FILE STRUCTURE'AND DATA DESCRIPTION IN
THE IMP LANGUAGE

A. Freeman
International Computer Limited

United Kingdom

ABSTRACT

This paper describes work undertaken for ICL and Edinburgh
liniversity on the conversational %Wulti-Access system being

implemented on the University's ICL 4-75 Computer.

The langua'ge IMP, & derivative of Atlas £utocode, is being

used to write the system,

The basic data types availeble in INVP are:

byte integer

short integer

long integer

real

long real

string

Any data object may exist and be handled in one of four
reference modes: direct reference, indirect reference,
function call, or function call followed 5y indirect

reference.

589

s vell as arithmetic assignment, address assignment
;statements are provided which 'point' reference mode
»ariables at data objects.

comnound data objects may be synthésized from simple ones,
or from other compound ones by repetition or by
structuring.

{epeated objects are termed arrays: array components are
eferenced by indexing.

structured objects are known as records. TB describe a
structured object, a specification of the structure, the

o .
format is given separately, which lists in order the

components of the structure. This format may then be

1sed to ceclare records of the given format

iccess to record components is by means of tﬂe subfield

'perator _ (underlined space). If A is a record with
‘omponents i, ,k, then A -

e ' 4 1 specifieés the component .
fhe compiler guarantees thet for all records:
i) The objects of which it is composed will ve
- located in the order described,
ii) Each component will be aligned oﬁ the next
relevant Lardware word boundary. ‘

iii) No hidden address words or code data will be
ineluded in the record.

‘he organisationfbr record access for optimum efficiency

onsistent with these constraints is described with
xamples, ’

xamp1e§ are given of applications to poo—aii-gogment list
rocessing, and dictionary description. ’

6590

capi i

1 Introductory Remarks
1.1, The Edinburgh Multi-Access System.

The ﬁaehine being used is a large paged, segmented machine
with drum, replaceable discs end large fixed disc store.
The basic software uses the paging and segnentation to
provide apparently one-level.'virtual memories' for the

users and for much of the system software.

Inside & virtual memory reside all programs relevant to
a problem, and all data used by these programs{ Data- and
programs are organized into tfiles' which are also used

for all I/0 and interprocess communication.

The machine is a byte-organized machine in which the
principal hardware data objects (i.e. those entities
menipulated by the machine order code) may be thought of
as

eight bit unsigned BYTES

.sixteen bit signed SHORT INTEGERS

thirty-two bit eigned INTEGERS
sixty-four bit signed LONG INTEGERS
thirty~two.bit floating point REALS
sixty~four bit floating point LONG REALS
up to 256-byte CHARACTER STRINGS

In addition there are sixteen general-purpose high-speed

32-bit registers, and four &4-bit floating point registers.

The order code is very similar in its actions to that of
the IBN 360 series, and is compatible at the usercode

level,

591

2. The language IMP
e system software is being written in the high-level

snguage IMP, (IMP lementation 1anguage) The language
s similar in structure to ALGOL, being ectually derived
‘rom the language Atlas Autocode. '

t will be released for use with the system, together
:ith an associated conversational debugging moniter, as
he principsl programming language for University user's.

-

1.2.1 General Remarks concerning IMP.

'T don't want it perfect, I want it Thursday' -
attrib. Henry Ford.

The first use of the IMP language, and initislly '
the most important one, is for writing systems in.
The most important feature of -these systems is that
they have to work. .

The second most important feature is that the system,
when written, must be easy to debug, maintain, and
modify. It must therefore be written in & form which
aids comprehension and communication.

Besides the exmected bonuses of speed of ariting and

ease of conmnication, I¥P is required to provide.

(i) Efficient operation and dats handling, within an
addressing framework which readily facilitates
optimisatidn by the program-writer of key program
sections. 4

Optiiization is conceived as something to be
vndertaken by the user rether than the compiler:
1ne compiler must, however, provide an acceptable

592

R XTI

fremework. The principal optimization techniques
are the reservation of high-speed register: for
certain purposes, and the rewriting of key sections
in mechine code. !achine code instructions are
providei as a subset of the language, but are
generally introduced via user-defined macros to
Jreserve clarity and logical separability.

(ii) Accurate and con51s€2nt knowledge of the layout
of data oodects. Thus the elemenfary data types
of the language correspond ¢losely to those of
the machine; and in the definition of complex
entities, strict rules may e applied to deter-
.mine the position of the constituent parts of
the entity.

Nevertheless, the prim;ry goals of clarity, lo;%cal

separability, and speed and ease of use introduce

furtier constraints on the language. Hrilst as
many as possible of the festurss requested by system

desipgners eare 1ncluded in the language emphasis has
neen placed on a sound and con51stent logicel

structure.

. 593

2, Data Description

in IMP

2.1. OBJECTIVES gnd EFFECTS OF STORAGE DESCRIPTION‘

Stérage description serves two basic purposes: first,
the description in logical»terms of the data objects
handled by the program; secondly, the specification of
the physical layout of these objects., ,

2.1.1. Logical Description

The techniques of storage déacription available to

-

IMP Program writers involve using DECLARATIONS to
assocliate symbolic identifiers with data objects,
The objeots may be simple or complex, Complex
cbjects are synthesized from simp;f'ones by repeti~
:tion (arrays) or by structuring (records).

The objects may be accessed in several ways: directly,
by indirect reference, or by functior call. In the
case of objects not eccessed directly, the identifier
will be logically as:ociated, not only with the object
itself, but witk one (or more) intermediate objects.
The latter will be termed ACCE'S INTERMEDIARIES. The
object itself will be termed the EFFECTIVE OBJHCT
when it iz to be distinguished from access inter-
~:mediaries. The term 'IMNEDIATE OBJECT' will be used
to mean the first access intermediary for indirectly °
accessed objects, and the object itself for directly
accessed objects. The term 'object' will generally
signify the immediate object unless EITHER
(i)‘ it is specifical'y distinguished, OR
(11) reference is made to attributes such as type
or components, which make it obvious that the

effective object is under discussiosn.

[ENISRPONE

e e - —— e amer,

- e en o

Access intemedisries arc to be distinguished from
objects like dope vectors and array heads to which
the user normslly has no access and of which he need
have no knowledge. The latter will be termed CODE
DATA. :

The proqess~of using an intermediary to access the
effective object (or at a further intermediary) will
be termed REALIZATION,

2.1.1:1. Declarations

Declarations comprise a sequence of underlined
words termed a DECLARATOR, an identifier or list
of identifiers, followed by further QUALIFYING
INFORMATION,

Further lists of identifiers with different
qualifying information may follow, the same
declgrator applying. |

Ixample

integer i,j,k

integerarray Af“,(1:n),C(1:3) -

record format P(integer i, shortintegerarr
A(1:n%2))

record format ¥2 (record name R(F))

record R1,R2(¥2),R3,R4(F) ‘

record array RI,RJ(1:64)(F),RK(1:3)(F)

string S,T(20)

241.1.2, Aftributes determined by declarations

Declarations associate certain attributes with
symbolic identifiers pertaiﬂing to the objects
they represent. These attributes determine;

(f) The TYPE of the effective object. Types
may be simple or complex. Simple types
are:
byteinteger
~ shortinteger

integer

longinteger

real

longreal

string .
complex types are:

array

record
ey

in the case of records, qualifying
information concerning type is also supplied
by giving a RECORD FORMAT IDENTIFIER

a the case of strings, @ueliﬂying informa-
:tion specifies the maximum lerngth of the
string in bytes; in the ocase of

arrays, it specifies the number of dimen-
:sions and the upper and lower bound of

the index for each dimension.

(i1) The ACCESS MODE of the object: i.e. how
the access intermediaries are to be used
to access the effective object. Acceas
modes are:
direct accesse
indirect reference
function call
combination of these.

Indirection is specified by the inclusion of
the word name in the declarator following the
type descriptor. Function call is similarly

696

FEERA

B e 03 s e T et o s

.
P — .

specified by the word fn, and the combinetion
by the words pamefn or, alternatively, by the

word map.

In the case of an object of access mode 'function
call' or 'combined', qualifying information

specifies the formal parameters of the function,

In the case of a'combined access mode, the
attributes also determine in what order succes-
:sive realizations are to be carried out, and

what intermediary results after each realization.

For example, if 'I' is an integernamefn then
the first realization comprises the evaluation
of the function to yield an intergername, and
the second realization is the use of this to

vield the effective object, an integer.

For further information see section 3 on assign-

:ment operations and arithmetic expressions.

(i1i) Phe way in which the component parts
{(if any) of the effective objects are
to be reached: by record access or by
array access, Objects with component
parts can either be handled whole or
as a means of referencing component
parts. In the case of a record, the
type and access mode of the component
part is given in a RiCORD FORMAT.

597

A record format associates a layout of component
parts with g symbolic identifier (the FORMAT ,
IIINTIFIER). The identifier can then be used to
com;lete the information supplied by a 'record'’
declarator, so that any number of records in any
access mode may be declared, with the gif.ven
format,

The leyout is a bracketed list of declarations;
each identifier declared inside thé layout is
used to identify a Somponent of the record by
means of the subfield operetor '_' (underlined
space). Thus:,

record format ¥ (integer i,J,k)

specifies a layout of three integers in direot
access mode, named i,J,k respectively,

record R (F) _
declares a record of format F ; 1.0, it reserves
& block three physical words and associates its
&éiress with the symbolic nem3 R,

The record components may be referred to individ-
:ually by the identifications
R _i

R_J
R_k

respectively,

Record components of any type and acclzess mode
may be specified in a format. The subfield
operator may be repeated as often as necessary
to get at components of deeply nested records:
e.g. .

man _ address _ town _ country —~ ideclogy

In the case of an arrey, the declarators
preceding the word 'array' also specify:
(iiia) The type of the component parts of the
object.
(iiib) The access mode of the components of the
objecf.
The questions of arrays with components of type
‘array', and of access modes involving repeated
indirection, will be discussed later in the

section on restrictions,

- 2.1.1.3

EXANPLES

inteseg&h

integer name B

Specify A and B as objects of type 'integer' (with
no component parts), The ac.cess mode of B is'(

'indirect rbference’,

integer array X(1:10)

integez'* m name Y

define X and Y to be of. type ‘array'; the component
parts being of type 'integer® and access mode ‘direct’..
The access mode of X is direct reference; and that
of Y is ‘indirect reference’,

short integer name array Z (=1:K-2) Do,

defines Z to be of type 'arr&y',l direct access mode;
the components are of type 'short Ingglan', access
mode 'indirect reference’. mlecper

record name array X (-1:N-2)(F)

defines X to be of type 'array', access mode ‘direct

nn

reference’, the components being of type 'record
(format F)', access mode indirect reference.

record Y(F)
defines Y to be of typé 'record(format F)'. The
type and mode of the components will be determined

by the format F,

\ .

600

Data objects in IMP, baving been declared, are specified in other
contexts by strings of charactera which will be termed DATA
SELECTORS. :

Example

A

-

" AR{20)

R_i
RA(30%))_K

RB(j,kr2) 1

The contexts in which data objects appear are; on the left hand
side or the right hand side of address assignment statements; on
the left hand side of arithmetic assignment atatements; as actual
parameters of a fanction or routine where the formal parameter is
declared to be of indirect reference mode (name-type), and in .
arithmetic expressions,

Arithmetic expressions may appear on the right-hand side of arith- .
imetic assignment statements; as actual parameters of a function
or routine where the formal parameter is declared to be of direct
reference mode (valge-type); as array indices or in array declar.
sations, when integer-valued,

In addition certain special operations on strings exist which
“will not be dealt with here,

Byte and Ehgrt-. integerg are always expanded to integer length in
expressions.

3.1 figit t egt

The simplest data selector is a single identifier, e.g.
i

fred .

number of variables.

601

A data object may also be selected from a complex object by the 3.3 Address asgignment

operations of array indexing and record subfield selection, If) ; " The statement

X is any data selector, then » - X ==

(1) Af X represents an arvay of m dimensions, a oomponept of X : where X is a data-selector specifying a name type obiject and Y
is represented by X followsd by a bracketed list of m .
integer-valued expressions.

(i1) If X represents a record, and S1...5n are the nanes lden-
stifying its compon;xts, then . |
X_Si
represents component 1

a data selector of the same type, assigns the address specified
by ¥ to the reference variable X.

In future when X is realized it will produce the effective objec
“ specified by Y, '

The statement

I=1X }

where X is a data selector and Y an arithmetic expression,
agssigns the valus Y to the object X. The expression Y must
yleld a value of the same type except if X is real and Y integer,
and if Y and X ere records they must be of the samé format,

At pregent no infix operations on records or arrays are available.

A data selectar in an expression which is not in direct reference

mode is always realized (section 2,1,1) to preduce a value, A

data selector on the left-hand side of an arithmetic expression

or as a name-type actual parameter is always realized to procuce

an address, Thus after)

intername n,m : ;
the statement

n=m

means 'put the value referenced by m in the location referenced

by n'. ‘

AN 603

4. Physi e : t
Data objects can be divided into two further categories;
DYNAMIC and FIXED-LENGTH objects. Dynamic objects are strings,
arrays, or records containing dynamic objects of direct reference

access mode,

~

The = sigaificant property of dynamic objects is that their length
is unsaown at compile time; hence, if space is being allocated
in & block or a record, nothing can be located beyond a dynamic

object unless referred to via a pointer word.

- This has two potential efrects;
(1) Objects are physically re-ordered to place the dynamic
objects at the end of the stack, in the normal course of events,
(1) Code data, to which the user has no access, is
intermingled with data on the stack, with the result that the
user cannot know the physical layout corresponding to his
declarations unless he has some. knowledge of the internal work-
tings of the campiler,

604

5. Files
All files on the 4-75 system appear to the user as contiguous -

areas of his virtual memory; there is no concern on his pyrt
with the physical disposition of the flle, since the paging
and segmentation hardware automatically meps each reference to
virtual memary into a physical address. ' :

Files may be created, destroyed, or acquired fram out.aido', by
the use of system routines available to the user. Files may
also be shared Letween two users, occupying different virtual
addresses in the virtual memories, and may be relocated in a
single virtual memory,

51 Eile Sructure

A file has assoclated with it a certain definite structure.
This can be considered in two parts.

5.2 Phyglcal Strycture

This is impoged on the file by its creator in that he places
the components of the file in & certain order. It may be
generally assumed that this order is amenable to systematic
description.

5.3 Lopical Structure-

The file creator has some concept of the logical meaning of the
objects in the file, and attempts to embody this in the physical
structure, He considers the file to contain objects of certain
types and precisions, and conceives certain of the objects as
being logically grouped togetber,

605

[mﬂﬁl

5.4 file User .)

The file user is not obliged to accept the file creatarts
assunptions concerning the file's logical structyre, .although
he may, of course, be well advised to do ao. He ‘must, however,
8ccept the physical structure whether he likes 1t or ng .

In general it may be hoped that the paysical structure will

to a certain extent reflect the logicel, The extent ‘to which

it does depends on constraints such as the maching's capabili-
sties, coupled with the need for efficiency and ease of bandling,
It also depends on the functioning of the program which creates
the file. It mugt be remembered that fileg will be created by
Bany means beside IMP programs. In addition, it is not reason-
suble to ingist on g Tixed and immutable systen standard for

the layout of all types of objects on a file, In particular,

it 18 not reagonable to expect code date in Place ou l. file,

5.5 Sonclusions -

(1) a rile description must be applicables to & wide v;noty of
layouts, among the layouts not created by IMP prograns.

(11) a descriptive aystem must not impose the inclusion of code
data in ordinary file data, nor can it Trely on finding code
data on a file,

- 6. Restrictions

(i) It is not posaible to permit the declaration of objects wh
access mode is repeated indirection or repeated function oall,

integer name name i,d

integer fn fn' x

This is because statements like
1==j o
(or function assignment if implemented) would be ambiguous unde:
circumstances. -
(ii) whilst possible, it is confusing and undesirable to permit
declaration of identifiers which could w ecur in arithmetic
expressions with two sets of actual parameter or index lista:
For example, integer arrey array A (1:10) (1:20)

integer fu array name B (integer 1, j)

integer srray mep X (integer name {
would involve writing statements like

x = A(1) (d+2)

x = B(x~3) (20,4)

k (1).(20) = 3 :

For this reason, objects of type v'array' may not have as componer

ﬁnctions, maps ér other arrays, nor may arrays be of access mode

'function call' op *indirect reference followed by funection ocallt

There is no restriction on the types and access modes of record

components or the access modes of records, S

Thus record fn .
record map '
recorf name : .

are all permissible and will be implemented, .

For this reason the restrictions (1) end (1i) above may. always be

programmed round! without loss of efficiency: g

e+g. for integer array array A(1;10) (1:20); x = af1) (1+2)

write/ .

write .
record format ARR (integer array B (1:20)) i
record array A (1:10) (ARR)
x = A(t) _ B(i+2)
(1i1) A fundemental restriction on.the use of name-type variables
which is necessary to avoid possible self-damage by the user is
the following; no name~type objJeot may reference an object to
" which it is global;
€e B .
begin
integer name 1
routine fred yet again -
dnteser J [This eesbaclion new W]
i==3 :
end .
end
If the routine were called, 'i' would be left pointing to an undefined
location, ’ -
(iv) It is desirable to allow record formats to mention e;a.ch gther
cross-recursively, e.g. i
record format HUSBAND (integer age, height, record name a (WIFE))
record format WIFE (integer age, height, record name b [HUSBAND))
This will be allowed, provided .
(1) No format may mention records of another format which is not
yet described, except in indirect access mode.
(11) No records may be declared with formats which are not yet
described, or which contein records with formats not yet
described,

608

e

7. Declarati ed t

In the light of the conclusions at the end of sectlons 1 and 2,°
it did not seem that standard declaration. procedures, such as
stackwise allocation, could reascnably be applied to file
description.

However, it would have been unfortunate to bhave to evolve a

completely new storage description scheme for files alane,

The sclution proposed was a compromise; declarations were
adapted to meet the more rigorous demands of file description
in the particular case of records, and a method was devised for
applying these descriptians to files.

609

8. t t 4

s

Owing to the multi-lingual neture of the Multimicce

routine parameter passing to facilitate commuication between
routines or programs written in various languages,

Because of the relevance to the problem of record access these
standards are quoted here: it should be borne in mind that
tis is only one solution to a difficult problem,

8.1 Sygtep Stend d st

Arrays are accessed through a system standard ARRAY HEAD and
LWPE VECTCR, The array head ocontaing four words as follows;

(1) A pointer to the theoretical zerc element of the array

(1) A pointer to the actual atart of the array

(111) & pointer to the dope vector ,

(iv) a sultiplier, for efficient two~demensional array access,
The dope vector containg;

(1) the precision of the array, i.e, how many bytes each
element occuples,

(1) For each dimensiocn, a lower bound end an upper bound on
the index for that dimension,

For normal (monitor mode) access, the dope vector is used, For
preduction mode Programs, the index is added directly to the
pointer to the nypothetical sero element to obtain the address
of the element concerned,

Two system standards for strings exist;
A) the string head containg
(1) & pointer to the string elements

(11) A short integer containing the maximun length of the string.

The atring Sompriges the characters making it up and no
furtner information,

610

288 Syatem it
was necessary to define standards for array access, strings and

B) The string head is as in (4) but the current length is |
to -1. The string comprises the characters which make .
up, preceded by a byte containing the current length of
the string.

8,2 ut Ihygjical tents of Reco

1) ALl the data objects contained in record are laid out in 1
order dgacribed in the corresponding record format,

2) kEach ob_jeét-:is aligned on the next relevant boundary, angd
the record itself starts on the boundary corresponding to
the largest element it containsg, ‘

3) Mo code data is stored in tue record except that which var
for each inatance of the object concerned, and is therefor
an integral part of the objeot (e.g. string current length]

b3 Access %o fecords Declared on The gtack ’

1) Each fixed length record declared in the main progran is
Placed on the gtack in the dcope of a bage regiater, and
is accessed by base~displacement addressing relative to
this register, .

2) Each dynamic record is located after all static objects in
the routine in which it is declared, A pointer will be put
on the stack in the scope of a bage register, via the recor
will be accesaed. '

6.4 4ccepy to Record Components

1 assume that the address of the record, called aR thmu_ghopt
this section, has either been celculated and is ina reglgter,
or koown &8s a displacement relative to some register,

1) Al components preceding the first clyriamic componeat are
accessed as a base-displacement relative to aR.

611

2) For each subsequent array, a dope veetor and mod.iﬁedarray
head are allocated in the corresponding recopd fgmmat, henoe-
tforth called F, The array head canforms to ayam avtandarda
except that all addresses are relative to the start of the
record. An array element address is calculated in the normal
way, except that ah is added before use.

3) k‘For each gubsequent string, a modified type (B) string head
is allocated in F, and the string is accessed by adding sR
to the string address in F as for arreys.

4) For each subsequent recard or simple object a pointer is
allocated in F, which is again relative to the start of the
record. The object ie accessed by adding aR to this address.

8.5 uape-type variableg

All name type variables conaist of one word only » wilch contains
the address in virtual memory of the referenced object, or, if
an array, to the array head. an exception tc this rule may be
made for the case of arrays where the four-word array head may
be uged directly as an array name variable.)

Any name type variable may be declared as being reletive to
8ome address in problem memory by qualifying the declaration
with the phrase.

(relative N)

where N is an address specifier i.e, any INP data selector
e.g. jnteger name (relative A (0)) 4,8,C

The address specified by N at the time of declaration kill
always be added to the pame - type variable before 1t is used.

8.6 lapping Records onto Files
Onestatements js used for this purpcse
(1) map (N1, N2)

[Nows coillon N, <K= N,]

612

Where N1 and N2 are as in section 5.5, The effect is the same
as the address assignment (= =) statement except that no
restriction is placed on the types of N1 and w2; i.e. the nage-
type variable N1 is modified to point at the area of core
apecified by Ni, whatever the type of N2; this area may now

be treated as if it were of type N1 by referencing it via Ni. '

Both N1 and NZ may, of course, be record and/or array componeats

It ia by means of thia statement that programs wishing to
communicate via, or to access, external files, can comnect to
them and reference them,

Functions and procedures to gbtain the address of the file,
say from external parameters, are provided as part of the

File system 1ibra1%v mechanisni,. In addition it is hoped

to write a number of machine coded routines to obtain addresses
like, for example, the address of the end of a record, -

613

9, Examples
9.1 List processing - . SRR P

A simple list cell may be represented in general by a record

plus a pointer Assuming a record format F to have been

defined, the construction of a list is as foliows;

record format CELL(record head (F),record name tail (CELL))
record array list (1:1000) (CELL)

record name next cell, p (C:LL) .

integer i

i=1

comment set up the 1list

LOOP: 1list (i) _ tail = = 1list (i+1)

i=1i+1

-> LOOF unless i = 1000

list (1000) _ tail = = end cell)

next cell = = list (1) ' .
comment a function to yield the contents of the

1 top cell of a list and return the cell to the
1 mein list

recorqﬁpop up (F) (record name top (CELL))
top.tail = = next cell

next cell = = top
result = next cell _ head

€

gomment a routine to take a cell off the main list,

1 put information in it, and push it down

1 on another list,

routine push down (record info (F), record name top (CiLL))
p = = top _ tail

top = = next cell

next ocell = = next cell _ tail

top _ head = inf'o

top _ tail = = p

end

[S

9.2 Simple Dictionary

This dictionary associates records with identifying tags.

record is assumed to be of format F

record format DICT EKTRY (record r (F), string name (40))

record array dictionary (1:1000)(DICT EK:RY)
integer next entry

next entry = 0

comment to aud a record R2 .dentified by 'tred'
dictionary- (next entry) _ neme = 'fred'
dictionary (next entry) _ rer = r2

next entry = neit entry + 1

comment & more efficient method

record name index (DICT ZNTRY)

index = = dictionary (next entry)

next entry = next entry + 1

index _ name = 'fred'

index r = r2 .
-~

comment a look up function

record namefn look up (F) (string T (40))
intéger search

search = 0

LOOP:-> GMPIY if search = next entry

if dictionary (search) _ name = T ¢

then result = dictionary (searsh) _r

-> LOOP

EZMPTY ¢

print string ('no luck')

stop
end

The

