VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

'THE ANALYSBIS STaGh OF AN IMP-to-PL/1 TRANSLATCR'

JOUAN P. WEBBY

A thesis subanitted for the degree of Master of Scisence

to tiae University of Glasgcw.

September, 1975

ProQuest Number: 10760463

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10760463

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

ACKROWLEDSISMENTS

The author is indebted to Professor T.R.F. Noaweiler of
the Glasgow University Aeronautics Departhent for considerable
help and guidance during thé course of this work;- and to Mr.
Patterson of tne Glasgow Univeréity Computing Departmént for

criticisms made during the preparation of this thesis.

Chapter 1.
Cnapter 2.
Chapter 3.
Chapter 4.

Chapter 5.

Appendix 1.

Appendix 2.

Appendix 3.

Appendix 4.

Appendix 5.

Appendix 6.

Appendix 7.

Appendix 8.
Appendix 9.
References

Figures

LIST OF COSTENTS

Introduction

A Syntax-Directed sethod of Translation
The Second Pass

ne Third Pass

General Discussion

The Kirst Pass

The Reduction of Compound Conditional
Statements

syntax definitions Controlling the
Second Pass

Syntax Definitions Controlling the
Thira Pass

Syntax Definitions of IMP(INT)

Syntax Definitions for Typing
Conditional Statements

IMP(SYS) phrase structures that are not
translated

The Descriptor

The Fourth Pass

bage

LA N N 2

se00

[N X1

[N N)

1.

R
304
41.

60.

6be

70.

T2

81,

900

90.

101.
104.
105.
10%.

CHAPTER 1.
INTRODUCTION

1.1 BACKGROUND

Ii computing it sometimes happens thnat a person will want to
use a program that is written in a language that is not implemented
by the installation he uses. In such circumstances an adaitional
program, & translator, wnich could translate the desired prograa
into a language acceptable to tne user's installation would be useful.
However, because of essential differences between tne two languuges,
it is possible that the translator will not be able to translate all

of tne original progrem.

This report aescribes.the author's contribution to a project
aimed towaras the aevelop&\nent of a translator that could
systematically translate a progran detfined in the IMP language into
one defined in PL/l; +the implied intention being that the IMP source
program and tne translated PL/1 prograuw will have in general tae
same effect upon tneir computational environment, when run under the

control of an IBM system/560 operating system.

IiP is a language developed from ATLAS AUTOCODE. The particular
implementation of IMP considered here is that supported by the
Edinburgh Regional Computing Centre (hereafter referred to as the
BE+R+C.Cs). To the author's xnowledge, I[P is only supported at
two other installations within Great Britain. In tne Unitea States
Irons (Irons 70) nas described his experiences with a language
called Ii{P. Although tnis language has many of the éeneral properties

of BeReCeC. L:4AP, it would appear to be defined in a substantially

Le

different manner.

The B.R.C.C. have written much of their sotftware in IMP and it
is hoped that, with the proving of this translator, this software
will be of interest to other computing centres or programmers who

have access to an IBM, PL/1 compiler.

The feasibility of the IMP-to-PL/1 translator was originally
investigated by T. Nonweiler (Non 72) who concluded that certain
features of IMP would not be translated because they were Qifficult
to simulate in PL/1l. The E.R.C.C. have written compilers for two
forms of IMP, known as IMP(AA) and IMP(SYS); IMP(AA) being a subset
of IMP(SYS). Tne translator accepts all programs written in IMP(AA)

but may reject programs using the language extensions of IMP(SYS).

In addition Nonweiler drew up a set of rules by which an internal
representation of a restricted form of IMP(SYS) called IMP(INT) could
be translated directly into PL/1.

It remained the author's responsibility to write a program to
translate IMP text into text defined in IMP(INT) form; the IMP text
having already been passed through a lexical scamner (see Appendix 1).
This involved a basically context-free syntax analysis followed by a
context-sensitive syntax analysis and the simultaneous construction

of symbol tables.

2.

1.2 RELEVANT LITERATURE

For reasons that are given in the next section, it was decided
that the translation from I/P-to-PL/1 should be controlled by an
automatic syntax analyser.

Papers such as those by Mulholland (Mul 69), ifcEwan (Mck 67)
and the systems guide to the ALGOL-to-PL/1 translator (IBi 68a)
describe language-to-language translators which are designed in a
much less formal way; the translation being performed in a mostly
ad-hoc manner. Therefore, these papers were of only superficial
interest in the design of the translator considered here, though it
was useful to compare the performance figures of the ALGOL-to-PL/1

translator with those of the IMP-to=-PL/1 one.

It can be noted too that the IMP-to-"L/1l translator required
more analysis of the source language (IvP) than any of those

mentioned above.

A coumpiler is a particular tyne of translator; it translates
a high-level language into the assembly language or machine language
of a digital computer. Compilers are thus integral parts of most
modern computing systems and there has been a considerable amount
of literature not only descriﬁing particular compilers but also
methods by which the writing of compilers and translators in general
may be auntomated. It was this literature that was consulted mostly
in tne design of the IMP-to-PL/1 translator.

Gries and Feldman (Gries 68) have written a good review of
efforts to antomate the writing of a translator. Two books which

have been useful in the writing of the IMP-to-PL/1 translator have

De

been those by Gries (Gries 70) and Hopgood (Hop 69). Donovan
and Ledgard (Don 67) have written a paper that descibes a method
of tackling the translation problem that is fundamentally different

to the one adopted here.

1.3 STRATEGY

The full translation from IilP-to-PL/1 nas already been defined
as a multi-pass process; both the lexical scan and the translation

from IMP(INT) to PL/1 represent a full pass.

The IMP language being considered is still at a developement
stege and the language specifications giver in the current language
manual (ERCC 70) are liable to change. It was thus felt that a
formal approach to the IMP-to-PL/1l translation snould be adopted
so that any subsequent cnanges in the I1MP language specifications
could be easily incorporsted in the translator. It was decided
that, apart from the initial pass which made a lexical scan, the
translation should be controlled by an automatic syntax analyser
(IMP being a Chomsky type 2 language). This decision almost
certainly made the translator easier to write and debug too, though

it also probably slowed it down.

Of the two parsing strategies, or methods of syntax analysis,
top-down and bottom-up, the latter is acknowledged to be the
quicker. However, Capon and Argent (Cap 73) have shown that the
bottom-up method called operator precedence is only a fraction
faster than a top-down method. Also, the IMP-to-PL/1l translator
will not be an integral part of a computing system as most compilers

4.

are, and so its efficiency (tnat is it%s ability to conserve both
time and space during translation) was not such an important design

criterion; more importance was placed on develobément time.

So a top-down method of syntax analysis was chosen, using many
of the techniques given in a report by Millard (Mill 66), because
it was found easy to implement and quite powerful enough for the
problem &t hand. A full descg;p{ion of the method of syntax analysis

is given in Chapter 2.

Other methods of sasnalysis were not investigated with any
thoroustness. It can be noted though that the ambiguity of the
x
symbol v} in IMP and the nossible occupbnce of implied multiplication,
maekes the meaning of expressions such as
tatlst
ambiguous. Thus, as it is defined in the language manual (ERCC 70),
the grammar would have to undergo a possibly tedious transformation

to bring it to a form suitable for either of the bottom-up parsing

techniques, operator precedence or precedence.

Q
For a translation to be affected, a requirement of the IMP

source program is that it be error-free. That is, it must conform
to the rules of syntax and semantics described in the IMP language
manual (ERCC 70)» In addition there are certain constructions not
accepted by the translator. These unacceptable syntax constructions
were defined by Nonweiler; they are listed in appendix (7). -On
discovering an error in the IMP source, processing is terminated
immediately, as in the case of a context-sensitive syntax error, or

at the end of the pass, as in the case of a context-free syntax errore.

5.

Til? does not allow the use of a variable before it's declaration.
Thus a separate pass to build up the symbol tables is not necessary.
The symbol table construction can be performed during the same pass
as the generation of the IMP(INT) text. However, in order to check
that the syntax of the IMP source is acceptable (in a context-free
sense), a complete pass was introduced. This pass has the additional
advantage of defining the syntax, or type, of each statement. This
in turn reduces the amount the analyser needs to back-up in subsequent
pragses. In general back-up should be avoided, but particularly so if
any context-sensitive processing is being done during the analysis.

Back-up is described and discussed more fully in Chapter 2.

So the translation from IMP-to-PL/1 involves four passes in all.
Figure 1 illustrates the translation of a particular IMP program 'f?',
using 'tombstones'. (This method of illustrating a translation is
described by Earley and Sturgis (Ear 70),) Each pass is programmed
in PL/1 (like the ALGOL-to-PL/1 translator). However, the translator
will be made available to users in loade-module form. Thus each pass

is shown in Figure 1 as being written in ML, machine language.

The first pass is described in detail in Appendix l. It reads
in the IMP source program in card-image form and converts it into
a form known here as IMP(SCAN) which is more easily processed by
subsequent passes. In addition & dictionary of names, comment and

constants is created which is referenced by the three other passes.

The second pass is described in Chapter 3. It performs a
context-free syntax analysis of the scanned IMP text and in addition
a few textual transformations. The processed text is called IMP(CHKD).

6

Thne third pass perforhs the trenslation to IMP(INT) form. This
involves a context-sensitive analysis of the IMP program and the
construction of symbol tables. This is often generally referred to
as semantic analysis in this report, though it is acknowledged that
it is possible to take exception to such a title. The third pass is

described in Chapter 4.

The fourth pass performs the translation to PL/1 text and is
described in Appendix 9. The PL/1 text may be put out in card-image

form or alternatively compiled by the PL/1 preprocessor and compiler,

At the time of writing each pass represents a job-step on an
IBM 370/155 machine and so at the end of each pass the processed
text must be written to a disk file (organised sequentially and
named IMPSCAN ., IMPCHKD: - or IMPINT). It is hoped though, that
this strcture will be replaced by an overléy structure in the near

future.

Bach pass has associated with it a return code. In general,
subsequent passes will not be attempted if the return code of a
previous pass indicates that an error has been found in the IMP
program or tae PL/1 trenslator.

The design and construction of IMP(INT) is not directly related
to the generation of a PL/1 translated text. It is believed that
the analysis up to, and including the third pass may conceivabl& be
of use in translations to other high~level languages. If any minor
changes are needed in the second or third passes, they should usually
be easily achieved because of the formal structure of these passes.

Finally it should be stated that an important consideration in

Te

the detailed design of this translator was thet it should not be

limited in any way by the size of the IMP source program .

CHAPTER 2.

A SYNTAX - DIRECTED METHOD OF TRANSLATION

2.1 INTRODUCTION

This chapter describes a method of systematically translating

a given source

string into a target string. The trans

performed in two stages

lation is

(i) a top-down syntax analysis of the source string, followed by

(ii) a generation of the target string based on information gathered

in (l)o

The method described is used in both the second, third and

fourth passes of an IMP-to-PL/1 translation.

2.2 CONCEPTS

OF TOP - DOWN SYNTAX ANALYSIS

-In order to analyse a source string, a grammar must be defined.

If this grammar is of a type called Chomsky Type 2 then it can be

described by a set of syntax definitions written in Backus=-Naur

Form (BNF).
grammars being
the symbol ’l'

numbered (2.1)

< EXPRN >

(TEEMY

¢ VAR>

This is the method adopted throughout this report (all

of Chomsky Type 2), with the following
in BNF is replaced by a new-line and ':

to (2.8) below illustrate such a form.

s 2= (TERT> * (EXPRN»

9.

exception;j

2=', Definitions

(2.1) lew
(2.2)
(2.3)
(2.4)
(2.5)

LN (L C T

!

"

s:= B (2.0)
3= C (2.7)
s:= D (2.8)

i4yByCyD,y+,#* are elements of the source language. They are
called terminal characters. <EXPRN», CVAR).and <TERM> are termed
meta-variables. As can be seen above, to the left of each syntax
definition is a meta-variable. This meta-variable is called thne
subject meta-variable. To the right is a string of terminal characters
and/or meta-variables which masy replace the subject meta-variable
during a process called parsing or syntax analysis. This string
may be called a derivation of the subject meta-variable. By applying
enother definition to a meta-varieble within the string, a further
derivgtion can be found. In such a way the original subject
meta~variable should be ultimately ‘*reducible' to a string of terminal
characters only.

Definitions (2.1) and (2.3) above are termed right-recursive
because the subject meta-~variable also appears as the right-most
component of it®s definition. Left-recursive definitions induce
infinite loops in top-down syntax analysers and thus should be avoided.
That is, the components of each definition should be arranged such that
the subject does not also occur as the first component‘of it's
definition. In addition, the definitions should not be reducible to
a form where the subject occurs as the first component of it's
definition.

The task of a syntax analyser is to find out whether tne given
source string is a derivation of the (predetermined) syntax definitions.

All pure top~-down analysers share a common strategy; they are

10.

oal-oriented.

The analyser takes as itfs initial goal the starting point in a
set of syntax definitions, also known as the root node or the unigue
non-terminal. In the syntax definitions above, (EXPRN) mignt be the
root node. The analyser then examines successive components of the
definition of this meta-variable. If a component is a meta=-variable,
then this meta-variable is set as a new sub-goal, the state of the
analysis being recorded in a push-down stack. If éne component is a
terminal character, then a check is made to see if it matches the next
character in the source stringe. If it does then the next component
of the current definition is considered. If it does not then the
analyser must look for an alternative definition to the current goale.
For example, in the above definitions VAR 2:= C is the next alternative
definition to <VARY 2:= B .

The analyser continues in such a fashion until the definition
of the initial goal nas been satisfied (success) or until all alternatives
t0 the initial goal nave been tried without finding a matcn with the

source string (failure).

Wihen a syntax analyser looxs for an alternative definition to a
meta-variable, it is said to be backing-up or backtracking. Aho and
Ullman (Aho 72) nave described two types of backtracking; limited
backtracking and full backtracking. The difference is that in a
limited backtracking syntax analyser, once a meta-variable has been
found which derives a prefix of the remaining source striné (i.e. once
a sub-goal nhas been found), no otuer alternative:meta-variables
(sub=-goals) to the identified one will be tried, even if it is later

found tnat the prefix was identified incorrectly. With full backtracking

11.

all vossible alternative derivations of the initial goal are tried by
the analyser.

For most computing language translators it should be possible
to make a satisfactory syntax analysis of any source string without
needing full backtracking capability. Indeed, it is often possible
to arrange the syntax definitions so that even limited backtracking is
not required. Such a situation is very much to be desired in translators
for two reasons:

(a) The time taken by a syntax analyser with no backtracking
capability to recognise a source string is directly proportional
to the number of symbols in the source string. However, the
the time taken by a syntax analyser to recognise a source
string using vacktracking is proportional to the number of
symbols raised to the power n, where n) 2. This is proved by
Aho and Ullman (Aho 72), for example. Thus & parse which
involves no backtracking is inherently faster than one that does.

(b) In identifying a meta-variable, some semantic processing may
have been done. If this meta-variable's definition is later

rejected then the semantic processing must be undone.

It is often convenient during'the syntax analysis to be able
to perform some special, less formal, processinge. This can be achieved
by embedding in the syntax definitions, a signal to suspend the
formal syntax analysis and call a special routine defined by the
signal. For example, during the analysis of a declaration statement
it might be convenient to insert en identifier into a symbol table.
If these special routines can force the analyser into a specific

course of action then the analysis may be made 'selective'. This

12.

is discussed further in the section (2.3.2).

2.5 TRANSLATION TECHNIGUES

2.5.1 Data Structures

The stepns involved in analysing a source string may be represented
by a syntax tree. i{or example, considering the syntax definitions
nunbered (2.1) to (2.8) in the previous section, the canonical
agerivation of the string A % B + C # D may be represented by the
tree shown in diag. (2.1) on page 14.

A more concise representation of this syntax tree is obtained
by replacing each node which is a meta-variable by the number of the
definition which was satisfied during the analysis. If in this
instance the prefix '2.' to each definition number is removed then

the tree shown in diag. (2.2) on page 14 is obtained.

To define a translation, it is nec&essary to associate with
each syntex definition a string of characters representing the
corresponding form of the target language.

Suppose that the string A # B + C # D is to be translated into
a language in which W,X,Y,Z, represent A,B,C,D, respectively and
the precedence of the arithmetic operations is defined by parentheses.
Then this could be achieved by augmenting the definitions numbered

(241) to (2.8) above with the target language constructs shown

below
KEXPRNY ::= TERM> * CEXPRN> {(@2x@l)} (2.1)
2:= KTERMY> {ol] (2.2)
(UERMY s:= CVAR> + <TERMYy §(@z+el)}h} (2.3)

(contde on page 15)

15l

Diagram (2.1)

A cenonical derivation of the string A # B 4+ C % D .

<EXPRN Y
CTERALS ® HXDPRN)
(VAR L TERM Y * G WXPRN Y
VAN
A <VAR> 4+ (TER » (TEREY
|
B (VAR S {VARY

C D

Diagram (2.2)

A more concise representation of the above syntex tree.

14.

p3= (Vany {al (2.4)

CVARY ::= A {W] ' (2.5)
== B X} (2.6)
:i= € Y} (2.7)
;= D {2 (2.8)

The target language language constructs are enclosea in the
brackets i l. Characters in ‘the constructs are one of two types;
characters which have a special significance and terminal characters
belonging to the target language.

In the above example there is one special character, '@' which
is always followed by a digit. This instructs the generation routine
on the way in which the syntax tree is to be read. The sequence or
characters @n means process the node on the nth branch of the node
being considered, numbered from the right. Considering the syntax
definitions, this corresponds to an instruction to process the
meta-variable numbered n from the right of the one being considered.

Whenever the generation routine encounters a terminal character,
such as *(' above, the character is immediately put out as a member

of tne translation.

Thus the generation routine will inté%ret the syntax tree of
diag. (2.2) in the following way. The root node is considered; this
points to the target construct associated with definition (2.1),
that is (@2%@l). The generation routine will process tanis in tne
following waye.

(1) Put out tne terminal character (.
(2) Process the noce pointed to by the instruction @2, which is the

construct of definition (2.4).

15.

(3) Put out x.

(4) Process the node pointed to by the ingtruction @1, which is
the construct of definition (2.1). This involves a recursive use
of the construct.

(5) Put out).

The translated string is tnen ((W*X)+(Y*Z)).

2.3%.2 Storage Structures

In this section one wsy of storing and accessing a syntax tree in

a computing environment is described.

A syntax tree like that described by diag. (2.2) can be mapped
onto a single dimension array, called LIST say, by the following set
of rules.

(1) Consider the root node, i.e. the head of the syntax tree.

(2) 1If any brancin of the node being considered does not have a
terminal node then proceed to rule (3); otherwise add the
contents of the node to the next location in LIST, followed
by the contents of it's branching nodes copied from right to
left. Replace the node by a terminal node containing a link
to it's position in LIST. This link is an index to LINK
prefized by a minus sign. If the node was the root node then
stop; else proceed to rule (1).

(3) Consider the first branching node (left to right) tnat is not

a terminal node. Proceed to rule (2).

These rules are easily implemented during & top-down syntax
analysis, being determined by the nature of the algorithme. The

resulting 'threaded' list is easily stored in tne core of a computer,

16,

and can be quickly searched by a generation routine.

Applying the rules to the tree of diag. (2.2) gives the array
snown in-diage. (2.3) on page 18.

The link to the whole list is =15. Thus tne generation routine
must inspect element LIST(15) first. This points to the construct
associated with tae first syntax definition (2.1) which is (@2x@l).

To process the node referred to by @ is simple. The list is
generated such that the contents of the node on the nth branch of a
node N (numbered from the right) is indicated by the nth entry in
LIST following that corresponding to the node N. The node referred
to by @ can thus be found by examining the entry 15+2 in LIST.
This is a link to entry LIST(1). This entry points to tne construct
of definition (2.4).

A generation routine that will successfully operate on the list
above to produce the target string ((W»X)+(Y*Z)) is described in

section (2.4¢3).

2+.3+.3 Analytic-Routines

As mentioned in section (2.2) it is often convenient during
syntex analysis to be able to execute special routines. This is
achieved by the translator considered here by embedding within the
syntax definitions a signal which tells the analyser to suspend
syntax analysis and call an analytic-routine, defined by the signal.

For example, during the analysis of a declaration statement an
identifier may have to be inserted in a symbol table. This can be
schieved by writing the syntax definition

<DRECLY ::= CTYPE) (VARy $12 ; {aeeol;]

(contd. on page 19)

17.

Diagram (2.3)

The syntax tree shown in diag. (2.2) in the form of a threaded list.

I LIST (I)
1 4
2)
5 4
4 7
2 3
6 -3
l 6
8 4
9 8
10 2
11 -8
12 1
13 -10
14 =5
15 1
16 -12
17 -1

13.

lihen the analyser encounters tne character § , it would call a
. special routine (analytic routine 12) which inserts the identifier

derived from {(VARY» in the symbol table.

After invocation of an analytic-routine, control can be returned
to one of three points in the analyser. Let those points be labelled
A,B and C.

If control is returned to label A, then the analysis continues
in a normal fashion, i.e. the next component of the current definition
is congidered.

By returning to label B in the analyser, a redundant node is
created in the syntax tree. The analytic-routine can be used to
assign to that redundant node a parameter, available during the
analysis, which is neceded during the generation stage. (This parameter
might also be communicated via a global storage location but this
might create difficulties if the same routine was called several
times during the analysis of a particular source string, since a
second call on the routine might overwrite avparamefer set in the
previous call.) An example of the implementation of this technigque
is given in section (2.4.2).

If an analytic-routine returns control to label C in the analysér
then the analyser is forced to reject the immediately preceeding
meta~varisble (the definition of which has been satisfied } and
look for an alternative to it. This introduces a degree of selectivity
into the analyser which may speed up the analysis. For example,
suppose definitions (2.1) and (2.2) of section (2.2) were changed to

(EXPRNS z:= ¢DUMYy $10 <KTERM) % < BXPRN> { (@2x@1)}

19.

12z <DU MYy $10 <UERUY {o1
and the definition introduced
KUYy 2= NULLY

where <NULLY is a special meta-variable representing the null string.
Then analyticeroutine 10 might inspect the next character in the
source string to see if it is either A, B, C or D. If it is not
then by returning to label C in the analyser both definitions are
rejected and the analyser is saved the time spent in setting first
KTERMY and then (VAR) as sub=goals. This technique is used
extensively during the third pass to guide the analyser such that
certain syntax definitions and thus certain target language constructs
are processed.

The use of analytic routines is based on an idea by Millard

(Mill 66); where they are called pi-routines.

2.3.4 Constructor-Routines

During the generation stage, as with the analysis stage, it is
often convenient to be able to execute a special routine. This is
achieved by embedding within a target language construct a signal to
the generation routine to call a constructor—routine.

During the processing of the construct (@3@1212) the string
2?12 instructs the generation routine to call constructor=routine 12.
It can be noted that the character ? which is the signal to the
generation routine to execute a constructor-routine is always followed
by a two-digit number defining the particular constructor-routine to
be invoked.

Constructor-routines are used when it is more convenient to edit

a target string by calling & special routine than by trying to

20,

write a suitable arrangement of syntax definitions and target language
constructs. They are analogous to the phi-routines described by

Millard (Mill 66).

2.4 THREE ERELEVANT AIGORITHMS

In his report, Millerd (Mill 66) described three algorithms.
(1) A Syntax Rules Processor to convert tne syntax definitions from
a readable form as shown in appendix (3) for example, to & form
more suited to the subsequent analysis.
(2) An finalyser to perform a top-down syntax analysis of a source
string and produce as output a 'threaded' list.
(3) A Generation Routine to cperate on a threaded list and thus

rproduce a translated string.

For the IMP-to-PL/l translation both the syntax rules processor
and the generation routine were considerably modified to fully utilise
PL/1's string handling abilities. However, the same basic structure
of these two algorithms was retained and since they are botan quite
sinple algorithms they are only suwmarily described below.

Although not explicitly stated in his report, iMillard's analyser
does not incorporate any backtracking capabilitye. Ratner than trying
to contrive a set of syntax definitions such that backtracking is
never required, it was decided to write a new analyser for the
IMP-t0-PI/1 translator which had a limited backtracking capability
and whicn retained the concept of analytic routines. This new analyser

is described in section (2.4.2).

21,

2.4.1 The Syntax Rules Processor

The purpose of this algorithm was to convert the syntax definitions
from a BNF-like notation to tabular forme The definitions and their
associated target constructions are mapped onto four arrays called
SUR, COMP, ALT and 0S. The process is described simply by diag. (2.4)
which shows the mapping of the definitioms

CEXPRNY z:= (TERI) * CEXPRNY | (@2x@l)}

2= (TERM) {e1}

Before describing this mapping in detail, it can be noted that
each component of a definition must be reduced to an integer so that
it can index the arrays SUB, COMP and ALT. This integer must be
unique for each different component. The process by which this is
achieved is as follows.

IMP delimiters, identifisble by their initial character % are
first reduced to a single (non-printing) character as defined by
the lexical scan (see appendix (1))« The location in which this
character is stored,which is of length 8 bits with OS/jGO,is then
read as an unsigned integer and the resulting number assigned to that
delimiter. In a similar wey, a number is associated with a terminal
character, Meta-variables are sent to a hash function which sets a
switch if the meta=variable has been used before and returns an integer
code to represent the meta-variable. This code is always greater

than 255 to avoid confusion with terminal characters and IMP delimiters.

The mapping is achieved as follows. When tne first component
of a definition is encountered, which would be & subject meta-variable
coded M say, a pointer to the first aveilable location in COMP is put

in SUB(M). The components are then entered in order in the array

22,

Disgram to illustrate tae syntax aefinitions in tabular rorm:

(SAPRN)

Diawran (2e4)

/

PE~< ¢

Lo P alll!
Ly .
pUB
* —
7
- (oaliny /

«

n

*

COMP followed by a zero to terninate the definition. The pointer to
the next available location in 0% is nlaced in the array ALT in the
same nosition as the terminator in the array COMP. The target
langnage constructs are mapped linearly onto the array OS. It can
be noted that the terminating bracket } is included to signal to the
generation routine that a construct has been fully processed.

If a furtner definition with the same subject is encountered
then the components ére compared with those of the previous definition
until one is found which does not éorrespond to one previously stored,
at location N say,in the array COMP. A pointer is inserted in ALT(N)
to the next available location in COMP, from which point the remaining
components of the new definition are stered.

If definition includes an analytic-routine call then the warning
character § is stored in COMP in integer form and the corresponding
analytic-routine number in the parallel location in ALT.

For the IMPEto-PL/l transiator, the target language brackets 11

are relaced by the character !

The following restrictions are placed on the syntax definitions
by the nature of the syntax rules processor and the analyser,
(1) The syntax definitions must be arranged so that there can never
be an occurrence of:left-recursion. It is possible to contrive
a syntax rules processor which cnecks for such an occurrence
hut this was not attempted here.
(2) The meta-variable <NULL>,denoting the empty string, is represented
in the array COMP by inteser zero. Because of the structure
of tne analyser, if <NULL> is used it must be the only component

of a definition. To introduce empty strings into compound

2*0

definitions, dumny meta-variables can be used. See for example
the use of the meta-variable ¢DUM1Y in definitions (75) and
(295) in aprendix (4).

(3) If tne components of one definition correspond to the initial
components of a longer definition with the same subject then
tne longer definition must preceed the shorter one.

(4) It is impossible to include an alternative to an analytic-
routine in the array ALT, as ALT holds the analytic-routine
number. This could be overcome by storing analytic-routines
as a negative integer in COMP, but then the analyser would
have to decide wnether to invoke analytic-routines during
backtracking. In the circumstances it is quite easy to
engineer an alternative to an analyticeroutine by using a
dummy meta-varisble. Definitions (181) and (182) in appendix

(4) illustrate an example.

In general, once the syntax definitions have been correctly
written out, the syntax rules processor is not a part of a translation
process; the definitions being kept in tabular form on a disk or

magnetic tape.

2.4+2 The Analyser

The new analyser is described by the flow diasgrams of figures
(24) and (2B). Figure (2A) illustrates the analysis and figure (2B)
the way the threaded list is built up.

Like all top-down analysers, this one uses a push~-down stack.
Bach element of this stack has storagé for five variables~ ISTACK,

JSTACK, SSTACK, TSTACK and Paknil (though PARAM is sometimes left

25.

mdefined). For the analysis only ISTACK and SSTACK are essential,
the others being used to build up the list.

Variable I points to the component in COAP currently being
examined; J is used to order tne list correctly; P snd N are used
as work variables recording values stored in the arrays COMP and ALT
respectively; S points to the next character in.the source string to
be identified and T points to the next available location in LIST.
The funetion INPUT returns that character in the source string
indexed by it's arguement.

In diag. (2.2) on page 14 tne contents of a node of the syntax
tree was the nunber of a syntax definition. In this implementation
the contents of each node is a pointer to the array 0S5, indicating
to the gencrastion routine the target language construct to be processed.

The calling routine initialises S, T and I. Suppose H is the
integer code of the meta-variable which is to represent the root node
or head of the resulting syntax tree. Then I is set to SUB(H).

Successive components of the definition of H are then examined by
ref;rencing array COMP (label A‘in figure 2A). If a component is
a meta-variasble (label D) then the state of the parse is recorded
in the stack and the new meta-variable set as a sub;goal. When a
terminal charscter is identified (label E), the state of the parse
is again recorded so that backtracking is possible.

When a goal has been successfully identified (label F), the
pointer to tne corresponding target language construct is copied from
the array ALT for subsequent inclusion in the arrasy LIST. After
nrocessing associated with the build-up of the list is completed,

tne stack is popped-up (label H) and examination of the previous

26

meta~variable is continued.

Processing is continued until the source string is recognised or
until all definitions of H nave been tried without a match occurring,
wiien tne analyser reports failure.

After invocation of an analytic-routine, control may be returned
to either label A, B or C. These labels correspond to the labels
mentioned in section (2.3.3).

The significance of label A nas already been noted; it is tne
point where tne next component of the current definition is about to
be cxamined. Label B is the position the analyser reaches after a
meta-variable's definition has been successfully identified. If an
analytic-routine returns control to label B and in eddition assigns
a value to the variable N, tnen this value is stored in a unigue -
position in the array LIST. As mentioned in section (2.3.2), this is
a way in which a parameter may be passed to the generation stage.

This technique is used extensively in the third pass to pass the code
representing an IMP delimiter to the generation routine. Consider
the following definitions
82> | 12= (TYPE) #NAME <PARAM1) {NAMELISTY) ; {@3?92@1;}

(PARAMLY ::= $1 {3 |
Internally ¥NAHE is represented as a single non-printing character
and so cannot bé written out explicitly as a target language construct.
After the analyser has recognised the terminal character %NAME, it
examines the meta-variable {PARAMI). This results in a call to
analytic-routine 1 winich assigns to tne varisble N in tne analyser tne
code of the previous delimiter and returns to label B in tne analyser.
This has the effect of creating a node of the syntax tree corresponding

27,

to the meta-variable <”\FA 1) but storing, not a pointer to tne
construct associated wifn < PARAM1Y but tne internal code of the
delimiter »llAME. At a later stage this code is retrieved by the
generation routine invoking constructor-routine 92 wnich examines
the node corresponding to < PAKAM1).

Label C in the analyser is tne point reached when a mneta=-
variable's cefinition has been unsuccessfully applied and the analyser
must backtrack to loox for an altermative definition. The éffect of
returning to label C from an analytic-routine was explained in

section (2.3.2).

Within the IMP-to-PL/1 translator, tine snalyser is declared

recursive and is invoked recursively during the third pass.

2.4.% The Generation Routine

The generation routine usea by tne IlMP-to-PL/1 translator is
identical to one described by Millard (1ill 66) with the following
two exceptions

(a) For the PI/1 implementation the two variables RkC and PARAM are
made elements of a stack by using a Pi/l structure variable with
the CCNTROLLED attribute.

(b) The existence of a NEWLINE instruction in tne target language

constructs is not considered.

The routine operates on a symtax tree in the form of a threaded
list of sinilar construction to the array LIST of section (2.3.2).
By referencing the array 05 which contains the strings of target

len uage constructs, a translated string is generated.

28'

The routine first accents a link to tae whole list. This
indicates w..ere in the list is the pointer to the construct associated
with the root nocde. The routine taen processes tnis construct in the
following way.

If a mnember of the construct is a terminal character tnen it is
put out immediately as a member of the translasted string,

If a uenber of the construct is the character ? tnen the next
two members are interpreted as an integer defining a constructor-
routine that is to be executed.

If a member of the construct is the character @ tnen a new node
is Lo be processed. Information about the o0ld node is recorded in a
pusin-down stack and the pointer to the construct for this new node
found by the process described in section (2.3.2). When tais construct
has been fully processed, processing of the old node continues from
the point where it was interrupted.

If s member of the construct is the character } tnen tnis
signifies tuhat the construct has been fully processed. The stack is
examined to see if there are other nodes which have not been fully
processed. If there are tnen the steck is popped-up and processing

continues; 1if there are not then the translation has been completed.

29.

CHAPTER 3.

THE SECOND PASS

5.1 PURPOSE OF THE SECOND PASS

The second pass was originally introduced into the translator
design to check that the syntax of each IMP statement is acceptable
to the third pass. IMP statements are considered syntactically in
error if

(a) "hey do not conform to the syntax rules defined by the current
IMP language manual (ERCC T0) or

(b) They contain IMP phrase structures tinat cannot be translated
to PL/1 by this edition of the translator. These phrase
structures are listed in appendix (7).

Tor reasons given in section (3.2.2), it was also decided to
check during the second pass that the block structure, nesting and
sequence of %CYCLE, %REPEAT statements (hereafter simply referred
to as the block structure) is consistent.

The method employed to perform this checking is described in
section (3.2). If any erfor is found during the second pass, subsequent
passes are not usually attempted. |

In addition a nuaber of transformations of the IP text are
performed to facilitate furtner translation. These transformations

are described in section (3.4)% .

DO.

3.2 STRATRGY OF THE SECOND PASS

To recognise unacceptable syntax constructions, the scanned IMP
text is analysed a statenent at a time by the syntax analyser described
in cnapter (2). The generation routine described in chapter (2) is
then used to sroduce a target string.

Since the second pass performs few transformations of the IMP
text, it was decided to use the analyser and generation routine to
produce a statenent-description code rather than translated IMP text.
Tnis code is either

(a) A two digit integer describing the type of statement analysed
(e.g. assignment statement) or

(b) An error code in the form of a character string of length four
(or possibly a multiple of four). This string is composed of
the letter '¥F' followed by a three digit integer. This integer

- is subsmeguently used to index a file of error messages.

Such an error code ig generated if the corresponding I¥P
statement contains a syntax error or a phrase structure that camnot
be translated to PL/1 or if tue IMP state@ent does not produce a
congistent block structure. It can he noted that instead of asking
tne generation routine to produce an error code and then indexing
a file of error messages, the generation routine could generete tne
error message directly. In tnis instance thoush, the first method
described above requires less storage and is quicker.

The method useda to identify tne above errors is described in
sections (3.2.1) and (3.2.2) below. The syntax definitions used for
the analysis of each IMP statement and tne target language constructs
nsed to generate the statenent-description codes are shown in appendix
(2).

31,

The nroblen of scrforming the text transformations was resolved
in the following way. Any text editing that needs +to be done to
an IMP statement is recorded in a push-down store during the analysis
stage. Then when the analysis is completed an editing routine is
invoked which operates on the push-down store and the IMP statement
to produce the required translated statement. The editing routine
tnat was devised to achieve this is described in section (3%.4)
together with a list of the transformations performed during the

second pass.

5.2,1 Checking the Syntax

The syntax definitions which control the second pass are so
prescribed that all I'P statements are recognised, no matter now
wrongly structured they are. However, the target language constructs
of those definitions describing an unacceptable phrase structure
contain a four character error code. This code is subsequently
cenerasted indicating that the corresponding I'1P statement is

unaccepteble.

3.2.2 Checking the Block Structure

I1P is a block-structnred language. Like ALGOL or PL/1, entry
to a new block, signified by the processing of a %BEGIN statement or
a rontine heading corresponds to an increase in the level of
nomenclature.

It is important that the block structure of the input IMP
nrogram is correct and that at the end of tne program tne level of
blocking is zero; otherwise the third pass cammot generate the required
symbol tebles correctly. Normally a user will have tested his

32'

program with the I#P compiler before submittiﬁg it for translation,
and there will be no error in the block structure. However, to
account for the possibility of say a lost card the block structure of
the program is checked by the second pass.

As it is then relatively simple, the secénd pass also checks
that the nesting (signified in IMP by the brackets %oTART ...
%FINISH) and sequence of delimiters %CYCLE ... %REPEAT is consistent.
That is, the field defined by one set of brackets does not intersect
the field defined by another. IFor example, the program below is in
error

%BBEGIN

GOYOLE weeus

%BREPEAT

This check is performed in Lné following way. During the -
processing of an IMP program, each time an IMP statement is analysed
which corresponds to the beginning of a new block an analytic-routine
($50 or $51) is called which makes a suitable entry in a push-down
store called STAC say. Sianilarly, when a statement beginning with
the deliniter %CYCLE or one containing %START is analysed, other
analytic-routines ($52, $53 or¥54) are invoked to make different
entries in 3TAC. Whenever %END, %FINISH or %REPEAT is processed,
analytic-routine. ($57, $o> or §56) checks that tune top element of
STAC corresponds to ZBEGIN (or a routine heading), %START or %CYCLE
respectively. The stack STAC is tnen popped-up. If the correspondence
is not made then tne analytic-routine switches on a variable in a
location global to the constructor-routines. During tne subsequent

generation stage, constructor-routine (2?04, ?02 or 205) exazines

53,

tnils variable and if it is switcaned on then tne constructor-routine
writes a four cnaracter error code to the target string. No error-
recovery technique is attempted other than leaving the stack STAC in
it's previous state. Thus, it is possible for such an error:to

propagate tnrough the rest of the pnrogram.

5.5 OFGANISATION OF THIS SHCOMD PASS

Figure (5) illustrates tne organisation of the second pass.
Initially the main procedure reads the syntax definitions and
target language constructs in tabular form from file SYNTAR2.

Next function READSS is called whicu reads file I 1PSCAN and
returns to tne mnain procedure a copy of successive scannea IiHP
statements. File IMPSCAN, like files IMPCH:D and IMPINT wnicrn record
tne output from tine second and third passes respectively, has the

rollowing structure

[sL] {sLi [s1] o I 1
~ —) — R —— [———
L[> State LiP Stut. 0P stmt.
11 record 1.1 record 1.1P record

SL stands for a string-length indication. The IMP statement is
in internél form.

Function READSS also breaks down compound conditional statements
(see section (3.4) and appendix (2))which sometiaes requires the
construction of new labels. Thus the dictionary of nesmes, comment
and constants created during the first nass must be referenced. This
dictionary is xept in a sequentially organised file named IMPDICT and
is reaa into core by tae first call on READSS.

Before calling tne syntax analyser, the main proceaure exaaines

tne first ano last characters ana if necessary the length of the

54.

scanced I 1P statement in order to estimate the tyne of statement about
to be analysed. This estimation is not as precise as the statement-
description code generated when an accéptable I#P statement aas been
nrocessed. However by making it, the subsequent analysis is speeded
ur. For exanple, if tne first character in tne statement is that
corresponding to the delimiter %END, then tne analyser is invoked
witn the meta-variable <S09) as a root node. If the meta-variable
{53) had been the root node , as it would have to have been had the
estimation not been made,then t2e analyser would first have examined
(S01y, <802y etc. (see appendix.(j) Ye

The analysis of an IMP statement is controlled by tne syntax .
definitions snown in appendix (5). During the analysis, analytic-
routines may be invokeda to check the block structure of tue program
or to record information for any editing to be done. As already
noted, an IMP statement is always recognised. ''he resulting syntax
tree is written to a storége structure maintained by routine OUTPUT
in the form of a threaded list.

Following tne analysis, an editing routine is invoked which
operates on information recorded in a stack by tae analytic-routines,
to perform any réquired textual transformation of the IMP statement.
The processed statement is returned to the main procedure.

Next tue generation routine is called with the set of target
langinage constructs read from file SYNTAR2 as a parameter. This
routine operates on the threaded list maintained by routine OUTPUT,
possibly invoking constructor-routines in the process. Tne length of
the peneratec target string is examined. This string is a statement-

description code.

35.

If the length of the target string is two, it indicates the
statement was processed successfully. The string, which is a two
digit integer defining tne type of statenent analysed is prefixed
to the »nrocessed IMP statement. This record is then written to the
file IJAPC:KD together with a string-length indication.

If the string length is greater than two then an error has been
found. Tne target string, which is then en error code is reduced to
an index to the file DGN3T1C, the entry of which is a corresponding
error message. This messzge is written out. The file DGNSTIC is
declared in PL/1, INDEXED.

Processing is continued by calling RBADSS for the next statement.

When the statement

ZEND %OFPROGRAM 3
or ¢END %OFFILE ;
has been fully processed the second pass is terminated; these

statements signifying that tne I 1P progran is finishing.

3.4 TEXT EDITING

In section (3.4.1) below is described the method of performing all
the text trensformations made by the second pass with the following
exception. Coupound conditional statements and statements beginning
with tne deliniter #UNLESS are reduced to the simpler form

%IF <(UBSCY %IHEN %START ;
by an interface routine called READSS. This process is described
furtner in aspendix (2). Section (3.4.2) lists the particular

transformations made by the second pass.

%64

3¢401 ethoa of Performing Text Transformations

Text transformations of the scanned IMP statements are pertformed,
a statement at a time, by invoking analytic-routines during tne
analysis of & statement. <hese analyticeroutines record on a stack
information defining the editing to be wone. Each element of the stack
has storage for tnree variables; PIR and L (botn integers) and
INSERT (a variable length character string). PIR points to the
position in the scanned IMP statement where tne editing is to be done,
L records the type (i.e. whetaer deletion, insertion or replacement)
and extent of the editing and INSERT stores (if necessary) a
character string to be inserted in the statement.

W¥hen the analysis of a particular statement is completed, an
editing routine is invoked which performs the required transformations.
This editing routine is described by the block diagram shown in figure
(4)s In tnis figure the string referred to is the scannea IMP
statenent and LeNGTH is a function returning the character string
length of if's arguement; The reference table mentioned is an array
defining the correspondence between the position‘of a character in
the scanned IMP statement and it's position in the‘processed statement.
If an attempt is made to edit text tnat has been previously deleted,
this correspondence is undefined (PrR=0). Such a situation suould

not arise during the simple editing required by tne second pass.

3.4.2 Text Transformations made by the Second Pass

Below are listed the text transformations performed using the
editing routine described above. As already noted, the reduction of

conpound conditional statements is made separately by an interface

51

routine (appendix (2)). The transformations are best aiscussed by
reference to tne syntax definitions controlling tne secona pass wuica
are shown in appenaix (5). It can be noted by examining aefinitions
(71), (265} and (269) that the translator accepts, ana later
appropriately translates to PL/1l, resolutions of tne form
BIF T =% S (%) ;

tnougn the current I4P coupiler does not accept sucn a construction.
(1) [4 and 76 Isolated %S1TART statements and taeir associated

%FINISH statements are aecleted.

(2) 1v9, 160 and 161 ‘'ne prefix operator 0 arithmetic expressions

. is eliminated (if it exists) by

(a) Replacing the phrase \ {OPERANDY by (Occcec - {UOPsRANDY)
where the charascter string Occec represents the internal
code of integer minus one.

(o) Replacing tne phrase =¢OPERANDY by (0Odddd - {OPERAND))
where the character string Odadd represents the internal
code of integer zero.

(c) Deleting the prefix operator + .

Tne elimination of the prefix operator means thut in the tnird

pass the analysis of aritametic expressions may be achieved using

right-recursive syntax definitions whnican turns out to be very
useful (see section (4.5)).
(3) 162 to 113 Thes- definitions perforn three tasks

(a) Tne null operator representing implied aultiplication in
LIP is spécified explicitly by inserting tne uclimiter % .

(b) The logical operator 'exclusive or', represented in I.P by

the syabols !¢ is replaced by the speclal delimiter nkV.

53,

(c) “odulus signs, renresented in IifP by the symbol ! are

replaced by the special delimiter %M.

Besides it's meaning described in (b) and (c) above, the symbol
! is also used in IMP to denote the logical 'inclusive or!
operator.

The IMP language manual (ERCC 70) states that iamplied
maltiplicetion cen only be used in expressions where there is no
ambiguity. However, the phrase ! A ! ! B ! ¢! C ! for examnple
is acceptéd by the current IVP compiler (release T, version 11)
hut is ambiguous. It could be written out by the second pass as

%M A $NEV B wWNEV C %M

or gl A3 %M B %M ! C %M

or IGM A %M * oM B Y % %M C %l
A short series of tests on the current I[P compiler has suggested
a precedence concerning the symbol ! and the null operator

L | - most binding

! (inclusive or) and null opefator

! (modulus) - least binding
and this is followed in the second pésé. Thus the phrase above
is translated as

FM A YNBV B “NEV C %1

It is understood that in the near future a new delimiter is to be
introduced by the E.R.C.C. to represent tne modulus sign wnich
will resolve the above ambiguitye.

To achieve the necessay translation of the symbol ¢ , the
second pass must perform a small amount of context-sensitive

syntax analysisj; the only time context-sensitive analysis is

39+

(4)

(5)

(6)

(7)
(8)

(9)

(10) 264 The special delimiter %#'RY is sabstituted for the symbols £-.

needed during the second passe
110 Tne phrase %PRINTTLEXL ¢ STRINGY is reinterpreted as
PHINTSTRING ({STRINGY)s PRINTSTRING is an IMP library function.
120 and 121 Tne stateent

#MONITOR %STOP
is reinterpreted as two separate statements.
206 The IHP text is transformed to remove namelists from
formal parameter lists; the formal parameter delimiter being
repeated as necessary.
209 The optional comma is removed.

229, 250 and 21; an operator prefixed to an integer signed

constant is applied to the internal form of the constant and so
eliminated.
262 Resolutions are converted into self-embedding productions

by the introduction of a special aelimiter, %RSLV.

40,

- CHAPTER

THE THIRD PASS

4,1 INTRODUCTION

The task of the 3rd pass is to perform a context-sensitive syntax
analysis:¢f the IMP source program., The text is translated to a form
called IMP(INT), IMP(INT) is an internal form of a subset of the
IMP(SYS) language, augmented by markers (such as the statement type
markers and the delimiter %RSLV introduced during the second pass).

The syntax of IMP(INT) is defined by the rules shown in appendix (5).

To perform the context-sensitive analysis, loosely referred to
as semantic analysis here, a knowledge of the attributes of the
identifiers is required. These attributes are found in declarations
and in the way‘the identifiers are used in the program, and they are
collected and stored in a symbol table, ‘The construction of the symbol
table used by this translator and the technique used to create and access
it is described in section (4.3).

The pass is successfully achieved by first analysing individual
statements in the IMP source text and then generating IMP(INT) text
using the techniques described in Chapter (2). Analytic-routines and
constructor-routines are used to perform the necessary semantic analysis,
The organisation of the third pass is described in greater detail in
section (4.2).

One of the most difficult problems associated with the third pass
was concerned with the 'typing' of expressions. The syntax of
IMP(INT) requires that every general expression is prefixed by a 'type
marker', This problem is expanded on in section (4.4) together
with the methods used to solve it.

A full description of all the text transformations made by the
third pass is given in section (4.5). Included is a brief description

of the individual methods used to affect these transformations.

41.

2.2 ORGANISATION OF THE THIRD PASS

In general, the third pass is only attempted so long as the
second pass has not discovered any syntax errors or any 'untranslatable!
IMP phrases. ‘

Figure (5) illustrates the organisation of the third pass. The
translation of the text from the syntactically verified form to IMP(INT)
is achieved using the syntax analyser and generation routine described
in Chapter (2). The generation routine is used to directly generate
the IMP(INT) text.

Initially the main procedure reads from file SYNTAB3 the syntax-
definitions used to control the analysis, and their associated target
language constructions in tabular form. Next the main set of analytic-
routines (denoted analytic-routines 3 in figure (5)) for the third pass
are initialised., This involves reading from file LIBRTS the names of all
intrinsic and implicitly specified routines of the IMP language library
together with their attributes and loading this information into the
symbol table., These library routines are treated as if they had been
declared in the outermost block. In addition, the syntax definitions
needed to type a conditional statement (see section (4.4)) are read from
file SYNTABU in tabular form.

Next, a record of an IMP statement is read from file IMPCHKD.
This record consists of a string length indication, the statement type
code defined by the second pass, and a variable length character string

representing the IMP statement. The appropriate root node ({81y ,

{S2)... or {(S38% in appendix (4)) is calculated from the statement type

code and control is passed to the syntax analyser,

Bach input IMP statement is syntactically analysed using the
method described in Chapter 2, Analytic-routines may be invoked to perform
any necessary semantic analysis. This might involve a reference to the
symbol table or the construction of a new identifier (in which case
file IMPDICT must be referenced). If a conditional statement is
encountered then the analyser is invoked recursively and a second set
of analytic-routines referenced (denoted analytic-routines B in figure

(5)). This process is described in section (4.4).

42.

The analyser builds up a syntax tree and this syntax tree is
written to a storage structure maintained by routine OUTPUT,

When the input statement has been successfully passed, the
generation routine is invoked, with the set of target language
construction read from file SYNTAB3 as a parameter. This routine
operates on the syntax tree stored in routine OUTPUT and generates a
statement in IMP(INT) form. The generated statement will have prefixed
to it, a statement type code, slightly different to that read from file
SYNTAB3,

The IMP(INT) statement is written to file IMPINT together with
its type code and a string length indication., Then the next IMP
statement record is read from file IMPCHKD, The process continues

until the statement

%ENDOFPROGRAM
or BENDOFFILE

is processed, which denotes that the IMP source program is‘finishing.
Then the symbol tablesand their associated lists are written to the
sequentially organised files IMPIDS and IMPIDSA,

If so instructed, the IMP(INT) text can be converted back to a
subset of IMP(SYS) on completion of the third pass. This reguest is
affected by the insertion of a parameter in the relevant job-control
card, This involves the elimination of all the introduced markers and
special delimiters and the reconversion of the internal coded form of
the program to a card-image format., This output program should be
capable of being compiled by the IMP compiler,

If a semantic error is discovered in the input text then no
further processing is attempted. A message is printed out indicating
the statement that the error occurred in and the cause of error,

In general, no further translation of the IMP program will then be

attempted.

The third pass uses at most 118 analytic-routines (plus a further

20 analytic-routines for the typing of conditional statements),

45

4,3 SYMBOL TABLES

As also described by Gries (Gries 70) a symbol table associates
with each identifier used in a program a 'descriptor'. This descriptor
stores, in coded form, all the information about the identifier necessary
to perform a semantic analysis of the program,

All symbol tables have the general form shown in diagram (4.1)
on page 40.

When dealing with block structured languages such as IMP, it
is necessary to be able to differentiate within the symbol tables between
identically spelt identifiers which are declared and used in different
blocks, Such identifiers are given the same four-character dictionary
key by the first pass.,

This differentiation is made here by making the argument of
the symbol table the identifier concatenated with an integer (in the
form of a two-character string) defining the block in which the
identifier was declared., This technique is also described by Gries
(Gries 70) for example.

The convention is taken that the outermost block of the IMP
program is numbered zero, Each block is then numbered in the order in
which it is opened during a top-down parse of the program, In this way
a unique integer, called the block sequence number say, is associated
with every block. To convert the signed integer to a string suitable for
concatenation with an identifier, the location the integer is stored in
is overlaid on a two-character string. (This string is not usually
’ﬁrintahle'). The maximum block sequence number using this:technique
is 32,767 which is considered quite large enough,

The rule for finding the correct declaration corresponding
to the use of an identifier is to look first in the current block
(the one where the identifier is used), then the surrounding block, and
so on until a declaration of that identifier is found. Each surrounding
block is said to be at a lower level of nomenclature or blocking to
the reference one., During the processing of an IMP program an array
is keptrecording the block sequence number at each active level of
nomenclature at any particular time, This array is referenced whenever

a declaration of an identifier is not found in the current block,

44.

There are two distinct problems associated with symbol tables.
(1) the format of the descriptor and
(2) the organisation of the symbol tables.

These problems are discussed under separate headings below.

In addition to the main symbol tables, the third pass kéeps a
second type of table for semantic analysis. This is discussed in
section (4.3.3) under the heading 'RFTABLE!,

Finally, the main symbol tables constructed during the third
pass are also referenced by the fourth pass, which at the time of
writing is a separate job step. Thus the symbol tables must be capable

of being written to, and read from, the disc.

4,3,1 The Descriptor

4,%3,1.1 Data Structures

The amount of information which a descriptor needs to store
depends on what the associated identifier is; that is whether the
identifier has the attribute simple variable or function or label etc.
This can be accounted for by having varying length descriptors or allocat-
ing two or three say, successive symbol table elements for identifiers
requiring extra space, A more popular technique, used by the ALGOL~to-
PL/1 translator for example, is to have separate symbol tables for
different types of identifiers. Yet another technique is to use part
of the descriptor field as a pointer to a secondary table or list when
extra space is required. |

This last method was that adopted by the third pass. The
descriptor field was made large enough to hold all the necessary
information for all but two types of identifiers. Then a portion of

the descriptor field was used as a pointer to a linked list describing

(contd. on page 47.)
45

Diagraw (4.1)

The General form of a Symbol Tables

Identifier Descriptor

entry 1

entry 2

entry n

Diagram (4.2)

Diagram to snow the Formation of tne Lists pointed to by the Descriptors

of IMP record variables and <RT> type variables:

parameters of <LTS type variable

[TF——=1 [4]
descriptor ' -.l.-
L =— [TS TF——T 1

I e g

elements of & record variable

Diagram (4.5)

Diagram to illustrate tne metnoa of inaexing the areas containing the

AN

Lists:

area 1

area 2

area %

tae array of

pointers

46.

the additional attributes. The two types of identifier using this
structure were

(a) IMP record variables (these are data aggregates whose elements

may be of different types). The linked list then describes the attributes
and names of each element of the record.

(b) «RTY type variables i.,e, routines, functions and maps. The linked
list then described the parameters of such variables. The descriptor
fields for such identifiers can thus be described by diag (4.2) on

page 46.

From this diagram it can be noted that

(a) an element of an IMP record may point to another record

(b) the last element of a list is enclosed by a special entry in
» its pointer field. (it is said to be 'ancnored'.)

(¢) identifiers other than records or routines have the pointer

fields of their descriptors undefined,

4,3.1.2 Storage Structure

The descriptor which occupies 56 bits of storage has the

following storage structure

1-3 4-11 12-14 15 16-17 18 19 20-24 25-56

TYPE | QUAL DIM AP VP USED | INTNC | ANO AQOFF

ANO and AOFF represent that part of the descriptor which points
to a linked list. A problem in the format of this field was created
by the fact that the symbol tables and the associated lists must be
written to disk., This is discussed further below,

The meaning of the other sub-fields of the descriptor is
given in appendix (8). Note that more information is stored than is
strictly needed for the translation to PL/1, For instance, it is not
necessary to store labels in the symbol tables, This additional
information is recorded for a sense of 'completeness',

The easiest way to build up a variable length linked list like
those mentioned in the previous section is to use an absolute machine
address as the pointer to each list element, This is ;asily implemented
in PL/1 by the use of BASED variables.,

4

However the value of such pointers becomes meaningless across
input/output when different areas of storage for the list elements might
be used. And the lists built uﬁ by the third pass must be written to,
and read from, a disk file if they are to be referenced in the fourth
pass (a different job step).

To overcome this problem, PL/1 allows lists to be built uﬁ in
a specific area of storage, termed an AREA variable., The pointers used
to qualify the elements of such lists (termed OFFSETS) are not absolute
machine addresses but are addresses defined relative to the start of the
area., During output the area of storage containing the lists is written
to a disk file, When later input, this area containing the lists is
read into another AREA variable, whose absolute address is known. The

offset variables qualifying the elements of the lists can then be

easily converted to absolute machine addresses by referencing the absolute

address of the new AREA variable. Most of this 'housekeeping' is done
by the PL/1 compiler,

During the creation of the lists, whenever an area becomes full,
a new area is allocated and the construction of the lists continues in
this new area, In this way, the translator is not limited in any way
by the size of the IMP program. Thus each pointer contains two fields,
an OFFSET variable and an index to the particular area referenced. This
is in fact an index to an array of pointers. This is illustrated by
diag. (4.3) on page 46.

Within the descriptor, the OFFSET variable and the index to the
array of pointers are kept in their intermal (bit) form,
N.B. It is an implementation restriction of the current PL/1 compiler
that the declaration of AREA(*) based variables is not allowed. Thus
when an area becomes full, the area cannot be reallocated with a lérger’

field, Thus the above technique, using an array'of pointers is necessary.

Each element of a list which describes a parameter has the

following structure.

| ryee | quan | pmv | ap | ve | Pornmem
17 bits

48.

The sub-fields, TYPE, QUAL, DIM, AP, VP have the same significance
as the fields described in appendix (81 POINTER points to the next element
of the list (or is 'anchored')., It is composed of an index to the array
of pointers and an OFFSET variable as before but is not stored in a bit
representation.

Each element of a list which describes an element of a record

has the following structure

NAME | DESCRIPTOR POINTER

~

56 bits

NAME is the four-character key to the element name supplied by
the first pass, The format of the descriptor field is identical to that
of appendix (8)., POINTER has the same construction as for elements of
parameter lists,

The POINTER fields of the terminal entries in a list are
'anchored! using the PL/1 function NULLO,

4.3.,2 ORGANTSATION OF THE SYMBOL TABLE

Like most translators (including compilers), the third pass may
reference the symbol table many times during the analysis of a single
expression. Thus the organisation of the symbol table can significantly
affect the speed with which a translation is affected,

Probably the most frequently used method of organising a symbol
table is that based on hash addreésing.- Hash addressing associates a
number with a character-string argument., For a symbol table, this
argument is usually.the identifier name,

In general, it will often occur that the same number is associated
with different arguments., When such a situation arises, it is known as
a collision. Hopgood (Hop 69) gives a good account of the various methods
of resolving this problem, such as rehashing and chaining,

The argument of the symbol table constructed by the third pass
is a six-character string composed of an identifier in the form of a
four-character key to the dictionary constructed by the first pass,
concatenated to a two character number defining the block in which it was

declared.

49.

The hash function adopted is similar to that used by the PL/1
compiler. The six character argument is overlaid into three double-byte
integer stores which are then added together (with a no-overflow condition
attached). The result is divided by 211; the remainder being the number
associated with that string.

This number is the index to a ‘hash table', The elements of
the hash table are not the descriptors associated with the hashed
identifiers but pointers to the symbol table proper as illustrated by
diag (4.4) on page 5l.

An element of the symbol table was composed of three fields,

{ IDENTIFIER | DESCRIPTOR | CHAIN |

CHAIN is a pointer field., It is the implementation of the
chaining method of solving the 'collisions' problem, If an identifier
is hashed to a location in the symbol table which has already been filled
then it is put in the next free location. The address (index) of that
location is then placed in CHAIN, If CHAIN was full too, then the
location it pointed to is examined and the.process repeated.

The data structure for this symbol table can be represented
by diag. 4.5 on page bl., It can be noted than when one symbol table

becomes full, another is allocated.,

The data structure described above is implemented in the PL/1
program by using an array of structures to represent a symbol table and
declaring it BASED, When this array becomes full, another array is

allocated, The hash table is an array of 211 elements.,

4.3,3 RFTABLE

In IMP a data structure is defined by a record format statement,
Record type identifiers are then declared by reference to a previously
specified record format., This reference consists simply of the record

format name, thus

%RECORD %FORMAT STRUCT(%INTEGER I, %REAL A,B)
%RECORD R(STRUCT)

(contd. on page H2.)

on

bDiagrai (4.4)

Diagran suowing metnoa of Hash aadressings:

aescriptor

icentitier 1 chain

L___—*. entry 1

> entry 2

hasi
table

entry n

syubol table

Diagram (4.5)

Data structure of symbol table snowing method of Chaining:

.
? Ve
r e
 —
. .

nasn
table

symbol table 1 symbol table 2

Hle

The third pass keeps a special table which associates with
each record format name, a pointer to the list describing the data
structure. Concatenated with each record format name is a block
sequence number, as described at the beginning of section (4.3).
The organisation of this table is exactly the same as that of the symbol
table. The descriptor consists of a pointer, ANO and AOFF.

| ANOo | AOFF | MARK |
I
37 bits 1 bit

as before concatenated with a marker, MARK, that is set to '1'B only
if the record format contains a record pointer. This information is

needed by the fourth pass.

The third pass replaces all integer labels by translator-created
names, RFTABLE is used to associate each integer label with its new
name, The integer label is the argument and the descriptor is the
associated generated name (four characters or thirty-two bits).

The integer label is overlaid on a four—characternlocation to
produce the desired character-string argument of RFTABLE. Since the
maximum value of an integer label in IMP can only be 16383, the left-
most two characters in this argument are always hexa-decimal 0000,

The four character keys to the identifier dictionary constructed
during the first pass are such that their left-most two characters are
never hexa-decimal 0000, Thus there can never be any confusion between

integer labels and record format names.

4.4 EXPRESSION TYPING

The specification of IMP(INT) requires all expressions, but
those such as subscript lists which are contextually defined as integer,
to be prefixed by a type marker (appendix (5): 336). In the case of a
string expression this type marker also includes a length designation.

In IMP it is often impossible to define exactly the type of .
expression being examined until it has been completely parsed. Using
techniques discussed in Chapter (2) it would not be difficult to insert

a type marker at this stage, but there is a further complication.

.

The reactions of the IMP and PL/1 compilers to finding a constant
in an arithmetic expression differ considerably. According to the
current manual (IBM 70), the PL/1 compiler types a constant by appearance
only. The action of the IMP compiler is not explicitly defined in the
current manual (ERCC 70) but the author understands that all constants
are initially placed in double length floating point (long real) locations
and reduced to single length or integer form if the context so allows it,
This difference could produce an error between an IMP source program
and the PL/1 translated program unless special action is taken.

Consider the following IMP assignment statement

SRV = 3.,61728@l * 4 ,236@5 * LRV

where SRV represents a short real variable and LRV represents a long
real variable,

The IMP compiler (because of the presence of LRV) performs the
whole evaluation of the right-hand side double length, the two constants

‘remaining in their double length floating point locations,

When processing a similar statement in PL/1, the PL/1 compiler
assigns both constants to short real locations (FLOAT DEC (6) and
FLOAT DEC (4) respectively) and performs the multiplication 3.67128w@l
* 4.236 @5 in single length, This evaluation will not always be so
accurate as that of the IMP compiler, '

For this reason it was decided to replace all constants in
expressions, except integer constants in integer expressions by generated
names. A suitable declaration of the generated name, appropriately
initialised is included at the head of the outer block,

These declarations are not inserted until the expression (or sub-
expression) has been completely parsed. For in the example above, the
constants would first have been recognised as short real constants
since the left-hand-side is short real. The relevant syntax definitions
(app.(4): 74, 192 and 193) are

LHS & : = (REXPRN)
: ¢ =< LREXPRNY)

906

Because of the presence of the variable LRV, the analyser
rejects KuXPRN and accepts LREXPRN as the goal.

finen dealing with conditional statements, tonere is no ‘*left-
hand-side' to the expression. In addition, the condition may have three
expressions.

Consider the IiP statement
%IF 'A' {*B'< 6 wIHEN %START ;

Until the third expression nas been parsed, the first two expressions
could have been iaentified as eituer integer or string. Thus the type‘of
expressions within conditional statements cannot be confiruwed until tae
condition has been fully parseds neither can any constants be replaced by -
generated names.

This problem was resolved by making two parses of conditional
statements. The first parse types the individual expressions within a

conditional statenent; the second parse makes the appropriate text

transformations. This is acnieved by invoking the syntax analyser recursively.

The process involves the following steps:

(1) On recognising the delimiter %I, tne analyser invokes 35
(appe (4)259).

(2) $83 invokes the analyser recursively. The analyser is now controlled
by the syntax definitions describea in appendix (6). The analytic-
routine calls embedded in these definitions refer to a different set
of analytic-routines to thnose embedded in tne main aefinitions
of appendix (4).

(3) bacn expression is initially assumed to be of type inteyer. As
each element of the expression is recognised, & transition matrix
is referenced. 7The rows of this matrix correspond to the type of
expression (state) as surmised to the present time; the coluns
correspond to the type of the new element (Input). Kach element or tie

matrix nas one of tnree different values.

D4.

value reaning
1 Update tne expression type to that indicated by
tne expression element just. recognised (occurs if,
for example, a real variable is encountered in an

integer expression).

0 ko further information; leave the expression type.
-1 Conflicting types; call error (occurs if, for example,

a real constant is encountered in a string expression).

(4) Wnen the condition has been fully parsed, a decision as to the type
of each expression is reached and this decision conveyed to the
analytic-routines of the main definitions of appendix (4) via
global storage locations.

(5) Control is returned to 85.

(6) Control is returned to the analyser and the parse continues witn the

examination of definition 5Y in appendix (4).

The analyser mentioned above is that described in Chapter 2.

Tne root node of the parse can be defined at the time of calling the
anélyser. Thus the analyser could be used to type an individual
expression by controlling it with the definitions of appendix (6) but
invoking it with <{kXPRi)> as the root node instead of {UBSC).

Since IMP initially puts all constants in arithmetic egpressions
into double length floating point locations regardless of context or
appearance, it follows that real constants, capable of being stored in
integer locations witn no overflow are allowed in integer'expressions.

A test on the IMP compiler revealed that such is indeed the case, though
it is not mentioned in the current language manual (BKCC 70).

This allowed for by the tnird pass, the real constants being
replaced by their integer equivalents (app. (4):127). String constants
are replaced by generated names, aeclared and suitably initialised at the

head of the outer blocke.

20

4.5 DETAILS OF THE TRANSLATION TO IMP(INT)

Appendix (4) shows the syntax definitions and target language
constructions used to control and affect the translationm.

Each statement has been categorised into one of several types
(€51 , S2) or 538).

The definitions include a number of dummy meta-variables,
These always begin with the string 'PARAM' or 'DUM' and are reducible
to the empty string. Those beginning 'PARAM' are used to store
parameters in the syntax tree which are needed during the generation stage.
Such a technique has been described in section (2.4.2). The meta-
variables, beginning 'DUM' are used to enable the analytic-routines
to control the analysis and make it selective as explained in
section (2.3.2),

Appendix (5) shows the syntax definitions of IMP(INT) in a form
suitable for comparison with appendix (4). Some definitions in
appendix (5) have a direct correspondence to definitions in appendix
(4) and they are given identical definition numbers, Those that have
a less precise correspondence (such as (OQSVNAMEY), together with the
definitions of newly introduced meta-variables are numbered from 303,

The various text transformations performed by the third pass
are described below. Each transformation is described under a heading
which is a number(s) referring to the relevant definition(s) of

appendix (4).

32

In the specification of explicitly specified routines of the
IMP library, the delimiter #EXTERNAL is replaced by the new delimiter
%LIBRARY (app. (5):39).

42

Internal routines need not be explicitly specified in IMP,
If a routine heading is processed and there has been no previous specifica-
tion for that routine in the current block, then the IMP compiler first
treats the routine heading as an appropriate specification and makes- the

corresponding entries in the symbol table, IMP(INT), however, allows

H0e

no such implicit specification. Thus in definition 42 of appendix (4),
P76 checks to see if the corresponding routine name has been declared
in the current block, If it hasn't then a corresponding specification
is inserted immediately prior to the routine heading, Control is
returned to point C in the analyser, forging it to process definition

43 and the appropriate entries in the symbol table are made,

23

The reduced form of routine specification, as described by
definition 53 of appendix (4) is expanded to the full form as described
by definition 41, This is achieved by referencing the information in

the appropriate parameter definition at the current level.

55, 56 _and 57

A type marker (app. (5): 355 to 357) is inserted following the
7END of a function or map body.

59 and 60

Expressions occurring within conditional statements are given a
prefixed type marker (app (5): 345 to 354). This involved two parses
of the condition as described in section (4.4). The string length

of conditional string expressions is given a nominal (255) value.

67 and 81

Integer labels are replaced by constructed names. The meta-
variable ¢PARAM110y invokes $110 which checks routine RFTABLE (see
section (4.3.3)) to see if a constructed name has already been
associated with the label, It uses a dummy node in the syntax tree to
pass the four character key representing the constiructed name to
constructor-routine 11 (2 11) during generation.' (2110 returns to
point B in the analyser as described in section (2.4.2)),S87 inserts

the new label in the symbol table, if necessary.

2T

70 and 168

A type marker (app (5): 343 and 344) is post~fixed to the
name of a pointer variable., If this variable is a record pointer,
the type marker is a delimiter (%REC) followed by the name of the
record format with which that pointer is associated. The entry for
the record format name in RFTABLE is given a distinctive marking
(see section(4.3.3)), The type marker refers to the qualified name.

This may be the element of a record pointer which in turn is an
element of a record pointer etec, This is one of the reasons for the
complex looking syntax construction and many analytic-routines used in
the analysis of < OQSVNAME > .

In addition to the markers noted above, a map function name
(occurring in the general context of <OQSVNAME ¥) is postfixed by the
delimiter ¥MP, followed by the marker appropriate to the map
(app (5): 52¢). Thus when processing definition 172 of appendix (4),
$26 exits to point C in the analyser (and thus forces definition 173
to be considered) unless the name associated with {NAMEl) is a map
function name. Constructor-routine 17 (?17) in the agssociated target
language construct inserts %MP,

Another complication in the analysis of {OQSVNAME) arises
due to the possible occurrence of transparent library functions, such
as LOG or MOD. The type of these functions depends on the type of their
arguments; they may be either real or long real. The symbol table entry
for them has a distinctive marking (see appendix (8)). In definition
173 of appendix (4), $29 examines the descriptor associated with the
igentifier name and exits to point C in the analyser if it is not a
transparent function’forcing definition 175 to be processed. Otherwise,
the argument of the function is first analysed using the meta-variable
{REXPRN), 1If that fails,(LREXPRN) should work and the function is

pronounced long real.

14 to 78

The expression on the right hand side of an assignment statement

is prefixed by an appropriate type marker (app (5): 74 to 78).

bdo

84 and 85
%RESULT expressions are prefixed by a type marker. Those

relating to map functions include the delimiter JMP (app. (5): 84 and 85).

105 to 114

The hierarchy of logical operators is made redundant by the
insertion of special bracket delimiters %#L and %R (app (5):306).

This is achieved by syntax analysis alone, the technique being
similar to that quoted in the revised report on Algol 60 (Back 60).
Note that the technique could not have been used if the prefix operator
to arithmetic expressions had not been eliminated during the second

pass, because the syntax definitions would then have become left-recursive.

126, 127, 153 and 159
As stated in section (4.4), the only type of constant allowed

in expressions in IMP(INT), are integer constants in integer expressions.
All others are replaced by generated names and a %OWN variable of

suitable type (%REAL, %LONGREAL or %STHING (q)), appropriately initialised,
is included at the head of the outer block.

106, 130 and 156
The delimiter %EXP is replaced by %IXP in integer contexts,

%RXP in real contexts and %DXP in long real contexts (app (5): 309,
130, 156).

119

Arithmetic division of integers is distinguished by replacing
the division operator by the special delimiter %BY, Constructor-routine
30 writes %BY to the output,

184 and 185

IMP(INT) requires actual parameters which are positionally
defined as type general to be prefixed by the special delimiter NM
(app (5):332). 'his applies only to %LIBRARY routine parameter lists.

198

Subscript lists have their brackets replaced by the special
delimiters %LB and %RB (for example app (5):322).

9Fe

'CHAPTER S,

GENERAL DISCUSSION

The original purpose of the project was to write a suite of programs
to translate a program written in IMP(SYS) into one defined in IMP(INT);
the source program having already been passed through a lexical analyser.
This has been achieved using the methods described in the previous four
chapters. At the time of writing about 25 test programs have been translated
into IMP(INT) form, These programs have incorporated all the foreseeable
features of the translator.

The translation from IMP(INT) form into PL/1 was the responsibility of
T. Nonweiler. At the time of writing, the program to affect this translation
had not been completed. Details of this program are summarised in

appendix 9.

In its design, the efficiency of the translator (that 1s its ability
to conserve both time and space during translation) has been generally
considered secondary to the speed with which 1t could be programmed., As
described later on, this has resulted in a program that is relatively slow.

5.1 PROGRAMMING
The writing of the translator, once the overall methods had been defined

was done in three separate steps. ,

First, algorithms central to both the second and third passes were
written., This included the development and testing of the analyser., The
importance of being able to have an absolute knowledge of the analyser's
capabilities cannot be overestimated. When this was realised, tﬁe debugging
of the second and third passes became a great deal easier, It can be noted
that the analyser itself was probably the most tedious routine of all to
debug.

Secondly, programs to achieve the second pass were written. This
included the formation of the syntax definitions and the writing of
appropriate analytic-routines and constructor-routines., In general, the
second pass demanded a lot less expertise from a programmer than the third,
Thus, because it was attempted first, valuable experience of using the various
translation techniques was gained before they were applied to the more
difficult third pass.

LU

Thirdly, programs to achieve the third pass were written. This
demanded by far the most programming effort and time, Over 1000 P1/1
statements are used to define the analytic-routines alone., The programs
for the third pass were written so that the full translation to IMP(INT)
of every feature of a possible source program was attempted straight
away., It might possibly have been easier to write a program to translate
only a few features to IMP(INT) at first and gradually develop the
full program,

It was always possible to quickly identify any errors encountered
during the second or third passes, This was because it was very
easy to get a good trace of the path taken by the translator by examining
the syntax definitions and noting the particular analytic-routines
or constructor-routines called., Note that such a process would have been
much more hazardous if the analyser could not be absolutely relied upon,

Thus although the author has had no previous experience on which
to base a judgement, it is felt that the translation was quite easy
to program and debug considering the problems to be solved. In addition,
it is thought that any future superficial modifications to the specifications
of either IMP(SYS) or IMP(INT) will be easily incorporated within the

translator,

5.2 PERFORMANCE

A breakdown of the translation of a typical 330 statement IMP

source program is

PASS TIME (secs)
1st 16
2nd 4307
3rd 104.2

From consideration of these figures, the fourth pass (which requires

less analysis than the second pass) would probably take about 40 secs,

ol.

This translation was made on an IBM 370/155 machine using a
maximum of 190K bytes of storage. Neglecting the time taken in
initialising routines, setting up each job step and reading in library
files (such as the syntax definitions) which is of the order of 3 secs,
the average translation time per IMP statement is about 0.6 secs.

This does not compare very favourably with the times quoted by
the relevant users guide (IBM 68) for a translation from ALGOL to PL/l.

On an IBM 360/40 machine, using 128K bytes of main storage, the average
translation time is quoted as about (65 + O.6N) seconds where N is the
number of ALGOL statements,

The times taken by each pass during the translation to IMP(INT)
show that the third pass takes far longer than the other two.

By comparing the times taken by a variety of IMP programs,
it was soon realised that the analysis of arithmetic expressions represents
the most time-consuming process. As explained below, this Becomes
obvious when one considers the large number of analytic-routines called
during the processing of arithmetic expressions. Ironically, the first
person to ingquire about the translator submitted an IMP program of 4500
statements, mostly composed of long arithmetic expressions. The third
pass took over 33 minutes and the complete translation time to PL/1 is
expected to be over 0,8 secs per statement.

At the time of writing, there is no function supplied by IBM
that can give a user access to a CPU clock, Certainly, there is a
function, TIME, that gives elapsed time but in an MVT environment (in
which the translator was programmed) this is of limited wvalue,

However, a routine, written in assembly language became available
to the author which did access the CPU clock, On testing various features
of the third pass, it was confirmed that analysis of arithmetic expressions
is the most time-consuming. The table below gives the times taken (on an

IBM 370/55) processing various statements in the third pass.

Statement Time in milliseconds

%REAL X,Y,Z: 123
%GOTO 253 53
X = Y+23 505
%IF X=1 %THEN START: 485
X = (Y4Z) *X **2 4+ Y-2/4 2 1184

Originally it was thought that the long time spent during the
third pass processing the 4500 statement program may have also been

. due to the fact that the symbol tables were very large and thus the

search time for an identifier was increased. On investigation with
the CPU timer routine this was found to be untrue., The search time
for an identifier in the symbol table being 3 milliseconds whether
the table had 100 or 500 elements in it,

Various methods of improving the efficiency of the translator
in general and the speed of the second and third passes in parficular

come to mind. They are numbered below,

1, The number of passes made by the translator could be reduced.
Most easily eliminated would be the second pass., Untranslateable
IMP phrase structures could be easily identified during the third pass
and it could be clearly stated that no particular reaction by the
translator to an IMP program with a syntax error in it is guaranteed (as
ig stated for the ALGOL-t0o-PL/1 translator), Or alternatively,
the IMP compiler could be invoked from an assembly language routine
within the translator to check both the syntax and semantics,

However the second pass also defines precisely the meaning
of a particular use of the symbol |} (section (3.4.2)). This results
in a much simpler structure for the third pass. It is understood
though, that when a new specification for E.R.C.C. IMP is introduced
towards the end of 1973, a new delimiter will be defined to represent
the modulus sign which would largely solve the above problem,

Other passes made by the translator could not be removed

wihtout a complete redesign of the translator system.,

2. The top-down parsing algorithm chosen would not be as fast as one
using a bottom-up method of analysis, though, as mentioned in

Chapter 1, Capon and Argent (Cap 78) have shown that a bottom-up

method is only fractionally faster. Probably more important is the time
taken to invoke analytic routines., The reason why arithmetic expressions
take so long to analyse becomes obvious when one considers that in

the analysis of the assignment statement

L(K) = H*B+¢C

05

L

sets of analytic routines are invoked 5 times by the 2nd pass and of the
order of 40 times (depending on the arithmetiec type) by the 3rd pass.

In the case of the third pass this can be attributed to a particularly
ugly definition of the meta-variable {0QSVNAME)» - which is used to
represent an identifier and stands for 'optionally qualified and sub-
scripted variable name', More effort by the author should result in a

simpler and/or more quickly processed definition; but such a thing is

difficult because of the possible presence of record pointers or
transparent functions, etc.

If the parsing algorithm were changed, the second and third passes
would of course have to be substantially rewritten as it is unlikely that
the new parsing algorithm would incorporate concepts identical to that

of the analytic and constructor-routines used here,

3, It is rare for a program to reach the full sophistication of its

compiler and thus most IMP programs will not be affected by the optimisation

of boolean expressions done by the IMP compiler. So an easy modification
that would speed up the second pass would be the elimination of the call
on functions READS. Instead of breaking down compound conditional
statements they could be translated directly into PL/1 with a warning
given of the possibility of error between the IMP source and the PL/1

translation,

4. Another modification which would speed up the translation is to '
replace the four separate job steps by a single Jjob step using an overlay
structure. This would save the time spent in initialising a job step and
in writing out and reading in the intermediate temporary disk files

such as IMPCHKD., It would also mean that absolute machine addresses
could be used to point to the various lists built up during the third
pass. The use of offsets and the process of identifying which particular
area a list was constructed in would then be unnecessary, which should

represent the saving of an appreciable amount of time,

04 .

5.3 CONCLUSIONS

A feature of the IMP to IMP(INT) translation is that it does not
relate to the PL/1 translated text directly. Thus, it is conceivable
that this translation may be of use in the translation to a high
level language other than PL/1; Algol 68 perhaps, through no research iﬁ
this direction has been done,

It is hoped that the translator will finally be available to a
user in the form of a catalogued procedure with a variety of options
as to the form of the PL/1 translation,

The Edinburgh implementation of the IMP language is still at a

development stage. Towards the end of this year, 1973, a new specification

for it is to be introduced., This will include various new delimiters
such as the one already mentioned to denote a modulus and the
delimiter %WHILE to be used in do-statements (%CYCLE statements),

Whether or not all these changes will be incorporated in the
translator or whether much effort is made to increase its efficiency
depends on the demand there is for its use,

Much of the software in Edinburgh is written in IMP. 1In
addition, Edinburgh is expected to buy an ICL 'New Range' machine shortly
which will be supplied with a PL/1 compiler. It is thus hoped that this
will produce a demand for the translator from users who want a direct
transliteration of their programs from IMP to PL/i instead of completely
rewriting them., It is expected though that the main demand for the
translator will come from users who want to export their IMP programs

to computing environments with a PL/1 compiler but no IMP one.

05

£PPe DIX 1.

i

GHn PIRST -~ PASY

The first pass performs a lexical analysis of the IJP source
nrogram, converting tne text into a form more easily processed
during the subsequent analysis.

As noted by Nonweiler (Non 72), the I/P source is supposed to
conform to the syntax rules defined in the current IMP manual (ERCC 70)
with the following amendments and additionss
(1} %VECTOR is acceptable in place of the declarator %ARKAY.

(2) The foliowing statements are permitted
%SHORTROUTING ¢ SEPARATOR »
%DEFINECOMPILLR ¢ SEPARATOR Y
G PRCTALN AvH < NAMBELIST)y {SEPARATORY
FREGISTER {NAMBLIST) <SHPARATOKY

LUIYPEY <ARRAY 'y wNAME < NATELISTy <{SEPARATORY
(5) ¢MOHITOR 4CONSTY is an alternative unconditional instruction

to %HMONITOR.

(4) #NAMEARRAYNAME is not aﬁ accepted form of (QNAME').

(5) {TYDE) /NAMZARRAY is not an accepted form of declarator.

(6) The symbol $ is a valid constant.

(7) The ordering of array declarators after scalar declarations

within record formats is optional.

Tne first pass reduces delimiters, identifiers, constants and
comnent to fixed length, easily recognisable units as follows:
(1) Cased letter strings (that is, I{P delimiters recognisable By
an initial character %) are passed to a routine that defines

a single KBCDIC character to represent that delimiter. This

06

will not be printable.
(2) Certain two-character delimiters are converted to translator-
created cased letter strings as follows

*¥ becomes %HXP

// " ¥DIV
== " %PTS
K« " %LSH
>> " gESH
-Y " YHOTO

which are then nrocessed as (1) above. Other two-cnaracter
delimiters 2nd all single character delimiters are passed
unchanged, with the exception of the delimiter \= which is
reinterpreted as £.

(5) Integer constants, including decimal integers (unsigned),
hexaaecimal and binary constants (sigxned) are converted to a
five-character code; composed of character O followed by a

four-cnaracter'string obtained by overlaying the internal

(32 bits) representation of tne integer code onto the siring.

(4) Real (unsigned) constants are convertea to five-cnaracter

strings. These strings are composed of character R foliowed by
a four-character string which inaexes a dictionary of constanis,

identifiers and comment. Tnis aictionary is written to the file

IIPDICT at tne end of the pass.

(5) Symbol constants, including strings ana single or multiple
character constants are converted to five-character sirings
composed of characcer ' followed by a four-character string ;s

in (4) above.

YR

(o)

(7)

laentifiers are converted to five-cnaracter strings composed
of character A followed by a four-charatter string as in (4)
above.

Coainent text is converted to five-character strings composed
of character C followed by a four-character string as in (4)

above.

In addition to tne above lexical analysis, tne first pass

makes the following text transformationss

(1)
(2)

(3)

(4)

(5)
(e)

(N
(8)

The query marker ? is ignored.
Newlines occuring as statement separators are replaced by tne
seui-colon.
The delimiter COMMENYT (or ! when used to replace it) is
eliminated.
'ne aelimiter %VECTOR is replaced by %aRRAY, and %REGISTER by
AINTEGER.
I'ne symbol $‘is reinterpreted as a real constent 3.1415...
The intendea effect (upon the subsequent interpretation of
%REAL) is given in response to reading statements of the form
%REALS ¢ LN
from tne source text, and such statements are consequently
eliminated.
Null statemcnts are ignored.
The following statements are ignoreds
< COSTOPY #QUERIES 3
%LIST 3
%CONTROL (CONST) H

%OHORTROUTINE

68

%igUERIES < ONOFRY ;
%ENDOFLIST ;
»DERINECCMPILER
(9) The following statements are passed as null statements with
an indication of error:
%SPECTIALNAME { NAME > 3
* (INSTRN Y ;
and the seguence %ICODE to %ENDOFMCODE inclusive,
(10) Conditional statements are reordered so that they begin with
“IF or %¥UNLESS, and so that %THEN and %ELSE are always followed
by 4START ; (the appropriately positioned %FINISI statement

heing also inserted if necessary).

This first pass was »rogrammed by T. Nonweiler and it's effect

is described in slightly greater detail in his report (Non 72).

69

 APPEANDIX 2.

THE ReDUCTPION OF COMPOUND CONDITIONAL —STATKILNTG

Consider tine boolean expression
A jAD (B %OR \C)

If A is 'false' tnen tanere is no need to evaluate further; the result
is 'false'. Similarly, if A is 'true' ana B is 'true', tne result is
"true' and there is no need to evaluate \C. A compiler whicn produces
coae such that at run-time redundant boolean expressions (such as

(B %0R\C) in tue rirst example above ana \C in the seconda) are

not evaluated is suid to be optimising boolean expressions.,

The IM? compiler optimises boolean expressions whereas tie PL/l
compiler does not. Thus, if a compound conaitional statement is
translated directly rrom IMP into PL/1l, the coaes generated by the
respective 1iiP and Pu/l compilers would differ operationally.

There are at least two examples of cases where the evaluation
of redundant boolean expressions might aftfect prograu executions
(a) If evaluastion of the redundant boolean expression created an

error condition. Ftor example consider the compouud conditional

statement
%IE A=0 %OR B/A { 5.0 %THEN {UCI) ;

If A was equal to zero tuhen tae IMP coapiler produces code waich

results in ine second boolean expression not being evaluatea.

Tne PL/1 coapiler however, asks tor the evaluation to be made,

waica results in an overtflow condition.

(b) It vhe evaluation of the redunaant expression involved a call on

a routine whicn in tura influenced global variables.

In order to overco.de tais possible source of error in tune

(Ve

translation, all compound conditional statements and all statements
beginning witn the delimiter %UnLmSS are first reauced to the fora
%IF <UBSCY wlHEn %START ;
before a translation to PL/1l is made. Tnis often involves tne generaiion
of new statements (and labels ana thus reference to the dictionary kept
on file IMPDICT).
For exauple tne statement
%IF A4=0 %OR B/A € 5.0 %IHEN C=D ;
aignt be transformed to
Ll A=0 %THEN %START ;
#GOTO LABL ;
HFINISH ;
YILF BfA { 5e0 %THEN %OTART ;
#GOTO LABL ;
we'INISH 5
%GOLO LAB2
LABl: C=D ;
LABZ2:2 eeee

This transformation is performed by tne function READSS and was
programned by T. Nonweiler. READSS is an interf'ace routine to the

second pass (see chapter (5)).

Ll

APm" "ULA §

< ?
Syntax D efinitions Controlling tne Secona Pass

= C\j'*rLn”orskaDO%'S'A-*¢c\!"A"Ar” >"‘>f1\;a_(:(c i “ ﬁ'<Tx>v MFM§S’I‘:I%¥I‘ WOr*‘ 8})

Q
>
— —m
X 50
A 65 5)
S +—
z a «.
X —* —
X
o W 53
X 30
- X A
X 353
S- vV Z. »
r*4 X
© A X A
™M X o S
% —* 2 x z
— S < X X
cs — z X X
— *» cr. vV vV —Q
«4 X s 53 X
s> A w 0. o A 53 X —
i © X x X irrx
® co — —* X £ X V
M »-t D <¢ —* ot
© 3 > Ul S? z A JL
- -u < £ — Vo X —«
SLcr < »l A X -
» < ffc 3E o> k-0 x </ 53
z < Ma* o: X D Z X
AV ? X V X 3% V fee
Z >. 14 cD
3 Ul3 «@4+«a N X A A A cM-—
<3 EL 5. at — ro k— k- F%
Ul <l < ecr x A X X X
Q z z <iUl =V V V U A
V S« s* r x ar -¢ X.
ft fo «@®» O O0©0 ©COO@O « PO« a fe t <L <tv A AA
A A A Az z 53 55 Si A
<t < < cos? X A Z Z Z CDA
A A A A A A A A A A A A A A A A A A A A_A A AAA X 3 3 3 X 55X X X usg_Jg
"«CMrO*ZJOrvCOOk S A fj'C A flvDN«0'.rS 7>f>0\» aa ¢ x x A i- Ok k *cL
Si 55 S 55 53 >3* v C3 V % ke ok ¢ ¥ «—*%FCVCV AM CM QO (M >~ > > >* k— X >. X X X >‘§r
CDCD CD CD CO ID CD CD CO CD CD!/3 0T tn 0? ~ 05 COCOCDCO W CO tOM t- | —*k CL X (O X XX*'
VV VYV VVV VYV VYV VVVV VYV YV VYV V VYV Vy V VV V Vs« vV V VYV VYV
mIm It 1 I 1mIif I n it
A A A
A M ro
CD S3 S3 S3
(ep) CD CD X
v v v

72.

00 o\
PO "w-

e S |

si
S5r

~

CV-1 & -TInONwXOvSI—iCV "O = x

N

<gu3»

S ©o
e
. 5

O Q@ a
cn cr =
3 3 3
3 o 3

.
P >
— />
i
—— A
al¥
>
-
2
~v
=1 ~
< -
= —F A
2 H 3
Vo (s
| R
. ¢

0% 0
,
8
7
Q

ul X
or 0 ' or

S Nr

ac

rv uj

A
fv
3
(€0)
\4
7

g

T

<Quw ¥y

wWoto N O T

<8« Qs

ovoj) 4l TV X

g~ o-vs aie [\
<«
. s
avi
-l
i
SR S B
— <o
~ fi
—% “0H
in
Si -x I
(s i =}
O =t
3 1
O <
— 54
i
30 cc 2
< -~z >4
V-
v s 94
2 A
X Z —_—
=~ —
—-m —. i —m
XNE H~ oo T
1 ¥ o 3 am O
> WL —a oAy ifi T-1
T H < (O SOV T —=<
e 33 117 -HL
A3 @ig, AT A
Ay v T [
<L -J
30 Ix X X 3 Bk
2 Ll >0 on 2
o vHANMAM o x ~
T o O O om Tt oo oo o I
A A
3 cv
o-f V-1
50 [e0] in
A% A% Vv

< AT

s

< A¥

T

—

< A X

—
=

<OQQVN AXE>

(@kd

<8i&>

o2

K MO Ti® \® 31"r.tj\i’0«i>CNXO.'SAC\lg)s'? D CNX O S 'Ol
NOX®R®RAA®®A®®®(O!7i!J?20>Cr>®0'ffi!>-SS(SS’SSSISA»-*»-»
v
(0%}
1
(09
«.
O
(1]
M
m —_—
D
M
A wx
X 1x
11
X &
E_—<(M ai
<« <s
«— n oM —a .
< O X
vV o1 % < *5)
#} ro & ©
» 7 “ &
A A X
X X M S “«X aa, ax to
xi UJ *H -a —a —a A A —a
X X u D A "0 A s> IS a~i
f— = «* v A 2 Si3 Q0 co a»
—i a-» >_ oOCM£ —a £ 5« A
at ar —* 3 a. Ix ™M —a Q or X a-t
<c <t — 2 X M2 Siao C ¢ 3 H
vV VM —a o) 3 > MM 3 a X 60
D aa —a —a —a t— v a3 fH J —a t—
if 1 s0 M v X rv 2 o aa wt L" M a+ A
to A MMM M - A A o & —a o to o 3
A A A Y ir- -a —a — \Y% a Q V —a < —a —a 2
Xi xI xi o 60 3 0 AV Vv 2 v =
X X X < ™ to A CO (0 O JO z. ax X
<t < < 3 wm-V M -a gj -2 co JOk—Fo A A A ' x—a — —a
—* 7 2 7z —«to -d - —* -a - vi 60 ov COM 2 <c & QL a *>33 3 A M —a (0 -2 D
wo 3- > N D X -] Ol S| —a i a3 O) «o \Y% =ChH £ £ 3 3 A Y ro
M CO co CO M M3 Mro x> "O cst SI 3 —a3 TH o 3 <ic 33 3 w Vv —
—»G» C5 or at <C a* a* Q a-' CLX aHA A A A3 2 2 2 atg 3 I
4 0 O o Ix 3@ X Ix X Ix —aIX/ + 1s y=2aIX3 3 3 3 3 V V < ~ax X aa
MV V VvV — —-a v —a -a —a ¢ £ £ 2 QO 3 2 —ayJ] —a
. Ve A —s ' oW 4 -1 <r < < < Xl 3 3 V V < a— 2
ro UJUJI 3 A <t A »a—A 3 A A 2 2 2 oc «tmwd A > A
3r » 3 J _1xi3 3 3 3 Xi3 *oo *0toto"0 3 Ja > >y 3 Qo 3 2 3 %f
o000 JA@3 3 3 3 D 3 o —(* *» 3 to O co V) — t—i— 3 rt3 £~
© >- >= > xi 3 4 -4 3 <t 3 to teto 3 3 3 3 3 Sis SkSI3 O o 3 cL 2 3
— 9 <><32 2 xIx2 3 2 203 3 0 —<tt «t3 33 2 a2 X
N XVNVX>VvVyVVxs<<d<<VV VVYyY 0 60 *S oe v v
m I It It I I It I I I I I 11 it It 6 I O g II I It I It 10 (0 I i I 1 m II II
a* a* «a *a aa aa a# aa aa aa aa aa aa aa aa aa aa *e aa aa aa aa aa aa aa aa aa aa aa a» aa aa aa
ee ea A« a* ea aa aa aa %, Aaa aa aa aa aa a* Aa F° aa aa »a aa Aaa Aaa % AA F% AA e aa aa aa
A A A A A A A A
D D rv cc (0] (0] 7T D
H ©) trl a-« M o M
o) (0] JO 1o to ((0) @O oo
\% \'% A% A% A% \4 A% \%

74.

r\ s
v
ft f«
£
v

-Li

u II

o a*

«* ke

[

n_*0s
—ifi

—

<NL,;L.)\

*a

fl

<g2g>

co

*7

X? ON

£
ft

It
aa
aa

<3gx>

£*
ft

*»
ok

/"N

Cc«

*

£7°

o N

M
aa
a*

<o
rv

-0

Ve

T

i

—»
a“l

11
aa
aa

19

7!

JO v X ONs
CVecv cv cv cv ev CVev cv cv
ot £t £* ft

H ft *¥1

<V

i)

CD

S o]

<8T*[

11
ca

Ll

11
ca
aa

LNTx_owx

L

g L

11
aa

sk

)

NT—w@wx

H* W

B

11
aa

-t

Qw X
v}

N‘fw

to

>?
1

aa

fc
f*

r\
v

m0 "O "O *n fO ro
f4 £ ft ft e

L

<r
<11

¢«

o

W

-
-

11
aa

bl

"0
a-A

XWZ‘L

)

'D CD
2 2
Y so»

f\ /—v fs v *> fo*
‘CIO0rw (D ON&-+(MO
"0 *0 en <o
£ fr £t ft el re

b

-V

r0

S
—a
V-V g

CD (D
2z
=

Lpi

CcOo

I 11
aa f«

aa «-

V><W/\:>

T

<@ry

7

00 co

I 11
aa aa

aa aa

TS

o

< HING Y

wn

»H

ir
aa

?Q

< “RLYL BT

x—*|

to CO
»5 k-»

3
X
X D
\
v

- <NANmul{

Ld

< NN X @

aa

<N\ T >

<A DL >

aa

ok

ae o

8f>

<O, 8F

-0
Bf>
ft

Ea Rl
¢

~—
w

*a-a

< A
N

©
®
o
o

Ir it
aa aa

o TT TJ Tf
f-t £¢ £c ft ft

—a

“erg

<

®

If
aa
aa

vO
Ok

‘L><
PSRRI

11
aa

aa

A

d

% fv
\n'OV (DO.s

<> K>

'T

»-1

IO

ft

3qae

N>

X O X O <><°-.5oc WA

o

Q
N_O><r;>

~8T ™

()

<LOPWeT 1O

A fes <~
nr

/—

4 tv "o
«— <\i CV cv cm CV c\r r\

/= r\ |-

w'o'Tn-fvt)as
-t

I~i @ os~s

A

r> 0 r\
o\ co» s
s £2

r%
N <v'Osnr.
<3 s -a s*

S S

S

]

A MMY v VY VMY MMMMMY MMM Y A OF VI MMM

I—

S
S

r-%
J

\
>0 K 00
ONO O

fi

I*»

r> r\
»e M n

S
CCNOON<TI138<O0O

|

J

._00 X4 xo~

11 <onZxlS> <wBme s>
11 €@t oNn.2>

U] <oren N>

A»@ N oen Ten n 05>

I HI o0 I

K

b= A*_®ZCG{OZ3®V = A@3Cﬁ.1erMV
1 E2 XIN PR T O e
%A m« _ Aq*va A XV
Fl Buav S <@ATHK o> < Beaxd >
R am] w@@N A ®BT 3B ¥x <8 A>
11 <.
1Y <eren N>
| xBimm T ae> HeR P8 €t Ve *
1Y <0BLleNuxTos> <xtTer
19 <enenen B>
1Y ®eS 2
*_._ LenenenN> =5
19 <AdCFemme> <@V iliol> =i «18% i e 5>
1 O%1 x<HUNK < AYs5ve =2
IR - A@3.._.@E.H33a b A% AHXUHTWI,XOXXXV

SR

mn ee ee

)
A BLsTl (¥4 oxpe>

A1_..®H3 NHK oA >
< LS e i >

Io oI oDohon

°« mm ** *«

Am/\m& Qo >

see «l8 wezTeus S et > QB Btz T meOxxD> SF = <58kt
._ 4 A333mV =&
et T <lSlemxz> = =2 <D SIS S

*_._ AS®>®V HW
{9 b o535
19 <Lenenen >
4._ EWXm>m
*_ =V N
17 ~=
,ﬂm Ar_XM AN__UXVALV
|| BNS 05
Y1 <g™n>
Tty =
£ £5:] <CBLBVK Tuw TOE ANBX<e>
1Y <"Mex>
12 oyt
20! T “Oxbvx TdovTon> <nE Bxes 2
s <P >

<Pk 5>

u II

<284 s>

1
»

ASXV

< 5>

UIog i 160

<BHEY® "oV To5>

i 1
ry *e ¢ ne

d

<nBiny & Ot

gl[

717.

i
*>cv ro N3

JLs 1%

n o N 50cvs

-\ >prKrs N1

cv 'O

e~
%

/—rN
to VOrv Do\ s

\®OiSt-4C\(fOiITiO.0*V3DOiS»-'a!'0"

cv ga//_cv cv OV ev cev
WV X» »F

3 x>in Oro Px>in 10 O 0 VO 0o YOo WO

(8

Sry 3
Vev VOV
Vr 0>

A

CV,

»> vV

CcV CV

™

cv
w

CvV ¢V
v>

C

WH OWWWWW L YR B W 50

=

<P =
I

3O¢ﬂwv >
-~

Im v

Len
1 2dF
Y& 1 <edvN @GOV
1 ZenenenN>
11 <axvNe ®
*_« <enenenN>
._ NV N
fez 5 <oenenN>
o28Y <slomecr <l@Twmo s
b 3X3¢._.u»rmV AH.%<XXOV AF®H33 v N>
¥ Lenenen NP
197zmaf =
11 S5 . !
182 &1 <emeNs>
i <50 ST eV en B> Ar_.szO40ZO®V
Sk > Asnw.d D lenVenen> AﬂwZOQJnJZO@V
YY <enenenNi>
1 et =
{22Fm1 <wmmeny
fgel ¥ o
WP €pBemmgs ¢ <ANOLNT> <uBeacn >
*_ ._ A*_ ZM4G Zm,m_V % AFZﬂ nl3ZW\wV v>,
" es .
12,031 ™3 |
._oswﬁ_._ B
1% <nSeNTH>
11 o

~

! <8 nosT TR “<nS &S =

Hit Mitn I F O OTODODIiTKIG® o

n» I IOit i I > Wit T ATit I »

<K o S o
<Lnen o Nen”
A wv 3VA4 Z 3V

LenXt NentP>
<nenkV Nend>

<L 5P e Pl

ASX3#XH3< «@=

<1821

<.l ant>

<k 748 o>

<A N o NT>

< sm 33VAV

<l To eSS

Ta*.

HI Hi
'st H« cv
ts S

@ @os s

o
cv CM CM CM CV! cMcM CM cv cv CM c\ CM CM CV CM CV cv CM cv CM CM CM CM cv CM rv CM CVCM cv CM CM CM CM O

FV X
*m

Hi HN H H H
X

H-.
M ro "7 X
O C* cr o
livess/w

c* CS w
00 cr
VEs>w

v X

o

X

X

00

HN HN H* <sr\ BN /-V /~\ BN H-I HN Hi
—/w VvJ

«V 00 Os st -2 cv ©
«V Fv X

/~SH~ H*

CO x

Fv rv N
-w

rv V

Hx Bl HN
rv N
v>v>w <t <> %/

Fv X C* s> Hi ¢y O
-¢ X N

H\ H% s IH
X

®» CO WO

w o v>

n

<IN >
ofe w
TR R v
_*, < o) N
32 N.SSB A>.<1£%uw
gu @ S NP S—UNZ Ave=By <73 =
*_QWMLN«_ AFmHO.IH.S<Z,/ Al_.zv
R oz 8. : v D0ax »?W?» ooV 8 .
18 <18 L...MX<ZV 3a<ZM Oﬂoow,m*s
| S 2 <l8 1 VIS <. R
T 82 <NO©{.en> <5 b
I3, N 8z5".5> Aornﬂuv
. >
=
__ <
1= -
5
>

4&%.&._ NEEWS Cen o>
(SR L] <O, oF> WNEIMT> Caline” WD wen>
_“ Lererenen >
Av B
4S®MUF% LertrenN >
14 <t -
BETIDLE- o s
TS e A < N >
*@papyt <USfwlemvst T < m$rer wwoo« < 185>
{ @ ~Ntlvoke.s
1 ¥ <00"=2S-
44 <N >
=y <Suy cno> °
e £ abd<st wle @
PR | NexEEr * SuvanS o> I <ubbra @l MEe E
1{ <7
el *° <5 v
+mﬂFUﬂﬁw OLO ® AWX<ZO©30V M@
—LV.&E> Nea=mE > <nBvaAy> AToB: <Ny nAE0> &

—.

It 1m n I I I

1

II 1 I I m I It I it

I

A/,@ZO i
A33X<3V

<NdU o5 el

<0m@in>
AZ“33.L_GV

<dNoo>

AOZ OO4OW >
AB&@SV

<2 A9 B8y >

<154 -
Aot domvas
NbOx Tslg>
<aalflb>
<Ne858&>

<OV (B>

< 2.8 szwes

79-

>
>

CK o0
%

o

< &)

HoOTE o«

P Qs

.J @»

<o B =
«4BNos® vo

AQ7Hmm s>
@ZOO.|J<uwv
= MV N>

ao0.

APPKLYDIX 4.

\
A%

YO V00 !> S A (
Aic

S

w T 2, 0

Syntax Definitions Controlling tne TJaira Pass
»

JO.s O N O ? S

Cv 'o

1

<28z RoRBv> < wFBid> A M5y «S0AE-

| 1eavigr zzm <lkmmoss Bgrls
Ambmv
<208 >
POyS=Is
Ammmv
AdeV
ohe>
Aﬁﬂmv
<FAS >
<«588>
ADW@V
<208>
008>
«2S2>
%z8>
<209
<208>
«8%8>
<3 8>
ADHOV

*e ee

<S>

onm o

*a ea ee e m

ft « e-
I o u
aa aa »* aa

i1
mm o F*

<a

mm Anm ., .

»a

11
.ommommonmopmommo*a ey ea aa ..

ft
il

«

m
°a ee *° ¥

om o

11

U mm &« 0

*e % ee ee

«
it

1
mm

It

<&

m 1
.omm ey e
M

A
\.
.
()
v

I

m o»e

]
¢ «H8s =i
§ <MIS> =0 E
< @V =%
¥ P B> Hiz
« AW s> =
(O] <ES> =vs
<FE S =4S
Ay g =
B <O =i
= » < ®V =he
st <o =%
21 48> =::
] « 8 = ¢
F @8> =ia

81.

£ #% — #y /mft —ft £ /-t > > /N /mft)\
® (R 8 cvmrr n.n N3 «® s 14 oo T JO € N Xi ® s e
i0 0 T Vv 12 orr rf §- ITorr T to IO xi X inn n.,n m X X) 10
oft s? —f A
*3 A R 4
. 4 kf Ui *A- X
oft *3 X so CV ft*
oft o ~f Q0 —ft fi* to CR X
fu —f z A* A <
A «. —. 0 —f oft « —ft A \% +ft —« A >0 iwsS X
.S v oft rr oft fit uJ +ft X a X v
z e — —H <o ft- —of vV A X ft— n X rr fi*
u_ A 'O eft « « a ui ft* n 0« X —
- u. K) o' cv A v. "0 X z ro 0 3 tn < X
ft co z Al u —Ht X cv X> @R < \Y vO a V a X ft*
—*CL u rrorj eft Uu a tfli A* 7 to —% rr vO Y4 —
e a & a. —fa LL °° X Vv f— CR A ft [e0}
cv V 10 n rr o V Ui ro A Si A A A* - z \ z 3C
cr. Q e. a. CVCR — «. z — ft-/ A X (o) cv ». X ft ui
A* X) Uu cv en a A»2 fF X t— X X rr — X CR X A
»5 rr \Y *§ a. ro cv ><rr Ui oft A to < »* A* CR — X R — —4
0 to —+ V a S5V a 0 * g z z X Ay oft Ui A* K X
rr A rroo«s n —# U- to] v A% -ft cv —Ht p— 00 ft
Si A cv %« u/ CR +ft X <o t-fit u> — R (R v f=* A X
Oi Ui £V to _Jt r cv fi— NN —# z <
X X A A G & >- ok n . (R CV on X X
oft o < S — ey ui © ¢y B —# < z -0 cv CR CR ao % X \Y%
Z z z A rr X V R X A% n A — A% .0 >c
v V A% u <3 MLn« <t CRO- A A X » 60 S (R A uJ z
*H Ty z A-n UJ ui <t \Y% X -ft (R A -ft — — uJ
w A A Wu a0 A V "O0s X X Vv rr A A z - X X v X
w 4 CL Ui X s S — ¢ <* 10 X Ui X i*v X ¢ —f t—
A x X u_o to s A — z z A X X X n cft o X JO CR R?
f— < -a. VvV X < r4 WV v —# A ft* «* co <o 1> <r X A*
@ ac cc LL A t*X -ft X z z X rv vV X to cv A
l-i < <i A Vs «—c¢ A A ft-/ < X \% v X A VO \% CR s
I X X ui z t» X rv - 14 X C \% *—e to A A A* 3
3V \% X vO u_z <t rr QO X A ft* X A A X z X ro tH
£ <t IX X »tx to H <t > X < - A — < A X X X ft <1
< o 0 z to JOV Vv 1 X w Vv X 7L X vo “ft X *4 X <t o rj P~
2 ul uJ \ X A X ¢ Lft A <L < o Mt e x X H 3 ft X
vV X CL A X A > s LiX o1 > X —fX «* CR +ft £L fr* Xi CO Van V
(€0) co A f4 V UJ <r »fi—= v Ul <4 Ul fix At <r X A* B#V or - K a
VvV X X - X X X QO =« X X X X % X £~ (R <* \% A %3 A
\ X 3 to < X H — ft* X <t vV ft Vv X —#fA* X X A Z (R a
@ A A «* o X)z <l i@ n z ft* z a vV — 0 fi* Vv "0 B3 X A* ex
> *— ac V 40 V X =V X VvV 5% X 1J fi—o —f ac — 00 X X X UuJ
A X ac < *4 X ui cv XI A oft —= 3 yi eft ww <t X -ft X
v \% CLA A A Az 100 r> X) n—+*x « X Ul o _* —t X Uu — -°V
£ V UJ AL UJ UJ %t Ul u_ m in n <. 1o X VO oft CCF» f A fi* — z —f
< A - A X X X X V to —fto to <*to M X — < I X X A» #fX V V3 R
X kKo ko ooft o m¥ < J-m>~ oft oft a z to X u O X V co A*
< £ —»X #Ulz z * i— £ A A A A ftA a Arr A v ¥>0 o "V 3 rr A UJ CV
x C < « X V V V V ~t —# —f tHl 14 —f —ft v-/ =W (R A to 3* M -ft 0 z X #X R
V ac cv ac CV CO <s X a X X a X* X A- X 3 A e# —f v ui to X V A-
<ra <*e X A A A A th <t< < < ft—fx« < M < = A A A X fi*
3 CL o X ro h~ »a X X VX X VX 0 X (RX CV <t f —ftr-i oft A H A X A a
2 VOV O-A ac X X X < fi* & fi* n a <l CR <* A* fi* a X X X X —& 1M —ft ftr
< A» A-P»-V V < < A X X r>x X rox A«X CRX 1O X < ft* «* < A X X X X a
Z 3 rr 3 V X X X X VV®RV VYV ®RV r Vs V®RR< X X ocor 00 <l A WV o<f
i< <t « <F « V A A <t < ui N A* CR - A* X V. ¥ fix * x at Z X X CR
z x» 2 JO Sis X X (DX Clrra o rro A» o o Ir V X X X «* < X ftk F— <* Ay
Aac ™ an CR Az 2 V V Uo X (RX X (RX X X °*ftX (R z V V VX X X X X X co
UJ Ul A» UJ A« s X X h~k—o0o C»O o A*O s 3 o A*3 t <t V >c vV oftr Vot
IL »— = CVto t—t—2z Z Z —lc>c¢c o Ljry ft3 rr o CRX (>O Q o X ui y~
> X X —Hf> X X i =<2 ui S ul u) ui X X <3 X z Z 2 V u V- w IL
h" Uu = UJ —#JOaJ UJOO VcoX X X =X *ftX coX — COn Ulu) ui \Y% 1-4 >
VvV X X VV VX X 5f X N: J* 5% X 3% 5< X J* 5< o >?
11 11 o1 I il th (1 11 If 1 LI] 1
g L) o oft oft .1}(},Im }l. . .o £. il. .o nm .o e M&“ kyl‘[‘ - Lad
3> f o H «m > mm <e o a(a< e fF.. L
A A A A A A A A A
A A A A A A A S "4 CcY ro rr n vO rv SO CR <3
o rr X> ¢ rv CC (R tr4 —f —ft —f —f *4 Hi —« cv
O O a0 O co o Q@ t to [e6] €6 co CO co Q@ co (€]
vV Vv vV Vv vV Vv v \ \Y \Y% vV V VYV vV VvV v

o <EWHMNN L W

L SRR

<fg><><><l\1>

></}f><£>

*

=

Q
O>< <

>

% N

<gag»>
<B8Qs >

<X r\

OH OH OH

o o

o'

«k = Ax #»or)\
<>-f cvro IT JOX
X

a.

rr X X Pv X

20 x X X X co co Go co ®

r> <>r> —k,k<>/~1 r\ <x rx

"y

rv

\

r> <&&/~i <k

"0 ITX X ~r X o0t~ ¢gvo

N\ A\

c*

ac o

\

IT .., x> . s
c X X Xvo XV

"k r\

o

FZ v Wa_m Al_..®¢“._.33ECZV ® 48XV N>

178%1 Ple <2804V wnTxlB¥

FIT & B4t O ¥ <dememBLnT> F <2aliuss wnxd SX
EIERT CIQ <« yVufr> wv 3B

4H.mwnwmwn._ 04 Au.rX<X¢XV U5 A.%XQXQXV n N ol
$ITs] BB <Tw¥vmsr xFaR L udi

T <€ vy Bl DB <Tvievies LeoxSn
Foode <durmvisr wSewlal adixviey> 5448
#2552 ¢ <dw s Lodlaen

101288509 <SS INIe Dy Lol noxk
(8T %m2Y % <leiUpy> o S%

L2=BBgeef ¥ <woxDis = Drvevs | waBixy

Lo B anpnsls ol = <dernrie 1S5
¢ EB50eY 5 <Tvmvier Nienbidn

£o% epeudosdiss INHHATI > 2 CERY > DRYRT o oo%

713 <7 Lmve > B CERURV al oed
*Aﬂﬁmen&m._ <Sei BN CE RV K o> on_m ol
2zeEo < BaoxThot> QBLE Bav
£ <DL By X e € T nABem o>
1 € N> 2Ble ComeOP #ys' <5 7 SMBwo>
{ < BT D0 €Ba o Mur T T aAKemo
> <R HOey > BB €T o Kt <S5 S
{ Fomxesx] & <upxBl> ZEI8 = <SaUN Swo>

«n
rr
A*
r

«

X
(6%
A .
z

X
X

X
X

X

PiN<RS PEY <A oNMBwo> Exvm®e> Sl Bevnvies B <Ioxy o>
1 Vegasmlureseterd:
B SronSacr DT Olxs «@Bxynxvs 088 <5 v
t LoxBsegus e &
EQ 9l saoo> <Ixy v Olxf Buxvxsns B2 APt <O~y
EOEE0A% Qi v g itan o st
EQ <5 wn S0e> <Twismsms Olwy 88« <tvions »88 <Sxins <O Ve
PET0BAxEt £ <] VA <QvSu 855>
t TepBlre] 1 W <€BaBL B> T ey
VRFTLEDY 2838 ¢ <uwn dxvxvos §
HeT<Ez! zZxe & <Fovd>
1¥TeoB8%es| % <lsl—deavs <zxvivgs Lmo xx
{ F8%sz ¥ <hav.VF> JvRB5«
5 ¥ a7 oY QumleROs £ 21

A¥*

»a

onmu
ee 1 ee

il It

I

e oo oo .

II

>
V-
v

.o ofe oy ofe e oo omm e wm e

it I I
LA ELE
O O *mo ro ro

CO co vO 00 3

v V. V vV Vv

b BT

%Mmﬂmﬂ"i’.‘ﬁfe* ofe nm mm

(4]

) I | R | T | |
(1] (1])).Im’]..ﬁ:fc
o
\%
85.

I

)

u

il

RIS mm

gt

S EEE L
e o Wk kg %e ee

S 1S >AAAR
O 0 0 O O

78

-1 —s * s w—< »*

S

S S

CVI'"OTr* vONOOOV'S-«C\ifO<7tnCNW
1$38>5?-8 S i

'3r4
O0S1S”

v
>

» O
CT

(/6

cv
«

© ro
Ar

ac

"0

«1 O rv

S NS “<8%¥NcBmor
14 BV <8RV T x> 1o «
AT 2VE «Bovxiwx> 35 £
i < - N
C 1 <“sxaxSETox> <oNUxExeB8l> xx3ii
T anxuSx ox> <ONwHTmox> <LuoV>
dxel i 8 Azxxxquoxv LNV HDH om>
1EL48) <k Smin> oby x
T 4vE < wxi 2 o
« MExTm> %3 NuwxSAS <hx¥ vuxs =T
17 % <NExxI >
T2e1l ouxl <5svNASwoO>
T 1 <xB35.nNT>
1 247 < xv vw»> 8%
1254 <t oFx¥x> =87
Tegdl -
1 5E1 < Lvwbwes Mo
151 7
¥ %1 < N ®=Ux> AnnE
T
1Tl <oNex3moZ>
1T 8e2¥] <ol Dlvx™ = <ONwxTmed >
f «+20) Awo,_locXV s ASZ<XMX0MV
ST 2L <xoloe %P <R2x TP <CwamvxSxodd
TId: <Zolovxs>
1 W8 1 axmEdr ¢ <ol oTx>
d3%002% $%1 < Zlr <Ouxo?> <ml Vx>
Ret <wwSd>
1 ¥z 281 <NZmx B3I wxii <Bxxl>
s 3ve 4281 «n2.x3l> <B8o”> <«R.3l>
Y% oRB <afax3 > % «NZxxIi>

v
»e

o) x 33 . <o zgxiEl <NRxx3]>
w2S A <l817.2> = 14T <«l8 mp W.s
Saf T <«l8Bmges b o« TR <:8I7F. s
TARAVY <2u¥vds §
17 a1l < Vwxoux> e

1 5% <oRVHEy >
1= ®% <LR&v ~>

oI mmom o o n i

It

It ii II 11 1I

1

It 1 tl

It 11

I It it it It t it I (I It It II II tt

it

<ONT = Sxox>

< wmnSw Qu>
<Nxxx 5x>

AOZ<XMX&HV

<On P

TP

<< QbaV u_V

<Xz l>

<NxxxST >

<1 8K .8

<L 8YTRT v >
<SH v N>

I P=FU N
<85SHV N>

84.

r\
X> M N co Oi *S wt CV
«n i} vO vO N IN N
HEH 4l o4 14 A <

To

-k X
) x> vC vO <o X> vO X
*HS «Hi *H w

‘H t-» H

HN HN N HV HN HN HN HN

a> s

X
if> x>in U0 X

Qi "0 <T 10 <\
ok oH e g e ke H

r> /H r\ /*>r>r>r\ HN r> HN
A

X) in x> in

Cfi
H H

X) x> v X
sy Kf
*HI =HI *Hi tH

5

r> r> <s rs HN

3
*H rHt i

*
»* Ou ro

HV H> r\ r>
ao Xi s

r> *T7

4 r-t

N
o 10

HN

“SELE E0 T <U08Buumiu 1o > <@uvVulux> Rue < onfu>
FZSlnol <@uiwvm> Ex? <Tx >

IDexal s A&@lkmwaamm.amv THE Lo XT P <eaveo
M«X«my A@@zX«X.F@ > exs AMS VNP> <o Ve
1 18ex8TO0% <hwuVvxox™ 52 <EWVNT <aVom?
ol <mm TP mX <ammdTeer <lrvxTx>
%o 8851 <R aVulu> wuw <urmndw> <Favmin> <%
21 < aveTur HR Cammmn wwBE> <d N wox>

.) NS xea> =

1Tz otl T <NmmeIx> A

¥ oaery Nuwns 8ewsl> =

158l <Twn mym>

T ef & <ZwUns B0

Tmm avy <Bwmuxvx> 27z x
* 1
4_Mw«4AWz<quth ®

4 4 Al,33ZV

gucew©0.xmnc% AZXIXM.MQJ o x> A32<XXX3®.HV L=
- u) ¥
Tooo 4 AZXXXHXJ, o®” <oN XXXOX%V <L wov>
- . — -
140 1 2T CNHHEERK T oK CONOKNKX ox T

192287 <Bavmvx> S5z w
. # ~
AT RO & <NxexBTx 2ds <o o wves o

EV 1 B <ammmx Ex J>

1=F vY <% ox Vv &>
T« 882 <xwvn Swo>
%M..@J AXX@XF Z%V

TV <xxN>
* X

19 29887 <ammmnsl o> <anvEmmoSlE <xxov>
Tmvme] <NMmeHSE oxP <V avmxxoSI>
i

1-1 -
T
1

—

-

*

Tz o AWX0<V

ZAS0LY <% TromP mm CammoammT CERT x> xx
21 A/Hmuxuxv o Azxxxwl_msmuv <IWvEYx> X
 Bol 1l T <amuxixs

1l <aamrem ARSI

ok ¥
113 5v4 <zem guxs |

I 11

I

I it II L

1I

Im m mm It It

I

A3£ﬂz>maOV

<o VXaKenFa>

AZXXVA3VA3.IOX ~ %
<N R D e

Aqux3Xa®Mv
AZXXXﬁmﬁlomv
<NHAA o R OF >

<AH oV >

<T oV >

r\ n
'

_

Wt w<—o
a-* ft 14
ft 1ft
-lev %
— CV W c¢v
ft A* P+
*p *0 <€ A-
0- ft x> <
rH cv tO
ft A» cv
ro A O A*
r> S ft ro
A* 3 — ft
— CV Ui —
" o»-l ft CO A
a« ft — -ic2 A
ft CV «>o0 Si
cv ft =7 QO Ui al 3
fe —a « to X JO OJ
—« CVto V. -iCO
JO ft o 1
\' CV —a —s Lt '3
cv tA x Ui
*9 A A AV X
<3 h- gj \
fi @ co 35 «
A st ff 4 4
AZ 4. 1 f A
Z X <t QO 0 rv A
x X X oa »«Z **V
Q- X w3 _ic<t#£
X xi f CO coac <
IU cr o V CD<t X
ac _1i <t 3 X <c
VvV v *J0 V X
ro V A
WV g *0
fO cv to rr
0 0" to @ ro vx 1O
CvV cv <4 tf)
¥? A A
CVui A — A
A A JJ 50 0] ui i
Z z : < £ ii
U- X < z < <t ®C
f bz <t Zz
VV YV V VYV Yy
» I tl tl It tl tl
e oo oft aa aa aa °°
aa mm °** e mm mm **®
A
S
c3
Ui
A co
3
< o
3 3
3 X
\ \%

fnOM3'
VA N\

\
@ wfw <) R o<

> >i
g

aFat *« 14 «« «* a*

/-V > «>
l\l/\ 'J

® *® 00

R cv
rJXJNJ

® C D

e« t-1 — w

«> [«> /-

® 005¢tJtO ,

ft
cy
ft
r§
cv
Aa
A
1S
D a
Py _
— f ft
r» (€0] cv
44
ft 3 ro
X* co —a «
ft — ¢ — —
3 ft —
— m-t O CV A — w
ft vV ft S — ft
(0% T cc ft cv
ft A cv 1 (0% X
ro ~>® 3 y* p— ft A*
vV —a 0 V — -
<o <t i-* — g
<V z A 3 ft A
A V Si cO A CV zZ
CO ro 3 (D COo ft X —m
X A ®3 - X — r*
X 35 3 +— co Fa: — DG
<r < — < 3 ft «3
X A 3 t-* ft X A — CV X.
*ICO O 3 A cv 40 vV X <v
o X V CO3 fto = A* —
X X £ "X X A —
Vo<t w3 C voo<t *o A
X vV COZzZ A X A Z
A A =« V V Si A 1 +=<Z7Z X
X o D o 3T K X
X X A A A niJC X <c X X
<k VvV cvi3 3 % \Y% X X 3
X X X C cox <S 30X
vV A 3 -a 3 PPV A X X 3
z 3 Z 3 3 vV V. v
x> X V V V. O 0 X
o X 00 »o X Si = __
t0 X N rv CV3 SO X J4 Xi X>
ui —a ro ro <7 QO 3 R f
A I— —* 5o to i A *— —» to 0 ‘O
— VvV — VvV
X A A Af A A £ A A A A
3 — 3 a-f X 3.3 -« 3 Vey v
3 Vi XXX3X3 'V ZY §
v 3 3 3 3 <CWccO3 3 3 3
Z3 0 03 2 0 O 3
A VVVVyV %%V VVy
I oo Im 1t ¢t 1o i it ¢ It 1 I 1I
aa »e ee g% ee ey 5 mm mm «® *° e ee
aa aa e ey o oo M mm mm oft *° um
A
Si
(v V) A
2E co
X s A
c X ir
X A < X
A X X X
f X X
<
“« x L
\ \'% v \'%
36

<Jr>

OCMSAMAC T>¢>.\

o1

~C

r»

'0'0 0 >

t> S S S

—»
ft —a
—a a4
— a4 cv ft
ft ft %
ft CV —2 —a X
t0 X rr ft
X' A* A ro —a
A« —m t— A»
— (e¢] - A
A ft D
A Z 3 o H
Z X ro i— —a
X X (D A* wO T+
X x 3 —a i ft
X 3 (O — 3 It
3 1V «Wt% o —a
X X ft CD
3 0% V— A 3 A
vV O CD Q0 -a r—
V (D ac H v — co
v ro ro 1— ft Z
0O A ip) I5 *—a 0
— rr <1 —m 3
to « A A3 —aA A i
YWz 7 Z Z Q
A £ X X (DA X X z
g < X X 3 3 X X O
£ X X X 003 X X
3 <3 Ui V3 3 3 V
S
V V.V V vay V V]I
I I ¢ II I ¢t I 1 il
ok 3% a3 a» aa aa aa aa aa
mm a* ea gmm a« aa aa aa aa
A
[N A
¢6)
A u « A
t— (— Si
o CO co 3
P M *_¥ <t
3 3 3 #+
o co (e¢] —
CD @ o »t
3 3 3 Z
(e¢] o @ »S
v \% v \Y%

RSP SN
00?iSt tV,,)

S

«* —« 4 W« «i«>a»r\j cv cv cv ¢

cn
ro
A*

It

bl

el

oft

«~>

?
S
v

A
S

cv

«4
A»
Si

V7>
3%
ro

A *

11

in

<£
_« X
@t 4

<owe | n

il
aa
aa

87>

*
0

<YNiT“

'0XC
s 1B S
CvV CV CV

«$
ft

ft
"o
ft

CONQT» <«WwAY | X2SHgs
WON8”7> <Qu/\w:: LW XA

<83 Nw

A g
3,9
s '<
cv cv

—

-3

w
—

(€]

it
aa

%

H W 1o, ft i) 0 ov a0 o
o) . an *< ¥ o To o
Ve ov Vey G Vv

XA» »s* V- vw>V!
—a
~H
-1
¢
X
cv Hi
& H
—a >e

—a A ¢v

H ft ft

Hix —a

A* <t

X X A

cov ft ft

ft X X

-a Vv <

X —a

A - ft yX

£t X °H

2. ¢V V ft

< in X

X ee — -

<

X A A —*

V «Hcv rH
z X ft A

X 3 3 —e X
oi 3 —* Lii —a

AV V —* A 3 -—a

S) d 3

CC A A A to = a

3 s § —« _1-*3 2 J

Z.«- & i > %z >i3

_10 o —* —e B« V 3

X X z

VvV 1yv vV V- v

I oii T €1 i1 i1 i il i

5 fi*x aa @aa »a «* .. aa -

< oft .o ML M oa* .. X

A
S
X
ui
A -
St
co A %E»
3 St 3
Z = ft
i 0 3
X z aG
A A N

g% v > «>

—v e}

<v r-\ =\ e E
s —*cvro ft 8])&0 N a0 o'
CvV CV CV CV CV Cy(y cv (2%
CV Ccv CV CcV CcV CV O/Q] cv cv
U* u x/ w
A *,
“«— cv
to a-
A>> A
m -
= (1)
0 0 =<
=<
v U,
3L <@ ft-
tn .ﬂzé
A\ 1O = A
« to Z
A~ K
H *— X
- Q co >~
—'C©V o<
»« ft O 3
cv a- 3 X
<* <> o' X St b
A* ft ft ft co
Si Si ro —a z b9 v
in 1) ft v
«0 — s? A w
x> ic 3
a a 0 =e if) X A
X X n ce ft S
uJg uJ te A z
o 13 > A J» ii:
ui Ui A to **co 3
t £~ += (Hx 3 X
z z CO —1ft o X
M »» Hs x v v
v \ 3 x ft
>- ft x . A
. —aft z v ri
X_V A X
o> X ft X o £t
v ST Iv ft sr X ft X
69 <w ft v ft ft 3 ft
-a -a t0 z X X
a a I A K “ v
X X ft SI aH a X
Ui Ui Cv J:}z X *HIf) 3 c
o 3 ft ft U If) tO -
Ui Ui —a X ft 69 3 o
b a A ft X tx i3
z Z A - X ftaAa V —am
*H —« +» 2 00 V X e« r\
V *HV u V X A —->st—a
ft ui -J > ft *H o ft «%
w ¥ —ayi ft3 x X W «al
<«v x *fx x x ft ft a £t
A CVA X ftftX ftX X CV A
- fti V —@aZ ftz V ft . 3 Cv
0 e x0 v oe X e X ft
I O cH A A 3 V ro ft r0
3 f£3 3 O A A A X e Z Oi
ui ®r'3 gi ui Ui 3 3 3 -» ft > A*
X X a 3 X a.x 3 3 0)cos
%ft ft u U>->~>—Uic0A»31i
“2z X X i- &+ + X X ~=®0 -a
v v V.V V V V .V> v
il o i n il T i o a
a* aa *a +a aa °*ft aa aa aa aa
aa aa aa aa ** -a aa aa aa
A A
— (0]
co ft
bt 3
3 A |
X z A 4
U X 3 z
h— ui 3 3
At (X) o ©
X = 3
to =< =< =<
A A A ~

S7.

<$H /9% X e r-X /-X «*

s>
<o
cv

g

ft
*e

ca

aa

WU%}

<><::E_|_

fH

0 O
Y

—a

ft

St
ft
69

wQ N
<ww@oNpXwy

:sH

®

R

O ip O1rv
ro ro X) 10 ro
CV cv cv
w
—a
«4
®
cv
*
ro
ft
-a
A
+
-ft Co —«
—1 oH
HL 3 ft
ft x o
u ft
-a v —a
s <s
ev
00 se
>c
ce A A
X 3
A X X
= —2 ft ft
CoO @2z z
*=f vV v
X%
—aXdDDa a
—ax U5 X X
v (1
A A 3 3
3 >3 3
ft x a O
3 69 3 X X
4 Q X X
v vV Vv Vv
o i o o
«« aa aa aa aa
*ft aa aa aa aa
A
ca A
z |
g
X
co 3
> >
X >
~ ~

e

10
%

x-/ «/ %3

—-a
»1

—a

<™ Yw

::H

el = ohad="atd

cv

O s
ro ft

—a

inatay

rv

ifi

A

—a
ok
o>

A»

—I-a

ft

ft

< X

ft

—a gz

—-a p

a
3
X

>-

>-
ft
X
X

t— ft
Vv

o
aa

aa

I
aa
aa

Jo
te

t]
< prpXge

MWW oKW

<.’I=Y><b-lp

AT YRR

—a

-a

sip

WY AN

B
]
S

o

S

o

©

A<

N
S

<B

-

—a

~a ft

ft

e
—a —a

X
3

x»
A e.

cv
4&

ft o>

X Ax*

v 8

a

SI

ro

»

CO A A
4s

§ x&

—a

—a
—a a*
a* 0)

—a

CD ac

o

>

1
w8 =
~
g2
il
x>
XXX m
ﬁXV
©
|
o
v
3xxo
x > ®
«5¥
-
o) b=
a*
[

—>»

«.

—a

o

2
X
X
X
XI

ft
N
Ov fO A*
cv ti
N
if* a

A«

cn

—e n

o4

A* X X X

s ft 3 ft ft
ft @ CO X X
v v v

—a rH to ft ¢
to

o

-IX

co A
oid

o Z
—* X ft
*v ox

A
X
X ST A
ft ft +
Z

N
-V
ta to X

fv

—a
<>

gv
r4
ft

-a
A
«an
™ X mw
A X ft to
4 ft x
X X fta
ft ft X aH
ac d v x
<c V ft
cr

-a

‘ui

3
3
—»ti>—1 3
z

3 3

o
2)
ft £t A a
ac ac
A A <3

o
o

30 r> Oh c*
60 to «9 —2

«

A CcVX rigx

—a 3
—ar X
<

mx O8>

)
<omNE

>
v

™M X x>

A
1
aJ

3

vV v it

A
to
—ax —*%na
—ax fHx
) *~

X
ft <t
X

z
X s
—e3 >? ft Vv

X
v

L]

)
He> N

V A _ @a-—-a-—a—a-a

—a—-a -a-a l* -a —a—-a —a-a -a
pus
—a-a gy -2 ea

+ 3
3 coco 3
2 x 3
Z

A
3 v ft ft ft 3

r A A A
3 3 3

A X A z
33 »43 f£*X 3 >
fv X x co 3 tOX X
te 3 3 <0 3

3
Ui
3
X

A 2>

Co co

ax (v @
4 A V V A to to tO to te tO

Z zZ vV>» M
v v v v 3

4
v

N >
N>
N P>

HY R
ny 8
CER
HE§
HE 8
984
HS 4§
HE |

HE §
HE 8
EE
998
HE§
A3 8
HY S
HY %
HE &
HY
Has
Hed

MNxxxm S

t
c
£t ft £t £t £t £t

X0

X o

~<
LECICRVIMIS IV

< wS

o>

N>

s>

x>

o>

A8~

db.

rv

oo

ro

-ft
-ft

ok

3 i

<HARAXZ >

n
iD

V3 V3 V-/ w

r

f

<HOABAN X >

11

<HAKHO >
<Ml

r-s rv rv ri ri
io PV CO c¢* S.
00 GO CO oo

CV CV cv CV N

AN

fi#
c9

11

oft

w

—a —g
RO

o* S
£) 00
te

i U
aa ee

aa aa

<X AR E L>
<HIPHIHG >

ar 0%
CV cv

w

®

cv

69

11
a *
K«

<A R
<X

w

ft>
(o

a9 s

11

°z>

Ccv
ov

Ccv
V3

cv
.
ft
ft

rv, r-\'rv rv r\ r\ rv r\ r> rv
n ID vC oo Ov *s *4 CV ro
C* ov Ov Ov Ov ov o ca § KS
CV CV cv CV CV CV CV 10 r> n
V-3 V3 w w w v=> V-/ w
» . - » L] L] L]
L. e « * oo,
-a — ft ft ft ft ft
_ -a -a
— —a A A A A A A A A
3 333 33 3 3
e ft 3 3 3 21z x X X
—+m in 3 3 3 ft ft re fo £t
4 f#tz z2 7z 7z z Z z z
=e V VVV VV VYV
it, it moIL lip 11 11 I 11 i
l.t :lta aa .it .h aa ea h aa % l’ta
*(aa aa °ff of aa oft aa oft oo
A A iAt
-0
%n in
—* a— aH, A A A
X X X A A A é—f—Q’nsl’:
ft ft ft ow B3 3 3 X a
X x x r W XXXeyftz
ft ft ft 3 3 3 ft ft ft a_
X XX 00Q2Zzz 1t>=
VVVVVVVVV VYV

APPhKDIX

SYNTAX DhmiTIUnS OF If.tP(INT)

Definitions (1) to (p") correspona exactly to xnose given
in appendix (3) witn the exception that <S14> is no longer an

alternative, having teen reinterpretea in the form >,

®Q

f) C\

X'v.'CO'i'S—=CV'T

_ Axmxx<x43<3 ov> waAVN> H
Aszx&w4cmm > HBe afixiNMBenos =
SNK Y T > LX@XXS AUX<Z>®30V
Azxxxxuv 3RS e AxX<Z>@30v
AN SLBP aX ozm 4ﬂZhXP«v+xmeXK« <k FNASnC >

ArﬂZVAXX}l XX»*.V = o« 7¢ZW®00V
7 NA 2 a | v q =T ?H .u N t.m_ -
WN22Co> Sl xY @ AT w B> «Bxv®> <uNOI Vg omeve >
v <«
(] I voll? o 0 NS >
= <V N>
SNV N>

cdShendenen >
Z vR.=oxk
AZn@X3Hv ¥ et l > T aNwsten > H aen® v A > enen 4O Y

hu<kmx Nen A4 A&&HﬁkXV <O et TN et b o T
FX<F&ﬁ N b <en BAG > SHX
g Chixen T Nept ol
gl m33aw <nRA T Unen
MVM o oliden B <€ uOX o> Onen X
< g IHQ K> Nen A
NIRRT
e 4 <XV NP B Cen oNP S8R o 0O
W LeXT > B <enlT > T et > cndBS OK cenmidS
¥ etV B G ST ee NS KT NS OeOTedn
W Lend N T AU%H3>4XX<V Roxixs aXOOSX?
LendV NP S a8 T ey N> OB e
_ w Nenen @™ X eV > J oS om ad o ont
¥ LGl T wotd -2t
<d 9 aw om T 1 CnBedNIP 2 €T S ATMeT <A lB> Ho
<ABNomTONES B Cexv S amd Al w4 o
D O™ <V N> Gl <@l %O
B Len Nt Sen> CendV N ol BX AFXV AG%>®V
| <BNnDRGen> <end > om S5 ALXV n o NHent K en
ASZS3®33V Ll NP cnent8H% <L E> A8 Vel
% AL&&3WX<ZV VN A3a;_V
< SSewhv T8V APKEIV Cemid>
YTt on> Lenpthd >

I OHoOIODODIODNODNG& OO 000D XNED BOO = N

03
A%

A
s>

cM cM cM cM cM (D cM CcM CM ro

a
co 02 (002 Dco 02 02 02

A
o tv. X O

A A A
gi&(Yn)Wiz

A A

A

A
VVVVVPVVVVvy

yi.

A
A

ﬁ;

rv3'<crhaOfA
v

_%
9AS"sArsw

NERxmET ToX> <on %rxoBTs «BKay >
<NxAhx BT Tox>r <onvihanxocclz

%

—

*

=

~

AWXOO..V

N CNIxHa®” N
Ao # -~

< AAK e Nel> 3

4 <N Z¥xah> o

AZXXX34ﬂ3mQV 3

€ VNLASWO>

< T N>
CAARL AT R 2O h A A

UAA e T o> <onih Hox> < xQOV>

CaAh AT ok CONTrmnOn>

nHARTIR T o> <@NY 34 B>

= S =

< 2TwmwBr * <nwwxBSIN 1 CixuxamE>

F~.

<) s wxB> 2 <lsf.zavNs

A;m ViKm s> 7 <JB8Eexc> <lg womuva>
<2, N>

AH@M33XcZV ¥ Len % VN>

: 3zHXLmX

P o<szenSe TanTxl8> 1 wnIx 8k

RPTS

e e XA ZO3vA

%3 e Trea L4

wrkmml NI Lo ~8¥

vt LNTH i s

¥ ool TN

£ 4uBa3inIP xolInowx

_.w XOL.MX

<T NS T B Al s mmx T HewmOBux

¥ <Tug2ax3 oSxil> = L Amewo

% Zr3l_ 3XX

B AZHXXSMV S AWHQZV Or_..33X
¥ <oJvN> sZUm

on onomononomimaion

1

more it oononou i Ilo

It

AZXXX3mN4oXV
xxxs433&ﬂv
<o >

<t Ve

AoZ<X3X0XV

R X T o
QN R e =
CNX R 1P

{81 ax Vx>

<M WM cenca T N>

A3X\~/FV

<=220>
<98

<o e8>
< =928~
<028
<202

92.

AsA(Me\!(MA\iryic\rtve\f
.cvecvevcevovicutvevevicvev

Oicvcvevjcvtveveviv

°

<'SiSM«-'-'wr-irAy-i

3<

3k

'

'00'

9cch

;)iox)hlAnc-cz

v N <r
—3—4—

WD 2l B 2 F LV NIBwe> * dmokn T B> To
< [BZ Y 8> Ve o0, X

< %®H332<ZV e’V N A3X ”WV

CULBT A TV> AVHRHY Lenenz>
AL©M3324ZV Lt >

<L onOmX >

N> <CRO >

= AX333LZMV) AX333¥ZMV z A_®H33242V
AX333LZ&V & AX333U2HV W AF®H332<ZV
LenenenN >

T AX3W3LZJV #

<N@enN >

>

LenenenN >

—

A3ZMX*_@V < Fen oNP

A%@ZO3I_.3<3XV Amm.®3Z4rV

LA enenenm N >

<FAenmend enV enen> AF@ZO3UOZ3wV

AF®W3HV ASX3&3H3¢3$V AH@ZO3ﬂa13WV
AN i Aen =P

< BTeBB8S> Netemz>

A NS enhen> win

M CNHAA > 4

M <N D 0B xR

T <Ntk

< ANSHHAen> B

AN e, "R > 2

A3X<Z>®30V

<enenenN>

< dxeden ox W NV HSKeKO> CONVKmHeng > K o
AZX@XWX3ﬂOXV <NV Xk o> < T Senvi>
< A e T oA Aaﬂ<m3Lor3V

K A0z 'R SE> Hx

1 <N e e T
“Buoun 20>
AWWaMFZMV

Alml.Tv N

AH@ o= @V

LLpnrm

I

I o ornonmiIiknonil
0 00 (((®° e oF » (@ oo oo

m mm *® W ®® 0 ee o% N[¥o oo oo ee) 3 M o« oF , 0« % >y mm

I TN T OTODODOODoD Tu @ T ODORIDTNDI

<8 o)) oo e (@ oF N(Fo E sk oy)y

< Vet "IN oS>

Len nOtnp>

< Nen 1Qen >
<«JOT ol X%S>
<BpTSK T e
< on

<78 NI o>

A%@ZO31&ZH®V
A*_ mﬂ 3MV

<1 81-88-0>

<LenNV Kend ofen”

<N Do o>
NS e Doden>

<oNV 856-S1>

93<

£ OBIO Frome gl s iy

&V CVtXViCVJOJCVCMCVCVCYV (MCM'VCVCMCMCVCVCMCMC

D
(L 74

t
t
*

PP L - L T T T T T R S

- m R _
ANMHH T OM> <NX ukmd> <8 ,00> =)
&% AszX3M\V * =

*

>a
aa

NS = o>

v

mm mm
mm mm

A AZMXX3_303V L) =
T <Bumanls 5 =20
E Le o=
AX333‘_12‘._..V =« =
“mx NABmo» =t <ONV B oh -

mm

AXSOSLZMV =i

<) 2Twen> ° <umombni> =:

T o> O0lOmyx <UlBzwmn> =%

] MOR> €AV NP odomx <loTaNm =t
“<a®x VNN SwmoO> =

<l =1 N>

AFmM3F33<uV

aa aa

aa

NV ABwmo> " <anmxYa x 8> loNmx =:: AXXXX3<Xk®V
CANmM oM™ 3% <ON s>
Lenen NP S & &
IS IR <OA ViKY >
MvxH <TwAid> =i
NEXA CexAE> SIS
o N L.SOXX == 3 ALVAV
CenenenNP T2
e lB8L8, =3%: <0248>
<4348> =t
MV NMe s wmx =00 <ON XIS ™
< u Bl =22
cXoOmBx =4 <)L
TRvNE <88 wmx> =3
demad> =23
W%V s <oAV By> <axilxs =:s
«l8> =°3 < Ten OM 0 >
<X n> AXM333Q.U,V =i s
<18 wexa> Cemy P <%l eBOxm>» TiC <18 Lekix>
“emmen N> =3
W A._m.“HSO,a_V g =5 < ON =M O x>
Qe > =B
' «BxV N Seo» =HE € S R R
€T > Z5C
<Sxv ~aS00> " =i < el vl
e el B> <zByvE%E> od ve <5 TuABmms =8°

94.

1

T
I.;I'V

'

.
b

sQ

o
M
r

TR

| X

"’\é\'
0'0’

N

0\CoQ
ror

/s
Ir,
nr

g

oi /> <di.
Ll

A

Viy

)

*

N > /M i-v <%
9ROSY:
S

*v ao o\ s cV 1o
i< —t v (Vev ev
A o

'O "0"O -n

a—sa—t »h M=
>rr

B —«(\j -0 Wyx> o

m< p-< Fag
"Sn ‘o

das
AWrXQ.x MX\/HV
<E% o NP OUX‘.v/.
N i~ 2T
CNHAAL TS =4
ANMHHREL> LnER
AWZXXX.m4a“UX><V
< ST 8> <l 8D TE N wlo> BLE
“Ngexst> -8
“N g 3T> 148
<TT N>
A@XX<X40@V A7¢< >
<IN xS TO AR >
<5x7 MBS o> A
<SBat?N. 80w

AJ\TJZV

T <2wlveTog> <uBvis 2

<"

<pASB8 BB C <ONV N BEET <y N
<« .MwﬂWUmV

<n@s8 s g <SAv >

<3038 25> T owug < l2lTTE8-8> B8 <SwvNe

< N Hi_ mbeoo> <5 N~ A'Szo‘mf_.d. uHU&t_cD_GV
B «i8TT e8.8> x7 <5 v <asollvezzf™ Q9>
<D Bk 1> <= V> <hnodd VB sl veos>
“CCosve ™ 437> <Oxav— Sdnk> & <58 >
S

=AY

ne
b
_
sz«
N <7 NP
< x5 LT o> ConVHEROS> <0 4sF
<N ST 2O <oNTEEeol >
A.J_.J_J ZV

*a aa
aa aa

I oM WODitil EOXTDTEHERAAR DI
*o

aa aa aa aa
aa aa aa aa

2R

aa

it & 1

it It

aa aa aa °°

® ®) m ® mm ca aa aa aa aa aa ®® aa aa A a2 aa aa %< aa

® a2 aa

it it It It It a4 d

aa aa aa aa aa

aa aa

EODIODEAit I

AWXX o 4XX Al>

<oy B TS AL

szxxxm4omxxpv

< NExxBT oExAl>

<t

<8 Box ox>

<NV <>
S@XVA CVA4..1_< 3% WCV

<@ IS8T o>

>

No HM_Q.WM_. M.M.laaaov

<Snv N8>

<N ExxBY 80 T M o>
< WS T G

V0 'C
s7in C O < VO vO

o o roo roro.0

=7 i>S) S& s

& Si

3

'0JO0V. O rtrj~"nn " r;

'V

«<x5683:87> =: <x BNTT BRUxMc>

> =%

= < =

= > =

= < =

= =
5 = <xxe U™

<= 1 =

AWrX<mr_1ma>.\PV =
2 % = <% xva>

sow s 6l@s Aushs YBalxlz wl8 =
OREdxS "B ail> = Caxxxd 0>

Amma_x.muv LI V-2 AYrrxw_N_V =
<N5x«80> «Kico> nm.ma.x.m_uV KA hi> < _=SxTom = <o 383>

<y AN B-" BRI . 8> _o..L...Dwx =

ola B

- =

doal v

96,

Am&DIX 6.

Syntax Definitions for Typing

Zz.o 17 &0, v A e V NP
o2 $1 “eenenn> H
o P FnBQToSx> QI8 <5 v > H <8387 ot
mw «®e 3870 B > «nOxv> RI8 «53v ws H < venen>
e 11 <BE0BVE M ad wns = oK
=3 1F o7 anttxBs A 83 awshs =
O, A anBxve wmﬂ <ERV N> dengenen> H < nVNRSTn>
e Y9 88t -8y .
=2 T o8B <B4
<5
. sz | o=
Sl 2 5 428 =
=5 225>, =
WAW S XX@A 2
Zo . .
NV vl v +
2 N ate Mo« =
m\tpr 1Y R > F
39 2 oS8 s = AXoi_;x,axov
o ER g N F
WAW WW@ AZvaﬁLV =
< K mmUA .=
~= 5nM. < H
Tw | S . F
S .
= nwD PR ZTﬂHOV = <NV Xen k5>
— * <
2k . < VB = -
«M.l PN o> eV en x> —0 > H <NARA T ap>
A || <aendS O8> <ONv._dgo> »3P = AN nn>
.U\ _ < = ~
m = o< =
z | > =
- > =
o 1 = =
=] 5 = <¢Xe D>
S = 2iTder 2
1 =
m\ x 4 AR 0> w;@ <N T > }Xow <Q OatoxV
<nnoT 4> S <Nmsen> <00 BEF Cnmph = A0©m3V

CFHE AV IO

!

1

T

CokEmOxO o T E A ARy >

M

11 <udxo=Bm>

<«BLEs %3

19 <

Chwd oo oTn> <8uxv
117 <7,
<83RVE>
ASXL.XSXOSWXV AHMNCZV
Dr oo
<Boxo> Ammﬂw
11 Bs <OnmwxR>
11 & <% @ Bxz>
17 <833vE.8a
1y el
Tooel
19 8 =
iR 2
Y1 Ne
T
1%
2% AB
11
1Al
11 ==
11
1
i
17
Y1 <==e
ox> <Ce Txdaa> <Bx
11 <0¥xuxBcn> <Bon?i?3«
L
*_4 Al_v._3
<8V 55 < xuxdr
A S it

<BxV oz> <GRx.

n
vV <
o momhonoim

JX o 2
«J*¥X € X — V vr5n

oJ £> z:
&5

1 >? §%

+

\

Vo
o>
o>

JIN I

11

nm I I oIt

o mommn

n oo dommomIit oIt

11

3XF %t oo 'S >

< o0 OO x>
<B3 ox>
Awwx< Z\P®3OV

AW OZ vaAOV

<S>

< B AT T e
AW N XX%V

<A ERenen>
AW v oxP

<O >
PIIVRES

98.

LAP(SYS) PHRASK STRUCTURES THAT ARW NOT L'RANSLATED

The following syntex constructions are forbidden by this
implementation of the translator because they are difticult to
simulete in PL/l. They are identified during the second pass and
rejected. The forbidden constructions are best discussed by
reference to the syntax definitions listed in appendix (3).

2], 29 and 133

%ARRAY %NAME declarators are not permitted in this implementation
of the translator; nor are %STRING %NAME (the length qualification
must be included).

Pl
- Routine pointers are torbidden.
51 and 206 |

The extended formal parameter aefinition (i.e. the.use of type-
general parameters) is only permitted in tne context of pEXTERNAL
routine specifications and the inclusion of type-general parameters
in other contexts is faulted (by constructor-routine Ol writing an
error code to the output stream).

22
%RECORD %ARRAY %NAME is not permitted in this implementation
as a declarator. (This results in a form for the meta-variabie
{OQSVNAME) whicn is less general to that given in tne current LudP
language manual (ERCC TO).
256 and 237
Tne bounds of (CBPAIR)Y may only be defined by integers in this

iaplementation.

99

292 to 297

A restricted class of record foruat delimiters is permitted
in this iumplementation, consistent with the limitations in declarators

already noted.

100.

THE DissCRIPTOR

In tne symbol tables, eacn identifier has associated witn it
a descriptor whicn describes the attributes of that identifier.
The aitributes are recorded by using a 56-bit field with the
following structure:

1-3 - 4=11 12=14 - 15 - lo=L7 - Lls . 19 . 20=24 . 25=50 -

TYPE | QUAL DIM AP VP USED | INTNC ANO | AOFF

Tne meaning of each sub-field is described below unaer the appropriate
headinge
TY PR

is set '0O00'B for type-general formal parameters

'0o1's " B INTEGIR variables
'010'B " RIAL "
'011' " #STRING "
'100'8 " %KLCORD "
L'y " %HHOUTINE "
'110'B " label "

QUAL
is set '00000CVV'B to describe the arguments of transparent
functions,

'O0000001'B to denote the identifier is stored in & byte,

00000010 B "o half-word,
00000100 B " full word,
00001000 B " double word

locatione When qualifying a %STRING variable, QUAL defines the

string length (0 =->255).

101.

QUAL

indicates i1ne aimensions of an iaentifier

set aimension(s)
'000'B 0 (scalar)
'001'b 1
*010'B 2
'011'B 3
'100'B 4
*101'B 5
'110'38 6
AP
ig set '1*'B for pointer variables; '0O'B for atoms.
VP

is set '0l'B for functions; '10'L for map routines and *00'SB
for all other identifiers.
UsSkD

is set to '1'B if the intrinsic or implicitly specified IMP
library routine to which this descriptor relates is used in tne

1.1P program being processed; else set to '1'B.

ININC
is set to '1'B for all intrinsic and implicitly specified IWP

library routines; else set to 'O'B.

ANO and AQFF
are set to (H)'0'B wna (32)'0'B for all but recoras, routines, maps
and runctions, when they point to tne start of lists which describe

tne elements of a record or parameterse.

1o,

The general significance of ANO ana AOFF is described in section
(4.3.1.2). ANO is an (unsigned) index to an array of pointers, AOKK

is the bit representation of an address.

103.

- APPNDIX 9.

THk FOURTH PASO

The fourth pass reads the IMP(INT) text output from the third
pass and translates it to £i/l. At the time of writing this report,
the pass was in tne process of being written by T. Nonweiler of tne
Glasgow University Aeronautics Department.

The siructure of the pass is to be similar to that of the tnird
pass. Using the syntax analyser and generating routine described in
chapter 2., the IMP(INT) text is analysed and PL/1 text subsequently
generated. The syntax definitions controlling this analysis together
with the target language constructions producing the PL/1 text are
listed in a report by Nonweiler (lon 72). The analysis requires a
certain amount of context-sensitive analysis and the symbol tables
produced in the third pass are referenced. At the moment, the
translation uses 9 analytic-routines and about 35 constructor-routines.
Use is made of the PL/1 preprocessor to achieve the full trapslaxion
to PL/1.

Nonweiler has written a program whicn will accept PL/1 programs
and compose them in a form whica is neat and readable. This program
will be used to tidy the output from the fourth pass if so requested
by a user.. Alternatively the output may be compiled by the PL/1

preprocessor and compiler.

104.

Aho T2

Back 60

Cap 73

Don 67

kar 70

BRCC 70

Gries 63

Gries 70

Hop 69

13l 68

Risr'nltsive v

AHO, A. Y. and ULLMAN, Je. De. The tuneory of parsing
translation and compiling. Englewood Cliffs:
Prentice Hall, 1972-1973.

BACKUS, J. W. T AlLe. Revised report on tue
algorithmic langusge ALGOL ©60. Proc. International
Conference on Information Processing.

CAPON, P. C. and ARGENT, G« D. Lffective syntex
analysise. Datarair 1973 Conference papers.

DONOVAN, J. Je. and LEDGARD, H. F. A formal system
for tne specification of the syntax and translation
of computer languages. Proc AFIPS, 1967 Fail Joint
Computer Conference pp 593-56Y.

BARLEY, J. and STUKGIS, He A formalism for translator
interactionse. CACH Vol 15 ho. 10, Oct. 1970.
dinburgh Li#P language manual. Ldinburgh Regional
Computing Centre July 1970.

GRIES, De and FRLDIAN, J. Translator writing systeums.
CACM Vol 11 Noe. 2 pp T77-115, 1968.

GRIES, D. Compiler construction for digital computers.
John Wiley and Bous, Iné. 1970,

HORGOOD, ¥. R. A. Compiling techniques. Londons:
Macdonald. 1969.

I8 System/360 Conversion Aids. ALGOL=-to-Pi/1

language conversion program- User's Guide. IBM 1968.

105.

IBul 638a

IBA 70

Irons 70

deE 67

Mill 66

Mul 69

Non T2

IBd System/360 Conversion Aids. ALGOL-to-PL/1

language conversion program - Program logic manual.
Form Y35-7006-0. IBM 1968.

IBd System/360 Operating System PL/1 Language

Reference Manual. File No. $560-29Y. IBd 1970.

IRONS, ke Te kxperience with an extensible language.
CACH Vol 13 No. 10, Jan 1970.

HCEWAN, A. T. An Atlas Autocode to Algol 60 translator.
Computer Journal Vol 9 pp 555-359, Feb. 1967.

MILLARD, G. BE. A syntax-directed compiling tecnniqus.
RAE Technical Report No. 66154 - June 1966.

WMULHOLLAND, Ko Ae Software to translate ThLCOMP
programs into KDF9 ALGOL. Computer Journal Vol 12

pp 221-224, Aug 1969.

NONWEILER, T.Relf'e A systematic translation of tne IMP
language into FL/l: An interim report. Inter University
Research Councils Research and Development Notes. No. 3

Nove 1972,

106.

FIGURE 1. -

ssud ¥y

r

W

Hd

NOTILVION ENOISTHOL) NI YOLVISNVYL T/Td—0%—dull THL

W

d < ~(anamn

(LN gl

%

W

() gt < ~(@nudaw

O) aWl

sced 38T

W

(Eaw < ~|ws)aws

m‘

3

(NuDS)d W TE@Q:_ {— J

d W)

107.

FIGURE 2A

TH& ANALYSER (First of two block diagrams)

terainal

I = SUB(P)
J=1

A

n

Initialise

(]
nn

T
+

'—J

A

Increment .
nointer.
%
ISTACK = T
JSTACK = J P=¥ . LIST(T) = P
SSTACK = S N o= T £ T =T+1
TSTACI = T
%
Y
[\
P = COMP(I) > > SW(JSTACK)
|/
I =1TI+1

108.

[IsTACK=ISTA

I = I+1

Y Call
CE+1 | . /analytic-routine

D

ecrement
stack
pointer.

’/ (ALT(I=1)).
Return to
A, B or C—j

ISTACZ=ALT(I)
I = ALT(I)

By

ISTACK
JBTACK
HOTACK
TSTACK

mnnn

RETURN
(failure)

N

THE

-FIGURE 28.

ANALYSER (second of two diagrams)

2lock diagram showing the build-up of tne threaded list.

Decrement
stack
nointer.

Decrement
stack
pointer.

""{‘0'(2) P = PARAM

becrement
stack
pointer.

Sa(3)

I = ISTACK+]
J =2

Increment

Decrement
stack
pointer.

109.

@"'v

> stack
\ pointer.

PARAM = v
ISTACK = 1
JSTACK = J
DOlTACK = B
USTACK =

D

- FIGURE).

Thne HECUND PASS

/(TULPSCal
Main IMPDICT
BYNTARBZ . e
Proceaure
A
A:na,l,ytEL
routines
% and
< Analyser - waiting
/ routine
DGNSTIC \ CULRIT
> (Generating
y routine
AY \\
\uonstructor—
TMPCHKD routines

—————— Flow of data

+110.

PHi BDITInG ROUTLun

(ii'l'RY)

4

set up
reference

table.

RisT'U RN
Free stacke

Use reference
table to
Update reset PLRe.
reference
table.
/N
Lelete next
, -1y cnaracters
N in string.
Replace nextl
(LENGTH(INSKEET)) Y
ya _.<_—
N cnaracters in
string with
— InNbisRT.
Insert Iunowshe
into tne
string.
N
ya
N

111.

FIGURY

B1ED JO MOTJ S

112,

m \/ > AY / T T
a SoUTINOL OUTINOI ; \ INTANT
. g BIS
m LA 0NILSTOS UTLBINUSY)
% \/ - A
- AN
k! = ? _ LNTNT
LNdano0
B
—_— erTanod £
/ ATAVILY -0TLATBUY >
. \ L— AN
VEQTALAT 4 °uT) JosATBUY
\ seTqBY /v <
Tocuwhg > M .
< ¢ < \ QYHOIIT
SOTTIT SOUTINOL / ,
-1 L TBUY < \Dm<u2wm
sanpeooxd /
P < CIVINAG
JOoTCIAT , UTE | \

SI¥IIT

ABSTRACT

This thesis describes the author's contribution towards
the development of a program (written in PL/1) by which a user's
program written in a syntactically correct form of the IMP
language (as implemented by the Edinburgh Regional Computing
Centre) may be translated into a program of the PL/1 language;
the implied intention being that the latter shall have in
general the same effect upon it's computational environment
when run under the control of an IBM system/360 operating
system (that includes the PL/1 (F) compiler), as does the IMP

. source.

The translator makes four passes of the IMP source text.
The first pass is concerned mainly with lexical analysis. The
second and third passes translate the IMP source text into a
form known here as IMP(INT). IMP(iNI) is an internal form of
a subset of the IMP language augmented by statement-description
markers., It is not directly related to the generation of a
PL/1 object text. The fourth pass translates the IMP(INT) text

~
into PL/1.

It was the author's responsibility to program the second
and third passes. Both of these passes (and the fourth pass)
are controlled by a top-down syntax analyser. The methods used
to analyse the syntax and perform most of the tex£ transformations
required during a pass are based on a syntax directed compiling

technique noted by G, Millard. Various modifications and

improvements to Millard's original algorithms made by the

~author are described within,

During the second pass a text editor is used. This text
editor was devised by the author and is also described within.

The third pass constructs symbol tables. These tables are
refereﬁced during the third and fourth passes. A description
of the construction of these tables and the methods used to
access them is given.

A number of programs designed to test all the characteristics
of the translation to IMP(INT) have been successfully processed
by the first, second and third passes. It is expected that the
programming of the fourth pass will soon be completed, after
which time an autématic translation from IMP to PL/1 will be

possible.

