The IMP language and compiler

P. D. Stephens

Edinburgh Regional Computing Centre, Universily of Edinburgh, The King's Buildings,

Mayfield Road, Edinburgh EH9 3JZ

The EMAS general purpose time sharing system is notable for being coded entirely in IMP,
a high level language, which was developed from Manchester University’s Atlas Autocode specifically

for system programming,

This paper describes the main features of the language and the implementation used for EMAS.

(Received June 1973)

The development of IMP was an integral part of the EMAS
project (Whitfield and Wight, 1973) to write a multi-access
operating system for the ICL 4-75 computer. The language
was to be based on Atlas Autocode (Brooker, Rohl and Clark,
1966) with sufficient additions to allow all the software to be
written in it without resorting to assembly language. The long
term intention was to enable large parts of the EMAS system
to be transported to future ranges of hardware simply by
recompilation.
Atlas Autocode (AA) often seems, to those not familiar with
this delightful and little known language, a curious starting
point. ‘Autocode’ suggests, incorrectly, a low level language,
while ‘Atlas’ implies an equally misleading machine depend-
ence. In 1966 AA was widely used in Edinburgh University and
a compiler (Bratley, Rees, Schofield and Whitfield, 1965) had
been written for the University KDF9. This compiler, which
was in advance of its time in that it was written entirely in
Atlas Autocode, confirmed that AA was free from implementa-
tion trouble spots and reasonably suitable for system program-
ming. Further, EMAPS was committed to supporting AA on
the multi-access system, so it seemed sensible to economise in
compiler writing effort by developing AA as the system pro-
gramming language.
It was the intention to follow the traditions of AA as far as
possible and in particular to ensure
1. That keywords continued to be self-explanatory rather than
cryptic.

2. That the language remained free of implementation trouble
spots.

3. That facilities requiring extensive run time support were not
included.

4, That the possibility of mechanical translation of IMP to PL/I
should not be excluded. :

This last intention was designed (in 1966) to ensure that IMP
programs and packages could be run at other installations
throughout the world This laudable aim has been invalidated
by the limited availability of PL/I compilers particularly on
British machines.

In spite of being designed for system programming, IMP has
been used extensively in Edinburgh for applications and general
purpose programming.

1. The IMP language
Alphabet
The ISO (7-BIT) character set is used:
A...Z
a...z
0...9
+—*/<()=>,.'""%@_&# ! =~
Names

These consist of a letter, optionally followed by more letters
and/or digits in any order.

216

Keywords
These are underlined as in ALGOL (in this publication bold
face type is used), e.g. real.

Blocks

An ALGOL-like block structure is used. Blocks may be nested
to any depth. They may be entered only via begin and left only
via end. A program is a block starting with begin and termin-
ating with endofprogram.

Types

The principal types are real, integer and string with declarations
and scope as in ALGOL. Types real and integer can be further
defined by byte, short and long, subject to hardware limitations.

The length of string variables may vary, subject to a maximum
length specified at declaration. This compromise gives most of
the advantages of variable length strings without introducing
the inefficiency of ‘heap’ storage.

Space for variables is normally obtained from the stack at
block entry. If, however, the variables are declared with the
prefix own, they are placed in a special area constructed at
compile time and allocated at program load time. Initialisation
of own variables is permitted.

Arithmetic expressions
Expressions consist of real and integer variables and constants
with the operators + — * / ** () in the usual way.

For example:

given integer i/, j; real array a(l: n); real x, y
then 2*x*y**2 + i*(j — 1) + a(i — 1)/3.14 is an expression.
The ALGOL integer division operator is available, repre-
sented by //.

Logical expressions
These consist of integer variables and constants and the
operators:

— representing logical not

! » » OF
" . . exclusive or
& ” ” and
<< » ,» left shift
>> » » right shift

For example:
given integer i, j, k
then (i << 16)! (j < < 8)! (k & 255) is a valid logical
expression.
Logical operations have proved very valuable in writing system
software.

String expressions
A string expression consists of string variables and constants

The Computer Journal

concatenated together using . (period) as the concatenation
operator.

A string constant consists of any combination of characters
within quotes except that quote itself is represented by two
quotes.

e.g. name . ‘has not been declared’

A contextual string resolution is provided:

e.g. given string (25) p, q, 7
p=q.(8).r

The string expression S is evaluated and located within p.
The portion of p before the first occurrence of S is transferred
to g, and the portion after S is transferred to r. An error
condition occurs if S cannot be located within p. (See also
conditional instructions.)

Assignments
Assignments take the form
v=FE
where v. denotes any variable and E an expression.

If v is an integer variable, then E must evaluate to an integer
expression (henceforth denoted by 7). No implicit rounding
takes place; if required, it must be explicitly requested using
the built-in function provided.

If v denotes a string variable, £ must be a string expression
(denoted by S).

In the case of assignments to strings or to byte and short
integers, a check is made that no truncation takes place on
assignment. An alternative form of assignment

ve—FE

suppresses the check although any resulting truncation is
naturally machine dependent.

Conditional instructions
These take the form:

if | [condition] then [unconditional instrn]
unless else [unconditional instrn]

where the else clause may be omitted.
A simple condition has the form:

El E2

AVVHI

<< =

where E1 and E2 are arithmetic, logical or string expressions.
String resolution (see also above) can be used as a simple
condition. The condition is regarded as true if the resolution
can be completed.

eg ifs—p.(g).randz > Othen... .

A compound condition consists of a number of simple
conditions linked by and or or.

There is no implied precedence between and and er, so that
brackets are required to prevent ambiguity when both oper-
ators are present. Compound conditions are evaluated from
left to right but only as far as is necessary for an overall verdict
of true or false to be obtained.

eg. x=landy=0andz<0
(x>1lamdy=0orz=0,
Unconditional instructions include:

assignments
routine calls
routine exits
jumps

Volume 17 Number3

A compound statement can be constructed after a condition
using start and finish (not begin and end) as brackets:

e.g. if x > O then start
: [list of statements]
finish

Cycles
The Atlas Autocode form of cycle is maintained:

cycle i = I1, 12,13

[list of statements]

repeat
where i is an integer variable and I1, I2, I3 are integer expres-
sions such that I2 # 0 and (/3 — I1)/I2 is an integer > = 0.
The integer expressions are evaluated prior to entering the
cycle and remain unaltered.

Two new forms of loop control have been recently introduced.
Their definitions were greatly influenced by the writings of
Dijkstra (1970).

The new forms of cycle are:

(a) while (condition) cycle
[list of statements]
repeat
{(b) until (condition) cycle
[list of statements]
repeat

Cycling continues while (until) the condition is true. Note that
until implies testing the condition after the body has been
traversed whereas while implies testing before a traverse is
made. Thus the body of an until cycle is always executed at
least once, whereas the body of a while cycle may not be
executed at all.

Cycles may be nested to any depth.

Labels and jumps
The conditions and cycles already described are designed to
allow system programs to be written without requiring jumps
or labels. The following facilities are provided to give com-
patibility with Atlas Autocode.

Labels take the form:

name:

N:

a(N):
where N denotes an integer constant. They can only be refer-
enced from within the block in which they are set and not
within any sub-blocks. Simple labels require no declarations
but vector labels require a declaration of the form switch
a(N1: N2).

Jumps take the form:
— name

—N

—a(l)
In the case of — a(Z),] must be an integer expression and a
run-time check is made that the corresponding label exists.

Structured data objects

A limited form of structured object has been introduced to
facilitate the manipulation of tables within the language. The
structure of such an object is described by a non-executable
record format statement of the form:

record format name ([declaration list])
e.g. record format f (integer /, /, k, string (5)s)

All declarations (including record) are accepted within a
record format, but arrays must have constant bounds. Space is
allocated by a record declaration which may reference any
previously declared format:

217

e.g. record rl, r2(f)
record array r3(1:m, 1:n)(f)

Records and record arrays may also be declared as own.
Elements of such tables are referenced by concatenating the
record name and element name using the ISO break character
(-):
eg ri_i
r3(p, q)-s

These compound names are acceptable in any circumstance
where a simple name of the same type may be used.

Operations on complete records are restricted to record
assignment including the assignment of a zero (null) record.

e.g r2(p,q) =rl
r2=0

Routines and functions
As in ALGOL, a routine is a named block with (optional)
parameters. The IMP routine heading:

{[:;:eﬁ;:n} name ([formal parameter list])

replaces the begin.
The types of routine and function [RT] allowed and their
corresponding exit instructions are:

routine integerfn realfn stringfn
return result =7 result=F result=S

As with data, a routine name must be declared before being
called. This is accomplished by giving a specification of the
form:

[RT] spec name ([formal parameter list])
It is possible to dispense with the specification if the routine is

given before any reference is made to it.
The call statement is:

name ([actual parameter list])

The possible formal parameters and the corresponding actual
parameters are as follows:

Formal Actual

[type] name .

[type] array name The name of an entity of the
record name corresponding type
record array name

[type] An expression (, E or S) of the

corresponding type.

routine A routine name

[type] fn A function of corresponding type

The names associated with the formal parameter have the
force of declarations within the routine body, but, in the case of
RT parameter, a specification is also required before the formal
parameter routine can be called.

An integer, real or string formal parameter is assigned at the
time of call the value of actual parameter (call by value).
A ... name formal parameter is assigned the address of the
actual parameter as evaluated at time of call (call by reference
not call by substitution).

Pre-declared routines

The user’s program is conceptually enclosed in a further block
containing the specification and bodies of some fifty routines
and functions. These routines cover mathematical and trigo-
nometric functions, input/output and other utility routines.
Naturally, in a system programming language, one does not
preload routines which are not used and this is discussed further
in the section on the compiler.

218

Input and output
This is provided by pre-declared routines—special statements
are avoided. The basic routines are as follows:

select input (I) Arrange for subsequent input (output) to

select output (/) come from (go to) logical stream /. Map-
pings between logical streams and files can
be made by program or (in foreground
mode) by console command or (in batch
mode) via the job control language.

print symbol (/) transfer symbols to (and from) the current

read symbol (i) output (input) streams converting to and
from the ISO internal code. The control
characters, line feed and form feed, are
handled by these routines.

print string (S) Outputs the string expression.

next symbol This integer function gives the next symbol
on the input stream without advancing the

input pointer.

A considerable number of other routines are available for
input/foutput of decimal and hexadecimal numbers, card
images and strings. These are all written in IMP and use the
basic routines described above. The compiler recognises all the
basic routines and compiles a call on an Input Output Control
Procedure (IOCP).

Many system programs have specialised 1/O requirements.
The IMP programmer has all the IMP I/O routines available
to him in any situation if he supplies a suitably modified version
of IOCP. The EMAS Supervisor handles its output in this
manner.

Segmentation

Routines can be compiled separately provided the routine
heading is prefaced by extermal. For a program or external
routine to access an independently compiled routine, a modi-
fied specification is required of the form:

external [RT] spec ([formal parameter list])

Communication between separately compiled entities is usually
via the parameter list. However, external variables may be
declared:
e.g. external integer |
external real array a(1:100)

These static variables may be accessed by a number of inde-
pendently compiled routines. It is possible to overlay external
routines although on the EMAS System overlays are neither
necessary nor desirable.

Pointer variables
Pointer variables may be declared as follows:
[type] name record mame
[type] array name record array name
They hold the address of the entity at which they point exactly

as for formal parameters of name variety. Assignment of
addresses to pointer variables takes the form

where p is a pointer variable and v any normal variable of

corresponding type. Pointer variables are often used in con-
Jjunction with mapping functions.

Store mapping

System programmers sometimes require closer control over
storage than is provided by simple static and dynamic variables.
A mapping function is defined by:

[type] map name ([formal parameter list])
and is similar to a normal function except that its result is

The Computer Journal

treated as an address from which a variable is fetched, or to
which a variable is stored, according to the context of the call.
Mapping functions thus enable symbolic names to be given to
areas of storage outside the normal stack area allocated to the
program. The pre-declared mapping functions:

integer () real (I) string (1)
shortinteger () longreal (/) record (J)
byteinteger ()

are used to access a variable of the corresponding type whose
address is given by the integer expression I. These functions are
often used in conjunction with pointer variables.

e.g. On the ICL 4-75 the word whose address is 72 is the
Channel Address Word. To access this it is necessary to
code:

integername caw
caw = = integer (72)
Hereafter, any reference to caw accesses the Channel
Address Word.
The function:
addr (v)
can be used to obtain the address of an IMP variable and the
special mapping function:
array

can be used to map arrays on to data files.

The mapping of arrays and records is a powerful and widely
used facility which is very similar in effect to PL/I's ‘BASED
STRUCTURE".

Machine code
It is possible to write assembly code at any point within an
IMP program although, naturally, this is strongly discouraged.
All the instructions are available and IMP variables and labels
may be used. This scemed preferable to providing special
functions to permit Supervisor to use the privileged instructions.
The presence of assembly code served also to reassure those
who are certain that a high level language is too ‘inefficient’ for
a supervisor program.

Punching conventions

To facilitate punching on terminals or on cards, % character
is reserved as a shift character to indicate that the following
word is underlined. Statements are terminated by a semi-colon
or by a newline. Consequently, if a statement is to occupy more
than one line, all lines except the last are terminated by the
continuation symbol ¢. Spaces and superfluous terminating
characters are ignored (except within string constants). The "
(double quotes) character is not used within the language and
is used by EMAS Director (Rees, 1973) as a delete character
when accepting input from a terminal.

Comments may be inserted by means of:

comment [text] or ! [text]
The Atlas Autccode fault statement:
fault [list of error conditions] — label
has been retained. Its effect is to intercept non-catastrophic
errors and to restart the program from the specified label. If
a fault occurs which has not been trapped, execution of the
program ceases and a stack post mortem is output. An ex-

ample of such a termination is given in Appendix 1.
The unconditional instruction

monitor

can be placed at any point in the program. Its effect is to obtain
a post mortem print without otherwise disturbing execution of
the program.

Volume 17 Number 3

Language facilities withdrawn
It may be of interest to comment on three features of the origi-
nal IMP specification which have been discontinued

1. Arrays of pointer variables
e.g. integer name array na (1:50) .

Name arrays hold the addresses of variables assigned using the
address assignment operator = =. These inoffensive variables
proved of little use and were dropped.

2. Routine variables

These were provided in an attempt to extend the routine para-
meter mechanism. Declarations took the form

routine name r
routine name array ra (1:m)
Routines could be assigned to routine variables
e.g. ra(l) == select input
ra(2) == select output
and finally a statement of the form

ra(i) (k)

calls the routine that was last assigned to ra(i) passing k as a
parameter.

To enable the call to be compiled, it was necessary to restrict
the routines assigned to routine variables to ones having the
same parameter structure. It was further necessary to ensure
that all routines assigned were global to the routine variable
declarations—otherwise calls could be made on routines when
their global variables were not present on the stack. These
restrictions emasculated what appeared to be an interesting
facility.

3. Dynamic formats

The early IMP compilers allowed arrays in record formats to
have dynamic bounds. This meant that format statements had
run time significance and that a dope-vector was required with
each format. The price in execution time was judged to be too
high for the advantages provided.

Compiler restrictions

The current EMAS compiler imposes two restrictions on the
language described.

(@) The static depth of nested blocks must not exceed eleven
levels of which not more than five may be routine . . . end
groupings.

(b) Own arrays, switches, and arrays within record formats
are restricted to one dimension only.

Compiler diagnostic facilities

The compiler can operate in checking or optimising mode, the
former being the default. In checking mode, additional
instructions are planted to ensure that:

(a) No variable is used before a value has been assigned to it.

(b) All references to array elements are within the declared
bounds.

{c) No truncation takes place when assigning to variables of
type byte integer, short integer or string.

(d) Overflow is tested at every stage of every arithmetic
operation.

(e) Any cycle of the form cyele i = p, g, r will terminate.

(f) Every switch label is set.

(g) The source line which corresponds to the object code
currently being executed is known.

(h) Pointers are maintained to ensure a useful post-mortem
can be produced in source language terms.

Naturally, a program compiled with checks is very much larger
and less efficient than the corresponding optimised program—
a factor of 3 is common. Nevertheless, the checking and diag-
nostic facilities greatly ease the problems of debugging large
programs and have proved to be one of the most valuable
features of IMP.

IMP—A brief critique

The following remarks are proffered in the full knowledge that
originators are often totally blind to the defects of their brain
children.

It seems to us that IMP has struck a reasonable balance
between what is desirable and what is possible to implement
efficiently. It may err a little on the side of verbosity but it
remains easy to read. Its most successful features seem to be
the logical operations, strings and diagnostic facilities. Real
arithmetic and routine parameters have been almost completely
ignored by system programmers although both features are
used by applications packages.

Arguments continue whether or not the IMP structure with its
three types of bracketing (begin . . . end, start . . . finish, cycle
repeat) produces more or less readable programs than ALGOL.

Its principal failure lies in the area of coatingency handling.
The fault statement is insufficiently flexible for system pro-
grammers who tend to call Director’s Signal mechanism directly
(Rees, 1973). A system programming language requires some
form of on condition that permits the resumption of the inter-
rupted program.

Purists have criticised IMP for not having a variable of type
logical, and it is true that allowing bit operations on integer
variables presumes a conversion between integers and bit
representation. Nevertheless, IMP programs have been trans-
ferred between the ones-complement Univac 1108 and the
twos-complement 4-75 without raising any problems in this
particular area. A more serious obstacle to machine independ-
ent software is the use of mapping functions which can assume
an addressing structure. However, mapping functions have
proved too valuable for abolition or amendment to be possible.

The choice of the term byte integer was unfortunate as it
causes an emotional reaction, particularly among those who
dislike IBM System 360 and its architecture. A neutral term
such as character would have been preferable.

It remains the implementer’s copviction that the language
would have aroused wider interest if it had been christened
[mplementation ALGOL or ALGOL (/) rather than IMP.

2. The IMP compiler

Compiler objectives

The EMAS project started two years before the delivery of the

4-75. In the meantime, a KDF9 was available for preliminary

testing. The initial objectives were:

1. To provide an IMP compiler for KDF9, simulating as far as
possible byte addressing and 32-bit arithmetic on a 48-bit
word address machine.

2. To have a preliminary version of the 4-75 compiler ready as
soon as the machine arrived.

3. To concentrate, in the first instance at least, on robust
compilers with good diagnostics.

The first compilers were to be single pass to simplify the
bootstrap between machines with very different device handling
philosophies.

Compiler development

The starting point was the Atlas Autocode compiler for KDF9
(Bratley et al., 1965). This compiler had been written entirely
in Atlas Autocode. It was compiled on the Manchester Atlas
and then bootstrapped to the KDF9.

The IMP compiler for KDF9 was written in the Atlas Auto-
code compatible subset of IMP and simulated byte addressing
and 32-bit arithmetic by extensive use of subroutines. Arith-
metic operations were 2-4 times slower than in Atlas Autocode
and array access some 6 times slower. However, the boot-
strapped compiler was only about 50 per cent slower than the
Atlas Autocode compiler, thus showing what a small portion
of compiling time is spent in arithmetic operations.

For System 4, the compiler was bootstrapped from the
KDF9 compiler via assembly language (due to difficulties with
the manufacturers early operating systems). This compiler was
also bootstrapped onto the IBM 360/50 (Yarwood, 1970).

The early EMAS components were compiled on the manu-
facturers J level operating system and transferred to the EMAS
system as binary magnetic tape. As soon as the supervisor was
sufficiently robust, the IMP compiler followed this by now well
worn route.

Since its establishment on System 4, the IMP compiler has
been bootstrapped through itself seven times. Two of these
were due to changes in register conventions and sub-system
standards inevitable in the ‘iterative’ design of complex soft-
ware. One was due to hand-coding of several routines to
produce faster compiling times. (A 20 per cent increase in speed
was obtained after the usual difficulties of debugging assembler
coding had wasted several months.) The remaining four boot-
straps were to enable improvements to be made in the following
areas:

Release 5 routine entry and exit effort = three months
Release 6 register allocation effort = two months
Release 7 expression optimisation effort = six months

Release 8 simple loop optimisation effort = five months

Of these, the register allocation required the fewest source
statements and produced the biggest improvement in object
code. The expression optimisation required the most new
source code and produced the least effect.

The effect of these changes is that the Release 8 compiler
produces about half the 2mount of object code that Release 1
produced for the same program. Release 8 object code is
rather more than twice as fast as Release 1 object code. Since
the compiler is written in IMP, compiling speeds have increased
similarly. These figures enable the four months spent hand
coding analysis routines to be seen as the waste of effort it
undoubtedly was.

Object program

The object program produced by the compiler consists of three
areas. A shareable area of code, constants and symbol tables,
a non-shareable area of own variables and external references,
and lastly some linkage data. The object program format is
described elsewhere (Millard and Whitfield, 1973). Note, how-
ever that EMAS program sharing (Whitfield and Wight,
1973) demands that a shared program executes correctly even
if it is at a different address in virtual memory. This causes
the compiler writer some problems—for example by preventing
the use of address constants—although the effect on object
code efficiency is small.

The IMP object program uses a stack for variables and tem-
porary space. Each routine claims its ‘stack frame’ on entry and
releases it on exit. A ‘display’ points to the stack frames avail-
able at any instant as defined by the scope rules. In IMP, this
display is kept in the general registers, thus making local
variables directly addressable at all times. This leads to efficient
object code except when passing routines as parameters, but
requires a limit to be placed on the depth of nested blocks.

On a routine call the parameters are placed ahead of the stack
top such that they will appear in the local variable space of the
called routine when it claims its stack frame.

The Computer Journal

One register of the object program is reserved to address
‘PERM’. This is a small collection of assembly code routines
provided to carry out basic services for the object program, e.g.
dynamic array declaration. A checked program requires some
25 routines (3660 bytes)—an optimised program only six rou-
tines (1560 bytes). The main constituent of PERM is a large
table of multiples of 4096 which are required to overcome the
addressing limitation of System 360/System 4 architecture.

This addressing limitation also requires that a routine’s stack
frame may have to be divided into two parts. The first part,
restricted to 4096 bytes in length, contains scalar variables and
pointers to elements in the second part. The second part
contains strings, records and arrays. If any arrays have dynamic
bounds, the size of the second part of the frame will not be
known until run time. Frequently the size of the first part is
substantially less than 4096 bytes, in which case strings, records
and any arrays with constant bounds are transferred from part 2
to part 1 to utilise the balance of the space and obviate the
inefficiencies caused by the use of pointers.

The pre-declared routines are divided into two groups. The
‘intrinsic’ routines are sufficiently trivial for in-line code to be
generated. The remainder are provided by external routines and
functions written in IMP. When a pre-declared name is first
referenced, the compiler generates the appropriate linkage data
to enable the routine to be included at program load time. A
systematic change of name is required to avoid confusion
between pre-declared routines and user written external rou-
tines. This arrangement has the considerable advantage of
enabling much of the language support software to be written
in IMP and thus to be available to all the IMP compilers. It also
avoids including unwanted material with system programs.

Compiler structure

The internal structure of the compiler is a field of very limited
interest. Some features of more general interest are described
below.

The compiler is a normal IMP program obtaining its input
via the read symbol routine and outputting a program listing
and error messages via the print symbol routine. The compiler
hands its binary in small chunks to a routine provided at
compiler load time. This routine constructs the output file. By
varying the binary output routine, the output can be an EMAS
file, binary cards or a file for some other operating regime. In
particular, an output routine exists which puts the code directly
into core and executes it—giving a ‘student crunching’ system
using the standard shared compiler. This arrangement is not
the most efficient imaginable, but it does have the attraction
that the compiler can be operated in any (sufficiently large)
machine possessing an IMP system and opens the door to a
variety of bootstrapping techniques.

The compiling technique is one-pass, multiphase:

Phase 1 Input of the source program and construction of the
listing.

Phase 2 Syntactical Analysis using a table-driven variation of
the method of recursive descent. The syntax tables are
generated automatically. This phase also includes all
the dictionary building.

Phase 3 Compilation proper—the following subphases are
applied as necessary:

3a Generation of an internal representation of all
assignments, expressions and jumps.

3b Examination of the internal form for machine-
independent optimisations.

3¢ Examination of the internal form for shortcuts
in the object cede (Object machine dependent).

3d Allocation of registers (Object machine de-
pendent).

Volume 17 Number3

Table 1

PROGRAM

1 2 3
Source file (statements) 3839 261 261
Object code (bytes) 34944 4616 11008
Total cpu time (seconds) 80-15 8777 8101

Total no. of page turns*
Break down per Phases

2205 607 634

Phase 1 percentages of total cpu 17-38 1511 1637
. w s Dturns 3306 5812 55-68
Phase 2 v » » Cpu 3103 2102 2037
v » s Pturns 11-93 2-80 2-68
Phase 3 ” » o Cpu 5080 61-54 6233
» » » P turns 48-66 2290 10-78
Phase 4 ” » s CPU 0-79 234 9-13
pturns 635 1614 2886

Program 1 is the principal component of the current EMAS

supervisor (optimised compilation)
is a matrix program—predominantly performing
real arithmetic on two dimensional arrays
(optimised compilation)
is program 2—checked compilation.
*The EMAS supervisor charges for a page turn whenever it brings

a page into core on behalf of a process. Currently the charge is
equivalent to 0-003 seconds of cpu time.

Program 2

Program 3

3e Generation of the binary (Object machine de-
pendent).
Phase 4 Synthesis of the object program from small pieces of
binary.
Phase 1 is applied to the source program, a line at a time; the
other phases,a statement at a time. Table 1 gives the CPU times
spent in each phase for two sample programs.

Every effort has been made to isolate those parts of the
compiler which are dependent on the characteristics of the
target machine. It is distressing how large phase 3¢ has to be to
utilise fully the 360 order code, in particular the store-to-store
and store-immediate instructions.

The compiler makes no attempt to improve the paging charac-
teristics of the object program in spite of work done at
Edinburgh showing how effective rearrangement can be
(Pavelin, 1970). However, unnecessary branching is avoided,
and in-line code preferred to subroutines except for the follow-
ing operations:

Initialisation (execution of the first begin)
Termination

Execution of a fault statement

Dynamic array declarations (actually two subroutines)
String Resolution

In-line code is produced for exponentiation, string concaten-
ation and fix/float operations.

Optimisation techniques
In optimising a source program, the ‘window’ technique is used :
Phases 1 and 2 are allowed to run ahead of Phase 3 and a cyclic
buffer is used to store up to 15 analysed statements, When
elementary examination discovers a group of statements that
must be executed in sequence, Phase 3 is applied to the group
of statements. This technique is adequate to permit optimisation
of most loops as can be seen from Appendix 2.

When designing the optimisation, the (highly dubious?)
assumption was made that experienced system programmers
would code to a high standard. The compiler makes no attempt

to perform optimisations that can be better done by the pro-
grammer. No attempt is made to move constant operations out
of loops, and common sub-expression optimising is restricted
to expressions which cannot be further simplified by the
programmer.

Bootstrapping

Compilers have been produced which implement substantial
subsets of IMP on PDP8, PDP9, PDP11, PDP15, Modular 1
and Univac 1108 machines.

The easiest way to produce an IMP compiler for a new
machine requires EMAS or some other large IMP system. The
most suitable existing IMP compiler is altered to produce
object code for the new machine. This compiler compiles itself
and its supporting input/output routines using a binary output
routine that produces cards suitable for loading onto the new
machine. Eventually this new compiler compiles itself on the
new machine to produce a self-supporting IMP compiler.

Where a suitable large IMP system is not available, the
SKIMP bootstrap method is used. SKIMP is a subset of IMP
(roughly the Atlas Autocode compatible subset), and a
compiler exists written in SKIMP to produce hypothetical
assembly code (HAL) for an austere, one accumulator, three
index register machine. Most of the compiler support material
is written in SKIMP and exists in source and compiled (HAL)
form. HAL has been designed to be assembled by most current
macro assemblers. To implement SKIMP on a new machine, it
is necessary to write the macros to enable the HAL version of
the SKIMP compiler to be assembled, and also to write a small
amount of input/output software in machine code. Once the
HAL version is operational, it can be used to bootstrap an
orthodox compiler or to improve itself by iteration. The IMP
compiler for Univac 1108 was produced via this route in less
than six months.

The efficiency’ of IMP

There is no doubt that EMAS has gained immensely by being
written in IMP, yet the question often asked by visiting system
programmers is ‘How efficient is IMP? This question is not
easy to answer.

Two routines in EMAS and twenty in the compiler have been
hand-coded. The gains in performance or reductions in size have
varied from an encouraging 2 per cent to a rather discouraging
40 per cent. The majority have fallen into the 10 per cent to
20 per cent range. One routine in EMAS—the interrupt
analysis routine—was originally written in assembler code.
This routine has recently been rewritten in IMP and this time
the IMP version is smaller by 11 per cent and presumably
faster by a like amount. It is prcbably fair to conclude that
the IMP compiler produces code about as efficient as assembler
written by programmers under the usual pressures. Both of
these fall short of the optimum possible.

In the matter of variable space, the advantage seems to lie
with IMP. The stack system economises on storage by allo-
cating it only to those routines currently active. There is no
reason why assembler programmers should not use a stack,
but in practice they usually prefer to allocate private storage to
each subroutine. The total local variable space required by the
routines of the current EMAS supervisor is 17848 bytes, but a
stack of 3000 bytes has proved adequate, giving a substantial
saving of 14848 bytes. For paged software, the stack system has
the added attraction of economising on page faults.

Programming effort

The work described in this paper took the author about four
years spread over the years 1967-1972 inclusive. The production
of the 1108 compiler took about six months. It is estimated that
a tolerable compiler could be produced for any conventional
machine in about the same time. A further period might be

required to improve the object code to the standard of the
current EMAS compiler, but much would depend on the order
code of the new machine.

On system programming in IMP

All members of the EMAS project agree that working in a high
level language was a great advantage. The volume of coding
was greatly reduced—a listing of all the system source code will
fit in an average briefcase and still leave room for sandwiches.
This meant that the programmers working on the system could
be reasonably familiar with all the code, not just their own sec-
tion. Consequently, a system crash could be diagnosed and
solved by one programmer rather than a committee. The check-
ing facilities pinpointed many (but alas not all!) coding errors
before they appeared as mysterious, transient bugs. The run-
time diagnostics were valuable to the subsystem writers,
although of considerably less value in detecting an error in, for
example, the page fault routine.

Probably the most valuable feature of IMP was the encourage-
ment it gave to structured programming. Within the structure,
an unsatisfactory routine or component could be identified,
redesigned and recoded in a short time, without disturbing the
rest of the system.

The EMAS programmers who had previous experience of
high-level languages adapted easily to system programming in
IMP. They produced compact, highly structured programs
which were easy to maintain or amend despite defects in
commentary and/or documentation. They seldom worried
about the efficiency of object code produced by the compiler,
but their programs generally performed well. This group
included the most productive programmers working on the
project. Programmers with a background of assembly languages
were less happy with IMP and seldom used its more advanced
features such as recursion. They produced well commented
and documented programs that nevertheless proved difficult to
maintain since they lacked structure. This group worried about
the efficiency of object code produced by the compiler to the
extent of examining the listings of code produced, yet their
programs were often large in size and slow in execution. Some
of the least productive programmers were included in this group.

In view of our experiences with IMP, it is demoralising to
thumb through the ‘situations vacant’ columns of the news-
papers and read that one has no chance of being recruited to
write the ‘software of the future’ without ‘several years ex-
perience of assembly language programming, preferably on
an IBM 360°!

Acknowledgements

The debt to the designers and implementers of Atlas Autocode
is as large as it is obvious. Particular credit is due to P. Bratley,
D. Rees, P. Schofield and H. Whitfield who wrote the Atlas
Autocode compiler for KDFS.

H. Dewar wrote the IMP compiler for the PDP9 and PDP15
machines while S. Hayes, N. Shelness and K. Yarwood
contributed IMP compilers for the PDP8, Modular ! and
PDPI11 respectively. The SKIMP/HAL bootstrapping method
was developed from a teaching project designed by D. J. Rees.

The above, and many others too numerous to mention
individually, contributed ideas and suggestions, or joined in the
heavy but good-natured criticism with which innovations were
invariably received. '

Appendix 1
The following example shows the diagnostics given after an
array bound exceeded fault with the given program and data.
Program

1 9%, BEGIN

2 %INTEGER GIVEN,SQ

3 %INTEGERFNSPEC MAX FACTOR(%INTEGER N)

The Computer Journal

!
IFINDS ALL PRIME NUMBERS LESS THAN GIVEN
!

IMETHOD IS TO FILL ODD LOCATIONS IN %C

ARRAY A WITH ONE AND
ITHEN DELETE MULTIPLES OF ALL POSSIBLE %, C
FACTORS
9 !
10 READ(GIVEN); !OBTAIN DATA
1 !
12 9BEGIN
13 o,INTEGER I, SQ, TAB
14 % BYTEINTEGERARRAY A(2:GIVEN — 1)
15 A(2) = 1; !SPECIAL CASE ONLY EVEN PRIME
16 9%CYCLE 1 =3, 1, GIVEN — 1
17 %IF 1&1 = 0 9%THEN A(l) = 0 %ELSE A(l) = 1
18 o, REPEAT
19 {
20 1=3
21 % WHILE | < MAX FACTOR(GIVEN) %CYCLE
py) % IF A(l)#0 %THEN %START
3 $Q = 1++2
24 % WHILE SQ < GIVEN %CYCLE
25 A(SQ) = 0; ITHIS NUMBER NOT PRIME
26 $Q = SQ + 2*1
27 9, REPEAT
28 % FINISH
29 =1+ 2
30 9REPEAT
3 {
32 INOW PRINT OUT ANSWERS AT TEN 9, C
TO A LINE
3 !
34 PRINTSTRING(’
35 PRIMES LESS THAN)
36 WRITE(GIVEN, 4)
37 NEWLINES(2)
38 !
39 TAB=0
40 %CYCLE | = 2, 1, GIVEN; % C
IERROR, SHOULD BE ‘GIVEN — 1’

4 o4IF A(l)#:0 %THEN %START
2 WRITE(, 5
) TAB = TAB + 1
4 %IF TAB = 10 % THEN %START
45 TAB =0
46 NEWLINE
47 9, FINISH
48 9, FINISH
49 o, REPEAT
50 o,END; !OF INNER BLOCK

51 %INTEGERFN MAX FACTOR(%INTEGER N)
1

53 IRETURNS ANSWER SUCH THAT 9%, C
(ANSWER — 1)*%2 < = N < ANSWER**2

54 !

55 o, INTEGER |

56 (=1

57 O, WHILE %2 < = N %THEN | = | + 1

58 SZRESULT = |

59 SEND; 'OF INTEGER FUNCTION MAX FACTOR

60 %ENDOFPROGRAM

References

When this program is run with a datum of 99 the following
output is obtained.

PRIMES LESS THAN 99

2 3 S 7 11 13 17 19 23 29
31 37 # 43 47 53 59 61 67 T
73 79 83 89 97

MONITOR ENTERED FROM IMP

ARRAY BOUND FAULT 99

ENTERED FROM LINE 41 OF BLOCK STARTING AT LINE 12
LOCAL VARIABLES

TAB =5
SQ = 105
| =99

ENTERED FROM LINE 12 OF BLOCK STARTING AT LINE 1
LOCAL VARIABLES

SQ = NOT ASSIGNED

GIVEN = 99

STOPPED AT LINE 41

Appendix 2
The object code produced for an optimising compilation of a
piece of IMP.

given integer i, j, k, n
integer array a(0:100), b(0:n)

then the code produced for

cycle i =1,1,n
j =4 +a0)
=k + b(i + 1)
repeat
is as follows
USING STACKFRAME, 9
USING CODEBASE, 10
*PROLOGUE TO THE CYCLE
L 4,ABO SET GR4 TO POINT AT
DYNAMIC ARRAY B
L 5K ASSIGN K TO GRS
LA 61 ASSIGN INCREMENT TO GRé
L 7,N AND FINAL VALUE(N) TO GR?7
L 8J ASSIGN JTO GRS

LA 1,1 ASSIGN | TO GR1 AND SET TO 1
*END OF PROLOGUE=START OF CYCLE BODY
cYco1 LR 21
SLL22 SET GR2 = 4¢|
A BAQ) =)+ Agl)(STATIC ARRAY A
. IS IN STACKFRAME (UNLIKE B)
A 5424) K=K+ B(l+1)

BXLE 1, 6, CYCO1 REPEAT
*CYCLE EPILOGUE ASSUMING ALL REGISTERS NEED TO
*BE UNSET
*|.E. NEXT STATEMENT IS BRANCH OR ROUTINE CALL.
ST 5K RETURN K TO STORE
ST 8J RETURN) TO STORE
ST 7,1 SETITO FINAL VALUE

This code is not the optimum possible since it is possible to
rearrange the cycle so that it is of the form
cyclei = 4,4,4*n

this saves a LR and SLL in the innerloop at the expense of
more in the prologue and epilogue.

BRATLEY, P., REss, D. J., ScHOFIELD, P. D. A., and WuitrieLp, H. (1965). Atlas Autocode Compiler for KDF9, Edinburgh University

Computer Unit Report No. 4.

BROOKER, R. A., ROHL, J. S., and CLARK, S. R. (1966). The main feature of Atlas Autocode, The Computer Journal, Vol. 8, pp. 303-310.
DUKSTRA, E. W. (1970). Notes on Structural Programming, Technical University of Eindhoven Report No. 70-WSK-03.

MILLARD, G. E., Regs, D. J., and WHITFIELD, H. (1973). The Standard EMAS Subsystem, The Computer Journal (to be published).
PAvELIN, C. J. (1970). The improvement of program behaviour in paged computer systems, Edinburgh University Ph.D. Thesis.

Regs, D. J. (1973). The EMAS Director, The Computer Journal (to be published).

WHITFIELD, H., and WIGHT, A. S. (1973). EMAS—The Edinburgh Multi-Access System, The Computer Journal, Vol. 16, No. 4, pp. 331-346.
Yarwoob, J. K. (1970). Towards machine independent processors. The Computer Bulletin, Vol. 14, No. 7, pp. 219-221,

Volume 17 Number3

