UNIVERSITY OF Ed b h
N7 | Regional EMAS

Computing : :
EDn%GH Centre UserS GUIde Update 1

Originator Issue date

Roderick McLeod January 1978

Replace CONTENTS line 28 by:
4 Partitioned Files 137

References 141

Replace page 2 line 20 by:
14, and U in the main store (see figure 4).

Delete page 9 lines 19-22 inclusive (Interactive graphics)

Replace page 14 last two lines by:
The size of an existing file can be altered by its owner, to a value between 1 and 1024

pages. This function is requested by the Subsystem, as required.

Replace page 45 lines 21,22 by:
of the file, and the second parameter, which is optional, is an output file or output
device. By default output goes to the interactive terminal.

Add to foot of page 48:
* Unlike LIST, SEND does not start the listing by giving the name of the file.

Replace page 61 line 23 by:
* As optional output files from commands; for example, FILES(,A,0UT) produces a

Replace page 62 line 17 by:
* as files read in BINARY mode from paper tape

Replace page 69 line 29 by:
preceded by a minus sign. A single asterisk ('*') can be used to mean 'very large
positive integer'.

Replace page 97 line 5 by:
P Files =132

Replace page 100 line 9 by:) })
* Compile this using the compile time option DYNAMIC, together with any other

Replace page 102 line 16 by:
Qutput Card Punch (.CP) Data File Data File

Replace page 111 line 6 by:
* Any command that would write to the file: for example, FILES(',,0UT')

Replace page 128 line 6 by:
DETACH, HELP(.LP) or LIST.

Renumber page 137 as page 141

Remove Insert
Pre;age Preface
Pp 7, pp 7.8
g L ppLitle
p 15 pp 15,16 i
pp 17-21 pp 17-20 Note p 21 no longer exists.
pp 25,26 pp 25,26
pp 27-34 pp 27-34)
pp 35-43 pp 35-42 Note p 43 nc longer exists.
pp 67,68 pp 67,68
pp 73-77 pp 73-77
p 117 pp 117,118
pp 119-121 pp 119,121
Ep 123-126 pp 123-126
0 pages pp 137-139

Index Index

PREFACE

This manual describes the Edinburgh Multi-Access System (EMAS), and in particular the user
interface to the System - the Standard Subsystem. The first five chapters describe those

garts of the whole System that support the Subsystem; the remaining chapters describe the

ubsystem itself and the way in which it can be used. Appendices to the manual include a

list of standard error messages, character code translation tables and a glossary of words
and abbreviations used in EMAS user documentation.

It has been the policy of those responsible for running the System that its appearance
should be developed to reflect the needs of its users. This process is continuing and as
a result this manual will become out of date. It is unlikely that any future changes will
invalidate information in the manual, but new facilities will be added and extensions made
to the existing ones. .The EMAS HELP command provides an up-to-date description of the
facilities currently available.

One of the characteristics of EMAS is the ease with which users can add their own features
to the standard facilities. Further they can readily make their additions available to

their colleagues and to the wider user community. Apart from the facilities described in
this manual there is a large amount of user-contributed material including commands,
routines and packages. Information about what material is available can be sought from
the Advisory Service, in the first instance.

The manual was typed by Mrs Anne Tweeddale and printed by the ERCC Reprographics

Department. It is dedicated to all the members of the EMAS user community who by their
suggestions, formal or otherwise, have created the present appearance of the System.

Roderick McLeod
December 1976

Preface to First Update

During the period since the publication of this manual a number of changes have taken
place. The main one is the addition of partitioned files, which are described in appendix
A

Roderick MclLeod
January 1978

System processors

Apart from virtual processors occupied by users there are a number of system functions
that run in their own virtual processors. In many ways they are similar to user
processors but they have some special attributes:

* they are privileged - that is, they can access information and obtain services from
the resident supervisor which are not available to user processors

* they normally run without any interactive temminal

The two most important system processors are the demons processor and the volumes
processor. The demons processor is responsible for

* handling input files from slow devices, e.g. card readers (see chapter 4)
* handling the output of files to line printers etc. (see chapter 4)
* scheduling batch jobs (see chapter 19)

* the verification of names and passwords at log on (see chapter 5)

*

controlling communications to remote terminals (see chapter 4)

The volumes processor is mainly concerned with the organisation of the archive store (see
chapter 3).

Scheduler

Part of the supervisor, known as the scheduler, is concerned with sharing available main
store and central processor time between the various processors competing for these

resources. Since EMAS is primarily intended as a multi-access system for interactive

computing, the scheduler is designed to give priority to processes which make
comparatively small demands for store and processor time. Put another way, the scheduler

gives a Tower priority to jobs which require large amounts of either resource. Thus
processes which display characteristics of batch jobs, or are in fact started as batch
jobs, only get resources when other processes are not waiting for them; see also reference

.

HARDWARE CONFIGURATION

This manual does not contain a detailed description of the hardware confi?uration, or of
any part of the hardware. The overall structure is summarised in figure /.

Figure 7

Paper Tape 1/0
Graph Plotter

Interactive Terminals

AN\\N

3 Local
Terminal Control
Processors

Local Stow

Matrix Plotter
Line Printer

Interactive Terminals

AN\N

4 Remote
Terminel Control
Processors

R

Devices Processor

1 Mbyte
Core Store

4-75 |

CPU

Network Control

Processor
PDP 11/456

3 Line
Printers

Regional Comm. _.ations

=

Node
Processor

2 Mbyte each

6 Drum units)

-

2 Fixed

2

Replaceable
Disk Drives

Disk units
700 Mbyte

each

3

4 x 9 Track

Replaceable
Disk Drives

1600bpi
\ Tape units :

2 Lina Printers

—~———
———

Card Punch

1 Mbyte
Core Store

Figure 7 Simplified Diagram of EMAS Hardware

Update 1: Jan.78

CHAPTER 3
THE FILE SYSTEM

This chapter describes the EMAS file system. Files are used in EMAS for a wide variety of
purposes. They can contain programs and data as in conventional systems but also they are
used to hold temporary information such as the variables and arrays for a running program.
The file system can be divided into two parts: immediate files, which are held on the
discfile and are available for use whenever the user logs on to the system; and archive
files, which are held on magnetic tape and which have to be transferred to immediate
storage before they can be used.

A11 files are made up of one or more pages of information, the size of each page being
4096 bytes. As explained in chapter 1, when they are being accessed these pages are
mapped onto pages in the user's virtual memory, and access to any particular part of the
file is then achieved by addressing the appropriate part of his virtual memory. One way
in which EMAS differs from some other systems is that it frees the user from any concern
about the physical layout of his file. The system controls the way in which a file is
stored on disc or on tape.

IMMEDIATE FILE STORE

The immediate file store is organised by the director. The director is only concerned
with files as sequences of pages; it is not concerned with the internal structure or
contents of files. The effect of this is that a number of Subsystem functions - those
which are passed straight on to the director - are not concerned with file types; for
example those functions initiated by the commands DESTROY and RENAME.

Naming files

Each file in immediate storage has a unique name which comprises two parts - the name of
its owner (the 'ownername') and a file name given by the owner to distinguish it from his
other files (the 'filename'). The two fields are separated by a full stop. Files created
by users should have filenames of between 1 and 8 characters which should all be upper
case letters or numerals, the first character being a letter. Examples of valid full
filenames are:

ERCCO6.FILEABC1
ERCC99.N
LMPTO1.FIRE

The filenames of files created by the Subsystem usually start with the characters 'SS#' to
avoid conflict with files created by the user. For example:

ERCCO6.SS#STK
ERCC99.SSHLIST

Note that when referring to his own files a user does not nomally have to prefix the
filename with his ownername. Thus user LMPTOl would refer to the file in the example
above as FIRE. When referring to files belonging to other users, however, he must always
use their full names.

Security of files

The information contained in a file can only be read or altered if the file is connected
in the user's virtual memory. The Subsystem can only cause a file to be connected by
making a call on the director, and the director will only connect a file if appropriate
access permission to the file has been given by its owner (see below). There is thus no
way in which a fault in the Subsystem or in a user's program can enable him to access or

11

corrupt information not intended for him. This arrangement makes it possible to store
confidential information in EMAS without risk of corruption or illegal access.

Access permission

Each file has associated with it access permission information. Four different types of
access are possible:

READ (unshared)
WRITE (unshared)
READ SHARED
WRITE SHARED

Any or all or none of these modes can be given to the file in respect of

the owner

all other users
a specific user
a group of users

* % % *

When created, a file has all modes of access permitted to its owner and none to anyone

else. Thus, unless a user explicitly permits a file to someone else, it is only available
to himself.

The Subsystem command PERMITFILE is used to set access pemission information for a file.
Its use is described in chapter 7. When determining what access permission is allowed to
a user who wishes to connect a file, the director follows these rules:

* %f con?$cting a file belonging to self then use the access permission explicitly
or self.

* If connecting a file belonging to another user then use the first of the following
which applies:

1. If specific permission has been granted to this user then use it.
2. If group permission has been granted to a group that contains this user then
use it.

3. Use the 'everybody else' permission.
Note that if this user is included in more than one group of users the resulting
permission is undefined.

Connect modes

A file can only be connected in a particular mode in a user's virtual memory if all of the
following conditions are satisfied:

* It is permitted to the user in the required mode.
* It is not connected in another virtual memory in a conflicting mode.

* If the connect mode is WRITE or WRITE SHARED it is on the same machine as the
requesting user (see chapter 2).

The following connect modes can be used:

* READ (unshared) - the file can only be connected in this mode if it is not
connected in any other virtual memory. Whilst so connected it cannot be connected
in any other virtual memory, even if permitted. Whilst connected in this mode it
cannot be written to.

* WRITE (unshared) - all the attributes of READ (unshared) apply except that it can
be written to or modified.

* READ SHARED - the file can be connected in a virtual memory in this mode if it is
connected in one or more other virtual memories in the same mode or if it is not
connected in any other virtual memory. Whilst so connected it can be connected in
further virtual memories but only in READ SHARED mode. It cannot be written to or
modified.

12 Update 1: Jan.78

Transfer of ownership of a file

The Subsystem commands OFFER and ACCEPT result in a file being transferred from one user
to another. The information relating to the name, the size, the location on the discfile
and the CHERISH status is transferred from one file index to another. Note that all other
information normally held in the file index (usage information and access permissions) is
not transferred. Note also that the OFFER/ACCEPT mechanism can be used between users on
the same or different machines.

Back-up of immediate file store

In order to protect users' files from hardware and system faults, they are copied onto
magnetic tape once each day ('backed up'), subject to the following rules:

* A file must be marked for this purpose by use of the CHERISH command. Note that
files created from card or paper tape input are automatically CHERISHed but
otherwise files are created without the CHERISH marker being set. Note also that
un-CHERISHed files will be DESTROYed by the system after a period (currently 4
weeks) of non-use.

* A file will only be backed up if it has been altered since the last time it was
backed up. (Strictly, it is sufficient to have connected the file in WRITE or WRITE
SHARED mode to cause back-up to take place.)

1f, because of a failure, it is necessary to recover users' files from back-up tapes, the
files are replaced on the discfile with the CHERISH status and any access permissions in
force at the time they were backed up. Note the following points:

* Any alterations made to the file between the time of the latest back-up and the
system failure will be lost.

* Files which have recently been DESTROYed may be copied back to the immediate file
store. It will thus be necessary for the user to DESTROY them again.

Automatic re-prime

If a user's file is corrupted as a result of a system failure or hardware fault, it is
deleted automatically at the next IPL. At the same time a message is sent to the user and
it will be printed when he next logs on for a foreground session, e.g.

**TESTPROG DELETED
If the file was CHERISHed an automatic re-prime is initiated to transfer the latest copy
in the back-up store to immediate store. If this succeeds a message of the following form
is printed:

**TESTPROG REPRIMED

THE ARCHIVE FILE STORE

The Archive File Store is held on magnetic tape, quite separately from the back-up tapes.
Files are moved from the immediate store to archive store in the following circumstances:

* as a direct consequence of using the command ARCHIVE in respect of the file

* jndirectly as a result of CHERISHing a file but not accessing it for a period
(currently 4 weeks)

The command ARCHIVE and related commands for restoring archived files to immediate store
are described in chapter 7. Unused files are moved onto archive storage in order to free
the limited space on immediate store for material which is being actively used.

There is currently no limit to the number of files a user can have on archive store, nor
to the length of time they are left there. On the other hand users are encouraged to tidy

up their archive file list periodically.

Update 1: Jan.78 15

Unlike files on immediate store it is possible to have two files on archive with the same
name. In such cases the date of archiving is used to indicate which file is to be
restored.

16 ‘ Update 1: Jan.78

CHAPTER 4
INPUT AND OUTPUT OF FILES

The Input and Output of files to and from EMAS is controlled by the DEMONS systems process
(see chapter 2). It is not necessary for users to access directly file input and output
devices, e.g. card readers or line printers. Instead they instruct the DEMONS process to
carry out operations on these devices with reference to particular files.

INPUT

It is possible to read files into immediate storage from cards or paper tape. This is
usually achieved by submitting the file, with appropriate Job Control Language (JCL)
statements, to be read on a card reader or paper tape reader attached to EMAS via the NCP
(see chapter 2). Alternatively, input can be sent from temminals connected to the medium
speed network; files can also be transferred from other processors connected to the
network. The details of these operations are subject to changes as the network is

developed; the user is referred to the current HELP information.

Card reader input

Cards can only be read in a mode involving translation from IBM 029 card code to ISO
internal code. The file produced is a standard EMAS character file (see chapter 11). By
default the following rules apply:

* A1l 80 columns are read.

* Translation is carried out according to the table in Appendix 2.

* Trailing spaces are deleted; that is, all the spaces following the last non-space
character on a card are excluded from the file.

* A NEWLINE character (ISO 10) is inserted in the file to signify the end of each
card.

As explained below, some of these actions can be altered by including appropriate keywords
on one of the JCL cards.

Faper tape input

Paper tape can be read in one of two modes:
* normal mode, for reading I1SO-coded 8-track even-parity tape

* binary mode, for reading any punchings on 8-track tape

When reading in normal mode the following rules apply:
* all characters with odd parity are converted to the SUB (ISO 26) character
* the parity bit is set to O on input, whatever its value on the paper tape
* null (no holes punched) and delete (all holes punched) are ignored

* CARRIAGE RETURN (ISO 13) characters are ignored when they are adjacent to NEWLINE
(1S0 10) characters

Update 1: Jan.78 17

* trailing spaces (SPACE characters immediately before a NEWLINE character) are
ignored

As explained below some of these actions can be altered by including keywords in one of
the JCL statements.

When reading in binary mode all characters, including run-out (0), are read into the file,
which is created as a standard data file (chapter 11) with a fixed record length of 80
bytes.

Job control for file input
The following JCL statements are needed for file input:

//username FILE (PASS=back)
//filename DD *

<contents of file>
//

where username is the name of an accredited EMAS user
back is the user's background password (see chapter 20)
filename is the name to be given to the file (see chapter 3)

Notes

* The format of the statements is fixed. Each statement must start on a new line;
this means that for paper tape input there must be a line feed character before the
first statement and between statements. One or more spaces must be inserted where
indicated, but nowhere else.

* The name chosen for a file should not be the same as the name of an existing file.
If it is, the existing file will be left and the one being read in will be ignored.

* Files are CHERISHed automatically on input.
* More than one file can be input, the form then being:
//username FILE (PASS=back)
//filel DD *
<contents of filel>
//file2 DD *
<contents of file2>

etc.
//
* When reading in normal mode the following options can be used. The options
selected should follow the asterisk on the DD card, separated trom it and each
other by commas:

* NOIBENT - ignore the contents of columns 73-8U: this is useful for removing
sequence numbers

* TRAIL - do not delete trailing spaces
Example

//TEXT DD * ,NOIDENT,TRAIL

When reading paper tape in binary mode, the following form is used:
//username FILE (PASS=Back)

//filename [i0 BINARY
contents of file

18 Update 1: Jan.78

Job control statements and binary data should be on separate paper tapes and must
be clearly marked as to the required mode of input.
‘end of file' making a terminator tape unnecessary.

OUTPUT

Information can be sent to output devices by two methods:

* By an explicit Subsystem command such as LIST or SEND (see chapter 8).

The operator will supply an

* Indirectly by using the DEFINE command to 1ink a logical output channel to a

particular device.

The effect of this is to put the output in a temporary file

which is sent to the output queue automatically when the file is closed (see

chapter 11).

In neither case is the device accessed directly by the user.
output queue until the required device is available; it is then listed.
place minutes or even hours after the user has requested the action.

His output is held in an

This may take
The command QUEUES

is available to tell the user whether any files of his are waiting in output queues (see

chapter 21).

Output device mnemonics

Output devices are referred to by mnemonics, for example .LP for the line printer. The
dot is used to distinguish the device from a file name, since in many situations a device

mnemonic or a file name can be used for a particular parameter in a command.

If the

output device is not connected directly to EMAS then its mnemonic is followed by the
number of the remote terminal to which it is connected; e.g. .LP15 is the line printer

connected to temminal 15.

1ist is not included in this manual.

Table of output devices

Note that since the terminal numbers are liable to change a
It can be found in the current HELP information.

The following table gives the names and mnemonics of available output devices, with file

types and record formats required (where relevant).

described in chapter 11.

to the device, in pages (each of 4096 bytes).

File types and record formats are
The final column gives the maximum size of file that can be sent

Device Mnemonic File type Record format | Max file size
required (in pages)
Line Printer .LP Character or Data 255
Line Printer with upper .LLP Character or Data 63
and lower case
Money Line Printer MLP Character or Data 255
Card Punch .CP Character or Data 63
Paper Tape Punch PP Character or Data 63
Binary Paper Tape Punch .BPP Data F80 63
Graph Plotter .GP Data F80 63
Graph Plotter for liquid .SGP Data F80 63
ink jobs
Matrix Plotter .MP Character or Data 255

Update 1: Jan.78

19

Notes

For remote devices there is a limit of 79 pages on the size of cutput files. It
should be noted that because of limitations in the communications mechanisms binary
files are expanded before being sent, so the effective limit is half of this.

The record format is described fully in chapter 11. In this context it is the
format that should be used when writing files to be sent to the specified device.
Additionally it is the record fornat implied by default when using DEFINE for these
devices. For example, if the command

DEF INE(SQ27, .PP)
is used then each record written on sequential file 27 must be 80 bytes long.

The significance of '.MLP' is explained below.

CHARACTERISTICS OF INDIVIDUAL OUTPUT DEVICES

Line Printer

* If the device is defined as .LP or .MLP then lower case letters are converted to
upper case if the device does not print lower case letters.

* Lines longer than 132 characters are split and continued on the following line.

* CR (carriage return) is ignored if it is adjacent to line feed. It can be used to
achieve over-printing if it appears within text. Note however that not all line
printers accessible from EMAS are able to do this.

* If the device is defined as .MLP then the ISO character 33 is printed as pound
sterling € , instead of hash #.

Card Punch

*

*

If the device is defined as .CP then a translation is performed from internal code
to IBM 029 card code (see Appendix 2).

If the device is defined as .CP then any lines longer than 80 characters are split
and continued on the next card.

Paper Tape Punch

*

When the punch is defined as .PP, paper tape is punched using the characters sent,
made up to even parity where necessary by punching in the 8th hole. Characters
with values greater than 127 are converted to the SUB character (ISO 26).

When the punch is defined as .BPP all eight bits of each byte in the file are
punched on the tape.

Graph Plotter

The graph plotter should be accessed via the graphics routines provided; these are
described fully in reference 8. The device .SGP is used to indicate that ‘special’
facilities are required, such as liquid ink.

Matrix Plotter

The software for operating this device is currently being written. Further information
should be obtained from the Advisory Service.

20

Update 1: Jan.78

Reply ‘ Effect

U Upper Mode - All lower case letters are translated on input by the TCP to upper
case. (default)

L Lower Mode - No lower case translation is carried out on the input.

G Graphic Mode - No lower case translation is carried out, and, with respect to

terminal output, all format controls are disabled, thus allowing any character
[values in the range 0-255] to be sent to the terminal.

Pn Pads - n should be a number in the range 0-9. Used to specify number of pad
characters to be inserted at start of each output line. Normally 0. It is only
needed for a few special terminals which require a delay to allow the carriage to
return to the beginning of the line.

N Normal carriage - insert newline if attempt is made to output more than 72
characters on a line - (default).

W Wide carriage - insert newline only if an attempt is made to output more than 132
characters on a line.

Type ahead

An important characteristic of the terminal support mechanism on EMAS is the ability for a
user to type ahead. This means that it is not necessary to await the completion of one
operation before typing the next command. There are a number of points to bear in mind:

* When typing ahead it must be appreciated that mistakes in typing earlier commands
can have disastrous results later on. It is suggested that until users are
conversant with the system they await the outcome of each command before typing the
next.

* Because the prompt is not printed (see below) and because output and input will be
interleaved, it is not always easy to decipher a listing produced on a hard copy

device, such as a teletype, when extensive type-ahead is used. The RECALL facility
(see chapter 12) avoids this problem.

Lost Input

When the system is heavily loaded it is occasionally unable to accept all input that has
been typed ahead. If this occurs the message

**INPUT LOST

is typed on the interactive terminal. The user should wait until all the available input
has been read and a prompt appears to determine how many lines of input have been lost.

Prompt mechanism
Whenever input is requested by the system or by a running program a prompt is output on
the interactive terminal. This acts as a reminder to the user that input is required, and
can also serve to indicate what sort of input is required. The prompt text is set by

* the Subsystem

* a Subsystem facility, e.g. EDIT

* a user program calling the routine PROMPT or FPRMPT (see chapters 15 and 16)

Note that the prompt is not output if the required input has already been typed ahead.

Update 1: Jan.78 25

Logging in
Before a user can lo? on to the system from an interactive temminal he has to obtain an
accredited username (see chapter 20). The username has associated with it two passwords

(see chapter 20). The first of these is used for interactive access. In order to log on
the following steps should be taken:

* Switch on the terminal and select Duplex mode, and, if using a dial-up line, also
the modem or acoustic coupler.

* If using a dial-up line dial the correct number (031-667 1071) and if a data tone
is heard (high pitched tone) switch to data. (The exact method depends on the
terminal and MODEM or coupler being used.)

* Press the space bar. If there is no response press the CR key.

* To the prompt 'HOST:' reply EMAS.

* To the prompt 'USER:' reply with the username.

* To the prompt 'PASS:' reply with the foreground password.

A11 three replies should be terminated by CR.
In response the TCP and NCP will attempt to log the terminal on to the appropriate EMAS

main computer. If this is successful a 'PROCESS STARTED' message will be printed,
sometimes followed by a message of the day, and eventually a prompt COMMAND: will appear.

Alternatively one of the following messages, or some other explanatory message, will be
printed:

SYSTEM FULL - try later (or use restricted access - see below).

CANNOT START PROCESS - possibly because the process is just stopping - try again, and if
. the problem persists contact the Advisory Service.

PROCESS RUNNING - a background job is running which you DETACHed earlier (see chapter
19), or another person who shares the username is currently logged
on. Disconnect the terminal by typing CNTRL+A followed by CNTRL+D
and then try later.

NO USER SERVICE - this indicates an attempt to log on outwith the service period, or
a machine fault. Ring the answering service (031-667 7491) for
information.

INVALID USER - this may be caused by mis-typing the username or because one of the

EMAS computers is unavailable (see above).

INVALID PASSWORD - this means that the password was typed incorrectly.

Restricted access mode

When the reply SYSTEM FULL is printed it may still be possible to 1og on in restricted
access mode. The method is to log in as above, except that the reply to the prompt
"HOST:' should be 'EMAS-L'. If there is a slot available the user will be logged on and
can use the system subject to the following restrictions:-

* The default and maximum values for CPULIMIT are each 5 seconds (as against 30
seconds and something between 30 seconds and 10 minutes respectively). See also
chapter 21.

* A strict rate check is applied so that any attempt to run any significantly
cpu-bound job will result in a "RATE EXCEEDED" message, and subsequently an
automatic log-off (see chapter 21).

Despite these limitations restricted access still allows for the use of many commands such
as EDIT, DETACH, FILES, RESTORE etc.

26 Update 1: Jan.78

CHAPTER 6
INTRODUCTION TO THE SUBSYSTEM

This chapter provides an introduction to the standard EMAS Subsystem. It explains the
Subsystem's command language, describes its interactive temminal interrupts, introduces
the file types provided, gives sources of further information, summarises its functions in
Togical groups and indicates how these are covered by the rest of this manual.

The standard Subsystem

The phrase 'standard Subsystem' is used to emphasize that the Subsystem described is the
one provided as a standard part of EMAS. It is not, however, the only Subsystem and it
should be aqpreciated that it is possible to use subsystems which differ slightly or even
fundamentally from the standard one, without interfering with other users, and without
having to make changes to other components of the system. Chapter 18 shows how it is
possible to add commands to the standard Subsystem. More fundamental changes require
information outwith the scope of this manual.

The Subsystem command language

The Subsystem command language is used to communicate with the Subsystem, both from
interactive terminals and from background jobs (see chapter 19). Commands are typed
according to the following rules:

* Each command must start on a new line.

* If the command requires one or more parameters, these should be typed after the
command, normally enclosed in parentheses.

* As an alternative form of input it is possible to omit the parentheses, in which
case the command name must be typed with no embedded spaces, and must be separated

from the first parameter by one or more spaces. See OPTION (chapter 21). For
clarity all examples in this manual use parentheses.

* Parameters should be separated by commas.

* To indicate that a parameter has been omitted an extra comma should be inserted, if
more parameters follow.

* Spaces and newlines within parameters are ignored.
* After removing spaces, newlines and parentheses the total length of the parameters
should be not greater than 63 characters. .
Examples of commands
ALERT
LIST(ABC)
LIST(ABC,.LP)
FILES(,IA)
DESTROY(ABC,DEF,GHI)
In the rest of this manual the following fonnat is used for commands:

COMMANDNAME (PARAMETER1[,PARAMETER2])

Note that the square brackets are used to indicate optional parameters - they are not
typed when the command is used.

Update 1: Jan.78 27

The full details of the parameters required for each command are given with the
description of the command. There are, however, a number of common features:

* List - this is used for commands that can operate on a number of items of the same
type. The list can consist of one item, or more than one, in which case all but

the last are followed by a comma. For example, DESTROY can be used with a list of
filenames:

DESTROY (NABC)
DESTROY(NABC, TYPE ,FILE27)

* Output device - this is used for commands that generate output. In almost every
case the default output device is the interactive terminal. Output devices are
described in more detail in chapter 4. The name of a device consists of a full
stop followed by a mnemonic; for example, .LP means line printer:

LIST(TEST27,.LP)

* Qutput file - this is often an alternative to an output device. It is sometimes
useful to direct the output from a command into a file, for subsequent examination
using the editor or a user program. For example, the command FILEANAL can be used
to obtain information about a file. If a second parameter, not an output device,

is given then the information is put in the file named by the second parameter:
FILEANAL(FILEABN,OUT)

Other parameters are described in the context of particular commands.

Messages output by the Subsystem
In general, simple commands do not produce any output if they work successfully. A few,

indicated in the table at the end of this chapter, produce confirmatory messages. Even
these may be suppressed if preferred by use of the OPTION facility - see chapter 21. Al

commands produce failure messages if they do not work correctly. Subsystem failure
messages are described in two places:
* Messages specific to a particular command are described with that command

* General error messages are described in Appendix 1

Operator messages

Apart from messages generated by the Subsystem there are messages sent to interactive
terminals by the EMAS operators, or on their behalf. These messages are of the form:

**0PER hh.mm message

It is hoped that these messages will be self explanatory, but since they are restricted to
19 characters in length they are likely to be somewhgt terse.

CONSOLE INTERRUPTS

Apart from normal interactive temminal input and ocutput there is a mechanism whereby any

operation can be interrupted. The method, described in chapter 5, allows the user to
input a message of up to 15 characters. Single character input messages are used to

control the Subsystem in the following manner:

28

Interrupt

Ef fect

A

Abort current conmand or program and return to
read the next command.

As for A except that additionally any input that
has been typed ahead is lost.

Use during printing of diagnostics to return to
calling program. This is only of use when
diagnostics have been printed as a result of a
call of ¥MONITOR from IMP or DIAG in FORTRAN.

Make disc consistent; i.e. ensure that all copies of
files in immediate store include all changes

made to date. It can be used at any time

without otherwise affecting the command that is

currently being obeyed.

Abort current command, print diagnostics and
return to command level.

Print out the time and number of page turns
since the start of this command and the
number of users logged on, without affecting
command being executed.

SUBSYSTEM FILE TYPES

There are six types of file recognised by the Subsystem.
from information held at the beginning of the first page of the file.

listed below with an indication of the main chapter describing their use.

STORE MAP

PARTITIONED

Type Use Chapter

CHARACTER Contains characters - 11
e.g. program source.

DATA Contains binary data in 11
discrete records.

OBJECT Contains compiled programs and 9
routines.

L IBRARY INDEX Contains information to 10

associate routine entry names
with OBJECT files - used by
the loader.

Unstructured file used for 13
direct mapping of data.

Contains members, each of which Appendix 4
is for some purposes equivalent
to a complete file.

SUBSYSTEM INFORMATION

Apart from this manual the primary sources of information about the Subsystem are:

* the commands HELP and ALERT

Update 1: Jan.74

The type of a file is detemmined
The file types are

29

* the EMAS Information Card
* the ERCC Advisory Service

The command HELP

This command provides on-line infcrmation for EMAS users. If the command is typed with no
parameter then the output is a list of current commands and a brief description of their
purposes. If a parameter is given which is the name of one of these commands then fuller
information about the chosen command is typed. For example

HELP (FILEANAL)
would give information about the command FILEANAL.

Apart from commands, there are a number of general headings about which information is
available. Currently these are:

ADVISORY
GRAPHICS
INTERRUPT
LIBRARIES
NEWS
OPERATIONS
PACKAGES
REMOTES
SCHEDULE
TERMINAL

Finally, HELP can be used with a parameter '.LP', '.LLPnn' or '.LPnn' (see chapter 4), in
which case the whole of the current HELP text is printed on the local line printer or
remote line printer specified.

The command ALERT

This command provides information about recent changes to the system and any serious
faults that have been reported or corrected. If the command is typed with no parameter
then the output is given on the interactive terminal. Otherwise it can be directed to a
local or remote line printer; for example:

ALERT
ALERT(.LP)

EMAS Information Card

This quick reference information card provides a 1ist of the currently availabie commands
and their parameters and also details of remote temminals. It is intended to reprint it
at least once each year, so it should reflect changes more quickly than this manual.
Copies are available from the ERCC Library.

30 Update 1: Jan.78

ERCC Advisory Service

The Advisory Service is available to users of EMAS, and Advisors will endeavour to answer
questions about the Subsystem and the main programming languages.

Full details of the Advisory Service are contained in the current edition of the ERCC
Advisory Guide.

Subsystem facilities

The facilities and commands provided by the Subsystem are divided in this manual into the
following groups:

%

General File Utility commands - these commands operate in respect of files as
units. They operate on any type of file.

Type Specific File Utility commands - these are used to carry out functions such as
copying and listing files.

Compilers and associated commands.

Commands associated with program loading.

Commands related to manipulating user data.

File editing commands.-

Commands concerned with running work in background mode.
Commands concerned with accounts and usage.

Information and other commands that do not conveniently fit into other categories.

The table following gives a list of the commands in each group and for each the following
information:

*

*

x

A brief description of the purpose of the command.
Whether the command produces any output (other than a failure message).

A page number in this manual of the main description of the command.

31

TAELE OF COMMANDS

Group Comma nd Purpose Output | Page
General File ACCEPT Transfer file from another user 37
Utilities

ARCHIVE Mark file(s) for transfer to archive 40
store
CHERISH Mark file(s) for backing-up 39
DESTROY Destroy file(s) in immediate store 36
DISCARD Destroy file(s) in archive store 41
DISCONNECT Remove file from virtual memory 36
FILES Obtain complete or partial list of 35
files in immediate and archive stores.
HAZARD Un-CHERISH file 39
OFFER Mark file for transfer to another 37
user
PERMITFILE Allow other users access to a file 37
RENAME Change the name of a file 36
RESTORE Copy a file from archive to * 40
immediate store
Type Specific CONCAT Join two or more character or data 2 46
File Utilities file(s)
COPYFILE Copy a file g 46
F ILEANAL Obtain details of type, contents and * 45
access permission of a file
L IBANAL Obtain details of contents of library * 59
index file
LIST List file on output device ® 47
NEWPDFILE Create new, empty, partitioned file 137
SEND List file on output device and * 48
destroy it
Compilers and ALGOL Compile ALGOL 60 source file * 107
associated commands
FORTE Compile FORTRAN IV source file % 99
IMP Compile IMP source file L 89
L INK Join two or more OBJECT files % 52
P ARM Set compiler options 51
Manipulating Data CLEAR Break link set up by DEFINE 67
or DEFINEMT
DDLIST Print Tist of current logical 68

channel definitions

Update 1: Jan.78

Update 1: Jan.78

Group Comma nd Purpose OQutput | Page
Manipulating Data DEF INE Set up link between logical channel 63
contd. and particular file or output device

DEF INEMT Set up link between logical channel 86
and user magnetic tape file
NEWSMFILE Create new file to be accessed via 79
store mapping facilities
File Editing EDIT Edit character file * 69
LOOK Examine contents of character file ¥* 76
Program Loading APPENDLIB Nominate additional library index 56
and Execution for searching during program loading
INSERTFILE Insert details of object file in 55
current library index
PERMITLIB Allow access to a library index and 59
inserted files
REMOVEFILE Remove reference to object file 56
from current library index
REMOVELIB Remove library index from current 56
search list
RUN Execute program 53
USERLIB Nominate new library index ® 55
Background Mode DELETEJOB Remove job from background job * 117
queue
DETACH Put job into backaground job * 115
queue
FINDJOB Find information about jobs in * 117
background job queue
Commands associated METER Print usage information for current = 121
with accounting session
PASSWORD Change foreground and/or 119
background password
PROJECT Set project code 120
USERS Print number of currently active * 121
users
Information and ALERT Obtain information on state of System i 30
other commands
CPULIMIT Set time 1imit for each command % 123
DELIVER Set text for heading of line * 124
printer output, etc.
HELP Get advice on using Subsystem cd 30
OBEYFILE Execute a sequence of commands * 124
33

Group

Command

Purpose

Information and
other commands
contd.

OPTION

RECALL

QUEUES

STOP

SUGGESTION

Set user options
Examine file containing record
of interactive terminal I/0

Print information about files waiting
in output queues

Terminate foreground session

Send suggestion to System Manager

Output | Page
125

X 76

X 126

* 126
126

34

Update 1: Jan.78

CHAPTER 7
GENERAL FILE UTILITY COMMANDS

In chapter 3 the concept of a file was introduced and the conventions relating to EMAS
files were described.

As explained there, the basic file handling facilities are provided by the director.
These facilities act on files as sequences of pages, the contents of which are not
significant. Thus, for example, to the director there is no distinction between a file
containing character data and a compiled object file. This chapter describes the file

manipulation commands provided by the Subsystem which make calls on the director, and
which act on all types of file. The different types of file provided by the EMAS
Subsystem are described in the chapters following.

The command FILES
FILES takes up to three parameters: FILES([mask][,group](,out])

mask - Each filename in the group specified in the second parameter is compared with

the mask and only those filenames which match are listed. The mask consists of
up to three fields, where a field is either a set of explicit characters, or
the symbol '*' representing any set of characters, e.g.

ABC selects file ABC (one field)

ABC* selects all files beginning with ABC (two fields)

ABC . selects all files containing ABC (three fields)

*XY selects all files ending with XY (two fields)
If mask is omitted, all filenames in the group are selected.

group - The group of files is determined as follows:
files in the immediate file store (excluding SS# files); the

default
C CHERISHed files in the immediate file store
H HAZARDed (uncherished) files in the immediate file store
A ARCHIVEd files; this code may be combined with any of the above.

Two further codes are available which may be combined with the above to modify
the printing of the names of files in the immediate store:

S single spacing (print file names down the page); print across the
page is the default
E print extra information; causes a header to be printed and SS#

files to be included. If both E and S are coded then addi tional
information is given on each file selected.

Any combination of the letters given above can be specified, in any order.
File names are greceded.by '*' if the file is CHERISHed and by '**' if it has
been nominated for archiving.

out - This may be either output device code (.TT by default) or output file name. If
a file of the same name already exists it will be overwritten.

CREATING, RENAMING AND DESTROYING FILES

Files can be created, renamed or destroyed only by their owners. There is no general

command used to create a file. Files are created as a result of using certain commands or
facilities. For example the command EDIT can be used to create a new character file. If

this file is compiled using the conmand IMP an object file may be created. If the output

from FILEANAL is directed to a file and a file of that name does not exist, one will be
created. In general the following rule applies in relation to commands that create files:

Update 1: Jan.78 35

If a file of the requested name exists already, it is overwritten - destroying any
information it currently contains. If not, then a new file is created with the
requested name.

The command RENAME
A file can be renamed using the command RENAME. This takes two parameters:
RENAME(01dname ,newname)

oldname is the current name of the file
newname is the name to be given to the file

RENAME will fail if a file with the name 'newname' already exists, or if the file being
renamed does not exist or is connected in another user's virtual memory or is on OFFER
(see below). Note that access permissions and the cherish status of the file are not
affected by renaming.

The command DESTROY

One or more files can be destroyed by a call of DESTROY. It takes the name of one or more
files as its parameter(s):

DESTROY(ABC)
DESTROY(TEMP,COBJ ,BACL3)

The command will fail if the file being destroyed is connected in another user's virtual
memory or is on OFFER (see below). Also if a file is permitted to its owner with an
access permission of 0 (i.e. no access at all) it cannot be destroyed. This fact could be
used to protect a file from inadvertent destruction - but see also CHERISH below.

CONNECTING AND DISCONNECTING A FILE

Before any use can be made of the contents of a file, e.g. before a character file can be
edited or an object file can be executed, it must be connected in the user's virtual
memory. This operation is described in chapter 3. There is no general command for this
purpose - connection occurs as a result of the use of a wide variety of commands or
facilities. For example, a file is connected when:

* it is analysed by FILEANAL

* it is listed on the interactive terminal using LIST
* it is edited

* it is read from by a FORTRAN program

Normally, once a file has been connected, it remains connected for the rest of the session
- f.e. until the user logs off. There are however a number of commands which cause
disconnection, and there is also an explicit DISCONNECT command. The following commands
disconnect the file on which they are operating if it is connected at the time:

DE STROY

RENAME

OFFER

PERMITFILE

PERMITLIB

SEND

COPYFILE (disconnects the input file if it belongs to another user)

The command DISCONNECT

This command can be used to disconnect one or more files from the user's virtual memory.
It takes as its parameter the name of one or more files that are currently connected.
There are several situations in which it is useful:

36 Update 1: Jan.78

* To protect the file. By disconnecting it the user can be sure that its copy on
immediate store (the discfile) is up to date (this can also be achieved by INT:M -
see chapter 6). Also, since it is no longer connected in the virtual memory it
cannot be corrupted by programs being run by this user that might be faulty. 1In
fact this form of corruption is unlikely, since user files are normally left
connected in READ mode (and are therefore protected) when they are not currently
being used for output.

* To free the file for use by another user. For example, after a user has executed
an object file belonging to another user, the file will remain connected in his
virtual memory. If the owner attempts to alter the file (by re-compiling it) a
failure will occur, because it is not possible to write to a file connected in READ

mode in another virtual memory. If the user who has run. the program DISCONNECTs
the file, the recompilation will then be possible.

* To free space in the virtual memory. Although large (13 Mbytes) the virtual memory

can be filled during a session. To free some space the user should use DISCONNECT
to disconnect some of the files that are no longer being used.

TRANSFERRING OWNERSHIP OF A FILE

The two commands OFFER and ACCEPT can be used to transfer a file from one user to another.
The owner of the file should use the command OFFER, which takes two parameters: the name
of the file to be transferred, and the name of the user to whom it is to be transferred.

OFFER({ABC,ERCC98)
would offer the file 'ABC' to user 'ERCC98'.

Note that once a file is on offer it cannot be connected in any virtual memory, regardless
of access permissions..

An OFFER can be revoked, if necessary, by using the command OFFER with only one parameter
- the name of the file.

A file can be offered to any user on either machine.

Accepting the file
The user to whom the file is offered can accept it at any time by using the command
ACCEPT. This takes as its first parameter the full file name of the file to be accepted.
For example, if the user OFFERing the file in the example above was ERCC38 then the user
ERCC98 would type
ACCEPT(ERCC38.ABC)
The effect of this would be to transfer the file 'ABC' from user ERCC38 to user ERCCI8,
giving it the new name ERCC98.ABC. This command will fail if user ERCC98 already has a
file "ABC'. However this problem can be overcome by typing a second, optional, parameter
to ACCEPT, which is the new name to be given to the file. For example,
ACCEPT{ERCC38.ABC,NEWABC)

In this case the file will be transferred and given the new name ERCC98.NEWABC.
SETTING ACCESS PERMISSIONS ON FILES

In chapter 3 there is a description of the access permission mechanism. This section
describes the use of the command PERMITFILE. This command, which can only be used in
respect of one's own files, takes three parameters:

PERMITFILE(file,user,mode)

file is the name of a file belonging to this user

Update 1: Jan.78 37

user

Mode

is one of the following

null
a username
a user-group

meaning give access to all other users

meaning give access to a particular user (can be the owner)
meaning give access to a group of users. The given parameter
may contain up to 5 '?' characters. For example, EGNP?? means
give access to any user with a username containing 'EGNP' as its
first four characters.

is one of the following modes:

RS or null
R
WS

W
NONE
CANCEL

ALL

READ SHARED

READ

WRITE SHARED

WRITE

no access.

used to cancel an access permission given previously to an
individual user (other than the owner) or a user group.
all modes (see below).

In some situations it is necessary to combine more than one mode. This is done by using a
single hexadecimal digit for the mode. This consists of a four-bit field, where the bits
have the following meanings:

The table

38

WRITE

READ

WRITE SHARED
READ SHARED

below shows the complete range of possible combinations:

MODE UNSHARED SHARED
WRITE READ WRITE READ

0 (NONE)

1 (W) * ﬁ

2 (R) *

3 * i*

4 (WS) *

5 * *

6 * *

7 * * *

8 (RS) *

9 * *

A * *

B x * x

C * *

D * * *

E * * *

F (ALL) * * * *

Update 1: Jan.78

Notes

* When a file is created it has default access pemissions of all modes to its owner
and no access to anyone else.

* There is no overhead associated with access permissions to self and everyone else.
Permissions to individuals and groups, however, require space in the file index
(see chapter 3).
Examples

PERMITFILE(ABC)

This permits the file to everyone else with the default access permission READ SHARED.

PERMITFILE (DOUBLE ,ERCC23,WS)
This permits the file DOUBLE to user ERCC23 with WRITE SHARED access permission.

Multiple permissions
It is possible to use PERMITFILE more than once in respect of a file. For example in the
following sequence a file is permitted to all users with READ SHARED access permission,
but access is withdrawn from users with user numbers starting with 'Y'. Finally access in
all modes is granted to ERCC28.

PERMITFILE(PERTEST)

PERMITFILE(PERTEST,ERCC28,ALL)

The command PERMITLIB.(see chapter 10) can be used to control the access permissions of
library index files and the object files to which they refer.

Write permissions

The following restrictions should be noted in-respect of write permission being given to
other users:

* Even if write permission exists it is not possible to connect a file in write mode
if its owner is accredited on the 'other' machine (see Chapter 2)

* Write permission does not allow another user to alter the size of a file. This

restriction means that it is only possible to write to Direct Access files, or to
files connected using SMADDR, if they belong to another user.

COMMANDS RELATED TO BACKUP -

As explained in chapter 3 some files are copied onto a back-up store. Al1 files which are
1ikely to be difficult to reconstruct in the event of file system corruption should be
marked by use of the CHERISH command. This command can be used to mark one or more files:

CHERISH(SNAP)
CHERISH(ABC,MINE ,COBJECT)

The command HAZARD can be used to remove the CHERISH status.

Notes

* When first created, files are not normally CHERISHed. It is the user's
responsibility to CHERISH his important files.

* The CHERISH status of a file also affects its disposal when it is left unused for a
significant period - see below.

Update 1: Jan.78 39

COMMANDS RELATED TO ARCHIVE STORAGE

The archive store is held on magnetic tape, quite separately from the backup store. It
contains files that have been moved there from immediate storage for one of the following
reasons:

* Because the owner has indicated that he wishes the file to be moved by using the
ARCHIVE command.

* Because the file has not been used for a significant period (currently about four
weeks) and it has been moved by the system in order to free space in the immediate
store. Note that this only applies to files that are CHERISHed: un-CHERISHed files
are dﬁstroyed if they remain unused for a significant period (currently about four
weeks).

Once in the archive store there is no distinction between files moved in for different
reasons.

The command ARCHIVE

This command, which takes one or more filenames as a parameter, is used to mark files
which the user wants to move from the immediate store to the archive store. Note that
this command does not take effect immediately: there may be a delay of up to a week before
the file is moved. There are a number of reasons for using this command:

* to clear space in the file index

* to dispose of files that are not currently required but may be needed at socme later
date

* to reduce the charge for keeping files on the system (see chapter 20)

Obtaining a list of files in the Archive store

The command FILES described at the beginning of this chapter can be used to obtain a list
of some or all of a user's files in the archive store.

Moving files from Archive store to Immediate store

The command RESTORE is used to copy a file from archive store to immediate store. Note
that the copy in the archive store is not altered by this command. The command takes
three parameters. The first is the name of the file being restored, and the second, which
is optional, is the date of archiving. This should be typed exactly as it appears in the
FILES output. By default the most recent copy of a file is restored. The date is only
needed when an earlier copy is required. The optional third parameter may be used to set
access permissions to the file for all other users or alternatively to restore with the
permissions set as they were when the file was archived. To set permissions for all other
users, use the permission codes defined in PERMITFILE. To restore with the original
pemissions use the code 'WP'; all the permissions including own permissions are
re-established. The default is to restore with SELF ALL and OTHERS NONE set.

Example
RESTORE(KERN27S)
RESTORE(IMPS07A,23/12/75)
RESTORE(DATA27,01/07/74,wWP)
RESTORE will fail immediately if:
* A file of the same name already exists in the user's immediate store file index.
To avoid this it is necessary to rename the existing copy before restoring the old
one.
* The date is typed in incorrect format.
* There is no file in the archive store of the requested name, or, if a date is used,

40 Update 1: Jan.78

no file of the requested name is held for that date.

If the RESTORE command is successfully interpreted then a request is sent to the VOLUMES
process to carry out the operation. The user can then proceed to give other commands to
EMAS. The file should be recovered from the archive store within 15 minutes.

The RESTORE operation can fail when the VOLUMES process attempts to copy the file to the
immediate store. This will occur if:

* There is insufficient room in the user's file index.

* There is a file of the same name in the user's file index. This would only occur
if the user had created a file of the same name after typing the RESTORE command.

An operator message will be typed on the interactive terminal, indicating the successful
restoration of the file or a reason for failure. This message will be typed when the user
next logs on if he logs off before the file is restored.

Files restored in this way are un-CHERISHed and have default access permissions unless a
third parameter were used.

Destroying files in the Archive store.
The command DISCARD

The command DISCARD is used to delete files in the archive store. The command takes
effect immediately: this means that following a call of DISCARD a call of FILES(,A) will
confirm the deletion of the specified files.

DISCARD can be used with no parameter to delete small numbers of files. After typing
DISCARD the user will be requested to supply the name and date of each file to be deleted.
To terminate the command reply '.END'. The following example should make this clear:

COMMAND:DISCARD

FILE DATE:ACCW370 27/02/77
FILE DATE:IROUT21X 22/02/76
FILE DATE:.END

COMMAND:

Notes
* the date must be typed exactly as printed by FILES
* anything following date on the line will be ignored

* each file is deleted from the archive store as soon as its name has been read and
checked.

DISCARD can alternatively take as its parameter the name of a file containing names and
dates of files to be deleted. The file should contain the names of files to be deleted in
the format specified above, i.e. name and date on each line. Note that FILES(,A,filename)
can be used as a convenient method of generating such a file. Using either the mask
facility in FILES or the editor it is possible to produce a selective list of archive
files to be destroyed. An advantage of this method is that it is possible to check the
1ist to ensure that it contains only files which are really unwanted before calling
DISCARD. The following examples should help to explain this:

To destroy all files ending in 'Y' in the archive store:

COMMAND:FILES(*Y,A,CFILE)
COMMAND : DISCARD(CFILE)

To destroy all copies of 'MASTER' in the archive store:

COMMAND:FILES(MASTER,A,CFILE)
COMMAND: DISCARD(CFILE)

Update 1: Jan.78 41

To destroy all files archived before 1976

COMMAND :FILES(,A,CFILE)
COMMAND : EDIT(CFILE)

Use the editor to delete the names of all files with dates more recent than
31/12/75 :

EDIT:E
COMMAND : DISCARD(CFILE)

Notes

* since the command DISCARD ignores any information following the date there is no
need to remove the number of pages from each line.

* when convenient, DISCARD should be called with a control file as parameter; this
form has efficiency advantages over the parameterless DISCARD.

* when using DISCARD with a file of file names the names should preferably be ordered

with the most recent at the beginning of the file. This is the order produced by
the command FILES, and will result in the quickest response to the command DISCARD.

42 Update 1: Jan.78

Notes

* The default record format for files is V1024.

This can be used for almost all

applications. It is rarely necessary to specify this parameter at all.

* Certain output devices impoée other formats automatically - see the table in

chapter 4.

If files are written for listing on one of these devices at a later stage, the

correct record format and length must be specified.
file for sending at a later stage to the binary paper tape pun

defined as, say

DEF INE(SQ27,PPOUT, ,F80)

For example, if creating a
ch, it should be

However if it is going straight to the paper tape punch it is not necessary to use
the fourth parameter:

DEF INE(SQ27, .BPP)

Summary of DEFINE parameters

Parameter Position Default Contents Examples
ddname 1 None 1/0 type and channel no STREAM3
file/dev 2 None filename ERCC27.HELP15
ABCTE
device .CP
.GP29
concatenated file ABC+TEST37+END
temporary file .TEMP
dummy file NULL
size 3 255 file size in Kbytes 500
record format 4 V1024 record format code and F80
and length record length VA137

The command CLEAR

This command is used to clear one or more file definitions that have been established

using DEFINE.

* With no parameter, in which case all current definitions are cleared.

It can be used in one of three ways:

* With a 1ist of ddnames, in which case the selected definitions are cleared.

* With a 1ist of group names from the following list, in which case all definitions
in the selected groups are cleared:

'STREAMS', 'SQFILES', 'DAFILES', 'FTFILES', 'SMFILES’.

Examples:

CLEAR

CLEAR(ST1,STREAM27 ,DAFILE42)

CLEAR(SQFILES,DAFILES)

Update 1: Jan.78

67

Notes

* A1l definitions are cleared automatically at the end of a foreground session.

* If a DEFINE is used for a logical channel for which there is already a definition,
the earlier definition is automatically cleared.

The command DDLIST

This command is used to provide a 1ist of current links between ddnames and files or
devices. It can be used without a parameter, in which case output goes to the interactive
terminal, or with a parameter to specify an output device or file:

DOLIST
DDLIST(.LP)
DDLIST(DDFILE)

Typical output from DDLIST:
SQFILEQL TESTSQ

DAFILEQ7 TRYPACK
FT14 .LP

68 Update 1: Jan.78

Q is used as an exit when for some reason the editing done during a session is not
required. The effect is to leave the file or files being edited in the state that they
were in before use of the EDIT command. In order to reduce the risk of a user
inadvertently pressing Q and losing his editing unintentionally this command does not
cause an immediate exit but causes the prompt 'QUIT': to appear, to which the user
should reply 'Q' or 'Y' if he really does want to exit. Any other reply will result in
the edit session continuing.

Preserving editing done so far
The command W can be used at any time during editing to 'Write' all the editing done so
far to the output file. This is a useful way to avoid the risk of losing all one's
editing if a system failure occurs before one completes an editing session. Note the
following:

* The editing done so far is consolidated into the cutput file

* If Q is used the output file will be as it was left by the W, not as it was before
editing commenced

* The cursor is left at the top of the file *T* by this command.

MORE ADVANCED FACILITIES IN THE EDITOR

The commands described so far provide most of the commonly required functions of a context
editor. There are three further facilities described here which may be of interest to
some users:

* repeated commands
* moving a section of text within a file

* extracting part of a file and putting it into another file

Command repetition

A single editor command or group of commands can be obeyed repeatedly a specified number
of times. The commands are enclosed in parentheses followed by an integer repetition
factor. For example, if it is required to remove all occurrences of the text 'REAL' in a
file and to replace them with the text 'INTEGER' one could type

(R/REAL/1/INTEGER/)1000

This assumes that there are not more than 1000 occurrences of the text 'REAL'. Another
use of this facility might be to find out the names of the next 10 subroutines in a
Fortran program. The command sequence to do this would be:

(M/SUBROUTINE/PIM1)10

Note that strictly this example would print the next 10 lines that contained the text
‘SUBROUTINE'. Since this word might appear in a comment the command sequence might not
achieve the required effect. Note also the 'Mi' in the command sequence. If this were
not included the effect would be to print the next line containing 'SUBROUTINE' ten times.
This e:amp]e illustrates the need to consider carefully the effect of repetitive editing
commands.

Bracketed commands may be nested.

The normal rules concerning failures within commands are followed. If a failure occurs
the whole sequence of commands is aborted.

Update 1: Jan.78 73

The separator *S*

The editor command 'S' is used to set a separator before the present position of the
cursor. This separator is used to indicate the destination of text being moved (see
below). Additionally it has the effect of a separator in the file. Three commands can be
used to move the cursor past the separator:

* T. This moves the cursor to the top of the file, if necessary passing the
separator

* B. This moves the cursor to the bottom of the file, 1f necessary passing the
separator

* 0 (Over). This command, which takes no parameter, moves the cursor to immediately
before the separator. This is a more efficient operation than, for example,
TM1000, which would be the form needed if the cursor were positioned after the
separator.

A1l other commands which move the cursor can only move it as far as the separator. This
fact can be utilised when it is required to search only part of a file for text strings.
Before starting, the user positions the separator at the end of the text to be searched.
The position of the separator is indicated by the text

* Gk
This text does not actually exist in the file.

The separator can be moved from the file by use of the cammand 'K'. This command takes no
parameter and leaves the cursor at the point previously occupied by the separator.

Moving a section of text within a file
The process of moving part of a file from one place to another within the file involves
* setting a separator at the destination of the file, using the command 'S’
* moving the cursor to the top (start) of the text to be moved
* using the command 'U' to move the text
* removing the separator with the command 'K'

The commands 'S' and 'K' are described above. The command 'U' takes either an integer
parameter or a text string parameter. When used with an integer the value of the
parameter specifies the number of lines to be moved, counted from the current line. When
a text string is used the text moved extends from the current position of the cursor up to
and including the first occurrence of the specified text. In the following example the
routine B is to be moved to before routine A.

Initial state of file:

*Tk
%BEGIN
%ROUTINE A

TEXT OF ROUTINE A
%END
%ROUTINE B

TEXT OF ROUTINE B
$END

TEXT OF PROGRAM
%ENDOFPROGRAM

* Bk

74 Update 1: Jan.78

EDIT:M/%ROUTINE A/S - Set separator
* G

{ 3ROUTINE A

EDIT:M/%ROUTINE B/U/%END Move text

/:/

t TEXT OF PROGRAM

EDIT:K clear separator
t%ROUTINE A

Final state of file:

%BEGIN
%ZROUTINE B

TEXT OF ROUTINE B
END
ZROUTINE A

TEXT CF ROUTINE A
%END

TEXT OF PROGRAM
%ENDOFPROGRAM

Extracting part of a file

The command 'F' is used to extract part of a file and to put it into another file or send
it to an output device. The parameter must be of the form

<filename>
or <output device>

The abbreviations used for output devices are given in chapter 4. The text which is
extracted is that which lies between the present position of the cursor and the 'S’
separator, if it is positioned lower in the file than the cursor; otherwise, between the
cursor and the bottom of the file. The cursor is not moved by this command and the text
in the file being edited is not altered. If the parameter specifies a file that already
exists, the file will be over-written; otherwise a new file will be created. This command
can be used, for example, for extracting one routine from a file for use in another
program, or for listing a part of a long file on the line printer. In the previous
example the %ROUTINE B could be 1isted on the line printer using the following sequence of
commands:

Eng:M/%ROUTINE B/M/%END/M1S Set separator at bottom of routine

TZROUTINE A
EDIT:0M-/%ROUTINE B/F<.LP> List routine on line printer
{%ROUTINE B

THE OPERATION OF THE EDITOR

Although it is possible to use the editor with no knowledge of its internal workings some
users might appreciate a brief description. The editor makes use of the virtual memory
and handles its files by directly addressing them (see chapter 1). When editing one file
to another it first connects the file in the virtual memory and sets up pointers to the
top and bottom. Any text that is inserted is stored in a work area in the virtual memory
and each section of text has pointers to the top and bottom. Any operation which divides
a section of text - for example removing a character from the middle of it, results in
additional pointers being set up pointing to the beginning and end of the 'hole'. Al
these pointers are linked together in the logical order in which the sections they point
to appear in the file. Note that this order may bear no resemblance to the order in which
the sections are laid out in the store. When the edit command 'E' is reached, an output
file is created, if necessary, and the sections of text are moved into it in the correct
order, as determined from the linked list of pointers.

Note:
* Since the output file is not constructed until the E command is executed all
editing is lost if a system failure occurs during editing.

Update 1: Jan.78 75

* Since there are pointers to the top and the bottom, moving the cursor to these
points with T and B is efficient.

When relevant 0 is also an efficient command.

* Searching backwards for text using either M-/TEXT/ or M-n is considerably slower
than searching forwards.

The command LOOK
The command LOOK is used to activate the editor for the purpose of examining, rather than
altering a file. It takes one parameter - the name of the file to be examined - with a
default of 'SS#LIST', the default compiler listing file (see chapter 9).
A similar effect can be achieved by typing
EDIT (filename,.NULL)

There are three differences between using LOOK and EDIT:

* the editor commands I, R, D, U, and G are not allowed since they alter the file

* the prompt at editor command level is 'LOCK:'

* the parameter for LOOK has a default of 'SS#LIST'

Otherwise the facilities available are identical.

The command RECALL
This command is used to interrogate the file containing a copy of all interactive teminal
Input/Output operations for this user; see also chapter 21. It takes no parameter. There
are three differences between RECALL and EDIT:

* the editor commands I, R, D, U and G are not allowed since they alter the file

* on entry the cursor is at the bottom of the file - i.e. pointing at the end of the
most recent information

* the prompt at editor command level is 'RECALL:’

The table below shows the available commands and the parameter types that can be used with
each. The final column shows which commands can be used with LOOK and RECALL.

76 Update 1: Jan.78

Valid Parameters
Text - Text Al lowed
Command Uproot None | Integer | string | string | Quote [Filename | in LOOK
RECALL
A After * * * * *
Bot tom * *
c Cancel * *
D Delete * * *
E Exit * *
F File * *
G Go to *
H Hold * *
I Insert * * *
K Kil * *
M Move * * * * *
0 Over * *
P Print * * * *
Q Quit * *
R Remove * * *
S Separate * *
T Top * *
U Use * * *
W Write *

Update 1: Jan.78

77

The command FINDJOB

This command is used to obtain information about a job that has been put into the
background job queue by a call of DETACH.

The command can be used in two ways:

* to obtain information about a specific job. In this case the name of the job is
given as a parameter; for example

FINDJOB(ERCC0603)

* to obtain information about all jobs in the batch queue for this user, in which
case no parameter is used:

FINDJOB

The resulting messages include the name of each job, the time limit and the name of the
command file(s) DETACHed to make each job.

The command DELETEJOB

This command is used to delete a job that has previously been put into the background job
queue by a call of DETACH. The parameter should be one jobname, or a list of jobnames.

Example:
DELETEJOB(ERCC0600,ERCC0607)
DELETEJOB(ERCCO0601)

Detaching jobs to other computers

An alternative use of DETACH is for sending jobs to other computers. Currently, for most
users, it can only be used for sending jobs to NUMAC. The file (or concatenated files)
being sent should contain one job, including any job control statements, program source or
data if required, in exactly the form that would be used if the job were submitted on
cards. The details of the services available at NUMAC are described in reference 10. The
second parameter to DETACH is used to nominate the processor to which the job is to be
sent. Currently NUMAC is described by the abbreviation .P37, though this may change.
Hence: ’

DETACH(J0B370, .P37)
DETACH(JCL+PROG+DATA23, .P37)

Note that, as with detaching jobs to the local job queue, a copy is made of the file to be
sent, so the original files can be reused or destroyed as soon as the DETACH command has

been accepted. The command QUEUES (chapter 21) can be used to determine whether the job
is still waiting to be dispatched to NUMAC.

Controlling Background Jobs
The preferred method of providing 50phisticated.control of jobs in EMAS is to write a
program, or command, in IMP or FORTRAN (see chapter 18).
The routine SET RETURN CODE
This routine must be specified:
%EXTERNALROUTINESPEC SET RETURN CODE (%INTEGER N)

The routine is used to set a return code before leaving a program. This return code,
which must be in the range 0-4095, can be interrogated by the function RETURN CODE.

Update 1: Jan.78 117

The function RETURN CODE -

This function must be specified:

BEXTERNAL INTEGERFNSPEC RETURN CODE

This returns as its result the value last set for the return code. The return code is set
in the following way:

* by a call of the routine SET RETURN CODE

* by the IMP, FORTRAN and ALGOL compilers - which set a return code of zero to

indicate successful compilation, and non-zero otherwise.

* by use of STOP n in FORTRAN. Note that if n is omitted the value of zero is

assumed.

Examples

The following example is a command TESTIMP which compiles an IMP program and, if the
compilation fails, sends the listing file to the line printer:

SEXTERNALINTEGERFNSPEC RETURN CODE
EXTERNALROUTINESPEC IMP(%STRING(63)S)
LEXTERNALROUTINESPEC SEND(%STRING(63)S)

$EXTERNALROUTINE TESTIMP(%STRING(63)S)

!THE PARAMETER S SHOULD CONTAIN ONLY THE

INAMES OF THE SOURCE AND OBJECT FILES

IMP(S); ! CALL THE COMPILER WITH SUPPLIED PARAMETERS
%IF RETURNCODE # O %THEN SEND('SS#LIST')

%END; ! OF TESTIMP

In the next example a program is compiled with all checks on and run with a small set
of data. If it ends in order (i.e. calls SET RETURN CODE (0)) then it is re-compiled with
PARM(OPT) and run again with a full set of data.

Notes:

118

SEXTERNALROUTINESPEC DEF INE(%STRING(63)S)
SEXTERNALROUTINESPEC IMP(%STRING(63)S)
%EXTERNALROUTINESPEC PARM(%STRING(63)S)
%EXTERNALROUTINESPEC RUN(%STRING(63)S)
FEXTERNALROUTINESPEC SEND(%STRING(63)S)
BEXTERNAL INTEGERFNSPEC RETURN CODE

%EXTERNALROUTINE GO(%STRING(63)S)

ITHE PARAMETER S IS NOT USED IN THIS EXAMPLE

PARM (''); ! SET DEFAULT PARMS

IMP('PROG,PROGY")

%IF RETURNCODE # O %THEN SEND ('SS#LIST') %AND %RETURN
DEFINE ('ST1,TESTDATA'); ! USE THE TEST DATA
RUN('PROGY'); ! THE TEST RUN

%IF RETURNCODE # O %THEN %RETURN: ! THE PROGRAM FAILED
PARM('0PT')

IMP('PROG,PROGY")

DEFINE('ST1,FULLDATA')

RUN('PROGY")

%END; ! OF GO

That to be effective the program should set a non-zero return code early in its
execution so that if a program failure - e.g. UNASSIGNED VARIABLE occurs then this
will indicate a fault when the return code is interrogated.

Apart from testing return codes from the compilers and user programs, it is also
possible to detect faults in EMAS commands (see chapter 18).

Update 1: Jan.78

CHAPTER 20
ACCOUNTS AND USAGE INFORMATION

This chapter describes the method of charging users for their use of EMAS resources, the
procedure to follow to obtain access to the system, and the related command PASSWORD.
Finally there is a description of two information commands METER and USER.

GAINING ACCESS TO THE SYSTEM

Before using EMAS it is necessary to obtain authorisation. This is in two parts:

* (Obtaining authority to use the services of the Edinburgh Regional Computing Centre.
This is dealt with by the ERCC User Support Group.

* gbtaining accredited EMAS user status. This is dealt with by the EMAS Operations
anager.

The end product is a 6-character user name and two four-character passwords. The first
password is used for logging into an interactive terminal for foreground access to the
system; the second is used for card and paper tape input (see chapter 4). Either or both
passwords can be changed by use of the PASSWORD command.

The command PASSWORD
This command can be used to change either or both passwords. Passwords should consist of
any four printable characters other than comma. The command take two parameters, the
foreground and background passwords respectively:

PASSWORD(FORE,BACK)
If it is only required to change one of them then the other can be omitted:

PASSWORD(7777)
PASSWORD(,CARD)

CHARGING FOR USE OF RESOURCES

Resources are charged for, and invoices are sent to the appropriate funding body. The
User Support Group can provide further details of the accounting mechanism outwith EMAS
itself. There are two types of charge:

* charges for file space

* charges for computing resources used

File space charging

There are three rates for charging for file space. Files held in the immediate store {on
disc) are charged at two rates. The charge for files which are CHERISHed is higher than
for the rest. This is in order to recover the cost of backing up the files and replacing
them on disc in the event of a serious system or hardware failure. Files held in the
archive store (on magnetic tape) are charged for at a lower rate. This reflects the lower
cost of keeping material on magnetic tape rather than on the disc file, and the fact that

119

the archive store is more easily extended than the immediate store. The current (August
1977) charges are:

Type Charge (pence) per page per day
Immediate Store (CHERISHed) 0.2%K
Immediate Store (un-CHERISHed) 0.14K
Archive Store 0.014K

where K is a constant. Currently it is 3.85 for most users (7.70 for commercial users).

Charges for computing
There are four elements to the charge made for computing:

* Central processor time (T) - this is the time in seconds during which a user's
process is actually executing instructions, plus an allowance to represent the
share his process makes of facilities provided by the resident supervisor.

* Page turns (pt) - this is a count of the number of pages brought into main store or
written back to the disc or drum for a user process. See Chapter 1 for a
description of paging.

* Connect time (ct) - this is the time, in seconds, during which an interactive
terminal is connected to the process.

* I/0 unit records (U) - this is a count of the number of unit records handled; for
example, lines printed or cards punched.
The other elements in the calculation are

* Priority (P) - this is nomally 1 but is reduced to 1/3 for jobs that are detached
at 'LOM' priority (see chapter 19).

* A constant K - this depends on the class of user. Currently (August 1977) ‘this is
3.85 for most users (7.70 for commercial users).
The charge is calculated using the following formula:
ct]

pt
charge (pence) = K|P (T t— — b —
250 60 300

Project codes

It is possible for one user to divide his computing charges among various projects. This

is done by using the command PROJECT, which accepts as its parameter a two-character

project code. The characters should be upper case letters or digits. For example:
PROJECT(A9)

A1l work done after typing this command will be charged to code A9 until either PROJECT is

used again, or the user logs off. The User Support Group should be consulted about the~

way in which project codes are printed in user accounts.

The form PROJECT(?) can be used to determine the current project code.

120 Update 1: Jan.78

The command METER

This command is used to obtain usage information and an indication of the amount charged
thus far in the current session (i.e. since log-on).
Output is of this form:

21/09/77 12.44.23 CPU= 6.15 SECS CT=21 MINS PT=4282 CH=168P

The information given is as follows:

*

*

*

Current date and time
CPU time, in seconds
Interactive terminal connect time, in minutes

Page Turns

The command takes no parameter.

Approximate charge (on the assumption that this is a user charged at the standard

rate). No allowance is made in this charge for unit record output.

The command USERS

This command, which takes no parameter, is used to print out the number of active

This nomally includes three system processes (see

It provides an indication of the loading on the system and the response that
Currently each machine can run with up to about 45 users.

processes on the user's System 4.
chapter 2).
can be expected.

Update 1: Jan.78

121

CHAPTER 21
ANCILLARY COMMANDS

The table below lists the ancillary commands available in the Subsystem - commands which
do not readily fit into any of the categories covered by earlier chapters, or, as in the
case of OPTION for example, commands which relate to several of the categories.

Command Purpose

CPULIMIT Used to set time limit for subsequent commands

DELIVER Used to specify delivery information, to be
printed on output files

OBEYFILE Used to execute a sequence of commands

OPTION Used to set a number of optional characteristics
of the Subsystem

QUEUES Used to print information about files awaiting
output

STOP Used to terminate foreground session

SUGGESTION Used to send suggestion to the System Manager

The command CPULIMIT

This command is used to set the amount of central processor unit (CPU) time allowed for
each subsequent command. It takes one obligatory parameter, the time in minutes, and
optionally a second parameter to specify time in seconds. For example:

Notes

Command Time set
CPULIMIT (3) 3 minutes
CPULIMIT (,10) 10 seconds
CPULIMIT (1,30) 1 minute and 30 seconds

In order to provide good response for users of interactive programs there is a low
1imit imposed during busy periods on the maximum CPU time that can be set using
CPULIMIT.

Currently the maximum values for foreground use varies between 30 seconds and 10
minutes depending on the number of users logged on. For background jobs it is 120
minutes.

The default setting for foreground access is 30 seconds and for background jobs it
is 2 minutes.

The command takes effect for the following and subsequent commands, and remains in
effect until CPULIMIT is used again or the user logs off. If the number of users
logged on increases such that the user's current setting is higher than the maximum
allowed, a warning message will be printed on his interactive terminal, and the

Timit will be reduced to the maximum allowed. This will occur at the start of the
first command after the 1imit has been exceeded.

Update 1: Jan.78 123

* This command can be useful for testing programs that contain faults which result in
infinite loops. By using CPULIMIT with a Tow value - perhaps 5 seconds - the
elapsed time taken to reach the TIME EXCEEDED failure is considerably reduced.

* CPULIMIT has no effect on the OBEYFILE command (see below) but affects any commands
called by OBEYFILE.

Control of Rate of usage

Apart from limiting the maximum value for CPULIMIT a mechanism exists to check the rate at
which cpu time is used by a user in relation to elapsed time. If the rate of use over a
period is unreasonably high, in the context of the number of users logged on, the user
will, when he starts the next command, get a message on his interactive terminal

“CPU RATE EXCEEDED". He will be allocated a small amount of cpu time to tidy up and he
should log off as soon as possible. If he fails to do so he will be logged off
automatically.

Notes

* This mechanism has been introduced to attempt to penalise "anti-social” use of the
system i.e. running heavily cpu-bound work during interactive sessions. Such work
should be DETACHed to run in background mode (chapter 19), where the rate check is
not applied.

* The precise characteristics of the rate check are controlled by the system manager.
They may be varied in the 1ight of user experience and comments. It does not
operate when the system is lightly 1oaded.

The command DEL IVER

This command is used to specify the text to be printed at the start and finish of output
files to assist Job Reception staff in distributing cutput. The parameter should be
suitable text with a maximum length of 19 characters. No spaces should be used. The
underline character is a suitable substitute. For example:

DEL IVER(ALISON.HOUSE)
DEL IVER(CHEMISTRY K.B.)

Notes

* The registered name of the owner of the process is always printed on the output as
well as the delivery information.

* The command takes effect immediately and remains in effect until another use of the
DELIVER command.

* The form DELIVER(?) can be used to determine the current delivery information. It
is printed in reply on the user's interactive terminal.

The command OBEYFILE

This command is used to execute a sequence of commands. The required commands and any
data they would normally read from the interactive terminal should be put in a file, using
the Editor or some other means. The format should be identical to that which would be
used when typing commands on the interactive terminal. OBEYFILE takes one obligatory
parameter, the name of the file containing the commands to be obeyed. Additionally a
second parameter can be given to specify a file or device to be used for output. By
default the output goes to the interactive terminal. For example:

OBEYFILE(NE26)
OBEYFILE(NRJOB, .LP15)

Among the commands included in the file to be obeyed can be further calls of OBEYFILE for

other files. This process of nesting calls of OBEYFILE can continue to four levels. Note
that for the second and subsequent levels the optional second parameter is ignored. This

parameter is also ignored if OBEYFILE is called in background mode (see chapter 19).

124 Update 1: Jan.78

The command OPTION

This command is used to set a number of optional characteristics for this user. The
command takes one or more keyword parameters, which are listed below. The standard
settings are underlined.

The call only affects the options that are specified, all others in force being left alone
(cf. PARM). The options specified do not take effect until after logging of f and logging
on again; they remain in effect until the end of the session in which the command OPTION
is used again.

QUICKSEARCH When searching for standard Subsystem commands, do not search the user's own
library index or any library indexes appended (see chapter 10).

FULLSEARCH When searching for commands, always search current library index and
appended library indexes first.

FULLMESSAGES Print confirmatory messages from commands (see the table in chapter 6).
NOMESSAGE S Suppress confirmatory messages.

NORECALL Do not store interactive terminal input/output messages for use by RECALL
(chapter 12).

TEMPRECALL Store interactive terminal 1/0 for use by RECALL for the duration of the
current session.

PERMRECALL Store up to 16 pages (64K bytes) of the most recent interactive termminal /0
for use by RECALL. This is kept between sessions.

STACK=n n can take an integer value in the range 2-8. This specifies the size (in
segments of 64K bytes) to be used for the stack file created by the
Subsystem, with the name 'SS#STK'. The default is 2 segments (128K bytes),
which will be large enough for the majority of programs. See chapter 10 and
reference 6 for the use of the stack.

BRACKETS Parameters to commands typed on an interactive terminal or included in an
OBEYFILE file or a DETACHed command file, should be enclosed in parentheses.
A11 the examples in this manual assume that this option is in force.

NOBRACKETS Parameters to commands do not need to be enclosed in brackets. The command
name must not include any embedded spaces, and must be separated from any
parameters by one or more spaces. The commands paired together below have
the same effect:

BRACKETS NOBRACKETS
COMMAND:LIST(A, .LP) COMMAND:LIST A, .LP
COMMAND : INSERT FILE(0BJ) COMMAND : INSERTFILE 0BJ
COMMAND :METER COMMAND :METER
STARTFILE This option can be used to nominate a file to be executed by OBEYFILE

automatically at the start of an interactive session. Example:
OPTION(STARTFILE=STARTUP)}. The file can contain calls on any conmands and
might be used, for example, to set a PROJECT code or a non-standard setting
for PARM. Note that it is not possible to nominate an output file for the
OBEYFILE. This option precludes the use of the option STARTCOMMAND.

STARTCOMMAND This option can be used to nominate a single command to be called
automatically at the start of an interactive session. A suitable standard
command would be FILES, but any command could be selected including a user
written command. Note that it is not possible to specify a parameter to be
passed to the command. This option precludes the use of the option
STARTFILE.

NOSTART Do not use the automatic command execution facility.

The parameter ? can also be used, to cause the currently effective options to be printed.
Examples:

Update 1: Jan.78 125

OPTION(FULLSEARCH,STACK=4)
OPTION(FULLME SSAGES)
OPTION(?)

The command QUEUES

This command is used to determine the number of files belonging to this user which are
held in EMAS queues awaiting output. It takes no parameter and output is of the form:

FILES QUEUED

LOCAL DEVICES LP CP REMOTE NO: 37
NO OF FILES 3 1 2

In this case there are three files waiting to be printed on the line printer, one on the
card punch and two waiting to be dispatched to remote terminal 37.

Notes
* Normally files are output on a particular device in order of submission.

* In the case of remote terminals the output from QUEUES makes no distinction between
the devices available. Hence files for .CP37 and .LP37 and .P37 all appear as
files for Remote number 37.

The command STOP

This command is used to temminate a foreground session. It takes no parameters. It has
the following effects:

* Prints out usage information as for METER (see chapter 20).

* Destroys all temporary files created during this session and the default compiler
listing file SS#LIST if it exists.

* Disconnects interactive terminal - making it available for another user.
* Stops the user's virtual processor - freeing a slot for another user to log on.

* Indicates to the demons process that any NOW jobs waiting for this user can be
started as soon as machine time is available.

The command SUGGESTION

This command is provided to make it easy for users to send suggestions for changes or
improvements to EMAS to the System Manager. Its use is intended primarily for minor items
which crop up during an interactive session which do not merit the formality of a letter.
The facility should not be used for reporting serious faults - these should be reported to
the Advisory Service as soon as possible.

Users are warned that although an effort will be made to reply to all SUGGESTIONS
eventually, they should not expect a prompt response. An indication will be given in the
reply as to the likelihood of their suggestion being implemented.

The method of use is to type the command with no parameter. The replies to the prompts

"SURNAME:', 'ADDRESS:' and 'TEXT:' should be the personal (not EMAS) name of the user, the
address for a reply, and the text of the suggestion terminated with an asterisk on a line

by itself. The example shows this:

COMMAND: SUGGESTION
SURNAME: DR G. JONES
ADDRESS: 119 GEORGE SQUARE
TEXT: TEXT OF SUGGESTION
TEXT:*

As many lines of text as desired may be given.

126 Update 1: Jan.78

APPENDIX 4
PARTITIONED FILES

This appendix describes the creation and use of Partitioned Files. A partitioned file is
a complete EMAS file which has al1 the normal attributes of a file: a name, access
permissions, cherish status and so on. Its contents are called Members, and each member
is similar to a complete file, of any type. Thus one partitioned file might contain
members which include character files, data files and even partitioned files. For many
purposes a member of a partitioned file can be used in the same way as a file of the same
type. For example if the member is of type character it can be listed on the line
printer. There are, however, a number of exceptions to this rule - see below.

Creating a Partitioned File

The command NEWPDFILE is used to create a partitioned file. It takes one parameter - the
name of the file to be created; for example

NEWPDFILE (HOLD)

A file of the name given must not already exist.

Operations on a complete partitioned file

A11 of the general file utility commands described in chapter 7 can be used with a whole
partitioned file - for example PERMITFILE and CHERISH, since these commands are not
concerned with the contents of a file. Additionally COPYFILE can be used to copy a
complete partitioned file and FILEANAL can be used to obtain a 1ist of its members.

Naming of individual members

Each member of a partitioned file must have a name of up to 8 upper case letters or
numeric characters, the first of which must be a letter. When referencing an individual
member the member name is written after the partitioned file name and is separated from it
b% an underline (_). For example member LIST1 in partitioned file HOLD could be accessed
thus:

LIST(HOLD LIST1,.LP)
If the appropriate access permission existed another user could access it. Example:

LOOK(ERCCO6.HOLD LIST1)

Creating a member of a partitioned file

The command COPYFILE must be used to create a member of a partitioned file. The first
parameter should be the name of the file whose contents are to be copied, the second is
the full name to be given to the member, (see above). Examples:

COPYF ILE (SOURCE ,HOLD_SOURCE77)
COPYFILE(ERCC27.FILES,HOLD FILES)

If a member of the same name already exists in the specified partitioned file its contents
will be overwritten; if not a new member will be created. Any type of file can be copied

in this way, including a whole partitioned file. There is effectively no restriction on
the number of members in a partitioned file.

Destroying and Renaming members

The commands DESTROY and RENAME can be used in respect of individual members. The
following examples should be self-explanatory:

Update 1: Jan.78 137

DESTROY(HOLD FILED)
RENAME(HOLD TEST1,HOLD OLDTESTL)

Note that when a member is destroyed, the remaining members are compacted to use the space
it occupied. This means that there is no need for an explicit "tidy" operation.

Accessing individual members

In general individual members can be used wherever a file is to be read from. The main
restriction is on the use of a member of a partitioned file by the loader (chapter 10).
Neither Library Index files nor Object files can be used whilst they are members of a
partitioned file. This restriction does not prevent their being stored in a partitioned
file - it means that they have to be explicitly copied from the partitioned file into
individual files before they can be used. The following pair of commands could be used to
RUN the program held in PD_MYPROG

COPYFILE(PD MYPROG,TEMPOBJ)
RUN(TEMPOBJY

The following table indicates which of the standard commands can be used to access
individual members of partitioned files.

Command Notes Example
ALGOL Source only. ALGOL(PD_ALGTEST,AY)
CONCAT Both for input files and as control file CONCAT(PD_CONCONT)
COPYFILE for input and output (see above). COPYFILE(AB_SRCE,SRCE)
Note that a member cannot be copied to COPYFILE(AB_NAME,BC_NAME)
another member in the same partitioned file.
DEF INE For input file only. DEFINE(FT5,FPD_DATA)
DETACH DETACH(ACT_JCL, .P20)
EDIT Can be used for input file EDIT(PD_EFILE,SRCE)
and for I<filename> facility only. .
FILEANAL ‘ FILEANAL(PD_FLENZ)
FORTE Source only. FORTE(FPD_SOURCE,Y)
IMP Source only. IMP(DIRSRCE_CPUT,CPUTY)
L IBANAL LIBANAL(ARCH_LB)
L INK Both for input files and as control file. LINK(PD_LINK CONT)
LIST But not SEND. LIST(PD_OUTLIST,.LP)
LOOK LOOK(DIRSPECS CPUT)
OBEYFILE OBEYFILE(PD OBEY)

Efficiency Considerations

Partitioned files are particularly suited to applications involving many small files.
This is because file space is allocated in units of a page (4096 bytes), which means that
a file containing only a few hundred bytes of information contains a high proportion of
wasted space. Even files larger than one page often contain a significant amount of
unused space because they too are rounded up to a full page boundary.

Quite apart from the file space consideration, it is often convenient to be able to group

sets of files together, and partitioned files provide a possible method. The following
points should be noted, however, before embarking on the use of partitioned files:

138 Update 1: Jan.78

"~ * There is no significant difference between the cost of reading from a member of a
partitioned file and reading from a conventional file containing the same information.

* The cost of adding a new member to a partitioned file is similar to the cost of making
a copy of the same file.

* There can be a significant cost in destroying a member of a partitioned file. Note
that a member is destroyed either by use of the explicit DESTROY command or as part of
COPYFILE if the member being created has the same name as an existing member. This
cost will not be significant if the whole partitioned file is only a few pages long,
but for a large partitioned file - say more than 100 pages - the cost will be
noticeable. Thus partitioned files are less suitable for applications involving
frequent replacement.

Update 1: Jan.78 139

INDEX

ACCEPT 37

access modes 12,37

access permission 12,37

access to the system 119

accounts 119

advisory service 31

ALERT 30

ALGOL 51,107
calling commands 107
compilation 107
input/output 108
running programs 107

APPENDLIB 56

archive file store 15,40
charges for 119
destroying files in 41
restoring files from 40

ARCHIVE 40

assigning files to programs 63

back-up 15,39

background mode 115

backing store 2

BINARY 18

binary paper tape
input 17
output 20

calling commands from programs 109

"cancel character 24
line 24

card
code 17,131
input 17
punch 20

carriage control characters 63,66

cathode ray tube display 23

CHANGESM 82

changing size of mapped files 82

changing size of stack 125

character code 131
for magnetic tape 87

character files 61

charges
for computing 120

. for files 119

CHERISH 15,39

CLEAR 67

CLOSEF 105

closing mapped files 81

CLOSESM 81

command interpreter 109

command language 27

commands
calling from ALGOL 107
calling from FORTRAN 100
calling from IMP 92,109
detecting errors 112
list of 32
output from 28
parameters 27
standard fault messages 127
writing own 112

COMMON 58,99

compilers 49
ALGOL 49,107
commands for calling 51
FORTRAN 49,99
IMP 49,89
listing files 50
options 51

Update 1: Jan.78

CONCAT 46

concatenation of files 46,51,64
conflicting mode 12

connect modes 12

connect time 120

context editor 69

COPYFILE 46

corruption of files 11,15,37
CPULIMIT 123

current library index 55

data files 62

DDLIST 68

ddname 63

default access permissions 38

DEFINE 63,95,102,108

DEF INEMT 86

DELETEJOB 117

deleting files 36,41

DELIVER 124

delivery information 124
finding from program 94

demons 5,17

DESTROY 36

DETACH 115

director 6,35

DISCARD 41

discfile 2,9,13

DISCONNECT 36

drum 2,9

dummy file definition 64

dynamic loading 58,100

DYNAMIC 51

EDIT 69

edi tor
command repetition 73
command structure 69
deleting text 71
extracting text 75
inserting text 71
moving cursor 70
moving text within file 74
operation 75
output 72

preserving editing done so far 73

separator 74
table of valid parameters 77
terminating 72
efficiency of programs 3,98
EMASFC 101
errors 127

in commands called from grograms 112

executing programs 53,91,99,10
EXIST 94

extending files 64

external data 90

external references 53
external routines 89

faults
during compilation 51

in commands called from programs 112

standard messages 127
file descriptors 14

file protection 110 hardware 7

file system 11 HAZARD 39
parts 13 HELP 30
FILEANAL 45 HOST 26
filename 11
FILES 35 immediate file store 6,11
files IMP 51,89
access from ALGOL 108 _ calling FORTRAN 95 -
access from FORTRAN 102 calling commands 92,109
access from IMP 95 character input/output 96
access permission 12 default stream definitions 96
back-up 15,39 direct access files 97
character 61 efficiency 98
charges for 119 external data 90
checking existence from program 94 external routines 89
cherish status 15 program structure 89
connect modes 12 sequential binary files 97
connecting 3,36 store map files 98
copying 4 system library 91
cost of storage 40,119 improvements 126
created by subsystem 11 information card 30
creation 14,35,79 input devices 17
data 62 input/output
destroying 36,41 in ALGOL 108
disconnecting 36 in FORTRAN 102
extending 64 in IMP 95
headers 45,61,62 of files 17
input 18 INSERTFILE 55
Joining 46 interactive terminals 6,23
listing 47 access from program 64
mapping 79 control characters 24
maximum size of 14 delete character 24
naming rules 11 dial-up 23
object 49 directly connected 23
output 19 full duplex mode 23
partitioned 137 graphic mode 25
physical layout 11 logging in 26
renaming 36 lost input 25
security of 6,11 pad characters 25
sharing 12 prompts 25,92
size 65 set mode 24
size for output 20 type ahead 25
source 50 internal character code 131
temporary 64 interrupts
transfer from archive store 40 causing 24
transfer of ownership 15 interrogating from program 93
transfer to archive store 40 subsystem 28
FINDJOgtilgty commands 35,45
11
FORTE 51,99 Job 115
FORTRAN 99 L IBANAL 59

calling IMP 101

ibrary index files 54
calling commands 100 library

line printer 20

closing files 105 format control 63
default file definitions 104 . LINK 52
direct access files 104 list cells 14
dynamic loading 100 LIST 47
input/output 102 listing files 47
sequential files 102 loading programs 49,53
subroutine linkage 99 logging in 26
system library 100 LOOK 76
FPRPMT 101 lost input 25
general linkage area 49,53,58 magnetic tape
GLA 49,53,58 access from programs 86
glossary 133 character code 87
graph plotter 20 deck 9
graphics routines 20,91,100 for archive store 40
group permission 12 hardware characteristics 85
labels 85

main store 2

Update 1: Jan.78

mapping files 79
changing size 82
closing 81

margins 96

matrix handling 3

matrix plotter 21

METER 121

modem 23

multi-access 1

network control processor 9,23
newline characters 61,62
NEWPDFILE 137

NEWSMFILE 79

NOENTRIES 51

NOIDENT 18

NOW 116

NUMAC 117

OBEYFILE 111,124
object files 49
linking 52
OFFER 37
operator messages 28
OPTION 125
BRACKETS 27,125
FULLMESSAGES 125
FULLSEARCH 125
NOBRACKETS 27,125
NOMESSAGES 28,125
NORECALL 125
NOSTART 125
PERMRECALL 76,125
QUICKSEARCH 58,125
STACK=n 125
STARTCOMMAND 125
STARTFILE 125
TEMPRECALL 76,125
output device mnemonics 20
output devices 19,47,64
output from detached jobs 116
output queues 48,126
overlaying 3
ownername 11
finding from program 94

pad characters 25
page fault 2
page turns 120
paging 2
paper tape
binary input 18
input 17
output 20
parity 17
PARM 51
partitioned files 137
PASSWORD 119
passwords
background 18,119
foreground 26,119
PERMITFILE 37
PERMITLIB 59
permitting access 12,37
print control characters 63
priority of detached jobs 116
program loading 53,91,99,107
failures 57
PROJECT 120
PROMPT 25,92

protection of file definitions 111

Update 1: Jan.78

queues for output 19
QUEUES 126
QUICKSEARCH 58,125

RECALL 25,76

record format 19,62,66

record length 66

record spanning 66

references 141

remote devices 19

REMOVEFILE 56

REMOVELIB 56

RENAME 36

re-prime 15

RESTORE 40

RUN 53,111
for ALGOL programs 107
for FORTRAN programs 99
for IMP programs 91

scheduler 7
scheduling of detached jobs 116
security 6,11,36
segment 14
SEND 48
sending jobs to other machines 117
sequence numbers 18
set mode 24
shareable code 49
size of stack 125
SMADDR 80
source files 50
special forms facility 47
SSFAIL 112
SSINFO 94
SSFMESSAGE 112
SSFOFF 112
stack 50,125
setting size 125
STOP 126
store mapping 79
subsystem 27
command language 27
file types 29
messages 28
SUGGESTION 126
supervisor 5
system file information 14
system integration 9
system processors 6,7

tab 24

teletypes 23

temporary files 64

terminal control processors 9,23
terminating a foreground session 126
TESTINT 93

TIME EXCEEDED 124

time limit 123

TRAIL 18

trailing spaces 17,61
transferring ownership of file 37
type ahead 25

unsatisfied references 57,91
user file index 14
USERLIB 55
username 119

finding from program 94
USERS 121
utility commands 35

virtual memory 1,6,36,49,79
virtual processor 5
volumes processor 7,41

