o= »« Edinburgh
g Regional

= Computing
EDl&ﬁGH Centre

ERCC Graphics Manual

A description of the graphics
facilities provided by ERCC.

2nd Edition
July 1979

Edinburgh Regional Computing Centre

ERCC Graphics Manual

A description of the graphics
facilities provided by ERCC.

(C) Edinburgh Regional Computing Centre 1979

CONTENTS

Chapter 5

5.1 Introduction

5.2 Equipment
5.3 ERCC Graphpack

5.3.1 Administrative Routines

5.3.2 Basic Drawing Component Routines

5.4 Calcomp Basic Graphic Software Simulation Package

5.4.1 Administrative and Drawing Routines

5.5 Graph Plotting Symbol Sets

5.5.1 Extended ISO symbol set for IMP and Edinburgh FORTRAN programs

5.5.2 Extended EBCDIC symbol set for IBM FORTRAN programs

5.6 Job Control Requirements

5.6.1 EMAS on the ICL 4-75 twin configuration
5.6.2 EMAS on the ICL 2970 configuration

5.6.3 VME/B on the ICL 2980 configuration
5.6.4 0S on the NUMAC IBM 360/370 configuration

Table 1
Table 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table 3
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

List of Figures and Tables

Plotter hardware details

List of Graphpack routines

Examples of viewing windows and their relative positions
Program coordinate system and current viewing window
Types of line drawn by PLOT/PLOTGR

Example of axes, plus scatter diagram

Deveiopment of Figure 4: axes plus continuous curve
Example of grid used in symbol drawing

Development of Figure 5: annotated graph

List of Calcomp simulation package routines

Calcomp package: plotter output layout

Calcomp secondary coordinate system

Example of the use of Calcomp routine PLOT

Example of grid used in symbol drawing

Example of the use of Calcomp routines PLOTS, SYMBOL and NUMBER

Annotated graph

Page

5-3
5-5
§-5

5-15

5-28

5-29

5-44

5-45

5-46

5-47

5-47

5-49

5-51

5-53

5-3
5-4
5-9
5-12

- 5-16

5-18
5-21
5-23
5-25
5-28
5-31
5-33
5-35
5-37
5-39
5-42

Page

Table 4 Extended ISO symbol set for IMP and Edinburgh FORTRAN programs 5-45
Table 5 Extended EBCDIC symbol set for FORTRANG, ICL & IBM FORTRAN programs 5-46
Chapter 6
Tektronix Terminals 6-1
The Sigma Graphics Option Controller 6-2
The Package 6-2
Graphics Mode 6-2
Defining Terminal Type 6-3
Erasing the Screen 6-3
The Pseudo-Display File 6-3
Windows 6-4
Drawing Operations 6-5
Enhanced Graphics Mode 6-6
Dynamic Windowing 6-9
Sub-pictures 6-11
The Cross-hair Cursor 6-14
Annotation of Displays 6-17
Hardware Characters and Alpha-numeric Mode 6-17
Software Characters 6-21
Menu Operations 6-24
Contour Drawing 6-28
Three-dimensional Drawing 6-31
Storage and Viewing of Pseudo-display Files 6-34
Graph Plotter Transcription 6-36
Viewing Graph Plotter Files 6-37
Error Messages 6-39
Summary 6-40

List of Figures

Figure 1 A Tektronix model 4010 terminal 6-1
Figure 2 A Sigma GOC with a Dacoll terminal 6-2
Figure 3 Virtual and screen windows 6-5
Figure 4 A simple picture 6-7
Figure 5 The use of windows 6-9

ii

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

The use of sub-pictures

Hardware characters

Scaling and rotation of hardware characters
Software characters

Scaling and rotation of software characters
A menu

Function values in the unit square

A contour drawing

A three-dimensional projection

6-13
6-17
6-20
6-21
6-23
6-24
6-28
6-31
6-34

Preface to Second Edition

The first edition of the ERCC Graphics Manual, edited by John Murison, consisted of a
contents list for Chapter 5 and Chapter 5 which described the graph plotting facilities
available at ERCC. This manual was published in June 1977 and the intention was to later issue
further chapters describing other graphical facilities. Since the first edition was published
changes have been made to both the graphical facilities and the main computers behind them.
This edition consists of a contents 1ist for Chapters 5 and 6, Chapter 5 revised to describe
the improved graph plotting facilities and access from the ICL 2900 series computers, Chapter 6
which describes interactive graphical facilities and an index covering both chapters.

The intention is still to issue further chapters in due course.

Neil Hamilton-Smith
May 1979

iv

CHAPTER 5

GRAPH PLOTTING

5.1 INTRODUCTION

This chapter describes the basic graph plotting facilities provided by ERCC and explains
how to use them. Programs using these facilities may be written in IMP or Edinburgh FORTRAN,
and run under EMAS on the ERCC ICL System 4-75 configuration and orfi.the ICL 2970, or under
VME/B on the ICL 2980, or under 0S on the NUMAC IBM configuration; or written in ICL FORTRAN
for running under VME/B on the ICL 2980, or in IBM FORTRAN for runﬁing under 0S at NUMAC.

¥
Software

Graph plotting software is available in the form of two completely independent packages of
routines. The ERCC Graphpack is recommended; however a Calcomp Basic Graphic Software
Simulation Package is also made available, since FORTRAN programs obtained from external
sources often use the Calcomp manufacturer's plotting routines. In either case a set of
routines is provided. These are called by the user in his own program, and the result is that
a file of plotter commands (the 'plotter file') is generated. If the user program has called
the routiné%‘correct]y, the plotter file commands, when obeyed by the appropriate graph
plotter, causé the desired output to be drawn. '

Notes on the packages

* The ERCC Graphpack conforms to the ERCC specification of basic plotting facilities. This
statés that the plotter output from each job must be ®independerit', i.e. can neither

corrupt nor be corrupted by plotter output from any other job; and that each job comprises

one or more independent plotter files, each headed by a 'window' giving file
identification information, and having an enforced total paper advance limitation; each
'such file contains '

one or more 'viewing windows', which may or may not be independent from one another
but each of which is contained within the plotter dimensions, and comprises

one or more drawings, referenced to one or more Cartesian coordinate systems,
each comprising

the basic drawing components - straight lines, curves, special graphic
symbols, axes, text, numbers - referenced to the currently declared
Cartesian coordinate system.

The routines concerned with the first three divisions above are termed ‘administrative'.
They automatically transform the arbitrary coordinate system or systems to which the basic
drawing components are referenced into positions on the plotter paper for each drawing in
each window in each file.

The ERCC Graphpack routines are available for use in programs written in IMP, Edinburgh
FORTRAN, ICL FORTRAN or IBM FORTRAN.

* The Calcomp Basic Graphic Software Simulation Package conforms, in general, to the Calcomp
manufacturer's specification of basic plotting facilities, as described in the Calcomp
booklet 'Programming Calcomp Pen Plotters'. Unfortunately the original Calcomp software
assumes no responsibility for differentiating between files, or ensuring that plotter
output remains within bounds - all is left to the individual programmer. Hence, the
Simulation Package has been upgraded by introducing the concepts of 'viewing windows',
'independence’ and 'identification' of files and jobs, and by incorporating checking
facilities with appropriate comments on receiving invalid data, thus satisfying the
standards of plotter output control inherent in the ERCC graph plotting specification. The
effect of this upgrading on existing programs which use the original Calcomp manufacturer's
software should be minimal; it is discussed below in the Simulation Package description
(Section 5.4).

Calcomp software is FORTRAN based. The Simulation Package routines, although written in

IMP, are therefore callable only from Edinburgh FORTRAN, ICL FORTRAN and IBM FORTRAN
subprograms.

A1l of the graph plotting software is written in IMP, notwithstanding the source language
of the calling program. Any complications this may cause are fully discussed in this chapter.

Graph Plotting 5-1

Hardware

The software contains references to six different graph plotters, detailed in Table 1
opposite. Any one of these may be chosen as the output device if it is available. In
particular, the ERCC graph plotter is an EMAS output device connected via the Network Control
Processor. Plotting to the ERCC plotter from NUMAC is controlled by EMAS acting as a Remote
Job Entry terminal in such a way that plotter output appears to HASP (the spooling part of the
system at NUMAC) as output to a remote Card Punch; a similar mechanism is used for plotting
from the ICL 2980 to the plotter at Buccleuch Place Lane. The consequences of this method of
plotting are discussed in 'Job Control Requirements' (Section 5.6).

Use of plotter files

Drawings generated by reference to the graph plotting software need not be plotted,
immediately or at all. As an aid to program development and to give flexibility between
graphic output devices, the routine TVIEW (described elsewhere in this manual) provides for the
viewing of graph plotting software output on a Tektronix Storage Tube Display. Conversely,
graph plotter output may be obtained from pictures created on a Tektronix display.

Efficiency

Two rules relating to speed of pen movement and time taken to raise or Tower the pen can be
deduced from the figures in Table 1; they give a guide to making efficient use of the plotter:

* minimise pen raise/lower commands, since they are relatively expensive

* minimise pen movements with the pen raised, since these movements produce no visible
result on the paper

Both packages of routines described in this chapter follow these rules as far as possible,
and in particular will resolve successive movements with the pen raised into a single direct
movement to the next visible item in a drawing. This introduces the concept of a 'notional'
pen position, i.e. where the pen would be if it had followed all the specified movements. The
pen's actual position need only coincide with its notional position when the movement requested
is with the pen in contact with the paper.

The Calcomp 936 Plotter

5-2 Graph Plotting

5.2 EQUIPMENT

The graph plotting software allows for reference to one of six different types of graph
plotter. However they all work on the same principle, only differing in respect of their
physical characteristics, and so a single description of the mode of operation suffices. The
ERCC graph plotter is a Calcomp 936.

A cylindrical drum revolves on a horizontal axis and carries plotter paper from a feed roll
at the rear to a take-up roll in front beneath a fixed carriage located parallel to the drum's
axis. The drum revolves both forwards and backwards. The pen cartridge mechanism is mounted
on the fixed carriage and traverses the carriage to the right and to the left. Micro-switches
at each end of the carriage limit the effective paper width available for plotting. Normally
there are no hardware error indications during drum revolution if there is no paper loaded or
if the paper runs out. However, the Calcomp 936 at ERCC has had a microswitch fitted to stop
the plotter in these circumstances.

By convention, the right-hand end of the carriage is designated the base for plotter
measurements and is termed the 'plotter origin'.

X movements are performed by drum revolution

* forwards, advancing the paper (+)
* backwards, retarding the paper (-)

Y movements are performed by pen traverse

* along the carriage to the left (+)
* along the carriage to the right (-)

when the plotter is viewed from the front. Simultaneous drum revolution and pen traverse
create diagonal movements in the four 45-degree directions. Each pen movement is made up of a
number of small 'increments', each in one of the eight basic directions.

During drum movement and/or carriage movement, the pen mechanism may be raised above the
paper, thus simply repositioning the pen, or lowered in contact with the paper, to produce a
visible 1ine. The standard pen used is a black biro but blue, green and red biros are also
provided. Liquid ink output may also be obtained; at ERCC this must be authorised by
Mr M.P. Baillie (031 667-1081 ext. 2902).

Table 1 identifies the different characteristics of plotters which the software recognises.

Plotter Model (1) (2) (3) (4) (5) (6)
Calcomp Calcomp Calcomp Calcomp Calcomp Calcomp
936 663 663 564 564 565
ERCC KB ERCC BPL ERCC BPL SIAE, BUSH
Characteristics
Plotter units cm in in cm in cm
Increment size .005¢cm .0025in .0025in .0lcm .005in .0lcm
Speed in pen up 2600 450 450 300 300 300
inc/sec pen down 1800 450 450 300 300 300
No. of pen holders 3 1 1 1 1 1
Raise/lower pen time .1sec .1lsec .lsec .1lsec .1lsec .lsec
Max. plotting width 82.5cm 28.51n 10.25in 72.5cm 28.51in 28cm
Length of paper roll 120ft 120ft 120ft 120ft 120ft 120ft
Max. window size 3000cm 1200in 1200in 3000cm 1200in 3000cm
Window separation 5cm 2in 2in S5cm 2in 5cm
Default max. students 90cm 36in 36in 90cm 36in 90cm
paper usage others 185cm 72in 72in 185cm 72in 185¢m

Table 1 Plotter hardware details
Graph Plotting 5-3

Routine Name

IMP FORTRAN Purpose Page
PLOTTERTYPE PLTYPE Sets the plotter code number. 5-5
CHCODE CHCODE Sets the plotter program character set type. 5-6

OPENPLOTTER OPENGR Initialises the Graphpack prior to plotter file generation.| 5-6

PLOTFAULT IGRERR Enables most plotting errors to be detected and handled 5-7
by the user's program.

GRAPHPAPER GRPAPR Sets the graph paper allowance. 5-8

SETPLOT GRAREA Specifies a viewing window on the graph paper. 5-9

SCALE SCALGR Defines a transformation from the user's coordinate system | 5-11
to the viewing window coordinate system.)

PLOTRECS IGRREC Indicates the number of records written to the plotter 5-12
file to date.

CLOSEPLOTTER | CLOSGR Closes the current plotter file. 5-12

F ILEGRAPH FILGR Saves a single window part-drawing for merging in 5-13

subsequent graph plots.

MERGEGRAPH MERGGR Merges a part-drawing (saved using FILEGRAPH/FILGR) with 5-13
the current graph plot.

CHANGEPEN CHPNGR Causes the plotter pen to be changed. 5-14

PLOT PLOTGR Draws a straight line between two specified points. The 5-15
line may be continuous, pecked or invisible.

AREAFLAG GRARFL Enables 'out of area plotting' messages to be suppressed. 5-17

PENPOSITION PPOSGR Returns the current pen position coordinates. 5-17

AX1S AXISGR Draws a graduated axis from a specified point in a 5-17
specified direction.

POINTSYMBOL PSYMGR Draws one of fifteen special symbols. 5-19

L INEGRAPH LINESG Draws a piecewise straight 1ine through a given array of 5-19
points, optionally adding a symbol at each.

CURVE CURVGR Draws a piecewise cubic through a given array of points, 5-20
optionally adding a symbol at each.

ANNOTATE ANNGGR Prior to the output of text, enables its position, size 5-22
and orientation to be specified.

PLOTSYMBOL DRSYMG Draws a specified character from a standard set. 5-24

PLOTSTRING DRSTRG Draws a string of characters. 5-24

PLOTNUMBER DRNUMG Outputs a decimal number in a specified format. 5-24

Table 2 ERCC Graphpack Routines

5-4 Graph Plotting

5.3 ERCC GRAPHPACK
Notation

In the presentation of each routine description the IMP externalroutinespec is given first,
as this states specifically the type and precision of each parameter. Bracketed with this
statement is the IMP routine call. The FORTRAN routine call, for Edinburgh, ICL and IBM
FORTRAN, then follows.

begin with one of the letters I, J, K, L, M, N, and all other variables are of type REAL. The

The stahg;:d FORTRAN variable-naming convention is used throughout, i.e. integer variabies
one exception \is the IMP string type, which does not exist in FORTRAN.

notation meaning "write the word in capital Tetters, preceded by a % character and followed by

Where under%ining is used, as in externalroutinespec above, this is a typographical
a non-alphabetic character".

Precision

Note that, for consistency with system standards, all real variables passed as parameters
to the plotter routines must be in double precision, i.e. longreal in IMP and REAL*8 in
FORTRAN. In IMP programs this strictly only applies to those real variables passed by name.

:

In FORTRAN programs, however, all real parameters - including constants - must be exp{icitly of
type REAL*8; e.g. 5.7D0.

Similarly, in IMP programs integer parameters may be passed as byteinteger, shortinteger or
integer. In FORTRAN programs all integer parameters must be of type INTEGER*4.

Identification of plotter output

Plotter output is automatically identified with your jobname, the machine on which you are
running this job, the date and time of file generation and the file name (if accessible). You
are, however, strongly recommended to add your name and delivery point, using a maximum of 30
characters, in order to prevent your output being lost. Simply program the statements

IMP FORTRAN
OPENPLOTTER(IFILE) CALL OPENGR(IFILE)
PLOTSTRING('A.N.OTHER, DEPT. ABC') CALL DRSTRG('A.N.OTHER, DEPT. ABC',20)

i.e, call the approgriate string output routine immediately after ogening the plotter. These
routines are described below. If no delivery information is available
"#*%x% please set delivery ****" yill appear automatically.

5.3.1 ADMINISTRATIVE ROUTINES

*%&kk PLOTTERTYPE / PLTYPE ¥
(externalroutinespec PLOTTERTYPE(integer N)

IMP
PLOTTERTYPE(N)

FORTRAN CALL PLTYPE(N)

This routine may be called at any time to indicate that future calls on graph plotting
routines are intended to be with reference to the characteristics of plotter N, where 1<=N<=6
(Table 1). The routine call is ignored if the current plotter type is already N.

The effect of this routine is to close the currently open plotter file, if one is open, and
to establish the characteristics of the required plotter in a 'current plotter type'
information area. This area is used by the Graphpack and, apart from the effect of this
routine, the user need not be aware of its existence.

If this routine call is omitted the characteristics of the Calcomp 936 plotter (which

corresponds to N=1) will be assumed by default. If you wish to reference a different plotter
you should precede the call on OPENPLOTTER/OPENGR, described below, by a call on this routine.

Graph Plotting 5-5

Of course it is only sensible to send a plotter file to a plotter which has characteristics
compatible with those assumed by the Graphpack during the generation of the file, i.e. one
which has the same increment size, and dimensions large enough to accommodate the largest
viewing window.

Example IMP FORTRAN
PLOTTERTYPE(2) CALL PLTYPE(2)

would imply that a Calcomp Model 663, with an increment size of .0025 inch and plotting width
28.5 inches, was to be used.

*&xkk CHCODE *****
externalroutinespec CHCODE(integername N)
CHCODE(N)
FORTRAN CALL CHCODE(N)

IMP

The graph plotting software needs to know the character code used by your program. This is
dependent upon the programming language - IMP and FORTE use IS0, FORTRANG, ICL FORTRAN and IBM
FORTRAN use EBCDIC.

The parameter N indicates ISO when even and EBCDIC when odd. By default ISO is assumed,
unless IBM FORTRAN is being used when EBCDIC is the default.

The call on this routine should precede calls on any other plotting routine except
PLOTTERTYPE/PLTYPE above.

*4+4k% OPENPLOTTER / OPENGR *****

externalroutinespec OPENPLOTTER(integer ICHAN)

IMP
OPENPLOTTER(ICHAN)

FORTRAN CALL OPENGR(ICHAN)

If you wish to create a plotter file then this routine must be called before any other
plotting routine, with the exception of PLOTTERTYPE/PLTYPE, described above.

The effect of this routine call is to close the currently open plotter file, if one is
open, and to reset the initialisation parameters for the current plotter type. Consequently,
although it is permissible to create several plotter files within a single run of your program,
only one of them may be open at a time.

The value of the parameter ICHAN specifies the output channel number which is to be related
to this file. The value of ICHAN may be 96, the system-provided plotter file, or may lie in
the range 1<=ICHAN<=80; see 'Job Control Requirements', Section 5.6. If the channel is not
defined or is defined improperly then the program will terminate with one of the following
messages:-

*%%(CHANNEL nn) Call no. mm to '8EEREEOTTER':-
*kk message JHx%
where message = No file definition statement
or Plotter file not defined as SQFILE
or Plotter file not F80, i.e. card images

Successive calls on OPENPLOTTER/OPENGR may specify the same ICHAN value but if this points
to the same file name or device the software will register plotter fault 12, with the message

OPENPLOTTER
**%(CHANNEL nn) Call no. mm to 'gpener v
File extension not allowed.

and the program will be terminated.

5-6 Graph Plotting

If any plotter file is re-used in the current run of your program then the new drawings
will overwrite the previous drawings it contained and they will be lost.

Example IMP FORTRAN
OPENPLOTTER(50) CALL OPENGR(50)

will initialise a plotter file on channel 50. See 'Job Control Requirements', Section 5.6.

N.B. If the call on OPENPLOTTER/OPENGR is omitted the package is said to be in 'parameter

checking' mode. No output file will be created but all routine parameters will be checked for
validity and appropriate error messages produced. See PLOTFAULT/IGRERR below.

*xkdk PLOTFAULT / IGRERR **¥d&%
externalintegerfnspec PLOTFAULT

IMP
[=PLOTFAULT

FORTRAN (I=IGRERR(N) where N is a dummy parameter

The graphics software makes various checks on the validity of the values given to
parameters passed to the different routines and will, where possible, supply default values

when errors occur.

In certain circumstances, however, this is impossible and an appropriate

message is then sent to a character file with ddname STREAM99. The full list of faults and the
routines in which they occur is as follows:

CODE MESSAGE ROUTINE
1 Invalid drawing area declaration SETPLOT/GRAREA
2 Plotter output exceeded SETPLOT/GRAREA
3 Invalid scaling factor(s) SCALE/SCALGR
4 Invalid pen up/down code PLOT/PLOTGR
5 Dash/gap value(s) negative PLOT/PLOTGR
6 Data and drawing range incompatible CURVE/CURVGR
7 Independent variable data out of order CURVE/CURVGR
8 Direction code error AXIS/AXISGR
9 I11egal use of channel 96 FILEGRAPH/FILGR or
MERGEGRAPH/MERGGR
10 Not a valid plotter file MERGEGRAPH/MERGGR
11 Excessive out-of-area drawing the current routine call
12 File extension not allowed OPENPLOTTER/OPENGR
13 Too few data points CURVE/CURVGR
14 Graduation intervals specified wrongly AXIS/AXISGR
15 Units not 'INS' or 'CMS' codes SETPLOT/GRAREA or
GRAPHPAPER/GRPAPR
16 No file definition statement OPENPLOTTER/OPENGR or
MERGEGRAPH/MERGGR
17 Plotter file not defined as SQFILE OPENPLOTTER/OPENGR or
MERGEGRAPH/MERGGR
18 Plotter file not F80, i.e. card images OPENPLOTTER/OPENGR or
MERGEGRAPH/MERGGR
19 File is not accessible MERGEGRAPH/MERGGR

If the initialisation call on OPENPLOTTER/OPENGR has been omitted the graphics software
will continue to check the values of other routine parameters and comment on them if
Normally, however, when a plotter file is being created, the following sequence
of events occurs:

appropriate.

* an error flag is set to the code for the error found, and in the case of the routines
which may have more than one error the flag values could be

PLOT/PLOTGR

AXIS/AXISGR
CURVE/CURVGR - 6, or 7, or 13, or 103 (i.e. 6x16 + 7), or 109 (i.e. 6x16 + 13),

-4, 0or 5, or 69 (i.e. 4x16 + 5)
- 14, or 8, or 232 (i.e. 14x16 + 8)

or 125 (i.e. 7x16 + 13) or 1661 (i.e. 6x16x16 + 7x16 + 13)

* on the occurrence of errors 2, 9, 10, 11, 12, 16, 17, 18 or 19 the program is terminated

Graph Plotting 5-7

An IMP program may then trap any of the non-drastic faults under run-time fault 19 (NUMAC
and ICL 4-75) or event 11 (ICL 2970 and 2980), and by calling PLOTFAULT identify the actual
error or errors from the function result, which is set to the error flag value. This action
also clears the error flag.

Example NUMAC 2970
ICL 4-75 2980

fault 19 -> ERROR onevent 11 start

. -> SW{PLOTFAULT)

. finish
ERROR: -> SW(PLOTFAULT)

Plotter fault recovery in FORTRAN is different. Each Graphpack routine checks the error
flag on entry and terminates the program if it has been set (by a previous Graphpack routine).
Therefore the recovery operation should, if required, follow every routine which could set the
flag. The statement

I=IGRERR(N)

will identify the error flag value and clear the error; the appropriate recovery sequence can
then be followed.

kkk GRAPHPAPER / GRPAPR ***

externalroutinespec GRAPHPAPER(1ongreal XLNGTH,integer IUNITS)
GRAPHPAPER(XLNGTH, IUNITS)

IMP

FORTRAN CALL GRPAPR(XLNGTH,IUNITS)

File initialisation (via OPENPLOTTER/OPENGR) automatically imposes a paper advance limit
for the file thus defined (see Table 1). The limit may be altered by calling GRAPHPAPER/GRPAPR
either to reduce it subject to a minimum of 15 inches (38.1 centimetres), or to increase it
subject to the length of a roll of plotter paper (see Table 1). If you have a student jobname,
however, you will not be allowed to alter the specified limits which are 36 inches (90
centimetres).

Only one alteration of the 1limit is allowed per file, and then only if the call on
GRAPHPAPER/GRPAPR follows the call on OPENPLOTTER/OPENGR and precedes the first call on
SETPLOT/GRAREA (see below) in that file.

The new allocation, XLNGTH, is measured in IUNITS, which is specified as follows:

IMP FORTRAN
0 or M'CMS' for centimetres 0 or 'CMS'
1 or M'INS' for inches 1 or 'INS'

XLNGTH comprises (see Figure 1): the file identification window of 2 inches (5.08 cm), 2 inches
(5.08 cm) separation, the sum of all paper advances caused by successive viewing window
requests and any inter-window separations. See also SETPLOT/GRAREA, described below.

If the IUNITS parameter value is not one of the above options, plotter fault 15 is
registered, with the message

**%(CHANNEL nn) Call no. mm to .ggszggAPER,:_
Jnits not 'INS' or 'CMS' codes.

and the program will terminate unless it is in parameter checking mode (see OPENPLOTTER/OPENGR)
or you use the fault trapping procedure (see PLOTFAULT/IGRERR).

Example IMP FORTRAN
GRAPHPAPER(200,M' INS') CALL GRPAPR(200.D0,'INS')

5-8 Graph Plotting

- Total paper advance >

- 2" —
The window bounds have
been drawn here for clarity.
Only the ‘plotter origin’
and ‘end-of-window’
markers are actually drawn

- XMAX4 >
° e nikabded Stttk n!
: : : : :
—————————
8 ! | XMAXZ, YMAX2 | | Lo
o . WINDOW e . . L
I 1 |] ¢! i
@ | I I i, WINDOW v
3 1 : |] | 4 | i
§ g : , WINDOW : : ! : :
S & i ! 2 N Lo
2 i I A N I - i
& ' YMAX | | < '
G E \ ! 1 1 1
12 ! : ' ' '
TE= I] 1 I
< ! !] ! vyming WINDOW I
a E’ XMIN ' : ' ' ¢ 3 |
g1t 1 \: 1 (XMINg, YMIND) : : :
8<% M- - =100 I I I
L B L \YMIN1 | LA ~ [P —Jd—/b
¢ . (
Initial plotter énforced separation End-of-window Plotter origin End-of-file
origin marker of 2" marker 3and4 position

Figure 1 Examples of viewing windows and their relative positions

*k&kk SETPLOT / GRAREA **t&k
externalroutinespec SETPLOT(longreal XMIN,YMIN,XMAX,YMAX,integer IUNITS)
SETPLOT({XMIN,YMIN,XMAX,YMAX,IUNITS)

IMP

FORTRAN CALL GRAREA(XMIN,YMIN,XMAX,YMAX,IUNITS)

After the file initialisation and possibly a resetting of the paper advance limit, this
routine defines a new viewing window within which all drawing will be imprisoned until the next
window is defined, by another call on the routine. If the window defined is the first in the
file it will be preceded by the system-generated file identification window containing your
Jjobname, the machine on which you are running the program, the date and the file run-time. If
they are accessible then the file name and your delivery point are also drawn.

Apart from their parameter 1ists being validated, all references to basic drawing routines
will be ignored until this routine has been called to define a window.

There are no restrictions, except that implied by the total paper advance limit, on the
number of windows you may define within a particular file. Figure 1 shows a possible series of
windows.

The parameter IUNITS determines the position of the 'plotter origin' from which the actual
window frame will be referenced, and also specifies the unit of measurement for the window's
dimensions. The possible values of IUNITS and their meanings are as follows:

IMP FORTRAN
0 or M'CMS’ for centimetres 0 or 'CMS'
1 or M'INS' for inches 1 or 'INS'

causes an 'end-of-window' marker to be drawn at the X-extremity of the previous window, a paper
advance of another 2 inches (5.08 cm), and then sets the new plotter origin at this point,

Graph Plotting 5-9

where the plotter origin marker is drawn. This option is enforced for the first window in the
file, no matter which option you request.

IMP FORTRAN
2 or M'CMSA' for centimetres 2 or 'CMSA'
3 or M'INSA' for inches 3 or 'INSA'

causes an ‘end-of-window' marker to be drawn at the X-extremity of the previous window, and
sets this point as the new plotter origin, where the plotter origin marker is drawn - thus
abutting the two windows, as shown in Figure 1 (window 2 with window 1).

IMP FORTRAN
4 or M'CMSV' for centimetres 4 or 'CMSV'
5 or M'INSV' for inches 5 or 'INSV'

sinply retains the present plotter origin, thus allowing for an inset window (Figure 1, window
4 within window 3), or a separate window further across the pen carriage to utilise the full
width of the plotter. No 'end-of-window' marker is drawn.

In each case the new viewing window's unit of measurement, assumed by subsequent routines,
is as specified by IUNITS.

If the IUNITS parameter value is not one of the options listed above, plotter fault 15 is
registered, with the message

**%(CHANNEL nn) Call no. mm to 'EEXQERT'=-

nits not 'INS' or 'CMS' codes.

and the program will terminate, after closing the plotter file, unless it is in parameter
checking mode (see OPENPLOTTER/OPENGR) or you use the fault trapping procedure (see
PLOTFAULT/IGRERR) .

If IUNITS is correct the new viewing window is defined to have its lower left-hand corner
at the point (XMIN,YMIN) and its upper right-hand corner at the point (XMAX,YMAX), both
relative to the new plotter origin in the declared unit of measurement; see Figure 1.

The values XMIN, YMIN, XMAX, YMAX are checked to ensure that XMINKXMAX, YMINKYMAX, that the
window definition 1lies within the plotter bounds (Table 1) and that it does not attempt to
place any part of the window left of the new plotter origin. If any of these conditions is not
satisfied, plotter fault 1 is registered, producing the message

***(CHANNEL nn) Call no. mm to 'EEIEERT'=-

Invalid drawing area declaration.

and the program is terminated unless it is in parameter checking mode (see OPENPLOTTER/OPENGR)
or you use the fault trapping procedure (see PLOTFAULT/IGRERR).

A check is also kept on the total paper advance in the file. If the paper advance required
to clear the new viewing window would exceed the current paper advance limit then the window
request is rejected, plotter fault 2 is registered and the program is terminated unless it is
in parameter checking mode (see OPENPLOTTER/OPENGR), with the message

*%%(CHANNEL nn) Call no. mm to 'gszgth':-
Plotter output exceeded.

If no errors are detected the window is defined and the pen is notionally positioned, in
raised status, at the point (XMIN,YMIN) - termed the 'window origin' - after having drawn the
plotter origin marker.

5-10 Graph Plotting

Example

The successive windows shown in Figure 1 could be defined by a sequence of statements such
as the following:

IMP FORTRAN
OPENPLOTTER(50) CALL OPENGR(50)
PLOTSTRING('name and delivery') CALL DRSTRG('name and delivery',17)
GRAPHPAPER(200,M' INS') CALL GRPAPR(200.D0,'INS')
SETPLOT(2,1,20,30,M'INS') CALL GRAREA(2.D0,1.D0,20.D0,30.D0,'INS')
SETPLOT(0,0,15,25,M' INSA') CALL GRAREA(0.00,0.00,15.D0,25.D0,"' INSA')
SETPLOT(0,0,25,30,M'INS") CALL GRAREA(0.D0,0.D0,25.D0,30.D0,"'INS’)
SETPLOT(7,12,18,21,M' INSV') CALL GRAREA(7.00,12.00,18.D0,21.D0,' INSV')

N.B. You may find on receiving plotter outPut that a window is not as wide as you requested,
i.e. (XMAX-XMIN). The 'end-of-window' marker will be drawn either

* 2 inches beyond the largest visible X-value reached, or

* at the XMAX position specified (strictly, at the largest XMAX position
specified, if two or more windows use the same plotter origin)

relative to the previous plotter origin, whichever produces the shorter paper advance.

The total paper advance check, however, will always use the actual XMAX values quoted
in the routine calls for its calculations.

*kikk GCALE / SCALGR **%&x
externalroutinespec SCALE(longreal XORIGN,YORIGN,XSCALE,YSCALE,THETA)

IMP
SCALE(XORIGN,YORIGN,XSCALE,YSCALE,THETA)

FORTRAN CALL SCALGR(XORIGN,YORIGN,XSCALE,YSCALE,THETA)

Having given a successful window definition, you must now provide transformation parameters
between some arbitrary Cartesian coordinate system which your program references and the
current window, such that the drawing you wish to produce is automatically mapped into the
window's bounds. This routine enables you to specify the transformation; it does not produce
any pen movement.

Your coordinate system origin transforms into the position (XORIGN,YORIGN), which is
measured relative to the current 'window origin', i.e. the point (XMIN,YMIN) specified via the
latest call of SETPLOT/GRAREA (see above). The unit of measurement of XORIGN and YORIGN is
that specified in the same call of SETPLOT/GRAREA. Whether your system origin actually lies
within the window or not is immaterial.

Your system is orientated such that the directions of its X and Y axes lie at an angle
THETA (degrees) counter-clockwise to the window X and Y directions.

The scaling factors used to map your X and Y values onto the window's units of measurement
are XSCALE and YSCALE, defined as the number of window units representing respectively 1 X- and
1 Y-unit in your coordinate system. Thus if the unit of measurement specified when the window
was defined was centimetres, a setting of XSCALE to 10.0 would mean that 1 X-unit in your
coordinate system would be represented by 10 centimetres on the graph paper.

Plotter fault 3 is registered, producing the message
**%(CHANNEL nn) Call no. mm to 'ggﬁth‘:-
Invalid scaling factor(s).

unless XSCALE>0 and YSCALE>Q, and the program is terminated unless it is in parameter checking
mode (see OPENPLOTTER/OPENGR) or you use the fault trapping procedure (see PLOTFAULT/IGRERR).

You may redefine your coordinate system any number of times within a single window.

Graph Plotting 5-11

It should not be re-opened to add more drawing within the same run of the program since
this will destroy its previous contents. If further drawing is required you must define and
open another file; see OPENPLOTTER/OPENGR above.

If your program terminates for some reason before this routine has been called for the

current file, then the 'end-of-file' marker, and possibly a small part of the drawing performed
immediately prior to the failure, will be missing.

*akhk% FILEGRAPH / FILGR ****%
externalroutinespec FILEGRAPH
FILEGRAPH

IMP

FORTRAN CALL FILGR

For some applications there may be a constant component in a complex drawing or drawings,
e.g. a coastline map or a grid system. The repeated generation of these constant features in
each job requiring them would be extremely wasteful of computer time. There is clearly a need
for a facility which allows retention of a file containing a part-drawing such that it may
subsequently be recovered and incorporated into another drawing at any time during the
generation of a file. This routine provides the facility.

The part-drawing should be created in a plotter file containing a single viewing window
whose definition, in terms of size and position relative to its plotter origin, will be
compatible with any future window onto which it may be mapped. Calling this routine in
preference to CLOSEPLOTTER/CLOSGR above causes a command to be added to the file to position
the pen back at this plotter origin, i.e. a null total displacement, followed by closure of the
file and the message

%(CHANNEL nn) End of plotter file after mm records.*
See also 'Job Control Requirements', Section 5.6, for administrative considerations.

If your program fails before this routine has been called then the drawing will be
incomplete and you must re-create the file from the beginning.

As before, further reference within the same run of the program to the file in which this
drawing was produced, for the purpose of adding more drawing features, will simply overwrite
its previous contents.

You are not allowed to use channel 96 for saving part-drawings. If you do the file will

not be closed properly, your drawing will be incomplete, and the program will terminate -
unless it is in parameter checking mode (see OPENPLOTTER/OPENGR) - with the message

***(CHANNEL nn) Call no. mm to 'E%tggRAPH':-
[11egal use of channel 96.

No limit is placed on the number of part-drawings you may save during a single run of your
program, but each one must be in a separate file.

*ikdk MERGEGRAPH / MERGGR *****
externalroutinespec MERGEGRAPH(integer INCHAN)

IMP
MERGEGRAPH(INCHAN)

FORTRAN CALL MERGGR(INCHAN)

This routine provides for recovery of part-drawings retained by use of the routine
FILEGRAPH/FILGR above. See 'Job Control Requirements', Section 5.6, for further administrative
considerations. More than one merger is allowed in a single program run.

The plotter file associated with channel number INCHAN is assumed to contain a single
viewing window which can be sensibly superimposed upon the current window; i.e. the two windows
should be compatible in their positions relative to the current plotter origin and in their
dimensions, since no check is made on these factors. Moreover, this routine does not record

Graph Plotting 5-13

any visible X values for SETPLOT/GRAREA to use in its calculation for the end-of-window
position a you must issue a visible move in the current window in order to register the merging
window width.

Merging of the part-drawing begins after an initial pen repositioning at the current
plotter origin, and concludes by notionally repositioning the pen at the coordinate position in
force when the merger request was encountered.

If your program fails during merging then the drawing will be in an indeterminate state and
will require complete re-drawing.

You are not allowed to use channel 96 for designating a previously created file to be
merged: plotter fault 9 would be registered, with the message

%(CHANNEL nn) Call no. mm to 'mEEgEERAPH ‘i
***]11egal use of channel 96.%**

If the channel you specify has not been defined or has been defined improperly then one of the
following messages will appear:-

EGRA!
**%(CHANNEL nn) Call no. mm to 'mgggGg PH ‘-
*kk message KA
where message = No file definition statement
or Plotter file not defined as SQFILE
or Plotter file not F80, i.e. card images
or File is not accessible

A check is also made to ensure that the file associated with channel number INCHAN really is a
plotter file. If not then plotter fault 10 is registered, with the message

MERGEGRAPH ,

%(CHANNEL nn) Call no. mm to 'MERGGR -

Not a valid plotter file,

The program will terminate on detection of any of these errors unless it is in parameter
checking mode (see OPENPLOTTER/OPENGR).

Example IMP FORTRAN

MERGEGRAPH(51) CALL MERGGR(51)

*ikkk CHANGEPEN / CHPNGR ***+x

externalroutinespec CHANGEPEN(integer IPEN)

IMP
CHANGEPEN(IPEN)

FORTRAN CALL CHPNGR(IPEN)

At the start of each plotter file a black biro is automatically selected as the standard
pen. You may request a different pen at any time after the first viewing window has been
successfully defined by a call on SETPLOT/GRAREA. However, the operation can be costly in
terms of pen movement. When a pen change is requested and the pen required is not already
mounted - you are using a single-pen plotter say - the current pen is automatically
repositioned at the plotter origin related to the current window, so that the registration of
the new pen can be checked after it is selected. Following the pen change the pen is
notionally returned to the position in force when the pen change request was encountered.

e

If you have a student jobname any change pen requests will be ignored.

5-14 Graph Plotting

The value of IPEN specifies the required pen as follows:

1 black biro (initially and by default)

2 blue biro

3 green biro

4 red biro

5 black liquid ink, .lmm diameter pen

6 black liquid ink, .2mm diameter pen At ERCC

7 black liquid ink, .3mm diameter pen use of these pens must
8 black liquid ink, .4mm diameter pen first be authorised by
9 black 1iquid ink, .5nm diameter pen Mr M.P. Baillie

10~ black Viquid ink, .6mm diameter pen (031 667-1081 ext. 2902)
11 black Tiquid ink, .8mm diameter pen

Any other value of IPEN will cause the black biro to be selected by default. If the pen
requested is already selected then this routine call has no effect.

Since the Calcomp Model 936 has a three-pen turret (see Table 1) you can, when using the
936 (plotter type 1), eliminate the time taken to change a pen cartridge physically if you use
only pen codes 1, 2, 4; i.e. black, blue and red biro respectively.
Example IMp FORTRAN

CHANGEPEN(3) CALL CHPNGR(3)
will select the green biro for drawing, until further notice.

It is good practice to draw all you require with one pen colour in a given window, before
changing to another colour. This is especially the case with single pen plotters because
operator intervention is needed to change the pen cartridge.

At present no limit is placed on the number of pen changes during a single run of your
program. This may be reviewed if the good practice described above is not adhered to.

5.3.2 BASIC DRAWING COMPONENT ROUTINES

The following eleven routines constitute the basic drawing components from which you may
build complete drawings. A1l of these routines specify positional parameters in terms of the
x- and y-units of your program's co-ordinate system, the parameters already specified in the
calls to SETPLOT/GRAREA and SCALE/SCALGR defining how this system is to be automatically mapped
onto the current drawing window.

*&kit PLOT / PLOTGR #**++%
externalroutinespec PLOT({integer IPEN,longreal TOX,TOY,DASH,GAP)

IMP
PLOT(IPEN,TOX,TOY,DASH,GAP)

FORTRAN CALL PLOTGR(IPEN,TOX,TOY,DASH,GAP)

This is the basic drawing routine, and is called at some point by all of the other basic
component routines. It moves the pen in a straight 1ine from its current position to the point
(TOX,TOY) in your coordinate system. The move is subject to a check that it does not
contravene the current viewing window bounds.

If IPEN=1 the straight 1ine is invisible and represents a command simply to reposition the
pen. If IPEN=2 the line is visible. In both these cases the DASH and GAP parameter values are
not used but they must both be non-negative.

If IPEN=0 a dashed T1ine is drawn to (TOX,TOY), with each dash DASH X units long and each
gap GAP X units long. The line always begins and ends with a dash.

Any IPEN value other than 0, 1 or 2 will register plotter fault 4, with the message

**%(CHANNEL nn) Call no. mm to 'Et8¥ck"‘

Invalid pen up/down code.

Graph Plotting 5-15

A negative assignment to either DASH or GAP will register plotter fault 5, with the message
%(CHANNEL nn) Call no. mm to 'gtglGR':-
Dash/gap value(s) negative.

In either of these cases no pen movement occurs, and the program will terminate unless it is in

parameter checking mode (see OPENPLOTTER/OPENGR) or the fault has been trapped (see
PLOTFAULT/IGRERR).

If the point (TOX,TOY) transforms to a point outside the viewing window the move will be
curtailed at the window boundary. The first time this occurs in a plotter file, and every 50th
time thereafter, a warning message is sent to STREAM99:

%x(CHANNEL nn) Call no. mm to 'name' is drawing out of area.*

where 'name' is the name of the routine which caused the boundary contravention. After 20 such
messages from one plotter file the program is terminated, with the further message

**%(CHANNEL nn) Call no. mm to ‘'name’:-
Excessive out-of-area drawing.

Until this happens the software is continuously checking and 'scissoring' where necessary to
ensure that only that part of the drawing which maps onto the viewing window will actually be
drawn. See also AREAFLAG/GRARFL below.

r current viewing window _—I

| x (Tox, Tov,) |

| /
/ x (TOX,,TOY4) Suffix vatues on
l the coordinate
Ve pairs represent
the IPEN value
I / I producing the
I / (TOXZ,TOYz) given line format.
/
l current pen I
position

[oymomorign]

Figure 3 Types of line drawn by PLOT/PLOTGR

Example

The three different types of line demonstrated in Figure 3 could be drawn by the following
statements:

IMP FORTRAN
PLOT(0,TOX,TOY,DASH,GAP) CALL PLOTGR(0,TOX,TOY,DASH,GAP)
PLOT(1,TOX,TOY,0,0) CALL PLOTGR(1,TOX,T0Y,0.00,0.D0)
PLOT(2,TOX,TOY,0,0) CALL PLOTGR(2,TOX,TOY,0.00,0.00)

5-16 Graph Plotting

*dkik AREAFLAG / GRARFL *****
externalroutinespec AREAFLAG(string (3) S)
AREAFLAG(S)
FORTRAN CALL GRARFL(IFLAG)

IMP

This routine has been provided for those people who wish to use the viewing window as a
*scissoring' tool, and who do not care therefore about plotting out of the window bounds.

The effect of the routine is to switch on or off, according to the parameter value, the
monitoring of out-of-area plotting. By default monitoring is switched on at the start of each
plotter file.

Example IMP FORTRAN
AREAFLAG('ON') CALL GRARFL('ON')
AREAFLAG('OFF*) CALL GRARFL('OFF')

*&ikk PENPOSITION / PPOSGR ***&k
externalroutinespec PENPOSITION(1ongrealname X,Y)
PENPOSITION(X,Y)

IMP

FORTRAN CALL PPOSGR(X,Y)

If you have forgotten exactly where the pen has been moved to then this routine will inform
you. The present pen position, which will be on the viewing window boundary if the last move
was curtailed, is returned via the parameters X and Y, in your current coordinate system X- and
Y-units.

*kkk AXIS / AXISGR *&&+k

externalroutinespec AXIS(longreal X,Y,integer IDIRN,longreal TICINT, ¢
IMP integer INTNO)
AXIS(X,Y,IDIRN,TICINT,INTNO)

FORTRAN CALL AXISGR(X,Y,IDIRN,TICINT,INTNO)

Axes are a common feature of graphical output. This routine draws a graduated line
parallel to one of your coordinate system's axes. Only that portion of the 1ine which 1ies
within the current viewing window will be visible.

The start point of the graduated line is the point (X,Y) in your coordinate system and the
pen is initially positioned there by the routine. The line direction is given by the parameter
IDIRN, which may take the following values:

IMP FORTRAN

1 or M*+X' or 'X' for the positive X-direction 1 or '+X' or 'X'
2 or M'+Y' or 'Y’ for the positive Y-direction 2 or '+Y' or 'Y’
3 or M'-X' for the negative X-direction 3 or '-X'
4 or M'-Y' for the negative Y-direction 4 or '-Y'

INTNO tick marks are drawn along the line at TICINT intervals in the units of the specified
direction (X or Y), the total line length drawn being INTNO*TICINT units. The tick marks are
perpendicular to the line and, unalterably, of length 0.05 inch (0.125 centimetre) on each side
of it.

Subject to non-contravention of the viewing window boundaries the pen is finally placed at
the far end of the line from (X,Y), in contact with the paper.

Graph Plotting 5-17

Uniess TICINT>0 and INTNO>O, plotter fault 14 will be registered, with the message

**%%(CHANNEL nn) Call no. mm to '2§§§GR'=-

Graduation intervals specified wrongly.

If the value of IDIRN is not one of the options given above, plotter fault 8 is registered,
with the message

***(CHANNEL nn) Call no. mm to 'ﬁﬁ{gGR‘:-
Direction code error.

If either condition is violated the program will terminate, unless it is in parameter checking
mode (see OPENPLOTTER/OPENGR) or the fault has been trapped (see PLOTFAULT/IGRERR).

e N 1
window boundary
- x X
X x X x

coordinate K

system
l origin \,\
¥ # ¥* % X-axis

x x x x x x

x 4 Y-axis x X

| I
™~ current plotter
origin N .
Figure 4 Example of axes, plus scatter diagram

Example

The axes shown in Figure 4 could be drawn in the viewing window, at the positions shown, by
the following sequence of statements:

IMP FORTRAN
SETPLOT(0,0,70,40,M'CMS*) CALL GRAREA(0.D0,0.D0,70.D0,40.D0,'CMS")
SCALE(14,15,14,10,0) CALL SCALGR(14.D0,15.D0,14.D0,10.D0,0.D0)
AX1S(-1,0,'Xx"',1,5) CALL AXISGR(-1.00,0.D0,'X',1.D0,5)
AX1S(0,1,M'-Y',.5,4) CALL AXISGR(0.DO,1.D0,'-Y',.5D0,4)

The pen will finally be at the point (0,-1) in your coordinate system.

5-18 Graph Plotting

a4k POINTSYMBOL / PSYMGR **%

externalroutinespec POINTSYMBOL(integer ICODE,longreal SIZE)
POINTSYMBOL (ICODE,SIZE)

IMP

FORTRAN CALL PSYMGR(ICODE,SIZE)

One of 15 special symbols may be added to your drawing at any time. The symbol is drawn
using a basic 5-point square grid whose centre coincides with the present pen position. Only
that portion of the symbol which lies within the current viewing window will be visible.

The value of ICODE specifies the symbol:

ICODE SYMBOL ICOBE SYMBOL
1 x 8 >
2 + <]
3 o 10]
4 ° 11
) o 12 -
6 a 13 1
7 v 14 7’
15 N

Symbol 5 will be drawn unless 1<ICODE<15.

With the exception of symbol 11, which is simply a very small dot, the symbol size, i.e.
its width and height, may be varied by the parameter SIZE. 1Its value is declared in your
coordinate system X-units. A default size equivalent to 0.04 inch or 0.1 ¢m is invoked if your
%IZE spg?ifigation represents less than 4 incremental movements for the current plotter type

see Table 1).

Example

To extend the AXIS/AXISGR example by adding a scatter diagram of special symbols to the
axes drawn in Figure 4, each symbol being 4 millimetres wide, the following statements could be
added:

IMP FORTRAN
SIZE=.4/14 SI1ZE=.4D0/14.D0
cycle I=1,1,21 D0 1 I=1,21
PX=,25%(1-5) PX=.25D0*(1-5)
PY=SIN(PI*PX) PY=DSIN(3.14159265*PX)
PLOT(1,PX,PY,0,0) CALL PLOTGR(1,PX,PY,0.D0,0.00)
POINTSYMBOL(1,SIZE) CALL PSYMGR(1,SIZE)
X(1)=PX X(1)=PX
Y(1)=PY Y(I)=PY
repeat 1 CONTINUE

xkk | INEGRAPH / LINESG ***

externalroutinespec LINEGRAPH(longrealarrayname X,Y,integer M,N,c
IMP - 1ongreal DASH,GAP,integer ICODE, Tongreal SIZE)

LINEGRAPH(X,Y,M,N,DASH,GAP , ICODE,SIZE)

FORTRAN CALL LINESG(X,Y,M,N,DASH,GAP,ICODE,SIZE)

This routine is provided so that you may join a series of points using a particular format
of connecting line, and optionally add a special symbol at each point. The routine combines
the actions of PLOT/PLOTGR and POINTSYMBOL/PSYMGR.

The series of points to be used is contained in the arrays X and Y, with point 1 in (Xm,Ym)
and the end point in (Xn,Yn). m may be either less than or greater than n, whichever you wish.
The direction of movement of the pen from one point to the next is unrestricted.

Graph Plotting 5-19

The pen is repositioned initially at the point (Xm,Ym), and then the remaining
[m-n] points are joined in order, using straight line connections, in a format determined by
the values of DASH and GAP as follows:

* DASH=0 causes moves with the pen raised (this usually means you wish only to draw a
scatter diagram of the data points; see the example below, and compare with the
POINTSYMBOL/PSYMGR example)

* DASH>0 and GAP=0 draws solid line connections

* DASH>0 and GAP>0 draws dashed line connections using DASH X-units as the dash length and
GAP X-units as the gap length between dashes

Unless ICODE=0 a special symbol is added at each data point as it is passed. [CODE and
SIZE have the same meanings as in the routine POINTSYMBOL/PSYMGR.

Only that portion of the drawing lying within the viewing window boundaries will be
visible. Subject to this constraint the pen is left at the point (Xn,Yn) on exit from the

routine. The pen status on exit is dependent upon the 1ine format chosen and whether symbols
were drawn.

Example

The scatter diagram of points in Figure 4 could equally well have been produced by the
following single statement, assuming that the X and Y arrays had been evaluated previously.

IMP FORTRAN
L INEGRAPH(X,Y,1,21,0,0,1,SIZE) CALL LINESG(X,Y,1,21,0.00,0.00,1,SIZE)

*¥kk% CURVE / CURVGR *¥***

externalroutinespec CURVE(longrealarrayname X,Y,integer M,N,c
IMP Tongreal XON,XOFF,DX,DY, ,GAP, integer Itﬁﬁg,longreal SIZE)

CURVE(X,Y,M,N,XON,XOFF ,DX,DY,DASH,GAP, ICODE ,SIZE)
FORTRAN CALL CURVGR(X,Y,M,N,XON,XOFF,DX,DY,DASH,GAP,ICODE,SIZE)

This routine is similar to LINEGRAPH/LINESG except that a smooth curve is drawn through the
series of data points. The method used is to take 4 points at a time, evaluate a third degree
polynomial through these points, draw along this curve between points 2 and 3, then drop point
1, introduce the next data point and use this new set of 4 points to extend the curve to the
new point 3, etc.

The series of data points to be used is in the arrays X and Y, with point 1 in (Xm,Ym) and
the end point in (Xn,Yn). m may be either less than or greater than n, but as the curve is a
single-valued function no two X-values can be the same. In fact two stringent conditions must
be satisfied:

* there must be at least 4 data points, i.e. |m-n|>3
*Xm < XML < XmM2 € eiiiecenneees < XN

Otherwise plotter faults 13 or 7, respectively, will be registered with the appropriate
message; either

***(CHANNEL nn) Call no. mm to 'ESS$ER'=‘

Too few data points.

or
**%(CHANNEL nn) Call no. mm to 'EHE&ER':-
Independent variable data out of order.

Although all of the data points are used in the curve-fitting calculations, you may wish to
Timit the X-range within which the fitted curve is actually visible. XON declares the X-value
at the start of this range and XOFF the end X-value. Obviously the drawing range and the data
points must be compatible; i.e. at least some of the data points must lie within the range XON

5-20 Graph Plotting

to XOFF. If any one of the three conditions
* XON < XOFF
* Xp < XOFF
* Xp > XON

is untrue then plotter fault 6 is registered, with the message

%(CHANNEL nn) Call no. mm to 'EﬂﬁggR':-

Data and drawing range incompatible.

If any of these three plotter faults arises the curve will not be drawn, and the program will
terminate unless it is in parameter checking mode (see OPENPLOTTER/OPENGR) or you use the fault
trapping procedure (see PLOTFAULT/IGRERR).

If all of the above conditions are satisfied the pen is initially repositioned at the point
(Xm,Ym) and the curve is then evaluated step by step and drawn within the stated X-range. The
smoothness of the curve is governed by the values of DX and DY. DX X-units is the standard
evaluation interval used in stepping the fitted curve, unless this produces a Y-deflection
grea%er than DY Y-units, when Y-intervals of DY are used until the current DX X-interval is
complete.

Unless ICODE=0 a special symbol will be drawn at every data point as it is passed (not only
those data points lying within the visible curve's X-range). The values of ICODE and SIZE have
exactly the same meaning as in POINTSYMBOL/PSYMGR.

The curve format is governed by the values of DASH and GAP:

* DASH=0 causes moves with the pen raised, i.e. an invisible curve (!)
* DASH>0 and GAP=0 draws a solid curved line

* DASH>0 and GAP>0 draws a dashed curve using DASH X-units as the dash length and GAP
X-units as the gap between dashes

Again only that portion of the curve and symbols which lies within the viewing window
boundaries will be visible. Subject to this constraint the pen is left at the point (Xn,¥Yn) on
exit from the routine. The pen status on exit is dependent on the curve format chosen and
whether symbols were drawn.

I window boundary

coordinate 4
system origin

% X-axis

L Y-axis

- |
AN current

plotter Figure 5 Development of Figure 4: axes plus continuous curve
origin

Graph Plotting 5-21

Example

The curve in Figure 5 has been drawn through the data points used previously to draw the
scatter diagram in Figure 4. The necessary call on CURVE/CURVGR is

IMP FORTRAN

CURVE(X,Y,1,21,-1,4,.01,.01,1,0,0,0) CALL CURVGR(X,Y,1,21,-1.D0,4.D0,.01D0,
.01D0,1.00,0.00,0,0.00)

*xxxt ANNOTATE / ANNOGR **+x*
externalroutinespec ANNOTATE(longreal X,Y,SIZE,THETA)

IMP
ANNOTATE (X,Y,SI1ZE , THETA)

FORTRAN CALL ANNOGR(X,Y,SIZE,THETA)

Text, numbers, titles, annotation of axes, etc. are all frequent requirements in graphical
output. An extensive set of characters is provided for this purpose: see 'Graph Plotting
Symbol Sets', Tables 4 and 5.

ANNOTATE/ANNOGR allows you to define the size, orientation and 'start of line' position for
strings of characters. The following three routines, viz. PLOTSYMBOL/DRSYMG,
PLOTSTRING/DRSTRG, PLOTNUMBER/DRNUMG are provided in order to specify the character strings
required to be drawn using the current set of characteristics. These characteristics may be
altered any number of times without restriction.

Basically each character, with the exception of the control symbols described later, is
contained within a 7x12 point rectangular grid - see Figure 6. The 'base point' of a character
is the point (1,3) on this grid and most characters, as shown in Figure 6, lie within the
horizontal grid points 1-5 and the vertical grid points 3-10, although lower case characters
with tails may descend to the vertical grid point 0 and 'overline' is drawn along the line at
vertical grid point 11. Successive characters constituting a line of text have their 7x12
point grids abutted as shown.

The ANNOTATE/ANNOGR parameters take the following meanings:-

X,Y is the co-ordinate position of 'start of text 1ine' and (initially) coincides with
the 'base point' of the first symbol in a text string. The pen is positioned here
by ANNOTATE/ANNOGR. The 'start of text line' position is modified by the
'newline', 'newpage', 'carriage return' symbols described below. Generally,
however, the 'base point' of a symbol is the present pen position, i.e. symbols
are drawn wherever the pen is at the time.

SIZE specifies, in your X-units, the width of each character, i.e. the distance between
the horizontal points 1-5 of the 7x12 point grid; this automatically ensures a
character height = 1.75*SIZE and SIZE/2 spacing between successive characters (the
length of a text line is thus 1.5*SIZE*no. of characters).

THETA specifies the orientation of the line of text in degrees counter-clockwise to your
X-axis direction.

N.B. SIZE will be set to the equivalent of 0.04 inch (.1 centimetre) if the character

width specified represents fewer than 4 increments for the current plotter type (see
Table 1).

5-22 Graph Plotting

/ SIZE/2
<«—S|ZE»<—><S|ZE—>

q ~: The word ‘By’ with the 7 x 12 point grids
1.75+SIZE used to draw it. The grids of course do not

T + T normally appear.

4 4 4 The bottom left-hand corner of the ‘B’ is

1 1 | at the letter’s base point — (1,3) on the

grid.

-+ - -’

+ Nua T ' T

(0,0) (0,0)

Figure 6 Example of grid used in symbol drawing

The characteristics of the control symbols (see Section 5.5) are:
* 'null’ has no effect whatsoever
* 'newline' or 'newpage' causes the 'start of line' position, and hence the next character
position, to be moved to the next 1ine, i.e. 3xSIZE X-units below the previous line's
start point and in the orientation THETA

* 'carriage return’ sets the next character position back to the current 'start of line'
position, thus allowing for underlining, overprinting, etc.

* 'space' or 'backspace' set the next character position one symbol position forward or
backward respectively

* 'italics on' causes each succeeding character to 'lean' 15 degrees to the right
* 'jtalics off' resets characters to their normal rectangular shape
* 'subscript mode' can have different effects:
a) if the previous mode was 'standard' then succeeding characters will be drawn as
half-size subscripts
b) if the previous mode was 'superscript’ then succeeding characters return to 'standard’
mode and full-size

Thus two successive 'subscript mode' requests are needed to transfer directly from
'superscript mode' to 'subscript mode’

* 'superscript mode' can have different effects:
a) if the current mode is 'standard' then succeeding characters will be drawn as
half-size superscripts
b) if the current mode is 'subscript' then succeeding characters return to 'standard’
mode and full-size
Thus two successive 'superscript mode' requests are needed to transfer directly from
'subscript mode' to 'superscript mode’

N.B. A call on ANNOTATE/ANNGGR always returns characters to ‘'standard' mode and switches to the
'italics off' state.

Graph Plotting 5-23

*%%x% Pl OTSYMBOL / DRSYMG *****

externalroutinespec PLOTSYMBOL(integer ICODE)

IMP
PLOTSYMBOL (1CODE)

FORTRAN CALL DRSYMG(ICODE)

This routine draws a single character at the present pen position, using the current size
and orientation characteristics set by ANNOTATE/ANNOGR. Remember to use CHCODE to specify
whether characters are IS0 or EBCDIC.

The full set of possible characters is described in Tables 4 and 5 - see 'Graph Plotting
Symbol Sets' (Section 5.5). However, only those characters which are standard members of
either the IMP Extended Symbol Set or are Hollerith symbols, as appropriate, may appear within
quotes or in Hollerith format as the value of ICODE. Any other symbol required must be
specified by the value of its internal representation. Any undefined symbol value will be
replaced by '-'.

*%xx%% Pl OTSTRING / DRSTRG ****+*
externalroutinespec PLOTSTRING(string (255) ICHARS)

IMP
PLOTSTRING(ICHARS)

FORTRAN CALL DRSTRG(ICHARS,N)

This routine draws a succession of characters by repeated application of PLOTSYMBOL/DRSYMG,
thus producing a line of text of the current size in the current orientation. Use CHCODE to
specify whether characters are IS0 or EBCDIC.

In IMP the parameter is a string variable name or a string expression; the string length is
implicit.

In FORTRAN the parameter ICHARS is either the name of an A4 format integer or integer
array, or a Hollerith string of symbols. The string length N must be explicitly stated.

Normally the string may contain up to 255 characters. - However, when this routine is called
to specify further job identification information, i.e. between calls on OPENPLOTTER/OPENGR and
SETPLOT/GRAREA, the string may only contain up to 30 characters (see 'Identification of plotter
output' in para 5.3).

*4ikk Pl OTNUMBER / DRNUMG *****

externalroutinespec PLOTNUMBER(1ongreal X, integer M,N)

IMP
PLOTNUMBER (X ,M,N)

FORTRAN CALL DRNUMG(X,M,N)

This routine converts the floating-point value in X into a written decimal number according
to the format specified by the values of the parameters M and N, by repeated application of the
routine PLOTSYMBOL/DRSYMG. Use CHCODE to specify whether the characters are ISO or EBCDIC.

There are three format options:

* M>0 and N=0 produces an M-digit integer value without a decimal point

* M>0 and N>0 produces a fixed-point number with M digits preceding the decimal point
and N digits following it

* M=0 and N>O produces a floating-point number with 1 digit preceding the decimal point,
N digits following it, and a signed 2-digit exponent occupying 4 character positions

If M has a negative value then M=0 is assumed by default; if N has a negative value then
N=7 is assumed by default.

5-24 Graph Plotting

|

Leading zeros in the integer part of the number appear as spaces, and the sign character
precedes the first significant digit (the positive sign character is replaced by a space). If
more than M digits are needed to specify the integer part of the number then all the digits are
drawn and the number is displaced to the right in consequence.

In IMP the exponent indicator is '@' and in FORTRAN 'E'.

window boundary

SIN(THETR)
1.0

0.5+
THETA
(RADIANS)

71/2

3

In/2

--1.0

SINE CURVE

plotter —
origin Figure 7 Development of Figure 5: annotated graph

Graph Plotting 5-25

Example

The compiete example program being written to produce the drawings in Figures 4 and 5, and
now 7, can be rewritten using more efficient pen movements (i.e. minimising movements with the
pen raised), as shown in the following IMP and FORTRAN examples.

IMP PROGRAM

realslon

begin

externalroutinespec OPENPLOTTER(integer N)

externalroutinespec GRAPHPAPER(real g,inte er N)
externalroutinespec PLOTSTRING(strin 12§5is$

externalroutinespec SETPLOT(real XL,%L,XH,YH,inte er N)
externalroutinespec SCALE(real X0,Y0,XS,YS,THETA)
externalroutinespec AXIS(real X,Y,integer M,real D,integer N)
externalroutinespec ANNOTATE(real X,Y,SIZE,THETA)
externalroutinespec PLOTNUMBER{real X,integer M,N)
externalroutinespec PLOTSYMBOL(integer N)

externalroutinespec CURVE(realarrayname X,Y,integer M,N,real XN,XF,DX,DY,DASH,GAP,c
integer IC,real SIZE)

externalroutinespec CLOSEPLOTTER ()
integer I; real PX,PY; realarray X,Y(1:21
(T:5)="-"

ownbyteintegerarray CH(T:5)="-"," ','3','5' '7'

OPENPLOTTERisoj ;! plotter file on channel 50
GRAPHPAPER(40,M' INS®) ;! lower setting than the default
PLOTSTRING('ERCC') 3! extra job i.d. information

SETPLOT(0,0,70,40,M'CMS") ;. window size (70-0) cm. by (40-0) cm.

SCALE(14,20,14,10,0) ;! ldcm/X-unit, 10cm/Y-unit
AXI1S(0,-1,'Y',0.5,4)
ANNOTATE(-0.25,1.25,0.015,0)

1
1
1
;! Y-axis drawn upwards
;! 0.21cm wide characters horizontal
! (14 x 0.015cm)

1

1

PLOTSTRING('SIN(THETA)') 3! Y-axis title
PY=1 3! Y-range from 1 to -1
cycle I=1,1,5
li I<=3 then PX=-0.07 else PX=0.01
ANNOTATE(PX,PY-0.012,0.01,0) ;) 0.14cm wide characters horizontal
PLOTNUMBER(PY,1,1) unless I=3 3! numbering the Y-axis, except zero
PY=PY-0.5
repeat
==0.5 ;! X-range from -PI to +4Pl

cycle I=1,1,5

ANNOTATE (PX-3*0.01,-0.05,0.01,0) 0.l4cm wide characters horizontal

o]
pLOTsvmsgLicg(g)) ;1 numbering the X-axis
PLOTSYMBOL(176 :1 at intervals of Pl
PLOTSTRING('/2*) 21 from -P1/2 to +7P1/2
PX=PX+1
repeat

ANNOTATE(3.5,0.2,0.015,0)
PLOTSTRING(' THETA
(RADIANS)')
AXIS(4,0,M*-X"',1,5)
cycle 1=1,1,21
=0.25*(1-5)
Y(I)=SIN(PI*X(I))

repeat

CUEVETX,Y,I,21,-1,4,0.008,0.01,1,0,1,0.01) ;! solid curve plus special symbols with
! evaluation intervals 0.112cm (X) and
! 0.1cm (Y) if needed.

| drawing title position

! set italic mode
|
1

1 X-axis title

! X-axis drawn backwards
! 21 data points

! (X,Y) coordinate pairs

ANNOTATE(2.7,-1.4,0.02,0)

PLOTSYMBOL (224) ;
PLOTSTRING(*SINE CURVE') ;! draw title
CLOSEPLOTTER ;! file complete

endofprogram

5-26 Graph Plotting

OOOO0O

FORTRAN PROGRAM

INTEGER*4 PI,NLINE,CH(5
REAL*8 PX,PY,X(21),Y(21
DATA CH/'=',* *,'3' '5' '7'/ NLINE/10/,P1/176/
IF NOT FORTE COMMENT OUT THE PREVIOUS LINE AND REPLACE IT BY
DATA CH/'-*,* ','3','5','7'/ NLINE/21/,P1/35/
CALL CHCODE(1)
OPEN PLOTTER FILE, SET PAPER LIMIT, AND ADD EXTRA JOB I.D. INFORMATION
CALL OPENGR(50)
CALL GRPAPR(40.D0,"'INS')
CALL DRSTRG('ERCC',4)
DECLARE REQUIRED WINDOW AND COORDINATE SYSTEM WITHIN IT
CALL GRAREA(0.D0,0.00,70.00,40.00,'CMS")
CALL SCALGR(14.D0,20.D0,14.00,10.00,0.00)
DRAW Y-AXIS, ADD TITLE, AND NUMBER IT
CALL AXISGRgo.DO,-l.DO,'Y',0.500,4)
CALL ANNOGR(-0.25D0,1.2500,0.01500,0.D0)
CALL DRSTRG('SIN(THETA)',10)
PY=1.D0
DO 1 1=1,5
PX=-0.07D0
IF(1 .GT. 3) PX=0.0100
CALL ANNOGR(PX,PY-0.01200,0.0100,0.D0)
IF(I .NE. 3) CALL DRNUMG(PY,1,1)
1 PY=PY-0.500
NUMBER THE X-AXIS, ADD ITS TITLE, DRAW IT BACKWARDS
PX=-0.5D0
DO 2 I=1,5
CALL ANNOGR(PX-3.*0.01D0,-0.0500,0.01D0,0.D0)
CALL DRSYMG{CH(I))
CALL DRSYMG(PI)
CALL DRSTRG('/2',2)
2 PX=PX+1.D0
CALL ANNOGR(3.500,0.200,0.015D0,0.00)
CALL DRSTRG('THETA',5)
CALL DRSYMG(NLINE)
CALL DRSTRG('(RADIANS)',9)
CALL AXISGR(4.D0,0.D0,'-X',1.D0,5)

C CALCULATE 21 DATA POINT CO-ORDINATE PAIRS AND DRAW SOLID CURVE WITH SYMBOLS

c

C

DO 3 I=1,21
X(1)=0.25D0*(1-5)
3 Y(I)=DSIN(3.14159265*X(1))
CALL CURVGR(X,Y,1,21,-1.D0,4.00,0.00800,0.01D0,1.D0,0.00,1,0.01D0)
ADD DRAWING TITLE USING ITALIC CHARACTERS
CALL ANNOGR(2.7D0,-1.4D0,0.0200,0.D0)
CALL DRSYMG(224)
CALL DRSTRG('SINE CURVE',10)
PLOTTER FILE COMPLETE
CALL CLOSGR
STOP
END

Graph Plotting 5-27

5.4 CALCOMP BASIC GRAPHIC SOFTWARE SIMULATION PACKAGE

Notation

The description of each routine is headed by the FORTRAN call statement for that routine;
this package is not available from IMP programs.

The standard FORTRAN variable naming convention is used throughout

begin with one of the letters I, J, K, L, M, N, and all others are real.

Precision

i.e. integer variables

For consistency with the original Calcomp software all variables passed as parameters to
these routines are in single precision. Real variables, names or constants, must be REAL*4,
and all integer variabTes must be INTEGER*4.

Routine Name | Purpose Page
PLTYPE Sets the plotter code number. 5-29
CHCODE Sets the plotter program character set type. 5-29
PLOTS Initialises the Calcomp Simulation Package prior to plotter file 5-30
generation, and enables delivery information etc. to be specified.

IGRREC Indicates how many records have been written to the current plotter |5-32
file to date.

NEWPEN Causes the plotter pen to be changed. 5-32

OFFSET Enables a secondary Cartesian coordinate system to be specified. 5-33

PLOT Draws a straight line between two specified points. The line may be | 5-34
visible or invisible. The routine can also be used to reposition
the standard or secondary origin, and to close the file.

FACTOR Enables a scaling factor to be specified. This factor is applied 5-36
equally to subsequent X- and Y-coordinate values.

GRARFL Enables 'out of area plotting' messages to be suppressed. 5-36

WHERE Returns the current pen position coordinates. 5-36

SYMBOL Draws a specified character or characters from a standard set, 5-37
or from a special set.

NUMBER Outputs a decimal number in a specified format. 5-39

SCALE Enables a given set of data values to be scaled to fit into a 5-40
specified length when drawn.

AXIS Draws a graduated line, numbered at one-inch intervals, from a 5-41
specified point in a specified direction. A title can also be drawn.

LINE Draws a piecewise straight line through a given array of points and |5-42
adds a special symbol at each point. The line or the symbols can be
omitted.

Table 3 Calcomp Simulation Package Routines

5-28 Graph Plotting

Identification of plotter output

Your plotter output is automatically identified with your jobname, the machine on which you
are running the job, the date and time of file generation, and the file name (if accessible).
You are, however, strongly recommended to add your name and delivery point, using a maximum of
30 characters, in order to minimise delays in returning your output. Simply program, for
example:

CALL PLOTS('A.N.OTHER, DEPT. X',18,ICHAN)
when initialising your plotter files. PLOTS is decribed below. If there is no delivery
information available then

"**¥* pPlease set delivery ***x"
will be drawn automatically.

Error messages

In certain circumstances the value of a parameter passed to one of the routines may not be
intelligible to that routine. When this occurs an appropriate message will be sent to a
character file with ddname STREAM99 (see 'Job Control Requirements', Section 5.6), and the
program will be terminated unless it is in parameter checking mode (see PLOTS below).

5.4.1 ADMINISTRATIVE AND DRAWING ROUTINES

CALL PLTYPE(NTYPE)
This routine may be called at any time to indicate that future calls on graph plotting

routines should be with reference to the characteristics of ?lotter NTYPE, where 1<=NTYPE<=6
(see Table 1). The routine call is ignored if the current plotter type is already NTYPE.

The effect of this routine is to close the currently open plotter file, if one is open, and
to establish the characteristics of the required plotter type in the current plotter type
information area.

If this routine call is omitted the characteristics of the Calcomp 936 plotter (NTYPE=1)
will be assumed by default. If you wish to reference a different plotter you should precede
the call on PLOTS, described below, by a call on this routine.

0Of course it is only sensible to send a plotter file to a plotter which has characteristics

compatible with that referenced by the file, i.e. the same increment size and dimensions large
enough to accommodate the largest viewing window you declare.

Example
CALL PLTYPE(2)

would cause future reference to a Calcomp Model 663 plotter with an increment size of .0025
inch and maximum plotting width 28.5 inches.

CALL CHCODE(N)

The graph plotting software needs to know the character code used by your program. This is
dependent upon the programming language - FORTE uses ISO, FORTRANG, ICL FORTRAN and IBM FORTRAN
use EBCDIC.

The parameter N indicates ISO when even and EBCDIC when odd. IS0 is assumed by default
unless IBM FORTRAN is being used when EBCDIC is the default.

The call on this routine should precede calls on any other plotting routine except PLTYPE
above.

Graph Plotting 5-29

CALL PLOTS(IDENT,N,ICHAN)

If you wish to create a plotter file you must call this routine before any other plotting
routine, with the exception of PLTYPE and CHCODE above.

The effect of this routine call is to close the currently open plotter file, if one is
open, and to reset the initialisation parameters for the current plotter type (see Table 1).
Consequently, although it is permissible to create several plotter files within a single run of
your program, only one of them can be open at a time.

The value of the parameter ICHAN specifies the output channel number to be related to this
file. The value may be 96, the system plotter file, or may lie in the range 1<=ICHAN<=80. See
also 'dob Control Requirements', Section 5.6. If the channel has not been defined or is
defined improperly then the program will terminate with one of the following messages:-

*%%(CHANNEL nn) Call no. to 'PLOTS':-
*kk message JHEE

where message = No file definition statement
or Plotter file not defined as SQFILE
or Plotter file not F80, i.e. card images

Successive calls on PLOTS may specify the same value for ICHAN but if this points to the
same file name or device the program will terminate with the message

*%%(CHANNEL nn) Call no. mm to 'PLOTS':-
File extension not allowed.

If any plotter file is re-used in this run of your program then the new drawings will simply
overwrite the previous drawings it contained and they will be lost.

On creation of this file a job identification 'window' is declared, 2 inches wide and the
full width of the plotter, and your jobname, the machine on which you are running the program,
the date, file run-time and file name (if accessible) are drawn across the width of the
plotter. Further identification, such as your name and delivery point, may be added by use of
the parameters IDENT and N.

IDENT is either a Hollerith string containing N characters, or the name of an INTEGER*4
array containing N characters left-justified in A4 format. N is Timited to 30.

Following completion of the job identification window the pen is moved on 2 inches. A
large viewing window is then automatically declared within which all of the drawings you create
in this file will be imprisoned. The window size is the full width of the plotter (i.e. the Y
direction - see Table 1), and either

* 120 inches (300 centimetres) along the paper (the X-direction), or

* 32 inches (80 centimetres) along the paper - X-direction - if you have a student jobname.

The following initial conditions are then established:
* the standard black biro pen cartridge is selected

* a 'logical origin' is declared to be 1 inch horizontally and vertically from the 'plotter
origin' and the pen is notionally positioned at this point (see para 5.1 Efficiency for
the definition of a 'notional® position)

* the program X and Y directions are declared to be the same as those of the window, and the
program units of measurement in both these directions are declared to be inches; this
constitutes the 'standard coordinate system' recognised by the software, with the current
logical origin as its origin

5-30 Graph Plotting

I
Viewing T Norman “
window | size
] boundary | I
=]
o | | : Y - direction
2 I ! 120 inches >
~ | I 300 cms
- |
] i |
2 ; 32 inch ! '
~ inches
~ le——"80cms ——1 I
w
o ' ! |
8 g [! !
W ! Student I 1
_ E | size | |
i = | | |
Ly S I |
2 « |
- L . I !
o : |
al I | X — direction I
« &
2 = I —_——
g < a x I |
1
L 4 & - I ______ J. _______________ _5\
Plotter End-of-file
origin marker

Figure 8 Calcomp package: plotter output layout

N.B. When compared with the original Calcomp software specification, as described in the
Calcomp booklet 'Programming Calcomp Pen Plotters', the use of the parameters IDENT and N
is non-standard. It is possible in this package, however, since the plotter output buffer
which these parameters normally define is totally internal to the Simulation Package
software; it is definitely not available to the user program.

The window feature is also non-standard, but provides a fail-safe method for ensuring that
pen movements stay within bounds. This therefore precludes use of the plotter
micro-switches as a device for pen registration and origin setting as described in the
Calcomp booklet. You must keep track of the pen's position yourself; see also the
routines PLOT and WHERE, described later.

Example
CALL PLOTS('A.N. OTHER, DEPT. X',19,50)

will create a plotter file on channel 50, add the 19 characters of delivery information
specified to the job identification window, and then initialise the drawing area.

N.B. If the call on PLOTS is omitted the package is said to be in 'parameter checking' mode.

No output file is produced but all routine parameters will be checked for validity and
appropriate error messages produced.

Graph Plotting 5-31

*kkkk JGRREC **%**

I = IGRREC(N) where N is a dummy parameter

This function indicates how many records have been written to date to the current plotter
file. The function may be called at any time; a zero result is returned if no plotter file is
open at the time of the call.

CALL NEWPEN(IPEN)

You may request a different pen from the standard black biro at any time after the call on
PLOTS. The operation can be costly in terms of pen movement, however. If this is a single-pen
plotter or the requested pen is not already mounted, the pen change is effected at the ‘plotter
origin' so that the new pen's registration can be checked. (Only if the new pen is immediately
available is the pen change done in situ.) After the pen change the pen is notionally
re-positioned at its position when the pen change request was encountered.

The value of IPEN determines the pen type required as follows:-

1 black biro (initially and by default)

2 blue biro

3 green biro

4 red biro

5 black liquid ink, .lmm diameter pen

6 black liquid ink, .2mm diameter pen At ERCC

7 black liquid ink, .3mm diameter pen use of these pens must
8 black 1iquid ink, .4mm diameter pen first be authorised by
9 black Tiquid ink, .5mm diameter pen Mr M.P. Baillie

10 black liquid ink, .6mm diameter pen (031 667-1081 ext. 2902)
11 black liquid ink, .8mm diameter pen

Any other value of IPEN will cause the standard black biro to be selected. If the pen
requested is already selected this routine call has no effect.

If you have a student jobname any pen change requests will be ignored.

N.B. Since the Calcomp Model 936 plotter has a three-pen turret (see Table 1), when using that
piotter you can eliminate the time taken to change the pen cartridge if you use only pen
codes 1, 2 and 4, i.e. black, blue and red biros respectively.

Example
CALL NEWPEN(3)

will select the green biro for drawing until further notice.

It is good practice to draw all you require with one pen colour before requesting a change
of pen because of the time it takes, and the effort involved if the current plotter type has
only a single-pen cartridge. At present there is no 1imit on the number of pen changes during
a run of your program, but this may be reviewed if the good practice just described is not
adhered to.

5-32 Graph Plotting

CALL OFFSET(XOFF,XS,YOFF,YS)
This routine seems to be common to some versions of the Calcomp software. It is provided

to allow you to refer to a different Cartesian coordinate system from the standard one
described in PLOTS.

X _S_\ the point (X,Y)
~ X | inthe secondary

I

!

|

| common | coordinate system
I Y-direction standard Y |

origin L
l —— |
! |
YOFF

! secondary |
| system |
I origin "1 common |
| -~ XOFF — X-direction I
L e e e e e e e e e -

Figure 9 lCalcomp secondary coordinate system

Figure 9 shows the meaning attached to XOFF and YOFF. The X- and Y-directions are the same
for both coordinate systems. The transformation from the secondary system to the standard one
may be simply stated as

Xstandard =(xsecondary - XOFF)/XS and Ystandard =(Ysecondary = YOFF)/YS

where XS is the number of secondary X-units per inch
YS is the number of secondary Y-units per inch

Thus the standard coordinate system's origin is at the point (XOFF,YOFF) in the secondary
coordinate system.

This routine simpiy sets the values of XOFF, XS, YOFF and YS in an information area in the
software. You can only refer to the secondary system by using the routine PLOT, described
below; none of the other drawing routines can access the offset information.

When a plotter file is initialised the two coordinate systems are made coincident, i.e.
XOFF=YOFF=0 and XS=YS=1.

If you attempt to set either XS<0 or YS<O the program will terminate, unless it is in
parameter checking mode (see PLOTS above), with the message

**%(CHANNEL nn) Call no. mm to 'OFFSET':-
Negative or zero scaling factor(s).

Example
If your program X-units are seconds, you wish to represent 1 minute by one inch on your
drawing, 10 events are to be represented by 1 inch in the Y direction, and the current standard
origin is to be coincident with your graph origin, then the statement
CALL OFFSET(0.,60.,0.,10.)

would automatically cause your program units to be transformed to the standard system units,
but only via calls on the routine PLOT.

Graph Plotting 5-33

CALL PLOT(X,Y,IPEN)

This is the basic drawing routine, called at some point by all of the other drgwing
routines. The pen is moved in a straight line from its current position to the point)
specified, subject to a check that this move does not contravene the viewing window boundaries.

Normally the position of the point (X,Y) is expressed in the standard coordinate system
units, i.e. as inches from the current standard origin position. In this case the possible
values of IPEN are:

+2 move to (X,Y) with the pen in contact with the paper, i.e. draw the line
+3 move to (X,Y) with the pen raised, i.e. re-position the pen
999 move the pen clear of all previous drawing and close the file

-2 or -3 as for +2, +3 above except that additionally the point (X,Y) is now the standard
origin position from which all future standard coordinate positions will be
measured

If you wish to use the secondary coordinate system defined by the parameters passed to the
routine OFFSET described above then the point (X,Y) is expressed in terms of this system and
the values IPEN may then take are:

12 or 13 as for +2, +3 above
999 as for 999 above

-12 or -13 as for +12, +13 and additionally reset the secondary coordinate system origin at
the point (X,Y)

The values +12, +13, -12, -13 are the indication that the secondary system is to be referenced.
This reference is available only via the PLOT routine.

N.B. In each of the cases when the origin is reset the 'other' origin is also automatically
reset such that the offset between them remains as (XOFF,YOFF).

Any -value of IPEN other than those specified will be interpreted as +3.

The software will always use and remember the given values of the PLOT routine parameters
when computing the destination coordinates, but a check is continuously made to ensure that
only that part of the drawing which lies within the viewing window is actually drawn. Having
computed the destination position in terms of the standard coordinate system, a scaling factor
(see the routine FACTOR described below) is then applied in order to ascertain the
corresponding position on the plotter. If this position lies outside the viewing window the
pen will be notionally positioned at this point so far as the user's program is concerned, but
the pen movement itself will have been stopped at the window boundary. The first time this
occurs, and every 50th time thereafter, the purely informative message

*%k(CHANNEL nn) Call no. mm to 'name' is drawing out of area.***

appears, where 'name' is the actual routine which requested this pen movement. After 20 such
messages from one plotter file the program is terminated, with the additional message

*%%(CHANNEL nn) Call no. mm to 'name':-
Excessive out-of-area drawing.

Up to this point the software continuously checks vectors, and 'scissors' them where necessary.

N.B. The Calcomp manufacturer's software specification recommends use of the plotter
micro-switches for pen registration, at file initialisation and possibly at other times
also, by using the sequence

CALL PLOT(O.,-28.5,-3)
CALL PLOT(0.,1.,-3)

The first statement would operate the right-hand micro-switch; the second would bring the
pen 1 inch away from the plotter edge, this position then being the logical origin for
future drawing.

5-34 Graph Plotting

In the ERCC graph plotting environment, with the concept of a 'viewing window', this
sequence would have the effect of setting the logical origin immediately after file
jnitialisation at (1-28.5+1), i.e. 26.5 inches off the plotter - and very little of the
drawing would then be visible. The ERCC software sets the initial position for you (see
the routine PLOTS) but you must keep further origin changes under control.

l-_-viewing window j
I |
| |
I I
I I
| |
] 10" square box |
| ,_,S_ |
standard | |
origin

secondary origin at (2,5) |
in standard system coordinates [

plotter
origin | X |
\L N -

Figure 10 Example of the use of routine PLOT

Example
The box in Figure 10 could be drawn by the statements

CALL PLOT(2.,5.,3)
CALL PLOT(12.,5.,2)
CALL PLOT(12.,15.,2)
CALL PLOT(2.,15.,2)
CALL PLOT(2.,5.,2)

or, using a secondary coordinate system with the same unit of measurement but with origin at
the lower left-hand corner of the box, by the statements

CALL OFFSET(-2.,1.,-5.,1.)
CALL PLOT(0.,0.,13)

CALL PLOT(10.,0.,12)

CALL PLOT(10.,10.,12)

CALL PLOT(0.,10.,12)

CALL PLOT(0.,0.,12)

Graph Plotting 5-35

CALL FACTOR(F)

You may scale your drawing using this routine. The scaling factor F is applied equally to
the X- and Y-coordinate values, to produce magnification or diminution of the complete drawing.
F may be reset any number of times.

The initial setting is F=1.0. If F is set greater than 1.0 then part of your drawing might
disappear outside the viewing window.

F must be greater than 0.0, otherwise the message

**%(CHANNEL nn) Call no. mm to 'FACTOR':-
Negative or zero plot size.

will appear, and the program will be terminated unless it is in parameter checking mode (see
PLOTS above).

Example
CALL FACTOR(2.) _
will automatically double the size of your drawing from this point on. With reference to

Figure 10, the box would then be 20 inches square with its lower left-hand corner at the point
(4.,10.) relative to the standard origin.

CALL GRARFL(IFLAG)

This routine is not included in the Calcomp manufacturer's software. Its purpose is to
accommodate those who wish to ignore any out-of-area pen movement messages, and hence to use
the 'viewing window' mechanism as a simple 'scissoring tool'.

IFLAG may take the following values:

* 'ON' meaning 'permit out-of-area messages' - this is the default value at the start of
each plotter file

* 'OFF' meaning 'suppress out-of-area messages'
Any other value will be taken to mean ‘ON'.

Example

CALL GRARFL('OFF')
CALL GRARFL('ON')

CALL WHERE(X,Y,F)

If you wish to determine the notional pen position at any time, i.e. the position where
your program believes the pen to be (and this might be outside the viewing window), then this
routine will tell you.

After a call of the routine the parameters have the following values:

* X contains the notional X position in inches relative to the current standard origin

* Y contains the notional Y position in inches relative to the current standard origin

* F contains the present value of the scaling factor - see FACTOR above

5-36 Graph Plotting

CALL SYMBOL(X,Y,HEIGHT,IBCD,ANGLE ,NCHAR)

This routine allows you to add annotation or special graphic symbols to your drawings. The
full complement of symbols is detailed under 'Graph Plotting Symbol Sets' (Section 5.5), with
the symbol '-' being the default if an invalid code is requested. A call on CHCODE described
above should be made in order to specify whether characters will be 1SO or EBCDIC.

NCHAR specifies whether a particular symbol is to be used as a special symbol or as a text
character:

* NCHAR<O means that IBCD is an integer whose value specifies a special symbol code
A special symbol is drawn with the 'base point' (X,Y) as centre (in the standard
coordinate system), with an overall height and width of HEIGHT inches, and rotated through
ANGLE degrees about (X,Y) counter-clockwise to the standard X-direction. The pen is

initially moved in a straight line to (X,Y) from its current position. The value of NCHAR
affects this move:

* NCHAR<-1 means that the move draws a line

* NCHAR=-1 means that the move is invisible
When the symbol is complete the pen is again at (X,Y), and in contact with the paper.
The symbols usually specified as 'special' (since they are 'centred' symbols) are

(] U] A + X o ¢ X z Y X % X |

A1l other symbols are normally used in 'text' mode.
* NCHAR=0 means that IBCD is an integer whose value specifies a text character code

* NCHAR>O means that IBCD is an integer name, or integer array name, or a Hollerith
string, of text characters in A4 format

Text characters are drawn with the 'base point' (X,Y) in the standard coordinate system
taken as the lower left-hand corner of the first character in the sequence. The full
sequence is drawn along a line at an angle ANGLE degrees counter-clockwise to the standard
X-direction.

Each text character, with the exception of the control symbols described below, is
contained within an 8x12 point grid, with the base point of the character at the position
(2,2) on this grid - see Figure 11. The parameter HEIGHT inches identifies the distance
between the vertical positions 2-9, and hence also the full width of the grid. Successive
characters have their 8x12 point grids abutted; consequently the 1ine of text appears as
it would be written or typed. The length of the line is NCHAR x HEIGHT inches.

<«——Height —»

L L Il L I Il L [L Il i 'l
B L) Ll L}] L] L Ll L] hJ L] T
+ <+ + The word ‘Up’ with the 8 x 12
4 41 1 point grids used to draw it.
) 4 4 4 The grids of course do not
Height | 1 | normally appear.
+ 4 4
+ N— + <+
I Y2 | Il
(0,0 {0,0)

Figure 11 Example of grid used in symbol drawing

Graph Plotting 5-37

The characteristics of the control symbols (see Section 5.5) are:
* 'null’ has no effect whatsoever

* 'space' and 'backspace' set the next character position HEIGHT inches forward or backward,
respectively, along the line of text

* 'newline' sets the next character position HEIGHTx12/7 inches below (X,Y) - allowing for
the rotation ANGLE - and re-defines (X,Y) to be this point for future newline reference

* 'jtalics on' causes each succeeding character to 'lean' 15 degrees to the right
* 'jtalics off' causes each succeeding character to appear in its normal rectangular shape
* 'subscript mode' may have two different effects:

a) if the current mode is 'standard' then succeeding characters will be drawn as
subscripts, at 0.7 x HEIGHT inches size

b) if the current mode is 'superscript' then succeeding characters return to 'standard
mode' and full size

Thus two successive 'subscript mode' requests are needed to transfer directly from
*superscript mode' to 'subscript mode'

* 'superscript mode' may have two different effects:

a) if the current mode is 'standard' then succeeding characters will be drawn as
superscripts, at 0.7 x HEIGHT inches size

b) if the current mode is 'subscript' then succeeding characters return to ‘standard
mode' and full size

Thus two successive 'superscript mode' requests are needed to transfer directly from
*subscript mode' to 'superscript mode'

N.B. The SYMBOL routine will always set 'standard mode' and 'italics off' before drawing the
symbol sequence; (X,Y) always becomes the new newline reference position.

For both special symbols and text characters the value of HEIGHT will be automatically
adjusted to 0.04 inch (0.1 cm) if the HEIGHT value given represents less than 4 increments on
the current plotter type (see Table 1) when a special symbol is specified, and less than 7
increments when text characters are specified.

On exit from the SYMBOL routine the pen coordinate position is remembered in order that you
may refer to it on the next call of the routine. If you wish to make use of this then the
(X,Y) values specified in the next call should be

* X=999.0 if you wish to carry on from the remembered X-position, but select a
different Y-position

* ¥=999.0 if you wish to carry on from the remembered Y-position, but select a
different X-position

* X=999.0 and Y=999.0 if you wish to continue from exactly the same point
This facility can be used when requesting either special symbols or text characters, regardless
of which type of symbol was requested in the previous call.

N.B. The Simulation Package SYMBOL routine has been written to be consistent with the original
Calcomp specification, which allows all symbols to be used either as special graphics
symbols or as text. The consequences of this are that

* if 'special symbol' mode has just been used, the 'remembered position' is beyond the
point (X,Y) on entry to the routine, in the direction ANGLE, by a distance either

a) HEIGHTx7/4 inches if one of the 'centred' symbols was drawn, or

b) HEIGHT inches if it was a 'printable' character, or the appropriate adjustment if
it was a control character

5-38 Graph Plotting

* if 'special symbol' mode has just used what is normally a text character it will be
lower left-hand corner justified, not centre justified, about the point (X,Y)

* if a 'centred' symbol occurs within a 'text' string it will be drawn HEIGHT x 4/7
inches high and centre justified, not lower left-hand corner justified 1ike normal
'text' characters

Example

The drawing of text and connected special symbols in Figure 12 could be produced by the
following sequence of statements:

CALL PLOTS('ERCC',4,50)

XCQ%% SYMBOL(0.,15.,.14,"'A POINT PLOT USING CONNECTING LINES',O.,
DO 1 I=1,10

1 CALL SyMBOL(X(I),Y(I),.1,IGR,0.,-2)

The connecting line from the end of the text string has been drawn because the same SYMBOL call
has been used for moving to each of the special symbol drawing positions. IGR will have the
value 243 in FORTE and 3 in FORTRANG, IBM FORTRAN and ICL FORTRAN; see Tables 4 and 5
respectively, in 'Graph Plotting Symbol Sets' (Section 5.5).

r viewing window boundary _l

(60,15}

-~ 35x.14”

.‘_‘/-
Q

47 {A POINT PLOT USING CONNECTING LINE
(0,15)

—~OD~JNULEWN —
CR® & o & » s o o »
s QQQQQQQQAQa
aQaqgQaacaaaa
aqgaaqQaaaaa
agaQaaacaaaa
aqaqQaaaQaQaaaa

—_— e e e o e e e— o e—— E— e = — — — — —

Figure 12 Example of the use of routines PLOTS, SYMBOL and NUMBER

CALL NUMBER(X,Y,HEIGHT,FPN,ANGLE,NDEC)
Drawing numbers is exactly the same as drawing a string of text characters once the
required symbols have been derived for the requested number format. The NUMBER routine is
simply a pre-processor for the SYMBOL routine described above.

The number drawn is the value assigned to the parameter FPN. The number format is
specified by the value assigned to the parameter NDEC as follows:

* NDEC>=0 means the number is to be in F format with NDEC digits following the decimal point
* NDEC=-1 means the number is to be in I format - only the integer part is drawn

* NDEC<-1 means the number is to be in 1 format, but the integer part will be truncated from
the right by |NDEC-1] digits

Graph Plotting 5-39

In each case FPN is rounded properly for the format requested. |NDEC| is limited to a maximum
value of 9. If FPN is positive the sign character is omitted.

After initially re-positioning the pen at (X,Y) relative to the standard origin the string
of text characters derived for the requested format is drawn using characters HEIGHT inches
high, with the line of text at an angle of ANGLE degrees counter-clockwise to the standard
X-direction.

As with the SYMBOL routine, the final pen position will be 'remembered' for possible use as
the start point of further numbers, text or special graphic symbols. Hence, if in a NUMBER
routine call X=999.0 or Y=999.0 or X=Y=999.0 is used, the number will be positioned in the
requested position relative to the last position remembered by the SYMBOL routine.

Example

A column of numbers could be drawn by the following statement sequence:

CALL NUMBER(60.,15.,.1,10.,0.,-1)
DO 1 I=1,10
1 CALL NUMBER(999.0,15.-1,.08,FLOAT(1),0.,5)

as shown in Figure 12.

CALL SCALE(ARRAY,AXLEN,NPTS,INC)

You may frequently have a set of data values which are required to be drawn to fit some
fixed distance on your graph. The SCALE routine takes a set of values and derives suitable
start and finish values to fit a specified length of line; it does not produce any pen
movement.

The variable ARRAY is either an array name, or the first element of an array, in which the
set of data values is stored. The parameter INC specifies the elements within ARRAY which
constitute the set of points, i.e.

ARRAY(1), ARRAY(1+|INC|), ARRAY(1+2x|INC|), «evvoeee. ,ARRAY(1+(NPTS-1)x|INC|)

If iNC=O or NPTS<=0 then the program will be terminated, unless it is in parameter checking
mode (see PLOTS), with the message

%(CHANNEL nn) Call no. mm to 'SCALE':-
No data points, or zero increment selection.

The SCALE routine ascertains the minimum and maximum of the values in the set, and hence
the units per inch (MAX-MIN)/AXLEN along the line of length AXLEN inches. AXLEN is set to 1.0
if it is given as less than 1.0.

The increment per inch value is often too large for axis annotation purposes, and the
increment is therefore adjusted to be of the form

n*10M

where n = 1, 2, 4, 5, or 8, whichever fits best. MAX and MIN are also adjusted to be multiples
of this number, such that the set of data values lies within the range MIN to MAX.

The starting and finishing points of the line are assigned according to the value of INC,
as follows:

* INC>0 means the starting point is the adjusted MIN, the finishing point is the adjusted
MAX, and the increment per inch is therefore positive

* INC<O means the starting point is the adjusted MAX, and the finishing point is the
adjusted MIN, and the increment per inch is therefore negative

The calculated starting point and increment per inch values are then stored for future use in
the array elements ARRAY(1+NPTSx|INC|) and ARRAY(1+(NPTS+1)x|INC|), respectively, i.e. the
‘next' two array positions in the sequence defining the set of points. This means that you
must dimension ARRAY large enough to accommodate these elements.

5-40 Graph Plotting

If you have a set of (X,Y) coordinate pairs which you wish to scale to fit fixed-length X-
and Y-axes then you must call SCALE twice, once for the X-values and once for the Y-values.
The scaling parameters may then be used by the AXIS and LINE routines described later.

Example

The points drawn in Figure 12 could be scaled to fit 10 inch long X- and Y-axes by the
following statements:

CALL SCALE(X,10.,10,1)
CALL SCALE(Y,10.,10,1)

kikkk Axxs *EkEER

CALL AXIS(X,Y,IBCD,NCHAR,AXLEN,ANGLE,START,STEP)

This routine will draw a graduated line numbered at one-inch intervals, and add a string of
text characters as a title. The numbering and titling information occupy an area approximately
0.5 inch wide alongside the line; this should be allowed for when planning the situation of the
Tine.

(X,Y) defines the starting point of the 1ine in the standard coordinate system; its
direction is defined to be at ANGLE degrees counter-clockwise to the standard X-direction.
Graduation marks are drawn 0.05 inch in length, perpendicular to the line, but not crossing it.

In general (X,Y) may be any point and ANGLE may take any value but, when this graduated
Tine is to be associated with a line drawing produced by use of the LINE routine (described
next), their values are strictly limited to

X=0.0 and ANGLE= 0.0 or ANGLE=180.0 if the line is an X-axis
Y=0.0 and ANGLE=+90.0 or ANGLE=-90.0 if the line is a Y-axis

The length of the line is declared by the value of the parameter AXLEN in inches. If
AXLEN<=0 the program will be terminated, unless it is in parameter checking mode - see PLOTS,
with the message

*%%(CHANNEL nn) Call no. mm to 'AXIS’:-
7ero or negative length specified.

When the line is numbered the value of START is drawn alongside the tick mark at (X,Y), the
value of (START+STEP) one inch further along the line, etc. The values of START and STEP may
be those derived previously by calls on the SCALE routine, or specific values you decide to use
instead.

The number format used always has two decimal places, and the STEP value may be adjusted
Tocally within the AXIS routine such that 0.01 < incr < 100. If this adjustment is necessary
it will be indicated by the routine adding to the axis title

bb*10"

where b represents a space
n is the adjustment exponent (*10" is omitted if n=0; n is omitted if n=1)

The axis title is contained in IBCD, as either a Hollerith string or an A4 format integer
array, and has NCHAR[text characters whose type will have been specified by a call on CHCODE.
The sign of NCHAR indicates the positioning of the title and 1ine-numbering, and the direction
of the tick marks, as follows:

* NCHAR>O means the title, numbering and tick marks are all on the counter-clockwise side of
the line

* NCHAR<O Tgans the title, numbering and tick marks are all on the clockwise side of the
ine

The title, and number adjustment characters if needed, are drawn parallel to the graduated
line and centralised along it, using characters 0.14 inches in height, i.e. about 7 characters
per inch. Numbering characters are drawn alongside the tick marks using characters 0.105
inches in height, i.e. about 10 per inch with the left-hand edge of the second character in the
number immediately above, or below, the tick mark.

Graph Plotting 5-41

The routine exits with the pen back at (X,Y).

l
|
[
|
|
[
|
|
|
[
|
l
| [=]
S :
| S :
- |
|
l
I =
AP '
—y \\ |
| X
P T added by '
l)- LINE routine |
| S '
|8 '
| -1.00 9.00 19.00 29.00 39.00 4g.00 !
X-AXIS %10 |
. L ____ _

Figure 13 Annotated graph

Example

Figdre 13 shows the result of the following two calls on the AXIS routine:

CALL AXIS(0.,0.,'X-AXIS',-6,5.,0.,-10.,100)
CALL AXIS(0.,0.,'Y-AXIS',6 ,2.,90.,YARRAY(23) YARRAY(25))

where it is assumed that the array YARRAY has been scaled by the SCALE rout1ne to give an ak1s
start number of 100 and an increment per inch of 0.1 in terms of the program's Y-values, saved
in YARRAY(23) and YARRAY(25) respectively. The SCALE call would have been

CALL SCALE(YARRAY,2.,11,2)

CALL LINE(X,Y,NPTS,INC,LINTYP,ICODE)

You will probably wish at scme time during your graph plotting to join a series of data
point coordinate pairs using straight 1ine connections, possibly adding a special symbol at
some or all of these points. The LINE routine provides this facility, by calling the PLOT and
SYMBOL routines, and assumes that the set of points has been processed by the SCALE routine.

The set of points is contained in the two arrays X and Y, with the parameter INC specifying
the elements within these arrays which constitute the set; i.e.

(X1,Y1),(X1+|INC|,Y1+|INC]|),(X1+2x| INC|,Y1+2X|INC|) ,+«eu., (X1 (NPTS-1)x| INC|,Y1+(NPTS-1)x | INC|)

- If INC=0 or NPTS<=0 then the program will be terminated, unless it is in parameter checking
mode (see PLOTS), with the message:

%(CHANNEL nn) Call no. mm to 'LINE':-
No data points, or zero increment selection.

A

5-42 Graph Plotting

The array elements (X1+NPTSx|INC|,Y1+NPTSx|INC|) are assumed to contain the respective
X-axis and Y-axis start values.
The array elements (X1+(NPTS+1)x|INC|,Y1+(NPTS+1)x|INC|) are assumed to contain the respective
X-axis and Y-axis increments per inch.

These values may be obtained by processing the X and Y arrays in the SCALE routine, or you may
supply specific values yourself. Obviously the X and Y arrays must be dimensioned large enough
to accommodate these elements.

The LINE routine initially re-positions the pen at the nearer end point of the defined set
to the current pen position, then draws connecting lines and/or special symbols through each
point of the set in turn. The connecting line format is governed by the value of the parameter
LINTYP, as follows:

* LINTYP=0 means only the connecting lines are drawn

* LINTYP>O means the connecting lines are drawn and the special symbol ICODE is added at
every LINTYPth data point in the set

* LINTYP<O means the connections are invisible and only the special symbol ICODE is drawn
at every |LINTYP|th point in the set

The routine exits with the pen at the opposite end of the set of points.

N.B. The LINE routine assumes that the program X- and Y-directions are the same as those of the
standard coordinate system, and that the given X-axis and Y-axis starting values coincide
with the standard origin.

Example

The 1ine drawing shown in Figure 13 could be drawn by the following statement:
CALL LINE(X,Y,11,2,1,ICODE)

where the X and Y arrays must have been dimensioned to at least 25 locations, and ICODE has the
value 244 in FORTE and 4 in FORTRANG, IBM FORTRAN and ICL FORTRAN; see Section 5.5, Tables 4
and 5 respectively.

The complete example program for creating the drawing shown in Figure 13 is as follows:

DIMENSION X(25),Y(25)
DATA ICODE/244/
IF NOT FORTE COMMENT OUT THE PREVIOUS STATEMENT AND REPLACE IT BY
DATA ICODE/4/
CALL CHCODE(1)
READ DATA VALUES
READ(5,100) (X(I),Y(I),I=1,21,2)
100 FORMAT(2F7.2)
C OPEN PLOTTER FILE ON CHANNEL 50
CALL PLOTS('ERCC',4,50)
C SET ORIGIN POSITION
CALL PLOT(2.,2.,-3)
C SCALE DATA VALUES TO FIT A 5 INCH X-AXIS AND A 2 INCH Y-AXIS USING
C EVERY OTHER POINT
CALL SCALE(X,5.,11,2)
CALL SCALE(Y,2.,11,2)
C DRAW X-AXIS AND Y-AXIS
CALL AXIS(0.,0.,'X-AXIS',-6,5.,0.,X(23),X(25))
CALL AXIS(0.,0.,'Y-AXIS',-6,2.,90.,Y(23),Y(25))
C ADD LINE DRAWING
CALL LINE(X,Y,11,2,1,ICODE)
C CLOSE PLOTTER FILE
CALL PLOT(10.,0.,999)
STOP
END

OO0

Graph Plotting 5-43

5.5 GRAPH PLOTTING SYMBOL SETS

IMP and FORTE are both based on the IS0 character set. FORTRANG, IBM FORTRAN and ICL
FORTRAN on the other hand are based on the EBCDIC character set.

The full complement of graph plotting symbols is available to all types of program,
regardless of which graph plotting package is being referenced (ERCC or Calcomp Simulation).
However, because of the differences between the two character sets, the internal representation
of a graph plotting symbol is dependent upon the language in which the calling program is
written,

Table 4 shows the ISO symbol set used in an IMP or FORTE context. Table 5 shows the EBCDIC
symbols used in all other contexts. In both cases only those symbols which are accepted
members of the standard ISO or EBCDIC character sets may appear in your program within quotes
or as a Hollerith string. A1l others must be referenced by their symbol values.

The style of some characters may differ between the ERCC Graphpack and the Calcomp
Simulation Package.

5.5.1 Extended ISO Symbol Set for IMP and FORTE Programs (Table 4)
Notes
* all undefined symbols produce the symbol '-' by default

* the symbols NUL, SP, BS, CR represent 'null’', 'space', 'backspace', and ‘carriage return
without newline', respectively

* the symbols NL and FF are synonymous and represent the 'newline' operation

* the symbol SUB means either ‘enter subscript mode from normal mode' or ‘return from
superscript mode to normal mode'

* the symbol SUP means either ‘enter superscript mode from normal mode' or ‘return from
subscript mode to normal mode'

* the symbol ION means 'switch to italic characters'
* the symbol IOF means 'switch back to standard characters'
* the symbols in column 15 are debarred to ERCC Graphpack routines

* the symbols CR and FF are debarred to Calcomp Simulation Package routines

5.5.2 Extended EBCDIC Symbol Set for FORTRANG, IBM FORTRAN and ICL FORTRAN Programs (Table 5)
Notes
* several symbols are duplicated within this table in order to incorporate standard EBCDIC
characters and the original Calcomp defined set, and also to keep the Greek alphabetic
characters in a close pattern
* all undefined symbol values will produce the symbol '-' by default

* the symbols NUL, SP, BS, NL represent 'null', ‘space', 'backspace', and 'newline'
operations respectively

* the symbol SUB means either 'enter subscript mode from normal mode' or ‘return from
superscript mode to normal mode'

* the symbol SUP means either 'enter superscript mode from normal mode', or 'return from
subscript mode to normal mode'

* the symbol ION means 'switch to italic characters'
* the symbol IOF means 'switch back to standard characters’

* the symbols 0 to 13 in column 0 are debarred to ERCC Graphpack routines

5-44 Graph Plotting

TABLE 4.

o W log|le|la|+|x|e|e|x]|N x | % || -
AR ENEERE
-|-]o ™
-~ N)
—|lo| -~ s elalb| | 2|e]| x|+|s
-|lo]| - o slal ~|w]| ol c|lo ¥|<| 2| >|unf o
~|lo|o D N=la|lwl—|—le|x|=>|c . -
-|lo|lo S < || |[dlw|iN|T|® ¥i<|=|=|i=n|lo
o|~|+~ ™~ ajlo|lcl o]l > 3] x Nlw|[—]|~] 1|
o|~|~ o + lojlaoalo|lo|lo|w | o c S|lx|—|e]lclo
o|l~|o W lalo|lajn|—|o|>=]|x N|—=|-|—~]- [
o|l~|o - ola|lm|lo|lajlw|w]|lov|x olxlal=slz|o
olo|~ M o~ |n|jo|~N]|o | «lV]in| Al
o|lo|~ N 1F|e=2 | #|w ||| [— x|+ < ~
o|lo|o D + <| >l n|le|X|—]| _ 1 = | {] | |<]| 8
olo|o o MM v |w|lH|+| VAl S|+ | LS mm mw
=
A R R e R A T I N LA CA T B O E B
o
a4
|D|04IOA|04IOAIO O] ~]| O] —| ©Of ~
|D2004I1004I..IO —)] —]| O] | «~| ~
g olo|lo|le|l ~|~| ~| ~| © o|lo| «~| ~| ~| -~
g olololo|lo|lo| ol o] ~ -]~~~ ~| -

SYMBOL VALUE = 16%COL + ROW

Graph Plotting 5-45

TABLE S.

B

FORTRANG,

ICL_& IBM FORTRAN GRAPH PLOTTING PROGRAMS

—|=1=-1 2 |o[l~|la|[m|+|lv]|o|N|o|o|—|—|e|x<]|=|c
<+ - ™
-—l-l~]o ¥ S(S|o|lr-|D|>|=|(x|>|N|=|iIn|o|=|a |«
—|-lol~| © Doz zZz|lo|la|lo|l|lT|lo|—~|x|<|=
—|-|o|leo] clo|lo|loajlu|jlL|o|lT|—|l<|o|c |<dw|~N
-—lol<]«- p PR F|l > oe] =< »]| 2
~lol-lo]l € |wn ol D> 2| x| >x[N|>lw|o|Ee]|lalb
—lolo| -~ S ODlx|—1e|lc|lolalolc]lclo] ~| wl<| 2
~—|lolo]|o © lw|loja|lo|lo|lo|lw| o]l -] s|lal ~lw] el|w
Olw-|+~|+~ ~ O|l—|lnm|t+t|w{iO|IN]|O|O| «|2x|0]|2 | 0=
ol|l~|~|o o LIN|[o (-] >]|=x|>IN] 8] x| Al
ol|l~|o|~ W oo |al=lz|lola|lo|lal=le| x|~ <]
o|l-|lolo] ¥ |la|lo|jo]|alu|w|o|x|—~]e Vi i—|+]|—
olo|~|+~1 @ |wle|v|a|lal=|~{ | w|=|afu]l x|«
o~ a|o
clol~|o Al]l eleo|lo|»| =< a|l<]|s{w] o S ==
]
olo|lo|~| — |8l <[e]+|Z|n]|+n H2| || n|>] 1]
o|lo|lo|o © Bleoe|la|+|x|eoe|le|x|N]>|x]|x|x]|-]|x _
2
LR NS 57723 Rl R Rl R I Rl Rl Rl Rl Al B8 e B0 ol 2
o
4
0 O —| O] ~| O ~| O] —| O] ~| O} | O ~| O] «~
R
Mol O|lO| OOl o O | «~| =] «~] =] «=] ~=| -

SYMBOL VALUE = 16xCOL + ROW

5-46 Graph Plotting

5.6 JOB CONTROL REQUIREMENTS
The relevant User's Guides contain introductions to the process of running user programs;
the following paragraphs describe the particular requirements for graph plotting jobs. Note

that at NUMAC and under VME/B on the ICL 2980 plotter jobs must be run in solo, not batch,
mode.

Reference should be made to:
EMAS User's Guide - Chapter 4
EMAS 2900 User's Guide - Chapter 6
NUMAC 0S User's Guide -~ Section E
2980 User's Guide - Section E

There are three aspects to the job control requirements for plotting jobs, no matter which
language your program uses or on which computer your program is run. These are:

* an indication of the package your program references
* a definition of the file or files your plotting output is written to
* an indication of the plotter you wish your files to be drawn on

These three items are discussed separately for each of the computer installations on which the
packages are available.

5.6.1 EMAS on the ICL 4-75 Twin Configuration

Normally EMAS is accessed in foreground mode via an interactive terminal. Jobs may be
detached from foreground mode, to be run later in background mode. In either mode the commands
required to perform a particular task are the same.

Package Access

The two graph plotting packages are held in the CONLIB process, in the libraries

CONLIB.GRAPHLIB the ERCC Graphpack
CONLIB.CLCMPLIB the Calcomp Simulation package

which are permitted for everyone to access.

For your program to be able to access a library you must first issue the command

APPENDLIB(1ibraryname)

and in the case of these two plotting libraries you must be sure that the correct 1ibrary is
searched first, since both packages have routines with the same names - CHCODE, IGRREC, JOBINF,
FILEINF, PLOT, AXIS, SCALE, GRARFL, PLTYPE. If you already have CONLIB.CLCMPLIB appended to
your library structure, but now wish to access the ERCC Graphpack routines in the library
CONLIB.GRAPHLIB, you must issue the commands

REMOVELIB(CONLIB.CLCMPLIB
APPENDLIB(CONLIB.GRAPHLIB

Otherwise your program will fail because the wrong package will have been initialised.
Similarly if you wish to change from CONLIB.GRAPHLIB to CONLIB.CLCMPLIB.

If in doubt, the command
LIBANAL (userlib)

will indicate the libraries you currently have included in your library structure and in what
order. ‘'userlib' in this context is usually SS#LIB.

Normally the APPENDLIB command need only be given once. It will stay in force from one
log-on session to the next, until you alter the library structure.

Graph Plotting 5-47

File Definition

Graph plotter files have two important characteristics:

* they are IMP sequential files (since the plotting software is written in IMP),
regardless of the language of the calling program

* their structure is always fixed 80-byte records, i.e. card images; if a file of a
different format were sent to a plotter the computer controlling the plotter would
reject it

Hence file definition takes the form of the command
DEFINE(SQFILEnn,plotfile)

where nn is the output channel number referred to in the appropriate file
initialisation routine OPENPLOTTER, OPENGR, PLOTS

plotfile may be the name of a new file, or an existing one if it was originally
created as a graph plotter file, or one of the .GP or .SGP type device
codes

Normally omission of the fourth parameter to DEFINE will cause the file to have a V1024
format. However, when a graph plotter program initiates a SQFILE the format F80 is
automatically enforced. Remember though that the format of a file is governed by the DEFINE
statement in force when it was created, and this format cannot be altered other than by first
DESTROYing the file.

.GP is the standard plotter device code; .SGP is used to indicate that this file should be
drawn using liquid ink, again on the standard plotter. See HELP(REMOTES) for other .GPnn

devices.

The default file size of 255K bytes will cope with a file of more than 3000 card images,
which is a very large plotter file. At present this is the maximum size of plotter file which
EMAS will allow to be transmitted to a plotter.

N.B. If the output channel you specify in the initialisation routine call is the system

plotter file on channel 96, the file definition is automatically performed for you by the
EMAS Subsystem. DEFINE will fail if you try to define channel 96.

Qutput to Plotter

Once you have run your brogram, and therefore created the plotter file, you may

* keep the file for plotting later

* keep the file for merging with another drawing - if you have used the ERCC Graphpack
routine FILEGRAPH/FILGR

* direct it to the relevant plotter - as chosen by PLOTTERTYPE/PLTYPE or by default

The standard plotter attached to 4-75 EMAS is the Calcomp 936 (plotter type 1 in Table 1)
with the device code .GP or .SGP, as described above. If your DEFINE command references one of
these device codes or the plotter file was created on channel 96 then the plotter file will be
sent straight to this plotter and you will not have a copy of the file in your file index.
Otherwise you may cause the plotter file to be sent to the plotter, following the program run
which created it, by specifying

LIST plotfi]e,device; if you wish to retain the file
or SEND(plotfile,device

Other devices may be available from time to time; see the .GPnn alternatives under
HELP(REMOTES) or in the EMAS Information card.

Example
APPENDLIB(CONLIB.GRAPHLIB) if needed
DEFINE(SQ50,plotfile) SQ is an accepted abbreviation of SQFILE
RUN(program) IMP or FORTE program referencing the ERCC Graphpack
LIST(plotfile,.GP) drawing the plotter file just created and retaining

the file

5-48 Graph Plotting

N.B. Since the EMAS commands APPENDLIB, DEFINE, RUN, LIST, SEND all take the form
externalroutinespec command(string (63) S)

they may in fact be called from within a routine or program, directly in IMP and
indirectly (via the routine EMASFC) in FORTE; see the EMAS User's Guide.
5.6.2 EMAS on the ICL 2970
Normally EMAS is accessed in foreground mode via an interactive terminal. Jobs may be

detached from foreground mode, to be run later in background mode. In either mode the commands
required to perform a particular task are the same.

Package Access

The two graph plotting packages are held in the CONLIB process, in the directories

CONLIB.GRAPHICS the ERCC Graphpack
CONLIB.CALCOMPICS the Calcomp Simulation package

which are permitted for everyone to access.
For your program to be able to access a directory you must first issue the command
OPTION(SEARCHDIR=directory name)
and in the case of these two directories you must ensure that the one you want takes precedence
since several entry points are duplicated, viz. CHCODE, IGRREC, JOBINF, FILEINF, PLOT, AXIS,
SCALE, GRARFL, PLTYPE. If you already have CONLIB.CALCOMPICS in your directory search list
then the command
OPTION(REMOVEDIR=CONLIB.CALCOMPICS,SEARCHDIR=CONLIB.GRAPHICS)

will ensure that the ERCC Graphpack takes precedence, and vice versa. If both are already in
the directory search list then

OPTION(SEARCHDIR=directory name)
will promote the package you require to the head of the list. If in doubt
OPTION(?)

will inform you of the current state of the directory search 1ist, among other information.

File Definition

Graph plotter files have two important characteristics:

* they are IMP sequential files since the plotting software is written in IMP -
regardless of the language of the driving programs producing the files

* their structure is always fixed 80-byte records, i.e. card images; if a file of a
different format were sent to a plotter the computer controlling the plotter would
reject it

Hence file definition is performed by the command
DEFINE(nn,plotfile)

where nn is the output channel number specified in the appropriate initialisation
routine call - OPENPLOTTER, OPENGR, PLOTS ’

plotfile may be the name of a new file, or an existing file, or .GP or .SGP

The graph plotting software automatically ensures that the file will have format F80, there
is no need to use the fourth parameter of DEFINE for this purpose.

.GP is the standard plotter device code; .SGP requests 1iquid ink on the standard plotter.
If nn=96, the system defined plotter file, you must not DEFINE it - DEFINE will fail.

Graph Plotting 5-49

The default file size of 255K bytes will cope with more than 3000 card images, which is a
very large plotter file. This size is the present 1imit for acceptance at the computer driving
the standard plotter.

Qutput to Plotter

Once you have run your program and created a plotter file you may
* keep the file for plotting later

* keep the file for merging with another drawing - if you have used the ERCC Graphpack
routine FILEGRAPH/FILGR

* direct it to the relevant plotter - as chosen by default or by PLOTTERTYPE/PLTYPE

The standard plotter available from EMAS 2900 is the Calcomp 936 (ﬁlotter type 1 in Table
1) with the device code .GP or .SGP, as described above. If your DEFINE command specifies one
of these device codes, or the plotter file was created on channel 96, then the plotter file
will be sent directly to this plotter and you will have no copy of the file in your file index.
Otherwise you may direct it to the relevant plotter at your leisure by issuing the command

LIST(plotfile,device if you wish to retain the file
or SEND(plotfile,device

Other devices than .GP and .SGP may become available; see the .GPnn alternatives under
HELP(DEVICES) or in the EMAS 2900 Information card.

Example
OPTION(SEARCHDIR=CONLIB.GRAPHICS) if needed
DEFINE(50,plotfile) connect plotter file to channel 50
RUN(program) program referencing the ERCC Graphpack
LIST(plotfile,.GP) draw a copy of the file contents on the

Calcomp 936 at The King's Buildings

N.B. Since the commands OPTION, DEFINE, RUN, LIST, SEND all take the form

externalroutinespec command(string (255) parameters)

they may be called from within a program or routine, directly in IMP and indirectly (via
the routine EMASFC) in FORTE - see the EMAS 2900 User's Guide.

5-50 Graph Plotting

5.6.3 VME/B on the ICL 2980

Graph plotting jobs must be run in solo mode; they are not allowed within a Scientific
Jobber batch. :

Package Access

The two graph plotting packages are held in OMF libraries owned by :SYSTEM. To obtain
access call one of the macros

EXTEND_LIBRARY LIST :SYSTEM.GRAPHLIB} ERCC Graphpack
EXTEND_LIBRARY_LIST(:SYSTEM.CLCMPLIB Calcomp Simulation Package

- EXLBL is the accepted short form of EXTEND LIBRARY_LIST. The macro call should be placed
within the SCL block where program loading and execution occurs.

If the plotting software is to be accessed from an ICL FORTRAN program you must also
include the SCL statement

ICLICEJINIT

before running the program.

File Definition

Graph plotter files have two important characteristics:

* they are IMP seduential files since the plotting software is written in IMP - regardless
of the language of the driving program

* their structure is always fixed 80-byte records, i.e. card images; if a file of a
different format were sent to a plotter the computer controlling the plotter would reject
it

Hence file definition must be performed by the following SCL statements:-
NEWFILE(plotfile)
. ASSIGNFILE(NAME=plotfile,LNAME=ICLICEnn,ACCESS=W)

or
WORKF ILE (LNAME=1CL9CEnn ,DESC=*STDGP)

if the file is to be sent directly to the plotter,

where 'nn' is the channel number specified in the relevant plotter initialisation routine -
OPENPLOTTER, OPENGR or PLOTS

OQutput to Plotter

Once you have produced a plotter file you may
* keep the file for plotting later - call the SAVEFILE(plotfile) macro

* keep the file for merging with another drawing, if you have used the ERCC Graphpack
routine FILEGRAPH/FILGR - again call SAVEFILE?pIotfi]e)

* direct it to the relevant plotter as chosen by default or by PLOTTERTYPE/PLTYPE
The standard plotter available from the ICL 2980 is the Calcomp 663 situated in Buccleuch
Place Lane - plotter type 2 or 3 in Table 1. You must provide a description of the file to be
plotted; this is either

DESC
or DESC

*STDGP (as in WORKFILE above) for biro output
:STD.STDGP1111 for liquid ink output

If WORKFILE is used the plotter file will be placed in a queue for output and routed to
Buccleuch Place Lane by the 2980 operators. Otherwise you should call the macro

LISTFILE(NAME=plotfile,DESC=description,DEVICE=GP14)
Graph Plotting 5-51

Other devices are not yet connected to the 2980 system.

Example
EXLBL(:SYSTEM.GRAPHLIB) to access the ERCC Graphpack
NEWFILE(PLOTOUT) create a new file
ASSIGNFILE(PLOTOUT,ICLICES0,ACC=W) assign it to channel 50 for writing to
IMP(INPUT=programfile) compile and run program

data for program writing plotter
output to channel 50
+H++
LISTFILE(PLOTOUT,DESC=*STDGP,DEV=GP14) 1ist file to plotter at Buccleuch Place Lane

5-52 Graph Plotting

5.6.4 0S on the NUMAC IBM 360/370 Configuration

Package Access

The following table indicates the catalogued procedures which may be used when running
graph plotter programs, and the relevant libraries containing the plotting package routines.

Catalogued Program Library

Procedure Language ERCC Graphpack Calcomp Simulation Package
IMP
IMPCLG IMP SYS5.SYSLIB not available
SIMRUN
FORTE
FORTECLG FORTE SYS5.SYSLIB SYS5.CLCMPLIB
SIMRUN
FORTRAN
FORTRANG 1BM
FORTRANH FORTRAN SYS5.0SSIMLIB SYS5.0SSIMLIB
L INKANGO
LOADANGO

Notes:

* SYS5.SYSLIB is automatically available via the catalogued procedures IMP, IMPCLG, FORTE,
FORTECLG and SIMRUN - no reference need be made to it.

* To access SYS5.CLCMPLIB from the procedures FORTE and SIMRUN, the JCL statement required
* //G.USERLIB DD DSN=SYS5.CLCMPLIB,DISP=SHR
and from the procedure FORTECLG
//L.USERLIB DD DSN=SYS5.CLCMPLIB,DISP=SHR
* A1l of the IBM FORTRAN procedures contain a DD statement with the ddname GRAPHLIB; you
gggg'ggg¥;3?8?n INCLUDE card specifying which package your program requires from

For the procedures FORTRANG, FORTRANH and LINKANGO the following cards should be added
after the program in your job deck:

//L.SYSIN DD *
INCLUDE GRAPHLIB(packname)

and for the procedures FORTRAN and LOADANGO

//G.SYSLIN2 DD *
INCLUDE GRAPHLIB(packname)

where 'packname' is ERCCPACK for the ERCC Graphpack, and
CLCMPACK for the Calcomp Simulation Package.

* You may make use of overlay facilities with IBM FORTRAN programs, but the graph plotting
package used must be in the root segment.

Error Messages

The graph plotting routines in both the ERCC Graphpack and the Calcomp Simulation Package
are written in IMP. Consequently the various error messages, which may appear in the event of
invalid parameter values being passed to the routines, are written to a line printer file with
ddname STREAM99.

The relevant DD statement is automatically included in the JCL statements of the procedures
IMP, IMPCLG, FORTE, FORTECLG and SIMRUN.

Graph Plotting 5-53

For the procedures FORTRAN, FORTRANG, FORTRANH, LINKANGO, and LOADANGO you must provide the
JCL statement

//G.STREAM99 DD SYSOUT=A,DBCB=(RECFM=FA,BLKSIZE=133)

File Definition

Two facts should be borne in mind about graph plotter files:

* they are IMP sequential files (since the plotting software is written in IMP), regardless
of the language of the calling program

* their structure is always fixed 80-byte records (card images); if a file of a different
format were sent to a plotter, the computer controlling the plotter would reject it

Hence a JCL statement defining a plotter file takes the following form:

F 80

//G.SQFILEnn DD DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),'device characteristics’'

where 'nn' is the output channel number referred to in the appropriate file initialisation
routine (OPENPLOTTER, OPENGR or PLOTS)

RECFM and BLKSIZE are given values dependent upon the 'device characteristics’

Notes

* If the plotter file is to be saved on disk, the full DD statement becomes

_&&tempname ¢ sPASS .
//G.SQFILEnn DD DSN'jobname.filename’DISP’(’CATLG)’UNIT'DISK’
// SPACE=(TRK,(3,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)

where the SPACE parameter will allow for a plotter file of approximately 451 records in
the primary extent, a larger than average plotter file.

* If the plotter file is to be saved on magnetic tape, the full DD statement becomes

//G.SQFILEnn DD DSN=jobname.filename,DISP=(,KEEP) ,UNIT=TAPE,
// VOL=SER=serial ,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120) ,LABEL=(1abel,,,0UT)

and a /*TAPE card is also required specifying that tape 'serial' is to be written to.

* If the plotter file is to be merged with another new plotter file, the full DD statement
describing the file to be merged becomes

&&tempname
jobname.filename?

for a disk file, and for a magnetic tape file,

//G.SQFILEnn DD DSN= DISP=0LD

//G.SQFILEnn DD DSN=jobname.filename,DISP=0LD,UNIT=TAPE,VOL=SER=serial,
// LABEL=(1abel,,,IN)

In the latter case a /*TAPE card is also required.
* If the plotter file is to be saved on punched cards, the full DD statement becomes
//G.SQFILEnn DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
and the CARDS (or C) parameter in the JOB card controlparams field should reflect the
number of cards you expect the file to occupy: 400 is an average plotter file. If you

save more than one file on cards in this way the CARDS parameter should be an estimate of
the total number of cards required.

5-54 Graph Plotting

Qutput to Plotter

The standard graph plotter, the Calcomp 936 (plotter type 1 in Table 1), is connected to
EMAS running in the ERCC ICL 4-75 complex. This appears to HASP as a Remote Job Entry
terminal. To direct a graph plotter file to this plotter from NUMAC you require a /*ROUTE
card, of the form

/*ROUTE PUNCH REMOTE34
since the plotter is regarded by HASP as a remote card punch. Other remote graph plotters may
become available.

Notes
* If the plotter file is to be plotted directly from your program the DD statement becomes
//G.SQFILEnn DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
or, when liquid ink plotting is required (i.e. pen code>4),
//G.SQFILEnn DD SYSOUT=(K,,1111),DCB=(RECFM=F ,BLKSIZE=80)

The CARDS parameter in the JOB card controlparams field should reflect the plotter file
size in card images.

The /*ROUTE card causes all files designated SYSOUT=B to be sent to the specified remote.
If you require to output punched cards from the same program you must save them as card
images in a disk or magnetic tape file, for punching later in another job.

* If you have a previously created plotter file (saved on disk or magnetic tape) which you
now wish to be plotted, then a typical job to perform this operation would be

//jobname JOB 'R=64K,C=500','delivery information'
/*ROUTE PUNCH REMOTE34

// EXEC PGM=1EBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY

//SYSUT1 DD DSN=jobname.filename,DISP=0LD
[/SYSUT2 DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
//

assuming that the file was on a disk. If the file were on magnetic tape the SYSUT1
statement would be

//SYSUT1 DD DSN=jobname.filename,DISP=0LD,UNIT=TAPE,VOL=SER=serial,
// LABEL=(1abel,,,IN)

together with a /*TAPE card; or, if the file had been kept on cards, SYSUT1 would be

//SYSUT1 DD DATA
<data cards>
*

Examples
1. IMP program accessing the ERCC Graphpack and outputting to the plotter.

//jobname JOB 'R=200K,C=400','delivery information'
/*ROUTE PUNCH REMOTE34

// EXEC IMP,REGION.C=200K ,REGION.G=150K ,PARM.G=MAP
//C.SYSIN DD *

<IMP program writing the plotter file to channel 10>
//G.SQFILE10 DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)

//G.SYSIN DD *
<data>

/1

Graph Plotting 5-55

2. FORTE program accessing the ERCC Graphpack and saving the plotter file on disk.

//jobname JOB 'R=150K,C=400','delivery information'
!/ EXEC FORTE,REGION.C=150K ,REGION.G=150K ,PARM.G=MAP
//C.SYSIN DD *

<FORTE program writing the plotter file to channel 20>

//G.SQFILE20 DD DSN=jobname.filename,DISP=(,CATLG),UNIT=DISK,
/! DCB=(RECFM=FB,LRECL=80,BLKS1ZE=3120) ,SPACE=(TRK,(3,1))
//G.SYSIN DD *

<data>
//

3. Pre-compiled FORTE program accessing the Calcomp Simulation Package and outputting to the
plotter.

//jobname JOB 'R=150K,C=400','delivery information'
/*ROUTE PUNCH REMOTE34
// EXEC SIMRUN,REGION=150K,PARM=MAP
//LINKIN DD DSN=jobname.program,DISP=SHR
//USERLIB DD DSN=SYS5.CLCMPLIB,DISP=SHR
//SQFILEI0 DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
//SYSIN DD *

<data>
//

4. IBM FORTRAN program accessing the Calcomp Simulation Package and outputting to the
plotter.

//jobname JOB 'R=192K,C=400','delivery information'
/*ROUTE PUNCH REMOTE34

// EXEC FORTRANG,REGION.G=192K,PARM.L=MAP
//C.SYSIN DD *

<IBM FORTRAN program writing the plotter file to channel 10>

J//L.SYSIN DD *
INCLUDE GRAPHLIB(CLCMPACK)
//G.STREAMI9 DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133)
//G.SQFILE10 DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
//G.SYSIN DD *
<{data>
l/

5. IBM FORTRAN program accessing the ERCC Graphpack, creating a new plotter file and merging
onto it an old plotter file saved on disk by a program, IMP or FORTRAN, using the routine
FILEGRAPH/FILGR. Output is again to the plotter.

//jobname JOB 'R=192K,C=400','delivery information'
/*ROUTE PUNCH REMOTE34

// EXEC FORTRAN,REGION.C=150K,REGION.G=192K ,PARM.G=MAP
//C.SYSIN pp *

<IBM FORTRAN program writing the plotter file to channel 10
and merging the old plotter file from channel 50>

//G.SYSLIN2 DD *
INCLUDE GRAPHLIB(ERCCPACK)

//G.SQFILESO DD DSN=jobname.mergefile,DISP=SHR’
//G.SQFILE10 DD SYSOUT=B,DCB=(RECFM=F ,BLKSIZE=80)
//G.STREAM39 DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133)
//G.SYSIN DD *

<{data>
!/

5-56 Graph Plotting

CHAPTER 6
THE EDINBURGH TEKTRONIX INTERACTIVE GRAPHICS PACKAGE

Tektronix Terminals

The 4000 Series of terminals manufactured by the Tektronix Company are versatile,
dual-purpose devices, capable of transmitting, receiving and displaying data in either
alpha-numeric (character) or graphical (drawing) mode, in an interactive fashion. The
terminals are of the storage tube type and hence are able to sustain a display indefinitely.
This also means that any graphical display cannot be altered without completely re-drawing it
and that, consequently, moving pictures are impossible. Figure 1 shows a typical model from
the Tektronix series.

Uil e =i e

Crrerrrreni, S

Figure 1. A Tektronix model 4010 terminal.

Within the Edinburgh Regional Computing Centre, a model 4006 terminal is accessible at the
Buccleuch Place Lane installation, a 4010 at 59, George Square and a 4014 in the James Clerk
Maxwell Building.

Each terminal in the range (medels 4002, 4006, 4010, 4012, 4014, etc.) has a rectangular
screen; in the case of the 4014, it is some 15 inches wide and 12 inches high, and in the other
models, 8.5 inches wide and 6.5 inches high. All models are fitted with a key-board compatible
with that of a standard teleprinter. Except for the 4002 and 4006, they also have thumb-wheels
or a 'joy-stick' to control a pair of horizontal and vertical cross-hairs (the 'Cursor'), which
may be displayed on the screen and moved independently to intersect at any desired point on it.

For graphical purposes, the screen is considered as & rectangular array of points, arranged
in 780 rows of 1024 points - that is, nominally 1024 rows of 1024 points, of which only 780
rows are guaranteed to be visible. The points are addressed by X- and Y-co-ordinates, numbered
0 to 1023, horizontally from left to right and 0 to 779, vertically from bottom to top,
respectively. The model 4014 terminal has an 'enhanced graphics option' allowing the
resolution to be increased four-fold in each direction (i.e. nominally 4096 rows of 4096
points, of which 3120 rows are visible).

Drawing is conducted by moving the electron beam arbitrarily from point to point, tracing
its movement, as in a child's 'join-the-dots' game. The beam may also be moved without leaving
a trace, where the drawing is disjointed. The result is a 'wire-frame' line drawing, which may
be interpreted as being two-dimensional or as a projection of a three-dimensional object. The
enhanced graphics option of the model 4014 terminal permits drawing of dashed and dotted lines
and display of points with various levels of intensity.

When the terminal is first switched on, the entire screen becomes illuminated as it warms
up. The 'PAGE' key must be pressed to clear the screen before the terminal is used.

The terminals have a facility built in to protect the phosphor coating on the screen. After
displaying a picture inactively for some seconds, the intensity of the display is automatically
reduced. It can be restored by pressing any key (a non-printing key such as 'SHIFT' is
sufficient).

Tektronix Interactive 6-1

The Sigma Graphics Option Controller

A standard alphabetic frame-video terminal, on whose screen symbols appear as patterns of
illumated dots in a rectangular matrix (typically of 7 rows by 5 co1umns?, e.g. the ITT and
Dacoll terminals commonly used in the ERCC public terminal areas, can be used to produce
low-resolution graphics in an interactive fashion, simulating the action of Tektronix
terminals, by interfacing them with a Sigma Graphics Option Controller (GOC).

This device has the effect of allowing the video screen to be considered as an array of 256
rows of 256 points, i.e. one quarter of the resolution of the standard Tektronix terminals, but
with very similar characteristics otherwise. A key-pad is attached to the device to control a
cross-hair cursor. It is fitted with five keys, which have the functions of moving the cursaor
upward, downward, leftward and rightward and recording a 'hit', i.e. fixing the cursor
position. The keys may also be used to reset the device in certain contingencies.

A typical configuration incorporating the GOC is shown in Figure 2.

\
- ® = = B = ® m & w =

@

Figure 2. A Sigma GOC with a Dacoll terminal.

The Package

The Edinburgh Tektronix Package, which is available on EMAS on both the System 4 and 2970
implementations, provides an interactive user interface to the model 4002, 4006, 4010, 4012 and
4014 terminals. In addition, it may be used to produce lTow-resolution graphical displays on an
alphanumeric display video terminal fitted with the Sigma GOC interface. [t provides a means
of producing a hard copy of the resultant drawing on the ERCC Calcomp model 936 Graph Plotter.
The package also allows a drawing recorded in a file in ERCC Graph Plotter File format to be
viewed on a display for inspection before committing to hard copy.

On the System 4 machines, the package is accessed by the command:
APPENDLIB(CONLIB.TEKLIB)
while on the 2970, it is obtained by the command:
OPTION(SEARCHDIR=CONLIB.GRAPHICS)

The Package consists of a number of routines which provide the building blocks from which
graphics-based applications programs may be constructed. They may be called from IMP or
FORTRAN user programs.

Graphics Mode

Before attempting to execute any program invoking the Tektronix Package, the user must first

ensure that the terminal in use will communicate with the host system in 'Graphics Mode', that

is, without translation of lower-case input characters and disabling control and format
characters occurring in output. This is achieved by first pressing the 'CTRL' and 'A' keys on

6-2 Tektronix Interactive

the keybord simultaneously, followed by 'G' and then 'RETURN'. The response will be:
SET [G]
SET [GRAPH MODE]

or:
depending upon the level of Terminal Control Processor software in use.

Defining Terminal Type

) The various terminals in the Tektronix range have rather different characteristics and hence
it is necessary to identify the model in use. This is achieved by invoking the routine:

externalroutine TEKTYP(integer M)

or:
SUBROUTINE FTKTYP(M)

in gn IMP or FORTRAN context, respectively. The parameter 'M' is the Tektronix terminal
number, e.g.

TEKTYP(4010)
CALL FTKTYP(4014)

or:

The Sigma GOC interface controlling a standard alphabetic video terminal is identified by the
terminal number 999.

Erasing the Screen

Before drawing starts, and periodically thereafter, it is desirable to be able to clear the
screen. This can be done either manually, by pressing the 'PAGE' key on the Tektronix terminal
keyboard ('CLEAR' or equivalent key on other terminals), or from within the program, by
invoking the routine:

externalroutine ERASE

or:
SUBROUTINE ERASE

The Pseudo-Display File

Whilst drawing is progressing on the screen, the Package maintains a record of the drawing
in its working space, termed the ‘Pseudo-display File', which subsequently may be copied to a
permanent file for transmission to a graph plotter. This data space must normally be
initialised before drawing sta.ts, by calling the routine:

externalroutine NEWPIC

or:
SUBROUTINE NEWPIC

Following completion of a drawing, the Pseudo-display file may be re-initialised in
preparation for a further drawing, if so desired, by calling the same routine. This does not
cause the screen to be erased, thus ‘several drawings may be superimposed. '

1t may be desirable to suppress the storage of certain parts of a drawing in the
pseudo-display file. This may be done selectively by calling the routine:

externalroutine STOREOFF

or:
SUBROUTINE FSTOFF

and storage in the pseudo-display file may be re-enabled by calling the routine:

externalroutine STOREON

or:
SUBROUTINE FSTON

These routines may be called repeatedly following the call of NEWPIC, which sets an initial
default situation equivalent to STOREON.

Tektronix Interactive '6-3

Similarly, it may be required to store the drawing in the pseudo-display file, without
displaying it on the screen. This may again be done selectively, using the routine:

externalroutine VIEWOFF

or:
SUBROUTINE FVWOFF

to supress the display and the routine:

externalroutine VIEWON

SUBROUTINE FVWON

or:
to re-enable the display. VIEWON is implied by calling NEWPIC.

Windows

The Package allows drawings to be constructed in a 'Virtual Picture Space', in which X- and
Y-co-ordinates (horizontal and vertical respectively) may be defined in the range -32768 to
+32767, in unit increments. Within this space, the user may define any rectangular 'Virtual
Window', which delimits the extent of the drawing he requires to display on the screen.

The routine NEWPIC automatically sets default Timits for the virtual window to be 0 <= X,
Y <= 1023. The user is at liberty to redefine these subsequently, by calling the routine:

externalroutine VWINDO(integer VX0, VYO, VXM, VYM)
SUBROUTINE FVWNDO(VX0, VYO, VXM, VYM)

or:

which defines the virtual window as the rectangle whose lower left-hand corner has virtual
co-ordinates (VX0,VY0) and whose upper right-hand corner is (VXM,VYM). NEWPIC defines the
virtual window by default as:

VWINDO(0,0,1023,1023)

On the screen itself, the user may define any rectangular area, known as the 'Screen
Window', within which he wishes the drawing in the virtual window to be displayed. The drawing
is scaled and 'clipped' automatically to fit the screen window exactly. The screen window may
be defined to have X- and Y-co-ordinates limited to any range from 0 to 1023, although points
with Y-co-ordinates from 0 to 779 only are visible on the screen. This is achieved by calling
the routine:

externalroutine SWINDO(integer SX0, SYO, SXM, SYM)
SUBROUTINE FSWNDO(SX0, SYO, SXM, SYM)

or:

The screen window is the rectangle whose lower left-hand corner is the point (SX0,SY0) and
whose upper right-hand corner is the point (SXM,SYM) on the screen. The default definition of
the screen window, which is set by NEWPIC, is:

SWIND0(0,0,1023,1023)
thus, the default virtual window maps directly on to the whole screen.

This concept of windowing is illustrated by Figure 3.

The virtual window and screen window may be redefined dynamically, to enable the user to see
different parts of his drawing at different magnifications and orientations within different
areas of the screen, simultaneously, if he so wishes.

A rectangular frame may be drawn around the current screen window by calling the routine:

externalroutine FRAME

SUBROUTINE FRAME

or:

6-4 Tektronix Interactive

(32767 , 32767) {1023, 1023)

L N N Y RN TR YRy Y]

Tektronix screen

Virtual picture space

evccocee
XXX Yy

Top of screen Y =780

es s

(0,0

seve

o l-Screen window
o © | I
|
|

——————— 3
:- Virtual window 1'

ecee

(-32768, -32768) (0,0

Figure 3. Virtual and screen windows.

Drawing Operations

Drawing may commence immediately following the initialisation of the pseudo-display file and
definition of the virtual and screen windows (explicitly or by default). Drawing is conducted
in terms of the co-ordinates of the virtual working space, but only that part of the drawing
1ying within the virtual window will be seen on the screen. Movement around the virtual
picture space may be defined either in terms of the absolute co-ordinates of points within it
or as vectors relative to the 'current virtual position'. Initially (i.e. immediately after
calling NEWPIC), the current position is the virtual origin (the point with virtual
co-ordinates (0,0)).

The routines provided for drawing are as follows:

externalroutine DRAWA(iinteger X, Y)

or:
SUBROUTINE FDRAWA(X, Y)

draws a visible vector from the current position to the point with absolute virtual
co-ordinates (X,Y), which becomes the current position.

externalroutine POINTA(integer X, Y)

or:
SUBROUTINE FPNTA(X, Y)

moves invisibly to a new current position at the point with absolute virtual co-ordinates (X,Y)
and draws a dot at that point.

externalroutine MOVEA(integer X, Y)
SUBROUTINE FMOVEA(X, Y)

or:

moves to a new current position at the point with absolute virtual co-ordinates (X,Y) without
leaving a trace.

externalroutine DRAWR(integer DX, DY)

or:
SUBROUTINE FDRAWR(DX, DY)

draws a vector in the direction specified by the virtual X- and Y-co-ordinate increments DX and
DY relative to the current position. A positive value of DX implies movement to the right and
a negative value to the left, while a positive value of DY implies upward movement and a
negative value downward.

externalroutine POINTR(integer DX, DY)

or:
SUBROUTINE FPNTR(DX, DY)

traverses invisibly the vector specified by the increments DX and DY and draws a dot at the new
current position.

Tektronix Interactive 6-5

externalroutine MOVER(integer DX, DY)

or:
SUBROUTINE FMOVER(DX, DY)

similarly moves to a new position relative to the current position, but does not leave a trace.

A1l these routines cause the terminal to operate in 'graphics' mode automatically. Provided
that the display is enabled (VIEWON), and that they lie within or traverse the currently
defined virtual window, the vectors will appear on the screen and, provided the pseudo-display
file is enabled (STOREON), they will be recorded there.

The drawing operation fails, and the user program is terminated summarily, if the end-point
of the vector is not inside the Virtual Picture Space (i.e., the co-ordinates of the current
position do not lie in the range -32768 <= X, Y <= 32767).

Enhanced Graphics Mode

The model 4014 terminal has a number of sophisticated facilities which are not available on
the other terminals in the Tektronix series. These are collectively termed ‘Enhanced Graphics
Options'. They include the ability to increase the resolution of the screen four-fold,
considering it to be nominally as comprising 4096 rows of 4096 points, of which only 3120 rows
are guaranteed visible. Other facilities are the ability to draw dashed and dotted lines and
to display points at various levels of intensity on the screen.

These facilities are invoked by calling the routine:
externalroutine ADVGPH(integer I)
SUBROUTINE FADVG(I)

or:

The parameter I is set to 1 to enable the enhanced graphics options and to 0 to disable them.
The routine has an effect only when the model 4014 terminal is in use; it is ignored otherwise.
After calling:

ADVGPH(1)

CALL FADVG(1)

the user program may define a screen window with X- and Y-co-ordinates in the range 0 <= X,
Y <= 4096 (although Y-co-ordinates greater than 3120 do not define visible points?

The routine:
externalroutine SETLINE(integer I)

SUBROUTINE FSTLN(I)

or:

may be used to affect the appearance of visible vectors in subsequent drawing operations. If
the parameter I is set to 0, normal vectors are to be drawn; a value of 1 defines dotted
vectors; 2 implies vectors are composed of dots and dashes; 3 means short dashes and 4 long
dashes. This will apply to all vectors until SETLINE or FSTLN is called again.

The routines:

externalroutine SPOINTA(integer X,Y,I)
SUBROUTINE FSPNTA(X,Y,I)

or:

and:
externalroutine SPOINTR(integer DX,DY,I)
SUBROUTINE FSPNTR(DX,DY,I)

or:

have identical effects to those of POINTA (FPNTA) and POINTR (FPNTR) respectively, except that
the brightness of the dot may be controlled by the parameter I, whose value may vary from 1
{almost invisible) to 62 (full intensity, the default brightness). This enables part of the
display to stand out from the rest; it is particularly useful in applications involving the
projection of three-dimensional images.

6-6 Tektronix Interactive

Example 1

The following IMP program shows how a simple drawing of a rectangle with its diagonals (one
appearing as a dotted line) could be displayed.

externalroutinespec TEKTYP(integer N)
externalroutinespec ERASE
externalroutinespec NEWPIC
externalroutinespec MOVEA(integer X,Y)
externalroutinespec DRAWR(integer DX,DY)
externalroutinespec MOVER(integer DX,DY)
externalroutinespec POINTR{integer DX, DY)
externalroutinespec FRAME

begin
inge er [

P(4010) ! define model number
ERASE ! clear screen
NEWPIC ! initialise pseudo-display file

MOVEA(411,339)
DRAWR(200,0)
DRAWR(0,100)
DRAWR(-200,0)
DRAWR(0,-100)
DRAWR(200,100)
MOVER(-200,0) ! to upper left-hand corner)
cycle 1=1,1,10; POINTR(20,-10); repeat; ! diagonal, upper left to lTower right
MOVER(-200,0) ; ! back to lower left corner

FRAME ! around whole screen

endofprogram
The same effect would be achieved by the following FORTRAN program:

[}

}

!

! below and to left of screen centre
! base, horizontal left to right

! right-hand side, upward

! top, right to left

! left-hand side, downward

! diagonal, lower left to upper right
!
|
]
]

W we We We W WE Vo UL We We we

ws @

CALL FTKTYP(4010)
CALL ERASE
CALL NEWPIC
CALL FMOVEA(411,339)
CALL FDRAWR(200,0)
CALL FDRAWR(0,100)
CALL FDRANR?-ZO0,0
CALL FDRAWR(0,-100
CALL FDRAWR(200,100)
CALL FMOVER(-200,0)
D0 1 I=1,10
CALL FPNTR(20,-10)

1 CONTINUE
CALL FMOVER(-200,0)
CALL FRAME
STOP
END

The resulting display would be as shown in Figure 4.

Figure 4. A simple picture.

Tektronix Interactive 6-7

Example 2
The effect of defining vi

rtual and screen windows is illustrated by the following modified

version of the program described in Example 1:

external routinespec
external rout inespec
externalroutinespec
externalroutinespec
externalroutinespec

TEKTYP(integer N)
ERASE

NEWPIC

VWINDO(integer VXO,VYO,VXM,VYM)
sw1N00(13E§§EF $X0.SY0, SXM. SYM)

external rout inespec
external rout inespec
externalroutinespec
external routinespec
externalroutinespec
begin
integer I
TEKTYP{4010)
ERASE
NEWPIC
VWINDO(300,300,600,600)
SWINDO(200,100,800,700)
MOVEA(411,339)
DRAWR(200,0)
DRAWR(0,100)
DRAWR(-200,0)
DRAKR(0,-100)
DRAKR(200,100)
MOVER (-200,0)
cycle I=1,1,10
P%INTR(ZO,-IO)
repeat

ER{-200,0)
FRAME

endofprogram

MOVEA(integer X,Y)
DRAWR(1nteger DX,DY)
MOVER (integer DX,DY))
POINTR{integer DX,DY
FRAME

or, in the FORTRAN version:

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

FTKTYP(4010)

ERASE

NEWPIC

FVWNDO (300,300,600,600)
FSWNDO(200,100,800,700)
FMOVEA(411,339)

FDRAWR (200,0)
FDRAWR(0,100)
FDRAWR(-200,0)
FDRAWR(0,-100)
FDRAKR(200,100)
FMOVER(-200,0)

D0 1 I=1,10

CALL FPNTR(20,-10)

CONTINUE

CALL FMOVER(-200,0)

CALL FRAME

STOP

END

In these cases, the display would have the form shown in Figure 5.

6-8 Tektronix Interactive

Figure 5. The use of windows.

Dynamic Windowing

Once a drawing has been completed and stored in the pseudo-display file, various views of it
may be displayed on the screen by defining different virtual and screen windows and reviewing
the pseudo-display file, without actually reconstructing the picture.

The routine:

externalroutine REVU

or:
SUBROUTINE REVU

scans the pseudo-display file, applies to it the current virtual and screen window definitions,
and displays the resulting drawing. In combination with calls of VWINDO and SWINDO, it may be
called repeatedly to produce a sequence of views of the drawing. If the screen is not erased
between calls, these views will be superimposed.

Tektronix Interactive '6-9

Example 3

This effect is illustrated by another modification to the program described in Examples 1

and 2:

external rout inespec

externalroutinespec

external routinespec

external rout inespec

external rout 1nespec

external rout inespec

external rout inespec

externalroutinespec

external routinespec

externalroutinespec

externalroutinespec

begin
integer I
TEKTYP(4010)
ERASE
NEWPIC
MOVEA(411,339)
DRAWR(200,0)
DRAWR(0,100)
DRAWR(~200,0)
DRAWR(0,-100)
DRAWR(200,100)
MOVER(-200,0)
%6%%% 1-1,1,10
R(20,-10)
repeat
-200,0)
FRAME

TEKTYP(integer N)
ERASE

NEWPIC

VWINDO(integer VXO,VYO,VXM,VYM)
SWINDO(integer SXO,SYO,SXM,SYM)
MOVEA(integer X,Y)

DRAWR(integer DX,DY)
MOVER(?nEeger DX,DY)
POINTR(integer DX,DY)

FRAME
REVU

VWINDO(300,300,600,600)
SWINDO(200,100,800,700)

REVU
endofprogram

or, in the FORTRAN version:
CALL FTKTYP(4010)

CALL ERASE
CALL NEWPIC

CALL FMOVEA(411,339)

CALL FDRANR(ZO0,0;
CALL FDRAWR(0,100

CALL FDRAWR(-200,0)
CALL FDRAWR(0,-100)

CALL FDRAWR(200,100)

CALL FMOVER(-200,0)

D0 1 I=1,10

CALL FPNTR(20,-10)
1 CONTINUE

CALL FMOVER(-200,0)

CALL FRAME

CALL FVWNDO(300,300,
CALL FSWNDO(200,100,

CALL REVU
STOP
END

600,600;
800,700

In each case, the display would at first have the form of the drawing shown in Figure 4,
then the drawing in Figure 5 would be superimposed. Had the routine ERASE been called
immediately before the call of REVU, the first picture would have disappeared and been replaced
by the second.

6-10 Tektronix Interactive

Sub-pictures

Often, it is required to display several manifestations of the same object within a drawing.
This could clearly be achieved by including the drawing instructions within a program
subroutine and executing it as often as required. This has two drawbacks. Firstly, the
different drawings may require to be of different sizes, at different orientations and at
different points on the screen; this would be rather difficult to achieve in general.

Secondly, each copy of the drawing would be recorded in full in the pseudo-display file and
hence the complexity of the display would be Timited.

The concept of 'Sub-pictures' eliminates these difficulties, but allows multiple copies of
objects to be displayed. A sub-picture is, in fact rather 1ike a program subroutine, in that
it contains a sequence of DRAW and MOVE instructions, which may be invoked repeatedly; but only
one copy of it is stored in the pseudo-display file. Each instance of the sub-picture in the
display may define scaling and orientation transformations of the vectors defined by these
drawing instructions. In order to ensure that each instance may appear at a different place on
the screen, the vectors defined in the sub-picture must be relative to the current position in
the virtual picture space on entry to the sub-picture; that is, they must be defined by the
routines DRAWR and MOVER, not DRAWA or MOVEA. In order to ensure that side effects are not
caused by any instance of the sub-picture, it is advisable to return to the original current
pos;tion at the end of the sub-picture; this is not done automatically by the sub-picture
mechanism.

A sub-picture definition is initiated by calling the routine:
externalroutine DEFSUB(integer N)

SUBROUTINE FDEFSB(N)

or:
where N is any integer which uniquely identifies the sub-picture. Up to 128 sub-pictures may
be defined.

The drawing instructions required to construct the sub-picture, together with any
computations necessary to complete them, should follow immediately after the call of DEFSUB.
They will have no effect on the screen, since DEFSUB automatically calls VIEWOFF to disable the
display. The drawing, will, however, be stored in the pseudo-display file.

The drawing of the sub-picture should be terminated by calling the routine:

externalroutine ENDSUB

or:

SUBROUTINE ENDSUB
This may be omitted if a further sub-picture definition follows; i.e. DEFSUB calls ENDSUB
automatically if the previous sub-picture definition is not terminated explicitly. This means

that it is not possible to nest sub-picture definitions. ENDSUB re-enables the display (by
calling VIEWON) if it was enabled before entry to the sub-picture definition.

Once it has been defined, a sub-picture may be invoked as often as desired, by calling the
routine:

externalroutine INSTAN(integer N, SC, OR, XR, YR)
SUBROUTINE FINST(N, SC, OR, XR, YR)

or:

where N is the indentity number of the sub-picture required. SC and OR specify the scale and
orientation which are to be applied to the sub-picture and XR and YR indicate whether
reflection in the X- or Y-axis respectively is required.

A value of 128 for SC indicates that no scaling is to be applied, i.e. the scaling factor is
unity. A larger value will represent a magnification and a smaller value a reduction in size,
in each case by a factor of SC/128, in relation to the nominal size of the drawing. Care must
be taken to ensure that the scaled drawing still remains entirely within the Virtual Picture
Space (i.e. the co-ordinates of all points lie in the range -32768 <= X, Y <= 32767).

The orientation parameter, OR, may take values of 0, 1, 2 or 3 to indicate the drawing is to
be rotated anti~clockwise through 0, 90, 180 or 270 degrees respectively about the point at
which the sub-picture starts.

The parameter XR may take values of 0 or 1. The latter value indicates that the drawing is

to appear as if reflected in a horizontal line passing through the point at which the
sub-picture starts. A value of 0 indicates that no such reflection is to be applied.

Tektronix Interactive 6-11

The parameter YR similarly indicates whether reflection in a vertical axis passing through .
the start of the sub-picture is required.

?gf&ection operations are performed before scaling and orientation transformations are
applied.

It is possible to instance one sub-picture within the definition of another. In such a
case, the transformations defined are applied cumulatively, those defined for the instanced
sub-picture being applied before those of the instancing sub-picture in any manifestation.

Example 4

The following modified version of the program described in the previous examples shows the
effects of the scaling, orientation and reflection transformations on a sub-picture defining
the rectangle with diagonals.

externalroutinespec TEKTYP(integer N)
externalroutinespec ERASE

externalroutinespec NEWPIC

externalroutinespec VWINDO(integer VX0,VYO,VXM,VYM)
externalroutinespec SWINDO(integer SX0,SYO,SXM,SYM)
externalroutinespec MOVEA(integer X,Y)
externalroutinespec DRAWA(7nteger X,Y)
externalroutinespec MOVER(Ginteger DX,DY)
externalroutinespec POINTR{integer DX,DY)
externalroutinespec DRAWR(integer DX,DY)
externalroutinespec FRAME

externalroutinespec REVU

externalroutinespec DEFSUB(integer N)
external rout inespec ENDSUB

externalroutinespec INSTAN(integer N,S,0,XR,YR)

BE%;$Pinte8er I

ERASE

NEWPIC

DEFSUB(1) ; | picture of rectangle
DRAWR(200,0)

DRAWR(0,100)

DRAWR(-200,0)

DRAWR(0,-100)

DRAWR(200,100)

MOVER(-200,0)

cycle 1=1,1,10
P%INTR(ZO,-IO)

repeat
MUSERI-ZO0,0) ; ! back to start
ENDSUB ; | end of picture
VWINDO(0,0,1023,779)
SWIND0(0,0,1023,779)
MOVEA(511,511) ; | centre of screen
INSTAN(1,128,0,0,0) ; ! normal size, no rotation or reflection
MOVER(0,100) ; ! up a little
INSTAN(1,64,1,0,0) ; ! half size, rotated 90 degrees
MOVER(-50,0) ; 1 left a little
INSTAN(1,256,0,1,1) ; ! twice normal size, reflected down left
MOVER(0,-100) ; | down a little
INSTAN(1,192,1,1,1) ; ! 1.5 times normal size, rotated 90
; 1 degrees and reflected in both axes
FRAME

endofprogram

6-12 Tektronix Interactive

The FORTRAN version would be:

CALL FTKTYP(4010)
CALL ERASE
CALL NEWPIC
CALL FDEFSB(1)
CALL FDRAWR(200,0)
CALL FDRAWR(0,100)
CALL FDRAWR(-200,0)
CALL FDRAWR(0,-100)
CALL FDRAWR(200,100)
CALL FMOVER(-200,0)
DO 1 I=1,10
CALL FPNTR(20,-10)

1 CONTINUE
CALL FMOVER(-200,0)
CALL ENDSUB

. CALL FVWNDO(0,0,1023,779)
CALL FSWNDO(0,0,1023,779)
CALL FMOVEA(511,511)
CALL FINST(1,128,0,0,0)
CALL FMOVER(0,100)
CALL FINST(1,64,1,0,0)
CALL FMOVER(-50,0)
CALL FINST(1,256,0,1,1)
CALL FMOVER(0,-100)
CALL FINST(1,192,1,1,1)
CALL FRAME
STOP
END

The result of running this program would be to be to produce a display like that shown in
Figure 6.

Figure 6. The use of sub-pictures.

Tektronix Interactive 6-13

The Cross-hair Cursor

A cursor, comprising a pair of horizontal and vertical lines, is provided on the more
sophisticated models in the Tektronix terminal range and on other terminals controlled by the
Sigma GOC. These cross-hair lines appear on the screen like other vectors, but rather less
brightly. They have, however, a special property of mobility; they may moved independently to
intersect at any point on the screen by using the thumb-wheels, joy-stick control or, in the
case of the Sigma GOC, the cursor key-pad.

The cursor enables the user to identify the co-ordinates (in the virtual picture space) of
any point in his drawing. This is useful in two principal situations: firstly, when
constructing a drawing, the user may use the cursor to specify or establish the positions of
its various companents, and secondly, the cursor may be used to define the boundary of the
virtual window which the user requires (by identifying the co-ordinates of its lower left-hand
and upper right-hand corners).

The sequence of operations involving the cursor is as follows. First, the cursor
cross-hairs are displayed (by the program) on the screen, intersecting at an arbitrary point on
the screen (depending upon the current status of the thumb-wheels, joy-stick or key-pad). Its
appearance is accompanied by an audible signal from the terminal. The user may then use the
control provided to move the cross-hairs to any position desired. When it reaches the required
position, the user may press any key on the key-board, representing a visible character, to
. report the cursor's position back to the program. In certain cases, it may be necessary also
to press the 'RETURN' key. In the case of a terminal controlled by the Sigma GOC, it is
sufficient simply to press the 'HIT' key on the key-pad. The cross-hairs then disappear from
the screen,

The cursor is made to appear on the screen, and its eventual position is reported back to
the controlling program, by the routine:

externalroutine CURSOR(integername CH, X, Y)
SUBROUTINE CURSOR(CH, X, Y)

or:

CH represents the (IS0) value of the character typed to record the cursor position (in the case
of the Sigma GOC, this is always zero); X and Y are the co-ordinates, in virtual space, of the
point at which the cursor position was reported. FORTRAN users should note that the value of
CH returned is an integer between 0 and 127 (in fact, between 32 and 95), and a transformation
is necessary if it is to be compared with character values in normal FORTRAN format.

Example 5

This example shows how a drawing may be built up by use of the cursor to position the
components of the drawing and how the resulting display may be examined selectively by defining
various virtual windows, again using the cursor. The program starts by displaying the cursor.
The user is expected to move it to the desired position and identify, by typing 'R' or 'H',
whether he wishes a rectangle or hexagon to appear in that position; if he types any other
symbol, except 'Z', a dot will appear instead. This is repeated until the user types 'Z' (for
'zoom') in which case the program frames the drawing and enters a second phase. The user is
then expected to use the cursor to specify which part of the drawing he wishes to see
magnified, by moving the cursor first to the lower left-hand corner and then the upper
right-hand corner of the area he wishes to examine. This is displayed in place of the original
picture and the procedure is repeated until the user types 'S' (for 'stop'g or defines a window
which is inside-out.

6-14 Tektronix Interactive

externalroutinespec TEKTYP(integer N)
externalroutinespec ERASE

externalroutinespec NEWPIC

externalroutinespec VWINDO(integer VX0,VYO,VXM,VYM)
externalroutinespec SWINDO(integer SX0,SY0,SXM,SYM)
externalrout Tnespec MOVEA(integer X,Y)
externalroutinespec POINTA{integer X,Y)
externalroutinespec DRAWR(integer DX,DY)
externalroutinespec MOVER(integer DX,DY)
externalroutinespec POINTR(integer DX,DY)
externalroutinespec FRAME

external rout inespec REVU

externalroutinespec DEFSUB(integer N)
externalroutinespec ENDSUB

externalroutinespec INSTAN(integer N,S,0,XR,YR)
externalroutinespec CURSOR(integername CH,X,Y)
begin

integer 1, C, X, Y, XX, YY

4010)
ERASE
NEWPIC
VWINDO(0,0,1023,779)
SWINDO(0,0.1023.779)
DEFSUB(1} . | picture of rectangle
DRAwagzoo,O)

DRAWR(0,100)

DRAWR(-200,0)
DRAWR(0,-100)
DRAWR(200,100)
MOVER (-200,0)

cycle 1=1,1,10
P%INTR(ZO,-IO)

repeat

-200,0) ; ! back to start
ENDSUB ; ! end of rectangle
DEFSUB(2) ; | picture of hexagon
MOVER(-50,-87)
DRAWR(100,0)
DRAWR(50,87)

DRAWR(-50,87)
DRAWR(-100,0)
DRAWR(-50,-87)
DRAWR(50,-87)
MOVER(50,87) ; ! back to start
ENDSUB ; | end of hexagon

cycle
CﬁﬁgUR(C,X,Y)

exitif C='Z'

it "R'#C#'H' then POINTA(X,Y) elsestart
MOVEA(X,Y) ~— -
if C="R' then INSTAN(1,128,0,0,0)

it C='H' Then INSTAN(2,128,0,0,0)
Finish

?EEEEE
cycle
URSOR(C,X,Y)

exitif C='S'
‘CURSOR(C, XX, YY)
exitif XX<=X or YY<=Y
ERASE

VWINDO(X,Y,XX,YY)
REVU
FRAME

reEeat

endofprogram

Tektronix Interactive 6-15

The FORTRAN version of this program would be:

INTEGER IL C, X, Y, XK, YV, R, H, 2
DATA R, H, Z. S/'R*, tw*,n'zt, I
R=R/16777216
H=H/16777216
1=1/16777216
$=5/16777216

C CONVERT FORTRAN CHARACTERS TO RANGE 0-127
CALL FTKTYP(4010)

(CALL ERASE
CALL NEWPIC
CALL FDEFSB(1)
CALL FDRAWR(200,0)
CALL FDRAWR(0,100)
CALL FDRAWR(-200,0)
CALL FDRAWR(0,-100)
CALL FDRAWR(200,100)
CALL FMOVER(-200,0)
DO 1 I=1,10
CALL FPNTR(20,-10)
1 CONTINUE
CALL FMOVER(-200,0)
CALL ENDSUB
CALL FDEFSB(2)
CALL FMOVER(-50,-87)
CALL FDRAWR(100.0)
CALL FDRAWR(50,87)
CALL FDRAWR(-50,87)
CALL FDRANR§-100,0)
CALL FDRAWR(-50,-87)
CALL FDRAWR(50,-87)
CALL FMOVER(50.87)
CALL ENDSUB
CALL FVWNDO(0,0,1023,779)
CALL FSWNDO(0.0.1023.779)
2 CALL CURSOR(C.X.Y)
IF(C.EQ.Z) GOTO 4
IF(C.NE.R .AND. C.NE.H) GOTO 3
CALL FMOVEA(X,Y)
IF(C.EQ.R) CALL FINST(1,128,0,0,0)
IF(C.EQ.H) CALL FINST(2.128.0.0.0)
GOTO 2
3 CALL FPNTA(X,Y)
GOTO 2
4 CALL FRAME
5 CALL CURSOR(C,X,Y)
IF(C.EQ.S) GOTO'6
CALL CURSOR(C,XX,YY)
TF(XX.LE.X .OR. YY.LE.Y) GOTO 6
CALL ERASE
CALL FVWNDO(X,Y,XX,YY)
CALL REVU
CALL FRAME
GOTO 5
6 CALL ERASE
STOP
END

, S
/

The reader may wish to note that the above programs could be modified very simply to enable
the user to create 'free-hand' drawings. This is left as an exercise for those who have need
of such a facility for non-frivolous applications.

6-16 Tektronix Interactive

Annotation of Displays

A display may be made more informative by including annotation in it. This might include
titles to describe a drawing, labels for the axes of a graph, dimensions of a design or simply
instructions to the user who is operating the terminal. The last type of annotation would not
normally be required to be recorded in the pseudo-display file if a hard copy of the drawing
were subsequently produced.

The Package provides facilities for including text in a display, in the form of either
'Hardware Characters' or 'Software Characters'. The former are the very symbols displayed when
the terminal is acting in alphabetic mode, rather than graphics mode. They are of standard
size (in the case of the model 4014 terminal, four sizes may be used) and always appear in
horizontal lines, reading from left to right. The latter are drawn by the terminal, 1ike other
drawing components, and may be scaled and oriented as required by the user. The user may
choose to include them in the pseudo-display file or not, in the case of software characters,
by using the routines STOREOFF and STOREON and, for hardware characters, by using alternative
printing routines. The character set in each case is the same (the Edinburgh implementation of
the ISO Code symbols, excluding lower case letters), although the appearance of the characters
differs in the display.

Hardware Characters and Alpha-numeric Mode

Hardware characters appear on the screen as patterns of dots in a matrix of 7 rows of 5
dots, each character contained in a rectangular area of the screen, measuring 22 points high
and 14 points wide (one sixth of an inch by one tenth). The effect (much magnified) is,
roughly, as shown in Figure 7.

* * * % % * * * * * * % * k k %k %
* * * * * * * * *
* * * * * * * *
* * k¥ * % * k % % * * * * k * %
* * * * * * * *
* * * * * * * * *
* * * k %k * * * & * * * % * k k k %

.

Figure 7. Hardware characters.,

Whenever hardware characters are required, the terminal is set in 'alpha-numeric mode',
rather than graphical mode. This is normally done automatically by the routines described
below. When working in alpha-numeric mode, the terminal can display a maximum of 35 lines,
each of up to 72 characters in length, on the entire screen (using 770 rows of 1008 screen
points). If further lines are printed, they appear in the right-hand half of the screen. The
current printing position is indicated by the 'Alpha-cursor', which appears as a dimly-blinking
solid rectangle.

The initial position of the alpha-cursor may be defined by a movement in graphical mode
(MOVEA or MOVER), provided this defines an actual screen position (i.e., within the current
virtual window); it does not necessarily coincide with a 1ine position normally used in
alpha-numeric mode. A position outside the current virtual window will be transformed by the
terminal hardware into an arbitrary screen position, so that the characters actually appear on
the screen. The resultant position and any subsequent movements of the alpha-cursor, while in
alpha-numeric mode, do not affect the 'current virtual position' when the terminal eventually
returns to graphical mode.

The current position of the alpha-cursor may be determined by calling the routine:

externalroutine ALPHAPOS(integername X,Y)

or:
SUBROUTINE FALPOS(X,Y)

The values of X and Y returned are the virtual co-ordinates of the lower left-hand corner of

the cursor. It may be necessary for the user to press the RETURN key on the keyboard to ensure
that the required information is returned by the terminal; this is not normally the case.

Tektronix Interactive 6-17

It maY occasionally be necessary to ensure that the terminal is ogerating in alpha-numeric
mode explicitly, before printing or receiving characters. This may be achieved by calling the
routine:

externalroutine RTAM

or:
SUBROUTINE RTAM

The return to alpha-numeric mode is indicated by the appearance on the screen of the
alpha-numeric cursor, at the current screen position.

A single character may be displayed by calling the routine:

externalroutine PRINTSYMBOL(integer CH)

or:
SUBROUTINE FPSYM(CH)

where CH is the ISO code for the symbol required. In the case of FORTRAN, the standard
representation of characters must be transformed into a number between 0 and 127 (or, rather,
32 and 95). IMP programmers should note that this routine is not the routine of the same name
supplied implicitly by the IMP Compiler; it must be specified as an external routine in the
user program.

A string of characters may similarly be printed on the screen by the routine:
externalroutine PRINTSTRING(string(255) S)
SUBROUTINE FPSTRG(S,L)

or:

where S is the string of characters to be printed and, in the case of the FORTRAN subroutine, L
is the length of that string. NEWLINE (i.e. RETURN) characters within the string are ignored,
while spaces are included in the display.
A NEWLINE character can be sent to the terminal by calling the routine:
externalroutine NLINE

SUBROUTINE NLINE

or:

The effect is to move the alpha-cursor to the beginning of the next line on the screen.
Normally this will be a position at the extreme left of the screen, 22 screen points below the
previous line of text. If this would be below the bottom of the screen, the alpha-cursor is
moved to the top centre of the screen.

In the above cases, the characters printed are not stored in the pseudo-display file as part
of the picture displayed; the text is treated merely as screen annotation.

It may be required to include hardware characters in the display in such a way that they are
stored in the pseudo-display file and thus feature in any transcription of that display. The
appearance of the individual hardware characters is not affected by any scaling, rotation or
reflection of the display, although their position on the screen clearly is (1ike any other
display component).

The following routines allow hardware characters to be included in the pseudo-display file:
The routine:

externalroutine CHAR(integer CH)
SUBROUTINE FCHAR(CH)

or:

has an effect similar to that of PRINTSYMBOL (FPSYM) except that the symbol is stored in the
pseudo-display file and the graphics position is moved 12 screen points horizontally to the
right after displaying it. This displacement is slightly less than that applied to the
alpha-cursor by PRINTSYMBOL, but is subject to scaling, orientation and reflection
transformations. The symbol always remains upright and of standard size.

6-18 Tektronix Interactive

The routine:

externalroutine DRAWTEXT(string(255) S)

or:
SUBROUT INE FDRTXT(S,L) " '

has an effect as defined for PRINTSTRING (FPSTRG) above, except that the characters are
displaced 12 screen points from one another and they are stored in the pseudo-display file.
The displacement is subject to scaling, orientation and reflection effects.

The routine:

externalroutine TWRITE(integer N,M)

or:
SUBROUTINE FWRITE(N,M)

prints the value of N, as a decimal integer of up to M digits, preceded by a space or minus
sign. The resultant characters are stored in the pseudo-display file and their relative
displacements are subject to scaling, orientation and reflections.

The routine:

externalroutine TPRINT(real X, integer M,N)

or:
SUBROUTINE FPRINT(X,M,N)

similarly prints the real number X with up to M digits before and N digits after the decimal
point.

Example 6

The following IMP program shows the use of hardware characters and the effect of scaling and
rotation transformations on them.

externalroutinespec TEKTYP(integer T)
externalroutinespec ERASE

external routinespec NEWPIC

externalroutinespec MOVEA(integer X,Y)
externalroutinespec MOVER(integer DX,DY)
external routinespec CHAR(integer CH)
externalroutinespec NLINE

externalroutinespec PRINTSTRING(string(255) S)
externalroutinespec TPRINT(real X, integer M,N)
external routinespec DEFSUB(integer T)
external rout inespec ENDSUB

externalroutinespec INSTAN(integer N,S,R,XR,YR)

begin
integer K
TEKTYP(4010)
ERASE

NEWPIC
DEFSUB(1)

cycle K="A',1,'E"
nyﬁR(k)

repeat
TPRINT(123.456,3,3)
ENDSUB
MOVEA(300,200)
PRINTSTRING “FGHIJ“;; NLINE
PRINTSTRING("KLMNO"
MOVEA(512,390)
INSTAN(1,128,0,0,0)
MOVEA(490,400)
INSTAN(1,160,1,0,0)
MOVEA(460,380)
INSTAN(1,200,2,0,0)
MOVEA(512,360)
INSTAN(1,256,3,0,0)
endofprogram

Tektronix Interactive 6-19

The equivalent FORTRAN program would be:

INTEGER K,A(5)
DATA A/'A%,'B','c','D','E'/
CALL FTKTYP(4010)
CALL ERASE
CALL NEWPIC
CALL FDEFSB(1)
D0 1 J=1,5
K=A(J)/16777216
CALL FCHAR(K)

1 CONTINUE
CALL FPRINT(123.456,3,3)
CALL ENDSUB
CALL FMOVEA(300,200)
CALL FPSTRG('FGHIJ',5)
CALL NLINE
CALL FPSTRG('KLMNO',5)
CALL FMOVEA(512,390)
CALL FINST(1,128,0,0,0)
CALL FMOVEA(490,400)
CALL FINST(1,160,1,0,0)
CALL FMOVEA(460,380)
CALL FINST(1,200,2,0,0)
CALL FMOVEA(512,360)
CALL FINST(1,256,3,0,0)
STOP
END

The resultant display would be as shown in Figure 8.

TN NP SV

:
§
¢

€34.9521 CDCOR

roauld

MRS UM MONOD

L J

Figure 8. Scaling and rotation of hardware characters.

6-20 Tektronix Interactive

Software Characters

Software characters are drawn as sequences of visible and invisible vectors, just like other
drawing components, while the terminal is in graphical mode. They appear as shown in Figure 9.

]

Figure 9. Software characters

The basic size of the characters is approximately one sixteenth of an inch high and one
twentieth of an inch wide. This is illegible on most screens; a scaling factor may be applied
to increase the size. The characters may also be rotated, individually or as a line of text,
s0 as to suit their use in the display, as labels for axes of a graph, etc. Whatever scaling
and orientation is applied to these characters is compounded by any scaling, orientation and
reflection transformations defined for any sub-picture in which they appear.

The routines used to display software characters are as follows.
The routine:

externalroutine CHARS(integername CH,OR,X,Y,SC)

SUBROUTINE CHARS(CH,OR,X,Y,SC)

or:

prints the symbol whose 1SO Code value (betwen 32 and 95) is represented by CH. X and Y
represent the virtual co-ordinates of the position at which it is to be drawn; it is necessary
to MOVE to this position before drawing the character; X and Y are updated by the displacement
upon completion. SC and OR are respectively the scale (between 1 and 128) and orientation (0,
1, 2, 3 for rotations of 0, 90, 180 and 270 degrees anticlockwise, respectively). A scale of 1
is basic size (about a sixteenth by a twentieth of an inch, including displacement), while a
scale of 128 fills half the screen with one character (about six inches by four).

The routine:
externalroutine BIGSTRING(string(255) S integer OR, SC)
SUBROUTINE FBGSTR(S,L,O0R,SC)

or:

draws the characters stored in the string S, in the case of FORTRAN, comprising L characters,
as a line of text. Both the line and the individual symbols are oriented as defined by OR,
thus: OR = 0 means horizontal, upright, reading from left to right; OR = 1 means vertical,
rotated 90 degrees anticlockwise, reading upward; OR = 2 is horizontal, upside-down, reading
from right to left and OR = 3 is vertical, rotated 90 degrees clockwise, reading downward.

Tektronix Interactive 6-21

Example 7

The following example shows the effects of scaling and orientation on software characters.

external routinespec TEKTYP(integer T)
externalroutinespec ERASE
external rout inespec NEWPIC
externalroutinespec MOVEA(integer X,Y)
externalroutinespec CHARS{integername CH,OR,X,Y,SC)
externalroutinespec BIGSTRING(string(255) S, integer R,SC)
begin

integer K,X,Y,R,S
TEKTYP(4010)

ERASE

NEWPIC

K="'A"

R=0

X=0

Y=0

S=1

MOVEA(X,Y)
CHARS(K,R,X,Y,S)

K='B"'

R=1

X=1000

S$=2

MOVEA(X,Y)
CHARS(K,R,X,Y,S)

K='C'

R=2

Y=600

S=4

MOVEA(X,Y)
CHARS(K,R,X,Y,S)

K='D"

R=3

X=0

S$=8

MOVEA(X,Y)
CHARS(K,R,X,Y,S)
MOVEA(512,390)
BIGSTRING("ABCDE",0,1)
MOVEA(500,410)
BIGSTRING(“FGHIJ",1,2)
MOVEA(460,390)

BIGSTRING("KLMNO",2,4)
MOVEA(500,360)
BIGSTRING("PQRST",3,8)

endofprogram

6-22 Tektronix Interactive

The FORTRAN version of this program would be:

INTEGER K,X,Y,R,S,A B,C,D
DATA A,B,¢,0/7aF 787, 1t 'p'/
CALL FTKTYP(4010}

CALL ERASE

CALL NEWPIC

K=A/16777216

X=0

Y=0

CALL FMOVEA(X,Y)

CALL CHARS(K,0,X,Y,1)
K=B/16777216

X=1000

CALL FMOVEA(X,Y)

CALL CHARS(K,1,X,Y,2)
K=C/16777216

Y=600

CALL FMOVEA(X,Y)

CALL CHARS(K,2,X,Y,4)
K=D/16777216

X=0

CALL FMOVEA(X,Y)

CALL CHARS(K,3,X,Y,8)

CALL FMOVEA(512,390)

CALL FBSTRG('ABCDE',5,0,1)
CALL FMOVEA(500,410]

CALL FBSTRG('FGHIJ',5,1,2)
CALL FMOVEA(460,390]

CALL FBSTRG('KLMNO',5,2,4)
CALL FMOVEA(500,360}

CALL FBSTRG('PGRST',5,3,8)
STOP

END

In each case, the display would have the form shown in Figure 10.

- N

-

ONUTI

D
)
A
)
—

Figure 10. Scaling and rotation of software characters.

Tektronix Interactive 6-23

Menu Operations

The Package provides a facility for displaying and using a 'Menu' - a device commonly used
in interactive graphics programs. This consists of a list of options, representing the various
activities provided by the graphics program, which is displayed at one side of the screen,
while the remainder of the screen is used for drawings. The user controls the program by
selecting from the options provided the action which he wishes to invoke. The program reacts
accordingly, resulting in an effect upon the display. The user may then select another option,
to cause a different effect. Thus the required picture may be built up in a series of
operations.

The menu provided by the package is confined to an area at the left-hand side of the screen,
measuring about two inches wide and six inches high, bounded by a rectangular frame. When the
menu is in use, drawings must be confined to the remaining square area (six inches or so wide)
at the right of the screen. (The actual dimensions of the various areas of the screen described
here are nominal, for the standard Tektronix screen and they may vary for other terminal
models.) The screen co-ordinates of the menu area are (0,0) at the lower left corner to
(263,760) at the upper right, while those of the drawing area may perhaps be best considered to
be (263,0) at the lower left to (1023,760) at the upper right.

The upper part of the menu area (some two inches square) is termed the ‘Header', in which
whatever information or instruction is required to enable the user to operate the menu may be
printed. No more than 12 lines of up to 19 characters each may be included in this area.

The Tower part of the menu area contains the menu itself. This consists of up to eleven
lines of text (double spaced), each representing one of the options provided by the program.
Each may be of up to 9 characters in length, but should include an identifying character which
the user may type to select that option. There is always room at the bottom of the menu area
for a prompt (such as 'SELECT'), which the program may generate, and to which the user is
expected to respond. This he does by typing the appropriate character(s), representing his
choice of option, followed by a RETURN.

Figure 11 shows a typical screen configuration including a menu.

CHOOSE YOUR ACTION | '

BY TYPING THE CODE .
LETTER OPPOSITE THE
OPTION YOU REQUIRE .

w o -
DOWN

LEFT

RIGHT

w N = [t (== (=
.

200M

STOP -

SELECT

Figure 11. A menu.

The method by which the user is requested to select his option, and the way in which his
response is handled, is entirely the responsibility of the graphics programmer. No specific
method is defined by the Package; in particular, there is no direct means of establishing which
line of the menu has been selected unless it is explicitly numbered by the user as part of the
expected response.

6-24 Tektronix Interactive

The routine:

externalroutine DEFHEAD(string(230) H)

or:

SUBROUTINE FDEFHD(H,

L)

may be used to define the text which is to be placed in the header area. The string H (of

length L characters, in the FORTRAN version) may contain up to 12 lines, each of no more than
19 characters, and each terminated by a NEWLINE character (IS0 code 10). The routine does not
itself display the header, but merely stores the text for subsequent display when the complete

menu is defined.

The routine:

externalroutine DEFMENU(string(9) M, integer N)

or:

SUBROUTINE FDFMNU(M,

L,N)

defines the characters held in the string M (of length L, in the FORTRAN version) as the text
the Nth line of the menu. The string may not exceed 9 characters
in length. The menu 1ine number (N) may be between 1 and 11, thus a complete menu may be

to 11 calls of this routine. Again, this merely stores the texts

which is to be displayed in

defined by a sequence of up

(representing the various program options) for later display.

The routine:

externalroutine DRAWMENU

or:
SUBROUTINE FDRMNU

draws a frame around the menu area and causes the texts defined for the header and menu options
It is important to note that the routine calls both VWINDO (FVWNDO)
and SWINDO (FSWNDO) in order to define the menu area; the virtual and screen windows must,

to be displayed within it.

therefore, be redefined by the graphics program subsequently.

It may be desirable to define alternative menus at different stages in the process of

generating the required picture.

menu by another. In this situation, the routine:

externalroutine DELLINE(integer N)

or:

SUBROUTINE FDLLIN(N)

may also be used, to delete

Example 8

The above routines may be employed repeatedly to replace one

the Nth line from the menu. If N has a value of 0, the header is
deleted. The effect is not evident until the menu is redrawn (by DRAWMENU or FDRMNU).

The following example shows how the menu described in Figure 11 may be generated. A
mechanism for interpreting the user response is suggested.

centre of the drawing area and displays the menu.

The program draws a hexagon in the
The options permit the user to alter the

view of the hexagon by moving the virtual window upward, downward, to the left or right, to
magnify the picture by reducing the size of the virtual window or to terminate the program.

external routinespec

external rout 1inespec

external routinespec

external routinespec

external routinespec

externairout inespec

external rout 1nespec

external rout inespec

external rout 1nespec

externalroutinespec

externalroutinespec

external rout inespec

external rout inespec

external rout inespec

external routinespec

external rout 1inespec

TEKTYP(integer T)
ERASE
NEWPIC

VWINDO(integer X0,Y0,XM,YM)
SWINDO(integer X0,Y0,XM,YM)
MOVEA(integer X,Y)

DRAWR(integer DX,DY)
MOVER (integer DX,DY)

FRAME

REVU

PRIN (8() S)

PRINTSTRING(string(255) S
) H)

DEFHEAD(strin

DEFMENU(string(9) M, integer N)
DRAWMENU

PROMPT(string(15) P)

Tektronix Interactive 6-25

begin

integer I, S, T, X0, YO, XM, YM

switch ACT(1:6)

constintegerarray CH(1:6)= 'U','D','L','R"','Z",'S"'
TEKTYP(4010)

ERASE

NEWPIC
SWINDO(263,0,1023,760)
MOVEA(511,511)
MOVER(-50,-87)
DRAWR(100,0)

DRAWR (50,87)

DRAWR (-50,87)
DRAWR(-100,0)

DRAWR (-50,-87)

DRAWR (50, -87)
MOVER(50,87)

FRAME

DEFHEAD("CHOOSE YOUR ACTION
BY TYPING THE CODE
LETTER OPPOSITE THE
OPTION YOU REQUIRE

DEFMENU("UP - u",1)
DEFMENU("DOWN - D",2)
DEFMENU("LEFT - L",3)
DEFMENU("RIGHT - R",4)
DEFMENU("Z00M - Z",5)

DEFMENU("STOP - S",6)

X0=0; Y0=0; XM=1023; YM=1023;
cycle

DRAWMENU

RTAM;

PROMPT ("SELECT")
READSYMBOL (S)

gEADSYMBOL(T) until T='

cycle I=1,1,6
=>ACT(I) if S=CH(I)

re Feat

NTSTRING("INVALID OPTION")
-> AGAIN
ACT(1): YO=Y0+100; YM=YM+100;
->VW
ACT(2): Y0=Y0-100; YM=YM-100;
=->VW
ACT(3): X0=X0-100; XM=XM-100;
->VW
ACT(4): X0=X0+100; XM=XM+100;
->VW
ACT(5): X0=X0+100; XM=XM-100;
Y0=Y0+100; YM=YM-100;
VW: ERASE
VWINDO(X0,Y0,XM,YM)
SWINDO(263,0,1023,760)
REVU
FRAME

AGAIN: repeat
ACT(6): EEISE
endofprogram

6-26 Tektronix Interactive

Initial virtual window

to avoid corruption of prompt

Move virtual window upward
Move virtual window downward
Move virtual window left
Move virtual window right

Zoom in to smaller
virtual window

The FOR

TRAN version of this program might be written as follows:

INTEGER 1, S, T, X0, YO, XM, YH

INTEGER CH(6) /fu",%p* ,’L",IR", 2" ,'s"/

INTEGER HEAD(20) /'CHO0','SE Y','OUR ','ACTI','ON *,
* 'BY T','YPIN','G TH','E CO','DE ',
* 'LETT','ER 0','PPOS','ITE *.'THE ',
* 'OPTI','ON Y','0U R','EQUI'.'RE '/

DO 10 I=5,20,5

10 HEAD(I)=HEAD(I)-22

11

501

12

CONVERT SPACE AT END OF EACH LINE TO NEWLINE
CALL FTKTYP(4010)

CALL ERASE

CALL NEWPIC

CALL FSWNDO(263,0,1023,760)

CALL FMOVEA(511,511)

CALL FMOVER(-50,-87)

CALL FDRAWR(100,0)

CALL FDRAWR(50,87)

CALL FDRAWR(-50,87)

CALL FDRAWR(-100,0)

CALL FDRAWR(-50,-87)

CALL FDRAWR(50,-87)
CALL FMOVER(50,87)
CALL FRAME

CALL FDEFHD(HEAD, 80
CALL FDFMNU('UP
CALL FDFMNU(' DOWN
CALL FDFMNU('LEFT
CALL FDFMNU('RIGHT
CALL FDFMNU(*ZOOM
CALL FDFMNU('STOP
X0=0

Y0=0

XM=1023

YM=1023

CALL FDRMNU

CALL RTAM

CALL FPRMPT('SELECT',6)
READ(5,501) S

FORMAT (A1)

DO 12 I=1,6

IF(S.EQ.CH(I)) 6OTO (1,2,3,4,5,6),1
CONT INUE

CALL FPSTRG('INVALID OPTION',14)
GOTO 11

Y0=Y0+100

YM=YM+100

GOTO 9

Y0=Y0-100

YM=YM-100

GOTO 9

X0=X0-100

XM=XM-100

GOTO 9

X0=X0+100

XM=XM+100

GOTO 9

X0=X0+100

XM=XM-100

Y0=Y0+100

YM=YM-100

CALL ERASE

CALL FVWNDO(XO,YO,XM,YM)

CALL FSWNDO(263,0,1023,760)

CALL REVU

CALL FRAME

GOTO 11

CALL ERASE

STOP

END

LI S B R

Tektronix Interactive 6-27

Contour Drawing

A common requirement in scientific research is to represent a function or distribution
pictorially as an undulating surface. A number of methods are available to make this possible.
One is to indicate the various levels or ranges of values of the distribution by contour lines,
1ike an Ordnance Survey contour map. It may be used to represent any function of two
independent variables. In the case of a relief map, the altitude at points within the area
represented by the map is the function concerned and the Easting and Northing co-ordinates of
these points are the independent variables.

The Edinburgh Tektronix Package provides a facility for contour drawing. It is based on the
assumption that the value of the function under inspection is known at a number of points which
are distributed evenly in a rectangular mesh over a unit square area (or some transformation of
such an area). The points are identified by X- and Y-co-ordinates, where 0 <= X, Y <= 1 for
the unit square; the user may specify what transformation he wishes applied to these
co-ordinates to suit his problem.

Drawing is performed by the routine:

externalroutine TCONTOUR(1ongreal arrayname Z integer M,N ¢
longrea s routine SS

SUBROUTINE TCONTR(Z,M,N,LVL,CHS,TRANS)

or:

The parameter Z represents a two-dimensional array, of M rows and N columns, which contains
the values of the function under consideration, computed for N values of X and M values of Y.
The rows and columns of the array Z are mapped on to the unit square as shown in Figure 12.

7(1,1) (031) e e e e e (1i1) Z(1,N)
R I S 10 'R)
(0,0) (1,0)

Figure 12. Function values in the unit square.

This implies that the values of X for which the function is known are 0, 1/(N-1), 2/(N-1), ...
(N-2)/(N-1) and 1, while those of Y are 0, 1/(M-1), 2/(M-1), ... (M-2)/(M-1) and 1. The value
o{ the func?ion for the arbitrary point (I/(N-1), J/(M-1)) is held in the array element
Z(M-0+1,1+1).

The scalar parameter LVL is the level at which the required contour is to be drawn (i.e. the
value of the function which it represents). It must be noted that the routine draws only one
contour at a time, and must, therefore, be invoked repeatedly (with different values for LVL)
to produce a complete contour diagram.

CHS indicates whether numerical annotation of the contour is to be included (CHS > 0) or not
(CHS <=0). Annotation is produced by displaying (in hardware characters) the nearest integer
to the value of LVL at some point in the contour line.

The parameter routine TRANS must be supplied by the user, with the following specification:

routinespec TRANS(1ongrealname X,Y)
SUBROUTINE TRANS(X,Y)

or:

(where X and Y are DOUBLE PRECISION variables in the FORTRAN version.) Its function is to
transform the co-ordinates X and Y from those of the unit square to those of the space defined
by the user, returning the transformed values through the same parameters, X and Y. These
values will be further transformed automatically by the Package into screen co-ordinates for
display. Some transformation is necessary, since the unit square represents a tiny dot on the

6-28 Tektronix Interactive

screen. At least a scaling operation is required to produce an intelligible drawing. The user
writing in FORTRAN should note that his transformation routine must be declared as EXTERNAL in
the program invoking TCONTR.

It is important to note that the routine TCONTOUR or TCONTR is, in effect, simply a sequence
of DRAW and MOVE operations, interspersed with certain annotation. This means that the normal
sequence of calls on the administrative routines of the Package, (TEKTYP, NEWPIC, etc.) must be
invoked before drawing may commence. It also implies that the appearance of the contour
drawing is subject to transformations due to the virtual and screen windows, scaling and
orientation defined at the time of drawing.

Example 9

The following program illustrates the use of the contour drawing facility. It accepts a
rectangul ar array of data, representing values of a function under consideration. This array
may be of any size, spec1f1ed by the preceding data. Contours are drawn at any number of
level s, which are deflned by the data. The resulting contour drawing appears in an area of 600
screen units square at the lower left-hand corner of the screen.

externalroutinespec TEKTYP(integer N)

external routinespec
externalroutinespec
external rout inespec
externalroutinespec

externalroutinespec
begin

integer NX,NY,NL,I,J

ERASE

NEWPIC

MOVEA(integer X,Y)

TCONTOUR (1ongreal arrayname Z integer M,N ¢
longreal LVL,CHS routine TRANS)

PROMPT(_EriggIIS) p

rout1ne SQUARE(ongrea]nam e X,Y)

X; Y=600*Y,;
end

PROMPT (“X POINTS?");
PROMPT("Y POINTS?");

! transform to fill square 600 units across

READ(NX)
READ(NY)

PROMPT("LEVELS?"); READ(NL)

begin
Tongrealarray Z(1:NY,1:NX), HT(1:NL)
PROMPTI“HEIGHT?")

cycle NL=1,1,NL

READ(HT(NL))

repeat
PRSMPT(“FN VALUES?")

cycle I=1,1,NY
c cle J=1,1 NX

Z(I)]
re at

ﬁvﬁ(mo)

ERASE

NEWPIC

MOVEA(0,0)

cycle NL=1,1,NL
TCONTOUR(Z,NY,NX,HT(NL),1, SQUARE)

re Eeat
en

‘endofprogram

Tektronix Interactive 6-29

The FORTRAN version of the program might be written as follows:

EXTERNAL SQUARE
INTEGER NX,NY,NL,I,J,L
DOUBLE PRECISION Z(10000), HT(32)
CALL FPRMPT{'X PTS,Y PTS?',12)
READ, NX, NY
CALL FPRMPT('LEVELS?',7)
READ, NL
CALL FPRMPT('HEIGHT?',7)
READ, (HT(L), L=1,NL)
CALL FPRMPT('FN VALUES?',10)
K=1
L=(NX-1)*NY+1
DO 1 I=1,NY
READ, (Z(J), J=K,L,NY)
K=K+1
1 L=L+1
CALL FTKTYP(4010)
CALL ERASE
CALL NEWPIC
CALL FMOVEA(0,0)
DO 2 L=1,NL
CALL TCONTR(Z,NY,NX,HT(L),1,SQUARE)
2 CONTINUE
STOP
END
SUBROUTINE SQUARE(X,Y)
DOUBLE PRECISION X,Y
X=600.*X
Y=600.*Y
RETURN
END

The following represents a sample set of data, in which the value of the function is known
for 10 values of X and 20 values of Y and contours are to be drawn at all integral values of
the function between -10 and +10.

%? 20
-10-9-8-7-6-5-4-3-2-1012345678910
0.0 0.7 1.3 1.6 2.1 2.5 3.1 3.6 3.9 4.2
-0.8 0.2 0.7 1.4 2.2 2.8 3.4 4.0 4.7 5.1
-1.2 -0.3 0.1 1.3 2.4 3.3 3.7 4.7 5.6 7.3
-2.1 -1.1 -0.3 0.4 2.1 3.4 4.0 5.3 6.4 9.8
-4.3 -2.2 -0.8 0.2 1.8 3.4 4.3 6.1 7.8 10.6
-6.2 -3.1 -1.2-0.8 1.4 3.4 4.2 5.6 7.4 9.8
-8.3 -4.7 -2.1 -0.6 0.8 2.7 4.0 4.8 6.3 8.7
-10.1 -5.6 -3.4 -1.2 0.4 2.3 3.7 4.5 6.0 7.8
-8.8 -4.3 -2.6 -0.8 -0.1 1.7 2.9 3.8 4.9 6.8
-5.9 -2.7 -1.8 -0.5 0.0 0.9 1.7 3.0 4.2 5.7
-3.9 -2.3 -1.1 -0.3 0.0 0.6 1.4 2.8 4.0 5.1
-3.6 -2.0 -0.9 -0.1 0.0 0.4 1.2 2.3 3.6 4.2
-2.8 -1.5 -0.5 0.0 0.0 0.2 0.7 1.8 2.5 3.7
-1.9 -0.8 -0.3 0.0 0.0 0.1 0.5 1.1 2.0 2.9
-1.1 -0.6 -0.2 0.0 0.0 0.0 0.3 0.8 1.4 2.2
-0.9 -0.6 -0.1 0.0 0.0 0.0 0.1 0.3 0.9 1.8
-0.4 -0.4 -0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The effect of processing this set of data by the above program would be to display the
drawing shown in Figure 13.

6-30 Tektronix Interactive

Figure 13. A contour drawing

Three-dimensional Drawing

The full potential of interactive graphics is made evident by the ability to draw a
projection of a three-dimensional object and to modify the appearance of the projection, so as
to give the impression of viewing the object from different directions, in proper perspective.
The most sophisticated graphics systems permit continuous movement from one view to another,
giving the impression of the object rotating in space, and are able to identify parts of the
object which would normally be hidden from view and to eliminate them from the display; they
may also be able to include differential shading of the various surfaces of the object, to lend
considerable realism to the picture.

The Edinburgh Tektronix Package provides a simple three-dimensional viewing facility,
without such sophistications. The picture appears as a 'wire-frame' drawing, with a
perspective effect.

To use this facility, the user is permitted to consider that the object he is drawing exists
in a 'real' world, of three dimensions; i.e. each point within it is referenced by X-, Y- and
Z-co-ordinates, which may have values within any desired range. The user may then choose any
point within the object as a focus for viewing; this point is termed the 'current origin' - it
may be displaced from the actual origin of the three-dimensional drawing space, the point with
co-ordinates (0,0,0). He may then choose any other point in the drawing space as his 'viewing
position'. Having done so, he may use the projection facility to transform the salient points
of his object into their equivalent co-ordinates on a plane surface (a hypothetical 'screen'),
representing the 'virtual picture space' defined by the Package. He may then require to scale
or otherwise transform these into co-ordinates for display on the real terminal screen by means
of the windowing technique described above.

The routine:

externalroutine AIM(real VX,VY,VZ,CX,CY,CZ integername EF)
SUBROUTINE FAIM(VX,VY,VZ,CX,CY,CZ,EF)

or:

computes the transformation coefficients required to produce a three-dimensional perspective
view of an object. The parameters VX, VY and VZ represent the co-ordinates of the 'viewing
point' and CX, CY and CZ are those of the 'current origin® - some point within the object being
viewed. EF is an error indicator, whose value is zero if the transformation can be computed
and non-zero otherwise. This arises when the X- and Z-co-ordinates of the current origin and
viewing point coincide. The computed transformation coefficients are not directly accessible
to the user; they are stored for subsequent use.

Tektronix Interactive 6-31

The routine:

externalroutine PROJECTION(integer X,Y,Z integername XE,YE,EF)
SUBROUTINE FPRJCT(X,Y,Z,XE,YE,EF)

or:

applies the transformation computed by AIM to a point within the object, whose co-ordinates are
(X,Y,Z). It computes the co-ordinates (XE,YE) of the projection of that point on to the plane
of the virtual picture space. The parameter EF is an error indicator, whose value is zero if
no error arises and non zero if the projection fails. Failure occurs if any point within the
object coincides with, or lies behind, the viewing point.

Example 10

The following orogram illustrates the use of the three-dimensional drawing facility. It
accepts a sequence of vector specifications, representing drawing and moving operations in
three-dimensional space, relative to the current position in that space, similar to the
two-dimensional operations of DRAWR and MOVER provided by the Package. Each vector is defined
by four integers. The first is either 1, representing a visible 1ine, or 0, representing an
invisible movement. The remaining three values represent the increments in the X-, Y- and
Z-co-ordinates defining the vector which is to be traversed, relative to the current position
in 'real' space. It is assumed that drawing commences initially at the origin. The sequence
of vectors is terminated by the dummy vector:

0000

The relative vectors so defined are first transformed into absolute co-ordinates in the
three-dimensional space and are stored. Subsequently, the program requests the co-ordinates of
the user's 'viewing position', assuming that the 'current origin' for the view is the actual
origin of the real space - the point (0,0,0). The appropriate transformations are applied and
a perspective view of the object is displayed. Any sequence of views is permitted, terminated
by the specification of a viewing position at the origin (0,0,0).

external routinespec
external routinespec
external routinespec
external routinespec
external rout inespec

TEKTYP(integer T)

ERASE

NEWPIC

VWINDO(integer X0,YO0,XM,YM)
SWINDO(iinteger X0,Y0,XM,YM)"

external rout inespec

MOVEA(integer X Y)

external routinespec

DRAWA(integer X,Y)

external routinespec

external routinespec

external rout inespec

external rout inespec

external rout inespec

external routinespec

external rout inespec

begin

RTAM

PRINTSTRING(string(255) S)

TWRITE(integer I,N)

NLINE

AIM(real VX,VY,VZ,CX,CY,CZ integername EF)
PROJECTION(1nte er X,Y, Z integername XE,YE,EF)
PROMPT (string(15) P)

integerarray DORM,VX,VY,VZ(1:1000)

real XC,YC,ZC

integer I, NP b,DX,DY,DZ,X,Y,Z,XS,YS

X=0; Y=0; "2=0

5 ! Start at origin

c cle NP-l,l,lOOO
PROMPT (“VECTOR?"); READ(D); READ(DX); READ(DY); READ(DZ)

exitif D=DX=0 and DY=DZ=0

DORM{NP)=D

X=X+DX; VX(NP)=X
Y=Y4DY; VY(NP)=Y
7=2+D1; VI(NP)=Z

; ! dummy vector terminator
3 ! store vector type
; | compute absolute position and store

repeat

NP=NP-1 3 | discount dummy vector
TEKTYP(4010)

cycle

R ; ! to avoid corruption of prompt

PROMPT("EYE COORDS?"); READ(XC); READ(YC); READ(ZC)

exitif XC=YC=0 and ZC=0 H
ATM(XC,YC,2C,0,0,0,1)

if I#0 start

! terminator
3 ! view to origin

PRINTSTRING("AIM FAILS "); TWRITE(I,2); NLINE; stop

finish
ERASE; NEWPIC

6-32 Tektronix Interactive

VWINDO(-256,-256 ,255,255)
SWINDO(0,0,780,780)

cycle NP=1,1,NP

D=DORM(NP); X=VX(NP); Y=VY(NP); Z=VZ(NP)
PROJECTION(X,Y,Z,XS,YS,1); ! convert to virtual co-ordinates
if I#0 start

PRINTSTRING({"PROJECTION FAILS “); TWRITE(I,2); NLINE; stop

finish
if D=0 then MOVEA(XS,YS) else DRAWA(XS,YS)
repeat
-200,-200); ! avoid text interfering with drawing

reEeat

endofprogram

The following is an equivalent program in FORTRAN:

INTEGER DORM(1000),VX{1000),VY(1000),VZ{1000)
REAL XC,YC,ZC
iNgEGER 1,N,NP,D,DX,DY,DZ,X,Y,Z,XS,YS
Y=0
=0
DO 1 NP=1,1000
CALL FPRMPT('VECTOR?',7)
READ, D,DX,DY,DZ
IF(D.EQ.0 .AND. DX.EQ.0 .AND. DY.EQ.0 .AND. DZ.EQ.0) GOTO 2
DORM(NP)=D
X=X+DX
VX (NP)=X
Y=Y+DY
VY (NP)=Y
7=1+D1
1 VZ(NP)=
NP=1001
2 NP=NP-1
CALL FTKTYP(4010)
3 CALL RTAM
CALL FPRMPT('EYE COORDS?',11)
READ, XC,YC,ZC
IF(XC.EQ.0 .AND. YC.EQ.0 .AND. ZC.EQ.0) GOTO 7
CALL FAIM(XC,YC,ZC,0,0,0,1)
IF(I.EQ.0) GOTO 4
CALL FPSTRG('AIM FAILS ',10)
CALL FWRITE(I,2)
CALL NLINE
STOP
4 CALL ERASE
CALL NEWPIC
CALL FVWNDO(-256,-256,255,255)
CALL FSWNDO(0,0,780,780)
DO 6 N=1,NP
D=DORM(N)
X=VX(N)
Y=VY(N)
Z=VZ(N)
CALL FPRICT(X,Y,Z,XS,YS,1)
IF(I.EQ.0) GOTO 5
CALL FPSTRG('PROJECTION FAILS ',17)
CALL FWRITE(I,2)
CALL NLINE
STOP
5 IFED.EQ.og CALL FMOVEA(XS,YS)
IF(D.NE.O) CALL FDRAWA(XS,YS)
6 CONTINUE
CALL FMOVEA(-200,-200)
GOTO 3
7 CALL ERASE
STOP
END

Tektronix Interactive 6-33

The following sample data represents a drawing of a 'tasseract' - a cube contained within
another cube, with their corresponding edges joined. The inner cube is of side 100 units and
the outer one of 200 units. Both are centred on the origin. A single view is defined, from
the point (128,256,512).

0 -50 50 50
1 100 0 0
1 0 -100 0
1 50 -50 50
1 0 200 0
1 -50 -50 -50
1 0 0 -100
1 -100 0 0
1 -50 50 -50
1 0 0 200
1 200 0 0
1 0 0 -200
1 -200 0 0
1 0 -200 0
1 50 50 50
1 0 100 0
1 0 0 100
1 <50 50 50
1 0 -200 0
1 0 0 -200
1 200 0 0
1 0 200 0
1 -50 -50 50
1 0 -100 0
1 -100 0 0
1 0 0 100
1 -50 -50 50
1 200 0 0
1 0 0 -200
1 -50 50 50
1 0 0 100
1 -100 0 0
1 0 100 0
0 0 0 0
128 256 512
0 0 0

The resultant display would be as shown in Figure 14.

|/

L J
Figure 14. A three-dimensional projection.
Storage and Viewing of Pseudo-display Files

When a drawing has been constructed, using the interactive graphics facilities described in
the previous sections, the user may find it desirable to make a permanent record of the
resulting display.

6-34 Tektronix Interactive

The routine:

externalroutine SNAPSHOT(string(24) F)

or:
SUBROUTINE FSNAP(F,L)

copies the current content of the pseudo-display file maintained by the Package, to a Store-Map
file whose name is F (of L characters in length, in the FORTRAN version). The content of this
file will include whatever window transformations apply to the current display. The routine
may be invoked repeatedly, thus allowing different views of the picture to be stored.

It must be noted that the form of the file so stored is some what different in the
implementation on EMAS 2970 from that of the System 4 version, and that consequently
transmission of pseudo-display files between these implementations is not recommended.

For example, the final picture produced by the programs listed in Example 10 could be
recorded by including the specification:

externalroutinespec SNAPSHOT(string(24) F)

at the head of the IMP version and preceding the final call of the routine:
ERASE

by the call:
SNAPSHOT ("CUBES")

o CALL FSNAP('CUBES',5)

in the IMP and FORTRAN versions respectively. The effect would be to create a store-map file
called 'CUBES', containing the drawing.

A permanently stored pseudo-diSpléy file may be reviewed by means of the EMAS foreground
command :

TEKVIEW
This command first requests:
Tektronix No:
to which the user is expected to respond with the model number of the terminal in use (4002,
4006, 4010, 4012 or 4014, or 999 for a terminal controlled by a Sigma GOC). The enhanced
graphics option is enabled automatically if the model 4014 terminal is in use.
Then the program prompts:
Tekfile Name:

to which the user should type the name of the store-map file containing his pseudo-display file
copy.

The drawing is displayed, together with a menu including the following options:

NEWFILE_F (to select another pseudo-display file)
WINDOW__ W (to select a window, using the cursor)
RETURN_ R (to review the original picture)

sTOP S (to terminate the display)

The prompt issued is:
SELECT

On completion, the screen is cleared.

Tektronix Interactive 6-35

Graph Plotter Transcription

Once a permanent pseudo-display file has been created, the user may wish to transcribe its
content into a form suitable for hard-copy drawing on a graph plotter or similar device.

This requirement is catered for in the Package by the EMAS foreground command:
CREATE GPFILE
The program first prompts:
TEKF ILENAME?
to which the user responds with the name of his permanent pseudo-display file.
Next, the prompt:
PLOTTER FILE?

is offered. The user should tyﬂe the name of a sequential file, comprising 80-byte formatted
records, into which he wishes the display to be transcribed, in the form of an ERCC standard
graph plotter file.

The prompt:
DELIVERY INFO?
requests that the user types his name and address for delivery of the graph plotter output.
The prompt:
SIZE (CM)?

requests the width, between 1 and 82.5 centimetres, of the SETPLOT area within which the
drawing is to be pfotted.

The program then issues the request:

PEN COLOUR....1=BLACK:2=BLUE:3=GREEN:4=RED
1:2:3:4?

to which the user should respond with the appropriate colour code.
Then the program issues the prompt:
DASHING(Y OR N)?
to which the user should reply:
Y
if he wishes the drawing to comprise dashed lines, or:
N
if he does not. In the former case, the prompt:
DASH 1:2:3?

requests the user to specify the dashing pattern he requires:

1 - Long dashes and gaps
2 - Medium dashes and short gaps
3 - Short dashes and gaps

6-36 Tektronix Interactive

The prompt:
OVERPLOT(Y,N)?
expects the user to reply:
Y
if he wishes a further pseudo-display file (which he is subsequently required to name) plotted
within the same SETPLOT area as the first; this may be useful where one pseudo-display file is
?s?tandard set of axes and the other is a graph to be superimposed. The alternative response
N
if no overplotting is required.
The prompt:
ANOTHER SETPLT?
expects the response:

Y

if the user wishes to transcribe a further pseudo-display file in a se€arate SETPLOT area on
the graph plotter. The name of that file is requested. The user should respond:

N
if no further file is to be plotted.
The program continues to request:
OVERPLOT(Y,N)?
ANOTHER SETPLT?

and:

until both responses are:
N

at which point the program terminates. A complete graph plotter file is then ready to despatch
to the graph plotter, by means of the command:

LIST(filename,.GP)

Viewing Graph Plotter Files
Before committing to hard copy a graph plotter file created in the fashion described above,
or by conventional use of the Graph Plotter Package (q.v.), the user may wish to check the
contents of the plotter file he has created. This is best achieved by invoking the command:
TVIEW

which may be used to display selectively, on a Tektronix or similar terminal, drawings stored
in various SETPLOT segments of such a file.

The program commences by isssuing the prompt:

Tektronix type?

to which the user should respond by typing the model number (4002, 4006, 4010, 4012, 4014 or
999) of the terminal in use.

Tektronix Interactive 6-37

The program reminds the user to enter Graph Mode before proceeding. It then issues the prompt:
Help Info?
The user may respond:
Y
if he wishes explanatory information to precede each subsequent prompt, or:
N
if he is more experienced in the use of the program.
The prompt:
File name?
requests the name of a sequential file of 80-byte formatted records, containing a specification
of a drawing in ERCC Graph Plotter File Standard format, i.e. as produced by GRAPHPACK (q.v.)
or CREATE GPFILE.
The program then issues the message:
Max setplot size in centimetres/inches
(where the units specified are appropriate to the file named), followed by the prompts:
Length:
and:

Height:

to which the user should reply with the appropriate dimensions of the largest SETPLOT area in
the file being viewed.

The prompt:
Which setplot?
then requests the number (1,2,3, etc.) of the first SETPLOT area which the user wishes to

select from the file for display. If that area exists, it is drawn on the screen, together
with a menu including the following options:

NEWVIEW A (return to original display of current setplot)
NEXTSP_ N (display next setplot area in current file)
WINDOW__ W (window on current display, using cursor)

LOOK L (review current setplot after windowing)
ANYSP__ I (choose any other setplot area in this file)
RESET__ R (review first setplot area in this file)
NEWFILE_F (view a different plotter file)

HELP___H (request help information)

STOP S (terminate program)

The prompt issued is:
SELECT
The program continues to respond to menu selections until the option:
S

is selected.

6-38 Tektronix Interactive

Error Messages

The following errors may be reported when calling routines in the Package:

FAULT 1 ATTEMPTING TO DRAW OUTSIDE VIRTUAL PICTURE

Tge7c?-ordinates of the current virtual position have been defined outside the range -32768 to
+ 2 6 L]

FAULT 2 SCREEN WINDOW CO-ORDINATES OFF SCREEN

The screen window 1imits have been defined outside the range 0 to 1023, or 0 to 4095 in
enhanced graphics mode.

FAULT 3 ATTEMPTING TO CLOSE NON-EXISTANT SUBPIC DEFINITION
The routine ENDSUB has been called without previously invoking DEFSUB.
FAULT 4 SUBPICTURE NOT DEFINED

The routine INSTAN or FINST has attempted to instance a subpicture which has not been defined
by DEFSUB or FDEFSB.

FAULT 5 REFLECTION PARAMETERS OUT OF RANGE

Rﬁflection parameters in call of INSTAN or FINST must be 0 or 1 they have been defined outside
this range.

FAULT 6 PSEUDO DISPLAY FILE SPACE EXCEEDED

The pseudo display file has a capacity of up to 40000 vectors only; an attempt has been made to
exceed this.

FAULT 7 SUB-PICTURE ALREADY DEFINED
Two calls of DEFSUB or FDEFSB have nominated the same sub-picture identifier.
FAULT 8 MULTIPLICATION OVERFLOW

A scaling factor has been defined in INSTAN, FINST, CHARS, BIG STRING or FBGSTR which results
in drawing beyond the virtual picture limits.

FAULT 9 SUB-PICTURE NAME TABLE OVERFLOW

An attempt has been made to define more than 128 different subpictures.

A1l these faults result in the program terminating.

Tektronix Interactive 6-39

Summary

The following reference Tist of the contents of the Edinburgh Tektronix Interactive Graphics
Package is included for the convenience of more experienced users.

In each case, the name of the IMP version of the routine is given first, with its parameter
specification, and the FORTRAN version follows if its name or parameter spec1f1cat1on is
AT1 INTEGER type parameters are of 4-byte length and strings are passed in FORTRAN
by giving the name and size of an Ad4-format INTEGER array or Hollerith string.

different.

Routine Parameters Description
TEKTYP Sinte§er TYPE) Sets the Tektronix model in use
FTKTYP (4002,4006,4010,4012,4014,999).
ERASE Erases picture from screen.
NEWPIC Clears and initialises pseudo-display file for new
picture.
Cal]s VIEWON and STOREON.
Sets default values for windows (0,0,1023,1023).
Sets default values for scale, reflections and rotations.
VIEWON Turns on incremental viewing.
FVWON
VIEWOFF Turns off incremental viewing
FVWOFF (vectors are stored in pdf, but not shown on screen).
STOREON Enables storage to pdf.
FSTON
STOREQFF Disables storage to pdf.
FSTOFF
VWINDO integer VX0,VYD,VXM,VYM)| Sets virtual window with origin (VX0,VYO)
FVWINDO $VXU,870,VXM,VYM5 and top right-hand corner (VXM,VYM).
SWINDO integer SX0,SY0,SXM,SYM)] Sets screen window with origin (SX0,SYO0)
FSWINDO §§XU,§YU,SXM,SYM$ and top right-hand corner (SXM,SYM).
FRAME Draws a frame for current screen window.
DRAWA integer X,Y) Draws a line from current virtual
FDRAWA ﬁX,Y) { position to the point (X,Y).
MOVEA iinteger X,Y) Moves to virtual position (X,Y).
FMOVEA .
POINTA integer X,Y) Moves to virtual position (X,Y)
FPNTA . and draws a dot.
DRAWR integer DX,DY) Draws a line from current virtual
FDRAWR ﬁDX,Daj position (VX,VY) to point (VX+DX,VY+DY).
MOVER (integer DX,DY) Moves to virtual position (VX+DX,VY+DY).
FMOVER (D'X‘tia)_ ’ ’
POINTR integer DX,DY) Moves to virtual position (VX+DX,VY+DY)
FPNTR , and draws a dot.
DEFSUB integer NAME) Starts sub-picture definition.
FDEFSB ’NKHEi Calls VIEWOFF.
Calls ENDSUB if last sub-picture not closed.
ENDSUB Ends subpicture definition. Calls VIEWON if display
was enabled prior to last call of DEFSUB.

6-40 Tektronix Interactive

Routine

Parameters

Description

INSTAN
FINST
CHARS

BIG STRING
FBGSTR
RTAM

ALPHAPOS
FALPOS

(integer NAME,SIZE,ROT,
XREF , YREF)
(NAME,SIZE,ROT . XREF , YREF)

(integername CHAR,ROT,CX,
CY,SCALE)

(string(255) S,
integer ROT,SIZE)
(A, T,ROT, SCALE)

(integername X,Y)
(x,Y)

PRINT SYMBOL(integer CHAR)

FPSYM

PRINT STRING(

FPSTRG
NLINE

CHAR
FCHAR

DRAW TEXT
FORTXT

TWRITE
FWRITE

TPRINT
FPRINT
DEFHEAD
FDEFHD

DEFMENU
FDFMNU

DELLINE
FOLLIN

DRAWMENU
FDRMNU

CURSOR

TCONTOUR

FTCNTR
AIM

FAIM
PROJECTION
FPRJCT

(CHAR

(Afgring(255) S)

(integer CVAL)
(CVAL)
string(255) S)

H

ginteger NO, PLACES)
NO,PLACES)

(real NO, integer PLACES,
DEC PLACES)

(NO,PLACES,DEC PLACES)

string(230) HEAD)

A,l

(string(9) T, integer L)
(integer L)

(CINE

(integername CVAL,X,Y)

(longrealarrayname Z,

integer M,N,
Tongreal LVL,CHS,
routine TRANS)
(Z,M,N,LVL,CHS,TRANS)

(real VX,VY,VZ,CX,CY,CZ,
integername EF)
(VX,VY,VZ,CX,CY,CZ,EF)

(integer X,Y,Z,

integername XE,YE,EF)
sty » k] ’EF)

Instances a sub-picture with
scale factor, rotation and
reflections specified.

Draws a software character at current position
with rotation and scale, stores it in the pdf.

Draws software character string
with rotation and scale, storing
it in the pdf.

Sets terminal into alphanumeric mode.

Returns the virtual position of
the alphanumeric cursor.

Sets terminal into alphanumeric mode if necessary
and transmits a hardware character. Does not store
it in the pdf.

Sets terminal into alphanumeric mode and sends a string
of hardware characters. Does not store them in the pdf.

Sets terminal into alphanumeric mode if necessary,
and transmits a newline.

Displays a hardware character at current virtual
position.
Moves 12 units in X-direction.

Prints a hardware character string
and stores it in the pdf.

Prints integer as hardware characters
and stores it in the pdf.

Prints number as hardware characters ;
in fixed point form i
and store it in the pdf. ‘

Defines header text for menu.
Defines menu Tine option text.
Deletes option line from menu.
Draws previously defined menu.
Sets cross-hairs on screen. Returns the cursor virtual

position and identifying symbol upon user response.

Draws a single contour line,
representing a level of a
function of two variables.

Computes transformations for a
three-dimensional view.

Applies computed transformations
to a single point within a
three-dimensional object.

Tektronix Interactive 6-41

Routine Parameters Description
REVU Regenerates current picture, applying current windows.
SNAPSHOT string(20) FILE) Stores the pdf in a permanent
FSNAP , file.
The following four routines apply to the model 4014 terminal only.
ADVGPH integer 1) Sets enhanced graphics mode if I=1,
FADVG :I) otherwise clears mode.
SETLINE integer 1) Sets type of following vectors:
FSTLN 5!5 1=0 Normal
I =1 Dotted
1=2 Dot-dashed
I1=3 Short-dashed
1 =4 Long-dashed
SPOINTA ginte er X,Y,I) Moves to virtual position (X,Y)
FSPNTA X,Y,?S and draws a dot with intensity 1 <= I <= 62.
SPOINTR integer DX,DY,I) Moves to virtual position (VX+DX,VY+DY)
FSPNTR :DX,D?,I) and draws a dot with intensity 1 <= I <= 62.
The following foreground commands are available on all terminals.
TEKVIEW Displays a permanent pdf file created by SNAPSHOT.
CREATE GP FILE Converts a permanent pdf file created by SNAPSHOT
into an ERCC standard graph plotter file.
TVIEW Displays an ERCC standard graph plotter file.

6-42 Tektronix Interactive

INDEX

ADVGPH 6-6

AIM 6-31

Alpha-numeric mode 6-17

ALPHAPOS 6-17

ANNOGR 5-22

ANNOTATE 5-22

Annotation of displays 6-17

AREAFLAG 5-17

AXIS ERCC Graphpack 5-17
Calcomp 5-41

AXISGR 5-17

BIGSTRING 6-21

Calcomp basic graphic software 5-28

Calcomp plotters hardware 5-2

CHANGEPEN 5-14

CHAR 6-18

CHARS 6-21

CHCODE ERCC Graphpack 5-6
Calcomp 5-29

CHPNGR 5-14

CLOSEPLOTTER 5-12

CLOSGR 5-12 .

Contour drawing 6-28

CREATE GPFILE 6-36

Cross-hairs 6-14

CURSOR 6-14

Cursor 6-14

CURVE 5-20

CURVGR 5-20

DEFHEAD 6-25
DEFMENU 6-25
DEFSUB 6-11
DELLINE 6-25
DRAWA 6-5
DRAWMENU 6-25
DRAWR 6-5
DRAWTEXT 6-19
DRNUMG 5-24
DRSTRG 5-24
DRSYMG 5-24

ENDSUB 6-11

ERASE 6-3

ERCC Graphpack 5-5
Error messages 5-7,6-39

FACTOR 5-36
FADVG 6-6
FAIM 6-31
FALPOS 6-17
FBGSTR 6-21
FCHAR 6-18
FOEFHD 6-25
FDEFSB 6-11
FDFMNU 6-25
FDLLIN 6-25
FORAWA 6-5
FDRAWR 6-5
FDRMNU 6-25
FDRTXT 6-19
FILEGRAPH 5-13
FILGR 5-13
FINST 6-11
FMOVEA 6-5
FMOVER 6-6
FPNTA 6-5
FPNTR 6-5
FPRINT 6-19
FPRJICT 6-32

FPSTRG 6-18
FPSYM 6-18
FRAME 6-4
FSNAP 6-35
FSPNTA 6-6
FSPNTR 6-6
FSTLN 6-6
FSTOFF 6-3
FSTON 6-3
FSWNDO 6-4
FTKTYP 6-3
FVWNDO 6-4
FVWOFF 6-4
FVWON 6-4
FWRITE 6-19

Graph plotter transcription 6-36
Graph plotting symbol set 5-44
Graphics mode 6-2
enhanced 6-6
GRAPHPAPER 5-8
GRAREA 5-9
GRARFL ERCC Graphpack 5-17
Calcomp 5-36
GRPAPR 5-8

Hardware characters 6-17

IGRERR 5-7

IGRREC ERCC Graphpack 5-12
Calcomp 5-31

INSTAN 6-11

Job control
on EMAS 4-75 for graph plotting 5-47
on EMAS 2970 for graph plotting 5-49
under VME/B on the ICL 2980 5-51
at NUMAC for graph plotting 5-53

LINE 5-42

LINEGRAPH 5-19

LINESG 5-19

Liquid ink ERCC Graohpack 5-3,5-15
Calcomp 5-32

Menu operations 6-24
MERGEGRAPH 5-13
MERGGR 5-13

MOVEA 6-5

MOVER 6-6

NEWPEN 5-32
NEWPIC 6-3
NLINE 6-18
NUMBER 5-39

OFFSET 5-33
OPENGR 5-6
OPENPLOTTER 5-6
Orientation 6-11

Parameter checking mode 5-7

PENPOSITION 5-17

PLOT ERCC Graphpack 5-15
Calcomp 5-34

PLOTS 5-30

PLOTFAULT 5-7

PLOTGR 5-15

PLOTNUMBER 5-24

PLOTRECS 5-12

PLOTSTRING 5-24

PLOTSYMBOL 5-24

PLOTTERTYPE 5-5
PLTYPE ERCC Graphpack 5-5
Calcomp 5-29
POINTA 6-5
POINTR 6-5
POINTSYMBOI 5-19
PPOSGR 5-17
Precision of variables ERCC Graphpack 5-5
Calcomp 5-28

PRINTSTRING 6-18
PRINTSYMBOL 6-18
PROJECTION 6-32
Pseudo-display file 6-3

storage 6-34

viewing 6-37
PSYMGR 5-19

REW 6-9
RTAM 6-18

SCALE ERCC Graphpack 5-11
Calcomp 5-40

SCALGR 5-11

Scaling 6-11

SETLINE 6-6

SETPLOT 5-9

Sigma GOC 6-2

SNAPSHOT 6-35

Software characters 6-21

SPOINTA 6-6

SPOINTR 6-6

STOREOFF 6-3

STOREON 6-3

Sub-pictures 6-11

SWINDO 6-4

SYMBOL 5-37

TCONTOUR 6-28

TCONTR 6-28

Tektronix package 6-2
access 6-2

Tektronix terminals 6-1

TEKTYP 6-3

TEKVIEW 6-35

Three-dimensional drawing 6-31

TPRINT 6-19

TRANS 6-28

TWRITE 6-19

VIEWOFF 6-4

VIEWON 6-4

VWINDO 6-4

WHERE 5-36
Windows 6-4
dynamic 6-9

