EMAS—The Edinburgh Multi-Access System

H. Whitfield* and A. S. Wight

Department of Computer Science, Unlversll); of Edinburgh, The King's Buildings,

Mayfleld Road, Edinburgh EH9 3J2, Scotlan

EMAS Is a general-purpose time-sharing system for the ICL System 4-75 computer, with provision
for fully interactive and background processing, It is a virtual memory system with a three level

storage hierarchy.

An outline description of the system is given together with a more detailed description of the
paging and scheduling software, which is based on the working set concept. Detailed performance

figures are included.
(Received October 1972)

The Edinburgh Multi-Access System (EMAS) is a general
purpose time-sharing system for the ICL System 4-75
Computer.

Work began in August 1966 and for four years was under the
control of the Edinburgh Multi-Access Project (EMAP); a
joint project between the University of Edinburgh Department
of Computer Science and International Computers Limited
(ICL). The computer itself was delivered in December 1968
and the disc-file followed in June 1969. The Computer Science
Department took over the development of the system in
October 1970 and service began in October 1971. The Edinburgh
Regional Computing Centre (ERCC) which runs the computing
service has taken an increasing role in the development and
maintenance of the system since October 1970 and has now
(October 1972) taken it over almost completely. The ERCC has
also been involved in a major way in the provision of the
compilers for IMP (Stephens, 1973), the language in which the
system is written, and in the provision of other subsystem
software.

About 25 programmers of various levels of experience were
involved in the production of the software during the first
four years. During the past two years about seven people of
very considerable experience have been working on the soft-
ware much of which has been re-written either totally or in
part. EMAP was intended as a research and teaching project
as well as a production exercise. It is clear in retrospect that all

three functions cannot be reconciled and attempts to do so.

inevitably lead to delays in production.

The first part of this paper is intended to give a broad picture
of the organisation of EMAS sufficient to enable the second
part and the other papers to be placed in their proper context.
The second part contains a description of the resident super-
visor. Where the system follows well understood principles
only brief descriptions will be given. We have tried to give
actual statistics and performance figures where we have them.
We do not believe that these are necessarily better than those of
other systems, but we do feel that there is a great lack of hard
facts in this area. We must apologise that we do not yet have a
coherent performance model of our system and offer the
statistics in the hope that others will be encouraged to publish
similar figures.

1. Hardware

The ICL System 4-75 computer is the largest of the System 4
range and has paging (address translation) hardware. The non-
privileged instruction set of the System 4-75 is the same as that
of the IBM 360 series machines. The channel arrangements are
also similar but the channel program command codes are not
the same. The interrupt and associated context switching

arrangements are similar to those on the RCA Spectra 70
series machines, in that System 4-75 has four sets of General
Purpose Registers corresponding to four different states called
P-states. Normal interrupts, such as channel or program error
interrupts, cause entry to the P3 state and the corresponding
registers are used by the processor. Power fail and machine
check interrupts cause entry to P4 state and the processor then
uses the P4 registers. Some of the registers of the P3 and P4
states are aliases for special registers of all four states. E}ch
state has an interrupt mask register, an interrupt status register
and a program counter. These fulfil a similar role to the pro-
gram status words on the IBM 360 series and are amongst the
aliased registers. It is not very convenient to run significant
amounts of program in P3 or P4 states because the number of
registers available for general use is reduced. The programs
which run on entry to these states contain instructions wh_xch
cause an immediate change to P2 state, where further processing
is done. P1 and P2 states each have the full set of 16 registers
and none of these are aliased or used for special purposes. The
P1 and P2 states are completely equivalent. Because most of the
supervisor is compiled from a high-level language and uses all
of the registers, we have chosen to use P2 state for the resident
(unpaged) supervisor and Pl state for all paged programs.
A consequence of having the four P-states is that no storing ;and
restoring pf registers in main memory is necessary on a switch
of context from one state to another. .

There is, however, only one set of Floating-Point Registers.
Although these are addressable in all four P-states we have
chosen to regard them as registers of Pl state. Normally they
are not changed by the other three states, but parameters are
passed between Pl and P2 states in these registers.

The configuration in use at Edinburgh is as follows:

4-75 CPU}{, operator typewriter and console.

768K bytes 1u sec core store—4 bytes/access
and two way interleaved.

2 x 2M byte magnetic drums on one channel,
transfer rate of 860K bytes/sec.

Each drum has 128 tracks and there are 4 pages (of 4096
bytes) per track.
Revolution takes 20 mS.

2 x 350M byte non-replaceable disc-file with moving arms,
consisting of two devices on one channel. Transfer rate
256K bytes/sec.

Revolution takes 40 mS.
Average arm movement takes 60 mS.

3 x 7°5M byte replaceable disc drives.

4 x 120K bytes/sec 9 track tape drives.

1 7-track tape drive.

*Present Address: Mathematisch Instituut, Rijskuniversiteit te Groningen, Postbus 800, Groningen, The Netherlands.

{Typical instruction exccution times are given in Table 1.
Volume 16 Number4d

Table 1 'Sample instruction execution times

MNEMONIC DESCRIPTION FORMAT MICROSECS.

LR Load RR 0-80
L Load RX 1-65
ST Store RX 1:25/1-47
ST™M Store Multiple RS 613 for 8 words
A Add RX 193
AR Add RR 1-09
MR Multiply RR 5-45
MVC Move SS 12-09 for 16 bytes
BALR Branch and Link RR 1-79
BC Branch on Condition RX 1-44/1-67
BCR Branch on Condition RX 1-31
ADR Add Normalised RR 3-22
(Long)
MDR Multiply (Long) RR 11-04

2 Line printers.

2 Card readers.

1 Card punch.

1 Paper tape reader.

1 Paper tape punch.

1 Communications multiplexer with
64 Permanently wired teletypes,
16 Datel 200 ports,
4 1200 baud buffers with character video terminals,
5 2400 baud synchronous buffers.

1 British Standard Interface which connects to a PDP-15
with interactive graphics hardware.

Authorised enhancements are:

1 x 2M byte magnetic drum to go on the existing channel.
256K bytes 1 sec core store.

The paging hardware

The 24 bit effective address which is generated by the usual
process of address computation is regarded as a virtual address
and is translated by the paging hardware into a physical address.
The method of translation is sketched in Fig. 1. Although there
is a segment table and a segment field in the virtual address, it is
not true (or symbolic) segmentation as the segment and within
segment addresses are not computed independently. However,
it will be seen later that many of the desirable properties of
segmentation can still be realised.

The segment and page tables must be set up by the supervisor
so that the virtual to physical address mapping is correct. The
page table entries have availability bits to indicate whether a
page is in core and an interrupt occurs if access is attempted to
a non-available page.

The associative memory has eight cells and remembers the
eight distinct most recent accesses avoiding the two extra core
cycles needed to access the segment and page tables most of the
time.

It can be seen that this paging unit is similar to that on the
IBM 360/67*. However the System 4 unit provides 256
segments of 16 pages (each of 4096 bytes), whereas the 24 bit
IBM 360/67 provides 16 segments of 256 pages. This larger
number of segments allows the segmentation to be used in a
more convenient fashion.

*The recently announced dynamic translation unit on the IBM 370
series machines has four models of operation, one of which is essen-
tially the same as the IBM 360/67 and one the same as the ICL
4-75.

332

System software

EMAS is a virtual memory system. Each foreground or back-
ground user runs programs in an independent virtual memory
and each such user process has a share of the resources of the
system (core, CPU, etc.). At system interface level each user
has a virtual memory of maximum size 22* bytes organised as
256 segments each of 2'¢ bytes. Segments 0-31 of each virtual
memory are used by the director processes and are not available
to the user.

Central to EMAS is its File System which contains named
files belonging to all users. Each file is a completely unstructured
sequence of bytes of arbitrary length (in units of one page or
4096 bytes). Files have two part names as follows

MACO007.FRED

where the first part is the name of a user of the system (the
owner of the file) and the second part is his chosen name for the
file. All files are held on-line and so are immediately available.

Files are accessed by connecting them, i.e. by having a mapping
set up between the whole file and a segment (or several contig-
uous segments) of virtual memory. This mapping is done by a
request to the system and once established access to the file is
by direct reference to the appropriate virtual address. The
system provides for controlled access to files in read/read-write
and shared/unshared modes. When files are used in a shared
mode all users have access to the same physical copy whether
this is on disc, drum or in core. This facility is used extensively
to share the code of programs at various levels in the system
and results in marked saving of core, drum and disc space.

Input from cards or paper tape is handled by a system process
called demons and appears as files in the file system. Qutput to
printers, etc. is also handled by demons which prints files as
soon as possible after receiving a request. The foreground con-
soles are the only devices which communicate directly with
running user processes. The user appearance of the system is
sketched in Fig. 2.

Files reside on the disc-file where they are stored in page
(4096 byte) blocks. The system uses the drums and core to
buffer parts of files while they are being operated upon.

The system software can be thought of as a set of concentric
shells. In the centre we have interrupt analysis, the CPU
despatcher, the basic synchronising primitives and message
passing software. Then there are the supervisor processes.
These are concerned with the following functions:

ENTRY REBSPONDENT

ASSOCIATIVE MEMORY

oJI»la

PAGKL
SEQMENT TADLES

TABLE

[e] ee

\Z/77|PAOR TABLE ADOHEDS

AVAILABILITY
BIT

Fig. 1 Paging hardware

The Computer Journal

CARD
OEMON
uNE
PRINTER
DEMON
PROG. FRED 1M
MAC007. FRED
RECIT2.JIM
OATA [
FILE STORAGE

et

~_

VIRTUAL MEMORY
200 SEOMENTS

Fig. 2 User appearance of EMAS

CPVY |e—

Farar

CONSOLE
DEMOCN

(a) Driving the fast devices—e.g. drums and disc-file.
(b) Driving the communication devices—e.g. typewriter
consoles.

(¢) Providing minimal support for slow devices—e.g. tapes,

card readers, line printers.
(d) Supporting virtual memories—i.e. the paging software.
(e) Scheduling of CPU-time and core for paged processes.
(f) Control of CPU errors.

Code for these processes is permanently resident.

The next shell of the set consists of the director processes.
Each user process has an associated director process which
performs (primarily) file system and console communication
services on its behalf. The director process has access to the
whole of the virtual memory whereas the user process can
access segments 32-255 only. The director process is superior
to the user process and can start or stop it and perform various
recovery functions. The intention here is to handle all non-time
critical system activities in paged processes and it is easier to
have such a paged director for each process. Where appropriate
(e.g. when accessing file indexes) the directors are interlocked
via a semaphore scheme. They all share identical code and use
the same physical copy. It should be noticed that supervisor
overlays are in this way made unnecessary, as the paging of the
directors by the standard paging software provides a similar
function in 2 much more elegant way.

It can be remarked here that it has been a general principle
in our design not to place any system function at a more
central position than is strictly necessary.

Further system functions such as user vetting on logging in
and the input and output functions mentioned above are
handled by the demons process (Hayes, 1973).

The detailed organisation of the director is described in an

Volume 16 Number 4

accompanying paper (Rees, 1973), but it is worth looking
immediately at the relationship between the paged director and .
the resident supervisor. Fig. 3 shows the mapping on the first
32 segments of each virtual memory. Segment O is not normally
used for somewhat bizarre reasons connected with a design
difficulty in the addressing system. Segment 1 is the buffer
segment which addresses the buffers into which all console and
slow device input/output takes place. Segment 1 is common to
all director processes and the pages which are allocated as
buffers are locked in core while transfers are in progress.
Segment 2 is the master segment; it is in read-write unshared
mode and contains the working variables for this incarnation
of director. These consist of a static-storage area and a stack;
there is also one page (page 0) used as the master page. This
contains the mapping of segments onto files for this virtual
memory and space for copies of the register sets* of the director
and user processes. It also contains usage information for pages
of files in active use. These tables on the master page are the
only ones accessed by both the director and the paging software.
It is the responsibility of directors, which control the file system,
to write to the master page correct mapping information which
relates segment numbers to the physical disc locations of the
desired files. The paging software operates entirely from the
master page and has no knowledge of files as such or to whom
they belong. When a process is loaded to core the master page
must always be fetched—all other pages can if necessary be
demand-paged using the information on the master page.

Segment 3 addresses the file containing the director code. This
pure-procedure program file is accessed in read shared mode by
all directors.

Segments 4-31 address the file indexes of all accredited users
and are accessed in read-write shared mode by all directors.

Subsystem software

The items of software mentioned above, viz. the resident super-
visor, the directors and the demons process, constitute the
system, i.e. that part of the whole software complex which the
ordinary user cannot change. This basic system provides the
virtual memory support and file protection mechanisms.

A user at a console or a background user requires a great deal
more than this, e.g. command interpretation, job control
language analysis, loading operations, use of commands or
catalogued procedures and use of utilities for the creation,

*A register set consists of the program counter, the general purpose
registers and the floating point registers.

NOT USED
1
BUFFER
SZAMENT
- MAaSTERQ MASTER
PAGE SCIMENT
3
~ sranc // cone
srorage SEGMENT
stack J 4 e
// INDEXES
/ .
VAN :
7/ 13)
/ FILE
/ INDEXES.
/ 2
/
¥ useEa
AQga
< <
255

Fig. 3 Mapping on segments 0-31

MEAN TIME BETWEEN CRASKES
mduced by a) sorrwace.
8) HAQDWARE.
ALL REASONS INCLUDING ABOVE.

BAGED ON 20 ~DAY MOVING AVEQAOE.

—
MAR. APR, MAY. <JUN. SUL. ! AUS.
1972.

IAN. | FEs.

Fig. 4

management, compilation and execution of programs. In
EMAS these facilities are provided by ordinary programs which
are protected and shared by the normal file control and file
access mechanism. A powerful subsystem (or collection of
such facilities) with a good range of commands has been
provided for the user, but there is nothing to prevent a user
adding his own commands (merely by compiling a program)
or indeed from choosing to use a completely different sub-
system. This is useful to the subsystem programmers who can
test new subsystems without affecting other users of the
system.

The standard subsystem is described in a separate paper
(Millard, Rees and Whitfield, 1973). The compilers in the
standard subsystem produce pure-procedure code in a standard
layout and observe parameter passing and linkage conventions
which permit cross-calling between routines in different
languages. The files of the standard subsystem belong to a
user of the system called manager who also owns the password
lists and is responsible for accrediting new users.

History and current status

When work on EMAS began in October 1966 we naturally
turned to the paper on Multics (Corbaté and Vyssotsky, 1965)
as a starting point. This greatly influenced our thinking as did
the paper by Arden, Galler, O’Brien and Westerveld (1966).
Work on Multics began in 1964, two years earlier than on
EMAS, but intermediate results from the Multics Project did
not come out soon enough to have much influence on the
subsequent course of our work. It is therefore interesting to

compare the present state of EMAS with that of Multics (Cor-
batd, Saltzer and Clingen, 1972).

We have not been able to explore those areas which require a
multi-processor configuration because of our hardware
provision and we deliberately chose not to have hierarchically
structured file directories and system administration (our
standard subsystem does however provide a hierarchical
structure of libraries of entry points of programs). Apart from
this we have set ourselves essentially the same goals as Multics
and have attained them in all essential respects.

The ICL 4-75 computer on which EMAS works is a slightly
modified 4-70 computer. The only additions are the paging unit
and ‘the use and change' markers on the core keys. The drums
do not have hardware queueing facilities but a similar effect is
organised in the drum software.

The hardware became available for software development
over the first half of 1969, again two years later than in the case
of Multics. Until then we used the KDF9 computer with an
IMP compiler which produced code which simulated the effect
of the same program on System 4. By September 1970 we had
put a good deal of the system together. However, it was
apparent that a major re-design was necessary in the file
system area.

Here again the similarity to the Multics experience is remark-
able. The cause of necessary re-design was not so much bad
coding as a failure to keep the software sufficiently simple in
concept to minimise the amount of code required. In particular
we had not realised that interacting paged processes, competing
for the same core, would take so long in elapsed time to com-
plete complex sequences of operations.

We very much simplified our specification to include only the
minimum features logically necessary, simplified the manage-
ment of the file system, and improved the interfaces between
certain components. However, it was not necessary to change
the design of the resident supervisor. We have since re-written
the file system twice more to provide improved facilities, to use
file disc space efficiently, and to make the director more
efficient in its paging characteristics. The supervisor has also
been improved in many significant ways although it has not
been necessary to re-write it. The iterative technique of
program design suggested by Corbaté et al. (1972) is entirely
in accord with our experience.

By early 1971 (again two years later than Multics) EMAS was
sufficiently effective for us to be able to use it for all our
development. At this point we began to make rapid progress.
By October 1971 the system was made available to general
users. EMAS currently supports 150 accredited users, and is
operated 18 hours per day Monday to Friday and 10 hours on
alternate Saturdays. The system currently supports about 30
fairly demanding users using one CPU and 768K bytes
(equivalent to 192K 32 bit words). Most of the user consoles
are within two miles of the computer building and are used by
staff and research students of the University of Edinburgh and
by Government Research Council Institutes in the Edinburgh
area.

The system performs a great deal of error detection and
recovery, and is reasonably proof against all but errors in the
CPU. Fig. 4 shows the crashes for the first half of 1972. The
software time between crashes is large despite the fact that the
system is under continuous development. We would expect the
software error rate to fall to zero if we ceased development.
After a crash we take a dump to magnetic tape and re-IPL.
This takes less than a minute.

The EMAS system, i.e. resident supervisor, director and
demons, consists of 11 modules, totalling about 20,000 source
statements in all. These compile into about 180K bytes of code.
The basic subsystem, including compilers, commands and basic
libraries, consists of another 33,000 statements and 500K bytes
of code. Details are given in Tables 2 and 3. The compiler

The Computer Journal

Table 2 Sizes of system components

COMPONENT FUNCTION LOCATION SOURCE TEXT CODE SIZE STATIC DATA
(STATEMENTS) (BYTESY) {BYTES})
SPAM PAGING RESIDENT 5,200 A370 1,9C0
CEDRIC COMMUNICATIONS RESIDENT 1,425 2,3C8 1,Ci8
PARAMETER
PART PASSING AND RESIDENT 1,705 3,F88 3,510
OPERATOR CONTROL
DISC
FAST DRUM RESIDENT 1,525 2,6E0 1,C68
LOADUP
TAPE MAGNETIC TAPE RESIDENT 1,308 3,2A8 A98
SLOW SLOW DEVICES RESIDENT 741 1,520 8D0
PERM* RESIDENT 618 140
DIRECTOR FILE SYSTEM PAGED 3,500 9,600 1,C98
COMMUNICATIONS
ACCOUNTING
SPOOLING
DEMONS BACKGROUND JOB PAGED 3,849 C.978 1,089
INITIATION
LOGGING ON
+in hexadecimal
*In Assembly ge
Compiled code run-time routines
Table 3 Sizes of selected subsystem components
COMPONENT FUNCTION SOURCE TEXT CODE SIZE STATIC DATA
(STATEMENTS) (BYTEST) (BYTEST)
ACP & BCI ERROR CONTROL and 818 2,680 5BO
COMMAND INTERPRETATION
EDCP STREAM-FILE MAPPING 1,203 3. FCO 1,928
FPD VM LAYOUT and 1,412 4,880 1,410
PROGRAM LOADING
BCLL BASIC COMMANDS 1,308 6,298 9EO0
EDIT EDITOR 977 2,CA8 308
FORTE FORTRAN COMPILER 7,749 10,058 1,4D0
IMPS IMP COMPILER 9,800 16,A78 D10
1In Hexadecimal

operates at about 60 statements a second. Linkage of super-
visor takes less than one second. A complete system generation
takes less than 10 minutes and a new component can be intro-
duced in less than two minutes. The size of the resident super-
visor is 95K bytes of code and for a 30 user load about 128K
bytes of data and buffer areas. We make new supervisors and
directors about three times a week. New subsystems are
introduced about twice a month, but new versions can be
tested at any time.

About 120 man years of effort have gone into the system to
date, a figure which is similar to the Multics experience. The
cost of the software was about £450,000 including about
£200,000 paid to the ERCC for some 3,000 hours of computing
time during the development period. In the past two years the

Volume 16 Number 4

design and implementation has been in the hands of six people
who understand the system and subsystem between them in
complete detail. It is estimated that this team, using the existing
system as a tool, could move the whole system to a suitable
new machine with a different order code in one to two years or
to a very similar machine such as an IBM 370 series machine
with paging in about six months.

Like Multics, EMAS allows each user to choose the program
file which is mapped onto the virtual memory before his
process is initiated. The appearance of the system is determined
partly by the routines in this sub-system base file and partly
by the other files and services to which the user has access.
EMAS too has a stack-oriented, pure procedure environment
with libraries mainly in IMP and FORTRAN IV. Appendix 1

MASTER PAGE TABLES HARDWARQE TABLES
caT BEOMENT TABLE PAQL TADLES
DUMMY
PAGL
aod Lt ox3C ADDR. PASE TABLE TABLE
AODRESS L
IaveicAL mal
~N
\\
CMAP
\ cmr [T] ePT
USAOK pecmed [-1d
A
AMAD: AMT
o [oac_acon. [eivs
c8Te BPT ¢ ACOR [61TS
(8773 |
1
]
4 -} 2 WIERARCHY TABLES
o18c AcoR. [N2 | sam 8PT 4
8¢ ADOR. [Motas (9)[as (1)[as(t AS(18)
|_-»
H V/
BPT ADOR. [N2 i |
% r m/ ~ PIT
Y]]] m]
Fig. §

lists some of the facilities available.

It cannot be stressed too strongly how important the use of
IMP has been to the whole exercise. It is only by use of a high-
level language that the size of the text of the system can be kept
down to a level where a very few people can understand all of
it. Why system programmers should continue to deprive
themselves of facilities which they feel obliged to provide for
others is beyond our comprehension. Good compile time and
run time diagnostics make for rapid program development and
an optimising mode in the compiler for validated programs
solves the efficiency problems. In systems programming it is
important that the language make the relationship between the
source text and the object code efficiency fairly obvious so that
the programmers avoid awkward constructions. In cases where
the ultimate in code efficiency is required we have used in-line
machine code rather than separate code subroutines which
always suffer from routine calling and return overheads. The
IMP compiler has 90K bytes of code and uses 25K bytes of
data.

2. The EMAS supervisor

The kernel

At the heart of the EMAS supervisor is the CPU despatcher.
It is not possible to have more than one CPU in a System 4-75
configuration so the despatching problem is slightly simplified.

*Each servicing routine may be regarded as the code of a supervisor
process.

The supervisor consists of a number of servicing routines*.
Each of these provides a set of associated services. For every
service there is a service number which can be regarded as
identifying a private semaphore (Dijkstra, 1968). A supervisor
service is activated (kicked) by sending a request message. This
can be regarded as a V-operation on its semaphore with the
queving of the associated message. There is a queue (the
MAIN-Q) of services awaiting attention by the CPU. They are
queued initially in order of arrival, but second or subsequent
requests for the same service are held on side chains so that all
requests on a particular service can, where appropriate, be
serviced at one time.

MAIN-Q =+ 70 = 31 — 89 —+ 43

| |
70 89
!
89

The despatcher, which runs in P2 state, selects the first item
on the MAIN-Q and calls the appropriate routine. The routine
is then executed until it returns to the despatcher, all interrupts
other than machine checks and program errors being masked
off in P2 state. In the course of execution the routine may kick
other servicing routines causing further items to be placed
on the MAIN-Q. When it is called the servicing routine is
passed the request message. It may ask for any other messages
on the MAIN-Q side chain if it wishes. When the routine has
no more to do it returns to the despatcher. This can be regarded

The Computer Journal

Table 4 The category table

CATY PRIORITY CORE RESTIME LOOKTIME Ncyl NCY2 NCY3 NCY4
(PAGES)
(SECONDS)
1 1 4 1 0125 14 13 9 11
2 1 13 1 05 3 2 0 2
3 I 26 1 0-5 4 3 2 3
4 2 39 1 0-5 4 4 3 4
5 1 13 1 0-5 8 6 0 5
6 I 13 2 0-5 9 7 0 5
7 2 13 5 0-5 10 7 0 5
8 1 26 1 05 11 9 5 8
9 2 26 2 0-5 12 10 € 8
10 3 26 5 0-5 13 10 7 8
11 2 39 1 0-5 14 12 8 11
12 2 39 3 0-5 14 13 9 11
13 4 39 7-5 075 15 13 10 11
14 3 52 2 0-5 14 15 12 11
15 4 52 7-5 0-75 15 15 13 11

Demons starts in category 2 and all other paged processes in category 1.

as a wait or P-operation on its private semaphore.

Routine calls are also provided to enable a servicing routine
to inhibit or uninhibit the activation of particular services.
These are used, for example, by routines which maintain
internal queues of their own for optimisation purposes. When
their queues are full they inhibit further requests until servicing
of some of the existing requests is complete.

The despatcher normally works through all the uninhibited
requests on the MAIN-Q causing execution of the servicing
routines in P2 state before switching to the execution of the
current P1 state paged process. However, it does examine the
interrupt flag register before calling a new servicing routine and
if high priority channel interrupts (drum or disc-file) are present
it exits to Pl-state immediately, to enable the interrupt to be
taken (Pl-state is run with all interrupts enabled). When
interrupts occur a request is placed on the MAIN-Q in the
normal way for the servicing routine. However, the high
priority interrupts cause immediate execution of the servicing
routine which effectively comes to the head of the MAIN-Q.

A request message or reply is always a 32-byte record with the
following format
0 2 4 6 8 10 12 3

|osuo|mcr|ssno|.ucr|umusm|unx| Variable parameters l .

DSNO
DACT

is the service number being kicked.

is an activity number often used to indicate a sub-
service where more than one type of request is
handled on the same service number.

SSNO is the service number of the requesting servicing
routine in case a reply is required.

SACT s its subservice number which is always returned
(in DACT) in replies.

LINK s a chain link (see below).

All service request messages and replies are stored in a
common list-processed area. At present there is space for 192
messages. The system maintains a free list and the MAIN-Q
consists of a list of head cells to chains in this parameter area.

The restriction to 32 bytes was made to allow a consistent
scheme for paged and non-paged processes. Requests from
paged processes are made by placing the 32-byte record in the
4 x 64 bit floating-point registers and issuing the supervisor

Volume 16 Number 4

call (SVC) instruction. The floating point registers were
chosen because they are the only registers common to all four
P-states and it is not convenient to place SVC parameters in
memory in a paged system. It has been found that this restric-
tion to 32 bytes has rarely been an embarrassment.

Each director and each user process also has a service number.
Messages for paged processes are held in the same area but the
head cells are not on the MAIN-Q and are held separately.

A useful feature of the parameter passing scheme is the
Service exchange. This has a table which relates service numbers
to the servicing routine or paged process. By changing this
table servicing routines can be moved around the system, e.g.
between supervisor and demons, without the problems of
changing all occurrences of the service number. Closely
connected to this is a facility which enables selected services to
be monitored. A printout is produced showing all messages
entering and leaving the associated servicing routines. This is a
most useful diagnostic facility as it enables software errors to
be located very precisely.

Servicing routines normally deal with groups of associated
services. For example there is a DRUM routine which handles
requests for transfers and termination interrupt messages.

The IMP language in which the system is written allows the
use of own variables and this feature is used to store information
between one call of DRUM and the next.

Because all servicing routines return to the despatcher to wait,
it is necessary to have one stack only for all the routines of
supervisor—indeed the organisation of the routines has been
made with this in mind.

" It is perhaps worth remarking that servicing routines often

have at their head a jump to a switch label (vector label)
controlled by an own variable, set on the previous entry.
EMAS also has a conventional semaphore scheme for the

Table S Priority ratio table

PRIORITY FREQUENCY
1 21/32

2 8/32

3 2/32

4 1/32

Table 6 Time used by supervisor
EMAS VERSION 729 PATE: 24/08/72 TIME: 08.02.00 UNTIL 16,01.46

METERING 1NFORMATIOH
IDLE TIME(SECS)= 14656

SERVICE gousr TIHE MUSECS FUNCTION
3 1546 1 706 OPERATOR CONSOLE INTERRUPT
4 14352 15 1019 SLOW DEVICE INTERRUPTS
6 343010 553 1611 DRUM INTERRUPTS
7 35058 41 1159 REPLACEABLE DISC INTERRUPTS
] 41338% 341 824 DISC—FILE INTERRUPTS
9 73443 288 3924 COMMUNICATIONS MULTIPLEXOR INTERRUPTS
26 2936 3 911 . SLOW DEVICE REQUESTS
27 2325 7 2331 DEVICE LOAD-UP REQUESTS
23 23513 16 666 ALTERNATE NUMBER FOR REPLIES
29 9311423 429 427 DRUM REQUESTS
32 14555 15 1244
35 493 1 1505 REPLACEABLE DISC REQUESTS
34 2876 4 1327
3z 139991 132 941 DISC-FILE REQUESTS
39 3144 3 1073
43 632 1 1575 MESSAGE TO OPERATOR CONSOLE
44 816 2 2213 PROCESS STARTUP ALTERNATE NUMBER
Y 947637 637 693 CPU DESPATCHER REQUEST
53 265 1 4452 SCHEDULER REQUEST
54 50950 30 583 . SEMAPHORE REQUEST P OR V.
55 133924 481 3586 COREGIVE
57 655654 320 487 PROGRAM ERROR OR SVC REQUEST
58 664757 353 515 ALTERNATE NUMBER COREGIVE
59 360767 468 1198 PAGETURN INTERRUPT
ou 1333 1 449
61 13535 9 651
63 L6819 336 8248 CORETAKE
YA "374406 164 433 ALTERNATE NUMBER CORETAKE
67 8423 5 639 CORE ALLOCATION FOR BUFFERS
69 37315 22 592 SCHEDULER REQUEST
70 127525 92 724 SCHEDULER REQUEST
72 11497 18 332 MAGNETIC TAPE CONTROL FUNCTION REQUEST
73 25646 2 795 ACTIVEGIVE
74 7659 4 580 ALTERNATE NUMBER FOR REPLIES
77 1954 7 34635 ACTIVETAKE
78 34356 13 391 ALTERNATE NUMBER FOR REPLIES
75 2559 2 06 FROMACTIVE
53 55405 &9 1241 ALTERNATE NUMBER FOR REPLIES
¥y 3148 2 £36 TIME OF DAY REQUEST
Y7 277 1 2346 PROCESS STARTUP REQUEST
141 L85 9 2340
132 434, 1 2504
103 274 1 A069
14 255 1 3633
105 . 253 1 3664
166 11589 34 2694 USER CONSOLE INPUT/OUTPUT REQUESTS
158 35014 73 1909
109 b 1 3189
114 24% 1 3354
111 264 1 3569
119 956 1 eny CONSOLE BUFFER ALLOCATION '
125 1154 1 543
126 1440 1 779 SLOWDEVICE REQUESTS
127 2751 795
122 2365 1 219 SUPERVISOR MONITOR OUTPUD
TOTAL TIME 5052

338 : The Computer Journal

Table 7 Use of CPU time

E*nS VERSION 72% DATES 24/4%/72 T1%E:
TI“g IN USER PROCESSES GALA
SUPEBVISOR Triic CHAKGED 2613
S5Ve's 1311
PAGETURNS 1302
UNCHARGEDR SUPEaYISeR TI#g 243%
I0LE TIHE 145056
TOTAL TI=E 2574546

ANKLYSTIS GF SUPTFEVISOR TINE
VIRTUAL FESNTRY SUPPORT
DRUM TRANSFEPLS (4,29)

CORE LOARTING (55=6,52-2,43=4)

DRUH LUADIHG (73=3%)

TSCHEDULING OF PAGED PHACESSES
TIFE SLICING (52)

FILE SYSTUY SUNPGET (54, 25mb, hiiad)

SVC BARAMETER PASSItG (57)

CORMUNTCATIONS SUPPOGRT (7,154-15)

SEVICE PLLLING (27=8)

HMASTAPES (5,45-2,72)

1SC.

o~

(S

»
.

ENMAS VERSION 729 DATE: 24/03/72 TIvE:

1Pa02,.010

31.43

3907

54455

fheS?

H8.47

5101

1304253
973 3,32
5373 1,47
G52 16,43
R AG,34
115 0,33
6357 02421
4 Gueld
3210 31,11
493 01439
23 0CeD7
14 00,03
2 IC 14

16,0146

synchronisation of directors requiring common access to file
indexes. The P and V operations on the semaphores associated
with the indexes are implemented by a servicing routine which
forms queues (if necessary) when it receives P-operation
requests and sends replies when appropriate, e.g. on receiving
a V-operation message.

Process synchronisation in EMAS is based on the parameter
passing scheme which can be thought of in terms of P and V
operations on private semaphores. P and V operations on
resource semaphores can be implemented trivially in terms of
the parameter passing scheme. In a system where the P and V
operations are basic, a parameter passing scheme could be
implemented trivially using private semaphores. The two
schemes are dual.

Device handling routines
This section gives a brief description of the supervisor servicing

Volume 16 Number 4

routines which handle fast devices—drums and discs. The
communications device routine is described in the paper by
Rees (1973) and the slow device routine in the paper by Hayes
(1973). .

Drums and discs are currently handled by two separate
routines. Each is activated in two ways, either as a result of a
request for a transfer to be done or as a result of the occurrence
of an appropriate channel termination interrupt. The normal
request is for a page to be transferred between core and the
device. Provision is made for read, write and write-check®
transfers. If the device is idle a command chain is created and
initiated immediately on receipt of a transfer request. If the
device is busy the requests are queued by the routine which
inhibits its request service number when its queue becomes full.
When the termination interrupt occurs and the routine is
*The write and check read facility is used when there is doubt
about the condition of the drum or disc hardware.

339

Table 8

EAAS VERSION 729 OATE: 24/0%/72 TIME:
QUEUE SAMPLING TLFISMATION
MO, OF TINES QSAUPLE KICKED “AS

[TEY TOTAL MAX MIN
RUSQ 646 5 G
ACY STEOQ 1 1 {
PROCTE 36RR 7 1
CORE Q1 n21 - o
CORE Q2 542 I3 ' v
CORE Q3 a1) 3
CORE Q&4 278 S {
COREL 3QR G, 1473 -33
COREF 61693 131 5
AS FREE 409842, 904 114
ASUNUSED I965R) 951 102
RPT UKUS 132337 307 34
BPT FREE 133313 237 65
ACTT G 239 S i
pRUN IKH 217 1 r
PT FREE 334%4 A1 10
MAY PARM SPRCE 126

EYAS VERSIONH 729 DATE: 24/05/72 TIVE:

865

13.35.18

RUN QUEUE
AWAITING DRUM SPACE
FREE SEGMENT TABLES (OUT OF 8)

UNALLOCATED CORE PAGES

UNUSED CORE PAGES
UNUSED DRUM PAGES

UNALLOCATED DRUM PAGES
UNALLOCATED BLOCK PAGE TABLES
UNUSED BLOCK PAGE TABLES

AWAITING MOVEMENT TO DISC

DRUM BUSY

FREE PAGE TABLES(OUT OF 64).
MAXIMUM NUMBER OF PARAMETES QUEUED

16,0%1,46

called by the despatcher using its alternate service number, it
sends replies in respect of completed transfers, sets up a new
command chain and uninhibits its request service number to
allow queueing of further requests.

The drum routine currently has space to queue up to twenty
requests in total and sets up command chains of up to eleven
page transfers. There are four sectors round each track and
there are separate queues for each sector.

For each disc a single queue ordered by cylinder number is
kept. It is serviced first in the forward direction and then in the
reverse direction to reduce movement of the disc arms. An
analysis of the above routines and of new ones which will
shortly replace them will be reported on in due course.

The paging system

Files reside permanently on the disc-file and pages of files are
moved between the disc-file, core and drum during the execu-
tion of user processes.

User processes do not make file-access requests but instead
refer to virtual memory addresses onto which files have been
mapped. The paging software moves the relevant pages around
the storage hierarchy as required.

The director connects files to virtual memory by writing
information on the master page. Small files are laid out on the
disc-file in contiguous pages but a file of more than 16 pages in
length is broken into 16 page blocks plus a shorter block of
pages for any remainder. One 16 page block is not necessarily
next to its successor block. On the master-page there is a table
which relates segment numbers in virtual memory to physical
disc-file addresses.

For each segment there is specified:

ACCESS MODE: no access, read/read-write, shareable/
non-shareable.

340

LENGTH: length of block, i.e. number of valid

pages in this segment.

DISC ADDRESS: disc address of first page of the block.
AMX: index into the active memory table.

The paging routines operate from this table (the claimed block
table—CBT) and have no knowledge of files as such or to whom
they belong. Because this table and other necessary tables (see
Fig. 5) are quite large (about 3,000 bytes), the master page is
paged with the process. However, it must always be in core
while the process is receiving service from the CPU.

When a process which has its pages entirely resident on the
disc-file becomes active, it must first wait until it can be allo-
cated an initial amount of drum space. Its master page is then
copied to the drum and the process waits for an allocation of
core. When it is allocated core its master page is moved to core
and execution begins. This causes page demands and further
pages are brought in. As pages come in entries are added to the
core memory (CMT), core map (CMAP) and core position
(CPT) tables. Every so often the read-write markers on the core
pages belonging to a process are examined and cleared and
entries made in the USAGE field of the core map. If it appears
that pages are no longer being used they are removed from
core to the drum. In this way the size of the core working set is
reduced. If a process goes to sleep (e.g. waits for console input)
or is removed from core for other reasons, the core working
set can, if appropriate, be retained and the pages in it pre-
loaded the next time.

The segment and page tables which drive the hardware have to
be set up for processes in core from the other tables. It is worth
noting that the core map and the core position tables contain all
the information needed to do this. In fact alternative paging
hardware operating directly from these tables is easy to

The Computer Journal

-

<+ N
-
M wm o
-
[aY] oo
—
- X <
-
0
K 2
“ ™ —_
? - -~ -
B
;’ w VIR
- M
= o
be
et N~ aeoo
e
[3
~n
=
L]
1N e Dl
.
w
— vy &
-
~N
N~
~
e ~ e
o
~
=
~i
-
e = W T
w w N
- . o
£ =
g T o0~ o
N =
- ~ w v
~F
= w
e = « .
2 - - Lot h e ns
2 n 3
S (<3 > ~N
[14
§, > O
e o 2
< v o
b3 <
& (%) ‘o:
2 Qe
| w
2]

Volume 16 Number 4

?iﬂ

0

O

n
n
0

G

)
i

176

2297
142

2%
21

“AY

r

5732

)}

L= Rl e

oo

0
)

23419

0
12
D)

41

517

22013

]

0
.

551

'
i
'

M

0
B

4637

57
521

16
35
1742

S T)

L

119&

190

N

79

14

0

69
19

r,

f

11

(o)
~
—

19
U}

27
152

0

2

33

117

10
41

19
b

I}
0

12
13

74 738 169
20 527

616

&1

291

54

i

¢

14
15

0

202

27

(4

0

envisage. An associative memory large enough to contain
extracts from the core map and core position tables of the
current process would be needed. At present we restrict these
tables to 63 entries.

To enable the paging routines to perform preloading oper-
ations where appropriate, extracts of the claimed block table
are kept permanently. in core. This table (the active memory
table—AMT) has space for extracts concerning 32 blocks but
is not always full. The entry specifies the block disc address and
has a 16 bit mask to specify which pages of the block are
in the working set and therefore eligible for space on tke drum.
When the pages of the working set are actually allocated space
on the drum the disc address is changed to a pointer to a block
page table (BPT) which has further pointers to the active store
table (AST). Here there is one entry for each drum page. In this
entry there is a core address if the page is allocated core.
There are also flags which specify whether the page is in core
or on the drum, and whether a page on the drum has been
changed since it was last on the disc-file.

In the case of files connected in a shareable mode there is an
extra level of indirection from the active memory table of each
user process through a common shared active memory table
(SAM) and then to the block page table entry. In this way all
references to a shared file use the same disc, drum or core page
as appropriate. There is also a table (the page in transit table—
PIT) which has chains of processes awaiting the arrival of a
shared page.

When a page fault interrupt occurs, i.e. reference is made to a
virtual address where the corresponding page is not in core or
the page table is not up to date, the supervisor accesses the
claimed block table to check that access is valid. If the AMX
field is non-zero there is an extract in the active memory table,
and supervisor works down the chain to discover where the
latest version of a page is situated. It will then demand-page
it from the disc or drum, or, if it is in core already, complete the
page table. If the page is not in core but already on its way (for
some other process) an entry is made in the page in transit
table.

The paging is handled by a number of servicing routines.

ACTIVEGIVE which moves the master page from disc to
drum,

COREGIVE which pre-loads the current core working
set from drum to core,

PAGETURN which services demand-page requests,

CORETAKE which removes unused pages or complete
working sets, and re-computes the working
set, and

ACTIVETAKE which moves pages from drum to disc.

In general pages leaving core go to the drum. However a
process which is designated for removal to disc can have its
unshared pages moved directly to disc.

Scheduling

There are two levels of scheduling decisions in EMAS, firstly
decisions as to whether processes should be allowed to start
and secondly decisions on the allocation of drum space, core
space and CPU time to active processes. The first level is fairly
simple. The machine operator determines the number of users
who are allowed to log on at any one time and the number of
background processes permitted.

This description concerns itself with the second level. Initially
we will ignore the question of allocation of drum space and
look at the core and CPU allocation. The basic aim of the
scheduling scheme is to keep the hardware acceptably busy
whilst at the same time providing adequate response for
interactive activities. This is achieved by having a suitable mix
of processes in core at any time. Some will be allowed to stay

n

Table 10
Q LENGTH DISTRIBUTIONS

USERO ASO o1 ce2 co3
0 1 2557 14880 5454 1825
1 1 5 3036 1232 360
2 1 1 2117 559 190
3 1 0 1369 303 102
. 1 0 824 168 67
s 1 0 512 79 29
6 3 0 286 27 11
7 6 0 136 11 6
8 6 0 55 5 0
9 4 0 23 2 0

10 13 9 19 0 0

1 8 0) 0 0

12 6 0 4 0 0

13 5 0 3 0 0

14 10 0 2 o 0

15 6 0 2 0 0

16 16 0 1 0 0

17 21 0 1 0 0

18 32 0 0 0 0

19 23 0 0 0 0

20 13 0 0 0 0

21 13 0 ¢ o 0

22 13 0 0 0 0

23 19 0 0 0 0

24 16 0 0 0 0

25 12 0 0 0 0

26 11 0 0 0 0

27 8 0 0 0 0

28 2 0 0 0 0

272 2563 23279 784G 2590

RUNG LMBO
0 292932 102575
1 161151 103387
2 93698 78107
3 24204 18126
4 2238 1224
5 93 58
6 3 10
7 0 0
8 0 0
9 0 0
10 0 0

574319 303487

JUnYX 1831
EMAS VERSION 729 DATE:

SOOI OOV COOONOCOOCTCTCODOOO -

1253 37321

24/08/72 TIME: 16.01,46

for several seconds to keep the CPU busy, others will finish
quickly so that their space can be re-used by other interactive
processes. As processes change between interactive and non-
interactive phases the system must react accordingly.

The core must not be overloaded with processes or thrashing
will occur. We have already described in outline the way in
which a core working set is established. The scheduling system
uses the size of the working set to make an allocation of core,
and it also makes an allocation of CPU time. At any instant

every process is categorised according to these allocations.
Its priority for loading to core depends on its category.

The system unloads from core processes which exhaust their
allocations. Whenever a process is unloaded new allocations are
made depending on the last allocation, the reason for unloading
and the actual amounts of core and time used in the last period
in core.

As there are invariably more jobs awaiting execution than will
fit into core we have to have queues of such jobs. At present we

The Computer Journal

Process Created

Process Destroyed

(272) (222583) 272)
A
(37049) (303487)
sleeping “ run < limbo Q
bage
processes queue fault
jorrme—— o g
(13287) transfer
> avaited
¢ (37321) Y
Cat Catego
T:bfgory tabig Y
Change Change
Y > (23302) Y
y'
(732) ———
[(1831)
Active >
Store /
Queue (9097) .L Y a
v (2563) (34962)
~ The
Four
Core
Queues

Fig. 6 Traffic Model 08.02.00 until 16.01.46

have four such core-queues, one for each of four priority levels.
The priority level of a process is a property of its current
category.

We use a simple algorithm to choose one of the four queues.
The algorithm is such that the higher priority queues are
selected more frequently than the lower priority queues in some
defined ratio. Once a queue is selected (and provided it has a
process waiting on it) the first process on that queue is chosen
as the next process to be loaded. This is done as soon as enough
core pages are free for its core allocation.

The whole working set is loaded at this time and the process
then goes onto the run-queue where it takes its turn on the
CPU. It may acquire extra pages on demand, and pages may be
removed by periodic examination of its use of core pages. It is

Volume 16 Number 4

allowed to acquire pages providing its working set size does not
exceed its core allocation. If this happens it is totally unloaded
and takes its turn on the core-queues again.

Processes on the run-queue, i.e. those in core which are not
awaiting the completion of a page-fault transfer, take turns on
the CPU in a simple round-robin fashion. They are allowed no
more than 30 milli-seconds in any one time-slice. Note, how-
ever, that they are not unloaded from core at the end of a
time-slice but when they use their CPU allocation. In this way
processes in core have a fairly equal share of the CPU. A short
time slice is necessary to ensure that processes get back on the
CPU quickly after a page-fault transfer is completed, so that
those which are building up a working set by demand paging
do so in a reasonably short elapsed time. When a process

exhausts its CPU allocation it is removed and put on one of the
core-queues again. Otherwise a process leaves core only if it
stops, or more commonly, if it is waiting for a slow device such
as the user console.

Whenever a process is removed from core its working set is
recomputed and it is given a new category dependent upon the
reason for removal. For example, if it uses its predicted CPU-
time then it is usually moved to a category with a larger time.
This will mean it will get more time when it next comes to core
but it may have to wait longer to enter core as the priority
level associated with its new category is likely to be lower.
When it next gets a turn its (full) working set is pre-loaded.

If the process exceeds its core allocation it is normally moved
(mext time it is loaded) to a category with a higher allocation
but its working set is reduced to the master page. It is assumed
that it is a well behaved process moving to a different area of
virtual memory and that pre-loading of the existing working
set would not be helpful.

The system also adjusts the core allocation downwards if a
process has not used enough core by the time that it is unloaded
to justify its present category.

Processes which ‘go to sleep’, waiting for a console response
for example, are unloaded and moved to a category with the
same core allocation but less time and therefore higher priority.
When they wake up they go into the appropriate queue and are
loaded quickly with a short residence time. Here it is assumed
that interaction with the console could have changed the whole
course of the computation so that good response is the current
requirement. However the (full) working set is still pre-loaded
to facilitate rapid execution of repetitive console actions like
text editing.

The scheduling scheme has in practice turned out to be very
effective and the demand-page rate is low.

In earlier versions of the system we also had similar arrange-
ments for pre-loading pages from disc to drum and for re-
computing the drum working set. In this case pages would be
moved back to disc. This did not appear to justify the com-
plication involved and was removed. However the tables are
still set up for this more general situation, in case it is ever
desired to revert to the former system.

The whole of the above scheme is driven from the category
table*. For each category the following information is held:

PRIORITY determines which queue the process goes on
when waiting to be loaded.

CORE the core allocation (number of pages).
RESTIME the CPU-time allocation.
LOOKTIME interval between recomputation of working set.

NCY 1 Category to move to if process runs out of core.

NCY 2 Category to move to if process runs out of time.

NCY 3 Category with next lower core size—zero if
there is no such category.

NCY 4 Category to move to if process goes to sleep.

The actual values in use at present are shown in Table 4.

Scheduling of the drum space is simpler. Active processes
accumulate pages on the drum and keep them unless they
exceed a fairly generous limit or go to sleep (i.e. into a wait
state). When a process goes to sleep it may be allowed to keep
its drum space if it is in an interactive category or if the drum
is not congested. Otherwise the pages of the process which are
on the drum and have been changed since last on the disc are
copied to disc and the drum space is released.

In congested conditions processes wholly on the disc have to
wait for a drum allocation before they can be placed on the
core-queues. Howeverit is not efficient to run the system with too

*This scheme is a development from a table driven scheduler for a
somewhat simpler situation described by Livermore (1966).

little drum space. At present we have 1016 drum pages, which
is enough for 25-30 processes. Shortly we shall have another
508 pages added.

The paging and scheduling routines have diagnostic facilities
built in to them which can be turned on from the operator’s
typewriter. Tracing can be performed in varying degrees of
detail for a selected process or for all paged processes. The
trace shows the elapsed time to the nearest milli-second of
every paging and scheduling event and the composition of the
core working set whenever it is pre-loaded. The trace gives
the virtual addresses of the pages in use providing useful
feedback when we are trying to optimise the paging behaviour
of standard programs such as compilers, editors, etc.

Accounting
The system keeps full records of the CPU time used by each
process, of the number of supervisor calls it makes and of the
page-transfers performed on its behalf. These, together with
records of input/output and of disc space in use, are used for
resource accounting and charging purposes.

The charging formula used by ERCC at present is:

C = KR (T + S/500 + P/256) + U/128
where C is the charge in new pence,

K is a constant (currently K = 2),

R is a rate depending on the time of day (current values
are R =1, R =08, R = 0:6),

T is CPU-time (in seconds) used by both user and
director,

S is number of SVCs issued, by both user and director,

P is number of page transfers (including director pages),

and U is number of records read or printed.

File storage is charged at the following rates:

0-15p per page day for files with backup status.
0-075p per page day for semi-permanent files.

Measurement of performance

A full analysis of the figures we have collected must be the
subject of another paper. However, we present some basic
measurements, to indicate the types of information we collect.
As we collect these figures whenever the system is running, the
information must be very cheap to collect and there must not
be too much of it to be examined afterwards.

We present in Tables 6 to 10 a set of figures of the type
produced at the end of every session. This particular session
from 0800 to 1600 is regarded as a typical day-time session for
the time of year. The maximum number of users during the
session was 32. The system tends to be lightly used before 1000
and over the lunch period, which accounts for the high idle
time. During term-time there would be more batch and detached
work to be run in slack periods.

Table 6 shows the number of entries to servicing routines on
each service number, the time used in total, and the average
time per entry. For example, service 29 shows that 981,823 page
transfers were made during the 8 hour period. The drum channel
can handle 200 transfers per second so the channel is occupied
for only 17 per cent of the time. Furthermore service 6 (the
drum interrupt) has only 343,010 entries so the average number
of transfers on a single chain is 2:86.

Table 7 which is derived from Table 6 gives an analysis of the
use of CPU-time.

Table 8 gives the averages, maxima and minima of various
system variables sampled every ten seconds during the last
146 minutes of the session. The figure of —33 is not an error,
but a recent refinement in which the scheduler allows for pages
being shared in core.

Table 9 is the transition matrix for category changes.

Table 10 shows the distributions of various queue lengths.

Fig. 6 shows the movement of processes around the system.

The Computer Journal

Appendix 1
COMMAND :help

THE FOQORMAT OF A COMMAND IS
. <CONMANDS> (<FARAMETER>) <CR-LF>
OR <COMMNAND > <CR-LF>
WHEN TYPING COMMANDS SPACES ARE TINGNORED AND DOULBRLE WUOTE CHARACUTERS
VAY EE USED‘TO DELETE IMCCRRECT CHARACTERS AS FAR BACK AT THE
BEGINNING CF T1HE CURRENT LINE.
CC¥MANDS AVAILABLE. ARF

COMMAND INFORMATION

ALER1 : PARIMT SYSTEM ALERT INFORMATION
APPENDLIB : ADD LIBRARY

BAICH : FUN BATCH JOC

CHERISH : MARK FILE FOR ARCHIVING

CLEAR : CLEARS DD DEFINTITIONS

CONCAT : CONCATENATE SOURCE FILES

OOLIST : PARINTS OUT CURRENT DD DEFINITICNS
DEFINE H ASSOCIATE FILE WITH LOCICAL I/C CHANNEL
DELIVER : CHANGE DFLIVERY IMFORMATICN

DESTROY : DESTROY A FILE

CETACH : SEND JOU TO BATCH GUFUE

FDIT : CCMNTEXT FDITOR

ENTRIES : PRINTS THE MANMES OF FENTRIES IN AN CBJECT FILE
FLIST : FRINTS OUT LIST QOF FILES

FCRTE : COMPILE FORTRAN SOURCE FILE

HAZARD : CEASE ARCHIVING FILE

HELP : USAGE INFORMATION

Inp : COMPILE IMP SOURCE FILE USING IMF(AA) COMPILER
INSERT FILE INGERT CBJECT FILE INTO LIERARY

LIBINFO : FRINTS LIZRARAY CONTENTS
LINK : LINK DO3JECT FILES

LIST : LIST A 'SOURCE FILE

LUNAR : DEMONSTRATION FROGRAM

VETER : FRINTS METERING INFORMATION
FARM : SET COMPILING PARAMETFRS
FAGSWORD FESET PASSWORDS

PEAMIT FILE PERMIT ACCESS 7O CTHER UEERS
REMOVE FILE AEMOVE OEJECT FILE FROM LIZRARY
AEMOVELID : REMOVE LIBRARY

ve eo ee

HENAME : RENAME A FILE

AUN H RUN DEJECT FILE

SEND : LISTS AND DESTROYS SOURCE FILE
SET STREAMS DEFINES MULTIPLE STREAWS

STOP : STOP SUBSYSTEM AND LOG CUT
USERS : MUMEER OF ULERS ON SYSTENM

©“0RE INFOAMATION AZOULT INCIVIDUAL COMMANDS MAY BE OZTAINED TY TYPING
THE NAME OF THE COMMNAND AE THE PARAMETER TO THE HELP COMMAND
EXAMPLE : HELP(EDIT)

YOARE INFORMATION IS AVAILAPLE CONCEARMING SYCSTEM FACILITIES
UNDER THE FOLLOWING HEADS : -

ARCHTVE

FILES

INPUT

INTEHRUPTY

LIBRARIES

NEW JCL

PROMPT

SCHEDULE

EXAMPLE : HELP(FILES)

A COMFLETE LINE PRINTER LISTINC OF THE CURRENT ‘HELP'
INFORMATION CAN BE OCTAINED BY TYPING: HELP(.LP)-

Volume 16 Number 4

The numbers in brackets are counts of the number of move-
ments on each path. For example, it can be seen that the mean
interval between demand page requests is 949 ms. Demand
paging accounts for only 26-7 per cent of all page movements.

During periods when the system is processing mainly batch
and detached work and there is a continuous supply of work,
the CPU-utilisation rises to about 85 per cent, of which about
10 per cent is supervisor time,

In comparing these figures with other systems it should be
remembered that in 2 virtual memory system, all file accessing
operations are performed on the user’s behalf by supervisor.

Acknowledpements
In a project of this magnitude and duration many people and
organisations have made contributions which we are unable to

References

acknowledge individuaily. Particular acknowledgement is,
however, due to D. J. Rees and S. T. Hayes who shared with
us the design and implementation of the system and to G. E.
Millard and P. D. Stephens for the principal subsystem work.
Their contributions can be judged from the accompanying
papers. R. P. Poole made a major contribution to the de-
sign and implementation of the paging software and to the
early integration of the system. P. Bratley was co-designer of
the scheduling system. C. Adams provided Tables 6 to 10 and
Fig. 6.

Thanks are also due to J. G. Walker*, S. Michaelson and J. G,
Burns for their constant help, encouragement and support.

ICL and the Ministry of Technology (now Department of
Trade and Industry) shared the cost of the EMAP Project.

*Manager of the ICL staff of the EMAP Project.

ARDEN, B. W., GALLER, B, A., O'BREN, T. C., and WesTERVELT, F. H. (1966). Program and addressing structure in a time-sharing environ-

ment, JACM, Vol. 13, No. 1, pp. 1-16.

CoaBaté, F. J., SALTZER, J. H., and CLiNGEN, C. T. (1972). Multics—The first seven years. AFIPS Conferencc Proc., Vol. 40, pp. 571-583.
CorsaTé, F.J., and Vyssorsky, V. A. (1965). Introduction and overview of the Multics system. AFIPS Conference Proc., Vol.27,pp. 185-196.

B. W. (1968). Co-operating sequential
Haves, S. T. (1973). The EMAS Demons, to be published.

ial processes. In Programming Languages, F. Genuys (Ed.).

Livermore, F. G. (1966). A general approach to time-sharing algorithms for scheduling and control of computer resources. General Motors

Corporation research publication.

Murarp, G, E., Ress, D, J., and WarrrieLD, H. (1973). The Standard EMAS Subsystem, to be published.

Rezs, D. J. (1973). The EMAS Director, to be published.

StepHENS, P. D. (1973). The IMP language and compiler, to be published.

‘The Computer Journal

