
of array pointer variables is used in the following examples. Alternatively record
pointer variables could be used.

File types suitable for direct mapping
Any file type can be used for direct mapping but three types are especially suitable:

*  Character files: these have a very simple structure.

*  Data files with fixed length records: the use of data files with variable length
records is not recommended, since the precise format of the record separators is
likely to change.

*  Store Map files: these are files which are created especially for direct mapping.

They have no pre-defined structure, and can only be used for this type of file
access.

Creating Store Map Files

The command NEWSMFILE is used to create a store map file. It takes two parameters - the
name of the file to be created and the length of user data required (in bytes). For
example, if it were required to create a file to hold an array of 1000 longreal variables,
one could give the command

NEWSMFILE(STORE,8000)

79



Linking the file to a data structure within a program

The DEFINE command is used to link a particular file to a logical channel for use in the
program. In this case only the first two parameters are relevant. For the above file one
could specify

DEF INE(SM27,STORE)

The use of DEFINE makes it possible to re-run the program with different sets of data,
without having to modify it.

Within the program it is necessary to include a call on the integer function SMADDR to
connect the file and determine the address in the virtual memory at which it is connected.
The routine should be specified thus:

SEXTERNAL INTEGERFNSPEC SMADDR(%INTEGER CHAN, %ZINTEGERNAME LEN)

In order to obtain the address of the first byte in the file STORE used above, one could
include the statements:

%INTEGER START,LEN

START=SMADDR(27,LEN)

The second parameter, LEN, is dsed to return the length of user data in the file to the
program - in this case 8000. This can be useful for checking, and in order to obtain the
length of an unknown file (see later example).

The individual variables in the file STORE could be accessed as

LONGREAL (START)
LONGREAL (START+8)
LONGREAL (START+16)

etc.
It is more convenient, however, to map them onto an array. The method is to specify an
array format and an array name, and to equivalence the array name to the file:

%LONGREALARRAYFORMAT OUTAF(1:1000)
%LONGREALARRAYNAME OUTA

.
.

OUTA==ARRAY(START,OUTAF)

(It is assumed that START has been assigned a value using SMADDR, as shown above.) From
this point on, the elements of the array can be accessed as OUTA(1) to OUTA(1000).

Effect of accessing the array

It should be understood that the array and the file are one and the same. Thus if the
following code were executed the effect would be to set to 0 the first 20 elements of the
array - that is the first 20 values in the file. This change does not last merely until
the end of the program but is pemmanently recorded in the file, and any subsequent access
to this file will find these elements cleared to zero:

%CYCLE I=1,1,20
OUTA(1)=0
%REPEAT

Thus, where a file has to be modified as the result of a program run, it is clearly
desirable to use direct mapping, since the file is thereby kept up to date at all times.
This is particularly useful when the program terminates unexpectedly.

80



It is possible to use much more complex data structures if records are used, and the
combination of record manipulation and direct file mapping provides a useful tool for
applications requiring random access to large and complex directories or tables.

In the next example direct mapping is used to access the contents of a character file.
The structure of a character file is described in chapter 11. This routine could be used
to count the number of lines in the file - far more efficiently than by using READSYMBOL.

%EXTERNAL INTEGERFNSPEC SMADDR(%INTEGER A, %INTEGERNAME B)
PROUTINE COUNT LINES(%INTEGER CHAN)
2INTEGER START,FLENGTH,I,LINES
START=SMADDR(CHAN,FLENGTH); !FLENGTH IS NO OF BYTES IN FILE
LINES=0
%CYCLE I=START,1,START+FLENGTH-1
%1F BYTEINTEGER(I)=NL %THEN LINES=LINES+]
%REPEAT
PRINTSTRING('NUMBER OF LINES IN FILE = ')
WRITE(LINES,1)
NEWLINE
%END

In the following example a program has been written to print out the numerical value of
the bytes in a given record in a file with fixed length records which has been DEFINEd as
SM80:

%BEGIN
$EXTERNAL INTEGERFNSPEC SMADOR(%INTEGER CHAN, 3INTEGERNAME LEN)
EXTERNALROUTINESPEC PROMPT(%STRING(15) S)

%INTEGER RECL, RECNO, START, LEN, MAX, RECSTART
START=SMADDR(80,LEN)
PROMPT('RECORD LEN:')
READ(RECL); !LENGTH OF EACH RECORD
MAX=LEN//RECL; !MAX IS HIGHEST RECORD NO
PROMPT( 'RECORD NO:')
NEXT: READ{RECNO)
%$STOP %IF RECNO<1; !END RUN
%IF RECNO>MAX %THENSTART
PRINTSTRING('BEYOND END OF FILE')
NEWLINE
-> NEXT
3FINISH
REC START=START+RECL*(RECNO-1); !START OF REQUIRED RECORD
%BEGIN; !NEW BLOCK TO ALLOW DYNAMIC DEFINITION OF BAF
%BYTEINTEGERARRAYFORMAT BAF(1:RECL)
%BYTEINTEGERARRAYNAME BA
$INTEGER I
BA==ARRAY(RECSTART,BAF)
%CYCLE I=1,1,RECL
WRITE(BA(I),3)
NEWLINE %IF I&X'F'=0; !NEWLINE EVERY 16 NOS.
SREPEAT
3END
->NEXT
$ENDOF PROGRAM

Closing mapped files

At times it is necessary to close a mapped file. In this context closing implies removing
the link between the file and the logical channel in the program. The result is to free
the file for other use; for example, it might be necessary to access the file by another
access method in the same program. The program must be written in such a way that after
closing the file it makes no reference to the array that has been equivalenced to it. The
effect of doing so is undefined but could include corruption of files other than the
mapped one. This is because the addresses used for the mapped file might be re-used for
another file.

The routine used for closing a file must be specified:

SEXTERNALROUTINESPEC CLOSESM(%INTEGER CHAN)

8l



and the call would be, for example:

CLOSESM(27)

Changing the size of a mapped file

The routine CHANGESM can be used to change the size of a mapped file. It must be
specified:

SEXTERNALROUTINESPEC CHANGESM(%INTEGER CHAN, NEWSIZE)

where

CHAN is the channel number on which the file is defined, and
NEWSIZE is the new size required, in bytes.

Notes

* The file must be DEFINEd but must not be OPEN - i.e. the call should be made before
a call of SMADDR, or after a call of CLOSESM. In the latter case another call of
SMADDR must be made after the call of CHANGESM and any mapping of an array onto the
file repeated because the file may have been moved to a different location in the
virtual memory when its size was changed.

*  NEWSIZE can be larger or smaller than the present size. If it is smaller, then any
data beyond the end of its new size is lost. Otherwise the contents of the file
remain unchanged.

* It is recommended that the use of CHANGESM be restricted to store map files, i.e.
those that have been created explicitly for mapping using the NEWSMFILE command.

In the next example the file 'STORE' used in an earlier example is extended to allow the
program to access 1500 longreal variables; it is assumed that the command
DEFINE(SM72,STORE) has already been given:

%BEGIN
LEXTERNALROUTINESPEC CHANGESM(%INTEGER CHAN,NEWSIZE)
SEXTERNAL INTEGERFNSPEC SMADDR(%INTEGER CHAN, %INTEGERNAME LEN)
“LONGREALARRAYFORMAT OUTAF(1:1500)
%LONGREALARRAYNAME OUTA
%INTEGER LEN,START
YSTORE IS DEFINED ON CHANNEL 72
CHANGE SM(72,12000); 'EXTEND FOR 1500 LONGREALS
START=SMADDR(72,LEN)

OUTA==ARRAY  START,, OUTAF)

.

Store mapping and program portability

It is important to appreciate that the facilities described in this chapter are specific
to EMAS. When working on programs that are likely to be moved to other systems the user
should ascertain whether similar facilities exist there. For example, the current
implementation of IMP on IBM 370 series computers makes no provision for direct addressing
of files. On the other hand, for programs written specifically for use on EMAS the use of
direct mapping merits serious consideration.

Conclusion

One of the problems involved in using mapped files is overcoming the conceptual block to
the idea that a program can access a file without calling read and write routines. For
many years programs have been written that access input/output devices directly, or at
least via a spooling system. At first the direct mapping of files seems to be a

82



complicated extension - in fact it is a real simplification. The advantages of accessing
data by direct mapping are:

*

Simplicity of associated programming: mapping can be regarded as a me thod of saving
data held in arrays from one use of a program to the next.

Efficiency: the only part of a file that needs to be referenced is that part
required for the current run. The paging mechanism (see chapter 3) will ensure
that only the pages referenced are brought into main store. Additionally this
access method avoids the overhead of copying data between a file and a user's data
area.

No limitations imposed by file formats: a mapped file can consist of one byte or

many thousands of bytes linked together in a way that is convenient to the
programmer.

83






CHAPTER 14
MAGNETIC TAPE FILE HANDLING

The primary use of magnetic tapes in the EMAS system is for the archive and back-up
components of the file system, described in chapter 3. These functions are controlled by
the system and the user need have no knowledge of tape formats, serial numbers and so on.
The Subsystem does include a user interface to the magnetic tape handlers which is
described in this chapter. There are however severe restrictions on the use that can be
made of these facilities. Since there are only four tape decks for both System 4
computers (normally configured as two on each machine), it is not normally possible to
allow users access to more than one tape at a time. This is because one deck is needed on
each machine for restoring files. Further, the heavy use of the tape decks for file
system functions imposes the limitation that at present access to the tape decks is only
allowed for background jobs run overnight, and even then only for a limited number of
users. This restriction on the use of private magnetic tapes should be seen in the
context of a system that provides many of the functions automatically. The archive store
provides the majority of users with all they need in the way of facilities for the long
term storage of data.

There are, however, two groups of users who need access to magnetic tape:
*  Those who wish to access large files. {Currently there is a management imposed
restriction of 1 Mbyte as the maximum size of file system files; above this there
is an absolute restriction of 4 Mbytes imposed by the design of EMAS.)

*  Those who wish to bring to the system data that is currently stored on magnetic
tape, or take data from the system to another installation on magnetic tape.

Magnetic tape hardware

The tape decks on the System 4 computers used for EMAS can read and write only magnetic
tapes with the following characteristics:

No. of Tracks 9

Width 0.5 inch
Packing Density 1600 bpi

Mode Phase Encoded
Parity 0dd

Users having tapes destined for EMAS with characteristics which differ from these should
contact the Advisory Service in the first instance, where they can obtain information
about converting them to a suitable form for input.

Tape labelling standard

The user tapes read and written on EMAS should have IBM 0S/370 compatible labels
(reference 12). There are some other restrictions:

* Only record formats F, FA, FB, FBA, V, VA, VB, VBA are allowed.
*  The maximum blocksize allowed is 12288 (12 Kbytes).
*  Multi-reel files are not allowed.

Users having 9-track 1600 bpi tapes not conforming to these formats should also contact
the Advisory Service to obtain information about conversion.

85



Accessing magnetic tapes

Magnetic tape files can be accessed from IMP using the sequential binary input/output
routines (SQFILES) or from FORTRAN using the standard formatted or unformatted READ and
WRITE statements. They cannot be accessed from IMP as STREAMs. Instead of using the

command DEFINE to establish a link between the logical channel and a particular magnetic
tape file, the user should use the command DEFINEMT.

The command DEF INEMT
This command takes up to six parameters, of which the first three are essential.

DEF INEMT( ddname,file,vol[,1abe1][,record format and length]l[,blocksize])

ddname should be of the form SQFILEnn or FTnn and is as for the command
DEFINE.
file should be the file name of the file being read or to be written.

It is suggested that when writing tapes normmal EMAS filenames be
used; for example

ERCCO6.TESTA

However the software does allow the user to specify up to 17
characters and the name does not have to be in the standard EMAS
format. This feature is needed when reading tapes written at
other installations. Note however that when reading tapes only
the first 15 characters of the name on the tape are checked, and
when writing tapes only the first 15 characters of the given file
name are used.

vol is the 5 or 6 character tape serial number. If it is followed
immediately by an asterisk the tape will be loaded with a write
pemit ring fitted. This is essential if it is intended to write
to the tape. Otherwise no write ring will be fitted and the tape
will thus be protected from inadvertent overwriting.

label should be a positive integer and is used to specify the position
of the file on the tape (default = 1).

record format should be specified as for DEFINE. This parameter is

and length ignored when reading, when the information is extracted from the

tape label (default = V1024).

blocksize should be a positive integer in the range 18-12288. It is used
when writing fixed record-length files to specify the length of
each block, and in the case of variable record-length files to
specify the maximum length of each block. Note that this
parameter and the previous one are used to determine whether the
records should be blocked. For example, if the two parameters
were F80 and 4000 respectively, the file would be written with 80
byte records, blocked up to 50 to a block of 4000 bytes. If, in
the case of fixed records, the blocksize is not an exact multiple
of the record size, it is decreased to the last exact multiple.
This parameter is ignored when reading a tape - the information
is instead extracted from the tape label (default = 4096).

Examples of valid calls of DEFINEMT
DEF INEMT(SQ7,ERCC27.TESTTAPE ,AS1273)
DEF INEMT(FT18,EJNN33.DATA2704,EA1777*,7 ,F100,8000)
DEF INEMT(FT5,ERNN.JXTB15.17SST,X13621)

86



Restrictions on language facilities when using magnetic tape

Note tnat certain restrictions are imposed on the file manipulation facilities when using
magnetic tape files:

*  The FORTRAN BACKSPACE facility cannot be used.
* Only one file on a tape can be open at one time. In the case of IMP the routine
CLOSESQ can be used to close one file before using OPENSQ for another. For FORTRAN

users the language does not include an explicit close facility, and so a non-
standard routine CLOSEF is provided (see chapter 16).

Character codes

Magnetic tapes containing binary information written on IBM 360 or 370 series machines can
be read without conversion, so long as they conform to the limitations specified earlier
in this chapter.

In the case of character information, if FORTRAN reading or writing under FORMAT control
is used, the information will be translated to or from EMAS internal code from or to
EBCDIC on magnetic tape. Thus a tape written using IBM or Edinburgh FORTRAN on an IBM 370
can be read without any explicit translation being required.

When reading or writing is carried out with the IMP sequential binary routines, no
translation occurs.

Operational considerations

Before embarking on the use of magnetic tape facilities, the user should contact the
Operations Controller to make arrangements for the following:

* storing his own magnetic tapes in the machine room
*  obtaining additional magnetic tapes

*  running jobs using magnetic tapes

Development

The user magnetic tape facilities are still being developed on EMAS. The Advisory Service
should be contacted in the first instance for details of any recent developments.

87






CHAPTER 15
IMP ON EMAS

Most of the EMAS operating system and standard Subsystem is written in the high level
programming language IMP. Hence EMAS provides an ideal environment for running programs
written in this language. The language is described in references 1 and 11. This chapter
describes, for the IMP programmer, the environment in which his program will run.

Compilation

An IMP source file can be compiled using the command IMP, as described in chapter 9. The
related command PARM, used to set compile time options, is described in the same chapter.

Programs

An IMP program consists of one program block bounded by %BEGIN and %ENDOFPROGRAM. This
block can contain inner blocks, routines and functions, all of which are local to the
program. It can also contain references to other separately compiled routines and
functions. These are specified by %EXTERNALROUTINESPEC statements etc.

When the program has been compiled the resulting object file can be executed by use of the
RUN command.

If an object file produced in this way is analysed by FILEANAL it will be seen to have
only one entry point, which is given the name S#GO. This name is used to avoid conflict
with user-written %EXTERNAL routines, which cannot have names containing the '#'
character.

PEXTERNAL routines

Instead of writing IMP as a program it can be written as a file of %EXTERNAL routines or
functions. There are two uses of this facility:

* To provide separately compiled routines for calling from programs or from other
%EXTERNAL routines.

*  To make routines which can be executed as separate entities. This is described
more fully in chapter 18.

Note the following characteristics of entry points:

*  Only the first 8 characters of the name of the routine or function is used for
external linking. Care should be taken to use names for external entities that
differ in their first 8 characters.

*  No distinction is made in the entry point list between routines, functions or maps.
Nor is any information about the parameter 1ist included with the entry point.
Thus to ensure correct operation it is vital that the %SPEC statement used to
define an external reference has the same type and parameter list as the routine,
function or map itself. The names used for parameters can differ but their types
must be the same, and they must be given in the same order. Thus a valid
specification for WFILE in the following example would be

SEXTERNAL INTEGERFNSPEC WFILE(%INTEGER C, B)

The source file should contain one or more %EXTERNAL routines, each terminated by %END,
and the whole file should be terminated by %ENDOFFILE. Note that %EXTERNAL routines
cannot be nested; on the other hand each routine can contain routines and blocks. Also
the file can contain routines and functions which are global to the whole file, though not

89



themselves %EXTERNAL. Further, it can contain references to other %EXTERNAL routines and
functions, whether they are part of the file or not. An example of such a file is:

%ROUTINE SETUP(%INTEGER N)

ZEND
FEXTERNALROUTINE FILE(%INTEGER IN, START)

.

SETUP(IN)

BEND

PEXTERNAL INTEGERFN WFILE(%INTEGER OUT, START)

$EXTERNALROUTINESPEC WRITESQ(%INTEGER C, %NAME B,E)
%ROUTINE CHECK

%END

SETUP(OUT)

CHECK
%END
%ENDOFFILE

If the object file produced by compiling the above source file were analysed using the
command FILEANAL it would be found to contain entry points FILE and WFILE. Note that the
routine SETUP is not accessible directly from outside the file. It is only executed as a
result of calls on FILE or WFILE.

PEXTERNAL data

Apart from calling routines, functions and maps in separately compiled object files it is
also possible to access variables declared in separately compiled object files. The
declarations of variables to be used in this way must be qualified by ¥EXTERNAL in the
file in which they appear. Note that the %EXTERNAL qualifier gives them additionally the
characteristics of %0WN variables. The effect of including, for example,

%EXTERNAL INTEGER BASE
in a file is that the compiled object file will contain a data entry BASE.

In order to access an %EXTERNAL variable from another file it should be declared as an
ZEXTRINSIC variable in that file. The effect will be to establish a link, when the file
is loaded, to the %EXTERNAL variable of the same name. In the following example the array
TABLE is accessible to both routines START and CHECK even though they are contained in
separate object files:

%EXTERNAL INTEGERARRAY TABLE(1:100)
PEXTERNALROUTINE START

TABLE (1)=244

%END
%ENDOFFILE

90



SEXTRINSICINTEGERARRAY TABLE(1:100)
%EXTERNALROUTINE START(%INTEGER I)

%IF TABLE(1)=244 %START

.

ZEND
%ENDOFFILE

Notes
* As with routine entries only the first 8 characters of the name are significant.

*  The name, type, and (for arrays) bounds of related %EXTERNAL and %EXTRINSIC
declarations must be identical.

Running IMP programs

The command RUN is used to cause the execution of an IMP program. Before starting
execution the program has to be loaded, as described in chapter 10. Normally all external
references to %EXTERNAL routines and data entries are resolved before execution. At times
however it is more efficient to delay linking until the first call is made on a routine
function or map. This is useful when a run of a program is likely to use only some of the
external routines called. In order to delay the loading of a particular routine it should
be specified by a %DYNAMICROUTINESPEC instead of an ZEXTERNALROUTINESPEC. Note that this
technique cannot be used for %EXTERNAL data items. See notes on dynamic loading in
chapter 10.

Unsatisfied References

If during loading a routine cannot be located to match an %EXTERNAL specification, then an
appropriate message is printed but the execution of the program is allowed to continue up
to the point where a call is made on that routine. At this point a message such as
ILLEGAL CALL ON ROUTINE CHECKFILE is printed followed by an execution of %MONITORSTOP.

1f an %EXTERNAL data entry is not found to satisfy an %EXTRINSIC reference then an area of

store is allocated of the correct size, but it is not initialised. No failure message is
printed.

LIBRARY ROUTINES

IMP System Library
Standard IMP library routines are available in the System Library, which is searched

automatically following a search through any library indexes nominated by the user. The
contents of this library are described in reference 9.

Graphics and other libraries
There are libraries of routines for accessing graphics devices and for other specialist

purposes. In order to access routines in these libraries it is necessary to use the
command APPENDLIB. This is explained in chapter 10.

91



Accessing EMAS foreground commands

It is possible for an IMP program to access directly any EMAS foreground command. As
explained in chapter 18, the Subsystem comprises a large number of IMP routines and, in
particular, there is one for each foreground command. All foreground command routines
must be specified explicitly and all have one string parameter. For example, if a program
is required to call the command DEFINE, it would have to include

EXTERNALROUTINESPEC DEF INE(%STRING(63) S)

The string used in the call should contain the same text as would be typed within brackets
when the command is typed at the interactive terminal. For example, if it is required to
define STREAM23 to be a line printer then one would type the command

DEF INE(STREAM23, .LP)

Similarly, if the same command were called from within a program the routine call would be
DEF INE( ' STREAM23, .LP')

Notes

*  Since within a program the parameter is a string, it must be enclosed in quotes or
must be a string expression.

*  When typing commands, spaces are removed from parameters. This is not done in the
case of commands called from programs. ]

Chapter 18 contains a fuller description of the effect of calling commands from within
programs.

Other IMP routines specific to EMAS

There are a number of external routines available to the IMP programmer which are specific
to EMAS. When using them the programmer should be aware that his program may not be
readily transferred to another operating system.

Interactive temminal handling routines

The routine PROMPT and the function TESTINT are used to exploit features of the
interactive terminal.

PROMPT is used to set the text which is printed on the interactive terminal for subsequent
input requests. It must be exnlicitlv soecified:

SEXTERNALROUTINESPEC PROMPT(ZSTRING(15) S)

while runnina user proqrams the default promot is 'DATA:'. A call of PROMPT within the
nrogram will change this and the new text will be used as the prompt whenever input from
the interactive terminal is required, until another call of PROMPT or a return to command
level is made. No text is printed as a result of the call of PROMPT. It is the
subsequent requests for input that result in the text being typed. If the user types
gggﬁthhen the prompt is not printed at all. The following demonstrates the use of

ZBEGIN
LEXTERNALROUTINESPEC PROMPT(%STRING(15) S)
$STRING(15) INFILE, OUTFILE A
%INTEGER RECORD
PROMPT(' INPUT FILE:')
READSTRING( INFILE)
PROMPT('OUTPUT FILE:')
READSTRING(OUTFILE)
PROMPT( 'RECORDS : * )
READ(RECORD)

92



When run at the interactive terminal this might have the appearance:
COMMAND: RUN(CONVERT)
INPUT FILE: 'RES506'

OUTPUT FILE: 'OUTPUT 6'
RECORDS: 256

.

Notes
*  The maximum length of a prompt is 15 characters.
*  Any characters can be included in a prompt, including space and newline.

* If a null string is used no prompt is output.

The integer function TESTINT is used to enable a program to respond to interrupts typed at
?he interactive temminal. As explained in chapter 5, if the ESC key is pressed the result
is a prompt 'INT:', to which the reply can be:

*  CR (carriage return) - this causes the interrupt to be ignored.

* A single letter followed by CR - these single character interrupts are interpreted
by the Subsystem (see chapter 6).

* A reply of 2-15 characters, termminated by CR - these interrupts are made available
to user programs via TESTINT. Space characters in the reply are ignored.

TESTINT must be explicitly specified:
SEXTERNAL INTEGERFNSPEC TESTINT{%INTEGER CONSOLE, %STRING(15) TEXT)

TESTINT takes two parameters: an interactive temminal number, which should currently be
zero (but which may later be used to distinguished between different interactive terminals
connected to a process), and a string of maximum length 15 characters. The latter is used
thus:

* If it has the value null, i.e. a zero length string, then the effect is to clear
any outstanding user interrupts. This should be used at the beginning of a program
which tests for user interrupts.

The result of the function in this case should be ignored; e.g.
DUMMY=TESTINT(O,"'"); !CLEAR ANY INTERRUPT
* If the parameter is a string of between 2 and 15 characters the effect of the
function will be to return 0 if no such interrupt has been typed, and some other
value if an interrupt of the same text has been typed.
Note that the Subsystem holds a table of up to eight separate user interrupts. When
TESTINT returns a non-zero result the appropriate entry in the table is deleted. If an
interrupt is typed with the same text as one in the table it is ignored. Thus the order
in which interrupts are given is not significant.
Example:

DUMMY=TESTINT(U,'"); !TO CLEAR INTERRUPTS
RESET:

%CYCLE; !MAIN PROGRAM LOOP
%1F TESTINT(O,'RESET' )#0 4THEN -> RESET
%IF TESTINT(0.'STOP')#0 %THEN ZEXIT

4%REPEAT

93



Checking for the existence of a file

It is often necessary to know whether a file of a particular name exists. The function
EXIST can be used. It must be explicitly specified:

%EXTERNAL INTEGERFNSPEC EXIST(%STRING(24) S)

The parameter should be a string or string expression containing the name of the file.
The result is non-zero if the file exists (and is permitted to this user in at least one
mode).

Examplie:

%STRING(6) USER
STRING(8) FILE
$EXTERNAL INTEGERFNSPEC EXIST(%STRING(24) S)
READSTRING(USER)
READSTRING(FILE)
%IF EXIST(USER.'.'.FILE)#0 %THEN %C
PRINTSTRING('FILE EXISTS') %AND %ZRETURN

If testing for a file belonging to self the user name can be omitted:

%IF EXIST('OUTPUT')#0 %THEN -> DESTROY OUTPUT

Obtaining information about the Subsystem

There is sometimes a requirement for a program to determine information about the
environment in which it is running. The external integer function SSINFO returns the
address of a record that contains certain information. At present the record has the
following format. It may be extended at a later date, but this will not affect existing
programs.

%RECORDFORMAT RF(%STRING(8) USER, %BYTEINTEGER MODE, %C
%STRING(8) START, %STRING(15) LOADLIB, MODLIB, %STRING(19) DELIVER)

The various elements contain information as follows:
USER is the full 8-character job name; i.e. the first 6 characters are always the

user's job number and in the case of programs running in background mode the
7th and 8th characters will be the particular job identifier.

MODE =1 for foreground mode - i.e. with an interactive terminal connected.
=2 for background mode.
START is the log-on time for foreground sessions ('hh.mm.ss'); otherwise the

contents are undefined.

LOADLIB  is the name of the first library index to be searched for entries and
commands.

MODLIB is the name of the library index modified by calls of INSERTFILE etc. Note
that LOADLIB and MODLIB are normally the same; they will both be 'SS#LIB'
unless another library index has been selected by a call of USERLIB.

DELIVER is the current delivery information, set by the last call of the DELIVER
command.

In the following program the user name and delivery information is printed out at the head
of an output file:

%BEGIN

%RECORDFORMAT RF(%STRING(8) USER, %BYTEINTEGER MODE, %C

LSTRING(8) START, %STRING(15) LOADLIB, MODLIB, %STRING(19) DELIVER)
SRECORDNAME INFO(RF)

%EXTERNAL INTEGERFNSPEC SSINFO

.

94



ZROUTINE PRINT HEADING
INFO==RECORD(SSINFO)
PRINTSTRING('USER:'.INFO_USER)
NEWLINE e
PRINTSTRING('DEPARTMENT: ‘. INFO_DELIVER)
NEWLINE
%END

.

Calling FORTRAN

The object files produced by the EMAS IMP and FORTRAN compilers are compatible, and
subject to certain limitations imposed by the languages it is possible to make cross calls
from one language to the other. This is described in reference 9.

IMP INPUT/OUTPUT

Four file access methods are provided for IMP:
*  Streams - used for character input/output; use routines READSYMBOL, WRITE etc.
*  Sequential binary file handling - SUFILEs; use routines READSQ, WRITESQ etc.
*  Direct access file handling - DAFILEs; use routines READDA, WRITEDA etc.
*  Store mapping - see chapter 13,

The routines and functions provided by the IMP language system are described in reference
1. The system-dependent aspects of these facilities are described below.

Linking logical channels to files and devices

The command DEFINE should be used to establish a link between a logical channel in a
program and a particular file or output device. The first parameter for DEFINE sets the
access method and the channel number. For IMP the relevant ddnames are:

Access Method DDNAME Abreviation allowed
Character 1/0 STREAMn STn
Sequential binary SQFILEN SQn
Direct access binary DAFILEN DAn
Store map SMFILEn Mn

Note that n should be a 1 or 2 digit number in the range 1-80. Examples:

DAFILELQ
SQ17

ST7
SMFILE3

There must not be a conflict between the channel numbers used for different types of
access. For example, a program cannot access stream 1 and sequential file 1. The other
parameters for DEFINE are described in chapter 11l.

95



CHARACTER 1/0

Character I/0 can be used both for input and output.

For input the following can be used:
*  the interactive terminal (defined if necessary as '.TT')
* a character file (see chapter 11)

* a data file, so long as its contents are valid ISO characters (see chapter 11)

‘For output the following can be used:
*  the interactive terminal (defined if necessary as '.TT')

* a character file. If the specified file does not exist it will be created
automatically; if the file does exist it will be overwritten regardless of its type

* any of the following output devices, or their remote equivalents:

1ine printer .LP
card punch .CP
paper tape punch .PP
Examples of valid DEFINE calls for IMP Streams:
DEFINE(ST22,.TT)

DEFINE(ST17,FILEIN)
DEFINE(ST80, .PP)

Default stream definitions

The following two tables show the definitions that
foreground and background mode respectively:

Foreground Mode

are established by default, in

Channel Input/output Device Margins
0 Input JT 1:72
98 Input JIT 1:72
0 Output JT 1:132
99 Output JT 1:132
95 Output .PP 1:80
97 - Output .CP 1:80
Background Mode
Channel Input/output Device Margins
0 Input Job file 1:72
98 Input Job file 1:72
0 Output .LP 1:132
99 Output .LP 1:132
95 Output .PP 1:80
97 Output .CP 1:80

96




Note that stream 0 is exceptional in that it can be used for input and output
simultaneously. On entry to a program the input and output streams selected are both 0.
Margins for other streams are, by default, as follows:

Types Margins
Files 1:80
JIT 1:132
.LP 1:132
.CP 1:80
.PP 1:80

For user-defined streams with channel numbers in the range 1-80 the routine SET MARGINS
can be used to change the margins for a given stream.

Size of stream files

The maximum size for a stream output file is detemmined from the current DEFINE for the
channel on which it is being written. This applies to both files and output devices. The
size is passed as the third parameter in DEFINE, and sets the size in Kbytes (1024 bytes).
The default is 255 Kbytes, the maximum currently 1023 Kbytes.

Examples:

DEFINE(ST10,FILEA,500)
DEFINE(ST11,.LP,100)

Notes

*  The si§e required is specified in Kbytes. It is rounded up to the next segment (64
Kbytes).

*  For some output devices there is a lower limit - see chapter 4.

*  See also chapter 11 for further information about DEFINE.

SEQUENTIAL BINARY FILES

The routines OPENSQ, CLOSESQ, READSQ, WRITESQ and READLSQ are available to access
sequential binary files. The only type of file that can be used for sequential binary
input is a data file (see chapter 11). For output, data files are written, regardless of
the type of an existing file. Additionally the following ocutput devices can be accessed:

Device Abbreviation Record Length
EBCDIC Card Punch .ECP 80
Binary Card Punch .BCP 160
Binary Paper Tape Punch .BPP 80
Graph Plotter .GP 80
Matrix Plotter .MP 300

DIRECT ACCESS BINARY FILES

The routines OPENDA, CLOSEDA, WRITEDA and READDA are available for accessing direct access
binary files. They can only be used in conjunction with data files having a fixed record
length of 1024 bytes. When OPENDA is used on a channel which defines a non-existent file
then a new file is created and filled with the unassigned pattern. The size of the file
is extracted from the third parameter passed to DEFINE. For example, if it is required to

97



create a file of 10 records, the following DEFINE could be used:
DEFINE(DA70,TESTDA,10)

Note that this command does not create the file TESTDA: it is also necessary to run a
program that includes the statement

OPENDA(70); !CREATE AND OPEN FILE

See also the section on the command DEFINE in chapter 11.

STORE MAP FILES

Accessing files by mapping them onto variables and arrays in a program is described fully
in chaoter 13.

EFFICIENCY OF IMP WHEN USED WITH EMAS

When writina IMP nroarams snecifically for EMAS there are a number of ways in which
greater efficiency can be achieved. The main aim should be to reduce the number of page
turns. This is particularly important for programs run in foreground mode, since the
number of page turns is an important factor in determining the elapsed time taken to run
the program. The following points are suggested:

*  Use a ZCONST rather than an %OWN array where the contents of an array remain
constant throughout a progranm.

* Do not use %0WN arrays just to achieve initialisation to zero. Instead use a
normal array and a cycle to clear it to zero.

*  Use arrays of the correct size. If the size varies significantly from one run to
another use dynamic bounds.

*  When accessing two-dimensional arrays remember that they are laid out in store in
such a way that their first bound increases more rapidly; e.g.

%INTEGERARRAY IN(1:200,1:200)
is laid out thus:

IN(1,1)
IN(2,1)
IN(3,1)

.

IN(200,1)
IN(1,2)
IN(2,2)
etc.

Where possible, when accessing a large array of this type, an attempt should be
made to access the elements in the order in which they occur in store. For
example, when clearing such an array to zero the following should be used:

%INTEGER I,J
%CYCLE I=1,1,200
%CYCLE J=1,1,200
IN(J,1)=0
%REPEAT
tREPEAT

These points should be seen in perspective. Most of them are only of importance in
programs which access large data areas.

98



CHAPTER 16
FORTRAN ON EMAS

This chapter describes the environment in which a FORTRAN program runs on EMAS. EMAS
provides a compiler for the FORTRAN IV language which is fully described in reference 2.
The FORTRAN user, as against the IMP user, is at a disadvantage in exploiting some of the
more sophisticated features of EMAS, but it is usually possible to overcome this by
writing an interface routine in IMP (see later in this chapter).

Compilation

The command FORTE is used to compile a FORTRAN source file, as described in chapter 9.
When preparing such a source file using an interactive terminal the TAB facility can be
useful (see chapter 5)." The command PARM is used to set compile time options. The file
should contain one or more program units (subprograms), of which at most one should be a
main program. If after successful compilation the object file is analysed using FILEANAL,
it will be found to' contain the following:

* a MAIN PROGRAM entry, if the file contained a main program
* an entry for each SUBROUTINE, FUNCTION or ENTRY statement

* a data entry for each named COMMON statement in a BLOCK DATA subprogram

Subroutine linking

CALL statements, and references to functions declared as EXTERNAL, result in cross
references being included in the load data part of the object file. It is important to
appreciate that the only information included in the reference is the name - in fact only
the first 6 characters of the name. There is no information held to indicate what type of
subprogram is being referenced. Thus great care should be taken to specify the correct
type and parameter list in subrcutine and function calls. Calling the wrong type of
subprogram, or using the wrong number or types of parameters, can result in faults that
are very difficult to diagnose.

Data linking

The COMMON statement is used to provide access to data used in more than one subprogram.
Blank COMMON blocks in different subprograms are automatically equivalenced when a program
is loaded. Named COMMON blocks are equated to all other COMMON blocks with the same name,
and are initialised if a BLOCK DATA subprogram is included which refers to the same named
COMMON block.

Running FORTRAN programs

The RUN command is used to cause execution of a FORTRAN program. The parameter should be
the name of an object file which includes a main program among its subprograms. Before
starting execution the object file must be loaded, as described in chapter 10. Normally
all references to subroutines and functions are satisfied before starting execution,
appropriate messages being printed for any that are not found. If some are not found
execution is nonetheless allowed to proceed, up to the first call of a routine which was
not found. At this point a message is printed, such as:

ILLEGAL CALL ON ROUTINE MAPTOP

and then diagnostics are printed followed by a STOP.

99



Dynamic loading

As explained in chapter 10 there are some situations where it is expedient to delay
subprogram loading until the first call on a subprogram. This is particularly useful in
programs which during any one run only call on a small number of the subprograms that they
reference in total. This dynamic linking is only relevant to programs that are divided
among several object files. The suggested strategy is as follows:

*  Create one file which contains the main program and the subprograms which are
always used in every run.

*  Compile this without using the compile time option DYNAMIC, together with any other
required options.

* Divide the rest of the subprograms into functional groups such that, as far as
possible, any one file contains only references to subprograms within itself or in
the main file.

* Compile these files without the DYNAMIC option selected.

It is possible to make more divisions, but as explained in chapter 10 there are
disadvantages in taking this technique too far. The following points should also be
noted:

* A file that is compiled with the option DYNAMIC is not, itself, loaded dynamically
- it is the object files that it accesses that are loaded dynamically.

*  The blank COMMON area defined in the main program file should be at least as large
as that used by any of the dynamically loaded subprograms.

* A1l BLOCK DATA subprograms should be included in the main program file, unless all
references to any one of them are confined to one of the subsiduary files, in which
case it can be included in that file.

LIBRARY ROUTINES

System library

A FORTRAN system library is automatically searched for the intrinsic and mathematical
function subprograms. Details of these subprograms are contained in reference 9, and a
summary table is included in reference 2.

Graphics and other libraries

There are libraries of graphics routines and other specialist routines available on EMAS
(reference 8). Additionally the Numerical Algorithms Group library is available to the
FORTRAN programmer. Further information should be obtained from the Advisory Service.

Accessing EMAS foreground commands

EMAS foreground commands can be accessed from within FORTRAN programs. Chapter 18
discusses some of the wider implications of doing this, but the mechanism is described
here. EMAS foreground commands are in fact IMP external routines which are normally
called as a result of the Subsystem interpreting the command typed on the interactive
terminal. There are two pieces of information involved:

*  The name of the command - only the first 8 characters are significant.

*  The parameter passed - this is the text enclosed in brackets after the command name
{with spaces and newlines removed), it is passed as a 3STRING parameter.

The main problem of calling these routines from Fortran is that the language does not
include string variables. However an intermediate routine EMASFC is available to convert

100



literal constants into strings. EMASFC takes four parameters.
Exampie:

CALL EMASFC('DEFINE',6,'FT10,.LP',8)

The first parameter is a literal constant which contains the name of the command being
called, and the second is its length. The third parameter is another literal constant
which contains the parameter to be passed to the command and the fourth contains the
length of this constant. The example above would have the same effect as typing

DEFINE(FT10, .LP)
at COMMAND level.

the that if a command is used which requires no parameter, then a dummy parameter, with a
given length of 0, must still be included in the call of EMASFC.

Example:

CALL EMASFC('METER',5,'DuMMY',0)

Changing the PROMPT text

There is a FORTRAN routine FPRMPT which is equivalent to the IMP PROMPT routine, and is
used to set the text of the message used to prompt for input from the interactive
terminal. Note that no output is generated directly as a result of a call on FPRMPT - the
text is only printed at the time of the next request for input, and then only if the user
has not typed ahead. The same prompt is used until the next call of FPRMPT or return is
made to command level. The routine takes two parameters: a literal string of not more
than 15 characters, and an integer to indicate the length of the string:

CALL FPRMPT('RUN NUMBER:',11)
In the following example FPRMPT is used in conjunction with WRITE and READ statements:

WRITE(6,100)

100 FORMAT(' NOW TYPE IN CONTROL VALUE')
CALL FPRMPT{'NO. OF VALUES:',I4)
READ(5,101)NOV

101 FORMAT(12)

CALL FPRMPT('VALUE:',6)
DO 1 I=1,NOV
1 READ(5,101)VALUE(I)

-

The resulting dialogue on the interactive terminal might have the following appearance:

NOW TYPE IN CONTROL VALUES
NO. OF VALUES: 3

VALUE:27

VALUE:10

VALUE:99

Note that Edinburgh Fortran includes a free-format READ facility which simplifies the
operation of reading data from the interactive terminal. This is fully described in
reference 2.

Calling IMP

The object files produced by the FORTRAN and IMP compilers are compatible, and within the
limits imposed by the parameter passing facilities of the two languages it is possible to
make calls between object files of programs written in different languages. This is
particularly useful to the FORTRAN programmer in that it makes it possible to exploit some
of the more sophisticated facilities of EMAS. The mechanisms for making calls from
FORTRAN to IMP are described in reference 9.

101



INPUT/OUTPUT

Access Methods
EMAS provides the necessary support routines for the input/output facilities of the

FORTRAN language. There are two main access methods: sequential and direct access, and
both allow for the coptional use of a FORMAT statement.

File types

The following table indicates which file types and devices can be used for each access
method. The file types are described in chapter 11, the output devices in chapter 4.

Sequential Direct Access
With FORMAT Without FORMAT With FORMAT Without FORMAT
Terminal (.TT)
Input |Character File Data File Data File Data File

Data File

Terminal (.TT)
Line Printer (.LP)

OutputiCard Punch (.CP) Binary Card Punch (.BCP) Data File Data File
Paper Tape Punch (.PP) | Binary Paper Tape Punch (.BPP)
Data File Data File

Character File

Use of DEFINE with FORTRAN

The command DEFINE is used to establish a 1ink between a logical channel number in a
FORTRAN program and a particular file or device. The command, and the associated commands
CLEAR and DDLIST, are described fully in chapter 11. When used with FORTRAN the normal
form of the command should be

DEFINE(FTn,filename)
or DEFINE(FTn,device)

For example:

DEFINE(FT23,DATA107)
DEFINE(FTL,.LP)

Sequential input

It is possible to use the interactive termminal (.TT), a character file or a data file for
input (see the table above). When using the interactive terminal or a character file the
record is padded with blank characters up to column 80 if necessary. This facilitates the
transfer of programs from card-oriented systems. For example, if it is required to read a
title of up to 80 characters from the interactive terminal, the user has only to type the
printable characters - the rest will automatically be filled with spaces.

102




Example:

INTEGER*4 TITLE(20)
100 FORMAT (20A4)
101 FORMAT(' ',20A4)
CALL FPRMPT('TITLE:',6)
READ(5,100)TITLE
WRITE(6,101)TITLE

When run this would appear on the interactive terminal (assuming default channel
definitions) as:

TITLE:FIRST EXPERIMENT
FIRST EXPERIMENT

Note that when reading from a data file, on the other hand, the length of the input record
must be at least as long as that implied by the FORMAT being used. Otherwise the FORTRAN
run time fault

RECORD WRONG LENGTH

will occur.

Sequential output

Sequential output written using FORMAT control can be directed to data files, character
files, the interactive teminal, or various character output devices (see the table
above). It is important to understand the effect of the print control character which is
often put at the start of the output record. If the output is directed to a device that
can interpret this - for example, the interactive teminal or a line printer - then it is
interpreted as explained in reference 2. If, instead, it is directed to a file or device
such as a card punch, then it is treated as part of the output record. One of the effects
of this is that if output intended for eventual printing is first put in a file and then
listed using the LIST or SEND command, the print control character is printed as the first
character of the line and is not used to control the line spacing of the printer. This
problem can be overcome by specifying the record format of the file to be VA or FA. This
is fully described in chapter 11, under DEFINE.

The following example shows this:

100 FORMAT('1 HEADING OF OUTPUT')
WRITE(8,100)
101 FORMAT('0',3110)
DO 1 I=1,30
1 WRITE(8,101) RES(I), TOP(I), SEN(I)

If the command

DEFINE(FTS,.LP)
is typed before running this program the output will be printed on the line printer,
correctly interpreting the print control characters for 'newpage' and 'two new lines'. If

however it is required to put the output in a file and then to print it, the file could be
defined thus:

DEF INE(FT8,0UTLP, ,VAL133)
The effect of the A in the record format (VA) is to mark the file in such a way that when
it is listed on an appropriate device the first character of each record is treated as a
print control character. If, instead, the command

DEFINE(FT8,0UTLP)

were used before running the program, and later the command
103



LIST(OUTLP,.LP)

were used, the listing would contain the print control characters 'l' and '0' at the

beginning of the lines of output, and the results would be printed on consecutive lines

with no newpage at the start.

When writing output for subsequent rereading by another FORTRAN program, there is no need
to include a print control character in the FORMAT.

efficient not to use FORMAT control at all.

Direct access files

However, in this situation it is more

When using direct access files the following points should be noted:

* Only files can be used, not devices.

* The size and record length of the file are not taken from the DEFINE command: they

are determined from the DEFINE FILE statement in the FORTRAN program, which is used
The size parameter in the DEFINE command used
when the file is created must be at least as large as that required for the file;
the default is 255K.

when the file is first referenced.

Default definitions

When running in foreground mode the following definitions are established by default.

They can be overridden by use of the DEFINE command.

Channel Input/Output Device
5 Input Interactive terminal (.TT)
6 Output Interactive terminal (.TT)
7 Output Card punch

When running in background mode the following default definitions are established; they

too can be overridden by the use of DEFINE.

Channel Input/Output Device
5 Input Job file
6 Output Line printer
7 Output Card punch

Note that the effect of defining channel 5 as the Job file is that the data to be read on
channel 5 can follow immediately after the RUN command in the Job file (see chapter 19).

For example, the following program could be run using the control file shown:

Program

100 FORMAT(214)

READ(5,100)NuM, TOP

.

104

Control file

RUN(FORT73)

276 389




Closing FORTRAN files

The FORTRAN language does not include explicit OPEN and CLOSE statements for files.
Instead they are opened automatically when they are first accessed and closed
automatically by the Subsystem on return to command level. There are a few occasions when
it is useful to be able to close a file explicitly from FORTRAN. The EMAS routine CLOSEF
is available. Its parameter should be an INTEGER*4 constant or variable containing the
logical channel number of the file to be closed. Example:

CALL CLOSEF(27)

105






CHAPTER 17
ALGOL ON EMAS

This chapter describes the way in which an ALGOL program can be compiled and run on EMAS.
The ALGOL compiler is described in reference 3. Note that examples of ALGOL in this
chapter use the same graphical representation of the language as that used in the ERCC
ALGOL Language Manual. :

Compilation

An ALGOL source file can be compiled using the command ALGOL, as described in chapter 9.
The related command PARM is used to set compile time options.

Contents of source file

A source file can consist of a begin - end block (possibly including blocks and
procedures), in which case it is regarded as a complete program and is executed by use of
the RUN command. Alternatively it can consist of one or more complete procedures not
contained in a begin - end block. These are not intended to be executed independently but
ar: for ca;\ing from other ALGOL programs or procedures. This topic is covered fully in
reference 3.

Running an ALGOL program

Before execution, an ALGOL program is loaded as described in chapter 10. Any references
to separately compiled procedures that cannot be satisfied are listed and execution
commences. If a call is made on an unsatisfied reference the run teminates, with a
failure message of the form

TLLEGAL CALL ON ROUTINE name

followed by diagnostic information.

Library routines

Reference 3 describes the procedures available in the system library for the ALGOL user.
Information about other procedures can be obtained from the Advisory Service.

Accessing EMAS foreground commands

Currently there is no facility for allowing an ALGOL program to make a call on an EMAS
command. The restriction is imposed by the fact that ALGOL string parameters can only be
passed by name. The simplest way to overcome this problem is to write an interface
routine in IMP. In the following example the IMP external routine ADEFINE takes one
string name parameter. It makes a call on DEFINE using the same parameter.

SEXTERNALROUTINE ADEF INE(%STRINGNAME AS)
SEXTERNALROUTINESPEC DEFINE(%STRING(63) S)
DEFINE(AS); !CALL ON DEFINE USING PARAMETERS PASSED (FROM ALGOL) IN AS
%END
%ENDOFFILE

107



The ALGOL program should include a specification of the procedure ADEFINE and a call, as
in the example below:

begin

procedure ADEFINE(S);
string(S);

external;

.

ADEF INE([ST3, .LP])

.
.

end

Chapter 18 of this manual includes further information about calling EMAS commands.

Calling other IMP and FORTRAN routines

Reference 3 describes the mechanism by which ALGOL programs can access IMP and FORTRAN.

ALGOL INPUT/OUTPUT

EMAS ALGOL includes a comprehensive set of input and output procedures for accessing
character files. The DEFINE command should be used to establish a link between a logical
channel and a file or output device (see chapter 11). The only valid access method is
STREAM; for example:

DEF INE(ST27,DALG27)

The procedures share the stream handling facilities of IMP, full details of which are
given in chapter 15 under the heading CHARACTER I/0. This includes a table of default
stream definitions. Currently there are no binary file handling procedures provided for
ALGOL. It would be possible for an ALGOL program to access IMP sequential or direct
access file-handling facilities via interface routines, in a similar way to the example
above of accessing DEFINE.

108



CHAPTER 18
CALLING COMMANDS FROM WITHIN PROGRAMS AND WRITING COMMANDS

A fundamental design intention of the standard Subsystem is that all the facilities and
functions available as commands should also be available from within programs. The
converse of this is that suitably written programs can be used as commands. This chapter
is written primarily for the IMP user. Chapters 16 and 17 explain how EMAS commands can
be accessed from FORTRAN and ALGOL.

The command interpreter

The command interpreter is that part of the Subsystem that reads the text typed in
response to a COMMAND: prompt. It converts it into two parts:

* A strin? of up to 8 characters, which constitutes the name of the command being
called (truncated if necessary)

* A string of up to 63 characters (from which any spaces and newlines are removed),

which is used as the parameter string for the command

Next a routine of the same name as the command is loaded (see chapter 10) and called with
the parameter provided passed to it. Thus for each command in the Subsystem there is a
routine with the following specification:

%EXTERNALROUTINESPEC command(%STRING(63) PARM)

Calling commands from within programs
The method of calling a command from within a program is as follows:
*  Specify the routine with a %SPEC statement of the form given above; for example:
$EXTERNALROUTINESPEC DEFINE(%STRING(63) S)

* Call the routine, passing as a parameter a string expression containing text,
exactly as would be passed to the command at the interactive teminal. Note
however that spaces and newlines will not automatically be removed - hence they
should not be included.

In the following example a program is shown which reads a file name from the interactive
terminal and then calls DEFINE to link the file to stream 1.

SEXTERNALROUTINESPEC DEF INE(%STRING(63) S)
%STRING(8) FILE

READSTRING(FILE)
DEFINE('STREAM1,‘.FILE)

.
-

Note that some commands do not require a parameter, for example METER. In this case the
command should still be specified with a parameter and called with a null string as its
actual parameter:

109



PEXTERNALROUTINESPEC METER(%STRING(63) S)

METER(' ')

If this procedure is followed, programs will continue to work even if optional parameters
are provided for these commands at a later date.

Commands which read input or generate output

Many commands generate output and some, for example CONCAT, require input apart from their
parameters. The standard Subsystem commands operate according to the following rules:

*  Input is normally read from the currently selected input stream. For example, if
the sequence

SELECTINPUT(3)
CONCAT{'")

were obeyed, then CONCAT would read its control data from the file defined as
stream 3.

*  The exceptions to this occur when the input to the command is contained in a file
specified as a parameter. In this case the input is read from the specified file
and then control is returned to the calling program with the current input channel
selected. The command routine itself contains code to do the following:

*  note the user's current input stream
* define and select the specified input file
*  select back to the user's current input stream

One side effect of this is that if the call is made when the program has read only
part of the current line then the rest of that line is lost (see SELECTINPUT, in
reference 1).

*  Qutput is normally sent to the currently selected output stream.

* If an explicit output file is nominated in the command then it is used and the
user's output stream is re-selected before returning to his program. This can have
the effect of putting an extra newline character in the user's output (see -
SELECTOUTPUT, in reference 1).

File protection mechanism

The Subsystem includes checks to prevent the user from carrying out operations on files
which are incompatible with their current use. For example, in the following program an
attempt is made to destroy a file which is currently selected for output.

DEFINE('ST80,0UT')
SELECTOUTPUT(80)

DESTROY( ' OUT" )
In this situation the operation would fail with the message
DESTROY FAILS - FILE OUT CURRENTLY IN USE

The problem can be overcome by closing the file, which in this program could be achieved
by inserting two statements before the DESTROY:

SELECTOUTPUT(0); '0UTPUT TO CONSOLE
CLOSESTREAM(80)

110



The same failure message will occur if any of the following types of activity are
attempted in respect of a currently open data file:

*  DISCONNECT
*  RENAME
*  OFFER

*  Any command that would write to the file; for example, FLIST('OUT')

Apart from files which are currently in use for Input/Output operations, files which are
currently loaded (see chapter 10) are also protected from corruption. For example, if the
object file RPROGY contained the statement

IMP('RPROGS,RPROGY, .LP')

then this call of IMP would fail because an attempt was being made to write to a currently
loaded file. The examples given earlier of invalid use of files for Input/Output also
apply to loaded files. If an attempt were made to destroy a currently loaded file the
message would be:

DESTROY FAILS - FILE name CURRENTLY BEING EXECUTED

Protection of file definitions

File definitions set up by DEFINE or DEFINEMT are protected if the channel they reference
is currently open. For example, the second DEFINE in the example below

DEFINE('ST3,FIRST')
SELECTINPUT(3)

DEF INE( ' ST3, SECOND' )

would fail with the message
DEFINE FAILS - FILE CURRENTLY DEFINED AS STREAMO3 IS OPEN
Again, use of CLOSESTREAM will solve this problem.

Special precautions with OBEYFILE

OBEYFILE can be called from within a program. It should be noted, however, that all files
left open at the time of the call on OBEYFILE will be closed after it has completed - as
is normally the case on return to command level.

" Use of RUN

RUN can be called from within a program or an ZEXTERNAL routine. It can be nested, i.e.
the called program can also call RUN, and a new environment will be established for each
call. This means that a fault which occurs in an inner program will return control to the
RUN which called it and so on back to the Subsystem command level. Note however that only
the first 6 levels of calling can have separate environments; thereafter they will use the
environment of the sixth program. On returning from a program which has been RUN from
another program, files are not automatically closed. They should be closed explicitly if
necessary. It is possible, though perhaps not very useful, for a program to call itself
recursively:

111



PEXTERNALROUTINESPEC RUN(%STRING(63) S)
%BEGIN

.

iIF «e.. THEN RUN(RECUY); !RECUY IS THE OBJECT FILE OF THIS PROGRAM

%ENDOF PROGRAM

Detecting errors in Subsystem commands

When Subsystem commands typed on the interactive temminal fail they output appropriate
error messages on the interactive terminal. When called from within a program they output
the same error messages on the currently selected output stream. These messages can be
suppressed by making a call on the external routine SSFOFF (see example below). By
interrogating the function SSFAIL a user program can determine whether a particular
command has worked correctly. A non-zero result from this function indicates that the
command has not worked correctly. Further, in the case of a failure the string function
SSFMESSAGE will return a message indicating the nature of the fault. The following
example shows the use of these three facilities:

SEXTERNALROUTINESPEC DEF INE(%STRING(63) S)

SEXTERNALROUTINESPEC SSFOFF

SEXTERNAL INTEGERFNSPEC SSFAIL

SEXTERNALSTRINGFNSPEC SSFMESSAGE

SEXTERNALROUTINESPEC PROMPT(%STRING(15) S
SSFOFF; !SUPPRESS STANDARD FAILURE MESSAGES

.

PROMPT( ' OUTPUT: ")
GOUT: READSTRING(OUT)

DEFINE('ST80,'.0UT)

%ZIF SSFAIL#0 %START; !SOME FAILURE IN DEFINE
PRINTSTRING(SSFMESSAGE.' TRY AGAIN.')
-> GOUT
NEWL INE

$FINISH

Notes
*  SSFOFF remains in effect until the return to command level

*  SSFAIL and SSFMESSAGE should be interrogated immediately after the command which is
to be checked has been called

Writing own commands

It is a straightforward matter to write one's own commands. The structure of IMP external
files is described in chapter 15 and in reference 1. Commands can, but need not, call
Subsystem commands or other user written commands. %EXTERNAL routines written to be used
as commands must have one parameter, of type ZSTRING(63).

When such a command is called, its parameter will contain all the characters contained in
the parentheses when the command was typed, with the spaces and newlines removed.

In the following example a command has been written to simplify the calling of the IMP
compiler. The user has decided to adopt the convention that for a given program his
source and object files will have the same name except that they will have S and Y
respectively as their last characters. Hence to compile PROG27S into PROG27Y he will

type:
I1(PR0OG27)

112



The routine required is as follows:

PEXTERNALROUTINE I(%STRING(63) FILE)
ZEXTERNALROUTINESPEC IMP{%STRING(63) S)
!CALL IMP COMPILER WITH NAMES FILE.'S' AND FILE.'Y' '
BUNLESS O<LENGTH(FILE)<=7 %START; !CHECK LENGTH OF NAME
PRINTSTRING('INVALID PARAMETER TO I')
NEWLINE
FRETURN
»FINISH
IMP(FILE.'S,"'.FILE.'Y,,.TT'); !COMPILE WITH FAULT OUTPUT TO .TT
%END; 'OF ROUTINE I

Conclusion

The facilities described above, together with those described in chapter 15 (for example
PROMPT), make it possible to build a specialist interface with an appearance that is more
meaningful to the end user. This is particularly useful in situations where the end user
is not conversant with computers. It is possible to use command names that have meanings
to him or her, and to provide arrangements to check replies to requests for input.
Further, these facilities make it possible for the experienced user to simplify his own
actions in using the Subsystem, by changing its appearance to suit his requirements.

113






CHAPTER 19
RUNNING WORK IN BACKGROUND MODE

This chapter is concerned with running jobs in background mode (see chapter 6). Two
separate methods can be used to define such jobs:

* They can be defined in a job control language based on the IBM 360 job control
language. This facility was provided initially to simplify the transfer of work
from the ERCC 360/50 to EMAS. The future of this method is uncertain and users are
advised to use the second method.

*  They can be defined in terms of the command language used for foreground sessions.
This method of initiating jobs is described below.

Additionally the chapter describes the facility provided for sending jobs to remote
processors.

Preparing the job file

The job file can be read in on cards or paper tape or created using the Editor. It should
contain a sequence of commands and data as might be typed at a foreground session. For
example, the following file could be used to compile a program and run it with some data
read from stream 2.

PARM(NOARRAY ,NOCHECK)
IMP(TESTB, TESTBY, .LP)
DEFINE(ST2,.TT)
RUN{TESTBY)

'TEST RUN' 4 7 8 8 -99

Notes

*  The format of the file is identical to that used for the command OBEYFILE (see
chapter 21).

*  The user does not need to provide any job identification information. This is
added by the Subsystem.

* It is not necessary to terminate the job with the command STOP as one would
terminate a foreground session. The job is terminated automatically when
end-of-file is reached.

* In order to read data from the file itself the relevant stream is defined to be the
‘terminal’ (see the DEFINE in the example above), since the file is a direct
replacement for the user typing at his terminal.

Running the job

The job can be put into the background job queue by use of the command DETACH. It will be
run after the user has logged of f according to scheduling rules defined below. DETACH
takes four parameters:

1. The filename of the job file: this is the file prepared as above. Note that a copy
of the file is made by the Subsystem, so that subsequently alterating or destroying
the file will not affect the job once it has been DETACHed. More than one file can
be concatenated; for example

DETACH( START+DATA+TIDY)

115



2. Keywords:

NOW means that the user is willing to have the job‘run at any time after he logs
of f.

LOW means that the job should be run with low priority but charged for at a reduced
rate (see Job Scheduling, below).

If this parameter is omitted the job will be run at standard priority (see below).
This parameter can be used instead to indicate the destination of a job being
DETACHED to another computer (see 'Detaching jobs to other computers', below).

3. CPU Time Limit for the whole job, in minutes. This information is used for
scheduling purposes (see below), and to impose a limit on the time used for the
job. The default is 2 minutes, the maximum 120. Note that if any of the
individual commands in the job is likely to take more than the default command
limit (2 minutes) it will be necessary to include a call of the command CPULIMIT
(see chapter 21) in the job file, as well as giving the estimated total job time as
this parameter.

4. This parameter can be used to name a file or output device for the job. This is by
default the local line printer. The file or device specified will contain a
listing of all the commands and all the output that would, in foreground mode,
appear on the terminal. If the file does not exist one will be created and if it
does it will be overwritten. This facility is useful for obtaining the listing on
a remote printer or for storing it in a file for subsequent access, particularly
for users who cannot conveniently obtain their output from the local line printer.

Example:
DETACH(JOBFILE ,NOW,3)
DETACH(NN102,,20, .LP14)
DETACH(ABJOB,LOW,60,ABOUT)

If the job is detached successfully a confirmatory message is typed which also informs the
user what name has been given to the job. This is the name that should be used if
referring to the job with the commands FINDIOB or DELETEJOB (see below).

Failures using DETACH

See Appendix 1: Subsystem Error Messages. In addition, failures will occur when DETACH is
invoked if:

* An invalid keyword is used for the second parameter.
* A time limit outwith the range 1-120 is used.
*  The user's file index is nearly full. This is a precaution to prevent a user

detaching a job which will almost certainly fail because the file index is full.
The cure usually involves destroying unwanted files.

Job scheduling

The precise meanings of the priority parameters are subject to change. At the time of
writing the schedule for running background jobs is as follows:

0900 - 2100 NOW jobs only, in an order detemmined by their time limit and order of
arrival. The number of NOW jobs run during the daytime depends on the
load of foreground use.

2100 - 0900 NOW jobs and standard jobs, with no distinction between them, in an order
determined by their time limit and order of arrival. When all of these
are completed, LOW priority jobs, in an order based on time limit and
order of arrival.

For charging arrangements for LOW priority jobs, see chapter 20.

116



The command FINDJOB

This command is used to obtain information about a job that has been put into the
background job queue by a call of DETACH.

The command can be used in two ways:

*  to obtain information about a specific job. In this case the name of the job is
given as a parameter;,for example

FINDJOB(ERCC0O603)

*  to obtain information about all jobs in the batch queue for this user, in which
case no parameter is used:

FINDJOB

The resultin? messages include the name of each job, the time limit and the name of the
command file(s) DETACHed to make each job.

The command DELETEJOB

This command is used to delete a job that has previously been put into the background job
queue by a call of DETACH. The parameter should be one jobname, or a list of jobnames.

Example:
DELETEJOB(ERCC0600,ERCC0607)
DELETEJOB(ERCC0601)

Detaching jobs to other computers

An alternative use of DETACH is for sending jobs to other computers. Currently, for most
users, it can only be used for sending jobs to NUMAC. The file (or concatenated files)
being sent should contain one job, including any job control statements, program source or
data if required, in exactly the form that would be used if the job were submitted on
cards. The details of the services available at NUMAC are described in reference 10. The
second parameter to DETACH is used to nominate the processor to which the job is to be
sent. Currently NUMAC is described by the abbreviation .P37, though this may change.
Hence:

DETACH(J0B370, .P37)
DETACH(JCL+PROG+DATA23, .P37)

Note that, as with detaching jobs to the local job queue, a copy is made of the file to be
sent, so the original files can be reused or destroyed as soon as the DETACH command has
been accepted. The command QUEUES {chapter 21) can be used to detemmine whether the job
is still waiting to be dispatched to NUMAC.

117






CHAPTER 20
ACCOUNTS AND USAGE INFORMATION

This chapter describes the method of charging users for their use of EMAS resources, the
procedure to follow to obtain access to the system, and the related command PASSWORD.
Finally there is a description of two information commands METER and USER.

GAINING ACCESS TO THE SYSTEM

Before using EMAS it is necessary to obtain authorisation. This is in two parts:

* Obtaining authority to use the services of the Edinburgh Regional Computing Centre.
This is dealt with by the ERCC User Support Group.

* gbtaining accredited EMAS user status. This is dealt with by the EMAS Operations
anager.

The end product is a 6-character user name and two four-character passwords. The first
password is used for logging into an interactive temminal for foreground access to the
system; the second is used for card and paper tape input (see chapter 4). Either or both
passwords can be changed by use of the PASSWORD command.

The command PASSWORD

This command can be used to change either or both passwords. Passwords should consist of
any four printable characters other than comma. The command take two parameters, the
foreground and background passwords respectively:

PASSWORD(FORE,BACK)
If it is only required to change one of them then the other can be omitted:

PASSWORD(7777)
PASSWORD( ,CARD)

CHARGING FOR USE OF RESOURCES

Resources are charged for, and invoices are sent to the appropriate funding body. The
User Support Group can provide further details of the accounting mechanism outwith EMAS
itself. There are two types of charge:

*  charges for file space

*  charges for computing resources used

File space charging

There are three rates for charging for file space. Files held in the immediate store (on
disc) are charged at two rates. The charge for files which are CHERISHed is higher than
for the rest. This is in order to recover the cost of backing up the files and replacing
them on disc in the event of a serious system or hardware failure. Files held in the
archive store (on magnetic tape) are charged for at a lower rate. This reflects the lower
cost of keeping material on magnetic tape rather than on the disc file, and the fact that

119



the archive store is more easily extended than the immediate store. The current (August
1976) charges are:

Type Charge (pence) per page per day
Immediate Store (CHERISHed) 0.23K
Immedi ate Store (un-CHERISHed) 0.14K
Archive Store 0.014K

where K is a constant. Currently it is 3.45 for most users (6.90 for commercial users).

Charges for computing
There are four elements to the charge made for computing:

*  Central processor time (T) - this is the time in seconds during which a user's
process is actually executing instructions, plus an allowance to represent the
share his process makes of facilities provided by the resident supervisor.

*  Page turns (pt) - this is a count of the number of pages brought into main store or
written back to the disc or drum for a user process. See Chapter 1 for a
description of paging.

*  Connect time (ct) - this is the time, in seconds, during which an interactive
terminal is connected to the process.

* I/0 unit records (U) - this is a count of the number of unit records handled; for
example, lines printed or cards punched.
The other elements in the calculation are

*  Priority (P) - this is normally 1 but is reduced to 1/3 for jobs that are detached
at 'LOW' priority (see chapter 19).

* A constant K - this depends on the class of user. Currently (August 1976) this is
3.45 for most users (6.90 for commercial users).

The charge is calculated using the following formula:

pt ct U
charge (pence) = K[P (T + — + — -
250 50 300

Project codes

It is possible for one user to divide his computing charges among various projects. This

is done by using the command PROJECT, which accepts as its parameter a two-character

project code. The characters should be upper case letters or digits. For example:
PROJECT(A9)

A1l work done after typing this command will be charged to code A9 until either PROJECT is

used again, or the user logs off. The User Support Group should be consulted about the
way in which project codes are printed in user accounts.

120



The command METER

This command is used to obtain usage information and an indication of the amount charged

thus far in the current session (i.e. since log-on). The command takes no parameter.
Output is of this form: '

21/09/76 12.44.23 CPU= 6.15 SECS CT=21 MINS PT=4282 C(CH=168P
The information given is as follows:
*  Current date and time
* CPU time, in seconds
* Interactive terminal connect time, in minutes
*  Page Turns

*  Approximate charge (on the assumption that this is a user charged at the standard
rate). No allowance is made in this charge for unit record output.

The command USERS

This command, which takes no parameter, is used to print out the number of active
processes on the user's System 4. This normally includes three system processes (see
chapter 2). It provides an indication of the loading on the system and the response that
can be expected. Currently each machine can run with up to about 45 users.

121






CHAPTER 21
ANCILLARY COMMANDS

The table below lists the ancillary commands available in the Subsystem - commands which
do not readily fit into any of the categories covered by earlier chapters, or, as in the
case of OPTION for example, commands which relate to several of the categories.

Command Purpose

CPULIMIT Used to set time limit for subsequent commands

DELIVER Used to specify delivery information, to be
printed on output files

OBEYFILE Used to execute a sequence of commands

OPTION Used to set a number of optional characteristics
of the Subsystem

QUEUES Used to print information about files awaiting
output

STOP Used to terminate foreground session

SUGGESTION Used to send suggestion to the System Manager

The command CPULIMIT

This command is used to set the amount of central processor unit (CPU) time allowed for
It takes one obligatory parameter, the time in minutes, and

subsequent commands.

optionally a second parameter to specify time in seconds. For example

Command Time set
CPULIMIT (3) 3 minutes
CPULIMIT (,10) 10 seconds
CPULIMIT (1,30) 1 minute and 30 seconds

Notes

* In order to provide good response for users of interactive programs there is a low

limit imposed during busy periods on the maximum CPU time that can be set using

CPULIMIT.

*  Currently the maximum values for foreground use varies between 30 seconds and 10
minutes depending on the number of users logged on.

minutes.

For background jobs it is 120

*  The default setting for foreground access is 30 seconds and for background jobs it

is 2 minutes.

*  The command takes effect for the following and subsequent commands, and remains in
effect until CPULIMIT is used again or the user logs off.

123



This command can be useful for testing programs that contain faults which result in
infinite loops. By using CPULIMIT with a Tow value - perhaps 5 seconds - the
elapsed time taken to reach the TIME EXCEEDED failure is considerably reduced.

*  CPULIMIT nhas no effect on the OBEYFILE command (see below) but affects any commands
called by OBEYFILE.

The command DEL IVER

This command is used to specify the text to be printed at the start and finish of output
files to assist Job Reception staff in distributing output. The parameter should be
suitable text with a maximum length of 19 characters. No spaces should be used. The
underline character is a suitable substitute.

Example:

DEL IVER( AL ISON.HOUSE)
DEL IVER(CHEMISTRY K.B.)

Notes

The registered name of the owner of the process is always printed on the cutput as
well as the delivery information.

*  The command takes effect immediately and remains in effect until another use of the
DELIVER command.

*  The form DELIVER(?) can be used to determine the current delivery information. It
is printed in reply on the user's interactive termminal.

The command OBEYFILE

This command is used to execute a sequence of commands. The required commands and any
data they would nommally read from the interactive terminal should be put in a file, using
the Editor or some other means. The format should be identical to that which would be
used when typing commands on the interactive temminal. OBEYFILE takes one obligatory
parameter, the name of the file containing the commands to be obeyed. Additionally a
second parameter can be given to specify a file or device to be used for output. By
default the output goes to the interactive terminal. For example:

OBEYFILE(NE26)
OBEYFILE(NRJOB, .LP14)

Among the commands included in the file to be obeyed can be further calls of OBEYFILE for

other files. This process of nesting calls of OBEYFILE can continue to four levels. Note
that for the second and subsequent levels the optional second parameter is ignored. This

parameter is also ignored if OBEYFILE is called in background mode (see chapter 19).

The command OPTION

This command is used to set a number of coptional characteristics for this user. The

command takes one or more keyword parameters, which are listed below. The defaults are
underlined.

The call only affects the ones that are specified, all other options in force being left
alone (cf. PARM). The call does not take effect until after logging of f and logging on
again. It remains in effect until the end of the session in which the command OPTION is
used again.

QUICKSEARCH  When searching for standard Subsystem commands, do not search the user's own
library index or any library indexes appended {see chapter 10).

FULLSEARCH When searching for commands, always search current library index and
appended library indexes first.

124



FULLMESSAGES Print confirmatory messages from commands (see the table in chapter 6).

NOME SSAGE S Suppress confirmatory messages.

NORECALL Do not store interactive temminal input/output messages for use by RECALL
(chapter 12).

TEMPRECALL Store interactive terminal I/0 for use by RECALL for the duration of the
current session.

PERMRECALL Store up to 16 pages (64K bytes) of the most recent interactive temminal 1/0
for use by RECALL. This is kept between sessions.

STACK=n n can take an integer value in the range 2-8. This specifies the size (in
segments of 64K bytes) to be used for the stack file created by the
Subsystem, with the name 'SS#STK'. The default is 2 segments (128K bytes),
which will be large enough for the majority of programs. See chapter 10 and
reference 6 for the use of the stack.

The parameter ? can also be used, to cause the currently effective options to be printed
out.
Examples:

OPTION(FULLSEARCH,STACK=4)

OPTION(FULLME SSAGES)
OPTION(?)

The command QUEUES

This command is used to determine the number of files belonging to this user which are
held in EMAS queues awaiting output. It takes no parameter and output is of the form:

FILES QUEUED
LOCAL DEVICES LP CP  REMOTE NO: 37
NO OF FILES 3 1 2

In this case there are three files waiting to be printed on the line printer, one on the
card punch and two waiting to be dispatched to remote teminal 37.

Notes
*  Normally files are output on a particular device in order of submission.
* In the case of remote temminals the output fram QUEUES makes no distinction between

the devices available. Hence files for .CP37 and .LP37 and .P37 all appear as
files for Remote number 37.

The command STOP

This command is used to terminate a foreground session. It takes no parameters. It has
the following effects:

*  Prints out usage information as for METER (see chapter 20).

*  Destroys all temporary files created during this session and the default compiler
listing file SS#LIST if it exists.

*  Disconnects interactive terminal - making it available for another user.
*  Stops the user's virtual processor - freeing a slot for another user to log on.

* Indicates to the demons process that any NOW jobs waiting for this user can be
started as soon as machine time is available.

125



The command SUGGESTION

This command is provided to make it easy for users to send suggestions for changes or
improvements to EMAS to the System Manager. Its use is intended primarily for minor items
which crop up during an interactive session which do not merit the formality of a letter.
The facility should not be used for reporting serious faults - these should be reported to
the Advisory Service as soon as possible.

Users are warned that although an effort will be made to reply to all SUGGESTIONS
eventually, they should not expect a prompt response. An indication will be given in the
reply as to the likelihood of their suggestion being implemented.

The method of use is to type the command with no parameter. The replies to the prompts
"SURNAME:' and 'TEXT:' should be the personal {not EMAS) name of the user, and the text of
the suggestion terminated with an asterisk. The example shows this:

COMMAND: SUGGESTION
SURNAME : JONES
TEXT: TEXT OF SUGGESTION*

As many lines of text as desired may be given.

126



APPENDIX 1
SUBSYSTEM ERROR MESSAGES

Common error messages produced by the Subsystem should be self explanatory. The general
ones are described more fully below, and those specific to an individual command are
described in the part of the manual relating to the caommand.

GENERAL ERROR MESSAGES RELATING TO FILES

These messages can be produced following faults in many commands. The text '&&' in a
message is replaced by the relevant name at the time of the failure.

ATTEMPT TO EXTEND ANOTHER USER'S FILE

If WRITE or WRITE SHARED access permission has been given a user may write to a file
belonging to another user, but may not alter the size of the file.

CONFLICTING USE OF FILE && BY ANOTHER USER

This message will be produced when an attempt is made to connect a file in a way which
is incompatible with the use currently being made of it by another user. Examples:

An attempt is made to compile into an object file belonging to this user which is
permitted to another user in READ SHARED mode and is currently being executed by
him.

An attempt is made to read from a file which belongs to another user (and is
permitted to this user in READ SHARED mode) at the same time as the owner of the
file is running a program which is writing to the file (see also chapter 3).

FILE && CURRENTLY BEING EXECUTED

This is only likely to occur when calling EMAS commands from within a program; it
indicates that an attempt has been made to carry out some conflicting action on a file
that is currently loaded, for example DESTROY it, open it for writing (see also chapter
18).

FILE && CURRENTLY IN USE
This message will be produced if an attempt is made to operate on a file in a way which
is inconsistent with its present use; for example if an attempt is made to DESTROY a
file which is currently being used for output (see also chapter 18).

FILE && CURRENTLY IN USE BY ANOTHER USER
This message is produced when an attempt is made to carry out a critical operation on a

file belonging to this user which is permitted to, and currently connected in the
virtual memory of, another user. Example: BESTROY, RENAME, OFFER.

FILE && DOES NOT EXIST

This message is produced when a user attempts to access a file belonging to himself
which does not exist (or, exceptionally, has been permitted to self with an access
permmission of NONE).

FILE && DOES NOT EXIST OR NO ACCESS
For reasons of security when accessing files belonging to other users, no distinction

is made between the fact that a file does not exist and the fact that it is not
permitted to this user.

127



FILE INDEX FULL

This message indicates that there are no free file descriptors in the user's file index
and an attempt has been made to create a file. Each user is allowed 32, 64 or 128
files (see chapter 3). The file creation may have been explicit, for example COPYFILE,
or may be as a result of an attempt by the Subsystem to create a file in, for example,
DETACH, FLIST(.LP) or LIST.

FILE INDEX FULL (NO FREE LIST CELLS)

A user's file index can be full when there are still free file descriptors, if all the
list cells are in use. See chapter 3 for a full description of the use of list cells.

FILE SYSTEM FULL

The EMAS immediate file store is divided into a number of separate file system parts
(currently 8, with 4 normally assigned to each machine). If the file system part
containing this user becomes full and an attempt is made to create or extend a file
this message will result.

INVALID FILENAME &&
A full file name is of the form:
username.filename

where username contains 6 upper case letters or numerals and filename contains between
1 and 8 upper case letters or numerals, the first of which must be a letter. In
addition, for files created by the Subsystem, the third character of the filename can
be '#'. When referring to one's own files it is permissible to omit the username and
the full stop. This failure message will be produced if a filename used as a parameter
to a command does not conform to these rules.

INVALID OWNERNAME

If the ownername part of a filename is not the name of a user in one of the currently
available file systems then this message will be produced. This can also occur with
the commands OFFER and PERMITFILE. If the owner concerned is on the other machine then
this may indicate that the other machine is temporarily unavailable.

REQUESTED ACCESS TO FILE && NOT PERMITTED

If a file is permitted to this user in READ or READ SHARED mode and an attempt is made
to connect the file for writing - for example, EDIT(filename) - this message will be
produced.

NO WRITE ACCESS TO FILE ON OTHER MACHINE

As explained in chapter 2 it is not possible to write to a file belonging to a user on
the other machine, even though he has given appropriate access permission.

TOO MANY FILES CONNECTED

There is a 1imit on the number of files that can be connected in a user's virtual
memory at any one time. Currently this limit is 94. If this fault occurs, files which
are not currently needed should be disconnected, using the command DISCONNECT.

VIRTUAL MEMORY FULL

This fault, which is similar to the last one and which can be overcome in the same way,
occurs when there is no room to connect a file in the virtual memory. For each virtual
processor, the part of the virtual memory available to the Subsystem and to user

programs and other user files is 13 Mbyte. In practice this fault has rarely occurred.

128



OTHER FAILURE MESSAGES

It is hoped that other messages produced by the Subsystem will be self explanatory when
read in context. The production of clear diagnostic information both in relation to the
Subsystem and to user program failures is regarded as being of importance. Further
improvements are being made in this area. Users are encouraged to contact the Advisory
Service if they have problems in this regard.

129






CHARACTER CODES

APPENDIX 2

Notes
*  EMAS uses an internal character code (Table A) based on the 7 bit code for data
1nterchange defined by the International Standards Organisation (I1S0). The code
assigns graphical or control characters to code values 0-127. Most of the control
characters will only concern users of special temminals but they are included for
completeness. The graphical representation of some characters will vary from one
terminal to another. Common alternatives are shown in the table. '
*  Table B shows the mappings between card punchings and internal codes. It only
contains those characters that can be punched directly on an IBM 029 Card Punch.
The table uses the convention that the card rows are numbered from the top in the
order 121101234567 809.
Table A: EMAS Internal Character Code
0 NUL 32 space 64 @ 96 *
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 #(£) 67 C 99 c
4 EOT 36 $(m) 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ! P51 G 103 g
8 BS 40 ( 72 H 104 h
9 HT 41 ) 73 1 105 i
10 LF(NL) 42 * 74 J 106 J
11 VT 43 + 75 K 107 Kk
12 FF 44 s 76 L 108 1
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 0 111 0
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115 s
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 ] 117 u
22 SYN 54 6 86 v 118 v
23 ETB 55 7 87 W 119 w
24 CAN 56 8 88 X 120 X
25 EM 57 9 89 Y 121 y
26 SuB 58 : 90 z 122 z
27 ESC 59 ; 9 [ 123 {
28 FS 60 < 92 \(~) (=) 124 ?
29 GS 61 = 93 ] 125 }
30 RS 62 > 94 t (™) 126 -
31 us 63 ? 95 _ 127 DEL

131




Table B: IBM 029 Card Code to Internal Code

Card Code Internal Code Character Card Code Internal Code Character
No punching 32 Space 4-8 64 e
11-2-8 33 ! 12-1 65 A
7-8 34 " 12-2 66 B
3-8 35 # 12-3 67 c
11-3-8 36 $(x) 12-4 68 D
0-4-8 37 % 12-5 69 E
12 38 & 12-6 70 F
5-8 39 ! 12-7 71 G
12-5-8 40 ( 12-8 72 H
11-5-8 41 ) 12-9 73 1
11-4-8 42 * 11-1 74 J
12-6-8 43 + 11-2 75 K
0-3-8 44 . . 11-3 76 L
11 ‘ 45 - 11-4 77 M
12-3-8 46 . 11-5 78 N
0-1 47 / 11-6 79 0
0 48 0 11-7 80 P
1 49 1 11-8 81 Q
2 50 2 11-9 82 R
3 51 3 0-2 83 S
4 52 4 0-3 84 T
5 53 5 0-4 85 ]
6 54 6 0-5 86 v
7 586 7 0-6 87 W
8 56 8 0-7 88 X
9 57 9 0-8 89 Y
2-8 58 .. 0-9 90 A
11-6-8 59 5 11-7-8 92 \M~) ()
12-4-8 60 < 0-5-8 95 _
6-8 61 =

0-6-8 62 >

0-7-8 63 ?

132




APPENDIX 3
GLOSSARY

This section provides brief definitions of a number of terms and abbreviations used in
this manual and elsewhere in relation to EMAS. It should be appreciated that some of the
terms do not have generally accepted definitions and so may be used for different purposes
with respect to other systems.

Acoustic Coupler - A hardware device which can be used in some cases instead of a modem.
It does not require the special wiring required for a modem.

Archive Store - Long-term store for users' files; held on magnetic tape (see chapter 3).

Backup Store - A magnetic tape copy of users' files currently held in the immediatg store.
Used in the event of a major system or disc file failure to replace damaged copies of
files in the immediate store (see chapter 3).

Background Mode - A method of using EMAS without an interactive terminal. Background jobs
are normally put in a queue by the user during a foreground session and are executed
later - mainly overnight.

British Standard Interface (BSI) - A hardware Interface of standard design used to provide
a fast link between computers of different manufacture. BSIs are used to connect the
NCP to the two 4-75 computers and to the PDP15 computer (see chapter 2).

Byte - The smallest addressable unit in 4-75 main store (or in virtual store). Contains 8
binary bits. Used in IMP for variables of type %BYTEINTEGER and in FORTRAN for
variables of type LOGICAL*1.

Core Store - Part of the hardware which contains the relevant program instructions and
data whilst a program is being executed. In EMAS, user programs address core store via
the paging mechanism. Also called main store.

Demons - The systems process which primarily handles file transfers to and from local
peripheral devices (such as the line printer) and the Communications Network. It also
checks usernames and passwords at log-on, and schedules batch jobs.

Digital Equipment Corporation (DEC) - The manufacturer of the main components of the NCP
and TCPs, and of the Interactive Graphics Processor (PDP15).

Director - Part of the operating system, local to a particular process. It is paged and
is contained in part of the same virtual memory as the Subsystem and user programs.

Disc file - A storage device on the 4-75 computer which holds a user's immediate files.
There is one disc file for each 4-75, which is divided into four logical parts. Each
4-75 can access the disc file on the 'other' machine, for reading only (see chapter 2).

Dual Service - The term used when one 4-75 central processor is not available; all users
and both disc files are assigned to the remaining 4-75.

File Header - An area at the beginning of a file that contains information about the type,
size and, in the case of Data files, format of the file.

Foreground Mode - The method of using EMAS from an interactive terminal.

Front End Processor - This tem, which is now falling into disuse, is used to refer to the
NCP and those TCPs which are sited beside the 4-75 computers.

Hardware - The physical components of a computer, such as the central processor unit, the
disc file etc.

Hashing - A method of storing names in a table in such a way that a particular name can be
located efficiently.

133



Head Crash - 5 hardwqre fault usually affecting a disc file and corrupting or destroying
some users’ immediate files. It occurs when a recording head comes into contact with
the surface of a disc, causing physical damage to the recording medium.

Hexidecimal - A number system using a radix of 16. The digits are represented by the
characters 0-9 and A-F. It is a convenient system to use on an 8 bit byte machine,

zgchtas the 4-75, since the contents of each byte can be represented by two hexadecimal
igits.

Immediate Store - The immediate store is held on the disc files of the 4-75 computers. It
contains all the user files which are currently available to active users.

Initial Program Load (IPL) - Strictly a hardware function involving reading in a minimal
control program to an otherwise empty machine. In practice this temm covers the whole
process of initialising the 4-75 computers for an EMAS session. The process includes a

number of hardware tests of critical devices and a consistency check of the immediate
file store indexes.

Interactive Terminal - The general name for a temminal used for accessing EMAS in
foreground mode - i.e. interactively. Can be a Teletype, VDU or some other form of
terminal. Also called a console.

International Computers Ltd. (ICL) - The manufacturers of the 4-75 computers on which EMAS
is run.

Modem - A hardware device connected between an interactive terminal and a telephone
circuit to convert signals from the terminal into a form suitable for transmission over
the telephone circuit, and vice versa.

Network Control Processor (NCP) - A small computer (DEC PDP 11/45) which links the two
4-75 computers to each other and to the TCPs. Also provides link to Regional
Communications Network.

Operating System - A suite of programs that controls usage of the computer; in EMAS this
includes Supervisor, Director, Subsystem and System Processes.

Page - The smallest unit (4096 bytes) of file space allocation. Main store is allocated
to virtual processors in pages and information is transferred between main store and
drums and disc files in units of pages. See also Units of Storage.

Page Turn - A unit used in the accounts algorithm. A page turn is charged to a user
process each time a page is copied for the process between core and a disc file or
drum. A user can minimise the number of page turns by organising his data efficiently
but it is unlikely to have much effect except with very large programs.

Paging - A method of accessing main store by dividing it into page units and addressing
them through a translation mechanism. When used in conjunction with backing store of
drums or disc files, it allows many processes with varying storage requirements to use
a limited main store as if each had a large allocation of contiguous store.

PDP15 - The computer connected to EMAS primarily for interactive graphics applications.
Also used for activities independent of EMAS. Manufactured by DEC.

Phase Encoded (PE) - A mode of storing data on magnetic tape. Tapes written on EMAS are
all PE, as against NRZ (Non Return to Zero) mode.

Program Loading - The process of preparing for an object file to be executed, which
entails connecting the file in virtual memory and satisfying any external references it
makes. See chapter 10.

Regional Communications Network - A number of computers and remote job entry terminals
mainly in Edinburgh and Glasgow (including the EMAS NCP) which are connected together
in a network.

Segment - A unit of file space, equal to 16 pages or 64K bytes or 65,536 bytes.

Segmentation - The division of virtual memory into segments. A file is always connected
at a segment boundary (even though it may be more than 1 segment long). This
simplifies paging by 1imiting the range of addresses at which a file may be connected
in different virtual memories. Not of direct concern to user - rather for the
convenience of the supervisor.

134



Software - A general name for programs as distinct from hardware. Also used for operating
systems components (as against user and applications programs).

Supervisor - A component of EMAS. It is resident in main store all the time, i.e. not
paged. It contains code for handling peripherals, for example drums and disc file,
allocating resources to virtual processors and moving pages to and from main store.

System File Information (SF1) - The part of a user's file index which contains information
that is required to be retained between sessions - such as OPTIONs (see chapter 21).

System Process - A process which carries out certain system functions rather than running
user programs. It runs in a virtual processor using a virtual memory, as does a user
process, and is scheduled in a similar way by the resident supervisor. For example,
the demons process is a system process which is responsible for transferring files to
and from peripherals such as the line printer.

System 4-75 - The largest computer in the ICL System 4 range. Byte addressed, paged
machine with order code similar to the IBM 360 range. EMAS is run on a twin 4-75
configuration.

Terminal - A hardware device used for communicating with a computer. It may be an
interactive terminal such as a Teletype or a remote computer used for job entry or line
printer output.

Terminal Control Processor (TCP) - A small computer used to connect a group of interactive
terminals via the NCP to the 4-75s. Some of the TCPs are connected directly to the
NCP, others are at remote locations and are connected by communication lines. Most
TCPs are PDP11/10 computers.

Units of Storage - The table below shows the relationship between the main units used for
measuring storage:

Byte Kbyte Page Segment
Mbyte 1048576 1024 256 16
Segment 65536 64 16
Page 4096 4
Kbyte 1024

Virtual Address - An address by which a program accesses a location in the main store.
The virtual address is converted by the paging mechanism into a real address in the
main store. The IMP function ADDR returns the virtual address of a variable.

Virtual Memory (VM) - An addressable area which appears to be a contiguous area of up to
16 Mbytes. It is mapped by the paging mechanism onto pages in the main store or on
drum or disc file. Of the 16 Mbytes in a complete virtual memory 13 Mbytes are
available to the Subsystem and user programs and files.

Visual Display Unit (VDU) - An interactive temminal which displays its output on a cathode
ray tube rather than using paper.

135






REFERENCES

The following publications are referred to in this manual. Copies of them all are
available for reference in the ERCC Library. Some are available for purchase at the same

location.
1. 'Edinburgh IMP Language Manual' - Editor R. McLeod, ERCC 1974
2. 'Edinburgh FORTRAN Language Manual' - Editor W. Aitken, ERCC 1976
3. 'Edinburgh ALGOL Language Manual' - Mrs F. Stephens, ERCC 1976
4, '‘The EMAS Scheduling and Allocation Procedures in the Resident Supervisor' - N.A.
Shelness, P.D. Stephens and H. Whitfield, Department of Computer Science and
ERCC, University of Edinburgh 1974
5. 'EMAS The Edinburgh Multi-Access System' - H. Whitfield and A. Wight, The Computer
Journal, Vol No 4 November 1973
6. '4-70 Series Processors' - ICL 1972 Technical Publication 1104
7. 'System 4 Hardware Reference Peripherals' - ICL 1970 Technical Publication 4505
8. 'ERCC Graphics Manual' - Editor J. Murison, ERCC 1976
9. ‘Ig§4Edinbur9h IMP/FORTRAN System Library Manual' - Editor Miss L. Carlton, ERCC
10. '0.S. User's Guide' - Editor J. Murison, ERCC 1976
11. 'fg;intactic and Semantic definition of the IMP Language' - P.D. Stephens, ERCC
12. '0.S. Tape Labels' - IBM, Form No. GC28-6680

137






ACCEPT 38

access modes 12,38

access permission 12,38

access to the system 119

accounts 119

advisory service 31

ALERT 30

ALGOL 51,107
calling commands 107
compilation 107
input/output 108
running programs 107

APPENDLIB 56

archive file store 15,40
charges for 119
destroying files in 42
listing files in 41
restoring files from 41

ARCHIVE 40

ARCHLIST 42

assigning files to programs 63

back-up 15,40
background mode 115
backing store 2
binary card
input 17
output 21
binary paper tape
input 18
output 21

INDEX

calling commands from programs 109

card
code 17,131
column binary input 17
column binary output 21
input 17
punch 21

carriage control characters 63,66

cathode ray tube display 23
CHANGESM 82

changing size of mapped files 82

changing size of stack 125
character code 131
for magnetic tape 87
character files 61
charges
for computing 120
for files 119
CHERISH 15,40
CLEAR 67
CLOSEF 105
¢losing mapped files 81
column binary cards 17,21
command interpreter 109
command language 27
commands
calling from ALGOL 107
calling from FORTRAN 100
calling from IMP 92,109
detecting errors 112
list of 32
output from 28
parameters 27
standard fault messages 127
writing own 112

COMMON 58,99
compilers 49
ALGOL 49,107
commands for calling 51
FORTRAN 49,99
IMP 49,89
listing files 50
options 51
CONCAT 46
concatenation of files 46,51,64
conflicting mode 12
connect modes 12
connect time 121
context editor 69
COPYFILE 46
corruption of files 36
CPULIMIT 123
current library index 55

data files 62

DDLIST 68

default access permissions 39

DEFINE 63,70,95,102,108

DEFINEMT 86

DELETEJOB 117

deleting files 36,42

DELIVER 124

delivery information 124
finding from program 94

demons 5,17

DESTROY 36

DETACH 115

director 6,35

discfile 2,9,13

DISCONNECT 37

double quote deletion 17

drum 2,9

dummy file definition 64

dynamic loading 58,100

DYNAMIC 51

EDIT 69
edi tor
command repetition 73
command structure 69
deleting text 71
extracting text 75
inserting text 71
moving cursor 70
moving text within file 74
operation 75
output 72
separator 73
table of valid parameters 77
termminating 72
efficiency of programs 3,98
EMASFC 101
errors 127

in commands called from programs 112

executing programs 53,91,99,107
EXIST 94

extending files 64

external data 90

external references 53

external routines 89



faults graphics routines 21,91,100

during compilation 51 group permission 12
in commands called from programs 112
standard messages 127 hardware 7

file descriptors 14 HAZARD 40

file protection 109 HELP 30

file system 11 HOST 25
parts 13

FILEANAL 45 immediate file store 6,11

filename 11 IMp 51,89

files calling FORTRAN 95
access from ALGOL 108 : calling comnands 92,109
access from FORTRAN 102,102 character input/output 96
access from IMP 95 default stream definitions 96
access permission 12 direct access files 97
back-up 15,40 -efficiency 98
character 61 external data 90
charges for 119 external routines 89
checking existence from program 94 program structure 89
cherish status 15 sequential binary files 97
connect modes 12 store map files 98
connecting 3,36 system library 91
copying 46 improvements 126
cost of storage 40 information card 30
created by subsystem 11 input devices 17
creation 14,36,79 input/output
data 62 in ALGOL 108
destroying 36,42 . in FORTRAN 102
disconnecting 36 in IMP 95
extending 64 of files 17
headers 45,61,62 INSERTFILE 55
input 18 interactive graphics 9
Jjoining 46 interactive terminals 6,23
listing 47 access from program 64
mapping 79 control characters 24
maximum size of 14 delete character 24
naming rules 11 dial-up 23
object 49 directly connected 23
output 19 full duplex mode 23
physical layout 11 graphics mode 25
renaming 36 logging on 25
security of 6,11 pad characters 25
sharing 12 prompts 25,92
size 65 set mode 24
size for output 20 type ahead 25
source 50 internal character code 131
temporary 64 interrupts
transfer from archive store 41 causing 24
transfer of ownership 15 interrogating from program 93
transfer to archive store 41 subsystem 28
utility commands 35,45

FINDFILE 41 Job 115

FINDJOB 117

FLIST 35 LIBANAL 59

FORTE 51,99 library index files 54

FORTRAN 99 line printer 20,21
calling IMP 101 format control 63
calling commands 100 LINK 52
closing files 105 . list cells 14,35
default file definitions 104 LIST 47
direct access files 104 listing files 47
dynamic loading 100 loading programs 49,53
input/output 102 1oggi ng on 25
sequential files 102 LoCK 7

subroutine linkage 99

system library 100 magnetic tape
FPRPMT 101 access from programs 85
character code 87
general linkage area 49,53,58 deck 9
GLA 49,53,58 for archive store 40
glossary 133 hardware characteristics 85

graph plotter 21 labels 85



main store 2
mapping files 79
changing size 82
closing 82
matrix handling 3
matrix plotter 21
METER 121
modem 23
multi-access 1

network control processor 9,23
newline characters 61,62
NEWSMFILE 79

NOENTRIES 51

NOIDENT 19

NOW 116

NUMAC 117

OBEYFILE 111,124
object files 49
Tinking 52
OFFER 38
operator messages 28
OPTION 124
FULLMESSAGES 125
FULLSEARCH 124
NOMESSAGES 28,125
NORECALL 125
PERMRECALL 76,125
QUICKSEARCH 58,124
STACK=N 125
TEMPRECALL 76,125
output device mnemonics 20
output devices 17,47,64
output from detached jobs 116
output queues 48,125
overlaying 3
ownername 11
finding from program 94

pad characters 25
page fault 2
page turns 121
paging 1
paper tape
binary input 18
input 18
output 21
parity 18
PARM 51
PASSWORD 119
passwords
background 18,119
foreground 25,119
PERMITFILE 38
PERMITLIB 59
permitting access 12,38
print control characters 63
priority of detached jobs 116
program loading 53,89,99,107
failures 57
PROJECT 120
PROMPT 25,92
protection of file definitions 111

queues for output 19
QUEUES 125
QUICKSEARCH 58,124
QUOTES 19

RECALL 25,76
record format 20,62,66

record length 66

record spanning 66

references 137

remote devices 20

REMOVEFILE 56

REMOVEL IB 56

RENAME 36

RESTORE 41

RUN 53,111
for ALGOL programs 107
for FORTRAN programs 99
for IMP programs 91

scheduler 7
scheduling of detached jobs 116
security 6,11,36
segment 14
SEND 48
sending jobs to other machines 117
sequence numbers 19
set mode 24
shareable code 49
size of stack 125
SMADDR 80
source files 50
special forms facility 47
SSFAIL 112
SSFMESSAGE 112
SSFOFF 112
stack 50,125
setting size 125
STOP 125
store mapping 79
subsystem 27
command language 27
file types 29
messages 28
SUGGESTION 126
supervisor 5
system file information 14
system integration 9
system processors 6

teletypes 23

temporary files 64

terminal control processors 9,23
terminating a foreground session 125
TESTINT 93

TIME EXCEEDED 124

time limit 123

TRAIL 19

trailing spaces 17,61
transferring ownership of file 38
type ahead 25

unsatisfied references 57,91
user file index 14
USERLIB 55
username 119

finding from program 94
USERS 121
utility commands 35

virtual memory 1,6,36,49,79
virtual processor 5
volumes processor 7,42



