The EMAS Director

D. J. Rees

Department of Computer Science, Universily of Edinburgh, The King's Buildings,

Mayfield Road, Edinburgh EH9 3JZ, Scotland

The EMAS (Edinburgh Multi-Access System) Director is the paged part of the EMAS operating
system program. A description of its position in the EMAS system, its functions and its implemen-
tation is given with particular reference to its main compouents, the file system and the console

input/output system.
(Received January 1974)

‘The Edinburgh Multi-Access System (EMAS) is a general
purpose time-sharing system for the ICL 4-75 computer. An
overview of the system is presented in ‘EMAS—The Edinburgh
Multi-Access System’ (Whitfield and Wight, 1973).

The EMAS operating system software consists of several
distinct parts. There is a central part, known simply as the
supervisor, which is permanently resident in core and which
performs the time-critical functions of the system. This is also
described by Whitfield and Wight (1973). The other parts are
not permanently resident in core and are intended to implement
the non-time-critical functions of the system. These parts are a
number of system-owned processes which provide services for
the system in general and the director which provides services
for individual processes. The director is the subject of this paper.

Instead of having the usual type of supervisor overlay for
non-core-resident parts, the director is made part of paged
virtual memory and so is brought into core as and when
required by the standard paging mechanisms. This also relieves
the director of the problem of organising an overlay structure
itself. Each EMAS user process has a director process of its own
which occupies the first thirty-two segments of its virtual
memory and which is paged in and out of core in the ordinary
way. All but one of these segments are, however, shared among
all the director processes. The remaining segments, 32 to 255,
are available to the user process. Whereas when the director is
active it may access the whole of that process’s virtual memory,
when the user process is active it may only access segments
32-255. This protection of the system is achieved by invalidating
the relevant entries in the segment table for the process.

The effect of this organisation is for the director to provide a
first level of processing of requests for system services from the
user level. Such a request takes the form of a supervisor call
(SVC) instruction issued by the user process together with a set
of parameters which define the service required. When a
request is made, the director of that process is activated and
attempts to satisfy the request. For many of the services it is
able to do so completely, but for others further requests for
service to the supervisor or a system-owned process are neces-
sary. These are also invoked by means of SVC but issued by the
director.

The most important services provided for users by the system
are those for file handling, input/output, (console input/output
in particular) and for dealing with contingencies such as pro-
gram failure, etc. Other services are concerned with entering
jobs onto a batch queue, setting local time-limits, getting
systems status information and so on. Normally, when a user
process issues a service request, it is suspended until a reply is
received. In the case of console input/output, however, it may
sometimes be desirable to initiate a transfer, say, and to con-
tinue processing whilst the transfer is in progress. Facilities
which allow this are also available. The file-handling services
are implemented entirely by the director and the console input/
output services by the director in co-operation with a supervisor

122

servicing routine. Input/output service requests for devices such
as card-readers, line printers, etc. are passed by the director to
the demons process (one of the system-owned processes).

As a safety precaution, the EMAS system software resides on
a replaceable disc unit (RDU). The supervisor is loaded into
core from the RDU on start up but the code of the system-
owned processes remains and is paged from the RDU as
required. The director code which is shared by all the paged
processes is that originally associated with the demons process
and hence it is also paged from the RDU when any process
requires it. In practice, of course, the director is in almost
constant use overall and therefore is either in core or on drum
storage all the time.

In common with the rest of the EMAS system software, the
director was implemented using the IMP language, a language
largely developed with this purpose in mind though also widely
used by users of the system (see Stephens, 1974). The benefit
of using a high-level language such as IMP cannot be over-
estimated. Only rare use of in-line machine code proved
necessary, for example to issue SVCs. Since the system has
been on the air, the system itself has been used to further the
development of the director. This has also proved invaluable.
For instance, it has been possible to decide on a change, make
the change, recompile the director and try it out within the
space of ten minutes.

0 engineer test use

1 input-output buffers
2 : master segment

3 director code

4

file system use

31

Fig. 1

The Computer Journal

Structure of the director

Fig. 1 shows the contents of the segments of virtual memory
which are the concern of the director. Segment O is not used
during the normal running of the system but can be made
available to run engineers’ test programs many of which
originated from the non-paged ICL 4-70 and which therefore
require low addresses rather than possibly high virtual
addresses. Segment 1 is accessible by all directors in read-write
shared mode and is used for input/output buffers. Input/output
transfers take place from core using physical rather than virtual
addresses and hence the pages involved have to be locked in
core for the duration of the transfer. In practice, pages are
allocated and locked in core for longer periods, for the total
period the device is in use. The two equivalent addresses,
physical and virtual, provide a convenient method of com-
munication between the supervisor and the director. In the
case of console input, for example, the routine in core initiates
a transfer from a console into a buffer within the segment
using its physical address and on completion, the director uses
the equivalent virtual address to pass the input from there to
the user area of virtual memory. This latter communication
between the director and user area is a straightforward copy
since they both occupy the same virtual memory. Since the
buffer segment is shared among all the directors there is no
protection from a director accessing an inappropriate buffer
should it go astray. This has never caused any problem,
however.

Segment 2, the master segment (see Whitfield and Wight,
1973), is the only unshared segment in the director and contains
information relevant to the particular process alone. Page 0
is the master page which contains all the virtual address and
physical disc storage address mappings used by the supervisor
to perform the paging, together with other supervisor-used
tables appropriate only to that process such as metering
information tables. The master segment is also, by virtue of its
read-write unshared mode, an appropriate place to locate the
data areas of that process’s director. The language IMP, in
which the director was programmed, uses a static storage area
and a dynamic stack at run-time. These areas are located from
page four onwards. The gap between the master page and the
data areas was created to allow for a possible extension in size
of the master page. This has not, in fact, proved necessary. As
an indication of the size of the director’s data areas, pages four,
five and six are the only ones commonly accessed during normal
running. In physical terms, space is set aside for master seg-
ments, for all but the system-owned processes, on the large disc
file and paged from there.

Segment 3 contains the code of the director. This consists of a
loader, a module of code needed for running IMP programs,
both quite short, and a main module linked together in the
system standard way (see Millard, Rees and Whitfield, 1975).
On initial entry, the loader satisfies external references between
the two other modules and jumps to the main module. This
main module is organised in such a way as to minimise page-
faulting by grouping together the commonly accessed parts as
far as possible whilst bearing the positions of page boundaries
in mind. The IMP compiler allows the relative code address of
each statement compiled to be monitored and this facilitates
such an organisation, though improved versions of the com-
piler result in the need for minor reshuffling occasionally. The
code of the director occupies approximately 11 pages of which
only two or three are used at one time during the most common
reasons for entry.

Segments 4 to 31 are used by the file system for disc file usage
tables and file ownership indexes. This is described further
below.

The initial entry to the main director module is at its beginning
and thereafter, in IMP terms, the program consists of an in-
definite loop which is never left. However, the loop contains an

Volume 18 Number 2

exit SVC to the supervisor which suspends its operations while
waiting for a reply or when there is nothing for it to process.
This is the normal exit point. What can be regarded as the
normal entry point is the instruction following this SVC. The
program there consists of an examination of the parameters
provided by the new entry which indicate what function is
required and a switch to the appropriate section of coding. To
accomplish the required function the director may have to call
upon a supervisor service such as manipulation of semaphores
one or more times. For services which need no reply to the
director, for example releasing a semaphore, the director may
execute an SVC in line. In this case, the director is not sus-
pended. For those services where the director needs a reply,
after the SVC requesting the service has been issued the
standard exit SVC is jumped to. This mechanism allows
services which cannot immediately be completed to take place
before a reply to reawaken the director is sent. Upon re-entry
the director returns to the appropriate section of coding by
making use of the reply parameters and status variables within
the director. The reason for always using the standard exit
point is that the supervisor queues requests and replies to the
director in the order in which they appear. It is therefore pos-
sible for an entry to occur other than for an expected reply.
Care has to be taken that no interference results.

The file system

File storage plays a central part in the use of EMAS and an
important group of user services are concerned with the
manipulation of files. The implementation of these services is
contained entirely within the director apart from some sub-
sidiary functions such as semaphore operations and file clearing
and copying which are done by the supervisor. A user operates
on files at a logical level referencing them by names of his own
choosing and it is the function of the director to decide on the
physical positioning of them on the disc used for their storage.
It is then the function of the supervisor to access the disc areas
when the user’s virtual memory references dictate, using the
virtual memory to disc address mappings set up by the director
in the master page of the process when the files are connected.
A file cannot be accessed through the paging mechanism until
it has been connected, i.e. the mapping set up. Likewise, the
file cannot be accessed after the file has been disconnected, i.e.
the mapping removed.

Files are stored on a 700 miilion character disc which logically
cosists of two devices each with 350 million characters. During
the initial development and usage of EMAS, one of these was
sufficient to store user's and system files. This allowed a con-
venient method of development of the file system software
by allowing each new version to be tested on the alternate
device without the risk of inadvertent destruction of files in
actual use. From the hardware reliability point of view it also
proved invaluable. Increased availability and use of the system
has now, however, dictated that the whole disc be used.

A file name consists of two parts joined by a *.” character. The
first part is the user name on the system of the owner of the file
and the second an arbitrary string of up to eight characters
(excluding *.’) to identify the file amongst his own. The total
name is therefore unique on the system. For example, the user
ERCC24 might have a file DIRFILE2. The full name would be
ERCC24 DIRFILE2. Given permission, any user on the system
can access the file by using that name. For those operations
which only the owner can perform the second part of the name
is sufficient, the owner name being implied.

Files have lengths which may be any multiple of a page, i.e.
4,096 bytes, up to a maximum of 1,024 pages. They are regarded
from the system point of view as just collections of bytes which
may contain any information the user desires. In particular, no
distinction is made by the system between files containing
binary machine code, source text, etc. It is the function of the

13

subsystem within the user’s own virtual memory area to make
any distinction that is required by means of header information
in the file or by any other means. Many other file systems
have made such distinctions and allowed such things as pre-
vious versions of updated files to be retained. The philosophy
adopted on EMAS has been one of providing basic facilities
which can be built upon by subsystems to provide more diverse
facilities. An example of this might be the connect service,
described below, which requires as a parameter the segment
number in virtual memory to which the file is to be connected.
A subsystem could remember which segments are in use and so
be able to provide a connect service which found a free segment
itself to relieve the user of the burden. The simplicity of the
approach to the design also resulted in a certain orthogonality
between the services making their functions as distinct as
possible. For instance, a file cannot be destroyed if it is still
connected in some virtual memory. There is no implicit dis-
connection defined in this case and it must be disconnected
beforehand by a separate SVC. This gives a certain amount of
protection from inadvertent destruction.

EMAS provides four possible modes of access to files when
they are connected. These are ‘read-only’ and ‘read-or-write’
each of which may be ‘shared’ or ‘unshared’. In a shared mode,
any number of users may connect the file in their virtual
memories (the same shared-read or shared-read-write in all, but
at any virtual memory segment positions) whilst in unshared
mode only one user, not necessarily the owner of the file, may
connect it at one time. To be allowed to connect a file and hence
to access it, the user must have been granted permission to do
s0 by the owner of the file. The owner can set permissions for
himself, for selected other individual users and for all users
and can specify the level of access each should be permitted.
The level specification takes the form of a four-bit value, the
bits being: S, S,, U, U,, where S, is shared-read, S, is shared-
read-write, U, is unshared-read and U,, is unshared-read-write.
Thus the value ‘1111 allows any mode of access, ‘1010’ allows
either of the read-only modes and so on. When a file is created,
permission is set for the owner alone to have all modes. He can
change this or permit other users by issuing an appropriate
SVC. The access checking procedure operates in the following
way. When a user issues a connect SVC his director may go
through three possible steps. If the user is the owner of the file
his permission is noted. If not, a list containing the names of
users granted individual permissions and their access modes is
searched and the appropriate information noted if the user’s
name is found. If neither condition holds, a temporary per-
mission of zero is noted. In all cases, the permitted values noted
are ‘OR’ed with that set up for all users and the final permission
results. At one stage during the development of the file system,
an individual user could be singled out and given a lower access
level than all other users but it was pointed out that this might
be rather vindictive.

The owner of a file may request that it should be archived as
a precaution against loss for any reason. Usage flags are
maintained which indicate whether the file has been altered, or,
at least, connected in a ‘write’ mode since it was last archived.
The archiving system is described in detail in Wight (1975).

The ownership of files can be transferred between two users by
making use of two services. The original owner of the file can
offer his file to another user by using one service and then this
user can accept the transfer. This two stage method was pre-
ferred to a single unconditional transfer service to avoid a user
being given files by others without any control. File transferring
is also the method by which users perform input/output to all
devices but consoles. The demons process drives the physical
devices. In the case of input, a file is created by demons, filled
with the incoming data and then transferred to the appropriate
user (indicated by the job document). In the case of output, the
user creates a file of output and transfers it to demons which

124

then outputs it to the requested device.
The file services available to a user are the followmg

1. Create file. The user supplies a name for the file which must be
distinct from those of his other files and the number of pages
itis to be in length. The contents of the new file are cleared to
zero both to maintain the privacy of the owner of the previous
file to use that disc area and to check that that area of disc is
undamaged.

2. Destroy file. A user can only destroy his own files and then
only if not connected in any virtual memory.

3. Rename file. A user can rename one of his files if the new
name is distinct and if it is not connected anywhere.

4. Change file size. A file can be increased or decreased in size
by its owner as long as the resulting size stays within the 1
to 1,024 pages range. The file must either not be connected
anywhere or at most connected in the owner’s own virtual
memory. In the latter case, either the additional pages are
also connected (and cleared to zero) or the deleted pages
(truncated from the high-address end of the file) discon-
nected. It may only be connected in the owner’s memory
because a director cannot change or modify the connect
status of a file in a different virtual memory.

5. Set archiving status of file.

6. Get access permission. The file owner can ascertain what
access permission he has granted to himself or to others.

7. Set access permission. Set the modes of access to be allowed
to himself or to others.

8. Connect file. Connect a file to the user’s own virtual memory
from the specified segment position onwards in the specified
access mode. If the file is more than sixteen pages long, i.e.
a segment, extra consecutive segments will also be used in the
connection as necessary. None of the segments must have a
file already connected to them and the file must not already
be connected somewhere else in the same virtual memory.
The specified access mode must be allowed to this user for
the file. If not, a fault flag is returned, but it does not dis-
tinguish between this fault and the non-existence of the file.
In other words, the existence of a file with a given name is
also regarded as private information in addition to its
contents. The service call will also be rejected if the file is
already connected in a different virtual memory and the
required mode conflicts. That is, either the file is already
connected in an unshared mode or it is connected in a shared
mode which is not the one required or the required mode is
unshared. No calls on the supervisor are involved in making
the connection. The director simply writes the mapping
information into the appropriate place in the master page
from which the supervisor accesses it when the file is first
referenced.

9. Disconnect file. The connection mapping in the master page
is removed. In this case, a call on the supervisor is made to
remove any pages written to in the file back from core or
drum to disc. In fact, for reasons of consistency, the super-
visor removes all the pages belonging to the process which
have been written to back to the disc.

10. Change access mode of file. In an unshared mode, the mode
can be changed from read to read-write or vice versa without
disconnection. For a shared mode, the file must be dis-
connected and reconnected in the required mode (if it is
possible).

11, Get file information. A user can get status information
about any file to which he has been granted an access
permission. The information corresponds to the contents of
the descriptor of the file (described below). This contains
such things as the length of the file, his permitted access

The Computer Journal

-

modes, the current connect mode, the number of shared
connections and its archiving status.

12. Get file names. The user is given a list of the files he owns.

13. Get virtual memory map. A list of the names of all the files
connected in the user’s virtual memory and their positions
is supplied.

14. Offer file for transfer. This is the first part of the transfer.
The owner specifies the name of the user (‘'SYSTEM’ for
the demons process) to which he wishes to transfer the file.
The file must be disconnected at the time and an effect of
the offering is to inhibit the owner from using it further.
The owner can revoke the offer before the prospective new
owner claims it.

15. Transfer offered file. A file offered to this user is transferred
to his ownership. The new owner can rename the file in the
process of transferring it if he desires to avoid a clash
with an existing name of his own.

Implementation of the file system

All information relating to file usage is stored on the same disc
as the files themselves, though not in formally named files.
Rather, an area at the start of the disc is reserved for the
purpose. This area is mapped onto the virtual memory segments
4 to 31 of each process as it starts up in shared read-write mode
by writing the appropriate information into the master page in
the same way that a file is connected. Three kinds of table are
contained in this area. They are the following.

(a) ‘Page-in-use’ bit tables. Storage on the disc is divided into
page-sized units and each of these has a corresponding bit
in a bit table. These are used to indicate whether that page
is in use, i.e. is part of some file, or not. The appropriate
bits are set whenever a file is created or extended and cleared
whenever a file is destroyed or shortened.

(b) User name versus user number tables. For convenience of
implementation, each user name has a corresponding unique
user number. The advantage is that the number occupies a
field of smaller width than the character string of the name
and also that it can be used for indexing. These tables,
which are hash-coded on the names, hold the correspon-
dence between the names and numbers for retrieval when
required. When a process starts up, the entry parameters
contain both the name of the process user and the number.
The table is consulted and if an entry is not found for this
name, implying that it is a new user who is starting a process
for the first time, his name and number are inserted. Clearly,
the director need not and does not consult the table for its
own user’s number since it can be saved from the start-up
information. The table also is not consulted for the demon
process name ‘SYSTEM’ since this is always assumed to be
user number 2. Thus, the majority of file service calls
commonly do not involve consulting the table and thereby
avoid a probable page fault. Only those calls involving
other user’s files cause the access.

(¢) User file indexes. Each accredited user of EMAS has a file
index which contains all the information, e.g. location on
disc, size, etc, relating to his files. It is a page in length and
has a virtual memory position given by his user number
relative to the start of segment 4.

To maintain this consistent form of addressing, certain user
numbers are not assigned so that the position can be used for
the other types of tables. This structure imposes a limit on the
number of users that may be accredited to the system, which is
the number of pages in segments 4 to 31 less the number of pages
used for the other tables, eight, i.e. 440. This number is re-
garded as sufficient for the immediate future. The restriction
could be removed either by moving the boundary between

Volume 18 Number2

header 128 bytes
descriptors 3072 bytes
list cells 896 bytes

Fig. 2

director and user area or by mapping onto virtual memory only
those indexes belonging to users who are either currently
running on the system or who have files currently in use by
others.

Fig. 2 shows the layout of each file index. The header section
contains:

1. the name of the index owner

2. the number of free cells on the free list in the list cells
sections
3. the head of the free list of cells
4.a count of the file-pages this user owns for accounting
purposes

5. a set of subsystem file identifiers.
The use of the list cells is described below. The subsystem file
identifiers are used by the director when the process starts.
When a process starts, the only virtual memory areas connected
are the director code and the master segment. The director
makes further connections itself before any processing can be
done. Firstly, the segments 4 to 31 are connected and then two
files in the user’s area starting from segment 32. These are
intended to be a subsystem code file in shared read-only mode
and a file for it to use as a data area in read-write unshared
mode. Their names are the subsystem identifiers stored in the
header. When the director has completed these connections, it
transfers control to the start of the code file and indicates where
the data file is connected (since the code file may vary in length).
The identifiers are initialised to the names of a standard sub-
system and a data file when a user is first accredited to the
system and thereafter he can change them to whatever files he
chooses by using a service provided for the purpose, so that
next time he starts up the new files are used. In the main, this
feature has only been used in the development of new versions
of the standard subsystem though it is generally available.

The descriptors section of the index contains a 24-byte
descriptor for each file owned by the user. The contents of each
descriptor are shown in Fig. 3. The position of the descriptor
within the descriptor area is given by a hash on the file name.
The information in the descriptor area is referenced and up-
dated as services are performed on the file. The layout of the
index imposes a limit of 128 files per user. This limitation was
accepted to retain the convenience of a page-sized index.

The list cells area contains 224 cells each of four bytes. These
are initially formed into a free list from which cells can be

name ownp | eep acc cons | -arch tran spare pags perml pagl
T obytes i i 1 1 2 2 2 2 2
name: character string containing name of file
own p: owner’'s own access permission to file
eep: everyone else’s access permission to file
acc: mode of connection of file
cons: number of connections of file
arch: archiving status and usage bits
tran: user no. of user to whom file offered for transfer
spare: reserved for future use
pags: length of file in pages
perml: link to list of cells for individual access permissions
pagl: either, link to list of cells for disc positions of sections of file,

or, position of single sections of file on disc

Fig. 3

taken when required and to which they can be returned when no
longer needed. The links are page relative so as to fit in a two-
byte field. The cells are used to contain one of two sorts of
information, either starting page numbers on the disc of the
various sections of files (Fig. 4(@)) or access permissions for
individual users (Fig. 4(b)). The boundary between the des-
criptors and bit cells sections was fixed at what was found to
be a suitable value for an average user. The position could
have been made dynamic to suit more diverse needs but the
cost of more complication was not felt to be justified.

The file storage disc consists of disc surfaces on two separate
rotating spindles. One of the two devices occupies the two top
halves of the spindles and the other device the bottom halves.
Cylinder addressing alternates between the spindles with even
cylinder numbers on one and odd cylinder numbers on the
other. There are 1,024 cylinders on each device, i.e. 521 per
device spindle or quadrant, and each cylinder can hold 80
pages. To guard against failures of the disc hardware it was
decided to make use of this separation. Each user on the system
is assigned to one of the quadrants (from the range in which his
user number lies) and all the files belonging to him reside there.
The files on each quadrant are also archived separately so that
in the event of a partial disc failure involving only one quadrant,
such as a head crash, only those files need be restored. The
system can also be restored to full use in one quarter of the time.
Each quadrant has its own bit table and user name versus
number table. With 40,960 pages potentially available for
allocation to files on each quadrant, each bit table occupies a
page and a quarter. The remainder of the second page is used
for the name versus number table. The user file indexes are also
organised so as to reside on the appropriate quadrant. In
addition to these tables and indexes in the reserved area at the
start of the disc, space is also reserved for the master segments
of processes (other than the system-owned processes). These are
dynamically allocated to processes as they start and are not
related to the user number. Allowing for a possible 63 processes,
this reduces the total number of pages available in each
quadrant by 720. The corresponding positions in the bit table

are made use of by the storage allocation algorithm.

The director has the facility to use the disc only from a given
cylinder onwards. During the development of EMAS this was
made use of to allow the manufacturers’ J-level operating
system some disc space. It is also a safety feature should any
cylinder reserved for indexes, etc become permanently unusable.

As files can be accessed by users other than their owners,
precautions have to be taken to guard against mutual inter-
ference when file operations take place. To this end, each file
index has a corresponding semaphore (Dijkstra, 1968), upon
which P and ¥ operations are performed by calling on a super-
visor routine. Whenever a director wishes to access a file index,
it first claims the associated semaphore with a P operation. If
the semaphore is not already claimed, control is returned
immediately and the director will proceed to access the index
and to release the semaphore with a ¥ operation on completion.
If the semaphore is claimed, the supervisor queues the request
and suspends the director, i.e. does not send a reply, until its
turn in the queue for the semaphore comes round.

The bit tables and name versus number tables also each have a
semaphore which must be claimed before accessing them. An
exception is made in the case of the name versus number tables
in that the semaphore need only be claimed when updating a
table, i.e. when a new user comes on since any concurrent look-
ups will not mutually interfere and the updating is done in one
instruction.

A simple list-processing scheme is all that is required to
implement the semaphore routine in the supervisor. ‘Deadly
embrace’ situations are avoided by allowing the director to
claim only one semaphore at once. This is a more stringent rule
than is actually necessary but it does not cause any difficulties
since most of the services only involve one semaphore. For those
that involve two, it is occasionally necessary to release a sema-
phore and reclaim it later after a different semaphore has been
used to follow the rule. The simplicity of the rule, however,
makes for easy checking.

The amount of space in the file indexes and in the master page
for mapping tables precludes a completely general storage

The Computer Journal

pagl

page no. - > page no. 4]
2 bytes 2 bytes
Fig. (4a)
perml|
access | user no. —~ — ~—access |user no. | 9
4 bits .12 bits 2 bytes
Fig. (4b)

allocation system in which any page of a file can be anywhere on
the disc. The space is kept to manageable proportions by insist-
ing that the pages of a file connected to a segment of virtual
memory should be located in consecutive disc page positions.
The only mapping required therefore is that for the first page of
each segment. The remaining positions are found simply by
adding the page in segment number. Overlap from the end of
one cylinder to the beginning of the next but one (to maintain
storage within a quadrant) is allowed for in the disc accessing
routines. This scheme will tend to improve disc accessing for the
many files which will be accessed sequentially, though the
multi-programming will dilute this attribute. No consecutive
areas of disc storage greater than sixteen pages are required.
A file of more than sixteen pages will be divided into sections,
all sixteen pages in length excepting possibly the last which will
be whatever remaining number is required. Likewise, a file of
less than sixteen pages will be all in one section.

These groups of pages are allocated by a search of the bit
table for a long enough sequence of zero bits. The efficiency of
the search algorithm depends to a large extent on the way the
user or the subsystem he is using creates, extends and shortens
files. In particular, when a file is extended, if its length is not a
multiple of sixteen, the last incomplete segment will require
more consecutive disc pages. An attempt to do this in situ is
made, but if the required pages are already allocated, a com-
plete new set of pages of the right length must be found, the
existing part copied to the new area, the remainder cleared to
zero and the old space deallocated. When a file is shortened, if
the last segment is incomplete, this remains in situ and the
truncated pages are deallocated. The more time-consuming and
complex possibility of finding a group of pages in a hole of the
right or more nearly the right size (a ‘best-fit’ algorithm), and
copying into it, was not attempted. The result is that it is pos-
sible to make inefficient use of the disc, for instance by creating
files of sizes in multiples of sixteen pages and then truncating to
an exact length later. Small unusable holes will proliferate. The
preferred strategy would either be to create files of the right
length immediately or to create small files and extend them

Volume 18 Number 2 -

when necessary. The latter may result in excessive copying.

Simulation studies were carried outto find a suitable algorithm
for the expected usage. Speed is a primary requirement in addi-
tion to a solution to the fragmentation problem. The algorithm
this resulted in operates in the following way. Rather than
searching the bit table for a hole of the right length from every
bit position onwards, which will be very slow when large holes
are required, the positions from which comparisons start are
related to the length of the hole required. For a sixteen page
hole, the positions are chosen every sixteen bits and so on for
hole sizes which are a power of two. For intermediate sized
holes, the positions relating to that of the next higher power of
two are used. The least fragmentation was found to occur if
the searches always start from the beginning of the bit table
but the loss of speed of this method was unacceptable. There-
fore, a compromise was adopted in which the search always
starts from the next position beyond where the last hole of this
same size was allocated and continues cyclically from there.
Although the turnover in file-page usage is quite high, the
benefit of compaction of disc use toward the beginning in
terms of head movement is helped by initialising the search
positions to the start of the bit table whenever EMAS is started
up. The resulting algorithm is a variation of the ‘Buddy’
allocation system which is not directly applicable because of the
large amount of space involved.

Whenever EMAS is started up, the bit tables are recreated
and a consistency check performed on the file indexes. Initially,
the bit tables are cleared to zero. Each file index is then inspected
in turn. The user name in the header of the index is checked
against the entry in the name versus number table and then
each file descriptor is examined. The list containing the disc
positions of the file pages is inspected and checked to be con-
sistent with the file length in the descriptor. In the process of
doing this, the bits corresponding to the pages of the file are
set in the bit table. If any of the bits are already set, this
implies that two files claim to have been allocated pages in
common and a fault is signalled. This is conceivably possible
when a crash has terminated the previous session and the latest

127

copies of the file indexes may not have been written back to the
disc. Also allowing for possible previous crashes, the connect
mode and number of connections fields in the descriptor are
cleared to zero.

This initialisation can be inhibited, for example if access to the
disc is temporarily to be avoided or if a complete reload of
files from backup tapes is to be performed (Wight, 1975). In
the latter case, the preliminary clearing down of a quadrant of
the file system prior to recreating the files consists of clearing
the bit table to zero and setting each file index to an empty
status. The name versus number table is also recreated from
archived information.

The console input/output system

Console input/output differs from other input/output in that
communication with the user process is direct rather than
through the file system. The user process controls it by means
of SVCs to the director which co-operates with the supervisor
to perform the required services. The equivalent of the various
device controllers in the demons process is therefore part in the
director and part in the supervisor in this case, The director
part, being entered first when a service call is made, performs all
the validity checking of the parameters and deals with the
input/output in terms of streams. The supervisor part deals with
physical input/output and initiates transfers through the
multiplexor.

The console system also provides interrupt and prompt
facilities. Up to sixteen consoles may be coupled to a single
process for concurrent usage. Consoles are operated in an
echo-plex mode when possible. That is, input characters are
echoed to the printer mechanism from the multiplexor rather
than direct from the keyboard. This allows confirmation of the
successful receipt of the input by the multiplexor. A non-echo
mode is also available.

A user gains access to EMAS either by dialling up on a modem
telephone connection or simply by switching on if he is using a
dedicated telegraph circuit. Pressing any key on the keyboard
produces a hardware interrupt from the multiplexor when the
line is in its dormant state. This is directed to the appropriate
part of the supervisor to initiate the login procedure. The user
is requested to type his system name and his password, which
is not echoed. The demons process also has the function of
validating names and passwords. If it succeeds the supervisor
is requested to start up a process for the user. Since the same
mechanism is used to log in additional consoles to a process, the
supervisor first checks that no process is already in existence for
this user. If one is in existence, no further process is started up.
In both cases, the presence of a console is made known to the
process by passing suitable parameters to the user level via the
director. During the passage through the director, the console
identification number which is one of the parameters is noted
so that any future requests to use consoles can be verified as
relating only to those consoles which have been logged in to that
process. Since the input/output services use stream numbers
rather than console numbers (which may vary from run to run)
for convenience, service calls to associate console numbers and
stream numbers must be issued before any other calls. The
services available are:

1. Couple input. Associate a console with an input stream
number

2. Couple output. Associate a console with an output stream
number

3. Get input. Get a block (defined below) of input on a
specified stream and place it in virtual memory from a
given address onwards

4. Set input request message. The prompt facility described
below

128

5. Put output. Output on a specified stream the specified text
which is in virtual memory from a given address onwards

6. Input available? Query whether any input is ready for a
‘get input’ call. I a ‘get input’ call is issued when no input is
available the process will be suspended until there is some

7. Output possible? Determine how much output can be
requested without having the process suspended, i.e. how
much buffer space is available ?

8. Kill input. Cancel the previous “get input’ request
9. Kill output. Terminate the ‘put output’ transfer
10. Decouple input. Dissociate an input stream from a console

11. Decouple output. Dissociate an output stream from a
console

12, Logout console. Detach a console from the process.

The logout service does not stop the process. A separate
service is provided for that purpose. This allows consoles to be
logged onto and off from a running process as required. It
follows that there is no distinction between what are sometimes
known as ‘foreground’ and *background’ jobs since either can
become the other at any time though they may have different
running characteristics.

Input/output operations use segment I, shared among all
virtual memories, as a communication region. Pages are
allocated for this segment and locked in core as required by the
demands of console usage. The supervisor accesses them by
physical addresses and the director by virtual addresses. Each
console has fixed buffers of 128 characters for input and output
and they are used cyclically.

For input, the supervisor initiates a transfer from the console
to the appropriate buffer and the characters are read in as they
are typed. When a ‘get input’ request is issued, the director
requests the position and extent of any waiting input in the
buffer from the supervisor by means of an SVC. If input is
available, a reply containing this information is sent back to the
director immediately. If not, a reply is withheld and this effec-
tively suspends the director (and hence the user level) from
further activity. Only when a block of characters has been typed
is a reply sent. This is clearly necessary to avoid unnecessary
paging in and out of the process just to process single charac-
ters at a time. A block of input is intended to contain sufficient
for waking the process to be worthwhile, It is defined to be a
sequence of characters up to either a line feed, an end message
(EM) or an end of text (ETX) character. The multiplexor has
a very convenient feature which allows it to pass a hardware
interrupt to the supervisor whenever one of these characters is
typed without, except for ETX, terminating the transfer. The
supervisor can therefore recognise when an input block is com-
plete while the transfer is still in progress. Unfortunately, the
interrupt does not indicate where within the transfer one of the
characters has occurred so that a scan of the characters still
has to be made to determine the extent of the block. In the case
of ETX, the transfer then also has to be reinitiated. Unfortu-
nately the multiplexor gives in addition interrupts for charac-
ters which have no significance for EMAS and these have to be
ignored. If there is more than one complete block in the
buffer when a ‘get input’ is issued, the total extent of all the
blocks is indicated to the director. On receiving the information
the director copies it into the position specified by the request
and returns control to the user level.

The prompt facility is used with the ‘get input® service. A
string of up to fifteen characters can be set as a prompt message.
This message is output to the console whenever a get input is
issued and there is no input yet in the buffer, i.e. none at all
rather than no complete blocks. Its use is therefore to indicate
to the user what input the program expects from him. If the
user does type ahead of the ‘get input’ request, the prompt

The Computer Journal

message is not output. This avoids the malordering possible
when the standard output stream is used for prompting. The
same message remains and is used for subsequent ‘get input’
requests until it is changed by a further ‘set input request
message’ service. It can be set to a null string if no prompting is
required. The basic command interpreter of the standard
subsystem makes use of the facility. By setting the message to
COMMAND: it can indicate that the subsystem is at command
level and that it expects a command as the next input. If the user
has typed ahead, it can only be assumed that he knows what
will be expected and therefore the prompt is redundant. Any
user program can similarly specify what input it wants by
setting the message appropriately. The mechanism is convenient
where input may come to a program either from the console or
from a file since the prompts can be regarded as an additional
output stream. In the case of input from a file, ordinary prompts
would be quite spurious, whereas this mechanism allows them
to be suppressed without having to change the program.

For output requests, the director transfers into the buffer
from the virtual address specified and calls on the supervisor
to output the buffer to the console. The process is allowed to
continue if all the requested output will fit into the buffer. If
this is not so the director divides the output into parts which
fit into the buffer and these are transferred successively. Mean-
while the process is suspended until the last part has been
transferred into the buffer when it is then allowed to proceed.
Gaps in the transfer to the console which might occur through
having to wait for the next part to be transferred into the buffer
by the director are for the most part avoided by double-
buffering within the cyclic use of the buffer. Gaps can only occur
if the system response time is longer than the time needed to
transfer half the buffer to the console.

From the point of view of the supervisor and the user sitting
at the console, there are three levels of priority in the use of the
console. Lowest priority is regarded as input. When there is no
other activity on the console, a read transfer is left on. This
allows the user to type his input, possibly ahead of get input
requests. If he types too far ahead, however, and fills the buffer,
he is told to wait and the read transfer is removed, only allowing
him to interrupt should he wish to. The next priority is output.
As long as the user is not in the middle of a block typing ahead,
any ‘put output’ request will cause the supervisor to halt the
read transfer and to initiate the output transfer. If the user is
typing ahead, the output is withheld until he completes an input
block. Highest priority is the interrupt. When there is either a
read or a write operation in progress, the user can interrupt it
by typing an escape (ESC) character. ESC is used for the pur-
pose since it is one of the characters which causes a hardware
interrupt from the multiplexor when an input transfer is in
progress. Due to the design of the multiplexer any character
typed causes a similar interrupt when an output transfer is in
progress. The break function, i.e. break the transmitted signal,
which is often used for interrupting, is not used on EMAS
because of the havoc it tends to cause in the multiplexor with
the generation of an uncontroliably large number of hardware
interrupts. This havoc has, of course, to be accepted when acci-
dental line faults or breakages occur, though hardware modifi-
cations to improve the situation are being implemented. When
the hardware interrupt generated by ESC is received, the
supervisor terminates the operation in progress and queries
the user for an interrupt identifier. This is a string of characters
which after being read in is transferred to the director to take
some action on. Three kinds of action are possible. The general
mechanism is for the director to store the identifier together with
the number of the console from which it came within its own
data area so that the user level program can query, when it
chooses, whether a particular identifier has appeared either
at a particular console or at any console coupled to the pro-
cess. This is a mechanism the user program can use to re-

Volume 18 Number2
2

direct itself, for example to terminate excessive printing,
while still retaining control. The exceptions to the general
rule are to cater for situations where some immediate action
is required, e.g. the program is in a loop. Exceptional action
is taken when the identifier consists of a single character. One
of these, the letter Z, is allocated specially. If the director finds
this, it immediately terminates the process, i.e. an escape route
if all else fails. The remaining single character identifiers are
treated as outer level signals, described below. The effect is to
transfer control to some standard place in the user area. This
is intended to be in the subsystem so that it can take some cor-
rective action. In the standard subsystem, for example, the
identifier A, for abandon, returns control to the basic command
interpreter.

Parameter passing for multi-console operation

Particularly for console input/output with more than one con-
sole attached to a process, the possibility of certain service calls
resulting in the process being suspended may be inconvenient.
To circumvent this, an alternate way of issuing a service call is
provided, using a call known as pon, for parameter on. In this
case, the parameters for the required service are laid out in
virtual memory instead of in the floating point registers where
they are normally put and their address passed as the parameter
to the pon. The effect is for the director, which receives the
pon call, to issue the required service call recursively, and
immediately to reply to the user level. The initial processing of
the recursive call will, of course, take place before control
returns to user level since the director has higher priority, but
the effect of issuing the reply is to allow the user level to proceed
whatever the outcome of the service call. The reply to that call
will be sent to the director since all replies are sent to the source
of the request. The sequence of code at the director entry point
recognises that the input parameters represent a reply for a pon
service and the information in the reply is stored on a queue.

A poff, for parameter off, call retrieves information stored by
the director in this way. If there are no replies in the queue, the
user level is suspended until one appears. Again, to avoid the
possibility of suspension, a foff, for test for parameters off, call
is provided which tests whether there are replies available to be
poffed. Replies are returned to the user level by poffs in the
order in which they come to the director. In other words, if the
user level has ponned several calls before issuing a poff, the
order of the replies may be different. The user level therefore
identifies each pon call with an activity number as one of the
parameters and this number is returned in the corresponding
poff so that the reply can be identified.

This mechanism is also used to pass information from within
the system or from a console to the user level. Certain activity
members are reserved for this purpose. For example, one use is
the passing to the user level of the console number of a new
console just logged on so that it can be coupled and used for
input/output.

The signal facility

The signal facility provides a method of recovering from failures
in the user level. The user program can specify a position within
its area and environment in terms of register contents required
so that the program could be restarted at this point. Such a
specification is set up by a call on the director which stores it so
as to be available when required. If a number of these calls are
made, the positions are stacked. For most common failures
where a recovery is required, such as overflow, address error,
etc. the most recently stacked definition is used. However, for
disastrous errors, such as a hardware malfunction affecting this
process, the oldest stacked definition, or outer level, is used.
The standard subsystem always stacks a recovery position first
to be used as this back-stop and other programs may stack and
unstack definitions as they require. The user program may also

induce an artificial recovery at either the current or outer level thanks are, however, due to S. T. Hayes, H. Whitfield and A. S.

of the stacked definitions. Wight. Thanks are also due to F. Barratt and his staff at the
Edinburgh Regional Computing Centre for their valuable help
Acknowledgements in the elucidation of the multiplexor hardware. S. Michaelson

Teo many people have made contributions to the design of the has always provided encouragement and support. H. Whitfield
director for them all to be individually acknowledged. Particular ~ implemented the signal mechanism.

References

DUKSTRA, E. W. (1968). Co-operating sequential processes, in Programming Languages, F. Genuys (Ed.).

MiLLARD, G. E., REgs, D. J., and WHITRELD, H. (1975). The Standard EMAS Subsystem. The Computer Journal, to be published.

STEPHENS, P. D. (1974). The IMP Language and Compiler, The Computer Journal, Vol. 17, No. 3, pp. 216-223.

WHITFIELD, H., and WIGHT, A. 8. (1973). EMAS—The Edinburgh Multi-Access System, The Computer Journal, Vol. 16, No. 4, pp. 331-346.
WIGHT, A. S. (1975). The EMAS archiving program, The Computer Journal, Vol. 18, No. 1, pp. 131-134,

130 The Computer Journal

