
THE DESIGN OF SYSTEM FOR TELECOMMUNICATIONS

BETWEEN SMALL AND LARGE COMPUTERS

Robin B. John

Thesis presented for the Degree of Doctor of Philosophy

Faculty of Science, University of Edinburgh

November, 1973.

0
m

8 x3

ABSTRACT

This thesis describes the development of a data communication

system for small computers to enable them to link to large computers.

The particular advantages and additional facilities made available

to computer users through the use of such a link are described. A

detailed description is given of the hardware and software components

needed to achieve this link, together with the reasons for choosing

the particular techniques employed. The discussions given

highlight the problems involved in this type of operation. Some

of these problems, such as lack of standardization, are short-term

and will be overcome with the natural evolution of computer systems,

while others are of a more fundamental nature related to the use

of data transmission over long distances.

The system was designed to be applicable to a number of different

small computers. This has resulted in a system which is easily

transferable between machines, through the careful choice of interfaces

to other componentso This is seen as a step towards a more flexible

and more modular method of system construction whereby complete

software systems for arbitrary configurations can be put together

using 'off-the--shelf' components already well-developed and tested.

This contrasts with the present situation in which whole new systems

are developed for a new computer, frequently duplicating systems

already developed on other hardware. A detailed description of the

factors involved in producing machine-indepezxd.'n, easily-transferable

system components is given as a guide to other developments in this

direction. It is felt that there is need for a better-engineered

approach to the construction of software systems and it is hoped that

the work described makes some contribution towards this end.

1

CONTENTS

Chapter 1 •0 . • . 1

TELECOMMUNICATIONS BETWEEN SMALL AND LARGE COMPUTERS

1.1 Introduction

1.2 Small computer capabilities 1

1.3 Central computers3

1.4 Coznmunications requirement3

1.5 Summary of developments 4

1.6 The General System approach 6

Chapter 2 . 8

USER APPLICATIONS FOR SMALL COMPUTER COMMUNICATION LINKS

2.1 	ERCC PDP-8/L 8

2.2 	PhysIcs PDP-8 . , , • • • . • . . 10

2.3 Social Medicine PDP-8........,...... 13

2.4 Computer Science CAD PrOject PDP-7 • . . . 16

2.5 IBM 1130 in ABRO and Dept. of Statistics 19

2.6 ConclusIons • • • • • • • , • • • • • • • • • • . 21

Chapter 3 . . S • • S • S • • S • • • 690609409606 so 24

GENERAL COMMUNICATIONS HARDWARE CONSIDERATIONS

3.1 Main features of data communication hardware . . . 24

3.2 Asynchronous communications adapter . • • . 26

3.3 Synchronous communations adapter . . . • . • . • 27

3.4 Telegraphic signalling . . • . • . • • . • 29

3.% 5 Modems . . • • . . • • • • • . 30

3.6 Electrical circuit facilites . . • • • . . • • , . . 33

3 .7 	Conclusions . • . . 0 0 . 0 . • 0 0 0 . . • . 9 . . 35

Chapter 14 • . • • , 37

SYNCHRONOUS V. ASYNCHRONOUS FOR COMPUTER-COMPUTER COMMUNICATIONS

.L 	Introduction37

14.2 Handling of transmission errors • 	. . 	• . 	. 38

14 3 	Error detection39

14.14 	Block-oriented error detection • . • .. . 141

4 . 5 	Comparisons • • e • • • . . . • . • 142

14 .6 	Conclusions • 143

Chapter 5 . S S • S • • S. • • S 	S S S • S • S • S • S • S 	 • 1414

LARGE COMPUTER COMMUNICATIONS HARDWARE

5 .1 	Introduction • . . . • • . 1414

5.2 	Communications controllers • • • . . . 1414

5.3 	IBM synchronous controllers • 146

5 5 14 	ICL synchronous controller 	. . • . . . 0 	 . . . 147

5.5 	Problem of compatibility. 0 . • • 	• . • . . 	. 148

5 .6 	Conclusions . • • • • 	• . • 149

Chapter 6 • • • 	• • • • . • . 50

INTERFACING TO THE SMALL COMPUTER

6 .1 	Introduction • 	• • . . • • • • . . . • • 50

6.2 The 'uniform 	 requirement • . • 50

6.3 Small conmuter input/output interfaces 52

6.14 	PDP-8 	 i53

6.5 	Modular One • . . • • . • . . • . 56

6.6 	ICL bioo • • . . . • • . • • . . . 58

6.7 	IBM 113O. . • . • . • • • . . • . • . . . 61

iii

Chapter 6 . . ' S • • • • • • • • . 	50

INTERFACING TO THE SMALL COMPUTER (cont.)

6.8 Common facilities'of the input/outpxt'interface.. 614

6.9 	Generalized interfaâe 'description .'..'. 66

6.10 General applicabi].ity............... 67

Chapter

SMALL COMPUTER COMMUNICATIONS HARDWARE

7.1 Introduction 	. 	. 	. 	, 	. 	,. 	 , 69

7.2 Flexibility requirement 69

7.3 Basic functional requirements TO

7,14 Extra functions ' 	9 , * 	0,0 . 	. 	. 72

7.5 Preliminary functiona]. specification 75

7.6 Non—interrupt ncIe of operation'. 77

7,7 Program interface'. 	 77

7.8 Communications interface specification..'. 82

7.9 Experience of first implementtion. 85

7.10 Improved functional specification • 	. 	. 89

7.11 Interface test facility 91

7.12 Conclusions on small computer. communications 92
hardware

Chapter 8.'. • • 	• •', , 	914

SPECIFICATION FOR SYNCHRONOUS COMMUNICATIONS INTERFACE FOR SMALL COMPUTERS

	

8.1 	Basic requirement 914

	

8.2 	Modem interface consierations. 914

	

8.3 	Program control 0 . 0 0 0 0 0 0 0 0 0 0 0 0 95

iv

Chapter 8 S S S • • • S 	S S • I S • I I S I • I S
914

SPECIFICATION FOR SYNCHRONOUS COMMUNICATIONS INTERFACE FOR SMALL
COMPUTERS (cont.)

8 . 14 	General • • • • 	• • • • • • • • • • • • • • • • • • 95

6.5 	Receive (RX)channel 95

8.6 Modem interface considerations forRX channel . . 	98

8.7 	Transmit (TX) channel '98

8.8 Modem interface considerations for TX channel • • • 100

8 ,9 	Timeout control . , . . • . . • . . . '. • 101

8.10 Interrupt control , • • • • • ISS .101

Chapter 9,. • • • • • 0S •••••102

COMMUNICATIONS SOFTWARE FOR THE SMALL COMPUTER

9.1 	Overview . • . .' • , • • 102

9.2 ' General requirements. . . . $ 103

9.3 Package implementation—genera], details. 104

9.4 The user interface • .,............ io6

9.5 The communications hardware interface . • 112

9.6 The executive interface e . . 119

9.7 Remote host computer interface . • 120

9.8 Conclusions , , • • , • • • • • • • , • 123

V

Chapter 10 a S •S S • • a a s • a a U • a U • • • S S a a • 1214

IMPLEMENTATION DETAILS IN ACTUAL SY87kMS

1091 	Summary .. 1214

10.2 PDP-8 with ERCC communications controller 126

1003 PDP-8 with Data Dynamics 6310 controller 128

io.14 ICL 14100 with ERCC communications controller . • 132

10.5 Modular One with. 1.61 communications knultiplexor. 133

10.6 PDP-11 with DP11 communications controller . . . 1140

10.7 Conclusions • . •1.44

Chapter 11 • a • • • • • 1146

IMPLEMENTING THE COMMUNICATIONS SYSTEM ON A NEW SMALL COMPUTER

11.1 Introduction 	. 	. '. 	. 	. 	• 	• 	• 	• 	1146

11.2 General 	• 	. 	• 	, 	. 	• 	• 	•• • 	.. 	. 	• . 	1147

11.3 Difficulty of 'lie' testing • • 	1147

11 .4 User program. 	• 	. 	. 	• 	a 	a 	• 	a • 	a 	a 	a 	• a 	1148

115 Communications hardware . . . • 	• . 150

11.6 Communications software 	• . 153

11.7 Hardware interfacing routines 173

11,8 User interface routines and executive interface • 177

11.9 Conclusions about transferability . . • 179

Chapter 12 • . . a a • • • • • . . . • . . . a a 180

COMMUNICATIONS PROTOCOLS FOR INTER-COMPUTER WORKING

12.1 Introduction 	a 	• 	• 	• 	• . 	• 	• 	... 	180

12.2 General characteristics of protocols 	• 	• 	181

12.3 Examination of existing protocols • • . 	• 	a 	• 	• 	. 	182

vi

Chapter 12 	• 	• • •• . . . 180

COMMUNICATIONS PROTOCOLS FOR INTER-qoPqTER WORKING

12. 14 Applicability of protocols . . 	o • a a a 	.' . 183

12.5 	Efficiency of protocols e j ó • 	i i a • a j • . 183

12.6 	Implementation complexity • . 	. 187

12.7 Half-duplex protocol with one-way data traffic . 187

12.8 Half-duplex with two-way transmission interleaved 196

12.9 Full-duplex with two-way simultaneous traffic..•.. 211

12.10 Conclusions on coxnmijnications protocols 217

Chapter 13 • . • • • . .• • 220

SYSTEM PROGRAMMING ON SMALL. COMPUTERS WITH HIGH-LEVEL LANGUAGES

13.1 Introduction , 	 220

13.2 Compilation on a different computer' 222

133 Language facilities — general consideration . . . 22

13,14 Data elements

13.5 	Data structures . . • • 	229

13.6 Machine address manipulation 	. S • S i 	. . 230

13.7 Program structure and statements • . • . . . • . 232

13.8 	Expressions . . • • . . . • 233

13.9 	Conditional statements • • • . • • . . • 	. . • 2314

13.10 Programmed 1oops. . • a 236

13.11 Programmed transfers . • •..•....236

13.12 Machine-code . .• . • . • . • • •• • . •. . . . 238

13.13 Routines and functions . . . • •• •• •• • •. . . •. . 239

13.114 Block stru'otjwe . . . • • . .• . . • .• . • . . . 2141

13.15 Run-time environment . . . • . • . • . • • •. 2143

13.16 Conclusions 	• • • • • • • • 	• , • • 244

vii

Chapter lii , • • , • • • 	, , 	, 	2147

CONCLUSIONS

	

114.1 	Introduction . • • 2147

114.2 Uses of computer telecommunications . . . • '. '. . . 2147

114.3 Technical aspects of data communications • .. • . . 250

	

114.14 	System construction techniqee • . . . 253

	

114.5 	Transferable system components . • .• 2514

	

14'.6 	Interfaces • • .• • . • 256

	

114.7 	Real-tine components ,. . ,• • • 257

	

114.8 	Use of h±gh-level languages • . • 258

	

114.9 	Transferable' hardware . '. . . '. • 258

114.10 System construction in the future• . • . • 259

1 14 .11 Further developments • • • • • . . 262

ACKNOWLEDGEMENTS . . • • • 2614

REYERENCES............;...... 265

Appendix A

Chronology of significant developments, indicating items of work

involving other people.

Appendix B

Other available documents on particular implementations.

-1-

Chapter 1

TELECOMMUNICATIONS BETWEEN SMALL AND LARGE COMPUTERS

	

1.1 	Introduction

The development of computing to support research and teaching

work in Edinburgh University has involved the use of both a large,

central computer run as a general university service and a number

of small computers local to one department or research unit. A

similar pattern of development has taken place in other universities,

as well as many other large institutions using computers in diverse

applications.. The central computer provided the capability for

handling large-scale jobs in respect of core store, processing

requirements and backing storage.. The small computers were applied

to local gmRi_1-scale computing problems, such as on-line control of

experiments, data collection and reduction, interactive graphics,

etc.. There was a wide variety of such computers in use in Edinburgh

and a small list is given in Table 1.1 to illustrate some of the

applications..

	

1.2 	Small computer capabilities

These small computers were performing tasks which would be

difficult to implement in an efficient way on large general - purpose

computers, because of the requirement for fast response to real -

time events, 'hands-on' access, attachn,ent of special peripherals,

etc. For these reasons, it was not feasible to use the central

computer directly for these applications.

-2-

Computer Location Applications

PDP-8 Physics Experiment control; 	data collection

PDP-8 Social Medicine Analysis of survey data

PDP-7 Computer Science CAD work

PDP-8 Computer Science Teaching and research

W4130 Dept. of Statistics Statistical analysis problems

IBM1130 ABRO Analysis of experimental data

1CL14130 -• Machine Intelligence Research

1CL903 Royal Infirmary Path. Lab, work; 	medical data

analysis

Table 1.1

However, while the small computer was best suited to the special

- purpose system, it did not generally have the computing power, store

size or backing store capacity to handle the larger non - real - time

problems that followed, such as the processing of experimental data

by applications programs, or even the compilation of programs written

in a comprehensive high-level language.

These difficulties could be overcome by providing the small

computer with easy access to a powerful backup computing facility by

means of a direct communications link. In other words, the small

computer could have the same degree of access to large - scale

computing power as the on-line teletype user. However, a much

higher data rate would be necessary, for the link to be useful to the

small computer since the volume of data involved would be much

greater than could be sensibly handled at a teletype speeds.

-3-

Furthermore, the small computer would not be limited in its speed

of operation by human operator action times, and therefore the data

rate would be limited only by technical and economic considerations.

1.3 	Central computers

There were two relevant central computers in Edinburgh in 1969.

The first was the ICL 14_75 which was installed in early 1969 axd for

which a sophisticated multi—access system was being developed jointly

by ICL and the Edinburgh University Computer Science Department.

The second was the IBM 360/50 which was installed in mid 1969 to take

over the batch processing workload from the ICL KDF9 which was the

first central computer installed in the University. The central

facility was run in all cases by the Edinburgh Regional Computing

Centre (ERCC). 	The use of other large computurs was also considered

as the source of backup computing power in order to allow for any

possible future developments. All large computers currently available

seemed to provide the capability for communication at speeds

significantly higher than teletype speeds.

1.4 	Communications requirement

The general requirement, then, was to provide a facility for all

the small computers currently in use or likely to be used by individual

departments which would enable them to communicate at high speed with

any possible large mainframe computer, the initial target machines

being the ICL 14-75 and the IBM 360/50.

This requirement can be shown diagrnimw&tically as follows:

11

COMMUNICATIONS

SOFTWARE BLACK BOX
COMPUTER 	 COMPRISING

SOFTWARE AND

HARDWARE

SOFTWARE[
REMOTE

HARDWARE 	COMPUTER
INTERFACE 	-

	

A
	

19
	

C

A suitable implementation of item B had to be devised which would

match the requirements of item A against the constraints imposed by

accessing item C via a communications link. This implementation of

item B should provide facilities whereby the user proam could send

and receive any type of data that he might wish to process on the

remote computer. Furthermore, item B should be constructed in such

a way that it would require a minimum of effort to transfer it to

any other small computer once the first implementation had been

completed successfully.

	

25 	Summary of developments

In order to achieve this objective, detailed studies were made

of a number of areas as follows :-

user applications implemented by item A in order

to determine the facilities to be provided.

the communications facilities supported by the

possible large remote computers, particularly

the ICL 4-75 and the IBM 360/50.

-5-

the communications facilities provided by the

GPO.

the communications facilities provided by the

various small computers.

the development of communications hardware

suitable for attaching to any small computer

in the event that there was no suitable

communications peripheral available.

ways of incorporating new peripheral - handling

software into the small computer software

system, involving direct physical control of

the peripheral.

the use of a high-level language for the small

computer software to facilitate the transfer

to other small computers.

the development of software construction

techniques to aid the debugging of the real-

time, interrupt - driven software needed to

handle the communications link.

1) communications techniques for achieving maximum

utilization of the communications link while

guaranteeing error - free transmission.

These studies are described in later sections of this report.

As a result of these studies, a communications system has been

developed which has been successfully implemented on a number of

small computers. This system comprises both software and hardware,

although in some cases where the computer had suitable communications

hardware, only the software component was needed. The software is

constructed in such a way that it will work with any suitable

communications hardware, irrespective of the way the hardware is

programmed. Because of the ease with which the system has been

mounted on different computers, even one which did not exist when

the original studies were made, there is now a high degree of

confidence that the system can be applied to any small computer.

A detailed description of the implementation of this system,

together with a description of the routine procedures for applying

it to a new computer, is given in subsequent sections of this

report.

Two other sections of this report give a general discussion of

computer-to-computer communications protocols and a general

discussion on the useoofhigh-level languages on small computers.

The last section attempts to s1I1'w1vize the particular aspects of

the work described which are considered to be of importance, both

in the specialized area of communications and in the more general area

of system construction and development.

1.6 	The General System Approach

Although other work has been described in the literature on the

subject of communication links for small computers, notably (i) and

(2) , no attempt has been made to produce a system generally applicable

in a wide range of environments. This report describes an attempt

to produce a properly engineered communication system which can be

- 7-

easily 'plugged-in' to an existing system to provide communication

facilities.

As such, the ideas developed apply to the comparatively new

&rea of computer system development in transportable software

techniques. Other relevant work has been described in(3) and

(14) • Hopefully, we are moving away from the situation where

identical systems are programmed anew for each new computer and

there is no possibility of transferring well-developed systems from

existing computers. In the future, it should be possible to

transfer complete systems onto new hardware with the minimum amount

of new programming and it is hoped that the system described in

this report makes, some contribution to the techniques required to

achieve this end.

Chapter 2

USER APPLICATIONS FOR SMALL COMPUTER COMMUNICATIONS LINKS

2.1 	Introduction

When the development of suitable communications facilities

for small computers was first being investigated during 1969, there

existed a small number of specific applications which had veil-defined

objectives for the use of a communications link. There also

existed a much larger number of potential applications because of

the rapidly-growing number of small computers being used for dedicated

purposes within individual departments. The intention was that

as a result of studying carefully the requirements of the well-

defined applications, a general communications supportystem could

be developed which would also be suitable for the potential future

users with their as yet undefined applications.

The The specific applications which existed at the time are described

below.

2.2 ERCC PDP-8/L

The proposed use for this computer was to support the Calcomp

graph plotter, which was at the time directly attached to the KDF9.

The graph plotter service had to be transferred initially to the

360/50 and eventually to the 14_75. Although it was possible to

connect the Calconrp plotter directly to the 360/50 and also to the

—75, this method of connection was expensive, and the controller

involved could obviously only be used to support the graph plotter.

Furthermore, the standard softirare available for the 360/50 did

not support the use of a graph plotter as a standard output

peripheral, so that special software would have been needed, the

expertise for which did not exist within ERCC at that time. It

was decided therefore to use a small computer to control the

plotter directly, and connect the small computer via a communication

link. This solution had several advantages. Firstly, the

hardware needed on the 360/50 to control the communications link

could also be used for other remote computer links, since the
0

plotter would not be in use all the time. Secondly, since the

support for remote computer links was also planned for the 4-75,

there would be no special problems involved with the planned

transfer of the graph plotter to the 	Thirdly, the standard

software for the 360/50 supported the use of remote computer links,

so there would be no requirement for special software on the 360/50.

The requirement for the PDP-8/L communications system was to

support the transmission of the graph plotter files from the 360/50.

These files were effectively binary data files specifying XY

vectors and pen control commands.

A second service planned for the PDP-8/L was the support of

paper-tape input to the 360/50. There was no paper-tape equipment

on the 360/50 as there had been on the KDF9, yet there were still

many users who produced paper-tape from experiments using data-

loggers or small computers. These users were initially catered for

by transferring the paper-tape to magnetic tape on the 4-75 and then

reading this magnetic tape on the 360/50, where the user could

process the data. Since it was a comaratively simple job to

interface a paper-tape reader to the PDP-8/L, the paper-tapes

could be read directly into the 360/50 if the communication system

provided the appropriate facilities. There was no standard format

for paper-tape data - some of it was in Edinburgh ISO code, some

was in other les common character codes, some was genuine binary

data and there was also some 5-channel paper-tape. In order to

cater for all these diverse requirements, two facilities would be

sufficient. Firstly, support for the locally recognised ISO code,

which would be handled as character data,. and converted to a form

which would be recognised as characters by the 360/50. Secondly,

all other data formats would be treated as 8-bit binary data,

whether it be binary or not, and the user could then interpret the

data according to his own conventions.

The requirements for communications support for the PDP-8/L

were therefore character and binary data outwards, and binary data

inwards.

2.2 Physics PDP-8

The Physics department had been using a sophisticated PDP-8

installation for some time for the direct control of on-line

experiments, and the gathering of data from a variety of analogue

equipment. A small time-sharing system had been developed for the

computer which supported the use of programs written in a subset

of IMP for the control of the experiments. The compiler for this

IMP subset was itself written in IMP, but was far too big a program

to be run on the 8K PDP-8 system. Compilations were therefore

- 11 -

carried out on the 360/50 or 1-75, and the resulting binary object

programs punched out on paper-tape at ERCC. This process therefore

involved long delays for the PDP-8 users at Physics, since their

turnaround was limited by the van schedules.

If a communication link could provide a fast and convenient

way of accessing this remote compiler, and getting the program

listing and object program back quickly into the PDP-8 filing system,

program development for the PDP-8 user would be much more convenient.

A second application for the communication link at Physics

concerned the data that was being gathered from the experiments and

the analogue equipment. The IMP programs in the PDP-8 could perform

a certain amount of first level data analysis in order to vet the raw

data. Any major computational work on the data, however, had to be

performed on the 4_75 or 360/50 because of the very limited size

and speed of the PDP-8. The data, which was stored on DEC-tape

during the experiment, had to be punched out on paper-tape and sent

to ERCC for transfer to a magnetic tape before any major analysis

could take place. This obviously entailed considerable delays.

If the data could be sent directly from the DEC-tape to the 360/50,

and the analysis program called up at the same time, these delays

would practically disappear since the only holdups then would be the

actual transmission time for the data and the natural turnaround

delay for executing the program on the 360/50.

Experimental data consisted either of numbers in character format,

or numbers in 12-bit PDP-8 binary format, so the communication liik

- 12 -

should be able to handle both types.

The communication link requirements for this system were therefore

character data and binary data inwards and outwards.

A further requirement became apparent in this application on

considering the quantities of data accumulated by. the experiments.

The data transmission speed provided by the communication link would

have to be considerably in excess of the speed available for, say,

teletype communications. Otherwise, it would take several hours

to transmit the data from an average experiment, and the advantage

gained from the direct communication link would be nullified. There

were several cases where a time in excess of 21 hours would have

been required to transmit the data at teletype speed. The changes

that all elements of the communications link, including both compvters,

would continue operating for that length of time were quite low, 80

it is unlikely that such cases would be handled at all.

It was an essential requirement for this application, therefore,

that the data transmission speed should be at least an order of

magnitude faster than teletype speed.

It might be argued in connection with this application that it

would be even more satisfactory if the data could be transmitted

directly as it was being gathered, rather than going through an

intermediate stage of storing it on DEC-tape. The feasibility of

doing this depends very much on the rate at which data is being

gathered, and the reliability of the main computer. A dedicated

small computer usually has a much higher probability of staying up

through the whole of an experiment thafl a general-purpose computer

- 13 -

which is performing a--number of other un-related functions at the

same time. Also, there may be uipredictable delays involved in

servicing the communication link on the main computer because of

peak load situations caused by the other activities on the system.

Such delays would be unacceptable in a real-time experiment and

valuable data might be lost. Because the small computer is

working in a dedicated environment, and the data is being output

to the relatively fast medium of DEC-tape, an adequate response

time can be guaranteed, even if it means running only the one

experiment. Although there may be some. situations where the data

gathering is not time-critical, and the experiment can be repeated

if the communication link or remote computer fails in any way,

in general it is more convenient to gather the data locally,

thereby minimizing the number of different components involved in

the real-time situtation.

2.3 	Social Medicine PDP-8

The Department of Social Medicine had been using a small PDP-8

system for statistical analysis of survey data. The installation

comprised a PDP-8 with 14k of core and teletype, paper-tape reader

and punch and a card reader which could read column binary cards.

The paper-tape equipment was just used for ease of program development,

the main peripheral being the card reader. All the survey data

to be analysed was punched onto cards and extensive use was made of

so-called column binary cards, in which any combination of the

12 holes in a particular column may be punched, rather than the

restricted combinations allowed by certain standard card codes, such

- 	 -

as EBCDIC or BCD. The use of column binary can produce a

considerable increase in the packing density of data on cards

when purely numeric data is being recorded. This feature is

obviously useful therefore where a large volume of data is being

processed. The use of column binary was also attractive to the

PDP-8 users at Social Medicine since the PDP-8 is a 12-bit

machine, and it is very easy to store and manipulate each individual

card column.

Although the processing of the column binary cards was easily

handled on the 12-bit PDP-8, problems arose when larger and more

complicated survey programs necessitated the use of the main ERCC

machine. Both the 14_75 and the 360/50 are organized around the

8-bit byte unit of storage, and the peripheral equipment is intended

to handle 8-bit data characters, implying the use of the restricted

EBCDIC card codes for card data. It is possible to have special

hardware options fitted to the 14_75 and 360/50 card readers which

enable column binary cards to be read by splitting each card column

into two 8-bit bytes. The mode of reading, EBCDIC or binary, is

selected by software command. However, it is operationally very

inconvenient to read jobs in which program and control cards are

punched in norma]. EBCDIC code, and the data ia punched in column

binary format. In fact, the standard spooling software on both

the I_75 and the 360/50 did not cater for this situation, and the

only way to handle column binary was to run a special utility which

bypassed the normal spooling software and read the cards directly

into core from where they were stored on magnetic tape. The user

program could then access the data in a subsequent run. Such

special procedures obviously produced considerable delays for any

- 15 -

user with columnebinary card data.

In one sense, the problem of handling column binary cards was

a historical one, since, if users could be discouraged from

producing any new binary cards, then all the binary cards:currently

in use could be copied onto magnetic tape with the special utility

and that would be the end of the problem. However, a strong

requirement was developing -within the University for the use of mark

sense cards and documents. The use of these facilities could

eliminate the laborious data preparation work involved in transcribing

the information from manually prepared forms and documents into a

machine-readable form. There was - a demand for such facilities in

the areas of gathering data for surveys and for examinations involving

the use of multiple-choice questions.

Mark sense cards and documents produce data of a very similar

form to binary cards, the difference being that there may be less

than 80 columns per card. The demafld for the use of such facilities,

therefore, reinforced the requirement for a convenient way of

reading column binary cards as normal program data.

Since there is no sophisticated spooling software being used on

a dedicated small machine, the program is reading the cards directly,

one at a time, and it is a simple matter to change reading modes

by a suitable operator command. The normal program and control 	-

cards can be read and translated according to the card code being

used and transmitted as character data. The 12-bit column cards

can be converted to a suitable 2-byte representation such that each

binary card is sent as 160 binary data characters. This format can

- 16 -

be easily reconstituted by the program to the original binary card

representation tbf required, using the 16-bit half-word data type

in IMP or FORPRAW to store each card column. This facility then

means that binary card data can be processed as easily as normal

card data on the 360/50 or 14_75

The requirement for the communication system was simply to

be able to transmit character data and binary data and be able to

switch between them in the same transmission.

2.14 	Computer Science CAD Project PDP-7.

The CAD group in the Department of Computer Science were using

a PD?-7 computer to support a number of projects in interactive

graphics. They had long recognised the difficulty of writing

large, complicated graphics applications programs to run in the

PD?-7 itself and were wedded to the philosophy of using a larger,

general purpose computer as a backup machine. The PDP-7 would be

responsible for managing the low-level control of the display, and

handling those things that required a fast real-time response to

maintain the interaction, such as pen-tracking. The graphics

application program, which actually generated the display file,

would run in the powerful backup machine. This program, which

frequently involved a considerable amount of numerical work and

manipulation of complex data structures could be written almost

entirely in a high-level language. This meant that it was much easier

to write and test than if it were written in the PDP7 assembler

language, and also that the size of application that could be handled

was not limited by the small amount of core storage available on the

PD?-?.

- 17 -

This type of two-computer system obviously requires the use of

some sort of communication link between the two machines. The

speed of this link must be sufficient to avoid long delays in

making changes to the picture displayed which require the

re-generation and re-transmission of the display file.

The CA]) group were already using a two-computer system of. this

nature, the back-up computer being the Elliott 14130 in the Department

of Machine Intelligence. Since the PDP-7 was situated in the next

room to the 14130, a high-sped local connection bad been established

which gave a data rate equivalent to.a serial data transmission

speed of about 140 kilobauds. This speed was sufficiently high

that there were never any delays involved in changing the picture

being displayed.

Although this arrangement gave a very satisfactory performance

for the display system, there was considerable inconvenience

involved in using it. This was caused by the fact that the other

main activity for the 14130 was running the multi-access POP-2

system for the Machine Intelligence Department. This was a special-

purpose system and was not suitable for running the large graphics

application programs, for which the favoured language was FORTRAN

which was not compatible with the Multi-POP system. Therefore,

pressure for time on the 14130 meant that the dedicated sessions for

graphics work were only available during the etening and night.

Because of this, the CAD group were anxious to establish a

communication link to a remote large computer which would allow

their graphics programs to be time-shared with other programs,

- 18 -

thereby avoiding the requirement for the dedicated and inefficient

use of an expensive general-purpose computer. This was obviously

the sort of application that could eventually be supported by

the multi-access operating system being developed for the 14-75, but

as this project was still in its early stages, other alternatives

had to be considered. The 360/50 was not particularly suitable

since the software was oriented to high throughput of batch work,

and although time-sharing was supported, the dynamic swapping in

and out of programs performing interactive work was not, so the

graphics program would have been permanently resident for long

periods and making inefficient use of that portion-of core store.

The other possibility was to use the 360/67 at Newcastle

University which was running the interactive Michigan Terminal

System (MTS) for most of the day. This system was certainly

suitable for running interactive graphics programs, since it had

been used in this way at the University of ichigan 6 . Furtheripore,

a communication link already existed between Newcastle and Edinburgh

to support a Remote Job Entry service to ERCC. If appropriate

communications support could be provided for both ends, the existing

link could be made available to the PDP-7 for part of the day.

Although the existing link between the PDP-7 and the 14130 was

equivalent to a data rate of 140 kilobaud, this was generally far in

excess of requirements. It was found that a number of the graphics

applications would still work satisfactorily with the link speed

artificially slowed down to about 2 kilobauds, particularly if

certain minor changes were made to the graphics software to minimise

- 19 -

the traffic across the link. It would have been prohibitively

expensive to provide a link speed of 10 kilobaud between Edinburgh

and Newcastle, but 2 kilobaud was perfectly feasible economically,

and was thq speed that had been used for remo'e interactive graphics

at the University of Michigan.

The communication system requirements for this application were

again quite clearly defined. The transmission of bext messages

was required in both directions to enable the operator of the graphics

satellite to send commands to the graphics applications program and

receive teletype messages back. Also, it was necessary to transmit

the display file generated by he applicat ions-pro gram -to-the-smal-1 -- 	-

machine. This required the transmission of binary data between the

two machines. Information about operator interaction ith the

display, such as the position of the light-pen at particular times,

was also most conveniently transmitted as binary data.

2.5 	IBM 1130 in ABRO and Department of Statistics

Both these departments were using the standard IBM 1130

configuration comprising processor, store, card reader, line printer

and cartridge disk. The computers were used for small-scale

statistical and numerical analysis applications, using the extensive

subroutine library and FORTRAN II compiler available for the 1130.

They were restricted in the size of problems they could handle

because of the small file store (1 megabyte), the slow speed of

the 1130 as a computer (6is core store), and the very slow (l00 1pm)

line printer. In order to handle larger problems, they needed

access to a larger computer and this could be conveniently provided

by means of a communications link. By writing the FORTRAN programs

- 20 -

carefully, they could be run on both the 1130 and the 360/50 without

changes, so that program development could be carried out moot

conveniently on the 1130 before submitting the program for large-

scale processing to the remote machine.

This application was obviously a standard Remote Job Entry

system where the communication link merely provided a faster

turnaround of jobs. The data transmission requirements were for

character data in both directions for job input and output.

A more sophisticated application was planned, however, which

involved performing successive phases of a calculation on alternate

machines. - In other words, a preliminary phase would be conducted

on the 1130, possibly being steered by interactive work on the 1130

operators console, at the end of which intermediate results would be

stored on the disk. These intermediate results would then be

transmitted as data for a program to be run on the 360/50, where the

extra power of the larger machine was required. The output from

this program might then contain information to be stored back on

the 1130 disk for further local processing, and so on.

Although this procedure could be carried out by punching out

intermediate results on punched cards for submission in a normal

job to the other computer, this would be a very tedious business

and would detract considerably from the convenience of carrying out

certain phases of the calculation in the controlled, hands-on

environment of the 1130. This was really an application which

needed a communications link between the two machines.

-21-

Since the most convenient way of storing data on the 1130 disk

was in the internal number representation format of the 1130 9 rather

than in character format, the transmission of this information

between the machines required a binary data transmission capability

in addition to the character data transmission required for the

normal job input and output.

2.6 	Conclusions.

The conclusions that can be drawn from the above descriptions

of specific applications about the requirements of a communication

system are as follows:-

the applications involve a number of completely different

small computers, so the communication system should not

use the special features of any one small computer, but

rather should use only a minimum subset of features which

are common to all small computers, and this applies to

hardware and software.

all the applications involve a completely different

environment in respect of usage, supporting peripherals

and executive, even when the same computer is used, so

the communication system should use the executive to the

absolute minimum, if at all, and should provide an

interface to the rest of the software which makes no

assumptions about the local source or destination of

transmitted data.

- 22 -

the transmission speed required is at least an order

of magnitude greater than teletype speed, and since

in some applications, speed is critical, it should

be possible to buy more speed without affecting the

communication system; it is also desirable to

maximize effective throughput, since in some cases

large volumes of data are involved.

suitable communications hardware is available for some

of the computers but not for others, so that although

hardware will need to be developed as part of the

communi cation ye,the software -component of-the - -

system should not be oriented to that particular

hardware implementation, but should be capable of

using any implementation available for the type of

communication chosen.

the system should be capable of being used to communicate

with different main computers in order to accommodate

future changes in the central computer system available.

the system should be capable of handling two basic data

types - text data, where the bit patterns are interpreted

according to some universally agreed code such as ISO or

EBCDIC and where conversion between different

repreaenttions may be necessary in order to preserve the

textual meaning of the data; binary data, where the bit

patterns have no universal interpretation and have meaning

only to the user program processing the data. In this

latter case, the data muat be transmitted by the system

- 21 -

Chapter 3

GENERAL COMMUNICATIONS HARDWARE CONSIDERATIONS

3.1 	Main features of data communication hardware

Before going on to discuss the various communications facilities

supported by the large computers, a brief description of the main

features of serial data communication links is given here in order

to support some of the technical arguments used later.

Attachment of local peripherals

Information transfer between a computer and its local peripheral

devices normally makes use of high-speed parallel data interfaces.

These parallel interfaces provide lines for at least one character

together with lines for error checking and control of the data

transfer. A simple example is the British Standard Interface (BSI)

for parallel data transfer. Electrical signals are propagated along

these interfaces by fairly low DC voltages, e.g. 5 or 6 volts, that

correspond with the low voltages used in the computer electronics.

Also, signal duration is very short in order not to slow down the

execution of input/output instructions in the computer.

The influence of electrical interference, resistance losses and

propagation delays on these low-magnitude, short-duration signals

means that expensive high-quality cables have to be used in order

to guarantee reliable data transfer. These factors mean that this

type of interface - high-speed parallel - is only feasible for

peripherals which are close to the computer. In fact, a maximum

cable length of up to 100 feet is common.

25

Attachment of Remote Peripherals

Remote peripherals may be situated several miles from the computer,

so that even if the electrical transmission problems were solved by

using special hardware, the cost of multi-way parallel cables would

be very high. In fact, because of the costs involved, the simplest

possible electrical interface is used for the connection of remote

peripherals. This consists of one circuit for data into the computer

and one circuit for data out of the computer. One circuit is sometimes

used for both functions. The signals which are transmitted

simultaneously in a parallel interface to a local peripheral are sent

in serial form, one after the other at a fixed rate, along a single

transmission line to a remote peripheral.

The electrical connection between the computer and the remote

peripheral thus consists of the following components:-

hardware to convert the parallel information from the computer

into serial form for output and vice versa for input.

hardware to convert the serial information at the low DC

voltage levels into a form suitable for reliable transmission

over several miles of cable.

single or double circuit "- electrical cable for one way at a

time (half-duplex) or both directions simultaneously

(full-duplex) data transmission.

- 26 -

PARALLEL DATA 	SERIAL DATA 	 TRANSMISSION
PLUS CONTROL 	 PLUS CONTROL 	 SIGNALS

•; + 	 + 	 +

OR I 	I PARALLEL, 	SIGNAL
tEl 	 j SERIAL 	TRANSMITThk/

L t 	I CONVERTER 	RECEIVER

a. 	 I b. 	 C.

It is the variations in the methods of implementing these three

components that provide the different systems of serial data

ommunications in use today.

There are basically two different implementations of item a.

which are referred to as synchronous and asynchronous communications

adapters. There are a number of implementations of items b. and c.

which differ in the speed of reliable data transmission which they

give, and these implementations are closely related to the choice

of a synchronous or asynchronous transmission adapter. Economic

considerations play a large part in deciding which type of system

to use. The requirement for higher speed and/or higher reliability

usually increases the cost of the system.

3.2 	Asynchronous communications adapter

In asynchronous communications (Fig 3.1), each character of a

message is identified by one start bit and one or more stop bits

framing the character. Each character is therefore self-identifying

and there is no fixed time relation between successive characters in

a message. The start bit is always of opposite polarity to the

quiescent state of the data link since its purpose is to signal the

arrival of a new character. On recognising the start bit the

ii':'Li °'
STOP 	DATA BITS 	 START 	STOP 	DATA BITS 	 START
BITS 	 BIT 	BITS 	 BIT

FIG 3.1 TWO CHARACTERS TRANSMITTED ASYNC1ONOUSLY

0 0 1 0 1 1 	1 0 1 	0 0 	1 1 0 	1 1 	0 0 1 	1 0 	0 1 0 0 0 1 1 	0 0 1 0
- 	 - - TIME

DATA BITS 	DATA BITS 	 TWO CONSECUTIVE
SYNCHRONISING CHARACTERS

FIG 3.2 SAME TWO CHARACTERS TRNSTTED SYNCHRONOUSLY

- 27 -

receiving hardware has to start its bit clock, which runs at a fixed

rate, and count in the requisite number of bits following to form the

character, which can then be transferred in parallel form to the

computer. The purpose of the stop bits, which are always of opposite

polarity to the start bit, is to return the line to the quiescent

state so that the start bit of the next character can be correctly

recognised. Asynchronous communication is therefore essentially

one-character-at-a- time message transmission, and is usually used to

support the simplest kinds of data transmission system, such as type-

writer terminals.

3.3 	Synchronous communications adapter

In synchronous communications (Fig 3.2), a message is sent as

a continuous stream of characters with no interval between the last

bit of one character and the first bit of the following character.

A message is therefore a contiguous series of bits, and in order to

correctly identify the individual characters within this bit stream,

the message is preceded by a number of characters of a particular

non-repeating bit pattern. The receiving hardware has to recognise

this bit pattern in order to lock in to the correct character frame.

Once this character phase has been established, the receiving

hardware has to count off the required number of bits to form each

character using an appropriate clock. Because of the requirement

to maintain accurate bit timing over a long message and the inherent

difficulty of maintaining two independent clocks in synchronism with

each other, the clocks used to provide bit timing in synchronous

systems are more sophisticated than those used in asynchronous systems,

where the bit clock only needs to be accurate enough to maintain bit

ORM

timing for one character. The synchronous receive clock has to be

self-regulating in order to follow any variations in the transmit

clock at the other end of the transmission link. Allowance also has

to be made for apparent timing shifts caused by distortion of the bit

stream by the dynamic electrical characteristics of the transmission

link.

Synchronous communications is therefore essentially a block-

oriented transmission system and all the characters in a message have

to be present before message transmission can be started. Consequently,

complete message buffering has to be provided in a terminal using

synchronous communications, and, generally, sufficient levels of

character buffering have to be provided to ensure that the input

and output shift registers can be emptied or refreshed within the

crisis time, which is always one bit time.

Comparison between asynchronous and synchronous communications adapters

The hardware necessary to implement synchronous communications is

more complicated than that for asynchronous communications in the

following ways:

recognition of character synchronization pattern

provision of self-regulating receive bit clock

extra character and message buffering

Synchronous toxñmunications has the advantage that a given

message can usually be transmitted more efficiently than with

asynchronous communications. This is a consequence of the high

redundancy involved in asynchronous communications with a minimum

- 29 -

of 2 bits extra per character compared with the fixed overhead of the

leading synchronization characters. All but the shortest messages

will be transmitted more efficiently in synchronous mode.

3.14 	Telegraphic signalling

A major factor affecting the economics id the equipment used for

item b. This is the equipment which accepts the low voltage (about

6 volts) DC serial data and turns it into a form suitable for trans-

mission over long distances.

The simplest implementation of this merely converts the low

voltage into a much higher DC voltage (about 80 volts) which is then

capable of being recognised correctly after a few miles of cable.

This works on the simple principle of telegraphy and is only capable

of supporting fairly low speeds (up to about 200 bauds) over a few

miles of cable. The effect of the capacitance and resistance of a

long length of cable is to convert the original well-shaped square

waves into something like a saw-tooth shape as follows:-

If the original DC voltage is not maintained for a long enotgh

period, the signal level at the receiving end does not reach a large

enough value because of the long rise time of the pulse. Therefore,

in order to ensure that the serial data can be properly reconstructed

at the receiving end, the rate of change of the data being fed into

- 30 -

the transmitted end is limited accordingly. This is the factor

which limits the speed of operation with this type of signal

transmission. The maximum speed is governed by the rise time of

the circuit, which is dependent on its length. For circuits up to

a few miles, this limits the speed to about 200.bauds. For longer

circuits, signal repeaters have to be included in the circuit which

re-shape the waveform before transmitting it further. To achieve

higher speeds, the signal repeaters would have to be placed at

shorter distances along the circuit, which would nuQ4/ the economic

advantages of the very simple equipment (basically just electrical

relays) needed to transmit data in this way. This type of equipment

then is suitable only for the lowest data rates.

3.5 	Modems

All other equipments in use for signal transmission use some kind

of AC transmission which uses the DC voltage levels to modulate a

carrier signal of a particular frequency. AC signals are more easily

transmitted over long distances because of the electrical impedance

characteristics of long circuits. The increasing sophistication of

the modulation techniques used is giving higher data rates from the

same circuits. The equipment at the receiving end has to remove

the basic carrier signal (demodulation) in order to reconstruct the

original serial data streams. The equipment used at both ends to

transmit wid receive is therefore known as a modulator-demodulator or

modem.

One of the techniques used to obtain higher speeds is to combine

two or more data bits into a new multiple-value signal with which to

- 31 -

to modulate the carrier 	. Thus, in a typical system (GPO Modem 7),

one of four phase shifts is applied to the carrier in - order to

transmit two bits of data. The increased sophistication of the

electronics required to accurately encode and decode these multiple

value signals, allowing for the unavoidable distortion caused by the

transmission line, means that higher data rates will cost more.

Distinction between synchronous and asynchronous modems

There is an important relation between modem technology and the

use of synchronous.or asynchronous transmission adapters.

As mentioned previously, asynchronous transmission adapters

usually provide their own bit timing and can use a simple fixed rate

oscillator which only needs to be accurate enough for a single

character. The modem used for asynchronous transmission does not

need to know the rate at which data is being transmitted or received.

It is transparent to the actual bit stream and its function is merely

to transmit or receive a two-valued DC signal which can change value

at an unspecified rate, up to some maximum which is the limit for

reliable transmission. The terminal equipment must be aware of the

maximum reliable rate, but otherwise the speed can be varied by setting

clocks in the custoaerequipment inboard of the modem at both ends.

No timing information is exchanged between the equipment and the modem.

The bit timing used in synchronous transmission is more

sophisticated since it must maintain correct bit synchronism over

a whole message, which may be many thousand bits long. Although the

bit timing circuitry may be in either the terminal equipment or the

modem, it is normally included in the modem since the modem designerfl

- 32 -

is better able to assess the effects of particular types of line

distortion on the bit stream and therefore compensate for them in the

bit timing circuitry. When the bit timing is incorporated in the

modem, timing information is passed from the modem to the

communications adapter to tell it at what rate to transmit or

receive data.

The distinction between asynchronous and synchronous communications,

which is normally made at the character level, can then also be made

at the bit level and modem level. Modems can be divided into

asynchronous and synchronous classes, the latter class providing bit

timing information to the user equipment and the former class not,

in which case the user equipment provides its own timing. Because

of this, asynchronous modems should be cheaper than synchronous ones.

The consequence of this distinction is that asynchronous modems

are restricted to two-level modulation techniques and cannot take

advantage of the multi-level modulation techniques which are being

used to give increased transmission speeds. The multi-level coding

can only be used where the modem controls the bit timing. Therefore,

only synchronous modems can be..-used where higher transmission speeds

are required. The maximum available speed for asynchronous modems

in this country is 1200 baud (up to 1800 baud in the States), whereas

speeds of 9600 baud can be obtained over equivalent circuits using

synchronous modems.

It is, of course, possible to use asynchronous start/stop character

framing with a synchronous modem since the modem is not aware of the

character structure. This, however, would require modified or

- 33 -

completely new asynchronous communications adapters, able to accept

an external timing signal from the modem, which is a feature not

normally available with present asynchronous equipment.

Modems available

Currently, modems offered by the GPO (who have a monopoly over

modems using the dial-up transmission facilities) will support dial-

up operation at up to 1200 bauds (Modems 1 and 2) with bit timing

provided by the customer equipment and private line operations at

21 00 bauds (Modem 7) with bit timing provided by the modem. They

have also recently announced a facility for dial-up operations at

21400 bauds (Moden TC) provided the circuit conditions are favourable,

i.e. they do not guarantee that the speed can be obtained from all

exchanges and lines currently in service. Using the same private

line that the GPO uses at 21400 bauds, it is possible to use more

expensive proprietary modems which will operate at up to 9600

bauds, but this becomes very expensive. These speeds are adequate

for all the applications considered in this report.

The cost of these modems are such that there is a steady

increase in price from the Modem 1 to the Modem 7C, with the high-

speed proprietary modems disproportionately more expensive.

3.6 	Electrical dircuit facilities

All variations of item c. in the diagram are provided by the

GPO since they have a monopoly of public telecommunications facilities

in this country. The situation of in-house communications which can

make use of non-GPO facilities will not be considered in this report

- 3' -

since this can take advantage of specially-laid high-quai'ityjci'rct?its,

such as co-axial cables, which are not generally applicable to

the telecommunications problems considered in this report.

The line facilities provided by the GPO fail into two categories -

dial-up facilities available through the normal voice network and

private lines which use telephone circuits but which are permanently

allocated and are effectively hard-wired between the two ends of the

link. The former facility provides a data link of variable quality,

since the circuit is routed through mechanical switching equipment

and is likely to use different pairs of wires each time a call is

made. The variability of the voice telephone network in terms of

reliability and quality of connection, especially over long distances,

is well known. A private line, because it always uses the same wires

and is not routed through switching equipment will give a constant

quality and the reliability is obviously very high, leaving aside

accidental interference by GPO maintenance personnel. Because the

circuit used for a private line isialways the same, the GPO can

guarantee the quality of the line in terms of its electrical trans-

mission characteristics. The GPO offer a number of Tariffs, giving

different guaranteed electrical characteristics to cover a range of

possible transmission speeds. The simplest is Tariff J which is

intended for use with slow-speed Telex-type terminals. The best is

Tariff T which will support speeds from 2400 up to 9600 bauds using

special transmission techniques. The GPO will provide special

facilities for operation at 48k bauds but this is not a service

normally available and will not be considered further since the

speed range covered by the normal Tariffs is sufficient for all the

applications considered in this report. 	 - 	.-•- 	- -

- 35 -

The economic considerations are as follows.

For dial-up connections, the normal STD charges apply which

means that the cost depends on the distance, the time of the

connection and the period of connection. For private lines, a fixed

rental applies which is determined by the Tariff and the point-to-

point distance and is independent of the amount of use made of the

circuit.

The choice between the two facilities is determined by the speed

required and the amount of connection time required. The latest GPO

facilities provide for up to 2100 bauds using dial-up connections.

3.7 	Conclusions

The basic elements of data communications hardware have been

described in this chapter and some general observations can be made.

The cheapest and simplest communication system for lower speed

applications (up to 1200 baud) would use an asynchronous communications

adapter and an asynchronous modem with a dial-up or private line of

a suitable Tariff depending on the speed and the amount of connection

time required.

This system, however, could not be used in an application

requiring speeds higher than 1200 baud unless the asynchronous adapter

was equipped with an external timing option, enabling use of the

higher-speed synchronous modems. Note that this also requires that

the other end of the link has the same capability, since compatible

modems must be used at both ends of the link.

- 36 -

For these higher speed applications, the use of a synchronous

communications adapter should be considered. This involves more

complicated hardware (although the extra cost becomes less significant

when compared with the increased cost of the higher-speed modems)

but gives a higher useful data rate than asynchronous over the same

speed line.

- 37 -

Chapter 14

SYNCHRONOUS V. ASYNCHRONOUS FOR COMP1JTER-COMPUTER

coMMuNIcA!rIo:'s

14.1 Introduction

All the major large computers support the use of serial data

communication links for the attachment of remote peripherals. All

of them support the use of both asynchronous and synchronous

transmission so the first choice to cc made in deciding how to

communicate with them involves which of these two systems to use.

As mentioned in the previous chapter, asynchronous communications

is suitable for applications involving the transmission of messages

where there is no time relation between successive characters in the

message. This makes it suitable for the connection of typewriter

terminals, where the rate of data input by the human operator can

be extremely variable.

Synchronous communications is inherently a block-oriented

transmission system, where the successive characters in a message

must be transmitted in a fixed time sequence. This necessitates

the use of terminals with suitably-sized message buffers.

When the overall system implications of handling terminals are

considered, the requirement for reliable and error-free transmission

means that communication between computers must operate in a block-

by-block mode. This distinguishes it from applications where human

operators are the source and receptor of all transmitted messages.

- 38 -

This distinction is demonstrated by the argument below.

14.2 Handling of transmission errors

In computer-to-computer communications, the responsibility for the

correctness of the data transmission no longer lies with a human

operator. If a human operator is an inherent part of the data

transmission system, as is the case with typewriter terminals and

alphanumeric video display terminals, this operator can monitor

the correctness of the data being transmitted and can initiate

intelligent action to recover from any transmission errors. The

computer end of the link need perform very little recovery from

any errors it detects, other than ignoring the last message and

sending a message to the operator to inform him of the error. It

is then up to the operator to send the message again if necessary.

This aspect, of human-operated terminals makes them particularly

easy to handle from the point of view of the computer at the other

end of the link.

When the data transmission is from one computer to another,

then it is essential for the computers to monitor the correctness

Of the data transfer for themselves. Otherwise it would be

necessary for the data to be displayed for vetting and approval.

by an operator, which would seriously reduce the effective data

transmission rate. Furthermore, since some of the data transferred

may be binary data rather than character data, it is not always

possible to display it in a form which can be intelligently checked

by an operator.

- 39 -

It is also desirable if the computers can themselves initiate

recovery action after detecting an error, since this gives much

faster recovery response from transient error conditions, which

are the usual source of errors on data transmission lines.

This again points out a difference between peripherals

connected locally and those connected remotely. Any errors which

occur during data transfer over a local high-speed parallel interface

are considered to be fairly serious, and recovery usually requires :

manual intervention. Errors during data transfer to a remote

peripheral are to be expected and only merit investigation if their

frequency noticiably degrades the link performance.

Automatic recovery fm transmission errcrais therefore an

important part of computer-to-computer communications. If automatic

recovery is to be effective, then it is important to have very

effective error detection. Errors are detected by adding redundant

information, such as a parity bit, to a character or to a whole

message, which is then checked on reception.

14.3 Error detection

The exact nature of data transmission link reliability in terms

of susceptibility to corruption of the data is obviously highly

dependent on the particular facilities used, e.g. dial-up or private

line, transmission speed, the precise locality of the wires used and

its routing, etc. However, a great deal of investigation has been

done on this subject by a number of common carriers in different

countries and it is possible to draw certain general conclusions.

- 140 -

The most important conclusion is that while constant factors

such as thermal noise cause signal distortion, suitable modem

design can help to compensate for this and most data errors are

caused by 'impulse noise' which results from the nature of the

switching equipment used in most exchanges. Even if a private

line is used, which does not involve anr switching equipment,

such lines are normally ordinary telephone circuits which have

been specially wired point-to-point. As such they share the same

cable runs as dialled circuits, and are liable to pick up impulse

noise generated in adjacent circuits by dialling, etc.

Impulse noise produces a short burst of electrical interference

sufficiently large to completely swamp the transmitted data signal

and replace the effected bits by a random pattern. The duration

of a noise pulse can be anything up to 1/100th of a second, so it is

clear that several bits in a message at 2000 bauds would be

affected. Experiments carried out on a long private line in Europe

at2000 baud.s (9) showed that over 60% of messages in error had ;

2 adjacent bits corrupted and 30% had up to 8 adjacent bits in error.

The simple conclusion to be drawn from this is that simple

character parity does not give very good protection against burst

errors, since two or more adjacent bits in error have an even chance

of producing a bit pattern with the same parity as the corrupted

bits. Therefore, messagetransmission which relies on simple

character parity is not well protected against localized errors

since the redundancy is also localized and the effect of an error

is not propagated throughout the message.

- 41 -

I • 1 	Block-oriented error detection

To deal with burst errors effectively, a form of non-localized

redundancy is required which is accumulated over a whole message

and which will propagate the effect of a local error through to the

end of the message. This ty,e of redundancy is then a redun&::cy

check on the message as a whole rather than on individual characters,

and examples of this are lougitudinal parity and cyclic redundancy

check(lO).

This consideration forces computer-tpcomputer communication to

become message-oriented or block-oriented rather than character-

oriented. Long messages have to be broken down into smaller blocks

for transmission purposes, and the optimum block length is determined

by the mean error rate and practical considerations of buffer size

within the computers. Because of this requirement for block-oriented

transmission between computers, with error detection and recovery

being done on a block basis, computer-to-computer communications

cannot take advantage of the inherent simplicity of using asynchronous

mode as in character-oriented transmission.

For reliable and error-free transmission between ccmputers, a

rigorous scheme must be implemented to achieve automatic control of

the transmission link, and the system complexity of an asynchronous

link handler becomes equivalent to that for a synchronous link.

The choice between the two systems is then based on the economic

and hardware complexity considerations described in the previous

chapter.

- 1&2 -

4.5 Coriparisons

The previous chapter indicated that the cheapest communication

link was provided by a totally asynchronous system, i.e. asynchronous

transmission adapter and asynchronous modem. This however had

limitations if it was required to operate the link at speeds greater

than 1200 baud.

This gives a maximum character rate of only 120 characters per

second. This would not be adequate for a number of the applications

considered in this report. To take some concrete examples, peripherals

commonly used on the small computers have the following speeds:-

card reader - 300 cards per minute

line printer - 300 lines per minute

paper-tape reader - 300 characters per second.

Assuming that trailing blanks are not transmitted and that only about

140 leading characters per card or line are actually used for

information, these peripherals generate a data rate of 200-300

characters per second. Other peripherals, such as DEC-tape or a

disk, could generate an even higher rate.

Such applications are therefore not well matched to the cheapest

facilities and it becomes necessary to use the higher speed

synchronous modems. Assuming that the problem of interfacing an

asynchronous transmission adapter to a synchronous modem at both ends

of the link is amenable to a solution, which is not always so, the

use of asynchronous transmission would produce a lower line

utilisation than synchronous transmission by at least 25% with the

- 143 -

minimum of 2 framing bits per character.

In these circumstances, it seems more appropriate to opt for

a synchronous transmission scheme, which will make more. efficient use

of the higher speed modems.

Once the required data rates justify the extra cost of the

higher speed modems, which can be considerable, it is important to

take full advantage of the higher speeds provided. The extra

cost and complexity of the synchronous communications hardware becomes

less significant as the modem becomes the most expensive component

in the system.

14.6 Conclusions

From the above arguments, the advantages of asynchronous

communications are its low cost and relative simplicity when used

with human-operated terminals • Since such terminals are used in

large numbers, it is important to use the cheapest possible facilities,

provided these are adequate. For higher-speed communications

however, suitable for inter-computer working, the synchronous system

has the advantage of making best use of the more expensive facilities

needed,

- 	 -

Chapter 5

LARGE COMPUTER COMMUNICATIONS HARDWARE

5.1 Introduction

As has been stated previously, all the large computers considered

supported the use of synchronous communications. Those considered

were IBM 360, ICL System 4, Univac 1108, CDC 6600 and Burroughs

B5500. The way in which these computers supported synchronous

operation was then investigated in more detail to see if there was

a compatible way of communicating with them all. The list above

is in order of the amount of information available on detailed

operation of synchronous hardware.

The first thing to become apparent was that the communications

codes and protocols were implemented in very inflexible ways on most

of the computers. The communications facilities were controlled

very largely by hardware with very little software control. Details

of control characters and their interpretation, message formats,

error checking, etc., were implemented in such a way that they could

not be changed by a user program.

5.2 Communications controllers

The implementations of the communications controllers varied

from pure hardware on the IBM 360, through hard micro-program on

the System 4 to small, special-purpose programmable processors on

the CDC 6600 and Burroughs B5500. However, even on those systems

which were genuinely programmable, it was not intended that the

control programs should be accessible to the user for him to

- 	 -

implement his own communications protocols. This meant that all

communications controllers were effectively hard-dred to the

manufacturer's defined codes and protocols.

The only large computer to control the communication line

directly by softare in the main processor was the Univac 1108.

This had a very simple communications controller which generated

an interrupt on a per character basis. However, for reasons

of efficiency and crisis time limitations, in order to reduce the

overhead associated with handling these interrupts, they were

handled at a very intimate level withinthe Executive rather than

being routed through to a user program for analysis. Thus, it

was again very difficult for the user to implement other codes

and protocols.

This inflexibility in the large computer communications facilities

would have to be accommodated for in the facilities provided for

the small computers which will be described in later chapters.

It is perhaps worth making the general point that the peripherals

on a large computer have a much higher degree 'f 1ua'dware control

than on a small computer. This is evidenced by the fact that, on

nu11 computers, .many peripherals operate by transferring one character

at a time under interrupt control. Because of the simpler software

in use on a small computer, the overheads involved with handling

interrupts, such as register-saving and status-switching, are much

less than on a large computer, where a considerable amount of CPU

time would be consumed by handling peripherals in this way. Peripheral

transfer speeds for equivalent peripherals are also usually much

- 16 -

higher on a large computer, so the interrupt rate would be

considerable. Peripherals on a large computer are normally

handled on an autonomous block basis, with just one interrupt at the

end of the block. It is therefore in line with the general

philosophy of peripheral control on large computers to handle

communication lines on a block-transfer basis, which requires that

most of the protocol be defined by the communications controller.

The sensible solution to this problem of inflexibility is to

use a programmable communications controller and make it easy for

the user to program it himself. Both IBM, with the 3705 (11) 9

and ICL, with the 7905 (12), are now adopting this approach and

are providing a proper user programming system for the communications

processor. This viii, in the future, give the user the freedom

to implement different protocols if he wishes.

However, for the present, these inflexibilities exist which

result in certain incompatibilities between the different large

computers in the synchronous communications environment. The

particulars of the IBM 360 2701 Synchronous Data Adapters and the

ICL I_75 MCCCU synchronous buffers will be given here by way of

example.

5.3 IBM synchronous controllers

IBM 2701 SDA I supports a communications protocol known as STR

(Synchronous Transmit/Receive). This is based on a special-purpose

code known as 4-out-of-8 code, in which only those characters which

have 4 bits set out of 8 are valid. This gives a code set of 72

- 1&7 -

characters of which 8 are used as control characters, leaving a usable

character set of 61. This is a completely non-standard code used

only for data transmission purposes and, as such, bears no similarity

to any of the character codes in common use on other peripherals,

or on other computers.

IBM 2701 SDA II supports a protocol known as BSC (Binary

Synchronous Communications) which can use one of three transmission

codes. These are EBCDIC (8 bits per character), ISO (8 bits per

character) and Six-Bit-Transcode, or SBT, (6 bits per character).

In EBCDIC, all 8 bits are available for data, giving 256 code

values of which a small number are reserved for transmission control

characters which are recognized by the hardware. The EBCDIC code

also provides a special mode of operation known as transparent mode,

in which, by using a particular 'escape' sequence, it is possible

to transmit any 8-bit code including the transmission control codes.

The ISO code uses 7 bits plus a parity bit, and SBT uses all 6 bits

as data. Again in these two codes, a small number of codes are

reserved for transmission control purposes. It is not possible to

switch between these codes by software control. The options have

to be wired in to the 2701. There is a special additional 2701

feature which allows any two of the codes to be vireddin with a

software-controlled selection between the two. Thie is otherwise

very little software control over the transmission facilities.

5 	ICL synchronous controller

ICL MCCCU is a general-purppse communications multiplexor for

both synchronous and asynchronous communications • The synchronous

MMM

buffer facility allows a software-controlled choice between

EBCDIC (8 bits plus parity) and ISO (7 bits plus parity). The

EBCDIC code, requiring 9 bits per character, is obviously incompatible

with the IBM EBCDIC code, and also does not support the transparency

feature. The ISO cdde is also not compatible with the IBM code as

different values are used for the transmission control characters,

such as SYN.

5.5 Problem of compatibility

Thus, there would appear to be no compatible communications

facility between the IBM 360/50 and the ICL 175, which were the

computers of most relevance in Edinburgh. However, there was a

certain amount of compatibility between the two systems at one

level in that they both supported the same general type of point-

to-point communications protocol.

This type of protocol, which Will be explained in more detail

later, allows communication in one direction at a time. Once one

end has acquired control of the line, it can continue to transmit

data blocks until it relinquishes control of the line by sending

an end-of-transmission control sequence. 	The receiving end

has to transmit acknowledgement ruences to the data blocks it

receives.

At this functional level of the IBM and ICL transmission

systems, there was compatibility. However, the two systems were

different at the detailed level of message format, acknowledgement

format, etc. This general type of protocol was also acceptable

- 149 -

to the UNIVAC 3.108 but information on the CDC and Burroughs

protocols was not available.

5.6 Conclusions

Therefore, any attempt to communicate with the two computers

in a compatible way must be based on this general type of

protocol. The differences in details of implementation must be

accommodated by the small computer software, and the small computer

hardware must be sufficiently flexible to allow the software the

necessary1evel of detailed control. Both these aspects will be

described in more detail in later chapters.

- 50 -

Chapter 6

INTERFACING TO THE SMALL COMPUTER

6v1 Introduction

Previous chapters have considered the general aspects of

communications hardware and particular iximlenientations on present-

day large computers. It is now necessary to consider the provision

of suitable communications hardware for the small commuter end

the link.

In some cases, the small computer already has suitable

communications hardware and this will not be dealt with until the

chapters on communications software, where it will be shown how any

suitable hardware can be used with the standard software. In other

cases, notably the PDP-8 which was the most common small computer in

use at the time, there was no suitable hardware and it was necessary

to develop it.

The description of this development Is conveniently split

between two chapters. The present chapter is concerned with the

way the communications hardware should be interfaced to the

computer. The next chapter describes the development of a

functional specification which is considered to give an optimu

division of responsibility between communication hardware and

software.

6.2 The 'uniform interface' requirement

The twictional specification merely defines the programming

51 -

characteristics of the communications interface. In order to

achieve the desired objective of developing communications

hardware that would be suitable for use on any of the small computers

considered in this report, it is necessary to study the

characteristics of the small computer input/output interfaces to

see if the functional specification envisaged can be supported jna

compatible way on the different computers.

The specifizatia;i can obviously be supported on each small

computer by implementing it in the way most suited to the particular

input/output interface, but this would necessitate a significant

amount of re-design effort for each different computer as there are

considerable differences in the way input/output devices are supported,

for example, in the way peripherals are addressed.

The following discussion compares the different input/output

interfaces and arrives at a minimum subset of the facilities provided

which have equivalents on all the computers. The precise electrical

characteristics of the interface are obviously going to be different

between the various small computers in terms of signal levels, pulse

lengths, voltage or current driven signals, etc. Such differences

can be accommodated by a first level of signal buffering between the

communications interface and the computer in which the signal levels

from the computer are converted into the signal levels acceptable

to the communications interface logic. Such a signal buffering in

a simpler form is a standard feature of some input/output devices

where logic signal levels are not normally suitable for directly

driving long lengths of interface cable because of the current drain

involved.

U

- 52 -

6.3 Small conrputer input/output interfaces

The facilities provided, by small computers for handling

input/output devices can be grouped under the following headings:-

Cl. program selection of a particular device, i.e.

addressing capability

program commands issued to the device so addressed

capability for device to input and output the data

C1 . dapability for device to demand servicing by program,

i.e. interrupts.

All the small computers considered in this report support these

capabilities, but the ways in which they are implemented differ

considerably. The input/output interfaces of the different small

computers were investigated in some detail and a summary of the

interfaces of four of the computers is given below, in terms of

the capabilities listed above. These four computers are described

because they represent four completely different methods of init/

output control, but they are a].]. capable of supporting in a common

way a minimum subset of input/output facilities which is sufficient

to support the communications interface envisaged. These

facilities are sufficient to support any simple input/output device

which has a data 'tate that can conveniently be handled one

character at a time under program control. Faster data rate devices

which require some means of autonomous data transfer are not

considered, since the requirement for flexibility in the protocol

used means that the software must control data transfers one

character at a time.

53

• The four computers considered are the DEC PDP8 9 the CTL

Modular One, the Elliott 4100 and the IBM 1130.

6.13 	PDP-8

Cl C2. An input/output instruction on a PDP-8 has the

following format:

[6 1 Device Address 	Command

The number 1 6 is the PDP.8 instruction code for an input/output

instruction. The device address field is 6 bits and the command

field is 3 bits. When this instruction is executed, the device

address field is gated in parallel onto an I/O bus and the 3 bits

of the command field are gated out on separate lines one after

another at fixed intervals while the device address is held steady.

All devices on the system are connected to the I/O bus and it is the

responsibility of a particular device to recognize its own address

and interpret the signals on the command lines appropriately. This

sequence lasts for a fixed time and there are no return signals to

indicate whether or not any peripheral device responded to the

command.

Because there are no strobe signals accompanying the pulses

on the command lines, it is difficult to detect the absence of a

pulse on a particular line. It is only sensible to use the long

condition of a command pulse to initiate any action, and since the

pulses are not gated in parallel, it is 2lso not sensible to try to

interpret combinations of on° pulses to initiate distinct actions.

- 54 -

It is only sensible to use multiple command bit settings to

initiate the same actions in one instruction that would be initiated

separately if the command bits were issued singly in separate

instructions • This means that only three distinct commands can

be associated with any particular device address.

If a device needs more than three commands, and most of them do,

then the technique used is to allocate multiple addresses to the

device. Since all device addresses broadcast on the I/O bus are

available to all devices on the bus, it is perfectly feasible for

one device to recognize more than one address and interpret the

command lines differently depending on the address recognized. Since

there are 61 possible device addresses, the allocation of multiple

addresses to one device does not normally restrict the number of

separate devices that can be attached to the I/O bus.

C3. The method of achieving single character input/output on the

PDP-8 is a standard part of the basic input/output cycle.

When the input/output instruction is being executed, the contents

of the main accumulator (Ac) are gated onto 12 parallel lines of the

I/O bus and are held there for the duration of the cycle. Then, if

the particular device addressed wishes to interpret or--- of the

commands as an output command, it can gate the AC lines into an

internal register. Similarly for input purposes, there are 12 AC

IN lines in the I/O bus, which can be set by the device, and suitable

control sign).s to tell the PDP-8 CPU to gate these lines into the

AC.

- 55 -

All these functions are controlled by the device, and the

CPU does not place a particular significance on any of the comTnRnds.

The device can use any of the command pulses with any address to

signal input or output of a 12-bit wide data word.

C14. A further signal line present on the I/O bus for use by the

devices is the INTERRUPT line. Any device can request an interrupt

by holding this line to the appropriate 'ON' condition. Since there

is only, one interrupt signal for all devices, the program has to

interrogate each device on the bus to determine which device requested

the interrupt.

The I/O bus provides a SKIP line for this purpose. If a

particular device has requested an INTERRUPT then it should set the

SKIP line to the 'ON' condition when it recognizes a particular

command on its address. The SKIP line being set causes the CPU

to step the program counter by one, thereby providing the facility

for a conditional branch following the inputoutput instruction.

Again if a device wishes to use more than one distinct interrupt,

it can use different combinations of address and command to select

the correct interrupt. There is obviously no practical limitation

on the number of distinct interrupts that can be used.

The proposed Thnional specification could clearly be implemented

on a PDP-8 by using multiple device addresses to accommodate all the

commands and error flags.

- 56 -

6.5 	Modular One

C1 9 C2. 	The Modular One uses an unusual method of addressing

peripherals, in that there is no actual input/output instruction in

the CPU. The addressing range of the Modular One is from 0 to 64k,

and the convention adopted is that any attempt to reference a store

address above 56k is routed to the peripheral interface, and the

address so generated is then interpreted as follows:-

16-bits address

I 7 	I 	0-7 	I 	0-31 	I 	0-31 	I

selects 	selects 	sub-address 	command field
peripheral one out of field to be 	to be interpreted.
interface 	8 peripheral interpreted 	by peripheral

ports 	by peripheral

Therefore the CPU uses 6 of the 16-bits to select a particular

peripheral channel and the remaining 10 bits can be interpreted by

the peripheral device on the channel. It is common practice to

use 5 of these bits for further addressing if necessary and 5 bits

to specify the command, although there is no requirement to do so.

Since these fields are strobed out to the peripheral in parallel,

any combination of the 5 bits can be used to give a total of 32

possible commands, of which the first 5 are used for standard functions

common to all peripherals, such as testing operability. This command

and addressing structure obviously gives plenty of scope for a

peripheral to handle a wide range of different commands.

- 57 -

C3. All references to a peripheral are conducted using a

standardized 3-word handshaking exchange format. The three

words involved are referred to as Control Word, Slave Word

and Master Word respectively.

When the CPU executes an instruction which generates a store

rëference in the peripheral address range, the address so generated

constitutes the Control Word, and this is sent out to the selected

peripheral channel. The peripheral must examine the least

significant 10 bits of the Control Word and interpret them according

to its particular command repertoire. In response to the Control

Word, the peripheral must return a signal, saying whether it accepts

or rejects the command, together with a 16-bit Slave Word, which has

no pre-defined format. If the peripheral indicates acceptance of

the command, then the CPU will send out a 16-bit Master Word, again

of no pre-defined format, for interpretation by the peripheral. This

completes the 3-word handshake sequence.

Depending on the actual instruction executed by the program,

the Slave Word can be loaded into any one of the programmable CPU

registers and the Master Word can be taken from any one of these

registers. This is then the method of performing single word

data input and output to the peripheral under program control.

Cli. A general-purpose INTERRUPT capability is a standard feature

of the Modular One peripheral interface. An interrupt is accomplished

by the peripheral initiating a three-word exchange sequence similar

to that described above.

- 58 -

In this case, the Control Word specifies the store address

of a 4-word area used to exchange the current working register

context of the processor. This has the effect of simultaneously

calling up a specific interrupt routine and áaving the working

registers of the interrupted program. The Slave Word of the

exchange is extracted from the A register position in the 4-sword

area and the Master Word is loaded into the A register of the

interrupt routine. The Master Word can therefore be used to give

further information to the program about the interrupt, e.g.

the peripheral status. The Slave Wurd can also be used if

necessary to send program information to the peripheral.

Since the store address used for the register exchange is

specified completely by the peripheral (within the limits of

the first 8k of store), it is obviously possible for one peripheral

to call up more than one interrupt routine for different functions

by specifying different store addresses, which must be pre-loaded

with the relevant interrupt routine register context.

This peripheral interface architecture allows implementation

of the proposed functional specification in a variety of different

ways. 	All the commands could be accommodated on a single address,

and all the error flags could be combined into a single interrupt

by indicating the flag bit settings in the interrupt Master Word.

Separate interrupts could be used to request data input and output.

6.6 	Elliott 4100

C1 9 C2. The 4100 processor has a small number of instructions

- 59 -

specifically allocated for input/output purposes which confine the

peripheral device to quite a restricted set of facilities in terms

of program interaction.

The 14100 makes use of a peripheral port system rather than I/O

bus and the selection of a particular port is done by the CPU on the

basis of the address specified by the input/output instruction.

Only the peripheral thus selected receives the I/O signals generated

by the instruction. There are four instructions used by the

processor which are communicated to the peripheral by means of two

control lines in the I/O interface.

There are 8 Data In lines and 8 Data Outlines which are

routed to the !ilOO main accumulator, M. Two of the four

instructions cause the Data Out lines to be set and the other two

expect the Data In lines to be set. Of the two output instructions,.

one is intended for actual data output and the other for the

output of a control command which can be interpreted in any way by

the peripheral. Of the two input instructions, .one is intended

for actual data input and the other for inputting the peripheral

status.

This type of input/output interface requires that the full

command repertoire of the peripheral device be accommodated within

the 8—bit control command, which, allows 256 different commands, since

the Data Out lines are strobed out in parallel. The output control

command is abbreviated as OCUM, meaning 'output control unpacked

from M'.

C3. The input and output of data one character at a time under

program control is achieved as explained above by the two instructions

IDU1 and ODUM, whose meaning is obvious. Both instructions handle

a single 8-bit wide character between the peripheral and the main

1100 accumulator.

C14. The interrupt facilities are also limited, since each peripheral

can only request two distinct interrupts, known as INTERRUPT and

ATTENTION, for which two separate lines are provided in the I/O

interface. The processor is able to determine which peripheral

channel originated the request by examining the bit settings in

INTERRUPT and ATTENTION registers, which have one bit allocated

for each channel on the, system,

It is assumed that an INTERRUPT is used to signal a request

for more data input or output, and the INTERRUPT condition will

be cleared in the device when the corresponding IDUN or ODUM

instruction is executed, The ATTENTION is assumed to signal

some error condition which must be handled by the program. In

order to discover the particular nature of the error condition,

the program should execute an ISUM (input status) instruction

which should give the setting of the various error flags associated

with the peripheral. The execution of the ISUM instruction also

clears the ATTENTION condition in the peripheral.

The 14100 I/O interface then tends to put the peripheral in a

straight-jacket and expects it to conform to a well-defined command

structure. The formalization of the procedures connecting program

and peripheral means that all peripherals will be programmed in a

standard way. There is no freedom for the programmer to define

- 61 -

a wide range of special input/output instructions to be executed

by the peripheral.

However, although the peripheral interface is restricted and

formalized, it does have sufficient capabilities to support

the communications interface specification. The commands spedified

for the device can be implemented by means of different control

words for the OCUM instruction. The input and output of single

8-bit characters using interrupts and under program control is

supported, and the error flags specified can be accommodated

through the ATTENTION feature and the ISUN instruction.

6.7 IBM 1130

Cl,C2. The 1130 processor includes just one instruction for

controlling peripheral operations. This is the Execute Input!

Output, or XIO instruction. When this instruction is executed,

its address field points to a 2-word store area containing an

Input/Output Control Command (10cc). The 'ormat of the 10CC

is as follows:-

ADDRESS (16 bits) 1I DEVICE
(5 bits)

I FUNCTION
(3 bits)

I MODIFIER
(8 bits)

The first cycle of the execution of an I/O instruction results

in the second half of the 10CC being gated onto the Data Out lines

of the I/O interface, and a control line is pulsed to indicate that

an XIO is being executed. The 1130 works on an I/O bus system and

so this information is available to all the devices on the bus.

- 62 -

The devices must examine the DEVICE field in order to recognize

their particular address.. If the device code is recognized then

the FUNCTION and possibly the MODIFIER field must be examined by

the device. The different FUNCTION codes are interpreted by the

CPU to produce different variants of the I/O instruction cycl.;

so the device must conform to the particular FUNCTION code settings

used by the CPU.. The interpretation of the MODIFIER field is

entirely device-dependent.

The first cycle of the XIO execution is the same for all FUNCTION

codes, but the rest of the execution is dependent on the particular

FUNCTION code and may involve one or two extra cycles.. The device

must respond accordingly.

The seven va,id FUNCTION code settings are defined as

follows: -

001 - Write

The contents of the store location pointed to by

the ADDRESS field of the 10CC is gated onto the

Data Out lines

010 	Read

The device is expected to set the Data In lines,

whose value is written into the storage location

pointed to by ADDRESS

011 - Sense Interrupt

This code is used to sense the state of the

INTERRUPT lines for all devices on the system

and is explained in more detail below.

- 63 -

100 - Control

With this code, the device should interpret the

MODIFIER field as device-specific control

information. The ADDRESS field is also made

available on the DATA OUT Lines and may be

used to specify further information to the device.

101 & - Initiate Read and Initiate Write

110 	These codes are used to control autonomous transfer

operations only.

111 - Sense Device

This code requests the device to place, the contents

of its device Status Register on the Data Iii' lines

from which the CPU loads the ACC.

C3. The capability for single character input and output is available

as illustrated by the Read and Write functions described above.

In this case, actual storage locations are used directly as the source

and destination of the data rather than the programuble registers,

but the device itself is not ware of this. The CPU organizes the

necessary store accesses by interpreting the ADDRESS field of the

10CC.

C1. The 1130 provides a comprehensive interrupt facility, which

allows a device to request up to four distinct interrupts. There

are four interrupt priority levels available, and one device can

request an interrupt on each level if required. When an interrupt

at a particular priority is being serviced, the program issues an

)CE0 instruction irith a SENSE INTERRUPT function code, and a device

- 6 -

must set a unique bit on the Data In lines if it is requesting

an interrupt at that priority level, which is indicated on four

interface lines.

It is normal for a device to request an interrupt at only

one priority level, since many conditions requiring interrupt

service ccn be accommodated with one interrupt by setting specific

indicators in the Device Status Register before requesting the

interrupt. Then, once the interrupt has been identified, the

program can issue a SENSE DEVICE command to read the Device

Status Register and further identify the cause of the interrupt.

Thus, the 1130 I/O interface has sufficient capability on a

single device address to support the proposed functional

specification. The basic data input and output commands are

implemented directly. The mode setting conmands can be implemented

using the MODIFIER field with the CONTROL function. Interrupts are

available for both data and error flags. If required, data

interrupts can be combined with the error flags into a common

interrupt, or they could be given separate priority levels • In

either case, the Device Status Register can be used to give further

detailed information about the cause of the interrupt.

6.8 Common facilities of the inut/output interfaces

The important conclusion that can be drawn from the foregoing

discussion of small computer input/output interfaces is that it is

possible to forinalizeuall aspects of the program control of simple

peripherals. As shown in the discussion of the 4100 peripheral

- 65 -

interface all the requirements for program control of a character

peripheral can be met by the following short list of facilities:-

Output control command

Input status flags
issued by program

Output data character

14. Input data character

Interrupt program to service data request 	issued by

Interrupt program to handle error condition 	peripheral

This list is actually formalized into the hardware of the

14100 peripheral interface, but the facilities can be easily mapped

onto any computer interface that allows single character input/output

by program and that allows interrupts.

If the small computer allows two separate 'output character'

instructions, two separate 'input character' instructions and two

separate interrupts for the one actual peripheral, e.g. on the

PDP-8 by using two separate device addresses, then the formal

scheme of the 14100 can be reproduced on that computer.

If our communications controller is designed to interface in

this way to the small computer, then it can be interfaced in a

compatible way to any small cormuter that can support the 'dual-

device' facility described above. The controller will also be

programmed in a compatible way on the different computers since it

obeys the same four basic instructions and generates the same two

interrupts.

6.9 	Generalized interface description

The appearance of such a peripheral interface to the program

is of four registers, each up to 8 bits wide with associated

interrupt characteristics. Tro of these registers are for input

only and two for output only. The two input registers contain the

last input character and the device status respectively. The two

output registers contain the next output character and the last

control coxnxnand respectively. The interrupt characteristics are

that two separate interrupt requests are made for the following

three cases:

a. when a transfer is made from the input shift register

to the input character register - Interrupt 1

b0 when, a transfer is made from the output character

register to the output shift register - Interrupt 1

c. when any status bit is set in the device status

register - Interrupt 2

The interrupt requests are cleared when the particular

register that caused the interrupt is serviced by the proam, or

when a Reset control command is given.

From the actual peripheral device logic side of the interface,

the sane four registers are seen, but with different characteristics.

Two of the registers are set by the device logic, these being the

input character register and the device status register, and two

of the registers are read out by the device logic, these being the

output character register and the control command register. Control

pulses are associated with the loading and unloading of certain of

- 6 -

the registers. The device logic sends a separate control pulse

at each of the following three times:

a, when it sets the input character register

when it sets any bit in the device status register

from 0 to 1

when it unloads the output character-register

The device logic expects a separate control pulse at each

of the following three times:-

when the program reads the input character register

when the program loads the output character register

when the program loads the control command register

Providing that this 14-register structure with the associated

control lines can be implemented on the input/output interface

of a particular small computer, then it is possible to use that

computer to control the communications interface envisaged.

6.10 General applicability

Al]. four small computer input/output systems considered in

detail in the previous discussion can be used in this way. A

number of other small computers have also been studied such as

the PDP-7 and PDP-9, SPC12, Interdata TO and Honeywell DDP516.

Thy are all found to be capable of handling the 4-register structure

specified above. In particular, the Ferranti Argus 600, which s

is one of the simplest digital computers ever produced, with a very

simple input/output interface, also has the necessary input/output

capabilities.

0••

It is also worth noting that a new sinai] computer which was

introduced after this study ws first made has an input/output

system ideally suited to the type of interface proposed. This is

the DEC PDP-11, whose UUIBUS system enables a number of registers

to be associated with a peripheral device. 	These registers are

programmed as if they were normal storage locations for holding

data. This obviously maps very easily onto the 4-register structure

proposed for the communi-:!ationa communication controller. A comprehensive

multiple interrupt facility is also available via the UNIBUS.

The use of this generalized interface in implementing the

detailed functional specification of the communications interface

is described in the following chapter.

S .

Chapter 7

SMALL COMPUTER COMMUNICATIONS HARDWARE

	

7.1 	Introduction

A previous chapter compared the use of asynchronous and

synchronous transmission for computer-computer communication and

concluded that synchronous mode was more suitable. This chapter

describes the development of a functional specification for a

synchronous communications interface for a small computer. The

object of the exercise is to achieve an optimum balance between the

work done by hardware and the work done by software, while retaining

the degree of flexibility necessary to communicate with different

large computers.

	

7.2 	Flexibility requirement

It was observed in a previous chapter that although all the

mainframe computers supported synchronous communication, they did

not all implement it in the same way. Transmission codes, character

sets, transmission control characters, methods of error checking,

message formats and communications protocol were not generally

compatible between the different mainframes. In many cases, the

fact that most of the communications control was implemented by

hardware meant that it was physically impossible to communicate from

one large mainframe to another and that remote terminals intended to

be used on one mainframe could not generally be used on a different

one.

An important consideration then was that the communications

hardware for the small computer should not incorporate the same

- 70 -

inflexibility since it should be capable of communicating with all the

different main computers. Al]. aspects of communications which differed

between the various main computers should be implemented by software

br by program-selected hardware options.

As a general rule, there is a far higher degree of software

control over peripherals on small computers than on large computers.

It is quite common for peripherals to generate an interrupt for each

character on a small computer. The peripheral speeds are such that

this does not generate an excessive interrupt rate, and because of the

simpler software structure on a small machine the CPU time involved in

handling an interrupt can be quite small.

It is quite acceptable then for the communications hardware to

operate by generating an interrupt per character and giving the

software the responsibility for checking control characters, analysing

message format and handling error checks. This approach gives the

flexibility necessary for communicating with different main computers.

7.3 	Basic Functional Requirements

The very minimum requirement for the communications hardware is

thc.t it should clock in the input data from the modem and convert it

into N parallel bits for presentation to the computer, where N is some

convenient number, preferably equal to the character size, and do the

converse for output. This presents the software with the raw bit

stream from the line, which has to be scanned for the synchronising

pattern in order to establish the correct character frame. It is

easier for the software if the hardware itself performs this first

level and establishes the correct character frame so that it then

- 71 -

presents the software with complete characters at each interrupt.

The incompatibility between different main computers usually

extends to the bit pattern used to establish synchronization, i.e.

the SYN character. However, one feature that is common between

them is that they all support an 8-bit character size as one option,

so this would seem a sensible standard to adopt.

A minimum sensible hardware requirement then is that the

communications hardware should scan the incoming data stream for a

program-selected SYN character and then generate an interrupt for all

following characters so that the software can build up the message.

On output, the requirement is simply to accept 8-bit parallel

characters from the program and generate an interrupt when the next

character is required.

A minimum set of commands for this controller would then be:-

Set SYW.character, either by loading a hardware register, or by

selecting one of a set of pre-wired alternatives.

Enter receive mode, scan for SYN character.

Input a character (after an interrupt).

Cancel receive mode.

Enter trØmit mode.

Output a character (after an interrup).

T. Cancel transmit mode.

- 72 -

7.14 	Extra Functions

This set of commands would enable software to be written to

communicate with any of the large computers. However, there are

some other functions which are easily handled by hardware and which

make the software simpler.

The most important of these is the timer function. The use of

timeouts to recover from error situations such as failure to achieve

synchronization is an essential part of - the communications procedures.

A hardware timer is not usually a standard feature on small computers

and the use of software loop counts is cumbersome and also prone to

inaccuracy in an interruptible environment. Therefore, since the timer

is needed to handle the communications effectively, it seems reasonable

to incorporate a hardware timer as part of the communications interface.

The timer would be started by software command and would, generate an

interrupt when a pre-determined fixed time interval had elapsed. A

command to stop the timer should also be included so that the time

interval could be cancelled if it was no longer needed. Since different

timeout periods are used by different large computers and also for

different functions within a particular protocol, the timer interval

should be small enough so that all timeout periods actually needed

could be constructed by counting a suitable number of hardware timer

intervals. Obviously, the timer interval should not be so short that

it generated a substantial interrupt load compared with the actual

communications data transfers. A timer interval of 100 ms would be

suitable for all systems currently in use on the various large computers.

- 73 -

Another function which is more easily implemented in hardware

than software is the checking and generation of character parity, where

this is used. Two commands should be included to enable and disable

the parity feature, since some transmission codes use all 8 bits for

data and use only a block check for error checking. If the feature

is enabled, the parity of input characters should be checked and an

error flag set or an interrupt generated if the check fails. On output,

if the feature is enabled, the parity bit position should be set to

the correct value.

The use of a block check sum can impose a considerable software

overhead, particularly if a cyclic redundancy check is used. For

example, an implementation of a cyclic check on the PDP-8 takes an

average of about 450jjs per character, although for other computers with

16 or more bits per word and an 'Exclusive OR? instruction, the time

can be much iess. It would be useful if the hardware could generate

the block check sum itself, especially since the PDP-8 was one of the

target machines. However, the determination of which characters have

to be included in the check sum is a non-trivial problem, particularly

when transparent mode is being used. The hardware would have to be

considerably more complicated to do this automatically and so this

requirement is not included in the functional specification.

However, a separate piece of hardware, independent of the interface

proper, can be used to accumulate the check sum once the software has

determined which characters to include. Such a unit was developed by

the ERCC Engineering Support Group and is described in (1 1). This

unit will not be described further here since it operates independently

of the basic communications interface.

A functional hardware specification for a small computer communi-

cations interface was then drawn up which incorporated the basic

facilities described above. A number of other features were also

specified which it was thought might relieve the software of certain

tasks without restricting the flexibility of the device. These features

were:-

automatic stripping of all leading SIN characters from an input

message so that the first interrupt presented to the software

was for the first significant data character of the message.

automatic removal of embedded SIN characters from a message

since, in a text message, SIN characters are not significant

and are used only for timing purposes.

selection of a binary, or non-text mode, in which rmibedded SIN

characters were not removed since they may have been part of

the message data.

automatic generation of the requisite number of SIN characters

at the start of an output message so that the first output

interrupt was a request for the first significant data character

of the message.

additions to the hardware timer feature to re-initialise the

tinier interval whenever a SIN character was detected in the

input data.

additions to the hardware timer feature to insert a SIN - timing

sequence automatically into the transmitted data stream at a

fixed interval (this capability was required by the IBM

transmission adaptors).

- 15 -

automatic detection of failure to service an interrupt within

the crisis time, which is one character time at any speed;

on input, this condition caused an error flag to be set, on

output a SYN-idle sequence was automatically inserted.

an error flag was incorporated to detect the loss of the data

carrier signal while inputting data.

an error flag was incorporated to indicate that the modem had

become inoperable.

j, extra commands to disable and enable interrupts from the device

to protect certain critical sections of the control software,

7.5 	Preliminary Functional Specification

The full functions], specification proposed for hardware implement-

ation then incorporated the following list of software commands:-

select SYN character from a pre-wired list of alternatives

enter receive mode; scan input data for two consecutive SIN

characters; remove all leading SIN characters; generate interrupt

on all following characters except SYN characters in text mode,

which should be removed.

input a character from the receive buffer (should only be executed

after an input interrupt).

1. cancel receive mode; cancel synchronization flag.

5. enter transmit mode; generate leading SIN characters; request

interrupt for all other output characters,

- 76 -

6. output a character into the transmit buffer (should only be

executed after an output interrupt).

7. cancel transmit mode.

8. start timer interval; enable special timer features.

9. stop tinier interval; disable special timer features.

10. enable character parity checking.

U.. disable character parity checking.

select binary input mode; do not delete SYN characters from

linput data.

cancel binary input mode; delete SYN characters from input data

and do not generate an interrupt for these characters.

11. read condition of error flags.

enable interrupts.

disable interrupts.

In addition s the communications interface should generate interrupts

for the following conditions:-

next input character available.

next output character required.

hardware timer interval has elapsed.

one or more of the error flags has been set.

- 77 -

	

7,6 	Non-interrupt Mode of Operation

An additional consideration from the point of view of testing the

communications interface and the communications link in general is

the capability to write very simple test programs that operate the

communications interface without using interrupts. These programs

are coded as simple sequential programs. The state of the peripheral

that would normally initiate an interrupt must be sensed by the program

in a way not involving interrupts. This is usually accomplished by

the program executing a tight loop waiting for a hardware flag to be

set, or a particular bit in a status register to be set.

If possible, the communications interface should be capable of

being operated in this way on all the small computers, so that the

same simple test programs can be applied in all cases. One consequence

of this mode of operation is that it must be possible to clear an

interrupt condition without actually accepting the interrupt. This

can be achieved by clearing the data interrupt flags (17 and 18 above)

as part of the Read Input Buffer (command 3 above) and Load Output

Buffer (command 6) instructions, and the error status flags as part

of the Read Status Register (command 11) instruction.

	

7.7 	Program Interface

The above section (7.5) describes the functional requirements

of the communications interface. This functional specification must

now be related to the actual program input/output instructions that

are used on a particular computer. The previous chapter demonstrated

that a sin1e set of program instructions could be used on all small

computers if the device was implemented in a particular uay (see

section 6.8).

The facilities described in section 7.5 can be associated with

the six basic program interface facilities described in section 6.8

as follows:-

6.8(i) - commands 1,2,4,5,7,8,9,10,11,12,13,15,16

6.8(2) - command 14

6.8(3) - command 6

6.8(4) - command 3

6.8(5) - interrupts 17,18

6.8(6) - interrupts 19,20

Details of the actual input/output instructions that would be

used in practice are given below for the four computers considered

in the previous chapter. The letters a-f correspond to the facilities

6.8(1) - 6.8(6). Similar instruction lists can easily be devised for

any other small computer.

PDP-8 - assuming addresses AA and BB are assigned to the communications

interface.

6AA4 - Load control register from ACC

6AA2 - Read contents of status register into ACC

6BB4 - Load output buffer register from ACC

1. 6BB2 - Read input buffer register into ACC

6BB1 - Skip if input/output data interrupt (after interrupt)

6AA1 - Skip if status register interrupt (after interrupt).

- 79 -

These instructions can be used equally easily to program the

PDP-8 in both interrupt and non-interrupt mode. The state of the

hardware in non-interrupt mode can be sensed directly by the 'skip

if flag set' instructions. This then satisfies the requirement

stated previously that it should be possible to write very simple

sequential programs to test the hardware without using interrupts.

Modular One - assuming channel address A, and store address B the

start address of 8 store locations assigned to the communications

interface.

Commands from program -

Load Control Register

Control word - 7A,05

Slave word - NULL

Master word - control command value

Read Status Register (rejected if status flag not set)

Control word - 7A,06

Slave word - qiSitents of status register

Master word - NULL

a. Load output buffer register (rejected if output flag not set)

Control word - 7A,07

Slave word - NULL

Master word - next output character

d. Read input buffer register (rejected if input flag not set)

Control word - 7A,10

Slave word - last input character

Master word - NULL

arm

Commands from communications interface:-

Input/output data interrupt

Control word - 70,B

Slave word - next output character

Master word - last input character

1'. Status Flag interrupt

Control word - 70,B+4

Slave word - NULL

Master word - contents of status register

If programmed using interrupts, only the instruction Load Control

Register needs to be used, since the other instructions are

automatically included as part of the Interrupt cycle. However, the

full set of instructions is necessary to program the device without

using interrupts.

Elliott 4100 - assuming address A assigned to communications inter-

face.

Load control register

OCUN, A - control command value in ACC

Read status register; rejected if status flag not set

ISUM, A - contents of status register input to ACC

Load output data buffer; rejected if data output flag not set

ODUM, A - next output character in ACC

Read input data buffer; rjected if data input flag not set

IDUM A - last input character loaded into ACC

IITTERPUPT set if input or output flag set

ATTENTION set if any bit set in status register

This version of the interface can be programmed in non-interrupt

mode by using a facility of the 4100 peripheral interface whereby a

command issued to a peripheral can be rejected by the peripheral by

setting a particular control line. The effect of this rejection is

to cause the 1 100 processor to execute the next instruction in sequence.

If the command is not rejected, the 1 100 program counter is incremented

by one in order to skip the next instruction in sequence. Thus the

program can effect a conditional branch w]iich reflects the state of the

peripheral. The peripheral should reject a command to read from the

input buffer register or the device status register if their respective

flags are not set. Similarly, any attempt to load the output buffer

register should be rejected if the output buffer flag is not set.

IBM 1130 - assuming peripheral address A and ILSW bits N and N+l

assigned to communications interface.

Load control register

10CC - NULL ADDRESS,A,lOO,MODIFIER set to control command value

Read status register

10CC - NULL ADDRESS,A,111,NULL MODIFIER

contents of status register loaded into ACC

Load output buffer register

10CC -- STORE ADDRESS OF NEXT OUTPUT CHARACTER ,A,001 ,NULL MODIFIER

- 52 -

Read input buffer register

10CC - STORE ADDRESS FOR NEXT INPUT CHARACTEB,A010,NULL MODIFIER

Interrupt Level 2 bit N set if any status bit set

Interrupt Level 2 bit N+l set if input or output data flag set.

The communications interface can be run without using interrupts

by running the CPU on priority level 2 when all interrupts from the

interface will not be serviced by the CPU. The ILSW instruction can

be used to sense the condition of the interrupt lines under these

circumstances.

7.8 	Communications interface specification

The functional requirements of the communications interface

discussed previously can be combined with the program interface

described above to produce the following list of instructions for

implementation.

The communications interface should obey the four basic

instructions: -

Output control function from accumulator

Input device status to accumulator

Output 8-bit character from accumulator

. Input 8-bit character to accumulator

The interface should generate the interrupts:-

next input or output character required

device status flag set

.

The control functions to be interpreted are:-

General reset to quiescent state

Enter receive mode

Enter transmit mode

Select SYN character

Enable parity checking

Disable parity checking

Set binary mode

Set text mode

Start timer interval

Stop timer interval

Enable interrupts

Disable interrupts

The error conditions indicated by device status are:

Timer interval elapsed

Data carrier lost while inputting data

Data overrun - input character buffer not serviced in time

14. Modem incperable condition

5. Parity error detected on input

A more detailed explanation of these functions has been given

earlier in this chapter and will not be repeated here.

A block schematic for the proposed communications interface is

given in Figure 7.1.

The detailed implementation of the specification given above was

(15) undertaken by the Engineering Support Group of ERCC during 1969.

C

ca

0
C)

U.,
p

ru

-4

0
-9

0
0
3
3
C

p

0
z
(J) 	St

z
-I
P1

Ii

C)
(TI

MODEM 	 I

This hardu,re s)ec 4_7icat 5 on was then used as the basis for the

communications software which is described later in this report.

7.9 	Experience of first implementation

Software/Hardware Problems

The experience gained once the software had been written and the

whole system, hardware and software, had been operational led to the

conclusion that some of the extra functions specified for the hard-

ware in the discussion on functional requirements could safely be

dispensed with without imposing significant extra burden on the

software.

In fact, one of the extra functions specified imposed an extra

burden as onerous as the one it was intended to remove. This feature

was the capability for distinguishing between binary and text mode.

When text mode was set, all SYN characters found in the data stream

were automatically deleted, and the program was not informed. This

was intended to prevent generating interrupts for characters which

would be discarded by the software, since embedded SYN characters

were used only for hardware timing purposes. In binary mode, all

characters were passed through to the program since the SYN pattern

could occur as binary data.

However, although text messages could be guaranteed not to

contain a SYN character as real data, no such assurance could be given

about the block check characters, which were transmitted after

the message ending character. Since the hardware did not recognise

the message ending character, if one of the block check characters

happen to coincide with the SYK character, then this would be deleted

from the data and the block check sum as seen by the program would

be incorrect. This would lead to an unrecoverable error situation,

since every attempt to re-transmit the same message would produce the

same effect.

Although this would seem to be an unlikely occurrence, the effect

was observed in normal operating conditions. The problem was worse

for IBM communications, which specified the use of an intermediate block

check sum after every record in a transmission block in addition to

the one at the end of the block.

The problem could be overcome by the program selecting binary mode

whenever a block check was expected, and re-selecting text mode,

if the whole block was in text mode, after the block check had been

received. A simpler solution would be to read the whole block in

binary mode and delete SYN characters in a text block by program. The

binary/text mode feature of the hardware could then be removed.

Hardware Test Problems

A further problem encountered with this first implementation

concerned the difficulties of testing the communications hardware.

Since all the main computer communications hardware being considered

operated in half-duplex mode i.e. only allowing data to be transmitted

in one direction at a time, the small computer communications hardware

was designed to operate in the same way and the operations of trans-

mitting data and receiving data were mutually exclusive at the hardware

level.

- 37 -

To test t0i ,2 cc iic'tios h3.uare, therefore, require. that

there be coatible, working cornunications equiient at the other

end of the link. This was difficult to arrange during prototype

development when the only such equipment was the 360/50 with its

conmunications adaptor. Available testing time was limited and it

was exceedingly cumbersome to write the simple kind of test program

for the 360 necessary for elementary engineering tests while still

running in a encral user multi-programming environment.

This level of engineering checkout would have been much simplified

if the communications hardware could operate in full duplex mode,

i.e. transmit and receive data simultaneously. The communications

hardware could then be used in a looped back-to-back fashion, and data

from the serial data output stage would be fed back into the serial

data input stage. A simple test box used in place of the modem could

provide the necessary timing and control signals.

Additional Functions Specified

Other extra fLelities defined in the functional specifications,

namely - stripping of leading SYN characters on input, generation of

leading SYN characters on output, additional timing features associated

with input and output of data, were found to produce only marginal

simplification of the software. Although the extra hardware involved

was not very complicated, the extra cost, size and wiring necessary

was not justified by the software savings.

Additional Error FlaZs

Similarly, the extra error indicators used to signal loss of data

- 63 -

carrier and modem inoperability were reckoned to be superfluous.

The data carrier lost signal was intended as a fall;back method of

detecting end of input data if a proper message-ending character was

not recognised by the software because of data corruption. In fact,

it was a common practice of main computer communications equipment

to maintain data carrier on a 4-vire circuit after all data had been

transmitted. This enabled faster line turnaround between receive and

transmit since it was not necessary to establish and stabilise the

carrier signal before transmitting data. This could save up to 110 ma

on each handshake exchange over the link, which represents about 40

extra characters of data at 21400 bauds. Since the software could no

longer rely on a lost carrier signal to indicate end of data, this

aspect of error recovery had to be implemented using timeout

controls and buffer overflow conditions. The lost carrier signal was

then no longer needed.

Since there was no way in which the software could recover

automatically from a modem inoperable condition, it was decided to

display the state of the modem on operator lights and rely on operator

action to investigate the condition of permanent failure to establish

communication which would result from a faulty modem. The use of the

modem inoperable error flag therefore was of marginal benefit, since

it only enabled the software to inform the operator of a condition he

would discover for himself. If however there were no facility for

providing operator lights, then obviously the modem status must be made

available to the software.

- 89 -

.lO Improved Functional Specification

On the basis of the considerations outlined above, a new functional

specification was drawn up which is considered to represent an optimal

division of function between communications hardware and communications

software on a small computer. The details of this functional

specification are given below.

This functional specification was implemented by Data Dynamics Ltd.

in 1971 6) 0 Because of a commercial decision to produce a communications

interface for a PDP-8 only, the interface was not implemented in

accordance with the generalised 1- instruction format indicated

previously. Rather, the multiple-address capability of the PDP-8 was

used and several separate instructions were defined which are shown in

the list below.

The communications interface should be able to operate in full-

duplex mode, so the transmit and receive channels should function

independently. The functions of each channel, and the commands used

are described below. The interface should also incorporate a hardware

timer facility, the details of which are given below.

Receive Channel

Command 1. Load SYN recognition reGister from AC

Command 2. Enter receive mode, scan incoming data for SYN

character; when found transfer all subsequent

8 bit sequences to input buffer register and set

input bi.ffer flag to request an interrupt.

- 90 -

Command 3. Reset receive mode; cancel character synchronisation;

reset any interrupt requests; ignore incoming data;

reset all flags.

Command. 14. Read input buffer register into AC; resetinterrupt

request.

Command 5. Skip if input buffer flag set.

Command 6. Skip if input buffer overrun flag set; this flag is

set if the input buffer flag is still set when a

second character is transferred to the input buffer;

this flag does not interrupt.

Command 7. 	Skip if parity flag set; this, flag is set if the

parity of the input character is odd; this flag

does not interrupt.

Transmit Channel

Command 1, Enter transmit mode; set all - l's pattern in output

shift register and shift out in accordance with transmit

clock from modem; set output buffer flag to request

interrupt when modem sets 'Ready For Sending' signal.

Command 2. Reset transmit mode; stop shiftin$ bits from shift

register; reset 'Request To Send' modem signal if in

two-wire mode; set 'Transmitted Data' modem signal to 1

condition; reset output buffer flaC, output buffer overrun

flag and parity flag.

Command 3. Load output buffer register from AC, reset output buffer

flag.

- 91 -

Command 1. Set parity generation flag; when set, this flag causes

the most significant bit of the character to produce

odd parity when the character is transferred from the

output buffer register to the output shift register.

Command 5. Skip if output buffer flag is set.

Command 6. Skip if output buffer overrun flag is set; this flag is

set if the output buffer flag is still set when the next

output character is requested; this flag does not

interrupt.

Hardwie Timer

The communications. interface incorporat-:.G a clock which generates

a pulse every 100 ms. This pulse sets a flag to request an interrupt

if a programmable gate is open.

Command 1. Enable timeout flag; this command allows the clock

pulse to set the flag.

Command 2. Disable timeout flag and clear flag; this command prevents

the clock pulse from setting the flag.

Command 3. Skip if timeout flag set and clear flag.

7.11 Interface Test Facility

To ease the problem of testing the counicatons hardware, a

'test-box' was specified which fitted in p1&ce of the modem and provided

facilities for testing both transmit and receive hardware. This test-

box is capable of testing any full-duplex 8-bit synchronous

communications interface fitted with a modern interface.

- 92 -

It consisted basically of an 8-bit register and a timing generator,

capable of running at various speeds. The contents of this 8-bit

register could be set either from 8 hand switches or from the transmitted

serial data from the communications interface. The contents of the

register were shifted out to produce the serial data input for the

communications interface. The shifting was controlled either from the

timing generator or from a single-step switch, which produced a one-

bit shift each time.

Therefore, the receive and transmit hardware could be tested

alone, or in conjunction with each other at manually controlled speed

or at normal operating speed. This test facility proved indispensable

sdnce the prototype -.communications interface 	developed in an

environment where no compatible communications equipment was available

to attach to the other end of a data link.

7.12 Conclusions on small computer communications hardware

The arguments and conclusions presented in this chapter can be

summarised by saying that the ideal implementation for a communications

interface suitable for attaching to any small computer would support

the functional specification defined for the Data Dynmics interface

implemented with the generalised 1 -instruction system used in the

MCC interface.

One important simplification of this generalised interiace can

be made in relation to interrupts. The ERCC specification defined two

interrupts, one indicating that input or output of a character was

complete, the other indicating a status report. Since an important

part of the Data iynanics specification was that it should be capable

- 93 -

of running in full-duplex mode, the same interrupt could not be used

for both input and output, since it would be impossible to tell

whether the input or output register needed servicing, as they could

both operate simultaneously. If an extra interrupt were defined, to

enable separate interrupts for input and output, this would mean that

three interrupts were needed, which could not be supported on certain

of the small computers.

It is proposed then that only one interrupt would be used for

all conditions, and the particular condition causing the interrupt

would be indicated in the status register. Therefore two extra bits

are assigned to the status register to indicate input character and

output character respectively. It would be the responsibility of the

software to handle all conditions indicated in the status register

whenever it was read, since more than one condition could occur

simultaneously. This reduction to one interrupt for all conditions

also has important implications for the software which will be

described in a later chapter.

A formal specification for this idealized communications interface

is given in the following chapter as a self-contained summary of the

foregoing deliberations on small computer synchronous communications

hardware.

- 924 -

Chapter 8

SPECIFICATION FOR SYNCHRONOUS COMMUNICATIONS

INTERFACE FOR SW.LL COIPUTERS

	

8.1 	Basic Requirement

The synchronous communications interface (SCI) should be capable

of operating in an 8-bit character synchronous communications

nvironinent with a clocked modem (Modem 7 or proprietary equivalent)

at speeds of 600, 1200, 22400, 24800or 9600 bawls. Operation at the

higher speeds will be over a private 24-wire circuit so that it will

be possible to maintain continuous carrier in both directions at all

times thus saving line-turnaround time. In case continuous carrier

operation is not compatible with other computers communications

equipment then a switch should be provided that enables/disables

continuous carrier. Operation at 600 or 1200 bauds will be over the

switched public network using a two-wire line and the appropriate

facility of Modem 7 , This is known as standby mode and should be

selectable by means of a hardware switch on an operator control panel.

Continuous carrier operation is not compatible with standby mode and

selection of standby should override any other method of selecting

continuous, carrier operation.

	

8.2 	Modem Interface Considerations

The modem interface should conform to the CCITT V224

This is adequately described in the appropriate reference document,

and frequent references will be made in this specification to the

signals defined there.

- 95 -

	

8.3 	Program control

The interface should contain four programmable 8-bit registers,

two read-only and two write-only. The read-only registers comprise

one for holding the latest input character and one for holding the

device status. whenever a bit is set in the status register, an

interrupt request is generated. The write-only registers comprise

one for holding the next output character and one for holding the

latest program control command. All commands to the interface are

effected by setting the command into the control command register.

	

8,14 	General

The SCI consists logically of two independent parts - the

Receive (Rx) channel and the Transmit (Tx) channel. In order that

the SCI can operate in full-duplex mode, these two parts should be

able to operate simultaneously and independently and should not

interact in any way. A detailed description of the function of the

two channels is given below.

	

8.5 	Receive (Rx) Channel

The Rx channel performs the function of obtaining and maintaining

character synchronization with the incoming serial data. The

characters are then transferred in parallel form to an input buffer

register which is accessible to the program. The Rx channel should

achieve character synchronization as a result of recognising two

consecutive SYI characters. The SYN character used for the comparison

is loaded into an 8-bit register by the controlling software at the

start of the session. This register will only be loaded once by the

- 96 -

software, so the register contents must not be altered in any way by

hardware effects, excluding those that also cause the software to

be corrupted, e.g. power failure.

The Rx channel contains 3 registers:-

SYN comparison register (8-bits). This register is loaded by

software with the appropriate SYN-character for the main-frame

machine. The register is loaded once at the start of a session

and it should remain unaltered throughout the session as no

attempt will be made to reload it by the software during a

session.

Input shift register (16 bits). This aceeDts the serial data

from the modem and it is in this register that SYN recognition

is performed when the Rx channel is attempting to achieve

synchronization. A double comparison should be made with the

8-bit SYN register every time a new bit is shifted in from the

modem. If the 16-bit register contains a double-SYN pattern,

the character clock is started and any further SYN recognition

is inhibited. The character clock is a division by 8 of the

bit clock. Characters are transferred from the shift register

to the Rx buffer register at every character clock time. The

character clock is stopped by the 'Reset R.x channel' instruction.

SYN recognition is re-enabled by the 'Enter receive mode'

command.

Rx buffer register. This register holds a character ready to be

transferred to the computer. There is a flag associated with this

register which is set when a character is loaded into it from the

- 	 -

shift register. This flag is contained in the device status

register and is cleared when the Rx buffer register is read into

the computer, or when the 'Reset Ix channel' command is issued.

If the flag is still set when the following character is ready

to be loaded into the Rx buffer, then an error flag indicating

ix buffer overrun should be set in the status register. The

flag should be cleared by the 'Read Rx buffer' instruction and

the 'Reset flx channel' command. There is a further flag in the

status register associated with the Rx buffer which indicates

the parity of the character. If the parity of the 8-bit

character is odd, then this flag is set to a 1, otherwise it

is zero. The flag is set at the sane time as the character is

loaded into the Rx buffer. The flag should be cleared by the

'Read Rx buffer' instruction, and by the 'Reset Rx Channel'

instruction.

The following instructions are used to control the receive

channel: -

1. Read input buffer register and clear flags

2. Read and clear status register; the following status bits are

defined for the Ix channel:-

input character ready

input buffer overrun

parity of input character is odd

3. Load control register; the following commands are defined

for the Rx channel

a0 Enter Ric code

Reset Ric mode and clear flags

Load upper half of SYI reistcr from top Ii bits of command

Load lower half of SYIT register frcm top bits of command.

8.6 'Modem interface considerations for Rx channel

The modem interface circuits affecting the Rx channel are Data

Carrier Detected (DCD) Receiver Ellenent Timin (RET) and ferial Data

In (SDI). For continuous carrier operation DCD will always be present,

as will RET, although the SDI will only have meamifu1 information on

it when the fax end is transmitting real data. Thus no action should

be taken by the Ex channel unless DCD is present,

8.7 	Transmit (TX) Channel

The transmit channel organises the output of data characters in

serial form to the modem. The transmit channel is activated by means

of the 'Enter transmit mode l command. This conand causes the T:

channel to set an all-ones pattern in the output shift reiister, to

set Request-to-send (if it is not permanentlr set) ar3. ;hen ±t for

the response Ready—for-sending MIS), at which ti'ie the transmit

timing signal will be available from the modem. When RFS is received,

the Tx channel should begin shifting the data from its output shift

register into the modem, and should also set a flag in the status

register for the computer to fill the Tx buffer register. The two

registers in the Tx channel are as follows:-

a) Tx buffer register (8-bits). This register is loaded with characters

from the comuter when the Tx channel genezatos an output interrupt

99

request. This is done by setting the Tx buffer flag s which is

used to set a bit in the status register. The flag is cleared by

the 'Load Tx buffer' instruction, and by the 'Reset Tx channel'

command. The Tx channel makes the first output interrupt request

trhen RFS is received from the modem. Subsequent interrupt

requests are made at every character clock time, i.e. at 8-bit

intervals. If, on attempting to make an interrupt request, the

Tx channel discovers that the Tx buffer flag has not been cleared

then the 'Tx buffer overrun' bit should be set in the status

register. This flag is cleared by the 'Load Tx buffer'

instruction, and by the 'Reset Tx channel' corand. There is

one further flag associated with the Tx channel which determines

whether or not character parity is generated for the output

character. This flag is set by software and is reset by the

'Reset Tx channel' instruction. The parity bit is the high-

order bit of the character and odd rarity should be generated.

If the parity flag is set, then the actual setting of the high-

order bit from the computer should be ignored.

b) Tx shift register (8-bits). This register accepts an 8-bit

parallel transfer from the Tx buffer register for shifting out

to the modem. The Tx shift register is initially set to an

all-i's pattern when the command 'Enter Tx mode' is given.

The shifting begins when RFS is received from the modem, and

the shift pulses are derived from the 'Tx element timing'

signal from the modem. When 8 bits have been shifted out, the

next character is loaded from the Tx buffer register and the

Tx buffer flag is set to request the software to load another

_100 -

character into the Tx buffer register. Shifting is stopped by the

'Reset Tx channel' command. If appropriate, this command also resets

the 'Request to-send' signal to the modem. After. .the command

'Reset Tx channel' is issued, the signal Serial Data Out should be

set to a binary 1 state, as this is the desired quiescent line state.

The following instructions are used to control the tranmit

channel: -

1. Load output buffer register and clear flags

2. Read and clear status register; the following status bits

are defined for the Tx channel:-

next output character requested

output buffer overrun

3. Load control register; the following control commands are defined

for the Tx channel

enter Tx mode

reset Tx mode and clear flags

set parity generation flag

8.8 	Modem interface considerations for the Tx channel

The modem interface circuits relevant to the Tx channel are

Request-to-send (RTS), Ready-for-sending (RFS), Transmit-Element-Timing

(TET) and Serial-Data-Out (SDO). In continuous carrier operation, RTS,

RFS and TET are always present and SDO should be in binary '1' state.

Real data is put on SDO whenever the SCI is in transmit mode. In

other than continuous carrier operation RTS is only set when the command

'Enter transmit mode' is given to the SCI. After a short interval,

- W.l -

the modem responds with RFS at which time TET is valid and the Tx

shift register can be started. In this mode, RTS is reset when the

command 'Reset Tx channel' is given to the SCI.

8.9 	Time-out control

The SCI should include a clock which sets a flag in the status

register every 100 ms if enabled by program. It is the responsibility

of the software to time longer intervals by counting timer interrupts.

The following instructions are used to control the hardware

tinier:-

Read and clear status register; the following flag is defined:-

a. 100 ms clock pulse has occurred

Load control register; the following commands are defined

enable timer flag

disable timer flag and clear flag

8.10 Interrupt Control

Two extra control commands are defined for the interface as a

whole to enable the program to control interrupts properly.

enable interrupts from interface

disable interrupts from interface.

- 102 -

Chapter 9

COMMUNICATIONS SOFTWARE FOR THE SMALL COMPUTER

.9.1 Overview

Previous chapters have discussed the hardware aspects of the

communications link between the small and large computers. The

net result of these considerations has been the specification of a

synchronous communications interface suitable for interfacing to

any small computer. This hardware operated to a well-defined

program interface and generated an interrupt for each character to

control the data transfer.

The other important aspect of the overall communications system

is the software for the small computer. This software matches the

interface provided by the hardware to control the communications

procedures necessary for effective communicationwith the large'

computer. These communications procedures are usually referred to

as 'communications protocol' since they define a set of rules which

must be adhered to if effective and reliable data communication is

to be achieved. These rules pertain to such things as use of

control characters, message format, type of error-checking,

acknowledgement format and action to be taken in the event of

temporary transmission failures.

It is appropriate if all such procedures are handled completely

by a communications software package, which presents a well-defined

software interface to a user wishing to transmit data over the link.

This combination of hardware and software package then implements

- 103 -

the 'communications black-box' envisaged in the introductory

chapter.

The software interface mentioned above will be referred to as

the 'user 	 to the communications system. The user side

of the interface should not be aware of any details of the

communications protocol. Rather, he should be concerned only with

the types of data he wishes to transmit, and these were described in

the chapter on 'User Applications for Coxmnunication Links'.

The communications package has the responsibility for issuing

the necessary control commands to the hardware and responding to the

interrupts generated by the hardware. A genera], block diagram is

given in Figure 9.1showing the position of the communications

package in the overall software structure for a communications-

based application on a small computer.

9.2 General requirements

In line with the proposed development of a communications system

that could be applied to any small computer, this communications

package should be designed so as to be easily incorporated into the

software system of any small computer, and should present the same

user interface independent of the particular user application.

Following the conclusion reached in section 5.5, the package should

be designed to implement the general point-to-point contention -

type protocol in a way that permits easy adaption to different versions

of this basic protocol on different large computers. The user

interface should remain as near as possible the same across these

DATA PATH

ROUTINE CALL

DATA
EXEC 	,I

I 	
STATUS

I 	/ 	I

	

I 	 INTERRUPTS

READ DATA

	

COMMUNICATIONS 	WRITE DATA
1 COMMUNICATIONS 	LINK

	

MODULE. 	
I READ STATUS 	HARDWARE 	j55o INTERRUPT

	

DRIVEN. 	WRITE CONTROL

READ
BLOCK

INIT 	I 	I 	WAIT WRITE
BLOCK

OUTPUT
	

INPUT

MODULE
	

MODULE

OPERATOR
CONTROL
	

•MARK
PLOTTER
	 MODULE

	
SENSE
READER

TAPE 	 CARD
READER

)

TAPE LINE DEC

DEC

_)
PRINTER (

TAPE)
L:~j

 TAPE

FIGURE 9.1 1 . SMALL COUTER COMMUNICATION SYSTEM

- 10)4 -

different large computers. Finally, although oriented towards

working with the small computer communications hardware specified

in the previous chapter, the package should be capable of working

with any suitable hardware if this already exists on a particular

small computer.

The remainder of this chapter describes how a package was

developed meeting the general requirements discussed above. The

next chapter describes how it has been successfully used in a

number of applications involving different small computers • A

further chapter describes standardized procedures to be followed

when applying the package in a new environment. This includes

the case of generating a completely new version for a new small

computer, where the basic interrupt-handling software can be tested

in a controlled way without the real communications hardware, thereby

avoiding the hazards of debugging new software in a real-time

environment.

93 Package Implementation - General Details

Since one of the stated general objectives was to develop a

package applicable to a number of different sirni1 computers, the

package should be machine-independent. One way of achieving this

is to program the package in a high-level language. Any functions

which must necessarily be coded in the particular machine assembly

language, such as issuing the basic hardware input/output commands,

can be confined to a small number of well-defined hand-coded

routines. These routines should only need a very few machine

instructions so that they can be easily re-coded for a different small

computer.

- 105 -

The general problem of using high-level languages for software

implementation on a small computer and desirable features for such

a language will be discussed in a later chapter.

However, considering the Edinburgh environment, the obvious

choice of language was IMP. Although IMP was used mainly as a

powerful programming language on the main Edinburgh computers, a

number of smaller versions had been developed for small computers

which implemented a sub-set of the full specification. In particular

an IMP compiler had been developed for the PDP-8, which was the

first target machine for the implementation of the communications

package.

• The use of a high-level language for implementing the package

seemed desirable, even if an IMP compiler were not available on a

particular small computer, since it would be much easier to produce

a hand-coded version from an original source in IMP than from a

hand-coded version for a different small computer. Any hand-coded

program will take advantage of particular machine features which

will make it difficult to transcribe the code to another machine

without these features, e.g. hardware stack, auto-indexing. The

original IMP source would then serve as a system definition language

as well as the actual implementation language on a machine with a

suitable compiler.

Another basic design objective is that the package should handle

the data transfer on an autonomous basis using interrupts. Then, a

user call on the package would merely initiate a data transfer which

would be completed under interrupt control, leaving the user free to

- 106 -

continue with other processing. This would enable double-buffering

to be effected which is highly desirable since the data link speed,

being only comparable with normal peripheral operating speeds, needs

to be used as efficiently as possible.

The package thus has to conform to four genera]. interfaces:-

the user interface, as described briefly above

the communications hardware interface, which will

not necessarily conform to the ideal specification

defined in the previous chapter

the executive interface, for routing through the

interrupts from the communications hardware

the remote host computer interface, which will

be based on the standard point-to-point one-way-

at-a-time protocol

On the inside of these four interfaces, the package should

remain essentially constant, even though everything on the outside

is liable to change.

A more detailed description of these interfaces and the

consequences of trying to match them in a uniform way follows

below.

9,14 The User Interface

The user interface can be defined at two levels, one directly

related to the initiation of activity on the communications link

and the other one level removed from this. These two levels can

- 107 -

be referred to as block and record interfaces respectively, and if

the record interface is used, then this will itself make use of

the block interface. Probably the most natural interface for the

user in most applications is the record interface. This enables

the user to perform BEAD and WRITE operations for single logical

records, and would be equivalent to similar operations on local

peripherals such as card reader, line printer and teletype.

For some operations, such as the transmission of graphical

information in coded form or the transmission of binary information,

the concept of single logical records is not always applicable and

it is more appropriate to use the direct block interface. The

block interface corresponds closely to the actual data transmission

procedures used on the communications link. As was mentioned

previously as part of the discussion on communications hardware,

computer communications is necessarily block-oriented, and the size

of block used is related to expected error rates and availability

of store for buffers. Typically, a transmission block can contain

several logical records if the data is record-oriented, or may just

be a suitably-sized part of a binary data sequence. For

transmission purposes, the block of data is enclosed in message-

framing characters and may contain intermediate block-check

characters as well as the block check at the end of the block.

The data exchanged over the user interface at the block

interface level consists of the data blocks as they are transmitted

but excluding any characters used solely for the purposes of

communications protocol. The user therefore is only concerned

with the data content of the block. In the case of record-oriented

data the block will contain the data characters with end-of-record

characters at appropriate points. For binary data, the block will

contain only the data characters.

It is clear from the above that the record-level interface uses

the block-level interface, since records are merely combined into

blocks before any actual data transmission takes place. The block

interface is therefore more fundamental as far as the, communications

package is concerned, and it is this interface which will be

described.

Block-oriented user interface to communications package

The user controls the package by calls on four routines, some

of which require input and return output parameters.

Initialization

The first routine to be called at the start of a session is

INIT. This routine has no parameters and performs the function of

initializing the c=unications hardware and setting variables to the

initial working state. Although it need only be called once, this

routine may be used after a permanent failure condition to return the

package to an initial state.

Receiving Data

The user calls the routine READBLOCK to initiate the reading of

a block from the remote end, but the routine is not directly involved

in the transfer of the data. The data is transferred under interrupt

- 109 -

control and the user can detect termination of the transfer by

calling routine WAIT (described below). Input parameters for

1IEADBLOCK are the buffer address' and size. Output parameters

available to the user after the transfer has terminated are:

a. a flag indicating whether the transfer was

completed successfully, or whether the transfer

was abandoned after a number of retries.

be a flag indicating whether end-of-file (EOF) was

received.

C. a flag indicating whether the block received

was in binary mode or character mode.

d. a count indicating the number of characters

actually received.

Unless flag a. is set, the other output parameters should not

be examined. If flag be is set, the other output parameters

should not be examined. If flag c. is set (indicating binary

mode), all characters in the block are data characters, otherwise

the block may contain end-of-record characters.

Successive calls on READBLOCIC may be made to receive a whole

file providing that routine WAIT is called to achieve proper

synchronization with transfer termination.

Transmitting data

The user calls routine WRITEBLOCK to initiate transmission of

the next data block. Main, this routine does not handle any actual

data transfer, which is effected under interrupt control. Routine

- 110 -

WAIT must be called to check for transfer termination. Input

parameters to URITEBLOCK are:

the address of the output buffer

the number of characters to be transmitted

co a flag indicating whether the data is binary

data (flag set) or character data

d. a flag indicating whether this is the last

block in the file

If flag d. is set, Thenn EOF will be transmitted with the block

to terminate the current file.

The one output parameter available after routine WAIT is called

indicates whether the transfer was completed successfully or whether

the transfer was abandoned after a number of retries.

Synchronization

Since routines READBLOCK and WRITEBLOCK initiate data transfers

which are completed asynchronously with the user program, the routine

WAIT must be called in order to synchronize correctly with the,

termination of the data transfer. This routine returns a

parameter of value one if the transfer is still in progress and

value zero if the transfer has terminated. When the transfer has

terminated, the user program can examine the output parameters

relevant to the original call on READBLOCK or WRITEBLOCKS

- Ui -

Coxnpatibility with different mainframes

This general type of block-oriented interface is compatible

with all main computers supporting the point-to-point type of

communications protocol. Differences between the main computers

will occur in respect of:-

a. maximum buffer size allowed

b, character set used

c end-of-record character used in record-oriented -

transmissions

_ 	d. other non-transmission control characters used,

such as 'newpage' specification

e, whether transmission of binary data is supported

Therefore, if the user program uses the block interface directly,

it must be aware of the conventions applicable to the particular

main computer. At the record-level interface, it is possible to

conceal some of the differences, such as buffer size, but it would

be difficult to conceal differences in the character set used,

since there are no universal one-to-one mappings from one

character set to another unless a restricted character set is used.

The user program, then, still needs to be aware of the particular

main computer it is communicating with, since this determines the

type of data that can be sent. However, given this limitation,

the record-level and block-level interface is generally applicable

to all the large computers considered.

112 -

Cop atibi1ityrith different small comuters

Regarding compatibility with different small computers, the

user interface defined above can obviously be implemented on any

small computer. Since, it is likely that different languages and

different executive systems will be in use on the different

computers, the precise method of invoking the various functions of

the communications package is likely to be different in each case,

e.g. mechanism for routine calls and parameter passing. Any such

differences can be accommodated by the provision of special minimal

interfacing routines which convert the routine call and parameters

to the form expected by the package. Such routines would normally

be written anew for each system and could even allow for different

languages to be used for the user program and the communications

package. If this method of a double routine call was inefficient

in a particular application, then the necessary code could be

incorporated directly into the four routines in the package comprising

the user interface, although this is obviously a less clean way of

handling such differences.

9.5 The communications hardware interface

This interface is the means by which the communications package

exercises control over the communications hardware and has two

distinct parts. The first is concerned with the actual commands

which the software issues to the hardware and the second concerns

the interrupts which the hardware can request from the software.

Both these aspects have been implemented in the communications

package in a generalized way, which may or may not correspond to an

- 113 -

actual hardware implementation. However, because the interface

has been implemented in terms of basic primitive functions for a

character-at-a-time two-way communications channel operating in

half-duplex mode, it should be. posible to map this software

interface onto any type of hardware implementation. In fact,

this has already been done for five different hardware implementations,

the details of which will be given later.

Software commands to hardware

The first aspect mentioned above is defined completely by four

basic routines which are called READDATA,WRITEDATA,READSTATUS and

WRITECONTROL. The definitions of these routines are as follows:-

READDATA is called as a function to get the latest input character

assembled by the communications hardware; the character

is returned as the function value.

WRITEDATA(CHAR) is cal1d to set CHAR as the next character to be

output by the communications hardware; character parity

should be included if necessary.

READSTATUS is called as a function to fetch the latest error status

report generated by the communications hardware; the

valid error reports are PARITY ERROR ON INPUT, TIMEOUT,

DATA CARRIER LOST, CHARACTER OVERRUN ON INPUT, MODEM

FAULT; the error report is returned as the function value.

WRITECONTROL(CONTROL) is called to instruct the communications

hardware to perform the function defined by CONTROL;

valid control functions are SET SYN CHARACTER,SET/RESET

PARITY CHECKING, ENTER RECEIVE MODE, ENTER TRANSMIT MODE,

- 1114 -

BESET COMMUNICATIONS CHANNEL, ENABLE/DISABLE COMMUNICATIONS

INTERRUPTS.

A further function used by the communications package may also

result in a hardware command being issued. This is the timer

function, which is invoked by WRITECONTROL(STARTTIMER) to start a

pre-defined time interval. If the timer is implemented by a real"

time clock or in the communications hardware, then the WRITECON'2ROL

routine will issue the necessary hardware command, and set a counter

if necessary when the hardware timer interval is significantly less

than that required. The implementation of the timer is a function

which is machine-dependent, and generally has to be written anew for

each machine. It is also a function of the WRITECONTROL command

'BESET COMMUNICATIONS CHANNEL' to cancel any outstanding time

interval.

The routines listed above constitute a set of primitive operations

for a half-duplex communications channel of the type considered in

this report. The code for these routines will normally need to be

written in assembler to perform whatever low-level hardware functions

are necessary to carry out the defined functions correctly. The

routines will be different for each different communications hardware

implementation, but it should be possible to implement them in all.

cases.

The result of calling routine WRITECONTROL with parameter ENTER

RECEIVE MODE or ENTER TRANSMIT MODE is that communications channel

interrupts will occur at some undefined time later. Similarly,

calling the routine with parameter STARTTIMER will result in an

- 115 -

interrupt after the specified time interval, unless the timer has

been cancelled or another call for ST.ARTTIMER has been made to

set a new interval. This leads on to the second aspect of the

communications hardware interface, which is that of the interrupts

which the hardware can request from the software.

Communications hardware interrupts

As far as the communications package is doncerned, there are

three interrupt conditions defined:—

a. input data interrupt, generated when the next input

character has been assembled

output data interrupt, generated when the next

output character is required

error status interrupt, generated when an error

condition is detected by the communications

hardware, such as timeout, lost carrier, etc.

Interrupt a. occurs only when the communications channel is in

receive mode, as defined by the ENTER RECEIVE MODE function of

WRITECONThOL. The first such interrupt signals the first character

of real data, i.e. it is assumed that all leading BYN characters

are removed by hardware or software.

Interrupt b. occurs only when the communications channel is in

transmit mode, as set up by the ENTER TRAN51IT MODE function of

WRITECONTROL. It is assumed that the first such interrupt is

generated only after the requisite number of leading SYN characters

have been transmitted, and so this interrupt requests the first real

data character.

- 116 -

Interrupt a. or b. will continue at a rate determined by the

line speed until the WRITECONTROL function of RESET COMMUNICATION

CHANNEL is issued, which prevents any further interrupts until

a new mode is selected. For each occurrence of interrupt a. or b.

routine READDATh or WRITEDATA as appropriate must be called as a

software response to the hardware that the interrupt has been

serviced.

Interrupt c. may occur at any time if interrupts are enabled.

Routine READSTATUS must be called to fetch the status word defining

the particular type of error and to acknowledge to the hardware

that the interrupt has been serviced. The error reports that may

occur have been defined above.

To correspond to these three interrupts, there are three interrupt

routines defined in the communications package. These are called

RECEIVE, TRANSMIT and AN.ALYZESTATUS respectively. These three

routines constitute the hardware interrupt interface to the

communications package.

Now this interface is an idealized one conceived in terms of an

ideal communications hardware interrupt structure corresponding to

the three conditions defined above. The actual communications

hardware used in practice might not provide these three basic interrupts,

but may have a completely different interrupt structure. However,

it is possible to map any type of hardware interrupt structure onto

the interface described above since that interface defines the

basic primitives of any single-character-transfer two-way communications

channel.

- 117 -

A set of minimal routines called first-level routines is

needed to convert the actual interrupt structure into that defined

above. There will obviously be one first-level interrupt routine

for each actual interrupt generated by the hardware and there may

be more or less actual interrupts than the three defined above.

For example, both input data interrupt and output data interrupt

may be the same actual interrupt and it is then the responsibility

of the first-level interrupt routine to inspect relevant software

flags to determine whether the hardware is receiving or transmitting,

and hence call the RECEIVE or TRANSMIT routine appropriately. (It

is assumed that only half-duplex communication is being used so

that it is always possible to determine unambiguously which is the

current mode.) Similarly, all the different error conditions may

be signalled by separate actual interrupts or by one actual interrupt.

In the former case a code indicating the particular. type of error

must be set into a state variable by the first-level interrupt

routine before invoking the ANALYZESTATUS routine.

In whatever form the interrupt structure is actually implemented,

there is one basic hardware:'funetion associated with each routine.

The RECEIVE routine must call READDATA, once and only once, TRANSMIT

must call WRITEDATA once, and ANALYZESTATtJS must call READSTATUS

once. This may involve actual interactions with the hardware or

just the manipulation of variables shared with the first-level

interrupt routines.

Although these three interrupt conditions are defined separately

it is assumed that the servicing of any one interrupt is an

- 118 -

indivisible operation with respect to the other interrupts. This

is necessary so that the manipulation of state variables con to

all three interrupts can be done in aself-consistent manner.

As described above, in the event that the actual hardware

interrupt structure does not correspond to the idealized interrupt

structure defined, it is necessary to write a set of mapping

routines to convert from one to the other. These routines will

obviously need to be written anew for each different hardware

implementation and also for different executives with the same

hardware. It will almost certainly be necessary to code these

first-level routines in assembly language since, by their very

nature, they are low-level and strictly machine-dependent. However,

their function is strictly defined and the code involved should be

minimal. In no case, however, it it necessary to change any

of the software defined within the RECEIVE, TRANSMIT, ANALYZESTATUS

interface. This software is machine-indpendent and can safely

be coded in a high-level language. Any interactions with the

hardware from within this interface are accomplished by the four

hardware control routines defined above.

All the software necessary to control the communications

protocol is defined in the high-level language coding of the RECEIVE,

TRANSMIT and AN.ALYZESTATUS routines together with any subsidiary

routines which they may use. The particular protocol implemented

is then easily transferable to different machines without any coding

changes at this level.

- 119 -

9.6 The executive interface

The purpose of the executive interface to the communications

package is to ensure that the package can have full physical control

over the communications hardware. All communications hardware

interrupts must be routed through to the appropriate first-level

interrupt servicing routines and permission must be granted for the

package to issue commands directly to the hardware. The extent

to which this involves the executive will vary considerably from

one system to another. This interface is therefore not precisely

defined and has to be planned anew for each new system.

In almost all systems, the executive is involved to a greater

or lesser extent in interrupt - handling to perform the functions

which are common to all interrupts. These include such things as

saving the status of the interrupted program, checking for spurious

interrupts where possible, invoking the appropriate interrupt-

servicing routine and providing a common exit path by which all

interrupt-servicing routines can return to the interrupted program.

In general, it is necessary for a non-executive program such as the

communications package to perform an initialization function telling

the executive about the interrupts it wishes to handle so that the

correct links can be set up within the executive. In the

communications package, this is taken to be one of the functions of

the INIT routine, which is one of the user interface routines

defined previously. The function will be different for different

executives and will involve assembly coding. Inclusion in the

INIT routine ensures that the interrupt links wili be set up correctly

- 120

before any communication is attempted.

From the above, it is obvious that, on a machine with any kind

of permanent executive, it is essential that there be an approved

method of setting-up interrupt links for peripherals controlled

out-with the resident executive. Most executives provide some

facility of this sort, and it is an essential pre-requisite for

running any software using the communications package. Where there

is no permanent executive in use r, a stand-alone software system

would be used incorporating its own basic executive. In this case,

the appropriate interrupt links would normally be compiled directly

into the executive code, so no initialization would be necessary.

This area is the only one where the executive is involved with the

communications package.

2.1 Remote Host Computer Interface

This interface is concerned with the particular physical protocol

used to effect the block transfers over the link. It was decided to

implement a simple type of protocol in the hope of achieving a level

of compatibility with different mainframes. The protocol chosen was

the point-to-point system for one-way-at-a-time data transfer, with

line control being obtained by a 'bidding' arrangement. This type

of protocol was supported by the three mainframe computers for which

detailed protocol information was available. It was also the bottom

level of proposed new standard protocols under consideration by ISO

and ABA. As such, it seemed the only type of protocol with a

reasonably wide measure of acceptability.

- 121 -

The User Interface to the package was intended to be suitable

for use with different mainframes by handling all details of the

protocol within the communications package • All communication

control characters were inserted or removed as appropriate within

the package, and only the data meaningful to the user was

exchanged at the User Interface.

The general form of the protocol described above is summarized

as follows.

Either end can bid for control of the line when the line is

idle in order to initiate a data transmission. There is usually

a standard method for resolving contention by assigning one end

to be master or by using slightly different timeout periods when

bidding for the line.

Either end bids for the line by transmitting the ENQ (enquiry)

character. If the other end wishes to receive, it responds with

a positive acknowledgement, (ACK), and the data is then traninitted

in blocks, each of which must be aknow1edged before the next is sent.

Alternating odd and even positive acknowledgements are used to avoid

the possibility of lost or duplicate blocks after error conditions.

Th, negative acknowledgement (NAK), is used to request retransmission

of the previous block. The ENQ character is also used during

transmission to request a retransmission of a lost or garbled

acknowledgement. The end of a data transmission is signalled by

a final block-ending character of ETX (end-of-text) instead of the

norma]. ETh (end-of-transmission block), or by the single character

EOT (end-of-transmission). The line then returns to the idle state

- 122 -

and bidding must be used to initiate the next data transmission.

While, all the protocols conform to this general pattern,

different inlementations may use different character codes,

different record structure within the block, different methods of

block check and different forms of positive acknowledgement.

The communications package in its present form is able to

accommodate such differences without any internal changes except

for the use of different forms of positive acknowledgement. The

character values used for transmission control characters are

defined symbolically and can be easily changed. The package does

not however try to provide a common character code at the user

interface. The user program needs to be aware of the particular

code in use for each mainframe. The communications package can be

made insensitive to the internal structure of the block, providing

it does not affect the error checking and this only occurs with the

IBM protocol, for which code is included. Different block checking

can be used by providing new versions of four very short routines

that perform all manipulations of the block check. These are CLEAR,

ADDTO, FETCH (used for output block) and CHECK (used for input block).

If character parity is also used, this can be checked in the

READDATA routine and generated in the WRITEDATA routine, both of

which have to be re-written for each new system anyway.

However, positive acknowledgements are currently assumed to be

of a particular form in the package, which has been acceptable to

both IBM and ICL systems. This form is DLE-cidd/even switch)

and acknowledgements are checked and generated in this form. Other

- 123 -

protocols use a positive acknowledgement of the form <status>ACK,

where <status> contains other flags in addition to the odd/even

switch. Because of this, interpretation of the odd/even switch

is protocol dependent and cannot be done by simple character

comparison. In order tomake this aspect generalized, the functions

of checking and generating positive acknowledgements would have to

be split offfüito separate routines instead of using in-line code

as a present. The CHECKACK routine would return a value indicating

the type of acknowledgement received and the action taken is the

same for all protocols. The SETUPACK routine would set up the

appropriate acknowledgement as indicated by an input parameter and

these are also generated in a uniform way for all protocols. These

two routines could then be easily changed for a new system if

required.

9.8 Conclusions

This chapter has described how the main body of the communications

software can be made independent of the particular hardware

environment in which it operates. A minimal set of interfacing

routines is used between the main software body and the actual

hardware and only these need to be changed for each new system. The

next chapter gives details of how this has been done on the systems

implemented so far.

- 1214 -

Chapter 10

IMPLEMENTATION DETAILS IN ACTUAL SYSTEMS

10.1 Summary

The communications package described in the last chapter,

communicating in IBM BSC point-to-point protocol, has so far been

implemented in five different versions as follows:-

PDP-8 with ERCC communications controller

PDP-8 with Data Dynamics 6310 controller

ICL 14100 with ERCC communications controller

Modular One with 1.61 communications multiplexor

PDP-ll with DP11 communications controller

These five versions are significantly different in:terms of the

outside environment as defined by three of the four interfaces

described in the last chapter. A large number of variants of these

five major versions have also been produced which differ in minor

ways from each other, such as different user environment. There are

so far about twenty distinct configurations (see Table 10.1) which

have used the communications package.

Two of these five versions have used the IMP code directly,

these being a) and d) above. The other three versions used

assembler hand-translated from the IMP. In addition to the standard

assembler version a direct IMP version of the communications package

is currently being developed for the PDP-11. This experience confirms

the feasibility and also the desirability of writing this type of

Peripherals supported by
-

COMMS communication system
Computer Location]N on-communications use HARDWARE EXEC -

TTY
-

PR PP CR LP MT GP DISK OTHER

PDP-8/L ERCC RJE use only to support ERCC Stand- X X X X IBM
special peripherals for Synch. alone Selectric
IBM 360 Comms. (SA) Typewriter

Interfa-
ce 	(SCI)

PDP-8/E ERCC None; 	used only for ERCC SI. X X X
communications tristing SCI
and development

PDP-8 Physics Dept. Experiment control and EBCC SA X X X X
data logging SCI

PDP-8 Social Medicine Survey analysis ERCC SA X X X X Mark Sense
SCI Reader

PDP-8/I Physiology Dept Physiology experiments ERCC GA X X X
Glasgow Univ. SCI

PDP-8/E Rutherford Neutron beam results Data SA X X X
Laboratory analysis Dynamics

SCI

PDP-8/F Animal Diseases Processing of experiment Data SA X X X X
Research Assn. data Dynamics

SCI

TABLE 10.1 SMALL COMPUTERS USING THE COMMUNICATION SYSTEM

Peripherals supported by

Computer Location Non-communications use
CO ND, S

HARDWARE EXEC communication system___________
- - - - - - - -

TTY PR PP CR LP MT GP DISK OTHER

PDP-11/20 Medical .Faculty Medical corn.futing; DPll DOS or X X X X X X X Mark sense
survey analysis lOX reader

PDP-11/20 NIAE Processing of DP11 DOS or X X X X X X
Bush Estate experiment data lOX

PDP-11/10 Strathclyde Non; 	service EJE use DP11 lOX X X X
University only

PDP-11/20 College of Processing of DP11 lOX X X X X
Agriculture experiment data

PDP-11/20 Social Science Survey analysis; DP11 lOX X - X
Faculty general applications

PDP-11/20 Chemistry Experiment control and DP11 DOS or X X X X X
Department data collection lOX

PDP-11/40 Science Faculty Non; 	service RJE only DP11 lOX X X X

PDP-11/ 145 Physics Dept. Experiment control DP11 S. X X X x x
and data collection Hayes

EXEC

TABLE 10.1 SMALL COMPUTERS USING THE COMMUNICATION SYSTEM (continued)

Peripherals supported by

Computer Location Non-communications ions use
COMMS

HARDWARE EXEC
ommunication system

-

TTY
-

PR
-

PP CR LP MT GP DISK OTHER

Modular ERCC Non; 	communications 1.61 E2 or X X X
One testing and development MISER

Modular Glasgow None; 	service EJE and 1.61 E2 or X X X X X X
One University communications MISER

development

Modular. MRC Unit Automatic chromosome 1.61 E2 X X X X Shared
One W.Gen.Hospital recognition system core

Modular Culham General laboratory 1.61 MISER X X X X
One Laboratory applications

ICL 4120 Napier College Teaching and research ERCC NICE X X X
SCI

ICL 4130 Heriot-Watt Teaching and research ERCC DESI X X X X X
University SCI

TABLE 10.1 SMALL COMPUTERS USINGTHE.COMMUNICATIONS SYSTEM (continued)

- 125 -

software in a high-level language.

A version of the package was also prepared for the PDP-7.

PDP-9 and PDP-15, which have a compatible instruction set. This

version was never put into use however, as the original application

for it was not carried through.

The five versions listed above all communicate in the IBM

version of the point-to-point protocol. A sixth version has h1so

been produced which provides communication with the ICL 1-7. Th16

version is coded in IMP and rune on the Modular One in the same

local environment as the IBM version.

The protocol interface has been changed in the ways indicated

in the previous chapter (section 9.7) in order to conform to the ICL

requirements, which were oriented to ISO transmission codes. The

symbolic values of the transmission control characters (STX,ETX,etc)

were changed to ISO values. The use of error checking based on

intermediate records was suppressed using a control flag. The method

of block checking was changed from cyclic checking to simple

Longitudinal checking by re-coding the appropriate routines and

character parity was checked and generated in READDATA and WRITEDATA

respectively. The IBM method of alternating acknowledgements (by

DLE - iódd/even switch>) was acceptable to the 1-75 and so it was not

necessary to change this apart from re-defining the symbolic values.

This alternative protocol version demonstrates the capability

of the communication system to operate with different mainframes,

provided they support the general type of protocol implemented. A

- 126 -

later chapter on communications protocols in general indicates the

difficulty of achieving compatibility if higher-level, more sophisticated

protocols are used.

The experience gained from applying this communications package

to a wide range of applications and environments confirms the validity

of the original approach. By designing the software around a set

of carefully-defined interfaces which were not particular to any one

machine or any one application, it has been possible to transfer the

package around very easily, considering that it works at a very

intimate level with the hardware.

In view of the considerable differences in the environments in

which the communications package has been successfully applied, it

can be claimed with a certain degree of confidence that it ou]4 also

be easily applied to any other small computer or different environment

and provide the same facilities. A systematic method for applying

the package to a new small computer is described in a later chapter.

Particular details about how it was applied in the five versions

listed above are given in this chapter.

10.2 PDP-8 with ERCC communications controller

Hardware Interface

This communications hardware, which was described in a previous

chapter, most closely resembles the conceptual hardware interface for

the communications package defined previously. This hardware

generates two interrupts, one for next input or output data character

- 127 -

and the other to signal that an error status report has been generated.

The second interrupt maps directly onto the ANALYZESTATUS routine,

after the contents of the error status register have been converted

to the form acceptable to the routine. The first interrupt, however,

must be handled first by a small section of code which checks the

state of a software indicator to decide whether to call the RECEIVE

or TRANSMIT routine. Since the package is only intended to work in

a half—duplex environment, there is never any danger of ambiguity,

providing the hardware control routines which set anireset receive

and transmit modes also set the software indicator correctly.

Three of the four routines for software control of the hardware

map directly onto the basic instructions of the communications

controller. The machine code bodies of these routines contain a

minima], amount of code to execute the basic i/O instruction and pass

the parameter via the accumulator.

Most of the WRITECONTROL functions also map directly onto the

hardware, but some require some extra code to set the input/output

interrupt marker.

The actual coding required to implement the hardware interface

is given on subsequent pages.

Executive Interface

The executive interface in this implementation did not require

any coding in the INIT routine since the system ran as a stand-alone

program incorporating a minimal executive and the necessary interrupt

links were compiled directly into the executive.

/ HARDWARE INTERFACING SOFTWARE FOR PDP-S WITH ERCC CONTROLLER.
/ ASSEMBLER CODE VERSION.
/
/ INTERRUPT CODE.
/

6301
JMP NEXT
JMS I 	A S L I N K
JMP RETURN

NEXT, 6311
JMP OTHER
TAD INOIJTSTAT
SNA

.imp RESET
SPA CLI\
JMP TX
JMS I 	RXLINK
JMP RETURN

TX. JMS I 	TXLINK
JMP RETURN

RESET, 6304
JMP RETURN .

ASh 	NK • ANALYZESIATUS
RXLINK, RECEIVE
TXLINK, TRANSMIT
I NO U 1ST AT • 0
/

/TEST FOR ERROR INTERRUPT
/ NO
/OTHERWISE CALL ERROR ROUTINE
/GO BACK TO INTERRUPTED PROGRAM
/TEST FOR DATA INTERRUPT
/NQ - TEST OTHER FLAGS
/TEST FOR INPUT OR OUTPUT MODE
/IF ZERO. THEN NEITHER
/ 	SO IGNORE AND RESET CHANNEL,
/IF NEGATIVE
/ THEN OUTPUT
/OTHERWISE CALL RECEIVE ROUTINE
/RETURN TO INTERRUPTED PROGRAM
/CALL TRANSMIT ROUTINE
/RETURN
/RESET CHANNEL
/ AND RETURN

[cot'a]

r

/ HARDWARE CONTROL ROUTINES.
/
READDATA. 0

CIA
6312
JMP I READOATA

WRITEDATA. 0
6314
CIA
JMP I WRITEDATA

READSTATUS • 0
CIA
6302
RI Li RI 1; RI I
JMP I READSIATUS

WRJTECONTROL.O
DCA 	FUNCTION
TAD 	FUNCTION
TAD 	TABLEBASE
DCA 	POINTER
TAD 1 POINTER
OCA 	COMMAND
TAD 	COMMAND
AND 	MASK377
SZA CIA
JMP I COMMAND
TAD 	COMMAND
6304
C IA
JMP I WRTTECONTROL.

FUNCTION. 0
TAB LEBASE.TA[3LE
POINTER. 0
COMMAND, 0
MASK377, 371
TABLE. 	SETSYN

ENTERRX
ENTERTX
START T I ME R
RESETCHANN
SFTPARI TV
UNSETPAR I TV
ENABLE I N IS
DISABLE INTS

ENTERRX, I.AC
DCA 	INOUTSTAT
TAD 	RXCOMMAND
6306
CIA
TAD 	SEITRANSP

CONT. 	6304
CIA
J!-'p I WRTTECONTROL

ENTLRTX. CLA CMI
DCI 	INOUTSTAT
TAD 	TXCOMMAND
JMP 	CONT

RESETCHANN,DCA INOUTSrAT
6306
JMP I WRITECONTROL

R COMMAND .4400
TXCOMMAND, 2400
SETTRANSP, 1400

/READ THE INPUT BUFFER

/LOAD OUTPUT BUFFER

/READ THE STATUS REGISTER
/SHIFT STATUS TO BOTTOM OF AC

/SAVE FUNCTION
/ADD FUNCTION
/ TO TABLE BASE
/ 	TO GET
/ - 	HARDWARE COMMAND.
/SAVE COMMAND
/TEST IF BOTTOM
/ 	8 BITS
/ 	ARE ZERO.
/IF NOT. SPECIAL COMMAND - JUMP TO CO
/OTHERWISE. LOAD HARDWARE COMMAND
/ 	AND ISSUE IT TO CONTROLLER.

/ RETURN

1=2000 FOR IBM EBCDIC SY
/NOT SIMPLE HARDWARE COMMAND
/NOT SIMPLE COMMAND
/=3400
/NOT SIMPLE COMMAND
/NOT USED FOR EBCDIC
/NOT USED
1=7000
/7400
/SET INTERRUPT MARKER 101
/ 	FOR RECEIVE MODE.
/LOAD HARDWARE RX COMMAND
/ 	AND ISSUE IT

/ALSO SET TRANSPARENT MODE
/ 	FOR WHOLE MESSAGE.

/RETURN
/SET IN1ERRUPT MARKER TO 1
/ 	FOR TRANSMIT MODE.
/LOAD HARDWARE TX COMMAND
/ISSUE IT AND RETURN
/SET INTERRUPT MARKER TO 0.
/ISSUE GENERAL RESET COMMAND
/ RETURN

- 128 -

User Interface

The user interface had to cater for the user program being

written in assembler while the communications package was written

in IMP. A parameter area and address pointers to the four user

interfacing routines were located in a reserved area in page 0.

A 3MB INDIRECT instruction was used to enter the routine via its

address pointer, and a few in-line machine code instructions in

the routines were needed to copy the parameters from the reserved

area to the permanent IMP globals where they could be easily

accessed by the package. Return parameters from the WAIT routine

were set by similar in-line machine code.

10.3 - PDP-8 with Data Dynamics 6310 communications controller

Hardware Interface

The 6310 controller is a full-duplex single-line controller

with program-specified SYN character recognition and a lOOms

interval timer as two relevant features.

Data Input

The receive channel is enabled by software command which causes

it to scan the incoming data for the SYN pattern. As soon as this

is found the controller will generate input interrupts for each

following character so there is no automatic deletion of leading SYN

characters. These have to be removed by the first-level input

interrupt routine before passing all subsequent message characters

on to the RECEIVE routine. At the end of the message, the 'disable

- 129 -

receive channel' command is issued which prevents any further

interrupts and stops all activity in the receive channel.

Data Output

The WRITECONTROL function 'enter transmit mode' is issued

directly to the output channel. If the channel is in 14-wire mode,

then continuous carrier is maintained, so the output channel

responds immediately with an output interrupt to request the first

character. Leading SYNs for the message must be generated by

the first-level output interrupt routine. When the required number

have been generated, all further output interrupt requests are

passed directly on to the TRANSMIT routine to output the message.

In.2-vireamode, which is selected by an operator switch rather than

by software, the command 'enter transmit mode' causes 'Request to

Send' to be sent to the modem, and the' controller will wait for

'Ready For Sending' to come back from the modem before generating

the first output interrupt request. At the end of message output,

the command 'cancel transmit mode' is sent to the controller.

This stops output channel activity and prevents any further

interrupts. In 14-wire mode, carrier is maintained by keeping

'Request To Send' set and the modem output data line is held in a 1

condition, which produced the required quiescent MARK condition on

the outbound circuit. In 2-wire mode, 'Request To Send' is cleared

to allow the other end to turn the line around.

/ HARDWARE INTERFACE SOFTWARE FOR pDp8 WITH DATA DYNAMICS CONTROLLER
/
/ INTERRUPT CODE
/

6401
JMP 	TRYTX
6412
JMP 	EXTRACT
TAD 	OVERRUN
OCA 	STATUS
JMS I ASLINK

EXTRACT, 6402
OCA 	RDCHAR
TAD 	LEADSYN
S N A C L A
JMP 	C A L L R X
TAD 	RDCHAR
TAD 	M S Y N
SNA CLA
JMP 	RETURN
DCA 	LEADSYN

CAILRX, 	JMS I RXLINK
JMP 	RETURN

TRYTX, 	6431
JMP 	TESTTIMER
TAD 	LEADSYI
S N A
J?'P 	C A L L I X
TAD 	MINUS1
DCA 	LEADSYN
TAD 	S Y N
6132
JMP 	RETURN

CALLTX, 	JMS I TXIINK
JMP 	RETURN

T ES T TI M ER • 6451
JMP 	OTHER
TAD 	TIME
SNA CLA
JMP 	STOPTIME
I S Z 	TIME

- 	JMP 	RETURN
6454
TAD 	TIMEOUT
OCA 	STATUS
JMS I A S L I N K
JMP 	RETURN

STOP TI M € • 6454
JMP 	RETURN

RXIINK, 	RECEIVE
TXLINK, 	TRANSMIT
ASh NK. 	AALYZESTATUS
RDCHAR, 	0
STATUS, 	0
OVERRUN, 5
TIMEOUT, 2
LEADSYN, 0
TIME. 	0
MIN1JS1 • 	-1
SYN, 	62
MSy,j, 	-62

/TEST FOR RECEIVE INTERRUPT
/FJO
/TEST FOR RECEIVE OVERRUN
/NO
/YES. SET STATUS
/ TO OVERRUN
/ 	AND CALL ANALYZESTATUS.
/READ INPUT CHARACTER
/SAVE IT
/ARE WE SKIPPING LEADING SYNS?
/YES
/NO - CALL RECEIVE
/TEST FOR
/ SYN
/NO
/YES - IGNORE IT
/OTHERWISE, CANCEL LEADING SYN FLAG
/ AND CALL RECEIVE
/RETURN TO INTERRUPTED PROGRAM
/TEST FOR OUTPUT INTERRUPT
/NO
/ARE WE SENDING LEADING SYNS?
/YES
/NO - CALL TRANSMIT
/OTHERWISE REDUCE LEADING
/ SYN COUNT BY 1
/ 	AND OUTPUT
/ 	A SYN,
/RETURN
/CALL TRANSMIT ROUTINE
/RETURN
/TEST FOR lOOMS TIMER INTERRUPT
/ NO
/IS TIMER COUNT ACTIVE
/YES
/NO - INHIBIT TIMER INTERRUPTS
/DECREMENT (NEGATIVE) COUNT BY 1
/RETURN IF NOT ZERO
/OTHERWISE INHIBIT TIMER INTERRUPTS
/SET STATUS REPORT
/ 	TO TIMEOUT
/CALL ANALYZESTATUS
/RETURN
/INHIBIT TIMER INTERRUPTS
/RETURN

Ecomib d

/ HARDWARE CONTROL ROUTINES
/
READDATA. 0

C LA

	

TAD 	PD.CHAR
JMP I READDATA

WR ITEDATA. C)
6432
CIA
JMP I WRITEDATA

READSTATUS.O
CIA
TAD STATUS
JMP I READSTATUS

W p it E CONTROL. 0

	

DCA 	FUNCTION

	

TAD 	FUNCTION

	

TAD 	TABLEBASE

	

DCA 	POINTER
TAD I POINTER

	

DCA 	POINTER
JMP I POINTER

F U N C TI ON • 0
TABLEBASE,TABLE
POINTER, 0
TABLE. 	SETSYN

E N I ERR)(
ENIEPTX
START T I M ER
R C SET C F A N N
SET PAR I TV
UNSETPARITY
ENABLE I NTS
DISABLE INTS

SETSYN, 	TAD 	SYN
6404
CIA
JMP I WRITECONTROL

ENTERRX. IAC

	

DCA 	LEAI)SYN
6414
JMP I WRITECONTROL

	

ENTERTX. TA!) 	NUMSYNS

	

DCA 	LEADSYN
6441
JMP I WRITECONTROL

S1ARTT1MER ,TAD MINUS20

	

D C A 	TIME
6452
JMP I WRITECONTROL

RESETCHANN .6421
6442
6456
JMP I WRITECONTROL

SETPAR I TV.
IJNSETPARITY , HLT
ENARLEINTS, teN

JMP I WRITECONTROL
0 I S A B I E I N IS • 10 F

JMP I WRITECONTROL
NUMSYNS, 6
MINUS20. -26

/FETCH INPUT CHARACTER

/OUTPUT CHARACTER

/FETCH STATUS REPORT

/SAVE FUNCTION
/THEN DO SWITCH
/ ON FUNCTION
/ USING
/ 	JUMP
/ 	TABLE.

/LOAD APPROPRIATE SYN CHARACTER
/PUT IT INTO SYNC REGISTER

/SET LEADING SYN FLAG
/ 	TO 1.
/ENABLE RECEIVE CHANNEL

/SET LEADING SYN
/ 	COUNTER.
/EWABLE TRANSMIT CHANNEL

/SET COUNT FOR
/ 2-SECOND TIMEOUT.
/ENABLE TIMER INTERRUPTS

/RESET RECEIVE CHANNEL
/RESET TRANSMIT CHANNEL
/INHIBIT TIMER INTERRUPTS

/PARITY NOT USED FOR IBM EBCDIC

.-..-.----.-----.-.-,-- ----.----.-.--, 	 --•---- 	-r

- l3 -

Error reports

The important timeout function can be easily implemented using

the lOOms interval timer built into the controller.. Software

commands are provided to enable and disable interrupts from this

tiner. The STARTTIMER enables the timer interrupt and sets an

appropriate count into a store location. Subsequent timer interrupts

decrement this count until it reaches zero. Further timer interrupts

are then disabled and a store location reserved for the status report

is set to indicate timeout before calling the ANALYZESTATIJS routine.

A DATA OVERRUN error indication is also provided by the

controller although it does not generate an interrupt. A flag is

used which can be tested by the first-level interrupt routine for

every input-interrupt. If the flag is set then the PNALYZESTATUS

routine can be called with the status report set to the appropriate

value for OVERRUN. When this routine returns, the RECEIVE routine

can be called to service the input character in the normal way.

The controller does not provide any error reports for

LOSTCARRIER or MODEAULT, but these are not particularly important

for error recovéry -purpoaea. The first case can be handled by

timeout and the second case can be indicated to the operator by

lamp displays.

Hardware Control

Of the four hardware control functions, only WRITEDATA maps

directly onto the real hardware function. READDATA and READSTATUS

access reserved store locations set by the first-level interrupt

- 131 -

routines to obtain the current input character and error status

report respectively.

WRITECONTROL uses a combination of direct hardware commands

such as 'enter transmit mode' and 'enable receive channel' with

the scatting of software flags inspected by the first-level interrupt

routines. These software flags are used to control such things

as generation and removal of leading SYN characters.

This controller is seen to match fairly well the conceptual

interface defined previously. This is mainly due to the fact

that the design was specified after the software had been developed

and tested with the ERCC communications controller.

Executive Ibterface

This controller has so far been used only in small-core stand-

alone systems with a minimal executive compiled in with the

communication system, obviating the need for any run-time interrupt

linking.

User Interface

Although the original PFDP8 communications package was written

in IMP, the version used in this sytem was a. hand-translated

assember_version, produced to reduce the core requirements in minimum

core systems. The user program was also assembler-coded and the

user interface routines were accessed through indirect links in

page 0. Parameters were also passed through reserved page 0

locations.

- 132 -

10.14 ICL 14100 with ERCC communications controller.

Hardware Interface

Since this hardware is very similar to that used on the first

PDP-8 implementation, the implementation of the hardware interface

is almost identical. The executive uses a different method of

identifying the interrupt, since the 14100 interrupt system is

different from the PDP-8, but the same two interrupts are routed

through to a data control routine and the ANALYZESTATUS routine

respectively, where the action taken is the same as on the PDP-8.

The four hardware control routines are again almost identical,

with the few machine code instructions being oriented to the

particular I/O instructions and register usage on the 14100.

Executive Interface

Since this version was implemented using a standard resident

executive, namely the NICE executive, (18), some initialization code

was necessary to establish the interrupt links. This was achieved

according to the technique suggested in the NEAT reference manual

(9) by setting the appropriate routine addresses into the executive

interrupt transfer table in place of the null entries, for the

device addresses which the communications package wished to service.

The suggested technique was simple and effective, but also required

that the links be set back to the null values at the end of a

communication session to avoid spurious communications interrupts

causing havoc. This was achieved by taking an orderly exit from

the terminal program and restoring the original interrupt table entries.

LINK

NOTE HARDWARE INTERFACE SOFTWARE FOR ICL 4 .100
NOTE 	WITH ERCC CONTROLLER
NOTE INTERRUPT CODE
BLOCK CONTROL 	HANDLES DATA INTERRUPTS
NOTE FIRST DUMMY CALL IS TO SETUP INTERRUPT LINKS WiTHIN NI'
DATA

RETURN 	LINK
CODE
JFL *sETIrjT SET 	UP 	INTERRUPT 	LINK 	ON 	FIRST 	CALL
ID 0 ACTUAL 	INTERRUPT 	ENTRY 	POINT
ST LINK SAVE 	RETURN 	LINK 	LOCALLY
LD INOUTSTAT TEST 	SOFTWARE 	INTERRUPT 	FLAG
JZ RESET IF 	ZERO, 	IGNORE 	INTERRUPT 	AND 	RESET
COMP;L 1 TEST 	FOR 	INOUTSTAT1
JZ INPUT IF 	YES 	RECEIVE 	INTERRUPT
JFL *TRANSMIT OTHERWISE 	CALL 	TRANSMIT
JI LINK RETURN
JFL *RECEIVE' CALL 	RECIVE 	INTERRUPT 	ROUTINE
JI LINK RETURN
OCUN 10 ISSU.E 	RESET 	COMMAND 	TO 	CONTROLLER
JB 6 (IF 	REJECTED)
JI LINK RETURN
BLOCK SETINT ROUTINE 	TO 	PLUG 	NICE 	INTERRUPT 	TABLE
CODE
LOR ,ITABLE SAVE 	PRESENT
LD:M 10 ITABLE
ST KEEPINT ENTRY. 	(KEEPINT 	IS 	GLOBAL)
ID 0 REPLACE 	IT 	WITH 	START
ST:M 10 .ADDRESS 	OF 	CONTROL 	ROUTINE.
JFL *SETATT NOW 	SET 	ATTENTION 	TABLE 	ENTRY
J *MJAIYZESTATUS GO 	TO 	ROUTINE 	WHEN 	ATTENTION 	OCCURS
BLOCK SETATT
CODE
LDR ,ATABLE SAVE 	CURRENT 	ENTRY 	FOR
LD:M 10 DEVICE
ST KEEPATT NUMBER 	10. 	(KEEPATT 	IS 	A 	GLOBAL)
LD 0 REPLACE 	IT 	WITH 	START
ST:M 10 ADDRESS 	OF 	JUMP 	TO 	ANALYZESTATUS
JB *MAINSTART RETURN 	TO 	MAINLINE 	CODE 	DIRECTLY

INPUT

RESET

[con.t' dQ

NOTE 	HARDWARE 	CONTROL 	ROUTINES.
BLOCK 	READDATA
CODE

IN 	I D U M 	10 READ 	INPUT 	BUFFER
JF 	ERROR REJECTION 	BRANCH
.JI 	0 RETURN 	IF 	OK 	WITH 	CHAR 	IN 	r

ERROR 	ISUM 	10 IF 	ERROR, 	READ 	STATUS 	REGISTER
Jf3 	4 LOOP 	IF 	REJEC1TED
JO 	IN TRY 	TO 	READ ,INPUT 	BUFFER 	AGAIN
BLOCK 	WRITEDATA

OUT 	RTOM MOVE 	OUTPUT 	CHAR 	TO 	MAIN 	REGISTER
ODUM 	10 SEND 	IT 	TO 	HARDWARE 	BUFFER
J 	ERROR JUMP 	IF 	REJECTED
L D ; L 	0 ZERO 	M

• 	JI 	0 AND 	RETURN 	IF 	SUCCESSFUL,
ERROR 	ISUM 	10 TRY 	TO 	READ 	STATUS 	REGISTER

JB 	4 IN 	TIGHT 	LOOP
JB 	OUT TRY 	OUTPUT 	AGAIN
BLOCK 	READSTATUS

• 	CODE
• 	ISUM 	10 READ 	STATUS 	REGISTER

JO 	4 LOOP 	IF 	REJECTED
JI 	0 EXIT 	WITH 	STATUS 	REPORT 	IN 	H
BLOCK 	WRITECONTROL

• 	 . 	 CODE
JI:M 	TABLE USE 	FUNCTION 	IN 	R 	FOR 	INDEXED 	JUMP

TABLE 	SETSYN
ENTERRX
ENTERTX
START T I ME R
RESET C H A N N
SETPARITY
UNSETPARITY
ENABLEINTS
DISABLEINTS
NOTE 	LOAD 	APPROPRIATE HARDWARE 	COMMAND 	AND 	JUMP

SETSYN 	LD:L 	4 TO 	COMMAND 	ISSUING 	SEQUENCE.
JF 	COMMAND

ENTERRX 	CLS 	INOUTSTAT SET 	SOFTWARE. INTERRUPT
INCS 	INOUTSTAT FLAG 	TO 	1.
L D : L 	9
JF 	COMMAND

ENTERTX 	CLS 	INOUTSTAT SET 	SOFTWARE 	INTERRUPT
DECS 	INOUTSTAT FLAG 	10.—i.
LD:L 	5
JF 	COMMAND

STARTTIMER 	LD:L 	7
J 	COMMAND

PESETCHANN 	CLS 	INOUTSTAT CLEAR 	SOFTWARE 	INTERRUPT 	FLAG
LD;L 	0
J 	COMMAND

SETPARITY 	J 	390 ERROR 	EXIT 	TO 	EXECUTIVE
UNSETPARITY 	J 	390 IF 	THESE 	CALLS 	ARE 	USED,
ENABLEINTS 	L D : L 	14

J F 	CoMr1ANo
DISABELINTS 	LD:L 	15
COMMAND 	OCUM 	10 ISSUE 	COMMAND 	IN 	M 	TO 	CONTROLLER

J13 1 	 4 TRY 	AGAIN 	IF 	REJECTED
LD:L 	0 ZERO 	4
JI 	0 RETURN

..

"

- 133 -

User Interface

Since both the user - program-and the communications package were

coded in NEAT assembler for this implementation, the user interface

was simply implemented by a standard assembler routine call, passing

the parameters as named global variables.

10.5 Modular One with 1.61 communications multiplexor

Hardware Interface

Synchronous communication on the 1.61 communications multiplexor

(20) provides an interface to the software which is completely

different from the conceptual interfac2 defined above, and a certain

amount of coding was required to map from one to the other.

The 1.61 is different mainly because it is a multiplexor

rather than a single line communications controller. A. such, it

* 	was designed to handle a large number of lines of different speeds,

both synchronous and asynchronous, with the minimum amount of

hardware and the maximum amount of shared logic. This..meant that

synchronous and asynchronous channels were handled in a similar way,

and anything special was left to the software.

The multiplexor basically assembles groups of bits from the

line on input up to 8 at a time, and places them in a circular

buffer which must be examined regularly by the software. On output,

the multiplexor sends out a sequence of up to 11 bits, placed in a

- l3 -

reserved multiplexor register by the software, and makes an entry

in the common circular buffer when the output is complete.

The multiplexor also generates a regular clock interrupt, at a

1.3ms interval, which is a signal to the software to examine the

circular buffer to see if any input has been assembled or output

complete.. These clock interrupts occur all the time, independent c

of any data traffic, and so are unrelated to the arrival or output

of characters. It is the responsibility of the software that

responds to these clock interrupts to provide a 'character—interrupt' -

type interface to subsequent servicing routines, such as RECEIVE

and TRANSMIT.

Data Input

Input data can appear on the line at any time and will cause

entries to be made to the circular buffer. There is no war of

telling the hardware to ignore input data except by disabling the

whole channel for input and output. Therefore, a set ofoftware

flags have to be used so that the interrupt routine examining the

circular buffer can know whether to ignore input entries or process

them. When the main software wishes to accept input data, the

WRITECONTROL routine is called to execute 'enter receive mode'.

This results in appropriate flags being set to indicate to the

interrupt routine that if synchronization is obtained on an input

message, then all characters after the leading SYNs should generate

a call to the RECEIVE routine to analyze the message.

- 135 -

'For the multiplexor synchronous channels, the groups of 8 bits

assembled on input are not necessarily on character boundaries since

the hardware does not attempt to perform SYN-character recognition.

The interrupt routine analyzing the input data has to scan for the

SYN pattern by combining two consecutive 8-bit groups into a 16-bit

pattern and looking for a SYN character somewhere in the 16 bits.

If it is found, the phase shift (number of bits by which the

8-bit group differs from a character boundary) is calculated so that

suequent whole characters can be assembled from the following

8-bit groups. In performing 'this function, the software is doing

the job normally done by hardware on a single-line synchronous

controller such as that on the PDP-8.

The interrupt routine further discards all leading SYN

characters until it reaches a non-SYN character. This is the point

at which a normal synchronous channel would generate the first

input interrupt, which would be routed through to the RECEIVE

routine. Therefore, the multiplexor interrupt handler at this

point places the non-SYN character into a convenient store location

and calls the RECEIVE routine. The RECEIVE routine will eventually

call the READDATA routine which can access the appropriate store

location to obtain the current input character.

When the RECEIVE routine detects the end of the input message,

it calls the WRITECONTROL routine to execute 'cancel receive mode',

which then sets the relevant software flags such that any further

input data is ignored and RECEIVE is not called.

CHANN DC
LINK9 	Os
DTAONE 	OS
MASTER 	OS
ERMSTR 	OS
CBSAVE 	OS
CBFPTR 	OS
LINKS 	OS
SAVEA 	OS
LINK 	OS
LINK? 	OS
DEDPTR IND
SYNTARPTR IND
SYSSTATUS DC
SYN 	EQLJ 	50
DEDPAGE EOU

YB: DEDPAGE
M: S Y N TABLE + 7

0 	SYSTEM

256

0

STATUS REPORT

MODULAR ONE 1.61 MULTIPLEXOR HANDLER,
INTERRUPT CODE.

ASSEMBLERCODE MULTIPLEXOR DRIVER.
THE FOLLOWING COLLECTION OF ASSEMBLER ROUTINES GIVE THE MPXR THE

APPEARANCE OF A HALF-DUPLEX SINGLE LIME CONTROLLER TO THE IMP
PACKAGE.

UNDER CONTROL OF TWO VARIABLES (INOUTSTAT & FINDSYNC) WHICH ARE SET
BY THE IMP THESE ROUTINES PERFORM FW'JC,TIONS SUCH AS FINDING SYNCH
IN RECEIVE MODE AND STRIPPING ALL LEAPING SYN'S, AND GENERATING A
SPECIFIED NUMBER OF LEADING SYN'S IN 'TRANSMIT MODE.

VALUES OF THESE TWO VARIABLES ARE AS FOLLOWS :-
INOUTSTATO 	IGNORE ALL INPUT/OUTPUT REQUESTS FROM THE MPXR.
1NOUTSTAT1; FINDSYNC1 	RECEIVE MODE, SCANNING FOR SYNCH
INOUTSTAT1; FINDSYNCO - SYNCH FOUND .STRIPPING LEADING SYN'S
INOUTSTAT=1: FINDSYNC=-1 - ALL CHARACTERS PASSED TO IMP PACKAGE
INOUTSTAT-1; FINDSYNCN(>O) - TRANSMIT MODE. GENERATE N SYN'S.
INOUTSTAT-1; FINDSYNCO - CALL IMP FOR NEXT OUTPUT CHAR,

THESE ARE THE 'DATABASE' VARIABLES. THEY ARE INITIALISED
SERIALLY AND SHOULD REMAIN A SINGLE GROUP.

INOUTSTAT 	DC 	0
FINDSYNC DC 	0
CHAR 	DC 	0
LASICHAR DC 	0
STATUS 	DC 	0
TIP'1 ECOUNT DC 0
SYNCSHIFT DC 0

[con t'cL]

-.-----.---

DATA (1.5 11, S) INTERRUPTS
THIS ROUTINE SERVICES THE CIRCULAR BUFFER AND PASSES

MASTER WORDS TO ERCCBL)FF SINGLY.
ENTPT 	 ENTRY POINT

LDB 	Y:CBFPTR
AAGN 	LDA 	L:r)

EXC 	I:DEDPTR
TSTL A0
JMP 	CBsEND;
STS 	Y:CBFPTR
SRE 	BUFFER
1DB 	Y:CRFPTR
LDA 	L:127
CPY 	ASUBB
TSTL A0
1DB 	1:239,
IDA 	L:255;
C P Y 	ASUBB
TSTL AO
LDB 	L:111I
ADB 	L:1
JP 	AA(N

CBSEND 	STB 	Y:Ct3FPTRI
IDA 	TIMECOUNT
TSTI A0
JMP 	I IMESTOPPED
SBA 	L:1
TSTL 	AC)
fliP 	REPORTTIMEOUT
STA 	TIMECOUNT

TIMESTOPPED EDU
1DB 	MPXRDEDLOCS
ADO 	1:8
E N D I N T

DEBUG
DROPOUT

DISCOVER LAST C.B. LOCN. SERVIhU.

IEXTRACT CONTENTS OF NEXT C.B. 10CM.
ICHECK FOR

'
PRESENCE OF MASTERWORD

INO MASTERWORD.CEASE SERVICING C.B.
ISAVE CIRCULAR SUFFER PUTNTER.
CALL CHARACTER ROUTINE
IRECALL C.B. POINTER

IMOVE TO SECOND HALF OF C.B.
ICHECK FOR END OF 2ND HALF OF C.B.

IMOVE TO START OF FIRST HALF OF C.B.

ISAVE C.B. POINTER.

RE.PEPMIT THE INTERRUPT

HAND CONTROL BACK TO E2.

DEBUG
DEBUG

REPORTTIMEOUT STATIMECOUNT
IDA 	L:2
STA 	STATUS

1 	 CODE HERE TO CALL ANALYSESTATUS.READSTATUS WILL FIND
1 	 STATUS2 .TIMEOUT.

IDA 	L:ANAISTATUS
STA 	Y:IMPROUTTNE
SRE 	IMPLINK
JMP 	TIMESTOPPED

BUFFER 	DC 	ERCCBUFF

b

[cofl

--------..--.-----------------------.--.--.-.--. -----.-

ERCCBUFF LOU
SIB y:LINK2 SAVE 	RETURN 	LINK
STA Y:MASTER AND 	CIRCULAR 	BUFFER 	ENTRY.
SElL S,A,L,1 ISOLATE 	CHANNEL 	NUMBER 	(O>107) 	AT
SFTL S.L.R,9 BOTTOM 	OF 	A.
STA Y : C H A N N SAVE 	IT
CPYL BA MOVE 	TO 	B
IDA Y:MASTER TEST 	FOR 	INPUT' OR 	OUTPUT.INTFRRUPT
TSTL A<O IF 	INPUT 	INTERREJPT
JMP TSTINPUT GO 	TO 	TEST 	SOFTWARE 	STATUS.
IDA Y:INOUTSTAT IF 	OUTPUT 	INTERRUPT,
TSTL A<O AND 	SOFTWARE 	IS 	OUTPUTTING
JMP OUTSTAT GO 	TO 	DEAL 	WITH 	INTERRUPT,
IDA OUTPAD ELSE 	OUTPUT 	A 	PAD 	CHARACTER.
STA TY:DEDPTR STORE 	PAD 	INTO 	DEDLOC
LDP Y:LINK2 AND 	RETURN.

OUTSTAT EQU
IDA Y:FINDSYNC ARE 	WE 	SENDING 	LEADING 	SYN'S
TSTL A0 IF 	ZERO, 	REAL 	DATA 	OUTPUT
JMP TXDATA GO .10 	ENTER 	JOB 	ON 	OUTPUT 	0.
SBA L:1 REDUCE - SYN 	COUNT

STA Y:FINDSYNC AND 	RESTORE 	FOR 	NEXT 	ENTRY
LDA OUTSYN LOAD 	A 	SYN
STA IY:DEDPTR CHARACTER 	INTO 	DEDLOC.
LDP Y:LTNK2 RETURN

TXDATA EOU
ENTER TRANSMIT.
WRITEDATA 	WILL 	PLACE NEXT 	OUTPUT 	CHARACTER 	IN 	DEnLOC

INDICATED 	BY 	'CHANN'.
IDA L:TRANSMIT
-STA IMPROUTINE
SRE IMPLINK
LOP y:LINK2 !THEN 	RETURN.

OUTSYN EOU
DC R'llOOOOOlO011OOlO' 	IBM 	EBCDIC 	SYN

Lco

TSTINPUT EQU
LOA
TSTL
LOP
LOA

LDB
CPYL

• STA
S F T L

A D A
STA
IDA
T S T L
JMP

IDA
ID H
SBM

TESTSYN EQU
LOB
CPYL
TSTL
jMP
TSTL
JMP
imp

SYNTARLE EQU
DC
DC
DC
DC
DC
DC
DC
DC

FOUND EQU
LOA
CRY

STA
IDA.

STA
OUT EQU

L D A
STA
LDP

Y:TNOUTSTAT 	TEST SOFTWARE I/O STATUS
A<O.A0 	IF OUTPUT, OR IDLE
YLINK2 	THEN IGNORE THIS INPUT INTERRUPT
YMASTER 	SELECT

L:255 	 DATA PORTION
A8.AND.A 	 OF MASTER WORD.

Y:CHAR 	 AND SAVE IN CHAR
S.A.L.8 	SHIFT TO TOP OF WORD

LASTCHAR 	 INCLUDE PREVIOUS 8 BITS
LASTCHAR 	 AND SAVE ALL 16 BITS.
Y:FTNDSYNC 	ARE WE SYNC SEARCHING?
A<O,AO
INSYNC 	NO 	GO TO OBTAIN CHARACTER

Y:LASTCHAR 	LOAD LAST 16 BITS
L:O 	 SET UP LOOP COUNT
L7 	 OF 8.

Ty:SYNTABPTR NOW SCAN THE SYN TABLE
8B.NEV.A 	TEST IF AB.
80 	 IF B=O THEN SYNC HAS BEEN FOUND
FOUND 	GO TO COMPUTE THE PHASE SHIFT
M=O.IM 	ELSE TEST LOOP COUNT
OUT 	 AND EXIT
TESTS(N 	 OR TRY AGAIN.

B'O011OOlOO011OOlO' M=.-7 SHIFT=8
R'OoollOOlOO011OOl' M=-6 SHTFT7

'i000iioOiOoO1iOO' M=-5 SHIFT6
R'OlOO011OOlOO011O' M4 SHIFT=5
8'OOlOO011OOlOO011' M=.,3 SHTFT4
R'lOOlOO011OOlOOOl' M=2 SHIFT=3
B'11OO1OOO11OO1OOO'.M1 SHIFT=?
B'011OOlOO011OOlOO' M=O 	SHTFTI

.

SHIFTCON 	SYNC FOUND 	CALCULATE PHASE SHIFT
AAMINUSM 	FORM SHIFT CONSTANT

Y:SYNCSHIFT 	AND SAVE
L!O

Y:FINDSYNC 	FINDSYWCO TO INDICATE SYNC FOUND

Y:CHAR 	 MAKE CURRENT 8 BITS
Y:IASTCHAR 	PREVIOUS 8 BITS FOR NEXT THE

Y:LINK2 	THEN RETURN

--•--- -------------.----••--.

ICHARACTER PHASE HAS BEEN FOUND, THROW AWAY LEADING SYN'S AND PASS
GENUINE 	DATA 	CHARS 	TO HANDLER.

I N S Y N C EQU
LOA Y:LASTCHAR LOAD 	LAST 	16 	BITS 	FROM 	LINE
LOB L:255
SFT SYNCSII1FT APPLY 	SHIFT 	TO 	OBTAIN 	REAL 	CHAR,
CPYL AB.AND.A REMOVE 	UNWANTED 	BITS

EXC Y:CHAR SAVE 	REAL 	CHAR,MAKE 	CUPRENT8 	BITS
STA LASTCHAR PREVIOUS 	8 	BITS 	FOR 	NEXT 	TIME.
LOA Y:FTNDSYNC ARE 	WE 	SKIPPING 	LEADING 	SYNS?
TSTL A<O IF 	NOT,
JMP OCHAR GO 	TO 	0 	THE 	CHARACTER.

LOA CHAR ELSE 	TEST 	FOR 	A 	SYN
SBA 1:SYN
TSTL A0 IF 	SYN 	FOUND
LDP Y:LINK2 THEN 	RETURN
IDA L ELSE
SBA i1 SET

STA Y:FINDSYF4C FINDSYNC1 	TO 	INDICATE 	REAL 	DATA
QCHAR EQU

ENTER RECEIVE,
READDATA WILL 	TAKE CHARACTER 	FROM 	'CHAR',
IDA L:PECEIVE
STA IMPROUTINE
SRE IMPLINPS
LDP Y : L I N K 2 !RETURN

MASKFFOO EQU
DC 8'llllllllOOOOOOOO'

SHIFTCON EQU
SFTC S.L,R,1 SHIFT 	CONSTANT 	FOR 	CHARACTER 	PHASE,

A=AMINUSM 	EQU
CPYC AA'M

.Y'-AREA
IMPLINK DC ENTERIMP
IMPSAVE DC 0 .

IMPROUTINE 	DC 0
W=B CPYC WR

X-AREA
ENTERIMP ST8 IMPSAVE SAVE 	RETURN 	LINK.

LOW Y:WSAVE LOAD 	CURRENT 	STACK 	POINTER.
1DM IMPROIJTINE LOAD 	INDEX 	OF 	IMP 	ROUTINE.
ENT IY!PVECT ENTER 	IMP 	ROUTINE
LDP IMPSAVE RETURN

WAPLUSW CPYC WA+W
RECEIVE EQU 0 ROUTINE 	INDEX 	jF 	IMP 	'RECEIV' 	ROUTINE.
TRANSMIT EQU 2 IMP 	'TRANSMIT' 	ROUTINE
ANALSTATUS 	EQU 4 IMP 	'ERROR' 	ROUTINE.

LocrJ

HARDWARE INTERFACE SOFTWARE FOR MODULAR ONE WITH 1.61 ?IPXR.

INTERRUPT 	CODE 	— 	SEE 	PREVIOUS 	LISTING.

HARDWARE 	CONTROL 	ROUTINES.

%INTEGERFN READDATA
/ IDA 	Y: CHAR ' :!LOAD 	CHAR' PLANTED 	BY 	ASSFMBLER

LOP 	W:O' ;!RETURN
%END /
%ROUTINE 	WRITEDATA(%INTEGER 	CHAR)
%OWN INTEGER 	TOP0P8ITSX' C100'
*1 	 LDA 	W:'CFJAR s!LOAD 	CHARACTER 	TO 	BE 	OUTPUT

LOB 	Y:CHAN"l' ;!LOAD 	DEDLOC 	ADDRESS
*1 	 ADA 	Y:'TOPOPBITs ;!ADD 	FIXED 	BITS 	TO 	CHARACTER

STA 	I:DEDPTR' ;! 	AND 	PLACE 	IT 	IN 	THE 	DEDLOC
ZRETURN
% END
% I NTEGERFN 	READSTATUS

LDA 	Y:STATUs' ;!FETCH 	STATUS 	SET 	BY 	ASSEMBLER
LDP 	W:O' :!RETURN

%END
%ROUTI NE 	WRI TECOr.ITROL(%I NTEGER FUNCTION)
%INTEGER 	SYNSYN
%SWITCHSW(O;8)
%OWNINTEGER 	OtJTBI1SX'CO03'
%OWNINTEGEP 	TWOSECS1400
%INTEGER 	SYSSIATUS
-> 	SW(FUNCTION)
SW(0) 	: :!SETSYN
SYNSYNSYN<<8! SYN : !FORM 	DoUPLESYu 	PATTERN

LOB 	1:7' :!SET 	COUNT 	OF 	8
LOA 	W:'SYNSyN ,!LOAD 	SYN—SYN

*'SETSYN 	SF11 	S.L,L.1' ;!ROTATE 	PATTERN 	1 	LEFT
STA 	YB:SYNTABLE' HSTOPE 	ENTRY 	IN 	SYN 	SCAN 	TABLE

*1 	 TSTL 	B=O' ;!8 	ENTRIES 	FILLED?
JMP 	SSOUT' :!YES 	- 	EXIT
SBB 	1:1' :!DECREMFJET 	BY 	1.
JMP 	SETSYN' ;!DO 	NEXT 	TABLE 	ENTRY
EQU 	.'

%RETURN

[cor±'dJ

sW(1)
LDA L :1'
STA Y:INOUTSTAT'

*1 STA Y:FINDSYNC'
'/,RETURN

SW(2) 	:
* 1

C P Y L A-1'
STA Y:INOUTSTAT'
LDA L:6'

*1 STA Y:FIFJDSYNC'
*1 LDA Y:'OUTBITS
*1 LOB Y:PLEXPAGE'

• STA YB:O'
1 STA YR:1'

STA
STA

%RETURN

sW(3)
•LOA Y:'TWOSECS
STA Y:TIMECOUNT'

ZR ETUR N

SW(4) 	:
LDA L0'
STA YTIMECOUNT'
STA V:INOUTSTAT'

eS' STA V:FINDSYNC'
%RETURN

sw(5)
:%STOP

:
SVSSTATUSX'C'
*'SETSTAT LDA MPXRCHA!J'

CHACCESS'
1 DEBUG'

LOB FIVE12'
LDA W:'SYSSTATUS

*1 STA 7B;4'
4. ' DEBUG'
451

C P Y L A-1'
4.' CHACCESS'
4.' DEBUG'
%RETURN

SW(8) 	:
SYSSTATUSX '2C'
4.' JMP SETSTAT'.
ZEND

; !ENTERRX
:!SET SOFTWARE INDICATORS

	

;! 	TO
FOR INPUT MODE

; ! ENTERTX
;!SET SOFTWARE INDICATOR TO —1

	

I! 	FOR OUTPUT MODE.
:!SET LEADING SYN COUNT

	

:! 	TO 6.
:tSET SUITABLE PATTERN

	

! 	INTO ALL 6

	

3! 	OUTPUT DEDLOCS

	

J ! 	TO MAKE SURE

	

3! 	 THEY ARE

	

a! 	 ACTIVE.

a !STARTTIMFR
;!SET INTERRUPT COUNT TO

	

fl 	TIME 2 SECONDS

a RESET C H ANNE I
;!SET ALL

	

a! 	SOFTWARE

	

a ! 	INDICATORS

	

a! 	TO ZERO.

; !PARITY CHECKING

	

a! 	NOT USED FOR IBM CODES.

;!ENABLE INTERRUPTS
;!SET MPXR STATUS FOR INTERRUPTS ON
,!NOW SEND STATUS TO MULTIPLEXOR
,!POINT Z-AREA AT MPXR
;!IF REJECTED
;!LOAD FIXED ADDRESS BITS
;!LOAD STATUS
,!SEND STATUS TO MPXR.
;!IF REJECTED
;!NOW DO CHACCESS WITH —1
a! 	TO RESTORE 7-AREA.
:!IF REJECTED

;!DISABLE INTFRPIIPTS
a!SET MPXR STATUS FOR INTERRUPTS OFF
3! 	AND SEND IT TO MPXR.

- 136 -

With these hardware interfacing routines, it is therefore

possible to make the input channel appear to conform to the

behaviour defined for the idealized hardware interface.

Data Output

When the software wishes to perform an output transfer, it

calls the WRITECONTROL routine with an 'enter transmit mode' command.

This is interpreted by setting appropriate software flags and

placing a short sequence of 1-bits in the reserved multiplexor

register. When the multiplexor hardware has sent this bit pattern

to the line, it makes 'an entry in the circular buffer requesting

more output on that channel. When this entry is detected by the

interrupt routine scanning the circular buffer, it can examine the

software flags to see what action is required. Normally, these

will be set to indicate output of the appropriate number of leading

SYN characters, which can be generated directly by the circular

buffer scanning routine. When the requested number of SYN characters

has been generated, the first real character of the message is

required.

At this point the interrupt routine can cal]. the TRANSMIT

routine which will eventually call the WRITEDATA routine with the

character to be output. The WRITEDATA routine will place the

character in the multiplexor rester reserved for this output

channel. This will eventually generate another circular buffer

entry so that the process can continue until the whole message is

output.

- 137 -

The WRITECONTROL routine will then be called to cancel transmit

mode, which will be interpreted as setting the relevant software

flags so that the circular buffer routine will ignore any more

entries for that output channel.

Therefore, the output channel can also be made to conform to

the desired interface by simple interfacing routines.

Since the multiplexor synchronous channel is able to work in

full-duplex mode, the software interfacing routines must ensure

that receive and transmit modes are mutually exclusive as far as

the main software body is concerned. Software flags must be set

by the various WRITECONTROL functions so that the circular, buffer

scanning routine can ignore input circular buffer entries when the

software is in output mode, and vice versa. There is no mechanism

in the hardware by which input data can be ignored. This must be

handled by the software.

Error reports

The error interface, defined by the ANALYZESTATUS routine, must

also be accommodated so that effective error control can be achieved.

The most important error monitor is the timeout control. Since the

multiplexor provides a regular interrupt at a fixed time interval it

is possible to use an interrupt count as a means of implementing a

timer facility. The STARTPIMER function sets a storage location

to a positive number equivalent to the interrupt count for the

required time interval.

- 138

The circular buffer scan routine, whIch is run once per

interrupt, decrements this count by one if it Is positive. 	If the

count reaches zero, a storage loôtion reserved for holding the

status report is set to indicate timeout and the ANALYZESTATUS

routine is called. This will call BEADSTATUS which retrieves the

current status report from the reserved location. The multiplexor

hardware generates other interrupts for conditions such as

LOSTCARRIER and DATA OVERRUN, and these can be mapped onto the

ANALYZESTATTJS routine in a similar manner.

Thus, it can be seen that it is possible to reproduce all the

desired communications hardware characteristics on the 1.61

multiplexor even though the actual hardware is radically different

from the idealized communications channel proposed.

The first-level interrupt-handling routines, needed to map from

the real interrupt structure onto the conceptual interrupt structure,

although more complicated than on any of the other small computers,

still did not require very many instructions (about 120 machine

instructions). Also, the hardware control routines, by which the

- software issues instructions to the hardware, were very simple and

mostly just involved communication with the first-level interrupt

routines through common variables.

The coding for all the hardware interfacing software is given

above.

Executive Interface

Because the Modular One runs with a permanently resident executive,

- 139 -

in this case E221), and all interrupts cause direct entry to the

executive, some initialization code was necessary to set up the

interrupt links. This was done by means of the E2 LINK facility,

which is an executive call used to LINK a user program to a

particular interrupt. An executive call was necessary because

the Modular One executive store area is completely protected from

user programs, and so it is not possible to modify executive tables

directly. The executive itself included a facility to reset the

interrupt links to a neutral value if the user program terminated

for any reason, which could only be done through the executive.

It was also necessary to perform some initia1izatioi of the

multiplexor hardware to ensure that it was in the correct mode, and

this also required a special executive facility known as CHACCESS,

since physical control of peripherals could only normally be done

by the executive.

Because of the nature of the Modular One hardware and software,

the initialization code was more extensive than on any other

system.

User Interface

Both the communications package and the user program for the

Modular One were written in.. IMP and so the user interface routine

were invoked by standard IMP routine calls and parameters were passed

through global variables.

- 140 -

10.6 PDP-11 with DP 11 communications controller.

Hardware Interface

The DP U 	 (22) i synchronous controller 	s a single-line full-

duplex communications controller with hardware detection of incoming

SYN characters, the particular SYN character being set by software.

It is possible to separately enable and disable the input and

output channels, although with a complication in connection with

output noted later. There is no hardware timer facility, but there

are error interrupts associated with modem conditions such as LOST

CARRIER.

Data Input

If the input interrupt is enabled, the receive channel will

start to generate input character interrupts as soon as character

synchronization is achieved unless synch stripping is selected.

This is .facility to remove all SYN characters from input data.

If this is used, the facility must be disabled once the message

starts as the SYN pattern can occasionally occur in real data. If

the facility is not used, leading SYNs can be removed by the first-

level interrupt routines. Once the first non-3YN character is

seen, a flag is set to inhibit any further SYM removal and all

characters are then passed to the RECEIVE routine for message analysis.

Therefore, after the initial stage all input interrupts can be

routed directly to the RECEIVE routine, matching the conceptual

interface immediately.

I
HARDWARE INTERFACE SOFTWARE FOR PDP-11 WITH DP11 CONTROlLER.

S

I INTERRUPT VECTOR SERVICE ROUTINES.
I
; RECEIVE INTERRUPT
I
REVECT: 	JSR 	R5.SAVE 	:SAVE REGISTERS

MOVB 	RB.VECBLJF
TSTB INOTSI
BLE VECRET
SIC #1.RSR
JsR R5.RCEIVE

VECRET: JSR R5.REST
RI!

I
I 	TRANSMIT INTERRUPT
I

TRVECT: JSR R5.SAVE
TSTR INOTST
BGE FJOTX
TSTI3 LEADSN
BED CALL.TX
DECB LEADSN
MOVB #SYM.TB
BR TXRET

CALLTX: JsR R5.TRNSMT
BR TXRET

NOTX: MOVB #PAD,TB
TXRET: JSR R5.REST

RI!

;FETCH CHAR FROM RECEIVE BUFFER
;TEST FOR INPUT MODE
;IF NOT, IGNORE THIS INTERRUPT
;DISABLE STRIP SYNC IN DP11
:CALL RECEIVE ROUTINE
:RESTORE REGISTERS
;RETURN TO INTERRUPTED PROGRAM

;SAVE REGISTERS
;TEST FOR OUTPUT MODE
;IF NOT, OUTPUT A PAD
:TEST IF LEADING SYNS SENT
:YES - CALL TRANSMIT
REDUCE LEADING SYN COUNT BY I

IMOVE SYN TO TRANSMIT BUFFER
;RETURN
;CALL TRANSMIT ROUTINE
; RETURN
'MOVE PAD TO TRANSMIT BUFFER
;RESTORE REGISTERS
;RETURN TO INTERRUPTED PROGRAM,

I REAL-TIME CLOCK INTERRUPT.

TIMVEC: 	JSR 	R5.SAVE
1ST
DEC
TST
ONE
SIC
MOVB
J S R

TIMPET: 	JSR
RI!

;,SAVE REGISTERS
;READ CLOCK REGISTER
;DECREMENT INTERRUPT COUNT
;TEST IF COUNT LAPSED
;IF NOT, RETURN
IOTHERWISE .DISABLE CLOCK INTERRUPT
;SET STATUS REPORT TO TIMEOUT
;CALL ANALYZESTATtJS
:RESTORE REGISTERS
:RETURN TO INTERRUPTED PROGRAM

LKS
I I M C NT
TIMCNT
lIMPET
#100. L K S
#N? .STATUS
PS. ANALST
RS. REST

0

or.tctJ

I

j 	HARDWARE 	CONTROL 	ROUTINES

I
RDDATA: MOVB VECBUF,RO ;FETCH 	INPUT 	CHARACTER 	TO 	RO

BIC #177400.RO :REMOVE 	ANY 	EXTENDED 	BITS

RTS R5
WRDATA: MOVB RO.TB ,MOVE 	CHAR 	TO 	TRANSMIT 	BUFFER

RTS R5
RDSTAT: MOVB STATUS.RO ;FETCH 	STATUS 	REPORT

RTS R5
WRTCTL: ASL RO ;MULTIPLY 	FUNCTION 	BY 	2.

JMP TABLE(RO) ; 	 AND 	SWITCHON 	FUNCTION.
S EVEN

TABLE S WORD SETSYN
S WORD ENTRX
SWORD ENTTX
SWORD STTMER
S WORD RESETC
S WORD SETPAR
S WORD USPAR
S WORD ENINTS
S WORD DISINT

SETSYN: MOVB ISYN,SR ;LOAD 	SYN 	REGISTER 	IN 	DP11

RTS R5 $RETURN

ENTRX: MOVB #N1.INOST :SET 	SOFTWARE 	INDICATOR 	TO 	INPUT

BIC 94200.RSR ;CLEAR 	ACTIVE 	AND 	DONE 	IN 	RX 	STATUS 	REG.

BIS #101,RSR ;SET 	BITS 	TO 	ENABLE 	RECEIVE 	CHANNEL

RTS R5 ,RETURN

ENTTX: MOVB #M1.INOTST ;SET 	SOFTWARE 	INDICATOR 	TO 	OUTPUT

MOVB #N6,LEADSN ;SET 	LEADING 	SYN 	COUNTER

RTS R5 ;RETURN

STIMER: NOV TWOSECiTIMCNTSET CLOCK 	COUNTER 	FOR 	2 	SECONDS

81S #100,LKS ;ENABLE 	CLOCK 	INTERRUPT

RTS PS RETURN
RESETC: BIC iilOO,LKS ;DISABLE 	CLOCK 	INTERRUPT

BIC #4300.RSR :DISABLE 	RECEIVE 	CHANNEL

CIR INOTST ;CLEAR 	SOFTWARE 	INDICATOR

CLR TIMCNT ,CLEAR 	CLOCK 	COUNTER

RIS PS ;RETURN
SETPAR: HALT :PARITY 	NOT 	USED

U S P A R : HALT : 	 ON 	IBM 	CODES.
ENINTS: BIS #100.LKS IENABLE 	CLOCK 	INTERRUPT

BIS #100.RSR I 	RECEIVE 	INTERRUPT
81$ lI100,TSR I 	TRANSMIT 	INTERRUPT.

RTS P5. ;RETURN.

DISINT: BTC i100.LKS ;DISABLE 	CLOCK.

BIC 4100,RSR : 	 RECEIVE.
BIC 4100,TSR TRANSMIT 	INTERRUPTS.

RTS PS ;RETURN
SYNÔ2
PA 0=3 77
STATUS: .BYTE 0
INOIST: U BYTE C)
LEADSN: .BYTE C
TIrACNT: S WORD 0
TWOSEC: .WORD 144

- 1141 -

At the end of the message, the receive channel can be disabled

and input interrupts inhibited to prevent any further entries to the

RECEIVE routine. The first-level interrupt code is therefore

minimal for the DP 11.

Data Output

Data output is started in the DP 11 by loading a character into

the transmit buffer register. The DP 11 transfers this to the

transmit shift register and raises 'Request to Send' to the modem.

The DP 11 also starts to shift out the data from the transmit shift

register in time with the transmit clock pulses from the modem. As

the first bit of each character is shifted out to the line, the DP 11

requests an interrupt for the software to re-fill the transmit buffer

register. The software must respond to this before the current

character has been shifted out to the line, otherwise the DP 11 will

cancel 'Request to Send' and cease transmitting. The interrupts

occur irrespective of whether the modem has responded with the

'Ready for Sending' signal. Since any data transmitted before

'Ready for Sending' is set cannot be guaranteed to be transmitted

correctly, the software must respond to output interrupt requests

by outputting dumrmy characters until it detects that 'Ready for

Sending' has been set. This signal can be examined by the software

in the transmit status register. The output channel is then

available for real data output.

In 14-wire mode, whore continuous carrier can be maintained even

though no data is being transmitted, this sequence need be performed

only once as part of initialization in the INIT routine. To

- 1142 -

maintain carrier, the first-level output interrupt routine must

arrange to output idle-mark (afl. - 1) characters whenever, the

package is not in transmit mode. Control over this is accomplished

through a software flag which is set and reset by the'enter/cancel

transmit mode' calls on WRITECONTROL respectively.

In 2-wire mode, the sequence to start the transmit channel must

be executed each time the command 'enter transmit mode' is given.

At the end of a transmission, carrier is dropped by not outputting

a character in response to an output interrupt request.

The transmit channel has an option for generating SYN characters

automatically. If the 'idle sync' bit is set in the transmit status

register, and the software does not load a character into the transmit

buffer in time, the hardware copies the contents of the SYNC register

into the output shift register for transmission. This feature is

not much use however, since there is no simple means of controlling

the number of SYNs transmitted in this way. Leading SYNs must

therefore be transmitted by the first-level output interrupt routine,

using a count Bet by the WRITECONTROL coding for 'enter transmit

mode'. Subsequent output interrupts are then routed to the

TRANSMIT routine as before until 'cancel transmit mode' is executed.

The first-level output interrupt routine therefore involves

slightly more coding than the corresponding input routine, although

it is still quite simple.

Error Reports

Since there is no hardware timer facility on the DP 11, the

- 1143 -

essential timeout function must be implemented using the CPU

real-time clock. An interrupt count can be accumulated from this

regular interrupt to produce the necessary timeout control.

The ST.ARTTIMER function sets the count to the appropriate value

and when the count is decremented to zero by the clock interrupt

routine, the ANALYZESTATUS routine is called after setting a status

variable to indicate timeout. The READSTATUS routine accesses

this variable to obtain the current status report.

Error interrupts generated by other conditions such as LOST

CARRIER and DATA OVERRUN are sent to the ANALYZESTATUS routine by

similar routes.

The four hardware control routines use a combination of directly

accessing the communications hardware registers and setting variables

common to the first-level interrupt routines in order to achieve the

desired hardware effects. Al]. four routines are very simple.

The necessary hardware interfacing software for the DP 11 is

thus fairly simple, mainly because the hardware is itself character-

oriented.

Executive Interface

Two different executives have been used to support the communications

system. The minimal executive lOX has been used in simple systems,

and the executive source code was included in with the communication

system to produce a stand-alone program so that interrupt links were

set permanently at compile time. The disc-based-.executive DOS (23)

- 	 -

has been used to support a disc-oriented communication system. DOS

is normally resident, but the executive store area is not protected

so the necessary interrupt links could either be compiled into the

program or set dynamically when the program is first run. Neither

method allows of very easy restoring of the links to a safe value

at the end of a communication session, but since the executive is

loaded from disc and does not support multi-programming, it is

probably safest.-to reload the executive after each session.

User Interface

Two versions of the communication system (communications

package plus user program) have been produced - one totally in

assembler and the other totally in IMP, so there were no inter-

language interfacing problems and all user interface routine

calls were standard for the language used with parameters passed

through global variables.

10.7 Conclusions

These detailed descriptions of the five major versions of the

communications package produced so far illustrate the considerable

differences in the environments in which the package has been applied.

Despite these considerable differences, no particular problems were

encountered in the implementations and all five systems are in

regular use. Once the necessary thought had been given as to how

to map from the real interfaces onto the conceptual interfaces,

everything that followed was fairly mechanical process, requiring

only careful attention to detail to produce a working system.

- 145 -

A number of other systems involving different small computers,

such as the NOVA and INTERDATA, have been tentatively investigated

and there would seen to be no major problems in applying the

communications package to these as well. So the techniques

developed to produce this easily transferable system do seem

generally applicable and no limitations are as yet apparent.

U

- 1146 -

Chapter 11

IMPLEMENTING THE COMMUNICATIONS SYSTEM ON A NEW

SMALL COMPUTER

*l Introduction

As has been stated previously, the original idea behind the

development of the communications package was to produce a system

that could be easily transferred to a new small computer. An earlier

chapter described how the communications package was written in terms

of certain standard interfaces as a means of achieving this ease of

transferability. Inside these interfaces, everything remains the

sane for different implementations. Outside these interfaces a

minimal set of routines is needed to map between the idealized

standard interfaces of the package and the real environment. The

previous chapter indicated in some detail the particular interfacing

routines that had been produced for the five major versions developed

so far.

This chapter vi].l attempt to demonstrate the ease of transfer-

ability of the communications package by describing a series of

steps to be followed in producing a new implementation. The amount

of fresh thought required for a new system can be reduced to a

minimum by following prescribed test procedures for the different

component parts before putting the complete system together and

testing it. The idea is to 'mechanize' the process of software

production as far as possible by making use of work already done on

previous systems.

- 1147 -

11.2 General

The overall structure of the communication system has been

indicated previously. This structure can be summarized by the

diagram of Figure 11.1.

Each component in the system is self-contained with a well-

defined interface to the other components. It should be possible

to develop and test each component independently to see if it

behaves according to the defined interface. The order of testing

is not normally significant and testing can proceed in parallel for

the different components.

11.3 Difficulty of 'Live' Testing

In any communication system, 'live' testing, using a real

communication line with an appropriate terminal or computer at the

other end of the line s, can be very difficult during the development

stage because data is being transferred at a speed far in excess of

that which can be observed by a human being. Events are occurring

in real-time and it is not generally possible for the programmer to

slow down the events to a convenient speed. For this reason s as much

testing and development as possible should be dóhe in a non-real-time

environment with any real-time events being simulated under programmer

control such that the passage of time is not critical. The other

problem about 'live' testing is that it is practically impossible

to control the other end of the link effectively or even to tell

exactly what the other end is doing, even when voice communication

can be established. The ideal first stage of 'live' communication

testing should be with both ends of the link in the same room

/
/

I-
4

4

USER
PROGRAM

ral

4

USER INTERFACE
ROUTINES

COMMUNICATIONS

-J

I\A

0
cr I..

L
C

L11 10

OE
ck:

Iii

cx

-

ZO

-'

HIt\R/ARE
INTERFACE

ROUTINES

If)
U)
Ao 0-
z D

Lu

0
U. -

COhJ1UNC.AT(ON5

RVJPRE

cc

FUVE 11.1 SYSTEM STRUCTURE AND tNTERFPC.S

- 148 -

connected by a modem simulator, which replaces both modems and the

line. The person doing the testing then has both ends under his

control and can ensure that both ends are doing the right things.

However, before this stage of 'live' testing is reached, the

major software components can be checked out in a non-real-time

environment. The hardware and hardware interface routines can also

be checked out in a simplified environment. These test procedures

are described in the following sections.

14 User Program

The user program component is the one least likely to be trans-

ferable from one system to another. The user program has responsibility

for local-pexipheral handling, operator control, etc. The implement-

ation of this is likely to vary considerably from one system to the

next, since the actual peripherals used are likely to be different

and the facilities already provided by the standard executives are

likely to vary widely.

The facilities required are basically of the sort 'BEADRECORD'

and 'WRITERECORD', together with some facilities for operator

communication such as 'OPERATORNESSAGE' and 'OPERATORBEPLY'. At

the one extreme, a sophisticated executive and I/O routine library

will provide these facilities directly. At the other extreme, there

is no standard executive, and all the facilities have to be programmed

completely from scratch. The systems so far implemented have varied

from the latter extreme to somewhere approaching the former.

- 149 -

In general, then, a certain amount of work will be necessary in

order to provide the sort of facilities mentioned above for a new

system. However, the facilities are reasonably standard, and any

difficulties are likely to arise from peculiar characteristics of

the peripherals or executive used rather than any conceptual

difficulties.

Testing of User Program

The implementation details of the user program are not relevant

here, since they are concerned with local-peripheral handling,

operator control, etc. which are not directly relevant to the

communications package. The only aspect of the user program of

relevance is the interface which it presents to the communications

package. This can be thoroughly checked out by substituting dummy

test routines for the four communications user interface routines.

These dummy routines can check parameters and monitor calls and

allow the programmer to interact with them to perform debugging

operations.

A dummy INIT routine would do very little other than note that

it had been called. A dummy READBLOCK routine could check parameters

and arrage for a specimen data buffer in the correct format to be

passed back to the user by the subsequent call on the WAIT routine,

The programmer could be given the facility to feed in different

specimen buffers in order to test all possible formats. A dummy

WRITEBLOCK routine could check parameters and allow the programmer

to inspect the contents of the buffers to check that they were being

correctly formatted.

- 150 -

It is obviously possible to check out all aspects of the operation

of the interface in this way in a totally controlled fashion without

having to rely on the other end of the link providing the correct

buffers at the right time.

It is even possible to carry out this type of testing on a

different computer if a suitable high-level language is used and a

compatible set of local-peripheral routines is available.

11.5 Communications Hardware

The provision of the communications hardware componatit involves

two possibilities: -

produce a version of the ERCC Communications Controller

for the new computer

use the product provided by the computer manufacturer.

The first option should not be difficult to implement, since

the ERCC Controller was specifically designed with this objective in

mind. The contents of Chapter 6 plus the relevant ERCC engineering

documents would be needed in order to carry this out. The second

option depends on the availability of a suitable product. Most new

small computers being produced now have a synchronous communications

channel as a standard peripheral option. At the time the 12CC

controller was originally developed, this was certainly not the case.

Providing the manufacturer 's product has the appropriate programming

characteristics, then it is generally preferable to choose this

option. 'Appropriate programming characteristics' does not imp:ose

any great constraints. It merely requires that the controller can

- 151 -

operate in 8-bit binary mode, with the software handling the transfers

one character at a time under interrupt control. All controllers

so far investigated comply with these requirements. The problems 6f

providing effective engineering support for the ERCC controller and

the cost of producing small quantities of a new version are factors

which weigh against it when there is a suitable controller as a

standard product line item for the new computer. The tests described

below are applicable to either option.

Testing of Communications Hardware

It is assumed that normal checkout of the communications hardware

will be performed by engineering diagnostic programs provided with

the hardware. However, most diagnostic programs test only the local

operation of the hardware using special diagnostic functions and

possibly special hardware test boxes used instead of the modem.

It is not uncommon for the hardware to function correctly when tested

in this mode, but not work correctly when tested in a real environment.

It seemed desirable to devise some very simple test programs that

used the hardware in a way similar to its real use by the communica-

tions package. It is also important for test programs to be so

simple that it is obvious that they are correct.

The communication package generates output consisting of leading

SYN bharacters followed by one or more message characters, and

expects input in the same format. It also expects to use the timer

facility, if this is incorporated into the communications controller,

- 152 -

A simple test program for the transmit channel therefore

consists of the generation of a single-character output message,

with leading SYN characters being provided by the hardware or

software, as appropriate. For simplicity, this can be coded without

using interrupts, if it is possible to drive the hardware in this

way. Sample versions of this test program are given in the following

pages for some of the systenin use. Using the timer facility, this

output message can be repeated at fixed intervals of, say, one second.

A similarly simple program can be used for the input channel.

This program waits for the input channel to signal that synchroniza-

tion has been obtained and then prints the first non-SYN character

on the teletype in some suitable binary notation, before re-enabling

the receive channel and looping back to wait again. Some sample

versions of this simple program are given on following pages.

These two programs can be used together end-to-end to test new

or suspect communications hardware from a system that is known to

work.

If the communications hardware can carry out both these tests

correctly-, then it indicates that the main logic of the transmit

and receive channels is operating correctly and also that the modem

interface is operational. If the communications hardware can handle

the character sequence involved in the short messages, then it is

probable that it will also handle long messages correctly. Faults

in long messages after short messages have been transmitted correctly

usually indicate transmission line problems and these can be tested

by a further level of test programs which transmit data blocks

- 	 -

consisting of a string of 8-bit characters in a binary progression

from 0 to 255. The receiving program can check for any deviations

from the binary progression as a means of detecting line errors.

A simple test program can also be used to test the hardware

time.rindepend.ently of any data transfer. This compares the timer

interrupt interval with the number of times around a fixed instruction

loop.

Flowcharts for these simple test programs are given on

following pages.

11.6 	Communications Package

The procedure for making a new version of the communications

package is quite simple. The amount of work involved js('leastwhen

there is a suitable IMP compiler available for the new computer.

'Suitable' in this context means that the compiled program must be

in a form which can be easily fitted into the assembler-coded

environment. The environment must be able to reference routines

in the IMP code and vice versa. The IMP code may also need to

reference named variables in the assembler code. The simplest way

of accomplishing this is for the compiler to produce symbolic

assembler code output. This can then be easily combined with the

hand-coded assembler prior to assembling the complete system. If

the compiler produces binary output, that it must also provide

suitable linkage information so that any cross references can be

satisfied when the package is combined with the hand-coded software.

Flowcharts for simple test programs

Output test

START

RESET
WHOLE
CHANNEL

ENABLE
TRANSMIT
CHANNEL

WAIT FOR
OUTPUT
REQUEST

OUTPUT
LEADING 	SYNs
IF 	NOT 	DONE
BY HARDWARE

RESET
TRANSMIT
CHANNEL SELECT

SINGLE
CHARACTER

START
1—SECOND

OUTPUT TIMER
SINGLE

CHARACTER

WAIT
FOR TIMEOUT

WAIT 	
O 1 OUTPUT

REQUEST
_

OUTPUT
PAD 	w I

CHARACTERS

Input Test

Timer Test

START

RESET
WHOLE
CHANNEL

START
TIMER

HAS
TIMER
LAPSED?

INCREMENT
LOOP
COUNT

EXECUTE LONG
INSTRUCTION
TO ACCUMULATE
TIME

STOP
TIMER

PRINT LOOP
COUNT ON
TELETYPE

I

/ CODE FOR SIMPLE HARDWARE TESTS ON PDP-8 WITH ERCC CONTROLLER.
/ TEST OUTPUT OF SINGLE CHARACTER MESSAGE
START1, 	CIA

6304 /ISSUE 	GENERAL 	RESET

TAD CODE /SELECT
6304 / 	CORRECT
C L A / 	CODE.

GO. TAD TSMTT /LOAD 	COMMAND 	TO 	START 	TRANSMIT

6304 /ISSUE 	COMMAND. 	SYNS 	SENT 	AUTOMATICALLY

6311 /TEST 	FOR 	OUTPUT 	REQUEST 	FLAG
j.1p ,1 /LOOP 	BACK 	IF 	NOT 	SET

LAS /LOAD 	CHARACTER 	FROM 	SWITCHES

6314 /OUTPUT 	CHARACTER

C L A
TAD PADCOUI'JT /SET 	COUNTER 	TO
CIA / 	MINUS 	NUMBER 	OF
DCA COUNTER / 	PADS 	REQUIRED.
TAD PAD /LOAD 	PAD 	CHARACTER

6311 /WAIT 	FOR
JMP 0-1 / 	OUTPUT 	FLAG.

6314 /OUTPUT 	PAD 	CHARACTER
ISZ COUNTER /INCREMENT 	AND 	TEST 	PAD 	COUNT

imp .-4 /LOOP 	BACK 	IF 	NOT 	DONE
CIA /ISSUE 	GENERAL 	RESET
6304 / 	TO 	CANCEL 	TRANSMIT 	MODE.

TAD STIMER /START 	HARDWARE

6304 / 	TIMER,
C L A

TESTTIME,6301 /WAIT 	FOR

J .."1 / 	STATUS 	REPORT
6302 /READ 	STATUS 	REPORT

TAD TIMEOUT /TEST 	FOR 	TIMEOuT

SZA CIA
JMP TESTTIME /TRY 	AGAIN 	IF 	NOT
6304 /OTHERWISE 	ISSUE 	GENERAL 	RESET

JMP GO / 	AND 	DO 	TEST 	AGAIN.

CODE. 2000 11DM 	EBCDIC 	TRANSMISSION 	CODE 	COMMAND

TSMI.T. 2400 /ENTER 	TRANSMIT 	MODE 	COMMAND

PADCOUNT.3 /NUMBER 	OF 	PADS 	TO 	CLEAR 	REGISTERS

COUNTER. 0 /LOOP 	COUNTER.
PAD. 377 - /PAD 	CHARACTER
STIMER, 3400 /COMMAND 	TO 	START 	HARDWARE 	TIMER
TIMEOUT, -1000 . /MINUS 	(TIMEOUT 	STATUS 	REPORT)

/

OTtt 'd]

- ----.--. 	 ..--.-. 	 ...-.

/
/ TEST INPUT OF SINGLE
START2, 	CIA

6304
TAD 	CODE
6304

TESTIN, 	CLA
6311
JMP 	.-1
6312
D C A 	CHAR
6304
JMS 	NEWLINE
TAD CHAR
JMS 	OCTPRINT
JMP 	TESTIN

CHAR. 0
/
OCTPRINT.O

PAL
OCA OCTCHAR
TAO MINUS4
DCA COUNTER

OCTOIG, TAD OCTCHAR
PAL; RTL
DCA OCTCHAR
TAD OCICHAR
AND MASK7
TAD PRINTNUM
JMS PRINTCHAR
1 SZ, COUNTER
JMP OCTOIG
JM P 	1 OCT PRINT

MJNUS4. -4
PR I N TN U M .260
MASK?. 7
PR 	N IC H AR • 0

TLS
1SF
JMP
T C F
CIA
JM PRINICHAP

NEWLINE • 0
TAD CR
JMS. PRINTCHAP
TAD LF
JMS PRTNTCHAR
JMP 	I N E W L I N E

CR, 215
LF. 212
/

/OCTAL PRINT ROUTINE
/POSITION CHAR READY FOR LOOP
/SAVE CHARACTER
/SET LOOP COUNTER.
/ 	TO PRINT 6 OCTAL DIGITS.
/LOAD CHAR OR RESIDUE
/SHIFT NEXT DIGIT TO BOTTOM OF AC
/SAVE NEW RESIDUE
/SELECT LOWER
/ 	3 BITS FOR PRINTING.
/MAKE OCTAL PRINTABLE -
/PRINT THE CHARACTER
/INCREMENT AND TEST LOOP COUNT
/DO NEXT OCTAL DIGIT
/RETURN IF 4 DIGITS PRINTED
/NEGATIVE LOOP COUNT
/BIT PATTERN TO MAKE OCTAL PRINTABLE
/MASK FOR BOTTOM 3 BITS
/ROUTINE TO PRINT SINGLE CHARACTER
/OUTPUT THE CHARACTER
/WAIT FOR FLAG
/ 	TO BE SET, INDICATING PRINT COMPLETE
/CLEAR TELEPRINTER FLAG

/ RETURN
/ROUTINE TO PERFORM CRLF
/LOAD CR
/PRINT IT
/LOAD IF
/PRINT IT
/RETURN
/ISO CARRIAGE RETURN
/ISO LINE FEED

CHARACTER MESSAGE.
/ ISSUE
/ 	GENERAL RESET COMMAND TO CONTROLLER.
/SELECT APPROPRIATE
/ 	TRANSMISSION CODE.

/WAIT FOR-
/ 	INPUT FLAG.
/READ INPUT CHARACTER
/SAVE IT
/ 	AND ISSUE GENERAL RESET.
/THEN
/ 	PRINT CHARACTER
/ 	IN OCTAL ON NEWLINE.
/00 TEST AGAIN

cor..t' d.j

/
/ TIMER TEST
START3 I CLA /ISSUE 	GENERAL 	RESET

6306 / 	TO 	CONTROLLER.

D C A COUNT /INITIALIZE 	TWO
DCA COUNT? / 	LOOP 	COUNTERS.
TAD STIMER /ISSUE 	START 	TIMER 	COMMAND

6304 / 	TO 	CONTROLLER.

CIA /
TESTIMER,6301 /TEST 	STATUS 	REPROT 	FLAG

JMP LCOUNT /INCREMENT 	LOOP 	COUNT 	IF 	NOT 	SET

6312 /IF 	SET, 	READ 	STATUS 	REPORT

TAD TIMEOUT / 	AND 	CHECK 	FOR 	TIMEOUT
SZA /SKIP 	IF 	TIMEOUT
H L T /HALT 	IF 	ANY 	OTHER
6304 /ISSUE 	GENERAL 	RESET 	TO 	CONTROLLER
JMS NEWLINE /PRINT
TAD COUNT1 / 	THE 	TWO
.JMS OCIPRINT / 	COUNTS 	IN 	OCTAL
TAD COUNT2 / 	ON 	A

PAS OCTPRINT / 	 NEW 	LINE.
JMP START3 /REPEAT 	THE 	TEST

ICOUNT. ISZ COUNT? /INCREMENT 	LOW 	ORDER 	COUNTER
JMP TESTIMER / 	AND 	JUMP 	BACK.
ISZ COIJNT1 /IF 	LOW 	ORDER 	OVERFLOWS. 	INCREMENT
JMP 	.TESTIMER / 	HIGH 	ORDER 	COUNTER.

HIT /IF 	HIGH 	ORDER 	OVERFLOWS. 	TIMER 	US.

COUNT1, 0
COUNT2. 0
/ 	END 	OF TESTS.
/

[øibd]

CODE FOR SIMPLE HARDWARE TESTS ON POP—S
WITH DATA DYNAMICS CONTROLLER.

/ TEST OUTPUT OF SINGLE CHARACTER.
START1. 6421 /RESET 	RECEIVE 	CHANNEL

6442 /RESET 	TRANSMTT 	CHANNEL

6454 /DISABLE 	TIMER 	FLAG

TAD SYNCODE /LOAD 	RECEIVE 	SYNC 	REGISTER

6404 / 	TO 	COMPLETE 	HARDWARE 	INITIALIZATION.

CIA /
GO. TAD SYNCOUNT /SET 	NEGATIVE 	COUNT 	OF 	LEADTN(SYNS

DCA COUNTER / 	INTO 	COUNTER 	VARIABLE.

TAD SYNCODE /LOAF) 	AC 	WITH 	SYN 	CHARACTER

6441 /START 	TRANSMIT 	CHANNEL

6431 /WAIT 	FOR 	OUTPUT 	FLAG
JMP .1 / 	TO 	BE 	SET.
6432 /OUTPUT 	SYN 	FROM 	AC 	TO 	TX 	BUFFER

ISZ COUNTER /INCREMENT 	AND 	TEST 	SYN 	COUNT

JMP .-4 / 	AND 	LOOP 	UNTIL 	COMPLETE.
CIA /
LAS /ETCH 	CHAR 	FROM 	HANDSWITCHFS

6431 /WAIT 	FOR 	OUTPUT 	FLAG

JMP .-1 / 	TO 	RE 	SET.
6432 /THEN 	OUTPUT 	CHARACTER

CIA /
TAD PADCOUNT /SET 	UP 	COUNTER 	VARIABLE

DCA COUNTER / 	TO 	COUNT 	NUMBER 	OF 	PADS.

TAD PAD /LOAD 	PAD 	CHARACTER
6431 /WAIT 	FOR 	OUTPUT 	FLAG
JMP 0 -1 / 	TO 	BE 	SET.
6432 /THEN 	OUTPUT 	A 	PAD
ISZ COUNTER /INCREMENT 	AND 	TEST 	PAD 	COUNT

JMP .4 / 	AND 	LOOP 	UNTIL 	COMPLETE.

CIA I
6442 /RESET 	TRANSMIT 	CHANNEL

TAD TIMECOUNT /LOAD 	COUNTER 	VARIABLE 	WITH
CIA / 	COUNT 	OF 	NUMBER 	OF 	lOOMS
DCA COUNTER / 	INTERVALS 	INc 1 	SECOND.

6452 /ENABLE 	lOOMS 	TIMER 	FLAG

6451 /WAIT 	FOR
JMP .-1 / 	TIMER 	FLAG 	TO 	BE 	SET.
ISZ COUNTER /INCREMENT 	AND 	TEST 	COUNT 	AND

JMP •-3 / 	LOOP 	TO 	WAIT 	FOR 	1 	SECOND..
JMP GO /DO 	TEST 	AGAIN

SYNCODE. 62 /i8M 	SYN.
SYNCOUNT,6 /NUMBER 	OF 	LEADING 	SYNS

COUNTER. 0 /
PADCOUNT.-2 /NUMBER 	OF 	PADS 	AFTER 	MESSAGE

PAD. 377 /PAD 	CHARACTER
TIMECOUNT.12 /NUMBER 	OF 	lOOMS 	IN 	1 	SECOND

/

oi\tc1J

/
/ TEST INPUT
START2, 6421

6642
6454
TAD
6404

TESTIN. 	CLA
6414

RXIrip 6601
imp
6602
D C A
TAD
CIA
TAD
SNA
JMP
6421
J MS
TAD
JMS
imp

CHAR, 	0
OCTPR I NT. 0
NEWLINE. 0
/
/
/ TIMER TEST.
/

OF SINGLE CHARACTER.
/PERFORM
/ 	HARDWARE
/ 	INITIALIZATION

SYNCODE / 	AS 	FOR
/ 	 OUTPUT 	TEST.
/
/ENABLE 	RECEIVE 	CHANNEL
/WAIT 	FOR
/ 	INPUT 	FLAG 	TO 	SET.
/READ 	CHARACTER 	FROM 	RX 	BUFFER

CHAR /SAVE 	THE 	CHARACTER
CHAR /CHECK 	FOR

/ 	LEADING
SYNCODE / 	SYN 	CHARACTER.

CIA /IF 	FOUND. 	GO 	BACK
RXIN / 	AND 	WAIT 	FOR 	NEXT 	CHARACTER.

/OTHERWISE 	RESET 	RECEIVE 	CHANNEL
NEWLINE / 	AND 	PRINT
CHAR / 	CHARACTER 	IN 	OCTAL
OCTPRTNT / 	ON 	MEW 	LINE.
TESTIN /THEN 	REPEAT 	TEST

/
/OCTAL 	PRINT 	SUBROUTINE 	AS 	BEFORE
/NEWLINE 	SUBROUTINE 	AS 	BEFORE

START3, 	6421
6642
6454

TIMETEST, OCA
DCA
6452
6451
imp

/ IGNORE FIRST
T 1 P.1 E W A 1 1, 64 51

imp
6454
J MS
TAD
J MS
TAD
JMS
J M P

ICOUNT. ISZ
imp
I S
JMP
HIT

COUNT1 • 	0
COIJNT2, 	0
I END OF TESTS.

/RESET 	RX 	CHANNEL
/RESET 	TX 	CHANNEL
/DISABLE 	TIMER 	FLAG

COUNTI /INITIALIZE 	TWO
COUNT2 I 	LOOP 	COUNTERS.

/ENABLE 	TIMER 	FLAG
/WAIT 	FOR

owl / 	TIMER 	FLAG 	TO 	SET.
FLAG 	AS 	TIMER IS 	FREE 	RUNNING.

/WAIT 	FOR 	SECOND 	FLAG 	AND
LCOUNT / 	COUNT 	THE 	INTERVAL 	BETWEEN 	TWOFLAGS.

/DISABLE 	TIMER 	FLAG
NEWLINE /PRINT 	THE 	TWO 	COUNTS
COUNT1 / 	IN 	OCTAL
OCTPRINT / 	ON 	A
COUNT2 / 	NEW 	.
OCIPRINT / 	 LINE.
TIMETEST /REPEAT 	THE 	TEST
COUNT2 /INCREMENT 	LOW 	ORDER 	COUNTER
TIMEWAIT / 	AND 	LOOP.
COUNT1 /IF 	LOW 	ORDER 	OVERFLOWS, 	THEN
TIMEWAIT / 	INCREMENT 	HIGH 	ORDER 	COUNTER

/IF 	HIGH 	ORDER 	OVERFLOWS, 	TIMER 	ERROR.
• /

/

- 154 -

Also, the compiler should not include the necessary run-time

support software as part of the compiled program. This would include

such functions as space allocation for stacks and arrays, register

initialization before program start. Such functions will be provided

by the hand-coded environment, which needs to make special arrange-

ments for space allocation and stack use since some IMP code will

not be run as a normal sequential program but will be activated by

interrupts.

If a suitable IMP compiler is available, then the original

IMP code for the communications package can be taken over directly

onto the new system. This IMP code should, of course, be a correct

implementation since it has already been used but it is probably

still advisable to carry out some tests according to the procedures

suggested below. This should bring to light any incompatibilities

between the IMP implementations, such as word-length dependencies,

or any possible compiler faults if the compiler has been newly

developed, which is frequently the case.

If there is no IMP compiler available, then an alternative

high-level language ilght be considered. If an alternative high-

level language is to be used, then the same considerations apply

about the suitability of the compiler as for the IMP. The compiler

must also produce reasonably efficient code, since a significant

amount of the IMP is executed at interrupt level. This normally

means that extensive run-time diagnostic facilities intended as

programmer aids should be removable by specifying appropriate compiler

options. Two languages presently available for a number of small

computers which might well be suitable are CORAL (24) and BCPL (25).

- 155 -

These languages were produced for this type of application and

a cursory examination of two implementations indicates that they posses

the required characteristics. (A more detailed discussion of the use

of high-level languages for this type of programming is given in

a later chapter).

The translation of the original T14P code into a different high-

level language is a fairly simple, mechanical operation especially

if the new language is also block-structured. In the case of CORAL S

the languages were sufficiently similar that a simple program was

written which translated about 90% of the fl4P automatically and

flagged the remainder which it could not translate. Even a hand

translátiôn to FORTRAN was completed and tested in about one month s

although this version was never used because the compiler proved

to be unsuitable.

Any conversion involving hand-translation must obviously be

subjected to the tests prescribed below before trying to use the

new package in a real-time environment.

A third alternative is to produce a hand translation of the

IMP into the assembler code of the computer. This is also a fairly

simple operation s, providing the ultimate in efficiency in the final

code is not required. Once it has been decided how to translate

each type of IMP statement in terms of register usage etc. the process

becomes quite mechanical. If code efficiency proves to be a problem,

critical sections can be improved later.

An assembler version should obviously be tested thoroughly before

trying to use it.

- 156 -

A fourth alternative, where high efficiency is a requirement,

is to go back to the state diagram stage and completely re-code the

package in assembler language using any special features of the

particular machine instruction set to increase the efficiency.

This alternative obviously involves the most work and a lot of new

thought would have to be applied. This alternative has not yet

proved necessary.

Providing the state diagram is strictly adhered to, the

standard tests could still be applied to such a version of the package.

Testing of Communications Package

The communications package is potentially the most difficult

software component on which to carry out comprehensive testing and

development, It accepts standardized requests across the user

interface, which it then processes in an asynchronous manner under

interrupt control.

It is a fairly simple matter to check out the actions performed

directly as a result of the user request but these are actually very

few. By far the largest amount of code is executed as a result of

interrupts. All the code to check message formats, analyze control

characters, perform error recovery, check acknowledgements, etc.,

is performed as a result of interrupts in order to achieve a simple

autonomous block transfer effect at the user interface.

Because of the very simple executive structure assumed, there

were only two program levels-interrupt level and user level. There

was no intermediate'supervisor' level at which code could be executed

- 157 -

which was interruptible but not at the user level. Any code which

was not executed directly as a result of the user program call had to

be executed at the interrupt level.

Consequently, most of the logic to be tested in the communications

package is being executed in real-time and the time between successive

executions is very short, e.g. about 3.3ms at 2100 baud or 300

characters per second. It is therefore quite impossible to follow any

changes in the variables used or trace the execution path followed in.

a particular instance without including special monitoring code which

dumps relevant information into a reserved store area using a 'circular

buffer' technique. This information can then be accumulated 'on-the-

fly' for subsequent examination by the programmer at the end of the

message transfer.

Although this method has its uses in particular circumstances it

is considered to be rather cumbersome, especially in the early stages

of testing since it assumes that the program is working reasonably

well in order that the monitoring can be successfully carried out.

Also, it is not generally possible to monitor all variables, if there

are a large number, or monitor all the relevant execution paths.

Some smaller choice then has to be made and it is frequently difficult

to know which to choose unless a specific fault or path is being

investigated, which again assumes that the rest of the package is

working reasonably well. This dynamic monitoring method is useful

when the package is generally working quite well but exhibiting

certain infrequent faults. A monitoring of the real events sequence

can then be very useful, particularly when investigating time-

dependent faults.

- 158 -

The method of testing being proposed here is applicable in the

earlier stages of testing as a means of thoroughly checking out program

logic before it is applied to the real-time environment. The method

depends on the fact that it is much easier to check out the behaviour

of a sequential process rather than one which involves asynchronous

events or any form of multi-threading, where the timing of events is

not under the control of the programmer. A 'sequential program' is

defined as one in which the thread of execution passes in a deterministic

way from one instruction to the next, irrespective of any time delay

between the instructions. The passage of the program from one instruction

to the next is determined by the values of the state variables at each

instruction and changes in the state variables can only be made by

instructions executed in the sequence and not by any external events.

The idea is to write the communications package in such a way that

it can be tested, including the interrupt-driven parts, as a sequential

program.

This can be done if the actions of the communications package can

be described by a finite-state machine. A finite-state machine sits in

a passive state until it receives a stimulus. It then performs some

activity in order to generate a response to the stimulus. The response

may involve some external effect and/or change in state. At the end

of the activity, the machine may have changed its state or remained, in

the same state, but it always returns to some stable, defined state

ready to receive a further stimulus. The machine is not performing any

activity unless it is in the process of generating a response to a

stimulus. The stimulus - activity - response sequence is the only

action the machine can perform, and between such actions the machine

- :1.59 -

is always in a defined state.

The progression of such a machine in response to a series of

stimuli is therefore a strictly sequential process, since it will not

accept a stimulus unless it has completed processing a previous

ctiulus and returned to a stable state. Transitions between

different stable statescan only take place as the result of processing

a stimulus. The behaviour of a finite—state machine can therefore

be described by a sequential prograrn with a set of state variables

to define the states. This accepts stimuli on its input interfaces,

generates appropriate response on its output interfaces and effects

state changes, and performs no action in between while waiting for

a stimulus.

It will now be deronstrated that the coriunications package acts

like a finite—state machine and therefore an implementation of it

can be tested as a secjuettial program.

The connunications package is a assive component in the overall

communications system. It takes no action unless requested to do

so by the user program. It can be rcgardd as a blueL box which

accepts certain inputs and generates certain outputs in response to

the inputs. It generates no outputs except in response to an input.

The inputs, or stimuli, comprise the requests for action on the user

interface (mIT, I'EADBLOCK, WRITEBLOCK) and the interrupt requests

occurring on the interrupt interface (RECEIVE, TRAITS1IT, AALYZSTATUS).

The outputs, or responses, compr5se the calls issued to the four

hardware control routines (READDATA, WRITEDATA, PPADSTATUS,

wRITECO1TflOL) and signals back to the user interface via the WAFT

- 160 -

function. The sequence of responses is determined entirely by

the sequence of stimuli. When the package is not processing a

user request or an interrupt request, it is in a stable, defined

state.

Gross state diagrams describing the general behaviour of the

communications package are given in Figures 11.2 and 11.3. These

gross diagrams treat certain sequences of stimuli as a single stimulus

for the purposes of simplicity. For example, the series of

RECEIVE interrupts involved in receiving a complete part of a

message, e.g. the cyclic redundancy check - two characters, is

treated as if the wholé€ part arrived as one stimulus. The transition

to the next state is then controlled by a count of interrupts received

in the current state. A similar situation can occur for TRANSMIT

interrupts.

The total state diagram for REtD and WRITE is a representation of

a finite-state machine to perform the required functions of the

communications package. This state diagram implies certain precautions

to be taken in the implementation of the machine by a program to ensure

that the processing of one stimulus cannot be interrupted by another

stimulus. For example, the processing of a request on the user

interface must not be interrupted, by a request on the interrupt

interface. Similarly, the processing of a RECEIVE or TRANSMIT

interrupt request must not be interrupted by an ERROR interrupt request.

The characteristics of the particular hardware being used for the

implementation will not necessarily afford this protection, in which

case the software must provide it. This precaution is essential if

the machine is to be implemented strictly in accordance with the state

diagram.

Notes on State Diagrams

The READY state is the coon state between the two state driz

All other states are specific to READ or WRITE.

Only those stimuli which are valid for the state are shown.

All others are ignored and have no effect.

The following abbreviations are used:-

RX - RECEIVE interrupt

TX - TRANSMIT interrupt

TO - ERROR (TIMEOUT) interrupt

UR - unrecognized input

The timer does not run in transmit mode, 80 TO can only occur

on input.

In a SEND state, more than one character may be output, so the

transition to the next state only occurs on the FINAL TX.

. RX always produces a READDATA response

TX always produces a WRITEDATA response

TO always produces a READSTATUS response

WRITECONTROL is called to enter input mode (with ENTERRX

and STARr.IMER), to enter transmit mode (ENTERTX) and to

cancel both receive and transmit mode (with GENERAL RESET)

RX - .EC-Et'J tNvEcupT

TX TRANSMIT iNTERPUPT
TO - T%1EOUT ERROR INTERRUPT
UR - ONRCOGNZD

FGURE 	 ?\F—kU MODESTAJE DIAGIrkAM

F%WRE 0L3 WR%TE MO 	STATE OPRAM

- 16]. -

Certain other precautions are also necessary if the implementation

of the machine is to behave according to the state diagram. These

relate to the fact that certain stimuli are only accepted and acted

upon when the machine or package is in certain defined states. For

example, a user request stimulus is only accepted when a previously

requested function has been completed. Similarly, a RECEIVE

interrupt stimulus is not allowed when the package is in transmit

mode. Such stimuli are invalid and should not be allowed to have

any effect on the state of the communications package. They should

be rejected or ignored at an early stage.

That the communications package as implemented is a correct

representation of the state diagram can now be tested by enclosing

the package in a simulated environment which takes the package

through the various paths in the state diagram. The various stimuli

can be simulated by routine calls on the appropriate interfaces.

Where a complicated sequence of stimuli is required, e.g. to simulate

the arrival of a complete message, the sequence can be controlled

by a steering file, which can be prepared in advance to provide

specimens of the various message formats to be handled by the

package.

In this simulated environment, the progress of the package from

step to step can be controlled directly by the programmer, and the

state of the package can be investigated after each step if

necessary. The routine calls simulating the interrupts obviously

do not have to be made at the same speed as the real interrupts.

They can be made one-at-a-time under programmer control so that the

- 162 -

effect of any one interrupt stimulus can be investigated at leisure.

A check can be made that the correct state transitions are being

made and that the correct responses to the stimuli are being

generated.

This method of testing is intended to check out the logical

correctness of the communications package. At the end of this

testing, it can be confidently asserted that the package is logically

correct, is handling all the stimuli correctly and generating the

correct responses. The package can be subjected to all the

distinct message sequences in simulated form to test all the

different paths. Also various error conditions can be simulated

by providing stimuli via the ERROR interrupt mechanism. It is

obviously far easier to detect logic errors when running in a

simulated environment than in a real environment where successive

events occur too quickly for any investigation of state variables to

be carried out.

Since this method of testing deliberately ignores the real-

time aspect, it is clearly not going to show up any errors that are

strictly timing-dependent. For instance, the existence of any

time-critical sections of code will not be shown up and nor will

any timing inter-dependency with the rest of the system, e.g. in

relation to the operation and interrupt characteristics of the local

peripherals. Any such questions will require detailed investigation

of the particular system in use, particularly in relation to the

executive. The actual time taken for particular code paths will

have to be calculated by detailed instruction counts. It is

- 163 -

advisable to carry out such measurements before trying the system out,

since otherwise random faults may occur which cannot be traced to any

logical errors. This is obviously one of the difficulties of

working with real-time systems. At least by using the testing

method proposed, it should be possible to remove all logical errors

before trying the system in a real-time environment.

A detailed example of the use of this method to test the

communications package will now. be given.

Sequential tests for communications package

A simple test driver can be written which provides the complete

environment expected by the communications package. The driver

will generate stimuli by performing routine calls on the relevant

interface routines. The correct sequence of stimuli is provided by

a steering file. The driver reads coded directives from this steering

file for each stimulus. As a result of a stimulus the communications

package will generate calls on the four hardware control routines.

The driver includes versions of these routines to simulate the real

ones. These duinnr routines can also be used for monitoring

purposes. Calls on the two hardware control routines that provide

input data (READDATA and BEADSTATUB) will obtain this from the

steering file. Calls on the two routines that produce output

(WRITEDATA and WRITECONTROL) will send this output to a file for

later inspection.

The controlling information obtained from the steering file can

be checked against the current state of the package to check that

- 164 -

they are keeping in step. If there is any discrepancy, then an

error has been found in the communications package, assuming that

the steering file has been correctly prepared.

The driver program should ideally have access to a general-

purpose debugging and monitoring package, especially if the tests

can be carried out on an interactive system. This package is dust

referred to as 'MONITOR' in the examples that follow. The particular

implementation will be very system-dependent.

A simple version of the driver can be produced to test one

function of the package at-a-time, e.g. READ mode. The calls on

READBLOCK will then be explicitly included in the driver and only

the interrupt stimuli will be controlled by the steering file. This

makes the driver program a2little simpler, but then a slightly

different driver has to be written to test WRITE mode.

The driver shown in the examples here is a completely general

purpose one which will test all functions of the communications

package by taking READBLOCK and WRITEBLOCK directives from the

steering file as well as the interrupt directives. The driver

includes an explicit call on the INIT routine, since it is assumed

that this only needs to be done once.

These examples will be coded in IMP since the communications

package was originally coded in IMP. Where the package is implemented

in a different language on a particular computer, the test driver

would also be coded in that language. In the driver, it is assumed

that all the definitions and routines of the communications package

- 165 -

are included as part of the total program. The driver coding is

given on the following pages.

%BEGIN
I <ALL CODE Awfl DEFINITIONS FOR COMMS PACKAGE INCLUDED HERE.>
GENERAL PURPOSE TEST DRIVER FOR COMMUNICATIONS PACKAGE.
DIRECTIVES ARE READ FROM A STEERING FILE TO CONTROL THE SEQUENCE
OF STIMULI APPLIED TO THE PACKAGE.

THE CODED DIRECTIVES ARE DEFINED AS FOLLOWS:-
1 	READBLOCK, PARAMETERS PROVIDED BY DRIVER
2 	WRITFBLQC, DATA AND PARAMETERS FOR WRITEBLOCK FOLLOW

ON THE STEERING FILE. /
3 	WAIT, WHEN THIS DIRECTIVE APPEARS. /THE COMMUNICATION PACKAGE

SHOULD HAVE COMPLETED THE LAST REQUESTED FUNCTION.
4 	RECEIVE , INPUT CHARACTER FOLLOWS ON STEERING FILE.
5 	TRANSMIT
6 	ERROR, STATUS REPORT FOLLOWS ON STEERING FILE.

I 7 	STOP, USED TO STOP TEST.

%SWITCH SW(1:7)
%INTEGERFNSPEC READSF 	;!FUNCTION TO READ NEXT NUMBER FROM

;I 	STEERING FILE.
XROUTINESPEC WRITEOUT(%INTEGER N):!ROUTINF TO OUTPUT TO MONITOR FILE
%INTEGERARPAY BUFFEP(1:400) ;!COMMUNICATIONS BUFFER
INIT 	 ;IINITIALIZE COMMUNICATIONS PACKAGE
GO: —>SW(READSF) 	 :!SWITCH ON DIRECTIVE FROM SIFERING FILE

READBLOCK DIRECTIVE.
SW(1):
%IF STATE2 Y.THEN MONITOR
	

;!CHECK PACKAGE NOT IN WRITE MODE
BUFF ADD P = AD DR (B U F ER (1))
	

IISET UP PARAMETERS
BUFFS 1ZE400
	

11 	FOR CALL.
READBLOCK
	

IIMAKE CALL
.> GO
	 :!GO BACK TO STEERING FILE

WRI7EE3LOCK DIRECTIVE.
SW(2) :
XIF STATE1 %THEN MONITOR
	

;!CHECK PACKAGE NOT IN READ MODE
BUFFS IZEREADSF
	

:IREAD PARAMETERS FOR
B U F F TRANS P = READS F
	

it 	WRITEBLOCK FROM
BU F FO F =RE ADS F
	 sl 	STEERING FILE.

VOCYCLE 11 .1 IBUFFSIZE
	

iIALSO READ
BUFFER(I)READSF
	

1! 	BUFFER CONTENTS FROM
%REPEAT
	 it 	STEERING FILE.

BUFFADDRADDR(BUFFEP(1))
	iISET UP LAST. PARAMETER

WR I TEB LOCK
	 JIMAKE CALL

'> GO
	 IIGO. RACK TO STEERING FILE

WAIT DIRECTIVE.
Sw(3):
YO IF WAIT #0 %THEN MONITOR 	JICHECK PACKAGE HAS FINISHED REQUEST

MONITOR HERE IF NECESSARY TO CHECK SUCCESSFUL EXECUTION OF REQUEST.
> GO 	 ;!GO BACK TO STEERING FILE

RECEIVE DIRECTIVE.
SW(4):
%IF INTADDR=2 %THEN MONITOR J!,CHECK PACKAGE NOT IN TRANSMTT MODE
RECEIVE 	 flMAKE CALL
'> GO 	 :!GO BACK TO STEERING FILE

TRANSMIT DIRECTIVE,
SW(S):
7IF INTADDP#2 %TIIEN MONITOR ,!CHECK PACKAGE IN TRANSMIT MODE
TRANSMIT 	 ;!MAKE CALL
> GO 	 ;IGO BACK TO STEERING FILE

ERROR DIRECTIVE.

%IF INTAODR2 %THEN MONITOR ;!ERROR SHOULD NOT OCCUR IN TRANSMIT
ANALYZESTATUS 	 :!MAK CALL
> GO 	 :!GO BACK TO STEERING FILE

STOP DIRECTIVE.

%STOP 	 ,!FINISH TEST
A SET OF HARDWARE CONTROL ROUTINES ARE INCLUDED TO SIMULATE

THE REAL ONES.
%INTEGERFN READDATA

OPTIONAL MONITOR HERE TO FOLLOW PROGRESS.
%RESULIREADSF 	 ;!GET CHARACTER FROM STEERING FILE
%END

%INTEGERFN READSTATUS
MONITOR HERE?

%RESULTREADSF 	 ;?GET STATUS REPORT FROM STEERING FILE

%END

%ROUTINE WRITEPATA(%INTEGER CHAR)
MONITOR HERE?

WRITEOUT(1) 	 ,!SIGNAL CALL ON WRITEDATA
WRITEOUT(CHAR) 	 I! 	FOLLOWED BY CHARACTfR.
% END

%ROUTINE WPITECONTROL(%INTEGER FUNCTION)
'MONITOR HERE?

WRITEO'JT(2) 	 ;!SIGNAL CALL ON WRITECONTROL
WRITEOUT(FUNCT1ON) 	 I I 	FOLLOWED BY FUNCTION.
%END 	'

SUITABLE VERSIONS OF READSF AND WRITEOUT MUST BE INCLEJOED, BUT THE
IMPLEMENTATIONS OF THESE WILL BE VERY DEPENDENT ON THE PARTICULAR
I/O SYSTEM AVAILABLE ON THE COMPUTER BEING USED FOR THE TESTS.

ZENDOFPROGRA.1

V

- 166

Steering File

Two examples of a typical steering file to control the testing

will be given here. Onee example is a test of READ mode, and the

other a test of WRITE mode. For clarity, the separate items in the

steering file are separated by commas, although these will not

necessarily appear in an actual steering file. Comments are

interspersed where necessary to explain the significance of a

particular directive or group of directives.. Also interspersed

are portions of the output file (again with suitable explanatory

comments) which would be generated by the WRITEDATA and WRITECONTROL

routines, assuming the package to be working correctly. Contents

of the steering file and -'output file are clearly distinguished.

The '<data character>' following a 'RECEIVE' directive can be any

valid character. For simplicity, vha an arbitrary length

sequence of (RECEIVE, cdta character>) pairs can occur in a message,

this is shown by round brackets. 	A similar convention is used

for the output file.

For the sake of clarity, information which would be coded

numerically in practice is shown symbolically here to make it

easier to follow the sequences. The following symbolic abbreviations

are used:-

- 167 -

Directives 	 RB - READBLOCK

WB - WRITEBLOCK

WT - WAIT

RX - RECEIVE

TX - TRANSMIT

AS - ERROR (AN.ALYZESTATUS)

Status Reports 	 TO - TIMEOUT

LC - LOST CARRIER

DO - DATA OVERRUN

Output File Entries 	WD - WRITEDATA

WC - WRITECONTROL

Control Functions 	GB - General Reset on communications channel

ER - Enter'Ràceive

ET - Enter Transmit

ST - Start timeout interval

SS - Select SYN character

MMM

Steering File and Output File for BEAD test

OUT WC,SS Select SYN generated by INIT routine

SF RB First READBLOCK directive

OUT WC, ER, WC, ST Enable receive for arrival of first ENQ

SF 	RX ,ENQ Arrival of first ENQ

OUT tTCGR,WC,ET Beset receive and enter transmit for ACIC

SF 	TxgTXTx TRANSMIT interrupts for acknowledgement

OUT 	DLE,WD,ACKO,WD,PAD Output of acknowledgement

OUT WC,GR,WC,ERWC,ST Cancel transmit and wait for data block

SF 	RX,STX,(RX <char>) RX
- 	 ' 	

' ETB,RX,bcc,RX,bcc Single Record block

OUT WC,GR Cancel receive after block

SF 	UT ,RB Call WAIT followed by next READBLOCK

OUT WC,ET Enter transmit for acknowledgement

SF 	TX,TX,TX Interrupts for acknowledgement

OUT WD,DLE,WD,ACK1,WD,PAD Output of acknowledgement

OUT WC,GR,tfC,ER,WC,ST Cancel transmit and wait for block

SF 	RX,STX,(RX,<char>),RX,
ITB,RX,bcc,RX,bcc,
(RX,<CIIar>),RX,ETB,RX,

Block with 2 records and ITB

bcc ,RX,bcc

OUT WC,GR Cancel receive after block

SF 	WT,RB Call WAIT followed by READBLOCK

OUT WC,ET Enter transmit for ACK

SF 	TX 1 TX, TX Interrupts for ACK

OUT WD,DLE,WD,ACKO,WD,PAD Output of ACK

OUT WC,GR,WC,ER,WC,ST Cancel transmit; 	enter receive

SF 	RX,STX,(RX,<char>) ,RX,
ETB,RX,bad bcc,RX,bad bcc 1 record block with block check failure

OUT WC,GR,WC,ET Enter transmit to send NAK

SF 	TX,TX Interrupts for NAT.

OUT WD ,NAK ,W1) ,PAD Output of NAK

OUT WC,GR,WC,ER,WC,ST Cancel transmit and await input

SF 	RX,STX,(RX,cchar>) ,RX
ETB,RX,bcc,RX,bcc Re—transmission of block in error

OUT WC,GR Cancel receive afterOK block

SF 	WT,RB Call WAIT followed by READBLOCK

- 169 -

OUT WC,ET Enter tranQmit for ACK

SF 	TXTX,TX Interrupts

OUT WD,DLE,WD,ACK1,WD 0PAD Output of ACK

OUT Cancel transmit; 	wait for input

SF 	RX,STX,(RX,<char>),J'tS,TO Block not properly terminated

OUT WC,GR,WC,ET Enter transmit to send NPK

SF 	TXTX Interrupts

OUT WD,NJ\K,WD,PAD Output of NAIC

OUT WC,GR,WC,EB,WC,ST Cancel transmit; 	wait for input

SF 	FX,STX,(RX,<char>) ,Px,
ETB,RX,bcc,IUC,bcc Correct re-transmission of previous block

6TYT WC,GR Cancel receive after block input

SF 	WT,RB WAIT followed by READBLOCK

OUT WC,ET Enter transmit for ACK

SF 	TX,TX,TX Interrupts

OUT JD,DLE,WD,ACKO,WD,PAD Output of ACK

OUT WC,C}R,WC,ER,WC,ST Cancel transmit; 	vat for input

SF 	AS,TO Timeout waiting for input

OUT WC,GE,WC,ERWC,8T Wait again after checking retries

SF 	RX,ENQ,RX,PAD Receive EN 	requesting repeat of last ACK

OUT WC,GR,WC,ET Enter transmit to send ACK again

SF 	TX,TX,TX Interrupts

OUT WD,DLE,WD DACKO,WD,PAD Output of repeated ACK

OUT WC,GR,WC,ER,WC,ST Cancel transmit; 	wait for input

SF 	RX,STX,(RX, <char>) RX
ETX,RX,hccRX,bcc Last block in file

OUT WC,GR Cancel receive after block input

SF 	T,RB WAIT followed by READBLOCK

OUT WC,ET Enter transmit for last ACK

SF 	WD,DLE 9WDACK1,WD,PAD Output of last 4CK

OUT WC,GR Cancel transmit after last ACK

SF WT Final WAIT,EOF parameter should be set

SF 	STOP End of Test

- 170 -

Steering File and Output File for WRITE teat.

OUT WC,SS 	 Select SYN generated by INIT routine

SF WB,4O0,0,<4O data 	WRITEBLOCK directive, followed by
chars> 	 parameters and 40 data chars.

OUT WC,ET 	 Enter transmit for first ENQ

SF TX,TX 	 Interrupts to output first ENQ

OUT WD,ENQ,WD,PAD 	Output of first ENQ

OUT WC,GR,WC,ER,WC,ST 	Cancel transmit; wait for input

SF RX,DLE,RX,ACKO 	Receive positive ACK in response to ENQ

OUT WC,GR,WC,ET 	 Enter transmit to send first block

SF TX,IiO(TX) ,TX,TX;TX 	Transmit interrupts for block

OUT WD,STX,4O(WD,<chai4,
WD,ETB,WD,bcc,WD..bcc Output of block

OUT WC ,GR,WC ,Efl ,WC,ST 	Cancel transmit; await input

SF RX,DLE,RX,ACK1 	Receive correct acknowledgement

OUT WC,GR 	 Cancel receive after ACK

SF WT 	 Call WAIT to check termination
SF WB,31,00,c16 chars, Next'WRITEBLOCK with data of 2 records

ITB, 14 chars> 	and ITB

OUT WC,ET

SF Tx,16(Tx) ,TX,TX,TX,
114(TX) ,TX,TX,TX 	Interrupts

OUT WD,STXl6(WD,<char-),
WD,ITB1WD,hcc ,WD,bcc,
14(WD,cchar>) ,WD,ETB,
*b,bcc,WD, bec Output of block

OUT WC,GB,WC,ER,WC,ST 	Cancel transmit and wait for input

SF RX,DLE,RX,ACKO 	Receive correct acknowledgement

OUT WC,GR 	 Cancel receive after ACK input

SF WT 	 Call WAIT

SF WB,20,0,0,20cchars> Next WLRITEBLOCK with 20 chars

0172 WC,ET 	 Enter transmit for next block

SF TX ,20 (TX) ,TX ,TX ,TX 	Interrupts

OUT WD,STX,20(WD,<char>),
WD,ETB,WD,bcc,WD,bcc Output block

OUT WC,GR,WC,ER,WC,ST 	Cancel transmit and wait for input

SF RX,NAK,RX,PAD 	Receive NAK indicating transmission error

Our WC,GR,WC,ET 	 Cancel receive, enter transmit again

- 171 -

SF 	TX 9 20(TX),TX,TX,TX Interrupts for repeat of same block

OUT WD,STX,20(D,<char>),
D,ETB,WD,bcc,WD,bcc Repeat block

OUT WC,GR,WC,ER,WC,ST Cancel transmit; 	wait for response

SF 	RX,DLE,RX 9ACK1 Receive correct acknowledgement

OUT WC,GR Cancel receive after ACK

SF WT Call WAIT

SF 	WB,25,O,O,c25 chars> Next WRITEBLOCK of 25 chars

OUT WC,ET Enter transmit for next block

SF 	TX,25(TX),TX,TX,TX Interrupts

OUT WD,STX,25(WD,<char>),
WD,ETB,WD,bcc,WD,bcc Output block

OUT WC,GR,WC,ER,WC,ST Cancel transmit; 	wait for response

SF AS,O No response - timeout error

OUT WC,GR,WC,ET Enter transmit to send ENQ

SF 	TX,TX Interrupts

OUT WD,ENQ,WD,PAD Output of ENO to request repeat of ACK

OUT WC,GR,WC,ER,WC,ST Cancel transmit and await response

SF 	RX,DLE,RX,ACK]. Receive wrong acknowledgement

OUT WC,GR,WC,ET Prepare to send same block again

SF 	TX,25(TX),TX,TX,TX Interrupts

OUT WD,STX,25,(WD,<char>),
WD,ETB,WD,bcc,WD,bcc Output Block

OUT WC,GR,WC,ER,WC,ST Cancel transmit; 	await input

SF 	RXDLE,RX,ACKO Receive correct acknowledgement

OUT WC,GR Cancel receive

SP WT Call WAIT

SF 	WB.30,0 :1 : <30 chars> WRITEBLOCK with 30 chars and EOF

OUT WC,ET ENTER transmit to send block

SF 	30(TX),TX,TX,TX Interrupts

OUT WD,STX,30(WD,<char>),
WD,ETX,WD,bcc,WD,hcc Output final block

OUT WC,GR,WC,FR,WC,ST Cancel transmit; 	await response

SF 	RX,DLE,RX,<grot> Receive invalid acknowledgement

OUT WC,GR,WC,ET Enter transmit to request repeat

SF 	TXTX Interrupts

OUT WD,ENQ,WD,PAD Output ENQ to request repeat of ACK

- 172 -

OUT WC,GR,WC,ER,WC,ST

SF RX,DLE,RX,ACK1

OUT WC,GR,WC,ET

SF TX,TX

OUT WD,EOT,WD,PAD

OUT WC,GR

SF WT

SF STOP

Cancel transmit; await response

Receive correct final ACK

Enter transmit to send EOT

Interrupts

Output EOT

Cancel transmit

Final WAIT

End of test

- 173 -

11.7 Hard-ware Interfacing Routines

As was mentioned in the previous chapter, the hardware interfacing

routines form the one software component that has to be planned and

written anew for each new system. These routines provide the real

environment into which fits the communications package. These routines

must be designed to produce the standard interfaces to the real

environment which the communications package expects.

The characteristics of this standard interface have been described

previously, but it is useful to summarize them here.

Hardware to software:-

RECEIVE - next input character assembled-, only occurs after package

has selected receive mode and all leading SYN characters

have been removed

TRANS!'T - next output character required; only occurs after package

has selected transmit mode and all leading SYN characters

have been generated

ANP1LYZESTATIJS - (or ERROR) - an error condition has been detected by

the communications hardware which must be notified to the

software; TIMEOUT can only occur after a STARIPIMER

command has been issued; LOST CARRIER and DATA OVERRUN

can only occur when the package is actively receiving

data; PARITY can only occur when the package is actively

receiving data and parity-checking mode has been selected;

MODEM FAULT can occur at any time after the hardware

has been initialized.

- 174 -

These three interrupts should not interrupt each other.

Software to Hardware:-

READDATA - get latest input character (after RECEIVE)

WRITEDATA - put next output character (after TRANSMIT)

READSTATUS - get latest error report (after ERROR)

WRITECONTROL-- perform control function from list -

SELECT SYN CHARACTER ,SET/RESET PARITY

CHECKING,ENTER RECEIVE MODE ,ENTER

TRANSMIT MODE ,START TIMER, RESET COMMUNICATIONS CHANNEL,

ENABLE/DISABLE COMMUNICATIONS INTERRUPTS

'Yhen implementing this interfacing software, it should be

noted that it is not always necessary or even possible to implement

the complete specification. For example, the communications

hardware way not give any indic'.tin of LOST CARRIER or MODEM FAULT

error conditions and there is no way in which the software can

determine the modem status independently. Also, it is not necessary

to implement the parity checking features if i is known that the

transmission code to be used does not make use of bharacter parity.

The ENABLE/DISABLE INTERRUPTS control commands are only needed as a

means of making the user interface routines RE.ADBLOCK and WRITEBLOCK

non-interruptible by communications interrupts. Normally, execution

of these routines would not be interrupted anyway because neither the

receive or transmit channel is enabled when these routines are called

(see state diagrams),

- 175 -

However, there are special optional protocol sequences which

may be implemented to prevent timeout errors at the other end when

there are long delays between successive calls on READBLOCK and

WRITEBLOCK, such as might occur when very slow peripherals are being

used, e.g. incremental graph plotter. The special sequences are

described later in the chapter on communications protocols. The

effect of them is that the communications channel my be active when

READBLOCK or WRITEBLOCK is called, and communicatiors interrupts may

occur. In this case, it would be necessary to implement the ENABLE/

DISABLE INTERRUPTS facility in order to prevent the. interruption of

the execution of these routines, which alter a number of state

variables.

For normal operation, the minimum features of the hardware interfacing

routines which must be provided for the communications package to work

are: -

RECEIVE

TRANSMIT

ERROR with TIMEOUT

READDATA

WRITEDATA

READSTATUS

WRITECONTROL with SELECT SYN ,ENTER RECEIVE, ErTER TRANSMIT,

START TIMER, RESET COMMUNICATIONS CHANNEL

No particular guidelines can be given about how these hardware

interface routines should be implemented on a particular system,

although the versions produced so fr could usefully be studied. If

- 1T6 -

the IMP version of the communications package is being used, it

is essential that the first-level interrupt routines set up the

correct IMP run-time environment, such as stack pointers, before

calling the IMP interrupt routines. it is also necessary to

preserve the state of the interrupted IMP run-time environment,

where this involves unique store locations, for a safe return from

the interrupt.

Testing the hardware interfacing routines

The hardware interface routines can only be properly tested

using the real hardware in a real-time environment. The code

involved is generally sufficiently simple that there is little point

in running it in simulated mode first. If the code involved is at

all complex on a particular system, as was the case with the Modular

One where input synchronisation had to be performed by software,

the complicated logic paths can first be checked out in an off-line

mode using special tests.

After any initial off-line tests have been performed, the way

to check out this component is to include a very simple set of routines

in place of the communications package. This simple set of routines

accepts interrupts via the interrupt interface and generates calls on

the hardware control routines to test all the functions. This simple

set of routines does not implement any protocol, but just provides for

input or output of very simple messages. A minimal set can be used

to mirror the functions of the simple hardware test programs described

under communications hardware checkout procedures. These provide

for input and output of single character inessagesL-qply, and a timeout

test.

- 177 -

The coding for an IMP version of these tests is given on

following pages. It is a trivial matter to code equivalent tests

in the particular language being used. The tests shown will test

out the minimum functions of the hardware interface software as

defined above. The tests can be easily extended to test any other

functions. If these tests are performed correctly, then the

system should be ready for trying the communications package proper.

11.8 User Interface routines and executive interface

The functions of the four user interface routines have been

described previously. It may be necessary to re-code parts of these

routines for a new system, depending on the particular mechanism used

for calling routines and passing parameters. The executive interface

is also considered here, since this is normally initialized as one of

the functions of the INIT routine, and this will certainly need to be

re-coded for a new system.

The four parameters interchanged between the user program and the

communications package are buffer addreas, buffer size or character

count, transparency mode flag, end-of-file flag. There is no

particular difficulty associated with transferring those parameters

except for the buffer address parameter. This will normally involve

the manipulation of actual machine addresses which is not always

possible in a high-level language. This will either have to be

resolved by the use of in-line machine code, or by having the data

buffers defined as arrays and explicity referenced by name by both

user program and communications package.

BEGIN
TEST 	PROGRAM 	FOR 	HARDWARE INTERFACE 	ROUTINES,

%INTEGER 	CHAR.NUMPAPS, STATUS.TEST
<CODE 	FOR 	HARDWARE 	CONTROL 	ROUTINES 	HERE.>

%RO1ITINE 	INIT
SIMPLE 	INIT 	ROUTINE 	FOR 	HARDWARE 	AND 	EXECUTIVE 	INITIAI..1ZING,

W R IT E CO N I RU L (RESET C H A N NE L)
WRITECONTROL(SETIBMSYW)

<PERFORM 	NECESSARY 	HARDWARE 	INITIALIZATION 	HERE,>
<PERFORM 	NECESSARY 	EXECUTIVE INITIALIZATION 	HERE.>

%END
%ROUT.IrE 	RECEIVE

SIMPLE 	RECEIVE 	ROUTINE 	TO INPUT 	ONE 	CHARACTER,
CHARREADDATA ,!FETCH 	THE 	INPUT 	CHARACTER
WRITECONTROL(RESETCHANNEL) I! 	AND 	CANCEL 	RECEIVE 	MODE,
END

%ROUTINE 	TRANSMIT
SIMPLE 	TRANSMIT 	ROUTINE 	TO OUTPUT 	ONE 	CHARACTER.

%IF 	CHAR>=O ZTHENSTART JITEST 	IF 	DATA 	CHAR 	OUTPUT
WRITEDATA(CHAR); 	CHAR-1 ;!.IF 	NOT 	, 	DO 	IT 	AND 	SET 	SWITCH.

'/,IF 	NUMPADSO 	%THEN 	WRITECONTROL(RESETCHANNEL);!CtNCFL TRANSMIT
<RET1JRN I! 	UNLESS 	PADS 	TO 	BE 	OUTPUT.
% F I N I S H
WRITEDATA(PAD) :tOUTPUT 	1 	OR 	MORE
NUMPADStIUMPADS1 : ! 	PAD 	CHARACTERS
-> 	10 7? 	AFTER 	DATA 	CHARACTERS.
%END
ROUT j NE 	ANALYZESTATUS

STATUS=READSTATUS flFETCH 	STATUS. REPORT
WRITECONTROL(RESETCHANNEL) I! 	AND 	RESET 	CHANNEL.
XENO

MAIN 	CODE 	BEGINS 	HERE.
%SWITCH 	SW(1:3)
I N I T
READ(TEST): 	>SW(TEST)
SW(1): :!INPUT 	TEST
10.: 	C?$AR.1 WET 	INVALID 	CHARACTER
WRITECONTROL(ENTERPX) ,!ENABLE 	RECEIVE 	CHANNEL

->11 	'.UNLESS 	CHAR>=0 ;!WAIT 	FOR 	INPUT 	CHARACTER
WRITEOCT(CHAR) :!PRINT 	IT 	OUT
-> 	10 ;!REPEAT 	TEST
SW) 	- 	- t!OUTPIJT 	TEST
O: CHAR READOCT 	 ;!FETCH A CHARACTER FOR TRANSMISSION
NUMPADS1 	 WET CORRECT NUMBER OF PADS (0.1 0R2)
WRITECONTROL(ENTERRX) 	!ENTER TRANSMIT MODE
21 	-> 21 %UNLESS CHAR<O ZAND NUMPADS=O ;!TEST OUTPUT .IOMPLETE
PRINTSTRINCI('TX') 	 :?INFORM OPERATOR
NEWLINE
->20 	 :IREPEAT TEST
SW(3): 	 :!TIMEOUT TEST

STATUS=-1 . 	 ;!SET INVALID STATUS REPORT
WPITECONTROL(STARTTIMER) 	;IS-TART TIMER

->31 %(JNLESS STATUS>=O 	:!WAIT FOR STATUS REPORT
WRITEOCT(STATIJS))!PRINT IT FOR OPERATOR
-> 30 	 . 	;!REPEAT TEST

SUITABLE VERSIONS OF READOCT AND WRITFOCT NIUST BE INCLUDED TO
ALLOW COMI.UJNICATION. WITH THE OPERATOR,

N U OF PRO G P A H

- 178 -

Any required hardware initialization should be included as part

of the INIT routine. This involves selecting the particular SYN

character to be used and setting the hardware into a state which can

be controlled by the use of the four hardware control routines.

The executive interface must be correctly initialized from the

INIT routine such that any communications interrupts are routed through

to the appropriate first-level interrupt handler.

Testing of user interface routines and executive interface

The user interface routines form part of the communications

package as tested by the steering file method. Since these tests

are performed using the language to be used for the final implementation,

the same user interface routines are applicable to the final working

version. Problems in connection with passing machine addresses as

parameters can be resolved at that early stage.

Those parts of the INIT routine which are different on a new

system, i.e. hardware initialization and executive interface

initialization, can be tested as part of the tests on the hardware

interface routines. Those tests are carried out in a real environment

and as such include a minimal INIT routine to perform initialization

of hardware and executive interface.

If those tests, which use the real hardware and the real executive

are performed correctly then the same 11q1V code will work in the

complete system.

- 179

11.9 Conclusions about tranBerability

This chapter has attempted to give a complete and detailed

description of a step-by-step procedure for transferring the

communication system to a new small computer. This requires no

understanding of the detailed internal workings of the system, merely

an appreciation of the interfaces it presents to the real environment

and sufficient knowledge of the new small computer to be able to match

these interfaces correctly. The system therefore has the desired

'plug-in' capability.

Using the procedures described in this chapter, new versions of

the system have been produced, as described in the previous chapter,

by people with no previous experience of the system or of

communications and with little previous experience of the particular

small computer used. The time taken has been three to four man-

months, including hand translation from Il to assembler. For an

experienced person using the IPT version directly, implementation

of a new version should take no more than one month, including

familiarisation with the new hardware.

- 180 -

Chapter 12

COMMUNICATIONS PROTOCOLS FOR INTER-COMPUTER WORKING

12.1 Introduction

This report has concerned itself so far with just one type of

communications protocol, namely half-duplex point-to-point protocol

for one way working. All the programming work described relates

only to this type of protocol, and primarily to one particular

implementation of it, namely IBM Binary Synchronous protocol (BSC),

although all half-duplex point-to-point protocols are similar, as

has been mentioned previously.

Further work has been carried out, which relates to the

development and implementation of other protocols. The details

of this work have not been described here, since it adds nothing

new to the ideas that have been developed in this report except in

so far as confirming the usefulness of the ideas in new applications,

since the same techniques have been used. However, the experience

gained from this work on other protocols could usefully be applied

in comparing different types of protocol and judging their

suitability in different applications. That is the purpose of this

chapter.

It is not proposed to give an exhaustive account of protocols

since the general subject is a large one, and the detailed study of

particular aspects of protocols could form the basis of a thesis in

(26) its own right, as has already happened 	, It is intended rather

to indicate the essential features of protocols and to bring out the

points where comparisons between different ones should be made,

- 181 -

illustrating this by reference to some examples of existing

protocols. Only protocols used for point-to-point links are

considered, since this is the normal method of inter-computer

connection.

122 General characteristics of protocols

A communications protocol can be defined as a set of rules to

be followed by two ends of a communications link to ensure reliable

and error-free transmission over that link. In order that a data

communication technique can be justifiably described as a protocol,

it must demonstrate certain eaential characteristics in order to

comply with these criteria of reliable and error-free transmission.

If the data transfer is to be reliable, then no data should

be sent unless the receiver indicates that it is willing to receive

it. This means that the receiver must have complete control over

the rate at which data is sent to it so there must be a 'atop/continue'

response, or 'logical acknowledgement', which is generated by the

receiver after receiving data.

To ensure error-free transmission of data, each data block must

include a redundance check, which may be character parity and block

parity or other forms of block check sum. The receiver should send

a 'positive acknowledge' response if the block is received correctly

or a 'negative acknowledge' response to request a re-transmission

if the block is received incorrectly. This response is called the

'physical acknowledgement'. Thus, any data which does suffer

transmission errors is recoverable.

- 182 -

Although redundancy check schemes cannot guarantee 100% error

detection, the methods currently in use come very close to this.

For example, a VRC/LRC check will detect all single error bursts up

to 8 bits in length and over 99% of others; a CRC check will detect

all single error bursts up to 16 bits in length and over 99.99% of

others (2T).

The protocol must also include other error control procedures

in addition to the basic block check in order to recover from lost

or completely corrupted transmissions. The use of block seqienee

counts, checking of all control sequences and the use of timerts

are techniques used to prevent lost or duplicated data blocks

going undetected.

123 Examination of existing protocols

• A number of such protocols have been devised and implemented,

varying considerably in the way the link can be used. There is

currently no widely implemented international standard

p- otocol and computer manufacturers generally support a protocol

peculiar to their own systems, although the simpler protocols have

a lot in common. There is currently work in progress in ISO to

(28) define a new, sophisticated protocol 	which should be suitable

for a wide range of applications.

This protocol has not yet been agreed by the major

manufacturers, and even if they do agree, it will be many years

before it becomes widely available because it requires completely

different communications hardware, incompatible with any presently

used on major computers.

- 183

In the meantime, protocols currently in use or envisaged can

be grouped under three headings:-

half—duplex with data transmission one way at a time

half—duplex with alternate two—way data transmission

interleaved

full—duplex with two—way data transmission simultaneously

These three groups will now be considered separately, giving a

description of the protocols in terms of the criteria above and

commenting on the usefulness and areas of applicability, efficiency

and complexity of implementation of the protocols.

12. 	Applicability of protocols

Areas of applicability relate to such things as bulk data

transmission, Remote Job Entry applications, facilities for operators

of bulk data transmission systems, interactive applications where a

rapid interchange of data is a requirement, data collection

applications where the data is not stored on a physical medium

but is generated dynamically at a rate independent of the line

speed.

12.5 Efficiency of protocols

Efficiency is a measure of the useful data traffic over the link

and is defined as the ratio of actual user data transmitted per

second to the quoted transmission rate of the link (e.g. 2400 baud),

this figure being expressed as a percentage. The calculations of

efficiency assume that the line speed is the limiting factor in

the system. it is assumed that any peripherals involved are fast

- 184 -

enough to keep the line fully loaded and that sufficient buffering

is performed to permit maximum overlap of line activity and

peripheral activity. This obviously depends on the particular

application and implementation but economic line speeds are still

relatively so low that maximum line efficiency is considered to

be an important objective of a communication system. Obviously,

there may be applications where high line efficiency is not important

and a high speed link is intentionally under-utilized. In such

systems these efficiency considerations are not relevant.

A major factor in efficiency considerations relates to the use

of a 2-wire or 4-wire communications link. A 4-wire link provides

two independent circuits for the transmit and receive paths, while

a 2-wire link provides a single circuit which must be used alternately

for transmit and receive. Al-wire link can support both half-duplex

and full-duplex protocols, while a 2-wire link can support only a

half-duplex protocol. A4-wire link can only be obtained by renting

a private line from the G.P.O. 	Links that make use of the normal

telephone network can only be 2-wire, unless two separate links are

used in parallel, i.e. using 4 modems.

The difference between the two types of link arises from the

use of half-duplex protocols. In a half-duplex protocol, transmission

over the link only ever takes place in one direction at a time.

Each end is either transmitting or receiving, never both:at.the same

time. A half-duplex protocol relies on a 'hand-shaking' arrangement

whereby protocol messages are exchanged one-for-one, with each end

transmitting a message and then waiting to receive a response.

- 185. -

In order to transmit a message, data carrier must be generated

and stabilised, before any actual data can be sent and this process

can take up to about 100 (29) . At the end of the message, carrier

is removed to return the circuit to a quiescent state and this also

takes a finite time to ensure that all oscillations have subsided.

On a 4-wire link, data carrier can be maintained permanently in

both directions even though no data is being transmitted. This

means that data can be transmitted immediately without waiting to

establish the carrier and similarly there is no delay at the end

of a message when carrier is removed.

On a 2-wire link, since the same circuit is used for both

transmitting and receiving, carrier must be established and removed

for each message to free the circuit for the response in the opposite

direction, which likewise involves establishing and removing carrier.

Each change of direction of transmission, or line turnaround,

therefore involves establishing and removing carrier, which can add

up to 200 ins to the actual. message transmission time.

Any protocol which involved frequent line turnaround or hasa

short average message length comparable with the line turnaround

time will have a much lower efficiency on a 2-wire link than a 4-wire

link. These considerations obviously do not apply to full-duplex

protocols which can only operate over a 4-wire link.

The line efficiency can be increased by using a bigger average

block size, such that the message transmission time becomes

significantly larger than line turnaround time. This process cannot

be continued to give indefinitely increasing line efficiency, however,

- 186 -

since a larger block is more susceptible to transmission errors

requiring a retransmission of the whole block. There is thus an

Optimum block size which is determined by the amount of buffer store

available and the line error rate for any particular situation.

A graph of line efficiency against average block size would have

the general shape shown in Figure 12.1. The position of the peaks

and the maximum efficiency attainable for a particular protocol is

very much dependent upon the error rate for the particular link in

use.

L -

Stock SLze

E-fc.t of 	 € o dac*. 	sss'ov.

The 2-wire link is assumed to have a smaller optimum block size

because the use of switched network facilities normally gives a

higher error rate.

A detailed analysis of line efficiency in relation to average

block size and line error rates is given in references (30) and

(31).

18T -

12.6 Implementation complexity

Complexity of implementation relates to the implementation of

a communications system using the particular protocol on a small

computer. This includes the number of distinct protocol sequences

that have to be recognised and generated, the overall complexity

of the system, including the user program part, and whether this

needs to support multiprogramming.

12.7 Half-duplex pr'otocol with one-wax data traffic.

This is the simplest type of communications protocol and is one

level of the IBM Binary Synchronous protocol (32) (BSc) and one level

of the ISO Basic Mode Control Procedures, as used by ICL.

In the following description, the terms 'master' and 'slave'

will be used to denote respectively the end transmitting data and

the end receiving data. A pictorial representation is given in

Figure 12.2.

This protocol starts with a link idle condition and permits

either end to bid for control of the link to send data by transmitting

an enquiry (ENQ) character. This can obviously produce a contention

situation if both ends bid for control of the link at the same time.

This can be resbived either by operator intervention or by

designating one end as 'primary' and the other end as 'secondary'.

The distinction lies in giving the primary a shorter timeout than

the. secondary for ENQ retransmission, The secondary will give up

its attempt for the line if it receives an ENQ in response to its own

ENQ. If the end receiving E1Q wishes to receive data,,-

ccco 	 R5s04 -co

SEND BLOCK £ 	S1*(t 	tok 1>ETB<cc> >

POSt1VE ACV, 10 -OC.(£

SE.ND BLOCK 2. 	 STX(S) E1(baa ormck) 	 LS kN &EEVED BLOC-K

NA(NEGA1'4E,

RSENb BLOCK 	 S1X<cZ>ET8(bcc>

ACI1<O 	 A ILEt,E COc.Ec- r BLOCK

SNb ?L.00K 3 	 SiX (D33>E1B(c)

— NO cES?oNSE 	 AC.V.i 	 ACO E\t - LOST

PEcu$ 	PEAT 	 E N Q -

EP'P1 ACK

SEND BL-OCK 4 	 SiX<>ET8(tc),

ROKO 	 Ac cE Boc- L-

SEND .LOc.%' 	 STX(OS> E1B<'bc.c> 	> BLOCK NO

TU1E0T — NO R5ONSE 	 NO ACK SENT

Ech)s -r R.EEAT 	 - 	 ENQ

_____________________________EPEPT PREVIOUS RESPONSE

RESEND BLOCK 5 	 STX<bB5>ETh<bcc>

FkcKt 	 ____ ACO,/LEcE BLOC.K £

SENb FtNAL BLOCK 	 X(D>X(co)

ACKO - ICOEE BLOCK 6

EOT

FURE 122 LNE EX 	PNG1ES VJtT -% 	LF-JPLE(ONE-\Pf PpoToCOt

SFUM

it responds with a positive acknowledgement (ACKO) and assumes

slave status. Upon receiving this response, the other end

assumes master status and can transmit data.

A complete file of data is then transmitted by the master as

a series of message blocks, each block containing error-checking

information. If a data block is received correctly, the slave

responds with a positive acknowledgement when it is ready for the

next block. This then constitutes both the physical and logical

acknowledgement. All blocks are therefore individually

acknowledged and the transmission proceeds in a 'hand-shaking'

fashion. Alternating odd and even positive acknowledgements (ACKO

and ACK1) are used to ensure that no block is lost as a result of

an error situation. If a block is received incorrectly, the slave

transmits a negative acknowledgement (NAK) to request a re-transmission.

When the master has sent a block, it starts a time interval to await

the response. If the time interval lapses before the response is

received, the master sends an 'ENQ' character to request a repeat of

the last response.

If the slave does not recognize the data being received as a

data block or a control sequence, or if it receives nothing at all

for a period of time, it should make no response. Using these

measures, lost or completely corrupted transmissions are recoverable.

Transmission continues block by block until the master has no

more data to send, which it indicates by transmitting end-of-file

either using a different block-ending character (ETX instead of ETB)

or an end-of-transmission control character (EOT) or both.

After an end-of-file, the link returns to an idle condition, and

the appropriate procedure for starting a transmission must be used

before any more data can be sent in either direction.

With these protocols, it is also possible to send addressing

information with the data in order to select one of a number of

alternative, peripherals to receive the data. The way in which this

addressing mechanism is implemented differs from system to system.

The peripheral address may be included with the initial ENQ, it

may be included, in every data block or it may just be sent when it

is required to switch from the current peripheral to a different one.

This mechanism permits, for example,..the operator's console

typewriter to be addressed directly so that relevant information

can be easily displayed for the operator.

This describes the basic rules for this type of protocol, which

can be seen to have a number of limitations. Firstly, once data

transmission has started in one direction, there is no way that the

direction of transmission can be turned around until after end-of-

file, even if the slave has an urgent message to transmit. Secondly,

if the slave is outputting the data to a very slow peripheral such

that it cannot accept any more data Ciown the link because its buffers

are not empty, the slave must withhold the positive acknowledgement

for the previous block since sending it would imply that it was

ready for another block. This will cause timeout errors at the

master which will be indistinguishable from real error conditions.

A similar situation exists when the master is taking the data from

a very slow peripheral, which will cause timeout conditions at the

- 190 -

slave. Neither condition causes any loss of data, but if either

end interprets a long timeout as a permanent error condition, it is

liable to abort the transmission and not continue.

Additional protocol sequences are defined within the BSC

protocol to cater for both the above situations, although it is not

mandatory that they be implemented. There are two solutions to the

problem of the slave having an urgent message to transmit. The

first allows the slave to transmit a single data block instead of a

positive acknowledgement. Transmission then continues as before

and a short reverse message has been transmitted without changing

the general direction of data transmission. This is known as a

'conversational acknowledgement' and is useful for operator commands

or messages against the general data flow. The other solution

allows the slave to transmit a 'reverse interrupt' (iwI) acknowledgement

in place of a positive acknowledgement as a signal that it wishes to

reverse the direction of data transfer. The master should then

empty its buffers and send an immediate end-of-file, after which the

direction of transmission can be turned around. This then allows

for a complete reversal of data direction on demand from the slave.

This solution implies that one end has an overall higher priority

for data transmission than the other end, since if both ends try

to use the facility it would be difficult to achieve data transfer

in either direction without continual interruptions.

The solution to the second problem above also involves the use

of a special acknowledgement instead of a positive acknowledgement.

This is known as 'wait before transmit' or WA. This is sent to

- 19]. -

prevent the master from timing-out and means that the previous block

has been correctly received but there is not yet a buffer available

for the next one. The master responds with 'ENQ' and the slave

can continue to transmit 'IIABT until it has a buffer available when

it will transmit the correct positive acknowledgement, and

transmission can proceed. This mechanism allows the hysical and

logical acknowledgements to be separated. A similar solution can

be used by a master if it has no data immediately available to

send and wishes to prevent the slave from timing-out. It sends a

'temporary text delay' (TTD) sequence in place of a text block, to

which the slave should respond with NAIC. This exchange can

continue until the master has data available again.

Sequences are also defined within the ICL use of ISO Basic Mode

protocol to cater for the above limitations. The form of

acknowledgement used in this protocol is <status> ACK, where the

status field includes the odd/even acknowledgement switch. Other

flags are included in the status field to indicate 'buffer full',

meaning that the slave cannot receive any more data at the moment,

and 'attention', meaning that the operator wishes to send an input

message. These two responses are roughly analagous to WART and

RVI respectively in BSC. There is no direct equivalent of the TTD

Sequence. If the master temporarily has no data tôisend, it

transmits EOT without the preceding end-of-file indication normally

sent when no more data is available, so that the slave can distinguish

between the two conditions,

- 192 -

Applicability

This type of protocol is, therefore, applicable where bulk

transmission of data is required between two points, e.g. Remote

Job Entry, and where the limitation of predominantly uni-directional

data transfer does not present any problems. This implies that

the data will normally be stored on some physical medium, since

there is no guarantee that data gathered or generated dynamically can

be transmitted immediately unless the circuit is dedicated to

transmission in one direction permanently.

The protocol is not suitable for situations requiring a rapid

exchange of data, such as in interactive applications, since the

procedure for reversing the direction of transmission is cumbersome

and comparatively slow compared with the actual data rate.

However, most bulk data transmission applications requiring

the higher speeds provided by synchronous transmissions are not

seriously hampered by these limitations and this type of protocol

is probably more widely used than any other for this sort of

application. The main problem arises from the inability of the

operator to send or receive control information while transmission

is in progress and this problem can be overcome if the 'conversational'

response (BSc) or the 'attention' response (icL/ISO) is implemented.

Efficiency

The efficiency of line utilization with this type of protocol

can be very high and is dependent on the maximum block size used

and the delay involved in line turnaround. This latter factor is

- 193 -

dependent upon the use of a 2-wire or 4-wire communications link,

as explained previously, and the time taken to analyze the input

message and generate the appropriate response, which time will be

the same for 2-wire and 14-wire links.

Assuming a simple non-transparent text block with framing

characters STX and ETX and two block check characters, an

acknowledgement of two characters, and six leading SYN characters

on each message, the redundancy due to control characters for a

single data block is eighteen characters. With the IBM BSC

protocol, a common maximum block size is 400 characters with an

average of about 360, so that control characters use only about

5% of the line capacity. This gives a maximum line utilization

of about 95% of useful data, assuming a Is-wire link with negligible

turnaround delay. On a 2-wire circuit with a 200 ins turnaround

delay, assuming a 2400 baud line and average block size of 360

characters, approximately 30% of line capacity is lost in turnaround

time since there are two line turnarounds for each block. The

effective line utilization then drops to a much lower 65% of quoted

data rate, so the difference is considerable.

The standard ICL terminal using a protocol of this type employs

a maximum buffer size of 80 characters and an average of only 50

characters. The average useful line utilization on a 1-wire line

is then only about 70%, and on a 2-wire line drops considerably to

well under 50%.

The efficiency of this type of protocol can therefore be close

to 100% on a 1-wire line provided the average block size is much

- 194 -

larger than the number of control characters required for each block

transmitted. The problem of turnaround delay on a 2-wire link is

common to all protocols and can only be minimised by a large average

block size. The larger the block size, the greater the

susceptibility to transmission errors requiring a re-transmission,

so a suitable compromise must be reached (see introductory section).

Since 2-wire links are normally associated, with the Public Telephone

Network and have a very variable quality, it is difficult to make

any confident estimates of what this compromise is likely to be.

The 1 00 character maximum block size used by ERCC in an extensive

trial of Public Network operation at 2I00 baud produced a

recoverable error rate of about 	but no tests were done

with a different block size.

Implementation complexity

A communication system using t1iis type of protocol can be

implemented with the minimum of complexity since the protocol imposes

a liritation of only one active function at any one time. The

implementation details of the communications protocol package have

been given in a previous chapter and require some code at the user

program level and some code at the interrupt level'. The overall

structure of the system is very simple requiring only single-thread

programming at the user level and the capability to handle a single

interrupt level. A minimal executive can be used TI no multi-

programming capability.

The user program, once started, traces a single-thread execution

driving only .one peripheral and making the necessary calls on the

- 195 -

communications package. There is no necessity for any asynchronous

activity in the user program if the executive handles all local

peripheral interrupts to provide an autonomous transfer capability

for the user program. The user program runs as a sequential process

and can be.éily tested. in a controlled fashion, as described

previously. There is no problem on controlling the use of any

shared resources, such as core space or processor time, since the

single activity user program has the sole use of all resources at

its level, the interrupt program execution being transparent to the

user level.

As an example of the minimal complexity involved in systems of

this type, PDP-8 and PDP-l1 implementations require only 14K core to

support a configuration of, say, teletype, card reader and line

printer, and this includes two liOO character buffers to double-buffer

line activity.

A minor extra complication arises in the communications package

if the optional extra facilities (conversational response, Hill,

WABT, TI'D as described above) are implemented. In the case of

'conversational response' and Hill, this merely involves changes in

detailed coding, including error recovery, and an extension of the

user interface. The use of WABT and I'.PD, however, involve the

communications package in self-generated activity independent of any

call on the user interface, since these features are intended for

use as time-fill sequences n the absence of user requests. Since

a user request may occur at any time while one of these sequences

is in progress, care must be taken to ensure the proper synchronization

196 -

of fresh user line activity with line activity caused by one of

these sequences, as the two must not interfere with each other.

The line handler for an implementation of BBC point-to-point

protocol with all the optional features has to recognize a number

of distinct communication sequences off the line. These are

ENQ,ACKO and ACK1,NAK,WABT,TTD,RVI,EOT, transparent and non-

transparent data blocks, and the ones to be recognized depend on

the current direction of data traffic. The actions to be taken

on errors are also dependent on the traffic direction. This means

that there is a considerable amount of decision making needed at the

interrupt level, as is evidenced by the complex state diagrams shown

previously which apply mostly to the interrupt level.

12.8 Half-Duplex with two-way data transmission interleaved

In applications where the limitation of one-way data traffic is

unacceptable but where the restriction to a half-duplex communications

facility still applies, a number of protocols have been devised to

permit two-way transmission of data on an interleaved basis. The

single transmission facility is used alternately in either direction,

with rapid switching of direction, in some cases on a block-at-a-time

basis. Depending on the actual line speed and the amount of

buffering used, this can give the impression of simultaneous input

and output operation.

There are two different types of protocol in this group, one

"
'33) typified by the upper level of the ISO Basic Mode 	protoclat

used by ICL and the other by the 'Multi-Leaving' procbocoti 	as used

by IBM.

- 197 -

With a communications link using ISO Basic Mode (see Figure 12.3)

one end of the link is designated as the control station and this end

controls the flow of data in both directions by the use of polling

sequences. The controlled station performs no action unless in

response to a signal from the controlling station, and can never

take the initiative in starting a data transfer. In the general

case, there can be multiple streams of data in both directions, all

of which can be open simultaneously. Each stream has a unique

address on the controlled station, e.g a card reader stream might

be stream 1, paper tape reader stream 2, operator console input

stream 3, line printer output stream 4, etc., although streams do not

have to be associated with actual physical devices. The controlled

station usually has a unique address (different from stream addresses)

associated with it as well to allow for shared use of the link by

different stations on a switched basis.

The first action taken by the controlling station is to send

a poll sequence of the form EOT - <station address> - ENQ. If the

address matches its own, the controlled station should respond with

a sequence of the form <address> <status> - ACK. The status field

is a bit pattern which gives an indication of which data streams

are available for data transfer, e.g. if the line printer were

operational, this stream would be signalled as available for data

transfer, but if there were no cards in the card reader, then this

stream would be signalled as unavailable.

The controlling station examines the status field of the response

and decides on which stream to initiate a data transfer, It then

COj -çcOLLE R
	

COtOLLD

ENRF- 	 oT<$-c,\-coN A)EQ

J\ 	O'EPILL S.TPCO.

;Lc-1otcc)T Si&EP4 	O(OYVP)T PbD'>

TS EMO P.OJ MASER(<O),'UT PDK)S>PCK ESPC 	'rH SRA'\ 1PCVIJS

BLOCK j O F 	$5P% 	 S<PA .LOCA&

OK

/

(cU1P - S

MPL LOCK 05 çsSiE S<t, P 	C-(PEt t& ERROR

_____________________ RE-QiS -c 	ppçr

SEP.th 	oct< 	 S1X<LOCJ<. Z)X<c..cL>)

<p!J -c;) -c 	ct)S)AC(- cocc- pct<

NERI\L ROLL 	P 	EO(tO 	>EN

(ct 	 OS'>AC.%(cESc'oc 	\iJt-t ocPLL £ThT 4 J

SELEC.c 	N't I-4P)1 	b>EQ > t'k 	O'i.J VIP5ER

STX<LOC<. .tOCt(MESSACiE

	

REspot4D o(<COt.1OL- S)S>PCK >

EOT 	 LINK

	

GEERAL PQLL 	 f\) Et4

SP%'Ict b>Ic< oJMLL s-ccccuS

OTREP.tt EOV<V pbb>ENQ ,

E IS1uS>P c, Q$ 	\J -c-k SlW\ SAUS

ELOC-t< I 6 1F MG:5SAC4E•

<o -'c' -c ss">p.cc 	 o.

Ft4ftL 	 9LOCK toç

- t'Q RES?OSE

(o3 -cç'e --($ AVUS>Ac 	jEcEf\ 	LFSc tE.SPOSE

LOC 2. AGM 	STXKLOCK

(<otc'r ScPccuS>.ACK RESPCN OK

SAR C'ICLE AAt4, 	 Sc tVtO'&)Et' 	
>

NO'lE 	-t USE OFNORMAL- O-''Jy ' -cOCOL oc 	 s 5ASLtS4ED

FIGURE t2.3 LINE EXCHANGES FOR SQ HALF—DUPLEX -JO—''JA'Y eROTOC

/

MME

sends out a sequence EOT -<stream address> ENQ, specifying the

stream it has selected. If this is an inbound stream to the

controlling station, the controlled station should respond with a

block of data for that stream. If the controlling station responds

with <status> - ACK, the controlled station can send another block

of data for the same stream. In other words, once the stream has

been selected, the protocol reverts to the simple one-way point-to-

point protocol and data transfer can continue on the. same stream,

with the normal point-to-point error* recovery procedures being used.

If the controlled station has no more data to send on that stream,

it transmits an end-of-transmission (E0T) character. The controlling

station can then either try to select one of the other available

streams or send a general poll to the station again. Alternatively,

at any point during transmission on the inbound stream, the

controlling station can send a new strew select sequence, instead

of the acknowledgement, to select a different stream even though

there is still data available for the first stream selected. The

controlling station can also set a status bit in its acknowledgement

to request the controlled station to stop transmission after the

current buffer. Thus, the controlling station can switch streams

dynamically at any point to any one of the streams marked as available

after the last general poll.

If the controlling station selects an outbound stream, the

controlled station should respond with <stream address> <status> -

ACK this time giving the status of the aeleetedstream, e.g. data

transfer can continue, data buffer temporarily full, output device

non-operational, etc. Assuming the status indicates that data

transfer can proceed, then the controlling station sends a block of

data for the stream. Data transfer then continues under control

of a one-tray point-to-point type protocol in a similar way to

inbound streams. If at any point, the status response from the

controlled station indicates that data transfer cannot proceed, the

controlling station will stop sending data on that stream and will

send out another stream select sequence for a different stream or

a general poll to the controlled station. Alternatively the

controlling station can send out a new stream select sequence at

any point instead of a data block, thereby switching to a different

stream.

The responsibility for initiating transfers on any stream,

therefore, always rests with the controlling station and it makes

decisions on the basis of information received from the controlled

station about the status of the streams.

With this protocol, it is possible to support multiple two-way

data traffic by switching frequently between streams. If a number

of streams were active, the controlling station would have to

schedule use of the link between them, possibly on a round-robin

basis, in order to keep them all serviced. The controlling station

must send out a general poll at frequent intervals so that the

availability of a new stream can be detected' as soon as possible.

This protocol is inherently unsymmetrical and *ill not operate if

two controlling stations or two controlled stations try to communicate

with each other.

- 200 -

With the other type of protocol in this group, namely Multi-

Leaving (refer to Figure 12.), both ends of the link are equivalent

once communication has been established and neither end has control

over the other. Communication is established by one end or the

other sending the character sequence SOH-EN. The end that receives

this responds with an acknowledgement, ACKO, and the link is then

established and any further use of the link is enti.y symmetrical.

There are only three distinct communication sequences that can

be transmitted by either end. These are a data block, which may

contain data and/or control information, ACKO, which is transmitted

when there is no data block to be sent, and NAK, which is sent to

request a re-transmission. The reception of ACKO or a data-block

implies a positive physical acknowledgement for the last data block

transmitted. The control signals of the protocol, used to start and

stop/continue streams, are sent in the form of data blocks rather

than as special communication sequences. Multiple two-way streams

can be used with this protocol, and all streams are assigned a

unique address of 8 bits.

When the link has been established, but no data transfer has

been started, the ACKO sequence is transmitted back and fore from

end to end at frequent intervals.

The responsibility for the next transmission over the link

lies with the end that last received something. Control over the

link is therefore exchanged everytime a transmission takes place

and communication proceeds on a hand-shaking basis. The one

exception to this rule arises in certain line error conditions.

ICfL. 	5Q.Ut4C SO-t-4Q

ACO INT%F\L 	SOSI

NO 	VA 	O SENb ACO

< STX&BLOCr(£><R 	USTA)ETB Q\ - 	- o £-1P%R-1 	£1REFN 	J _

pg 	st ot 	s-cRAf1 A - SX4i-.00 	 tSS%CN A)

EI'JE 	p4 r=PPOK< STX<z)<\PcVA A>ETB I,ATF¼ Fov, 	At-1 A -

RIQUT g.EpET

SX<V, 	'>ETB

Kt40WLEDG! AC.i(O

< S<3>.tATP A)ErB MORE bPA Foc 	stM'1 A

-"OLD UPrRAt4 A

-(Ac- '- o -ro 	s-

u -r FO 	 F& B), B

< S 	 et -c pssor' 	FOR S-rREAM B

CONTINUE A 	DPA 16 SX<-><'-V A)<AA 	>

COt 	tU 	B, 	PTS A

HOLD STREAM ADAA B OLN A)<bFVA

AC-(.O NO 	'A-VA 	To 	1'I)

PAf\ StEA 	, %<)Lb A)<1VV 	B>B) RECtL\IED IN ERROR

TIYtEOUT-NO RSPOtSE 	 N <. NA. 	LOS1

-_ - NNK

AcO %.)EA1 	LAST 	O-NM

SNb BLOCK 6 AGAIN S1X<C- A)PP BLOC-(Los -T-

PA V% RQ!sV 	REc'EI\T

BLOCK 6 ONCE AAtN

AC-Ko 	- AO\.ILEDG1 E 	BLOC4< 6

CON1tN)E A, END B s<i><coVA)<

s-rx(6>DA- 	AE.TB

MORE 	iVA FOR STREAM A _

NO bATA -CO SEND ACKO

FIUR 	2.4. LINE EXCHAE FOR HALF-DUPLEX MuL-rt-LAvIN

/

- 201 -

Whenever one end completes a transmit sequence, it reverts to

receive mode but sets a timeout for 3 seconds. This timeout is to

prevent the link hanging up with both ends in receive mode after a

transmission has been lost for any reason. If the timeout expires,

then that end transmits a NAK sequence to request repeat of the

last transmission. If one, end is in receive mode and receives a

N.AK, then it repeats the last non-NAK transmission, whatever it was.

Clearly, if one end has just received something and has no

data immediately waiting to be sent in response, then 'it must send

some response, say, ACKO, within the timeout period to prevent the

other end from timing out. This requirement produces the regular

ACKO exchange when no data is being transmitted. This idle ACKO

sequence should not be sent more frequently than, say, once per

second, to prevent excessive interference with the system at either

end when the line is idle, assuming that one or other end is performing

other work as well.

The responsibility for initiation of data transfer on a

particular stream lies with the source of data for that strewn. To

start an outbound stream, therefore, e.g. when a card reader has been

loaded with cards, the source end constructs a data buffer with a

'start stream request' control sequence, specifying the required

stream. If the source and currently has control of the link, the

buffer can be sent immediately, otherwise it must wait until the

other end transfers link control by transmitting something. If the

receiving end for that stream wishes to accept data, it likewise

constructs a data buffer with a 'start stream permission' control

sequence, again specifying the stream address. When this is

- 202 -

transmitted back to the source end, the source can then send data

blocks for that stream.

Any number of streams up to the maximum configuration can be

started in this way in either direction. It is always the

responsibility of the source end of a data stream to start data

transfer on that stream by means of the appropriate control

sequence. , Since this control sequence must be acknowledged-by

the receiver of the data stream, there is no possibility of

unsolicited data being transmitted. An end-of-file control sequence

from the source end indicates an end of data on that stream until a

further start stream request is made.

Once data transfer on a particular stream has been started,

data will continue to flow from the source unless the receiving end

cannot handle, process or output the data at the rate the source

is generating it. To achieve control over this, a series of bits

called a stream control sequence is included at the start of every

block transmitted. This sequence has one bit assigned for every

inbound stream, and the bit is set on or off to indicate whether

more data can be sent on that stream or not. The state of each

bit in this sequence must be examined by the link handler at the

receiving end to decide what outbound streams can proceed. This

control bit then performs the function of the logical acknowledgement.

The amount of data buffering at the receiving end of each

stream is controlled entirely by the receiving handler and does not

affect the protocol. If a number of outbound streams are active

and can proceed, it is the responsibility of the line handler to

- 203 -

ensure that each is serviced regularly, which may require some

scheduling and this can be organized on a priority or a round-

robin basis, depending on the nature of the data streams.

In normal use, with data streams active in both directions,

data traffic consists entirely of a one-for-one exchange of data

blocks, with each data block implying a positive acknowledgement of

the previous block in the opposite direction. Because alternating

odd and even acknowledgements are not used, a modulo 16 block count

field is included in each block. This should ensure the detection

of duplicate blocks or lost blocks.

Applicability

The area of applicability of both these protocols is obviously

much wider than that for one-way point-to-point protocol, since

multiple two-way data transmission is permitted. The protocols

can still be used for bulk data transmission and can provide

a more powerful facility in this area, allowing for traffic in

both directions. If necessary for hulk transmission, a high-speed

transmission link can support shared use by a number of peripherals,

as in complicated RJE applications. The problem of operator

commands and messages in parallel with data traffic is also easily

handled with these protocols, since the operator merely represents

two additional data streams which can be accommodated without any

special sequences.

These protocols could also handle interactive traffic in

addition to more powerful bulk data transmission. The rapid

- 2O1 -

exchange of short interactive messages is easily accommodated in

both protocols, although it. is rather more cumbersome with ISO

protocol, requiring continuing use of stream selection seqtencea.

The inherently unsymmetrical nature of the ISO protocol limits

its usefulness in general applications. It is oriented primarily

towards communications between terminal devices and a single main

computer, and implies a 'big end' and a 'little end' for each

communication link that uses it. The main computer is always

designated as the controlling station so that it can achieve

complete control over terminal use and general work flow. It is

unfortunate that the protocol cannot be used to communicate between

terminals or between the main computers if the normal protocol

control programs are used. Special versions of the protocol

programs could be written to make a main computer behave like a

terminal or vice versa, but this seems an unsatisfactory way of

handling the problem. The Multi-Leaving protocol, being symmetrical

after initialization, could handle both cases above with no

difficulty.

Both these protocols essentially perform concentrator functions,

replacing a number of parallel, simultaneous uni-directional links

with one link of normally higher speed shared between all the single

streams. This should produce a considerable cost reduction in

charges for modems, transmission lines and other equipment at the

expense of rather more complicated line handling software or

hardware.

- 205 -

Efficiency

The efficiency of these protocols depends on the extent to

which the multiple two-way data traffic facility is actually used.

Both protocols can, of course, be used to support just a single

one-way data stream if required.

At the one extreme, when just a single one-way data stream is

active, the ISO protocol reverts to the simole one-way point-to-point

protocol described previously, with the transmission of only blocks

and acknowledgements. In this case, the efficiency considerations

are exactly the same as for the one-way point-to-point protocol,

and the efficiency can approach 100% on a 4-wire link if the average

block size is much larger than the fixed overhead for control

characters.

The Multi-Leaving protocol used in this way is slightly less

efficient as there is a larger overhead of control characters.

Although transmission consists entirely of the exchange of data

blocks and acknowledgements, each data block contains a small

number of control characters. These currently consist of one

count character, two stream control sequence characters and a

single stream address character identifying each record in the

block. FOr an average record size of 140 characters (measured in

RJE applications) and a maximum block size of 1400 characters, this

will contain an average of 9 records, so that the overhead is 12

characters per block of about 370 characters. The overhead for

transmission control characters is the same as before at 18

characters, so the useful character rate is about 360 out of 390,

- 206 -

just over 90. The efficiencir is therefore still quite high, but

not so high as point-to-point or ISO Drotoèol when used in this

way. The use of a 2-wire link or the existence of long turnaround

delays will affect both urotocols in the same way when used in this

mode.

At the opposite extreme of use, these protocols will be used

to transmit multiple, streams in both directions at the same time

and this mode of use affects the two protocols in different ways.

With the ISO protocol, it is assumed that one data block will

be transmitted for each stream in turn in order to give them all

regular service. This means that the controlling station must

send out a new stream select sequence after each block in order to

switch streams, and also possibly a general poll in order to keep

up to date information about stream availability. In the worst

case, the controlling station sends out a general poll, follo'ed by

a stream select sequence for an outbound stream, followed by a data

block for that stream, with the controlling station making the

appropriate acknowledgement at each stage. This therefore involves

six line exchanges to transmit one data block, and a total of 55

control characters consisting of 6 SYNs for each message, 3

characters for a poll or stream select, 3 characters for an

acknowledgement and 14 non-data characters in the block. Assuming

negligible turnaround delays, this gives an efficiency of about

87% for tLn average block length of 36O characters. If an inbound

stream is selected, the number of line exchanges per block reduces

to 4 and the efficiency rises to about 90 on 360 character blocks.

- 207 -

The efficiency thus generally remains quite high despite the large

number of line eichanges, and this is due to the large average

block size. In some uses of this protocol, the block size is

constrained to only one record per block. Since the average record

size is around ho characters in typical applications, this results

in a very low line efficiency of less than 50%, even on a h-wire

link.

The effect -of a 2-wire link on ISO protocol used in this way

is considerable because of the large number of line turnarounds

required for each data block. For the first two examples given

above, 6 lines turnarounds of 200 ins each would take 1.2 secs in

total, which is the same time as the transmission time for a 360

character block at 2400 baud, so the efficiency drops to around

507j. 	For b line turnarounds, this takes .8 sees to give an

efficiency of about 60% for a 360 character block. The use of

multiple streams with ISO, protocol on a 2-wire link therefore

causes a considerable drop in efficiency, even with large block

size. 	If small block sizes are used, as in the third example

given above, the efficiency becomes very low indeed.

The result of using-Multi-Leaving protocol to transmit streams

in both directions is actually to increase the line efficiency,

since explicit acknowledgements are not needed if data blocks are

being sent in both directions. A data block implies positive

acknowledgement of the previous transmission in the opposite

direction. The overhead on each data block then consists of

the 10 transmission control characters (6 SYN; STX; ETB; 2 block

check characters) plus 3 control characters in the block (block

- 203 -

count; 2 stream control sequence) plus 1 strewn address character

for each record. Assuming a maximum block size of 1100 characters

and an average record size of 110 characters as before, this

overhead amounts to an average of 22 characters on a block of about

360 data characters. This gives a line efficiency of about 95,

which compares with the maximum figure ott1ained with the one-way

point-to-pdd±t protocol.

The effect of using a 2-wire link is to add an overhead of

1 line turnaround for each data block, or about 200 ins extra every

1.2 seconds at 21100 baud. This would reduce the line efficiency
f

to about 80 when data is flowing in both directions.

The Multi-Leaving protocol is therefore seen to give a

hither line efficiency than ISO protocol when transmitting data

in both directions. This is particularly true when a 2-wire

link is used. The effect of using a smaller block size is also

less noticeable with Multi-Leaving protocol.

One can conclude then that the most efficient line utilization

for applications where two-way traffic on aiihàlf-duplex facility

is required is obtained by the Multi-Leaving type of protocol,

which tries to minimise the number of line turnarounds per data

block. This is particularly significant on 2-wire links and since

the use of 2-wire links is likely to increase since the introduction

of the GPO Dial-Up 21100 baud service, this conclusion is very

relevent,

209 -

Implementation complexity

The implementation of a system employing one of these protocols

is an order more complex than one using the simple one-way point-to-

point protocols. Since there can be several data streams in

transit at the same time, this implies the existence of a number

of parallel activities in the system, one for each stream.

For example, on an RJE system, th.re might be separate

activities for the card reader, line printer and operator console,

or on a teletype concentrator there might be one activity for each

teletype. If each activity is written as a separate sequential

process, the overall system must provide some way of sharing the

resources such as CPU time, core store, etc., between the different

activities. Thus, there must be some kind of multiprogrPrnrning

scheduler to control the whole system.

Also, since the communications link is now shared between all

the activities, the line handler is more complex and must service

requests from a number of activities and arrazige to multiplex them

properly. The problem of synchronization between the activities

and the line handler is more complicated. Instead of one

activity having complete control of the line as in the one-way

point-to-point protocol, one activity may make a request while the

line is already active handling a previous request from a different

activity. This means that a system of queues must be used to

provide adoquate buffering between the activities and the line

handler, rather than the simple double-buffering mechanism which

is adequate for the single-activity system. Also, the line handler

- 210 -

itself with a half-duplex protocol must make scheduling decisions

about the use of the line, whether to use it for input or output

at any particular time in order to achieve a proper balance between

inbound and outbound streams, depending on the traffic demand for

the different streams.

The whole system, then, becomes more complicated because of

the need to schedule the allocation of shared resources in order

to achieve optimum efficiency of the overall system.

Compared with the l&k coreLstore systems needed to implement

one-way point-to-point protocol on PDP-8 and PDP-ll, implementation

of 11-SO and Multi-Leaving on a PDP-11 each required 8k of core

store. An indication of the complexity of the line handler for

Multi-Leaving in scheduling line use is shown by the decision tree

used by the line handler after the termination of a line exchange

in reference (35).

The line handler for ISO protocol has to recognize 5 distinct

communications sequences off the line, these being EOT - <address> -

ENQ; <status> ACK; NAK; ENQ; data block. It must generate

5 sequences, as the above but with EOT instead of EOT -'address> -

ENQ. The sequences it must recognize and generate dcnd on

whether an inbound or outbound stream is currently being transfered.

The error recovery procedures are also different for inbound and

outbound streams, and are similar to those for one-way point-to-

point protocol.

There is thus a considerable amount of decision making

necessary at the interrupt level in order to recognize input messages

- 2].1 -

and perform error recovery. The implementation for the controlled

end of the link does not make scheduling decisions for the link

as these are made by the other end, and the controlled end merely

has to do as requested.

The Multi-Leaving line handler has to recognize and generate

only 3 distinct sequences, namely ACKO,NAK 3 data block, apart

from the SOH-ENQ sequence used for initialization. Since the

Multi-Leaving protocol is symmetrical, both ends use the same. error

recovery under all conditions, and both ends must implement the

scheduling decisions for use of the link. The amount of

decision-making at interrupt level is therefore less with Multi-

Leaving than with ISO, but the scheduling decisions are complicated.

12.9 Full-duplex protocol with two-way simultaneous data traffic

The previous section has shown that the use of half-duplex

links to support two-way traffic introduces some awkward problems

of scheduling line activity in order to achieve a balance between

inbound and outbound data streams. These problems arise from

the general difficulty of trying to share a common resource between

two completely different uses. The obvious solution to these

problems is to provide two separate resources to satisfy the two

different uses, instead of trying to share a single resource.

This is the idea behind the introduction of full-duplex protocols

to serve general two-way transmission systems. Each of the two

ways has its own dedicated transmission circuit and the use of this

is always controlled by the same end. No allowance has to be

made for the other end wanting to use the circuit for responses.

- 212 -

The transmitting line handler merely has to schedule the use of

the circuit between all the outbound streams, on a priority or

round-robin basis. Also, since the nature of protocols requires

that some response is 'made to a transmission, responses to data

received on the inbound circuit must be sent on the outbound circuit,

but these can be scheduled in along with the outbound streams.

ISO is currently considering a wide-ranging 'future standard

for data communications, referred to as HDLC, or High-Level Data

Link Control. (28) This standard is intended to cover both full

and half-duplex transmission and many application areas, but only

one level of it will be considered here as an example of full-duplex

computer-computer communications, namely the full-duplex primary-

primary procedures, and Figure 12.5 shows the use of this.

All exchanges in HDLC consist of data blocks - there are no

other communications sequences. All necessary control information

is contained as fields within the data blocks. A circulating

block sequence count is included in each block transmitted along

the same circuit so that the receiver can keep a check on any

blocks lost or duplicated. Each block has a cyclic redundancy check

for error detection. Physical acknowledgements are accomplished

by transmitting the highest block number of the blocks so far

correctly received forming a consecutively numbered sequence.

Thus, if blocks 2,3,14,6 have been received, an acknowledgement is

sent indicating the number 14. It is the responsibility of the

transmitter of the blocks, which knows it has transmitted blocks

2,3,14,5,6, to deduce that blocks 2,3,14 were correctly transmitted,

and free the corresponding buffers, but that an error occured in

S1'1 	St4D 	ACCEPT SEND Ac.c.r'•r 	 ESEt'D SEN1 	SEND 	ACCEPT

BLOCt<. BLOCK 	BLOCK BLOCK BLOCK BLOCK XPCflt 	BLOCI(BLOCK BLOCK 	BLOCK

3 	 :2. 	61.oCK 6 	 g

TX 1 OLtI I 	I AE / D3 / AU.S/ DCJ / NL63 / L33 / bLJ / DE53 / ALbJ /

lOLL.) / ALtTi I oLs-J 	/ 	7 oci/ DC1J / AL -1-3 	/)L(J / All ".3

WE LOC- < RctVE 	NEGAAT04E RC-CEj\lE R.ECEt'JE SLOCK 	gctv LOCKS

BLOCK £ 6L0C%(OL' BLOC(BLCCc, BLOCK

L. AcCE -rED, 5 	a%?EC.1tC \IYrH OUT OF 6 ACCEPIED,

FREE 13LOC.K. CRC seaueNcs, EE FREE

B.)FFER. 2. tERROR t4ORE. B')FFR Bo-VH

AREVtPCrOMS - PC1\ BLOCK M

/• ONE OR MORE 	CONSCL -rYa BLOCK FRVU.0 Cc,c-rERS

AEM] O1i'E PsPONS TO rJAIA cocK M

ND.1) NEFVE RiESPONSE BLOCK M 	PECTE 	NEXT

FtURE 2.4 FULL tJc'LE PRoTOCoL - 	 X bT LO\J AT ONE END OF LINK

- 213 -

block 5 which must be re—transmitted, Block 6 would also be

re—transmitted, and this would be ignored by the receiving end

unless it had discarded the original block 6 because it occurred

out of sequence.

If a block is received in error, or some line error condition

is detected on input, then a negative acknowledgement is transmitted

giving the block number for the nest input block expected. The

transmitter then knows from what point to retransmit. The

transmitter can also send an enquiry sequence, requesting a

repeat of the previous response. Responses are also defined to

indicate lack of availability of buffers at the receiver.

This level of definition of the protocol only covers the

physical aspects. Logical control over individual streams is

effected at a higher level by further control fields within the

data block.

Requests to initiate streams and logical acknowledgements are

sent as control sequences in a data block and all data records

are prefixed by a stream address for identification. Thus, the

physical level is concerned only with the transmission and

reception of blocks in correctly numbered sequences. All other

aspects of the protocol are handled at a logical level based on

block contents.

The transmit and receive line handlers are completely separate

and operate independently. The necessary physical acknowledgements

generated by the receive handler must be placed on a queue for the

- 2114 -

transmit handler, which will schedule them along with other

outbound requests. Also, the physical acknowledgements received

by the receive handler must be handed over to the transmit handler

so that it can decide which buffers to free and which buffers to

send again.

Applicability

The HDLC protocol is intended to be applicable to all

sophisticated transmission systems as a general purpose data

transport facility. This full-duplex primary-primary subset of

it is a symmetrical protocol and should be suitable for the

powerful RJE terminal and interactive applications, both at the

same .time if necessary, provided a sufficiently fast line is used.

No limitations are apparent for large scale systems, although, of

course, it has not actually been used anywhere yet.

It is less suitable for simple applications that could be

adequately handled by one-way point-to-point protocols because

of the extra facilities built in for sophisticated systems, such

as multiple streaius. It should be possible, though, to define

a further subset of it for simple applications that was compatible

at the hardware level with the full specification. This would

allow extra facilities to be added later by software enhancements.

The minimun hardware level involves only the block framing

characters, which are always the same, and the assembly of whole

characters 	Al]. other features could be handled by software

on a simple system.

- 215 -

It should be possible to define a one-way subset that can also

be used with half-duplex facilities. This would then be compatible

with present arrangements for dial-up connections.

Efficiency

The efficiency of HDLC in full-duplex mode, and of full-duplex

protocols in general, can be very high as they can make full use of

a 14-wire link. There are no line turnaround delays, and, provided

the transmitter has sufficient buffering to transmit ahead of

acknowledgements, it can attain practically continuous use of the

transmit circuit with only negligible delays between the end of

one transmission and the beginning of the next to ;è1eàtthe next

item for transmission. The overhead on an HDLC block is only two

framing characters, two block check characters, two block control

characters and one control character for each record.

If data traffic is flowing in the other direction as well,

there are also acknowledgement characters to be sent, but these

are probably best sent as separate blocks so that they can be

acted upon as soon as possible. An acknowledgement block will then

consist of a total of six characters. Assuming that one

acknowledgement is sent for every block and that an equal traffic

is flowing in both directions, the overhead is then 21 characters

for an average block of 360 characters with 9 records. This gives

an efficiency on each circuit of about 95%, or a total efficiency

for the link of' double that of a half-duplex protocol over the

same link. Of course, it should not be difficult for any full

duple protocol to achieve a significantly higher efficiency than

- 216 -

a half-duplex protocol over the same link since it will be using

both circuits simultaneously.

Complexity

The complexity of implementation for a system based on HDLC

full-duplex protocol is the same in terms of the overall system

structure as for the haf-dup1ex protocol supporting multiple

two-way transmission. In other words, the system will consist

of a number of separate parallel activities which must be scheduled

in respect of the use of shared resources. In fact, exactly the

same supporting software could be used for both systems if a

compatible logical record interface were defined to the communications

part of the system. Only the communications package would need to

be different.

The communications package should itself be somewhat simpler

for a full-duplex protocol and consists of two largely independent

handlers - one for receive and one for transmit. The minimal

amount of interaction necessary between the two handlers to

control acknowledgements can be accomplished using store locations

accessible to both handlers. There is no requirement for any

interaction of execution paths - both handlers can progress

independently of each other. The requirement to schedule line

use for input or output disappears completely. A system of queues

between the user program interface and the line handlers will be

necessary in order to Provide effective buffering of line activity,

but this is the same as that required for the half-duplex two-way

protocol.

- 217 -

Since all transactions over the line are in the form of data

blocks, the line handler only has to recognize or generate one

distinct communication sequence. Also, the error recovery is much

simpler. If an input block is found to be in error, then it is

ignored and a negative acknowledgement scheduled for output.

No timeout error recovery 3.8 needed for the receive handler.

The transmit handler will send an enquiry sequence for any block

which has not been acknowledged within a certain time and a timeout

mechanism will be needed by the transmit handler to control this.

If acknowledgements are contained within blocks containing other

data, the maximum waiting time for an acknowledgement should be

the time taken to transmit two full blocks in the opposite

direction, including an allowance, for any possible delay between

the two blocks. As an example, if the maximum block transmission

time is 1 second, a wait time of 2.5 seconds should be adequate.

If acknowledgements are transmitted on their own as special blocks,

a maximum wait time of 1.5 seconds should be adequate in this

example. Blocks that contain only acknowledgements should not

themselves be acknowledged.

On the basis of these comparisons between a system using

half-duplex two-way protocol and one using full-duplex protocol, it

should be possible to support any one application in the same amount

of core with either protocol.

12.10 Conclusions on communications protocols

This section has described a small number of protocols from

the simple to the sophisticated and some general conclusions can be

made about what type of protocol is most suitable in a particular

situation.

For straightforward bulk data transmission systems where

two-way transmission is not an important requirement, there is no

doubt that the one-way point-to-point protocol is the easiest to

use and also provides a good line efficiency. If the

'conversational response' feature is implemented as well, this

overcomes the main drawback of this type of protocol.by providing

for operator communication in parallel with data transfer.

This type of protocol can also use the economical dial-up

2I00 facility if the volume of data involved is not very large.

A system using this typo of protocol is the simplest to implement

and can be fitted into minimum core size machines. This type

of protocol is therefore favoured for simple, low-cost applications.

If necessary, higher speed lines can be used to increase the

throughput capability provided that a fast enough peripheral is

used.

For applications where two-way transmission is essential,

e.g. concentrators, or for increasing the throughput of RJE systems

by using a number of peripherals in parallel, a full-duplex protocol

would be most suitable. A full-duplex system has potentially

double the line efficiency and also is less complicated to implement

than a half-duplex two-war protocol.

A full-duplex protocol, of course, cannot be used on a 2-wire

line, so if there is a requirement to run on dial-up facilities a

- 219 -

full-duplex solution is automatically ruled out and a two-way half-

duplex protocol would have to be used.

If a two-way half-duplex protocol has to be used, then one of

the Multi-Leaving type, which is symmetrical and minimises line

turnarounds, would be most suitable. This gives a better efficiency,

and the same implementation can be used at both ends of the link.

- 220 -

Chapter 13

SYSTEM PROGRAMMING ON SMALL COMPUTERS WITH

HIGH-LEVEL LANGUAGES

13.1 Introduction

The communications package described earlier in this report was

implemented using the high-level language, IMP. This proved to be an

important factor in making the package machine-independent up to a

set of low-level interface routines which had to be hand-coded to

use the package on any particular configuration.

The use of a high-level language forces the programmer to think

in machine-independent terms since he is not able to make use of any

individual 'features of a particular machine (other than wordlength)

except by direct use of machine-code, embedded within the high-level

coding. If all such code is put into small routines and not included

'in-line' then the main body of the program will automatically have

a measure of machine-independence, since there is a strong

possibility that the machine-code subroutines can be re-written to

provide the same function on a different machine.

On certain systems, the 'user program' part of the communications

system was also coded in IMP. Also, the total coding for a system

using the 'Multi-Leaving' protocol has also been written in IMP. This

included independent activities for a number of different peripheral

strewns as well as the Multi-Leaving communications package.

These various programs have involved a number of different

techniques for using a high-level language as well as a number of

- 221 -

different compiler implementations of IMP. The experience gained

from this work has been used to formulate a number of general con-

clusions relevant to the use of high-level languages for system

programming, with particular reference to small computers. These

conclusions will be described in this chapter.

The reference to small computers is significant because they are

becoming increasingly important in computing systems. They are being

used in stand-alone mode in more and more applications as well as in

remote-connection mode to large systems where they can relieve the

main system load by processing small jobs themselves. Also, the time

is approaching when even large powerful systems are likely to be

constructed out of a number of interconnected small computers, each

performing a specific function of the overall system e.g. control of

communications network or control of filing system.

Therefore anything which makes the job of programming these small

systems easier and more efficient is considered important, and there

is no doubt that the use of a 'suitable' high-level language can

contribute to this. The suitability of a language involves the language

itself in terms of the statements and data and program structures that

can be used and also involves the compiler in terms of the sort of

code produced the way the object program is produced and the control

the programmer has over the environment in which the object program.

runs. Both these aspects will be considered in this chapter.

- 222 -

13.2 Compilation on a different computer

The programming work done in fl.1P has been used on three different

small computers - PDP-8, PDP-11 and Modular One. Obviously three

different compilers were usedThut they all had one thing in common.

This was that none of the compilers actually ran on the computer for

which code was being produced. All three compilers ran on much larger

computers, namely the ICL System 4 or the IBM 360/370 at ERCC.

Although the three compilers were written in INP, and therefore

capable of self-compilation, they would have produced programs which

were far too big to be run on all except large-core configurations

of the small computers concerned. The amount of core necessary to

run the compiler, in the majority of cases, would have been much more

than that required to run the applications for which the small computer

was being used. In other words, the compiler would have been the

largest single program running on the small computer.

This demonstrates an important point, which is that if the high-

level language used is to have a full set of facilities, then the

compiler for it is going to be a very large program and will be unable

to run on small or medium size configurations. Conversely, if the

compiler is constrained to be capable of running on all sizes of

configuration, then it will only be possible to implement a limited

set of facilities in the language. Furthermore, there would be

strong pressures for writing the compiler in assembler language in

order to keep the size to a minimum, and this would obviously be

undesirable and against all current trends.

- 223 -

Another measure used to reduce compiler core requirements is to

segment the compiler into a number of phases such as syntax analysis

and code generation and run a multi-pass compiler. This technique

requires that some form of backing-store be available and could not

sensibly be applied to a computer without it. The compiler could

not therefore be used on simple configurations. Anyway, even a

segmented compiler can still require a large amount of core for each

pass and symbol table requirements etc., can be very significant.

Some figures for core requirements of small machine compilers,

some single-pass and some multi-pass, are given in Table 13.1 to

illustrate this argument.

The conclusion to be drawn from this argument is that the

capability to run in small configurations of the target computer should

not be a requirement for a language compiler for small machines. This

would be likely to constrain the set of facilities that could be pro-

vided in the language. The compiler should be written to run on a

large computer, not necessarily the same one as the target machine.

Since communications access from small computers to large computers

is becoming increasingly more widely used, the problem of remote access

to these compilers is easily overcome, using systems similar to those

described in the main body of this report.

Even if the compiler is developed on a different machine from

the target machine, it is still desirable to make the compiler capable

of self-compilation, if possible, to cater for the larger configurations

which might be capable of running it. This, of course, assumes that

the language being compiled is already available on the chosen large

computer.

.7
/

/

COMPILER - COMPUTER
NUMBER

OF
PASSES

APPROX,

SZE

CORAW. MOD i 2.

CPL MOD 3

IMP MODi I

MP I 2.2k

All sizes o.'re ii 	.iotds, Tfot Io.tces(cis5.

TAt,LE 13,1 COMPILER SIZES FOR SMALL Coc1PU1ERS

- 224 -

Use of this method of compiling means that compilers for new

small computers can be developed in parallel with the hardware and

problems encountered during compiler design can even influence the

hardware facilities provided on the small computer. This would also

mean that a high-level language would be available with the earliest

deliveries of a new computer, instead of the present depresssing

situation whereby only an assembler is available in the early days.

This would greatly speed up the development of a complete set of

software for the new computer and could be used for both basic soft-

ware, such as assemblers and linkage editors, and applications packages.

In this chapter, examples will be given in terms of four

languages currently used on small computers - IflP, CORAL, BCPL, FORTRAN.

13.3 Language Facilities - General Considerations

On the basis of the argument above, the main criteria for the

inclusion of a particular facility in a language for a small computer

are whether it is useful and whether it can be compiled into efficient

object code with the hardware facilities available on that computer.

The potential difficulty of implementing the facility in the compiler

is also a criterion to be considered, as each new facility increases

the size and complexity of the compiler. However, this should not be

an overriding criterion, but should merely be used as a guide if

desirable facilities have to be ranked in priority order for implement-

ation.

The consideration of 'efficient object code' relates to both

space and speed, as small computers are normally short of both.

However, savings of space can always be achieved at the expense of

- 225 -

speed by the use of semi-interpretive compilation techniques, i.e.

by generating subroutine calls to built-in routines for a particular

operation or statement in preference to a lengthy sequence of in-line

code. Such techniques are commonly used for array indexing, string

manipulation and stack operations in the absence of suitable hardware

facilities. The use of such techniques can produce very compact, but

slow object code. The emphasis in this chapter will be on basic

facilities which can be implemented with 'speed efficiency' on almost

all existing small computers. For the purpose of the following

discussion, the term 'efficiency' then has the following connotation.

Where, for a particular statement, the compiler can produce code as

good as a hand-coded version of the same statement, this is considered

to be an efficient high-level language implementation of the facility

embodied in the statement.

This would seem to imply that the use of such a high-level

language would be just as efficient as a hand-coded implementation for

a complete program. That this is unlikely ever to be the case is

caused by the fact that an assembly language programmer can take

advantage of special knowledge about the pattern of execution of

individual sections of the program in order to make optimal use of

registers over that section. Since the equivalent section of code in

a. high-level language may need several statements, it is very difficult

for the compiler to make such optimal use of registers, since it does

not have the same special knowledge. The compiler can attempt to

optimize over a group of statements by remembering register contents,

but, without the special knowledge, is unlikely to make as good a job

of it as the assembler programmer. Therefore a complete program can

- 226 -

always be coded more efficiently in assembler than a high-level

language by an experienced and competent programmer.

However, there are disadvantages with such hand.-optimised code

as follows. Firstly, it requires experienced and competent programmers

who are skilful in the use of the particular machine code, and such

people are generally in short supply, whereas an optimizing compiler

will optimize for a programmer who has not had to give much thought

to the production of optimal code.

Secondly, if it becomes necessary to make modifications to a

program, the changes in the machine-code program may upset the hand

optimization such that other parts of the code may need to be re-

written to allow for this. If modifications are made to a high-level

language program, the compiler will automatically adjust the code

produced for adjacent statements to compensate for this. There have

been many instances of hand-coded programs requiring much effort to

modify successfully for this reason. Successful program modification

requires a well-structured program and this can be more easily

achieved using a suitable high-level language. And when was a program

written which didn't subsequently require modification?

The facilities considered in this chapter are oriented towards

use of the languages as a system programming tool. Although some of

the facilities will also be useful in applications programs, facilities

related only to applications programs, such as real arithmetic are

not considered. On a general-purpose machine there are also two

types of system program - those which are necessary to control the

operation of the hardware such as device drivers, schedulers, interrupt

- 227 -

handlers, which normally involve multiple execution paths and

asynchronous events and which the user is not normally aware of, and

those which enable the user to make use of the system, such as compilers,

assemblers, editors, linkers, input/output routine library, etc. This

latter category is really system support software and does not require

multi-threading or asynchronous activity. It is normally considered

by the system to be at the same level as the user program. It is the

former category, that of the low-level system software, which will be

considered here. This is the type of software that is needed for the

small computer when used in a dedicated or special-purpose application,

such as real-time control.

Of the three categories of software - applications, system support

(or ?middleware ?) and system - considerable attention has been given

to the use of high-level languages for the first category, a certain

amount to the second, and relatively little to the third, with some

notable exceptions such as Burroughs IICP and the EIIAS and IiULTICS

systems. Eventually, the use of high-level languages will become common

in all three categories. It is likely that facilities suitable for

one ctegory will not be suitable for the others. This will become

apparent in the remainder of this chapter.

A general point worth making is that system programs need a more

intimate level of access to the actual machine than do other programs.

For this reason, language facilities which are necessary for system

programs may have little use in user programs. In fact, some of the

facilities which will be recommended, such as manipulation of machine

addresses, are potentially dangerous for ordinary user programs. Where

such facilities are recommended, it is intended that they should be

- 228 -

used only by programmers who appreciate the full consequences of

using them. It is certainly the case than an inexperienced user

could hang himself through indiscriminate use of the low-level

facilities. Such facilities are, however 9 essential if the system

programmer is to have full control over the machine and not be pro-

hibited from making use of the full capabilities of the hardware.

13.4 Data Elements

Only those data elements which can be directly referenced and

manipulated by the machine should be implemented. All small computers

can access and manipulate data in whole word form and the different

ways in which this basic unit can be manipulated determines the

allowed data types. A type of INTEGER should be applicable on all

small computers, with the maximum value being determined by the

particular word, size.

Other data types such as BYTEINTEGER or CHARACTER should not be

implemented unless the machine can manipulate information in byte

form. Similarly, type STRING should not be implemented unless the

machine can manipulate information in character form. For some uses

of character strings, e.g. storing fixed messages, it is more efficient

to store the characters in packed form, whereas for other uses involv-

ing moving and comparing strings, it is more efficient to store them

in unpacked form. It would be very difficult for the compiler to

decide which was most efficient in a particular case, and so it is

best left to the programmer who knows how particular strings will be

used in the program.

- 229 -

A number of different representations for integer constants

should be allowed e.G. decimal, octal, hexadecimal, binary, character,

packed character. These can all be converted to integer types as far

as the object program is concerned and therefore introduce no

inefficiency into the object program, while, at the same time, increasing

the convenience for the programmer and making the source program more

intelligible.

It should be possible to initialize any declared variable at

compile time, using a facility such as OWN. The use of a facility

such as CONSTflTEGER (IMP) or MANIFEST (BCPL) should also be allowed,

as this can frequently result in a saving of core space and execution

time through the use of an 'immediate' or 'literal' operand.

13.5

A large amount of information used in a system program is in the

form of tables and lists. Since all small computers provide a means

of addressing tabular data, facilities for representing this should be

included in the language. The two addressing techniques most commonly

used are indiroät addressing and indexed, or base plus displacement,

addressing. The second method requires that the machine has one or

more index or base registers.

Using either of these addressing technique, an ARRAY facility

can be implemented efficiently but using only the data types that can

be directly manipulated, e.g. INTEGER.

Another facility that can be used to provide efficient addressing

of tabular data is the IMP RECORD facility. At the worst, this can

be treated as a simple ARRAY for which all index values are known at

- 230 -

compile time, and elements of the RECORD referred to with indirect

addressing A RECORD can be more efficiently accessed if indexed

addressing is available, because the relative position of any RECORD

element is hnoun at compile time. Valid record elenents are flITEGERs,

IUTEGERARRAYs and RECORDs themselves as well as any additional data

types which may be implemented.

An ARRAY of RECORDs can also be efficiently implemented using

facilities already available for ARRAYS and RECORDs. A list of control

tables is something which occurs very frequently in system programs,

e.g. device control tables,, program control tables, and these are

most clearly represented by flECOflDARRAYs which allow very efficient

access.

Both RECORD and REORDARRAY are facilities which are eceedingly

useful in system program construction and avoid the use of cumbersome

methods of accessing fixed format tabular data through the use of

ordinary ARRAYs. Both facilities should be provided for all small

computers, as in no cases do they introduce any inefficiences. and

in some cases they can make the referencing of tabular data more

efficient. They alco increase the intelligibility of the source

program.

It should be possible to initialize the contents of ARRAYs and

RECORDs at compile time in all cases except where dynamic bounds are

used.

13.6 - chine address manipulation

The ability to menipulate actual machine addresses as used by the

- 23]. -

CPU is also an important requirement of system programs. This

is necessary for control of peripherals in order to specify buffer

addresses, to access store areas not defined within the program and as

a means of communicating information to another program. Such

facilities are provided by the IMP ADDR and built-in mapping functions

and also by the LOCATION and 'anonymous reference' facility of CORAL.

It is also provided in BCPL by means of the @ and operators.

The ADDR function can be implemented on all small computers, since

machine addresses are needed during normal program execution for things

like parameter passing by NAM. Whether they are stored as constants

or generated dynamically at run-time depends on efficiency considera-

tions for a particular machine. Once computer addresses can be

generated, the inverse function of referencing unnamed locations

(mapping) through the use of such addresses is accomplished using

indirect or indexed addressing, and at least one of these facilities

is available on all sinai]. computers.

These two facilities provide the means to access single locations

by machine address. It is also useful to be able to access a whole

table of data by means of a pointer to the start of the table. The

fl' MUM feature provides this facility for RECORDs and for ABBAYs.

In BCPL any variable can be used to point to a table of data. The use

of the RECOEDNAME facility enables repeated references to one member

of a RECORDABBAY to be made more efficient by assigning a RECORDNAME

to that member and treating it as an ordinary RECORD. This is

obviously a useful feature in system programs where a lot of data is

kept in lists of tables.

- 232 -

Assuming that the RECORD descriptor is just a single word, then

the RECORDNA1E assignment can be simply implemented by copying the

descriptor of the RECORD referred to into the NAME variable. Once the

assignment has been made, the elements of the record can be accessed

in the same way as an ordinary RECORD.

The assignment of an ARRAYNAME is slightly more complicated if

a dope vector is being used as an array descriptor. A new dope vector

must be created to fulfil the assignment. However, if the assignment

is to a single-dimension ARRAYI'TAME and array-bound checking is not

in force, then a single word descriptor will suffice here as well.

13.7 Pro am_ Structure _and Statements

The previous section considered the possible types and arrange-

ments of data that could be efficiently implemented on small computers.

This section considers the types of program statement and the statement

constructions in a complete program which are desirable and which can

be implemented efficiently. Facilities which are thought to be

desirable are those which permit a clear description of the problem

being programmed, those which permit efficient use of storage and those

which aid the debugging process.

Some general points can be made here. It is important with systems

programs, some parts of which may be time-critical, that the programmer

have some kind of feel for the likely efficiency of his program, when

using different types of statement. This assumes that he has some

familiarity with the general hardware structure of the machine in

order to see how particular operations might be programmed in assembler.

Because of this, it is important that there is not a lot of

- 233 -

'behind-the--scenes' activity invoked by the object program, whose

presence might not be suspected by the programmer. This applies to

such things as compiler-generated run-time diagnostics, dynamic--storage

allocation schemes, and so on. Although run-time diagnostics facilities

are very convenient during program development, it should be possible

to opt for little or no diagnostics when a program is in production

use.

Also there may be cases where it is expedient to sacrifice space

for speed in the object program, by requesting the compiler to generate

in-line code for particular operations by means of special compiler

control statements. Such facilities make the compiler more complicated

at no extra cost to the overall object program. However, as stated

previously, compiler complication is not an overriding factor if the

facility is useful to the small computer.

13.8 Expressions

There should be no restrictions on the complexity of expressions

which can be written. Techniques for expression-compilation are now

sufficiently well-developed that a compiler can produced code which is

as efficient as that produced by hand-coding, for single and multiple-

accumulator machines. Any arbitrary restrictions on expression com-

plexity such as in certain FORTRAN statements will only force the

programmer to write complicated expressions as a series of simpler

ones, which will not results in any more efficiency.

Since type 'real' is not being considered in this discussion all

expressions will evaluate to type 'integer'. Therefore, wherever the

syntax allows the use of an INTEGER, it should be possible to use an

- 23 -

expression, e.g. as an array index, as a value parameter in a

procedure call, etc.

All these facilities are fully supported in IIP, CORAL and BCPL.

This gives the programmer the capability to specify the problem in

the most suitable way. It is suggested that the full range of

operators, both arithmetic and logical, be made available. On some

small computers which have no hardware multiply/divide and only very

limited logical operations this will inevitably lead to long execution

times for these operations. However, if the computer does not have

the relevant hardware, these operations are also slow when hand-coded

so there is not necessarily any inefficiency introduced through the

use of compiled code. This, however, is one situation where it would

be desirable to have a choice between the use of subroutines and in-

line code so that the programmer could opt for maximum speed where necessary.

13.9 Conditional Statements

The general form of the conditional statement should be permitted

as follows:-

IF <condition> THEN <statement> ELSE <statement>

where <condition.> may be either a simple condition or a compound

condition involving the use of AND and OR;

where <statement> may be either a simple statement or a compound

statement consisting of an arbitrary sequence of statements (including

further conditionals) appropriately bracketed, e.g. by BEGIN-D in

CORAL or START-FINISH in IMP.

- 235 -

Such a facility allows a complicated series of decisions to be

programmed without the use of programmed jumps. The absence of

programed jumps keeps the path of execution under greater control

and makes debugging easier since there is only one route to any

particular statement and it is easier to follow the path of execution.

This tends to produce a better-structured program s more modular and

easier to modify than one with a lot of explicit jumps which can produce

a monolithic tangle of interlocking execution paths.

This capability is present in IMP, CORAL and BCPL. The absence

of this capability is one of the more serious deficiences of FORTRAN.

The use of this capability should not introduce any inefficiences

into the object program when compared with the use of simple IF

statements (as in FORTRAN) and programmed jumps. All that happens is

that the compiler will generate jumps automatically where the programmer

would otherwise code explicit jumps.

The inclusion of the facility obviously implies extensive use of

recursion in the compiler. This is likely to be the case anyway if

modern, syntx--directed compiling techniques are used. It is from the

use of such techniques that the generality and lack of arbitrary

restrictions in present-day languages derives.

There are a number of additional variations on the conditional

statement which allow certain conditions to be expressed more clearly.

These are such things as UNLESS as an alternative to IF, two-sided

conditions (e.g. 0< x <10) and reverse conditional statements, of

the form <simple statement> IF <condition>. These have a certain

advantage over the use of the standard conditional in particular cases

- 236 -

but are not considered to be of major importance. These features are

therefore desirable from the standpoint of achieving maximum clarity

but do not rank high on the priority list.

13.10 Programmed Loops

One of the major A.dvantages of a program definition of a problem

derives from the repetitive execution of particular sequences of

instructions. If it were not for the capability of executing the same

sequence of instructions again and again, there would be no point in

going to the trouble of writing a program to solve the problem. Looping

is therefore an essential element of program construction and if there

are no facilities defined in the language, the programmer has to program

the loops explicitly by using conditionals and programmed jumps. If

looping facilities are included in the language, the compiler can

generate these tests and jumps just as efficiently as the programmer,

and in some cases more efficiently by making use of facilities specially

incorporated in the hardware for loop control, such as increment/decrement

and skip if zero, etc. The provision of loop control statements

therefore reduces the number of explicit program jumps, which is an

important consideration.

The loop control statement should permit the WHILE or UNTIL

form as well as the more conventional FOR N FROM L BY K TO M form since

some program loops cannot be expressed by the latter form and the

programmer would have to resort to explicit tests and jumps again.

13.11 Programmed Transfers

The explicit programmed jump is the standard mechanism for altering

C 	-

the execution sequence to another point in the program. Extensive

use of program jumps can easily produce a program whose path of

execution is difficult to trace back from a statement where a fault

has occurred thereby making debugging more difficult. It can also

produce non-modular programs which are difficult to modify since

the relation of one section of code to another is not easy to see.

Many of the facilities recommended above are intended to reduce

the need for explicit program jumps, if not eliminate them altogether.

It should be possible to program entirely without the use of jumps

if the facilities suggested above are provided, and if subroutines

are used whenever the same section of code is required in more than

one place. This may involve a greater use of subroutines involving

only a small number of statements. However, provided the use of

subroutines does not incur any great inefficiencies, then this is not

a disadvantage. The use of subroutines will be covered later.

Another advantage to be gained from minimum use of programmed

jumps is where the compiler is attempting to perform optimisation of

the compiled code by remembering the contents of registers between

statements. This produces savings where the same variable or constant,

array or record base is used in consecutive statements, since the

compiler can use the value in the register rather than loading it

from store. This can only be done when program execution proceeds

sequentially from one statement to the next. As soon as a statement

with a label is encountered, the register contents must be forgotten

because the statement may then be executed out of sequence. Therefore

the less use of explicit labels, the more effective will be the

compiler optimisation.

- 238 -

There is one area where the use of programmed jumps does confer

distinct advantages and this is with a 'computed jump' or SWITCH

facility. This provides a rapid means of decision-making when the

different values of the main decision variable conform to some kind

of numerical sequence, e.g. 1,2,3, etc. or A,B,C. This can lead to

considerable efficiencies over the use of an explicit test for each

individual case.

13.12 Maclline-code

For systems programs, where it is often necessary to access

directly particular elements of the hardware on a computer, it is

essential to be able to resort to direct machine-code programming

when necessary. This applies to such things as issuing physical

commands to peripherals, accessing processor status registers, and

so on.

These operations cannot be expressed in a high-level language

in a way applicable to all machines since this is one area in which

computers are likely to differ markedly from each other. Although

all such functions should be ccfined to a small number of well-defined

routines, it is still convenient to be able to write them as

syntactically part of the high-level language program rather than

as a separate machine-code library which is linked in at the object

program stage. This has the advantage that subroutine linkage

conventions can still be handled by the compiler and that normal

high-level language statements can continue to be used Where machine-

code is not absolutely necessary, e.g. for loop control or conditionals.

- 239 -

There may also be cases where maximum speed of a particular

section of code is essential, and. this can be achieved only by careful

hand-coding.

Where in-line machine code is used., it is important to have full

access to any variables or named entities declared in the high-level

language. Otherwise, communication between the high-level language

and the machine-code would not be possible.

13.13 Routines andFunctions

Modularity is an important objective in any program, not just

system programs. To this end, the capability to break down a large

program into a number of separate, independent pieces with well-

defined interfaces is very important. This is the facility for

routines or procedures, with functions or value procedures being a

particular variation. The importance of the subroutine concept is

demonstrated by the fact that even the smallest computer has a. hardware

instruction for a subroutine call. The extent to which the hardware

assists with other aspects of subroutine use varies considerably

between computers. This relates to such things as passing parameters,

saving the current register context.

Because of the minimal assistance given on most small computers,

the implementation of subroutine facilities must be very carefully

done if it is not to impose considerable overheads, merely to effect

the subroutine entry and exit. This is one area where it is possible

to incur considerable 'behind-the-scenes' activity without the

programmer being particularly aware of it, which is considered to be

a bad thing for reasons given previously. This is particularly true

if the classical ALGOL-type techniques are used.

I-..,
	

-

In an ALGOL-type scheme, every routine is assumed to be

potentially recursive and the local workspace for the routine execution

is assigned dynamically each time the routine is entered. Also, the

local workspace of the calling sequence must be preserved and its

location remembered for later use. The routine exit sequence then

has to restore the working context of the calling code. This is usually

implemented on an ALGOL-type stack arrangement, and can involve

lengthy manipulations for the saving of registers and stack pointers

on any machine not specifically designed for ALGOL-type dynamic storage

allocation, such as the Burroughs B5500 and its successors. Certainly,

there is no small computer which supports this type of storage

organisation in its basic hardware and a dynamic stack has to be

implemented by software means which involves considerable overheads

for routine entry and exit.

A more efficient system for small computers would assume that

routines were nonrecursive so that local workspace could be assigned

statically at compile time and.would always be at the same place at

run-time. The capability for recursive routines could still be provided

through an explicit declaration, e.g. BECTJRSIVEROUTINE, and the compiler

could then generate alternative entry and exit sequences that allowed

for dynamic assignments of workspace. The programmer would thus have

some control over program efficiency. Since system programs have

little use for recursion anyway, it would represent a potential

improvement in efficiency for small computers if recursion were taken

to be the exception rather than the rule. Both IMP and BCPL assume

recursion at all times while CORAL assumes non-recursion unless told

otherwise.

- 2141 -

The use of statically-assigned workspace for routines is liable

to use more storage than the dynamically-assigned case for the same

program. This is because all routines in the program are unlikely

to be active on a particular execution path and statically-assigned

workspace is not available for anything else if the routine is not

using it. However, to offset this is the fact that more workspace

is needed per routine in the dynamically-assigned case to save the

context and stack pointers relevant to the calling sequence. The

differences in storage requirements in a particular case would be

difficult to predict without a detailed examination of the execution

paths.

13.114 Block Structure

With static storage assignment advantage can be gained from the

intelligent use of block-structuring, i.e. use of BEGIN-END to

bracket sections of program which are independent of each other except

through common use of variables declared at outer lexical levels.

BEGIN-END blocks at the same level can never be active, at the same

time and therefore can share workspace. (The statically-assigned

local workspace is not the same as used in FORTRAN where values are

assumed to be preserved between entries).

This type of storage organisation is that defined for CORAL and

produces a tree-like storage allocation structure whose dimensions

are all known at compile time. This corresponds exactly with standard

FORTRAN OVERLAY schemes and can be represented diagrammatically as in

Figure 13.2, which gives the storage layout for the prgrem in Figure

13.1.

%INTEGER 11,I2,3
INTEGERARRAY P1,A2(1:10)

'/CRCUTINE Ri
%INTEGER 14.15,16

<EXECUTABLE STATEMENTS,>
°i END

VR0UTINE R2
ZINTEGER 17,18.19

<EXECUTABLE STATEMENTS.>
%E1'JD

<EXECUTABLE STATEMENTS.>
/OBEGIN

7O1NTEGER J .J2.J3
ZINTEGERARRAY f31(1 :100)
%POUTINE R3

%INTEGER j4,J5,J6
<EXECUTABLE STATEMENTS,>

<END
°4ROUTINE R4

°/,IMTEGER J7,J8,J9
<EXECUTABLE STATEMENTS.>

%END
<EXECUTABLE STATEMENTS.>

(EN0
CREGIN

7-INTEGER K1,K2,K3
%INTEGERARRAY C1(1:50)
70ROUTINE R50INTEGER A,B,C)

ZINTEGERARRAY C2(1:20)
%INTEGER V6.K5

<EXECUTABLE STATEMENTS,>
%END

°AROUTINE R6
%INTEGER V6.K7

<EXECUTABLE STATEMENTS.>
7,END

%ROUTINE R7
C INTEGER K8,K9
I <EXECUTABLE STATEMENTS,>

• 	%END
<EXECUTABLE STATEMENTS,>

% E N D
°%BEGIN

'/OINTEGERARRAY D1(1;5)
V0INTEGER L1.L2
°/ 13 E G 1 N

7OINTE.GER L3.L4,L5
%INTEGERARRAY D(1:100)
VCROUTINE R8

flNTEGER L6,L7
<EXECUTABLE STATEMENTS.>

/END
<EXECUTABLE STATEMENTS.>

END
%BEGjN

'.INTEGER Ml 142,!43
%RCUTINE P9(%INTEGER X,Y,z)

%INTEGER M4,M5
<EXECUTABLE STATEMENTS.>

EN D
1 <EXECUTABLE STATEMENTS.>
VOEND

<EXECUTABLE STATEMENTS.>
%END

%ENDOFPROGRAM

AY(T

I .

/

-r RI

FURE 13.2 STATIC STO.AE ALLOCATION SCHEME

,,' , - 	 -

This kind of storage allocation is considered to represent an

optimum balance between speed and space for system programs on small

computers where recursion is not used. Of course, if recursion is

necessary then a proper stack mechanism must be provided but the space

for that would come outside and in addition to this static arrangement.

If there is a requirement for dynamic array bounds at run-time, this

also would have to be handled by a proper dynamic storage allocation

s.cheme outside the static storage allocation.

The important thing about the static arrangement is that it gives

the programmer some control over the way that space is used and allows

him to make a trade off between space and speed in any particular

application.

A further advantage of static storage allocation is that the

compiler knows the amount of storage which will be needed by the program

at run-time, and can inform the programmer of this. For a resident

system program, it is essential to know this information so that the

storage can be properly allocated within the system area. In the

dynamic storage case, it is impossible for the compiler to predict

the amount of stare needed, and this has to be found out by a process

of trial and error while running the program or by a careful examin-

ation of the possible execution paths of the program and a knowledge

of the amount of store needed for each routine, which the compiler

can generally predict.

Even for normal user programs, the inability of the coiapiicr to

predict the amount of store needed for execution in the dynamic case

causes difficulties on a machine with no hardware assistance in the

-

dynamic storage allocation. The tendency is for users to request

more store than is actually needed in order to ensure that the

program does not fail.

13.15 Run-time environment

Whenever the compiled code of a high-level language program is

actually run, it is always accompanied by a small body of code which

provides the necessary run--time environment of the program. This

is commonly referred to in Edinburgh as PERM and provides such

facilities as initialization of registers and stack pointers, etc.,

prior to entering the program, dynamic - storage allocation (where used),

routine entry and exit, array indexing and array bound checking, code

for high-level language operations whcch are too complicated to

execute in-line, run-time diagnostic checking, and so on. The user

program is not normally aware of this, as it is included automatically

as part of the running of his program.

For system programs, there may be requirements which render the

standard PERM unsuitable. For instance, it may include a number of

facilities which are not needed by a developed system program, such

as run-time checking. Also, some of the high-level language code may

be entered asynchronously as the result of an interrupt. In this

case, PERM needs to be re-entrant and there must be no interference

between the interrupt code and the interrupted code. In such cases,

it is necessary to write a special PERM which is applicable to the

particular run-time environment.

-- 2L

In order to do this easily, there must be a wefl-d.efined

intexf'ace between the compiled code and the run-time environment

in terms of the functions to be provided. There must also be a

mechanism for dispensing with the standard PERM and using the special

PERVI instead, without changing the compiler itself. Therefore, the

compiler should produce only the compiles code, with a set of un-

resolved external references to PERM which can be included subsequently.

One common way in which this is done with small computers is

for the compiler to produce an assembly code version of the program

with symbolic references to the required PERN functions. The special

FERN (also coded in assembler) can then be added to the compiled code

and the complete package processed by an assembler which automatically

resolves the references to PERU.

This then allows the system programmer complete control over the

run--time environment and he can, for example, implement a different

sort of storage allocation scheme if' the standard one is not appropriate

for the particular application.

13.16 Conclusions

Many of the remarks made in this chapter can be applied to any

programming application and not just systems programming. The set

of facilities suggested would provide an effective programming tool

for any small computer and it is considered that they can all be

implemented with reasonable efficiency compared to hand-coding.

Facilities which require special hardware features for efficient

implementation, such as string manipulation and dynamic storage

assignment, have been deliberately omitted.

Certain facilities such as the general ability to reference

by name entities defined outside the program (external references),

apart from standard library routines, have not been considered although

they become important for large, complex suites of programs which

cannot sensibly be compiled in one operation.

The facilities needed for sound, basic program construction only

have been considered. Undoubtedly other facilities can be added

which have application in particular circumstances. Also, various

frills can be added to provide different syntactic ways of specifying

the same semantic construction, such as the alternative forms of

conditionals mentioned. Additional facilities could be recommended

if extra hardware were available, e.g. byte addressing.

The facilities which are thought to be the most relevant to

system programs, and perhaps not so relevant to applications programs,

are the store mapping and machine addressing capabilities, the RECORD,

RECORDARRAY, RECOflDflA!, and ARRAYHLIE facilities, the ability to

specify options to the compiler to generate in-line code or subroutine

calls for particular operations, the capability for the programmer to

exercise more control over the use of storage in his program, and the

facility for in-line machine-code.

Of the various languages considered, BCPL had the largest

collection of facilities considered relevant to system programs,

although this is partly because IMP as presently implemented on

small computers (e.g. PDP-ll SKIMP) does not have some of the facilities

of full IIT which it is thought could be imDleincnted such as RECORDS.

If this shortcoming were corrected, then IMP and BCPL would be about

-

equivalent. Neither of them however,, have the static storage

assignment capability as used by CORAL, which is important as a

means of controlling speed overheads where timing is critical, as in

Interrupt-handling

-2147—

Chapter 114

CONCLUSIONS

114.1 Introduction

The work described in this report relates to two distinct areas

of computing. One is the area of telecommunications between computers,

the uses to which this can be put and the techniques needed to make

the connection effective. The other area is the one of techniques

for a more sound approach to the construction of complex systems by

the development of standardized modules applicable in a wide range

of environments. The use of such techniques is a step towards the

building of complete systems from offthe shelft components, instead

of building each new system from scratch as at present.

This chapter attempts to summarize the main points of the work

described which are relevant to these two areas. As such, it complements

the remarks made in the introductory chapter listing the areas of work

which would be studied. Also, this chapter makes some predictions

about possible future developments in these two areas by extrapolating

from the results and conclusions actually obtained.

114.2 Uses of Computer Telecommunications

The direct outcome of the work described in this report has been

the establishment of several successful computer communications links

involving a number of different small computers. The list given in

Chapter 10 (Table 10.1) describes those connections completed as at

October 1973, and there were also many other potential connections

at that date. The system developed has thus achieved one of the

- 218 -

stated objectives - that of a wide range of applicability.

Of the connections listed, the majority of the small computers are

used to a large extent for local processing and only use the communi-

cation link to supplement their own resources and facilities. The two

computers are thus working 'in tandem' to solve problems that would

not be suitable for either computer on its own. The link therefore

supports a genuine co-operative operation between the two computers,

with each doing that part of the overall task best suited to it.

The small computer is not merely acting as the dumb satellite of the

large computer but has its own particular contribution to make.

This method of use is considered to be the way in which computer

communication systems will develop in the future to provide

significantly increased facilities to all computer users who can

participate in such developments. Whenever the topic of computer

networks is discussed, the subject of 'load-shedding' seems to be a

favourite application for such networks. Tn the opinion of the author,

the concept of simple load-shedding is considerably over-emphasised

and is not nearly so simple to achieve in practice except in special

situations. The idea of a computer dynamically off-loading work to

another computer which is considered to be under-loaded is rather naive.

First of all, most computers tend to have their peak loads during

the same periods of the days for obvious reasons related to the normal

working hours of the computer users. Secondly, there are not many

jobs capable of running on more than one machine without change. This

applies even to machines of the same type, which support the same

compilers and library facilities. There are still likely to be

- 29 -

differences in Job Control Language, which may use optional facilities

peculiar to one installation.

Furthermore, any job which accesses permanent files can only

be sensibly run on the computer on which the files reside. Any

alternative will only become feasible when data communication speeds

become comparable with those for standard file residence devices, i.e.

upwards of 1 Megabit per second. Even assuming that it is possible

to detect those jobs which do not refer to permanent files by

examining the Job Control Language, on many systems it is possible

for one job to generate a second job, whose file requirements could be

quite different from the original job.

The objective of using computer networks for automatic load—

shedding is therefore difficult to achieve in practice and could only

be applied to a restricted set of jobs.

The full potential of computer networks will only be achieved when

the user who is submitting the work is involved in the process of

deciding the best place to run it. In other words, transfer of work in

a computer network should only be done under explicit instruction or

advice from the user. The real purpose of a network should be to provide

a wider range of facilities than could economically be provided at

one installation and then make it easy for the user to access them.

The user will quickly decide on the best way of getting his work done,

using the machine that is most suitable for any particular task.

This is one of the important conclusions that has come out of the

work on linked computers. If proper note is taken of the capabilities

- 250 -

present at both ends of the link, then a more satisfactory facility

can be achieved than if one end just acts as a dumb satellite.

14.3 Technical Aspects of Data Communications

The other relevant aspect of the telecommunications work relates

to the communication techniques used to obtain an effective connection.

It was concluded in Chapter 1 that the synchronous method of communi-

cation was more appropriate to computer-computer operation because of

the requirement for fully automatic detection and recovery from error

conditions and the higher speeds possible than for human-oriented

communications. The asynchronous method of communication has advantages

of cheapness and simplicity when applied to low data-rate systems, but

these advantages do not carry over when applied to higher-speed computer-

computer communications.

Given the requirement for fully automatic error detection and

recovery, some kind of communications protocol is necessary. The one

implemented was the simplest sort with the intention of being compatible

with different main computers (see Chapter 5). This was achieved in the

limited Edinburgh environment and it seems likely that it could also

be achieved in a wider environment if ever the need arose, especially

if the modifications to the communication software suggested in section

9.7 were carried out.

Although the implementation of only one type of commnications

protocol was described in detail in this report, a study of other,

more complicated protocols was carried out. A comparison between

them was given in Chapter 12. As far as is knowfl) this represents

the first attempt at a critical comparison between these different

- 251 -

types of protocol in judging their suitability for differcnt applications.

In view of the varying levels of complexity associated with these

different protocols for different requirements, it seems unlikely that

any future industry—wide protocol can be uniformly applied to all

situations. Such a protocol would have to be sufficiently powerful

to handle the more sophisticated systems, and this would render it

unnecessarily complex for systems with simple requirements. Any

universal protocol, therefore, would have to be defined at a number

of levels of complexity, from the simple one—way—at—a—time half—duplex

system to the powerful multi—stream full—duplex system.

All such levels should be comatible in respect of the unit of

physical transfer over the communications line, i.e. the block.

The block—framing characters and the type of redundancy check used

should be the same at all levels so that any particular terminal or

computer can equip itself with hardware which will be able to

autonomously assemble a block of data from the line. The interpretation

of the contents of the block may then be dependent on the particular

level of protocol in use and is analyzed by software. A terminal or

computer can then upgrade the level of protocol it supports by software

changes without new hardware being necessary.

This degree of flexibility can only be achieved at present either

by having minimal hardware which merely assembles characters from the

line and leaves the rest to software or by having complex hardware

that has a large number of software—controlled options, typically

implemented with a microprogrammed controller, which therefore becomes

a very expensive solution. If everyone could agree as to what

- 252 -

constituted a data block, then it would be much easier to handle

communication between dissimilar machines.

A significant amount of effort (described in Chapters 6 and 7) was

directed towards the design of a small computer synchronous cominunica-

tions controller capable of being used to communicate with any type

of main machine. Because of the differences between the communications

connections of these various main machines, this objective could only

be achieved economically by making the hardware very simple and imposing

a considerable burden on the software in respect of making sense of

the sequences of characters that were assembled off the line. The

hardware was therefore capable of handling anything synchronous as

long as it was in 8-bit format.

Since the software has to interpret the characters at interrupt

level, this can present considerable timing problems for the software,

especially at higher speeds, e.g. 9600 baud. It renders communication

at really high cieeds, e.g. 48 kbaud, impossible except on fast

processors which are not doing anything else of higher priority.

As was suggested above, this software burden could be removed if

there was a standardized block format acceptable to all equipment.

Such a thing is defined in the ISO HDLC protocol recommendations (28)

and is designed so as to be easily implementable at the serial-to-

parallel conversion level. Generation and recognition of this type

of block format would be quite simple in hardware. It would thus be

feasible economically to develop an autonomous block transfer controller

for this type of block format for small computers, in the knowledge

that it would be applicable to all synchronous communications systems.

- 253 -

This would relieve the software of all time-critical interrupt responses

in the milli-second region. It would just be necessary for the software

to generate a response to the whole block, and the critical time for

this is of the order of seconds rather than mull-seconds.

One thing this report has shown is that communication with main

computers is more complicated than it needs to be. The different

standards in use involve the small computer software in some fairly

intricate manoeuvres in order to handle the different message sequences

used by the main computers. Some agreement on a standardized unit

of physical transfer would make computer-computer communication much

easier. An analogous situation occurs in respect of so-called

'industry-standard' magnetic tape. This can be used as a means of

transferring data between dissimilar machines even though special

utilities may be needed to unscramble the data once it has been read in.

The important thing is that standard harthrare is available on different

machines which will read the same block from the same magnetic tape

and the problem of data transfer then becomes amenable to a software

solution.

14.4 System Construction Techniques

The other main area, outside of the specialist area of tele-

communications, in which work has been done is that of software engin-

eering or system construction techniques. The impetus for this was

the requirement to develop a system that would run on different small

computers in a wide range of environments.

This objective has certainly been achieved in practice, on the

basis of the number and variety of systems now operational (see Table

- 25 1 -

10.1). A directly useful outcome of the work is that we now have

an "off-the-shelf" component of system software. This can be taken

by anyone and plugged into a new system without modification. The

detailed information contained in Chapters 9, 10 and 11 shoi1d be

sufficient to enable anyone to install this communications component

into a new system or new computer without understanding how it works.

All that is necessary is to produce the layer of interfacing routines

between the communications software and the real environment, and the

requirements for these routines are well-defined.

Also specified are test procedures for ensuring that the interfaces

perform their functions correctly before connecting everything together

into a working package. Also, if the communications software itself

has to be re-translated for a new computer, a standard mechanism is

given for testing out the logic of it in a controlled way before apply-

ing it in the real-time environment. Therefore, by using a certain

amount of intelligence in implementing the interface routines and

following mechanically a prescribed series of steps, it is possible

to add an important new functional capability to a system - that of

communicating with another computer.

14.5 Transferable System Components

This capability for building up a set of basic system software

from components developed on other computers is not really possible

at the present time because the system components have not been

designed to allow this to be easily done. In order for this to be

possible, components must be designed in a machine-independent way

with clearly defined interfaces wherever they interact with therest

of the system.

- 255 -

There are some examples of software outside the basic system

level which have been desicnc in tis way. One of these is the

BCPL compiler
(25), which compiles BPL to a hypothetical machine code,

OCODE, which must then be interpreted or translated for a real target

machine. The compilation of BCPL to OCODE is strictly machine-

independent and OCODE is clearly defined, so that there is a well-

defined interface between the machine-independent part and the real

machine. A similar system is used in the Edinburgh SKIMP compiler.

Both these compilers have been applied to a number of different

target machines by re-writing the interface between the virtual machine

code and the real machine. However, there is no evidence of similar

tecmiies having been applied to basic system software, i.e. device

drivers, interrupt handlers, schedulers, etc.

The idea of having hardware-driving software that is machine-

independent is novel, but has been shown to be applicable in the work

described. There is no reason why similar ideas should not be applied

to other parts of the system, e.g. disc handler, drum handler, scheduler.

They can be coded once in a high-level language in terms of an

idealized hardware interface and then mapped onto the real hardware

in the way described. There is no reason why a disc handler coded in

this way for one system would not be applicable to another system.

The characteristics of all moving-head discs are broadly similar.

Problems n arm scheduling, error recovery, rotational scheduling, etc.

can all be solved once in a particular way, and the same solution would

be applicable to any other moving-head disc. Currently, these problems

are being solved, coded and tested many times over on different systems,

and the solutions being used are probably very similar. However,

- 256 -

because of the structure of current executives, there is no possibility

of plugging in modules developed elwhere.

Therefore, although the existence of the transferable communications

software is useful in itself, it is hoped that the detailed description

of its conception and its development will serve as a useful guide

for the production of other transferable system components. It is

difficult to give a specific set ofrules to be followed butthe

following is a summary of the important points.

14.6 Interfaces

Probably the most important aspect is the careful definition

of interfaces to everything that the component is going to interact

with. The existence of clear interfaces is what makes it possible

for someone to use the component without understanding how it works.

It also facilitates testing, since simple test programs can be

devised to exercise the interfaces. An interface should be defined

in as general a way as possible and should be as simple as is consistent

with the function required.

For each component, there exists what can best be described as

a set of 'natural' interfaces to the environment. This rather

inprecise notion can best be illustrated by some examples.

For the communications system described, the natural user interface

was a block-oriented interface. This would also be a natural interface

for any physical device whose tran3-17ors are blocked, e.g. disc, tape.

This is, of course, only one level of interface. Another level of

user interface can be defined at the logical-record level, but this

- 257 -

is not an alternative to the block interface, rather an addition to

it. Software to support a logical interface would sensibly make use

of a block interface provided by another component.

Similarly, the interrupt interface to the communications package,

consisting of RECEIVE, TRANSMIT and ANALYZESTATUS, is a natural

interface for a two-way single-character communications channel. Also,

the four functions used for software control of the hardware, namely

READDATA, WRITEDATA, READSTATUS and WRITECONTROL, from a naturAl

interface for peripheral control and should be applicable to any

peripherals.

A natural interface to a component is not always immediately

apparent and it may require a number of design :iterations before

the right one is chosen.

It is only through the wide acceptance of and adherence to the

use of universally applicable interfaces for separately identifiable

functions that systems can be easily constructed from ready-made

components. The development of software engineering as a useful

discipline depends to a large extent on the use of such standard

interfaces.

114.7 Real-time components

The use of a finite-state machine representatipnof components

that have to respond to real-time events, e.g. interrupts, eases the

testing problems considerably since components can be thoroughly

tested in a controlled environment before being used. Assuming that

the rest of the system has been properly structured in respect of

- 258 -

communication between asynchronous processes and that system loading

permits adequate response times, then the whole system should perform

correctly without odd hangups sometimes associated with real-time

systems.

114.8 Use of high-level languages

The use of a high-level language is a very important aspect of

the production of transferable software components. Even if the

language cannot be directly compiled for a particilar target machine,

the high-level language coding serves as a system description and as

an authoritative definition of the implementation. The usc of a

high-level language also avoids the temptation to take advantage of

special hardware features available on one machine, which tends to

produce a specific rather than a general solution.

If a high-level language is to be used, then a careful choice

has to be made since all languages or all compilers are not suitable.

Due attention must be given to efficiency considerations and run-time

environment, as well as language features. These considerations were

discussed in chapter 13.

114.9 Transferable Hardware

Although most of this discussion has been concerned with the

software part of the communications sratem, it is worth noting that

a specification was also given for a communications hardware component

that was intended to be easily transferable between machincG. This

was again achieved by the careful choice of an interface which was

capable of being implemented in a compatible way on a number of

-259-

small corPDuters (see Chapter 6). The general form of the interface

defined would be applicable also to other peripherals using a single-

character transfer. The use of a universal interface such as the one

proposed would make it easier to interface new peripherals to a wide

range of sinai]. computers. It is also possible that this interface

could be extended to handle autonomous transfer devices in a uniform

way.

114.10 System Construction in the Future

It is envisaged that in the future it should be possible to

construct a complete set of system software from off-the-shelf system

components instead of having to write a new system from the bottom u

as at present.

Currently, the software for a computer can be divided roughly

into three levels - applications software, system support software

such as language processors, basic executive to control the use of

the hardware. Of these three levels, only the first currently has

a large body of software that is transferable between machines,

through the widespread use of languages like FORTRAN for the implement-

ation of applications packages. Software for the second level has

mainly been written in assembler language and is normally very system-

dependent. Projects such as the 5Th! system
(4)

have attempted to make

this level less system dependent by the use of a high-level language

and the careful structuring of interfaces. With SB1, this level has

been made easily transferable between different machines, provided

the basic system executive provides certain standard facilities, such

as block-oriented peripheral transfers.

- 260 -

At the third level, there has been nothing that has been

demonstrated to be transferable between different machines. Apart

from certain research efforts, e.g. the EAS 6 development, this

level is written in assembler and is very machine-dependent.

However, the work described in this report has produced transferable

software at this level, albeit on small-scale systems, thus demonstrating

the feasibility of making even this level machine-independent to a

large extent • The fact that the work has been done on small-scale

systems is an advantage in that the work involved has been of manageable

proportions for one persox::

There seems to be no reason why other components of basic system

software should not also be written in a machine-independent way, and

thereby made available for different machines.

These basic cornononts would obviously have to be very well

defined, with well-specified interfaces so that they could be properly

incorporated into an overall system. An 'off-the shelf software

conponent would therefore have to be provided with a complete 'product

description' in terms of how to use it and also in terms of its likely

performance characteristics on particular machines.

One could foresee a situation where a range of different software

modules was available for the same function. They would differ in

respect of the way the facilities were implemented in order to lay

emphasis on different things, e.g. efficiency in space or efficiency

in speed, different scheduling algorithms, different techniques for

disc space allocation, degree of fail-safe security in failure

- 261 -

situations, and so on. All these various alternatives could be

provided by different software percs.

Someone constructing a system then has to decide what particular

features are important to him and choose the appropriate package. The

task of system construction then becomes one of choosing a set of off-

the-shelf cormonents for the required functions, selecting those that

exhibit the desired characteristics, which, of course, are likely to

be different for different systems. These system components then have

to be interfaced together according to the defined interfaces, and

this z.-ay involve a certain amount of programming in order to ensure

that interfaces match properly, e.g. interfaces to the actual

peripherals.

One possible consequence of this method of building a system is

that a set of software necessary to do a particular job can be chosen

prior to choosing the hardware. The actual machine used can then be

chosen on the basis of the most economic 'day of running the chosen

software. Therefore, choice of hardware could become far more

application-oriented. This differs from the situation which frequently

pertains at present of choosing the hardware on the basis of apparently

desirable features such as core speed or addressing properties, and

then discoverinm how, if at all, particular applications can he run

on it.

One PVrther consequence of building a very modular system in

this way is that, if the economics justifies it, it is possible to

assign particular components to separate processors as a way of

distributing the overall system load. Since each component has a

- 262 -

well—defined interface, this should be easily accomplished without

affecting the appearance of the component to the rest of the system.

Then, major components such as control of communication network or

a high—level filing system could be devolved to separate processors

to relieve the load on the central part of the system.

1 4. 11 Further Developments

Possible future work in the area of computer telecommunications

suggests itself in relation to improving the communications techniques

used to communicate with the large computers. The work described in

this report was constrained to operate within the limited facilities

presently supported by the large computers. The system developed

therefore supported the simplest type of protocol for reasons of

compatibility.

The indications are, however, that the large computer manufacturers

are adopting a more flexible approach to communications through the

use of programmable communications controllers. Also, there are

moves to adopt a common standard which would permit compatibility at

the level of block formats. It should be possible, therefore, to

cievelop higher level protocol packages for small computers which over-

come some of the limitations of the simple protocols but which are

still compatible with different large computers, even if it involves some

programming work on the large computers as well. There is certainly scope

for improvement in this area.

In the area of system construction and development, there is

scope for the development of further transferable system compo;nents

e.g. multiprogramming monitors, disc filing systems, peripheral control

- 263

systems, and the definition of system interfaces applicable in a

wide range of applications and environments. This should help to

promote the development of more modular systems with structures more

easily understandable.

Further worh is also needed in the development of suitable high-

level languages for small computers. Although much work has been done

in this area, there is certainly scope for further development in order

to increase the facilities provided, such as those suggested in Chapter 13.

Then, these developments need to be exploited and the compilers made

more accessible by making them available on the commonly-used large

computers. Also, compilers are needed which support the same facilities

on a number of different small computers so that transferable systems

are more easily implemented.

- 2614

ACKNOWLEDGEMENTS

The work described was carried out in the Edinburgh Regional

Computing Centre as part of the on-going communications network

development.. This work is under. the general directon• of Mr PQEb

Williams, whose guidance is much appreciated.

Much of the practical work involved the active co-operation

of the ERCC Engineering Support Group in handling the design and

construction of communications hardware. Their involvement in

the testing of various aspects of the overall communication system

was also indispensable.

A more detailed lit of 'items of work involving other peoples

for both hardware and software, is given in Appendix A. 	1. *

The work done on the use of IMP as a vehicle for the communication

system was dependent upon the willing co-operation of the respective

compiler-writers, namely-

S.T. Hayes for PDP-8 IMP

N.H. Shelness for Modular One IMP

J.K. Yarwood for PDP-11 IMP.

The constructive criticism of Professor Michaelson during the

production of the thesis was most valuable.

Thanks are due to Mrs J. Speed and Mrs L. Campbell for their

patient endeavours in typing the thesis.

Finally, thanks are due to my wife, whose patience and encouragement

were instrumental in the timely completion of the thesis.

- 265 -

REFERENCES

MILLS D.L., Topics in Computer Communication Systems. Conconrp
Technical Report 20 University of Michigan, 1969.

MILLS D.L., The Data Concentrator. Concomp Technical Report 8
University of Michigan, 1968.

GOU iH 	 bi eu iiie1ated computers A
Study of Software Design 13roblems. Institute of Computer
Science, ICSP1214 9 1971.

YARWOOD J.K., Towards Machine-Independent Processors. Computer
Bulletin, July 1970, Vol 11, No T.

MILLARD G.E. and YARWOOD J.K., Bridging the Generation Gap
Proceedingsof Conference - Software 72.

HAYES S .T. ' Real-Time Supervisor for Experiment Control by
Computer-Ph.D. thesis, Dept. of Physics, University of
Edinburgh (to be published).

JACKSON J.H., A Conversational System for the Graphical
Specification of Markovian Queuing Networks. Concomp
Technical Report 23 University of Michigan, 1969.

JACKSON J.H. An Executive system for a DEC 339 Computer
Display System. Concomp Technical Report 15 University
of Michigan, 1968.

1. KRETZMER E.R., }JZDdern Techniques for Data Communication over
Telephone Channels. Proceedings of IFIP Congress, Edinburgh,
Aug. 1968 pp. Dl-D5.

BEES D.J. and WHITFIELD H., The IMP Language. Dept. of
Computer Science, University of Edinburgh, 1970.

BABBITT Mrs • M. H., BURNS J • G., }.KENDRICK A • and STEPHENS P. D.,
ADBeference Manual for the Edinburgh IMP Systems Edinburgh
Regional Computing Centre, 1969.

MARTIN J., Chapter on 'Line Errors' in 'Telecommunications
and the Computer' Prentice-Hall, 1969.

PETERSON W.W. and BROWN D.T., Cyclic Codes for Error Detection
Proceedings IRE, January 1961.

Introduction to the IBM 3705 Communications Controller. IBM
Form No. GA27-3051.

The ICL 7905 Communications Control System 7905 Introduction,
Preliminary Edition TP 4364.

0

- 266 -

13. HIGINSON P.L. and KIRSTEIN P.T., On the Computation of Cyclic
Redundancy Checks by Program. Computer Fournal, February
1973 9 Vol 16, No. 1.

11 . CHISHOLM 'R.A.F., A Cyclic Redundancy Check Register. Edinburgh
Regional Computing Centre, 1971.

BARRATT F.E.J., CHISHOLM R.A.F., F'ORDYCE J.G. and ROY A.R.,
Synchronous Communications Liiterface. Edinburgh Regional

- 	 ComputingCentre, 1971.

Specification of the 6310 Synchronous Communications Controller
Data Dynamics Ltd., 1972

CCITT White Book Vol VIII, Recommendation V24

ICL 4100 NICE Executive Reference Manual.

ICL 1100 NEAT Assembler Reference Manual.

20.' Modular One - 1.61 Communications System.Computer Technolo gy
• 	Ltd., Ref. 361E.

21, Modular One E2 Executive. Computer Technolo gy Ltd., Ref.
• 	381/2/lu.

22.. DP11-A Synchronous Line Interface Manual. Digital Equipment
Corporation DEC-11-HDPB-D

23. PDP-l]. Disk Operating System Monitor, Programmers Handbook
Digital Equipment Corporation DEC-11-MWDA-D.

214. WOODWARD P.M., WETHERALL P.R., GORMAN B., Official Definition
of CORAL 66. HMSO, 1970.

RICHARDS M., The BCPL Reference Manual. University of Cambridge
Computing Laboratory, 1969.

RICHARDS M., A Dscription of the BCPL Compiler. University
of Cambridge Computing Laboratory, 1971.

LADNER R.L. Verification of Transmission Algorithms. Ph.D.
thesis, Dept. of Computing and Information Sciences
Case Western Reserve Uniersity, 1970.

EISENBEIS J.L., Conventions for Digital Communication Link Design
IBM Systems Journal 6, No. 14• 1967. 	 •

ISO Draft Recommendation on High-Level DAta Link Control (HDLC)
Se/ -Tc°v'i7~ c — "13 o4

Post Office Engineering Department Specification TG2327A,

ABA Tutorial, Performance of Systems used for Data Transmission
Transfer RAte of Information Bits CACM Vol. 8, No. 5 May 1965.

- 267 -

KUCERA J.J.,Transer Rate of Information Bits. Computer Design,
June 1968.

General Information - Binary Synchronous Communications
IBM Form No. GA27-30014.

Basic Mode Control Procedures for Data Communication Systems
• 	ISO Draft Recommendation No. 1745 ISO/TC97 (Secretariat-180)

278E, 1968.

314. , Post Office Engineering Department Report TD5.3.2/RWB - CP5
'Datel 21400 Dial-up. Analysis of Results of Customer Field
Trial' August 1972.

DAVIES J.I. and BARRY P., A Primer of HASP Multi-Leaving
Edinburgh Regional Computer Centre, 1973.

WHITFIELD H., et al. The EMAS Operating System.Computer
Journal Vol 16, No 14, November 1973.

Appendix A

Chronology of significant developments, indicating items of

work involving other people.

Smmnrn7

The contribution of the author to the hardware work was in the

detailed functiOnal specification of the two communications controllers

described in Chapter 7. The author had no involvement in the actual

implementation of these specifications, except in relation to testing.

Where work on the communications software involved othet people, this

was done under the close direbtion of the author. Unless specifically

mentioned, the author acted only in an advisory capacity in relation

to the development of user programs.

The following list of abbreviations for names will be used:-

ERCC Staff -

R3 - the author -

FB - F.E.J. Barratt, Engineering Support Group (ESG)

RC - R.A.F. Chisholm, ESG

JF - J.G. Fordyce, ESG

AR - A.H. Roy, ESG

JA - J.W. Allan, Communications Software Group (csG)

JD - J.I. Davies, CS

KF - K. Farvis, C (Vacation student)

EM - E.R. Mansion, CSG

GB - J.G. Burns, ERCC/Physics

SH - S.T. Hayes, ERCC/Physics

Other organisations contributing:-

NC - Napier College

DD - Data Dynamics Ltd.,

CL - Cuiham Laboratory of UKAEA

RL - SRC Rutherford High Energy Laboratory

SM - Dept. of Social Medicine, Edinburgh University

GU - Glasgow University

HW - Heriot-Watt University.

The list of developmenta±fs given on the following pages.

YEAR MONTH COMPUTER Brief Description of Work Done Persons
Involved

1969 APRIL PDP-8 Design specification for ERCC Synchronous Controller RJ,RC,JF

JUNE PDP-8 Design specification for communications software RJ
NOV PDP-8 Protot pe of ERCC SCI completed RC,JF

DEC PDP-8 Commim cations Software package completed (written in i) RJ

DEC PDP-8 User p ogram to support calcomp plotter completed GB

1970 JAN PDP-8 ERCC P P-8/1, operational as RJE terminal with plotter RJ,GB,RC,JI
APRIL PDP-8 Communcation software - converted to assembler to reduce size

•

RJ

MAY PDP-8 User piogram extended to. support paper-tape input/output GB

JUNE PDP-8 Design for re-engineered Version of ERCC SCI completed RC,JF,AR,FI

• AUG PDP-7 Communications software package translated for PDP-7,9,15 	 • KF

OCT PDP-8 User program extended to support line printer RJ

NOV PDP-8 First p oduction version of ERCC SCI completed 	 • ESG

DEC PDP-8. User pr gram extended to support DEC-tape 	• 	 • GB,SH

1971 JAN PDP-8 Physics PDP-8 operational with new hardware and DEC-tape software RJ,GB,RC,J

APRIL Mod 1 Simple Jest programs written to test communications hardware RJ,JD

APRIL PDP-8 User pr gram extended to handle card reader RJ,GB

APRIL PnP-8 Social 'ledicine PDP-B operational as RJE terminal with paper-tape and card- RJ,GB,RC,JP
reade software

MAY PDP-8 Compute Science PDP-8 operational as EJE terminal with paper-tape software RJ,GB,RC,JP

YEAR MONTH COMPUTEI Brief Description of Work Done Persons
- Involved

1971 JUNE Mod 1 I?. 	version of communications package transferred from PDP-8 RJ

AUG ICL 1412(ERCC SCI interfaced to 4120 at Napier College RC,JF

AUG ICL 1412(IMP version of communications package and user program translated to NEAT to
run under NICE JD NC JD, NC

Mod. 1 User program to support paper-tape input/output completed (written in IMP) 	- RJ

AUG PDP-8. Design specification cmpletéd for Data Dynamics SCI RJ,DD

SEPT Mod 1 ERCC Modular One operational as RJE terminal RJ

SEPT 14120 Napier College 14120 operational as RJE terminal JD,NC

OCT Mod 1 User program extended to handle card reader and line printer RJ

OCT Mod 1 MRC Modular One operational as RJE terminal RJ

DEC PDP-8 Prototype Data Dynamics SCI completed and tested on' ERCC PDP8/E DD,RJ

1972 JAN PDP-8 Assembler version of communications software modified for Data Dynamics SCI RJ,JD

JAN PDP-11. Simple test programs written to test DP11 controller JA

1972 FEB PDP-8 'User program modified to suit RHEL PDP-8/E DEC-tape requirements RL

MAR PDP-8 Production Version of Data Dynamics SCI completed DD

MA.R PDP-8 RHEL PDP-8/E operational as RJE terminal with Data Dynamics SCI 	- RL

MR PDP-11 IMP communications package and user program translated to PAL11 to run with JA
lox

MY PDP-11 Medical Faculty PDP-11/20 operational as RJE terminal with card reader and JA
line printer

YEAR MONTH, COMPUTE1
1 	0

Brief Description of Work Done
Persons
Involved

1972 JUNE PDP-11 Uer program modified to run under DOS and use disk SM
(cont) SEPT Mod 1 IMP communications package modified to communicate in ISO with System 4-75 EM

1973 JAN PDP-8 User program modified to suppot disk on Glasgow University Physiology Dept. GU
PDP-8/I

MAR PD-& Glasgow Physiology Dept. operational as RJE terminal with ERCC SCI GU
APRIL 14130 User: program modified to support card reader and line printer under DES1 JD,HW
APRIL Mod 1 IMP RJE system modified to run under MISER and with different peripherals CL
MAY Mod 1 User program extended to support CIL graph plotter GU
JULY PDP-11 IMP RJE system transferred from Mod 1 to run on. lOX JA

N

Appendix B

Other available documents on particular implementations.

A number of other documents have been produced during the course

of the work which describe certain aspects of the development in more

detail in relation to specific computers. These documents are

listed here for the benefit of people interested in thos particular

computers.

JOHN R.B., The Interfacing of a PDP-8 computer to HASP as a BSC
RJE terminal as a means of supporting a graph plotter, and
paper-tape input/output. Edinburgh Regional Computing Centre,
1971.

JOHN R.B., Programming Specification for PDP-8 BSC 7ackage
Edinburgh Regional Computing Centre, 1972.

F.ARVIS K., BSC Communications Package for PDP-7,8,9 and Ji 5
Edinburgh Regional Computing Centr, 1970.

GOODWIN D., RJE Input/output Package for the PDP-8
Edinburgh Regional Computing Centre, 1971.

DAVIES J.I., RJE System for the ICL 14100, Edinburgh Rgiona1
Computing Centre, 1971.

JOHN, R.B., Specification of IBM Communications Package for
Modular One Edinburgh Regional Computing Centre, 1973

FORSYTH J. B.., and PENFORL J. q A Remote Job Entry Terminal to the
Rutherford Laboratory IBM 360/195 Cotputer Rutherford Laboratory
Report RHEL/R 261.

ABSTRACT OF THESIS

Name of CandidateRObin B . 	 19.!a 	 ..

Address

Degree.......................... Date

Title of Thesis 	 !.21Tm1....... .. between ...Small4.............

...................................I4ge...Computer.a ...

This thesis describes the development of a data communication system

for small computers to enable them to link to large computers. The

particular advantages and additional facilities made avai].ble to computer

users through the use of such a link are described. A detailed

description is given of the hardware and software components needed to

achieve this link, together with the reasons for choosing the particular

techniques employed. The discussions given highlight the problems

involved in this type of operation. Some of these problems, such as

lack of standardization, are short—term and will be overcome with the

natural evolution of computer systems, while others are of a more

fundamental nature related to the use of data transmission over long

distances.

The system was designed to be applicable to a number of different

small computers. This has resultQ in a system which is easily

transferable between machines, through the careful choice of interfaces

to other components. This is seen as a step towards a more flexible

and more modular method of system construction whereby complete software

systems for arbitrary configurations can be put together using 'off—the-

shelf' components already well—developed and tested. This contrasts with

the present situation in which whole new systems are developed for a

new computer, frequently duplicating systems already developed on other

hardware. A detailed description of the factors involved in producing

machine—independent, easily—transferable system components is given

as a guide to other developments in this direction. It is felt that

there is need for a better—engineered approach to the construction of

software systems and it is hoped that the work described makes somee

contribution towards this end. 	 Use other side if necessary.

