SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 16(6), 531-539 (JUNE 1986)

Providing Multi-User Access to Distributed
Array Processors

P. D. STEPHENS AND J. K. YARWOOD
Edinburgh Regional Computing Centre, University of Edinburgh, Edinburgh EH9 377, U.K.

SUMMARY

This paper describes the integration of two ICL Distributed Array Processors (DAPs) into a dual
ICL 2976 configuration running the Edinburgh Multi-Access System (EMAS). The principles
underlying the general multi-access service are not compromised; special scheduling arrange-
ments provide effective control and use of the DAP resource while allowing multi-user access to

the DAPs for DAP program development.

KEY WOoRDS EMAS Multi-access 2900 Parallel processing Array processor DAP

HARDWARE OVERVIEW

The basic dual ICL 2976 configuration is shown in Figure 1. Accesses to each unit of
main store are resolved by the store multiple access controllers (SMACs). Data paths
from peripheral controllers to SMACs are via store access controllers (SACs). The
SMAC:s offer four ports to the SACs and central processor units (known by ICL as
‘order code processors’ or OCPs. The more usual term CPU will be used hereafter).

The hardware supports 32-bit virtual addressing and 28-bit real addressing. The
SMAC number occupies four bit positions at the high-order end of a real address.

Segment tables used for virtual address translation can specify that a given segment be
paged or unpaged. In the former case, the real address of a page frame 1s obtained from a
page table pointed to by a segment table entry. In the unpaged case, the segment table
entry contains the real address of the base of a segment of contiguous real storage.

The ICL Distributed Array Processor (DAP) comprises

(1) a number of simple processors, called processing elements (PEs), each with a
local store

(11) a master control unit (MCU).

There are two models, engineered respectively with 4K and 16K chips; in each case
the PEs are presented in 64 by 64 two-dimensional arrays. In the 4K-chip model each
PE local store 1s 4096 bits and in the 16K-chip model each store 1s 16384 bits. Total
storage (DAP storage) for the two models 1s therefore 2 Mbytes and 8 Mbytes,
respectively.

The operations performed by the PEs are logical and arithmetical, with inputs from
and outputs to the stores of adjoining elements.

0038-0644/86/060531-09%$05.00 Recetved 19 July 1984
© 1986 by John Wiley & Sons, Ltd.

532

2976
OCP

ik

M

N\

Q!

OPER-O

P. D.

MCU
DAP

Store

SMAC

N

e

g

-

Key:
OCP

DAP — Distributed Array Processor

T

FE-2

— Order Code Processor

DAC — DAP Access Controller
MCU — Master Control Unit
— Store Access Controller

SAC

SMAC — Store Multiple Access Controller

OFC

— Disc File Controller

GPC

MTC — Magnetic Tape Controller

DAC

STEPHENS AND J. K. YARWOOD

/%//// 2 x Store Access Controilers ISACs

TGI8, T v /22070

WJ/

-

\\\

W//

2976
OCP

=R =

@@@@@@@@

O

e e SO SO

Eﬁ
-
O

8 |

-

O
-

— General Peripheral Controller

OPER — Operator Console

LP
FE

— Line Printer
— Front BEnd

{Communications Processor)

Mbyte— 1,048,576 bytes

(Shaded boxes represent control units)

Figure 1. ERCC dual 2976 configuration

MULTI-USER ACCESS TO DISTRIBUTED ARRAY PROCESSORS 533

The processing elements operate under the control of a program (the DAP program)
which itself resides in DAP store. The PEs containing the program do not take part in
the DAP processing, other than by supplying program instructions to the MCU, which
controls all the PEs in the data area; all PEs can execute each MCU primitive command
simultaneously.

The DAP has no I/0 capacity; it 1s attached to the host 2900 system as main storage.
That 1s, 1t connects to SACs and CPUs exactly as a unit of main storage. The DAP
access controller (DAC) performs the same functions as a SMAC, for storage accesses
initiated by CPUs or device controllers. In addition, control and interrupt paths exist
between DAP and CPU, analogous to those between device controllers and CPUs.

When the MCU 1s not executing, the DAP behaves exactly as main store; when the
MCU is executing the contents of the store change without any of the normal read and
write cycles initiated by the CPU or SAC.

A DAP program block 1s a contiguous area of DAP storage described by a base and
limit register in the DAP. A program block consists of a number of sub-areas:

(a) workspace (read/write), for use by sottware

(b) control (read only), for hardware/software communication

(c) program (read only) data

(d) code (execute only)

(e) program (read/write) data.

(The access shown relates to accesses by the DAP program. Certain alignment
requirements must also be satisfied).

DAP (MCU) execution 1s imitiated by control signal from the host Supervisor after
the following DAP registers have been loaded:

(1) program block datum
(11) program block limit
(11) code base
(1v) code limit
(v) program counter (code entry point)
(vi) interval timer '

(vi1) 1nstruction counter.

MCU execution continues until one of the following occurs:

(a) a DAP STOP instruction 1s executed

(b) the host forces a STOP (by control signal)

(c) DAP program error

(d) expiry of the interval timer or instruction counter

(e) hardware error.

The host 1s notified by interrupt when any of these occurs.

The installation of the DAP at Edinburgh Regional Computing Centre 1s described

elsewhere.

EMAS OVERVIEW

The Edinburgh Multi-Access System is described elsewhere.”* Briefly, it is a general-
purpose time-sharing system providing rapid response to the terminal user for all
interactions having modest resource requirements (CPU-time, virtual storage). Proces-
ses are scheduled according to their current behaviour, independently of the global
resource available, and the strategy 1s to attempt always to have sutficient CPU-bound

534 P. D. STEPHENS AND J. K. YARWOOD

processes in main storage to keep CPU utilization high, while keeping sutficient spare
page frames for rapid servicing of interactive processes with small working sets.”® A
comprehensive spooling and background job scheduling system complements the
interactive service, and full NIFTP-B(80) file transfer and JN'T' MAIL facilities are

provided.

A hundred and twenty simultaneous user processes are supported on the configuration
shown in the diagram. (Each 2976 processor executes approximately 1-3 Mips.)
Supervisor overhead under the worst conditions does not exceed 40 per cent of total
CPU time, and 100 per cent CPU utilization i1s normal for periods of many hours.

Each user process is provided with a large virtual memory (currently 40 Mbytes), a
virtual processor capable of executing the non-privileged instructions of the real
processor, and a set of services in the form of procedure calls to more privileged system
software for file and terminal access.

No I/0O devices are directly available to an EMAS user process; listings and file
transfer are performed by communication with a Spooler process. EMAS provides a
virtual filestore; files are accessed by being connected (not copied) into virtual memory;
virtual addresses are referenced by machine instructions within the process; the
Supervisor satisfies resulting page-faults by moving the necessary pages to main store
from the disc storage which is the longer term site for the user’s file data. Programs,
data, system service code and file index data all use the same mechanism, 1n order to
arrive in real main store for referencing or execution.

All EMAS programs are re-entrant, and the access permission mechanisms result in a
high level of sharing (typically up to 50 per cent) of real store pages, both for system and
user virtual memory pages. ‘

The privileged procedures providing file system, timing, contingency-handling and
terminal services are collectively known as the EMAS Director.” Director is im-
plemented as paged, shared, in-process code.

EMAS was originally written for an ICL (formerly English Electric) System 4-75
machine. After 1976 it was re-implemented for ICL 2900 Series systems and 1s currently
known, therefore, as EMAS 2900.

DAP PROGRAMMING OVERVIEW

The high-level aspects of DAP programming are described in a further paper.® In
summary, a DAP program comprises a host part, programmed in a standard dialect of
FORTRAN, and a DAP part, programmed in DAP FORTRAN (which embodies
extensions to FORTRAN reflecting the three-dimensional nature of the storage model).
Communication between the host and DAP parts 1s by means of COMMON areas which
physically reside in the DAP during DAP execution, and by subroutine call of the DAP
part from the host part.

Execution commences in the host part, which is responsible for the presentation ot
data, in a suitable form, to the DAP COMMON area. When a DAP-part subroutine 1s
called, supervisory software intervenes to load the DAP registers and start the DAP.
Execution normally continues until a STOP instruction 1s executed in the DAP part,
when the DAP interrupts the host system to resume the host-part computation for
unloading or perhaps re-loading the DAP data areas.

MULTI-USER ACCESS TO DISTRIBUTED ARRAY PROCESSORS 535

INCORPORATING THE DAPS INTO EMAS
Configuration control and provisions in Supervisor

As described 1n ‘Hardware overview’, the DAP 1s capable of acting simply as a main
storage unit. At the busiest times of day one of the DAPs i1s made available to the general
interactive service as store; during off-peak times the normal service operates using 8
Mbytes of main store, while two DAP job streams execute in the DAPs.

This capability to alternate between using the DAP as store and as ‘DAP proper’ was a
requirement from the outset. It 1s a generally accepted judgement that the DAP provides
maximum communal benefit by being used as main store at peak periods. This was in
any case a basis of the original funding arrangement.

EMAS was designed to operate a continuous service, and 1s equipped to deconfigure
CPUs, store modules and filestores and to re-incorporate them into the service
configuration. These changes may be made automatically after unit failure, or by
operator command, to produce a parallel test system while maintaining a reduced level
of service. ‘

When EMAS 1s loaded, the DAPs are identified, tested, and incorporated as store.
The operator can later deconfigure them as store units and re-incorporate them as
DAPs. When they are available as DAPs, Supervisor will allocate them to Director on a
block basis (a block 1s 128 Kbytes or 256 PEs). Supervisor also provides facilities to start
a DAP and to multi-program between blocks allocated to different programs (but see the
next subsection).

It a DAP 1s unused and the system 1s ‘busy’ (more than ten users per megabyte of
available main store) the DAP 1s used as main storage. In this state 1t is still available as a
DAP but a Director request for blocks will be subject to a delay (five to ten seconds) as
the pages in the DAP are relocated.

The current status of the DAPs 1s visible to all Directors.

Interface for application-support software: provisions in Director

At the higher levels, the application-support software is able to request the following
services by procedure call to Director (see ‘EMAS overview’ and elsewhere’)
(1) allocate n Kbytes of DAP storage for the DAP program block
(1) mtiate DAP (MCU) execution at a given offset into the code area, with a
nominated limit on total MCU instructions to be executed

() de-allocate the storage for the DAP program block.

In practice the DAP program block for any significant problem is found to require at
least half of the available real DAP storage; indeed the 2 Mbyte DAP is in reality much
too small for many of the problems for which it 1s otherwise ideally suited. Consequently
the decision was taken always to allocate the whole DAP.

The Director procedures provide mechanisms

(a) to validate the requests from the higher-level software

(b) to translate the requests into corresponding real DAP program block allocation/

execution requests on the resident Supervisor

(c) to locate the DAP program block (simply a contiguous block of virtual storage

from the point of view of the application-support software) in real DAP storage
before execution commences.

536 P. D. STEPHENS AND J. K. YARWOOD

The Director procedures are for the most part unconcerned with real main store
addresses, since in-process references are normally exclusively virtual. One of Director’s
primary functions is to manage a process’s virtual storage and segment tables. A
fundamental service which it provides is the connection of files into the virtual memory
and the converse operation of disconnection to ensure that updated files are safely on the
disc (see ‘EMAS overview’ and References 2, 4 and 7). Director is thus well placed to
manage DAP storage on behalf of the user process, and two schemes have been devised.

In the first, and simpler, scheme Director responds to the user’s request for DAP
allocation by claiming a real DAP allocation from Supervisor and filling in the user’s
segment table so that a set of virtual addresses corresponds to the real DAP. Thus while
the program executes in host mode, setting up its data areas, the data move directly into
the DAP. When the program switches into DAP mode, the DAP start request 1s
forwarded directly to Supervisor. When the DAP part of the program stops, control 1s
passed directly back to the host part of the program. The DAP cannot be freed until the
host part has extracted any useful results and concluded.

The following considerations led to the adoption of a more complicated scheme as an
alternative to the above. Typical runs of some production DAP programs take several
hours of DAP time. For the above straightforward loading approach DAP MCU-time
and job elapsed time are closely comparable, since no multi-programming is done in the
DAP. (In many DAP programs the DAP is called once only from the host part, and
DAP loading/unloading times form a small part of the total time). One long run thus
occupies the DAP to the exclusion of any short development runs for long periods; nor 1s
it possible to reserve one of the DAPs for short or development runs, because it would
lead to poor use of that valuable resource and also because the second DAP 1s 1n any case
normally used as main store during the prime shift, when a facility for interactive DAP
program development is most needed.

Further, the DAP is up to 100 times faster than a 2976 CPU. The host portion of the
program executes in a multi-access environment with around 100 other users. Thus
programs under development often claimed the DAP for a much longer period than its
DAP MCU time.

In the second scheme the Director responds to the user’s request for DAP allocation
by providing a virtual DAP. Having checked that the current limit on the number of
virtual DAPs has not been exceeded, Director creates a temporary file exactly the same
size as the DAP and connects it into the virtual memory as in the first scheme. The host
part of the program executes as before; indeed it perceives no difference as it sees only
virtual addresses. When the program switches to/from host DAP mode, Director has to

(a) disconnect the virtual DAP, forcing any updated pages to backing store

(b) claim a real DAP

(c) roll in the virtual DAP, now on backing store, into the real DAP

(d) forward a DAP start to Supervisor.

When the program completes its DAP mode, Director again intervenes to
(i) roll out the real DAP to the disc site of the virtual DAP (read-only areas are not
rolled out)
(i1) re-connect the virtual DAP into the same position in the virtual memory

(111) pass back control to the program.

The virtual DAP is moved into real store by page-fault interrupt as the host program
extracts the results from the COMMON areas. Thus the DAP 1s occupied for the

minimum time.

MULTI-USER ACCESS TO DISTRIBUTED ARRAY PROCESSORS 537

Each time the DAP 1s started, Supervisor loads the DAP’s interval timer (IT)
register. The value always expires some eight seconds after DAP execution commences,
and the host Supervisor 1s thus alerted by interrupt. If no allocation request is queued,
the DAP 1s immediately restarted with negligible elapsed time overhead and with a
reloaded I'T register. However, if another process is awaiting the DAP, a special ‘DAP
stopped’ reply may be given to the waiting Director which then executes, rolls out the
DAP 1nto the file created when the original allocation request was received, alters the
DAP program block segment table entries to reflect the move and calls Supervisor to
de-allocate the real DAP storage. Supervisor now responds to the queued DAP allocate
request, the Director of the waiting process loads the allocated DAP area and DAP
execution continues. .

Jobs are normally allowed a minimum of two minutes MCU time before being forced
out. The mechanism provides a round-robin servicing of waiting DAP jobs on a roughly
two-minute interval for modest degradation of DAP utilization, and allows DAP
program development concurrently with long production runs.

It should be restated” that in EMAS there is no distinction, from the point of view of
in-process code, between a file which is connected and the area of virtual store which it
occupres. It 1s clear, however, that Director needs to create a distinction in order to
achieve the move of data from physical DAP to virtual store. This is not difficult, using
the EMAS 2900 feature of having all real main store mapped permanently into every
virtual memory (as well as having virtual memory selectively mapped into real storage as
necessary).

It will be noted that the scheme adopted pre-empts the use of the DAP interval timer
register by higher-level software. All high-level scheduling and accounting is done on the
basis of DAP instructions executed, using the instruction-counter register and a factor
chosen empirically to relate instructions executed to DAP processing time.

VIRTUAL DAPS LARGER THAN THE REAL DAPS

A modest extension of the notion of a virtual DAP enables DAP programs having
COMMON areas much larger than those in the real DAP to be handled. With the
co-operation of the DAP loader® and other application-support software, the DAP
programmer 1s able to label one or more COMMON areas as being eligible for emptying
and refilling with the contents of other nominated COMMON areas during DAP program
execution. This technique is called DAP data expansion, described more fully in the
paper by Brown.® For a class of problem in which computations are pertormed
progressively through large quantities of data, a special subroutine call in the DAP part
of the program 1s provided to cause entry to supervisory software specifying a swap of
given pairs of COMMON areas. This gives the programmer the ability to conflate a
problem which would involve many DAP runs, because of the small size of the DAP,
into a single run with internal data transfer. The gains, both in avoiding complete DAP
loads (and indeed in scheduling a single longer job rather than many shorter ones) and in
automating the passing of data between successive separate DAP jobs, are considerable.
The scheme 1s implemented by providing
(1) special DAP stop codes for use by the DAP part of the DAP program. These

538 P. D. STEPHENS AND J. K. YARWOOD

stop codes are generated as a result of ‘swap COMMON area’ subroutine calls 1n
the DAP part, and are recognized by Director when the ‘DAP stops’ interrupt
has been received. The stop code, planted by the higher-level software, identifies
the source and destination areas for the transfers.

(ii) a further procedure call in Director allowing the application-support software to
nominate offsets and lengths of COMMON areas within the DAP program block
which are to form source and destination areas for movements of data.

The communication between Director and support-software is effected by requiring a
procedure parameter to be supplied when the start-DAP request is made on Director.
When a ‘swap-data type’ STOP is noted by Director, it calls the supplied procedure,
which recursively calls Director to initiate one or more transfers between DAP-resident
COMMON areas and COMMON areas in the larger virtual DAP program block. The
primitives at the Director interface can request _

(a) a uni-directional transfer (rather than a swap). An identifier is returned to the

caller

(b) a WAIT, specifying one or more transfer identifiers for which completion 1s to be

awaited.
" The low level of these primitive Director calls favours two important classes of
problem:

1. If the computation progresses serially through large data areas, it is possible to
request transfers in advance of the requirement of new data by the program, and
by double or multiple-buffering use of the resident DAP COMMON areas 1t 1s
possible to overlap DAP processing with data transfer, resulting in significant
elapsed-time savings.

2. If the computation uses the contents of COMMON areas as read-only data, outward
transfers from the DAP can be avoided altogether.

Some of the most important problems’ ' being analysed in Edinburgh do indeed fall

into these categories.

CONCLUSIONS

Although the scheduling of such an unusual resource (for a multi-access environment)
presented a variety of apparently unwieldy problems, suitable facilities and system
services have been designed and implemented to the satisfaction of an important group
of users. Apart from an unfortunate spate of DAP-related hardware problems, the etfect
on the general user population is limited to the fluctuation of the amount of real main
storage available on the system; at peak service times the additional storage has been of

very real direct benefit.

REFERENCES

1. J. G. Burns and A. McKendrick, ‘“The acquisition and installation of a DAP (the ICL Distributed
Array Processor)’, University Computing, 6, (1934).

2. H. Whitfield and A. S. Wight, ‘The Edinburgh Multi-Access System’, The Computer journal, 16, (4),
331-346 (1974).

3. P. D. Stephens, J. K. Yarwood, D. J. Rees and N. H. Shelness, ‘“The evolution of the operating system
EMAS 2900’, Software—Practice and Experience, 10, 993-1008 (1950).

4. D. J. Rees and P. D. Stephens, ‘The kernel of the EMAS 2900 operating system’, Software—Practice
and Experience, 12, 655-667 (1982).

538 P. D. STEPHENS AND J. K. YARWOOD

stop codes are generated as a result of ‘swap COMMON area’ subroutine calls 1n
the DAP part, and are recognized by Director when the ‘DAP stops’ interrupt
has been received. The stop code, planted by the higher-level software, 1dentifies
the source and destination areas for the transfers.

(ii) a further procedure call in Director allowing the application-support software to
nominate offsets and lengths of COMMON areas within the DAP program block
which are to form source and destination areas for movements of data.

The communication between Director and support-software 1s effected by requiring a
procedure parameter to be supplied when the start-DAP request 1s made on Director.
When a ‘swap-data type’ STOP is noted by Director, it calls the supplied procedure,
which recursively calls Director to initiate one or more transfers between DAP-resident
COMMON areas and COMMON areas in the larger virtual DAP program block. The
primitives at the Director interface can request |

(a) a uni-directional transfer (rather than a swap). An identifier is returned to the

caller

(b) a WAIT, specifying one or more transfer identifiers for which completion 1s to be

awaited.
" The low level of these primitive Director calls favours two important classes of
problem:

1. If the computation progresses serially through large data areas, it is possible to
request transfers in advance of the requirement of new data by the program, and
by double or multiple-buffering use of the resident DAP COMMON areas 1t 1s
possible to overlap DAP processing with data transfer, resulting in significant
elapsed-time savings.

2. If the computation uses the contents of COMMON areas as read-only data, outward
transfers from the DAP can be avoided altogether.

Some of the most important problems’ ' being analysed in Edinburgh do indeed fall

into these categories. '

CONCLUSIONS

Although the scheduling of such an unusual resource (for a multi-access environment)
presented a variety of apparently unwieldy problems, suitable tacilities and system
services have been designed and implemented to the satistaction of an important group
of users. Apart from an unfortunate spate of DAP-related hardware problems, the etfect
on the general user population is limited to the fluctuation of the amount of real main
storage available on the system; at peak service times the additional storage has been of
very real direct benefit.

REFERENCES

1. J. G. Burns and A. McKendrick, ‘“The acquisition and installation of a DAP (the ICL Distributed
Array Processor)’, University Computing, 6, (1934).

2. H. Whitfield and A. S. Wight, ‘The Edinburgh Multi-Access System’, The Computer jJournal, 16, (4),
331-346 (1974).

3. P. D. Stephens, J. K. Yarwood, D. J. Rees and N. H. Shelness, “The evolution of the operating system
EMAS 2900°, Software—Practice and Experience, 10, 993-1008 (1930).

4. D.]. Rees and P. D. Stephens, ‘The kernel of the EMAS 2900 operating system’, Software—Practice
and Experience, 12, 655-667 (1982).

