A Description of Mercury
Autocode in Terms of a
Phrase Structure Language

R. A. BROOKER anp D. MORRIS
University of Manchester

THis paper is a sequel to two earlier papers (An Assembly Routine for a
Phrase Structure Language (Refs. 1 and 2)) which describe what amounts
to an autocode for writing autocodes. More precisely, they describe a
system whereby the user can specify by means of ‘phrase definitions’ and
‘statement formats’ the form of the statements (and their constituent
expressions) to be used in the source language program; and by means
of ‘statement definitions’ describe how these are to be translated in the
target language. The system is self-expanding and allows the user to define
the form and meaning of new statements in terms of previous statements
as well as in terms of the ‘basic statements’. The system is also recursive
in the sense that the format patterns may include a repetitive element, for
example, the user may specify that a phrase of a certain type may appear
any number of times at some place in the format, or that in an algebraic
expression involving brackets, the bracketing may extend to any depth.
These are the brief particulars of the assembly routine described in the
aforementioned papers.

It is the purpose of this report to describe how the Mercury autocode
language (see Computer Journal 1, Nos. 1 and 3, and Annual Review No. 1)
which is largely a phrase structure language in the sense referred to here,
can be described and defined in terms of such phrase definitions, etc.
The reason for doing this is partly to illustrate the scope of the system,
‘but also as a useful piece of work in its own right. It is hoped, in fact, to
provide a translation program for MERCURY autocode tapes on

29



30 R. A. Brooker and D. Morris

ATLAS. The only restrictions which arise are concerned with the facility
in MERCURY autocode for ‘breaking into’ machine language. Thisis a
computer oriented facility which to interpret correctly would mean
constructing a digit for digit simulation program. Clearly this would be
unrewarding both in terms of machine time and programming effort,
and instead we propose to inform prospective users that if they wish to
run their current Autocode programs on ATLAS, then they should avoid
using machine instructions. Many forms of the machine instructions can
be interpreted without ambiguity, and it is possible that we shall be able
to relax these restrictions considerably in the final program. The ‘state-
ment definitions’ of such machine instructions are of restricted interest,
however, and we do not propose to present them here.

To understand the program below it is necessary to understand some-
ting about MERCURY autocode, i.e. the source language, something
about the target language, i.e. the order structure of ATLAS, and finally
the meta-syntactical language of the assembly program itself. As already
mentioned, MERCURY autocode has been described in several places,
including the first volume of this Review. It is necessary to say something
about ATLAS, however, since we are not yet able to refer the reader to
an appropriate description. The assembly language will, we hope, be
possible to follow after describing one or two statement definitions in
detail; otherwise we must refer the reader to the papers mentioned
earlier.

A SHORT DESCRIPTION OF ‘ATLAS’

For the purpose of this report ATLAS can be regarded as a one-level
store machine of 48-bit words addressed 0, 2, 4,. . ., or as a set of con-
secutive 24-bit words addressed O, 1, 2, 3, 4, . . .. However, 48-bit
words can only be selected automatically from locations 2r, 2r 4+ 1, not
2r + 1, 2r.

The instructions and floating-point numbers are each represented by
48-bit words, while 24-bit words are used to represent individual addresses,
modifiers, etc. The structure of a floating point number is as follows:

2 2r + 1
47 4039 24,23 0 x.8e
expanent fractional part

where the most significant eight digits represent an octal exponent, and the
remaining forty digits (the ‘fractional part’) give the precision of the



Mercury Autocode in Terms of a Phrase Structure Language 31

number in the form of one sign bit and thirteen octal digits. A number
is in standard form when the fractional part lies in one of the ranges
-1 <x< —} or §<x< 1. The exponent lies in the range
127 = ¢ > — 128, Automatic ‘underflow’ is provided, i.e. if as a result
of an arithmetical operation the exponent becomes < —128 then the
number is automatically replaced by 0-8-%8, If an exponent overflows,
i.e. becomes >127, then a warning is given.
The structure of an instruction is as follows:

2r 2r +1

A

123 1413 76 023 0,

)

F Ba Bm address part

There are 10 function bits which provide, in theory, for 1024 operations.
The two least significant digits of the address part are irrelevant and digit
2 is the ‘units’ digit. This allows for up to 222 24-bit words, but only half
of this can be in the mair store, which is available to the user. The other
addresses relate to special forms of storage ‘behind the scenes’. The bulk
of this hidden store is referred to as the fixed store, and is used to store the
library routines and extracode sequences (explained below).

The main store consists of a core store (with a cycle time of not more
than 2 wusec) and a magnetic drum store, in amounts decided by the
purchaser. The total number of 24-bit registers is theoretically limited to
2% but it is not expected that anyone will actually purchase this amount.
The smallest amount of core store which is allowed for is 16,384 48-bit
words. Arrangements are made so that whatever the proportion of core
store to drum store, the whole can be made to look, with certain restric-
tions, like a large one-level core store. The means by which this is achieved
is beyond the scope of this paper, and for our purpose we may assume a
virtually infinite one-level main store.

The fixed store is constructed from ferrite rods in a woven wire mesh.
The access time is approximately 0-2 usec for reading only: it is not
possible to alter the contents of the store except by manual means, which
involves inserting and removing the ferrite rods by tweezers. There is a
theoretical maximum of 218 48-bit registers, although it is anticipated that
a store of 8192 words will be sufficient for most installations.

Associated with the fixed store is an erasible working store for the use
of the routines in the fixed store. This is called the subsidiary store, and
the standard size is 1024 words.

The Ba and Bm parts of the instruction refer to 128 B-registers which
are separate from the main store. Most of the B-registers consist of 24-bit



32 R. A. Brooker and D. Morris

core store registers with a cycle time of about 0-5 usec, while the rest,
which have special roles, are flip-flops.

The instructions fall into two classes: A-code instructions which relate
to the floating-point accumulator, (the central arithmetic unit); and B-code
instructions which are concerned with setting and adjusting the contents
of the 128 B-registers.

In the A-code instructions the contents of Ba and Bm are first added
to the presumptive address to give the modified address. The operand will
usually be the contents of the 48-bit register thus referred to. In certain
operations, however, the modified address may be interpreted in other
ways.

Associated with the accumulator is an 8-bit octal exponent and a
79-bit fractional part. Operations are available for inserting and extract-
ing information from the least significant 39 bits of 4, but these do not
concern us in the present application, and we shall regard 4 as referring
simply to the most significant 40 bits and the exponent. There is also an
accumulator test register of 2 bits only which record the sign of the
accumulator and whether it is or is not zero.

In the B-code instructions Ba is used as a second operand, and the
address is modified by Bm only. In some B-codes both Ba and Bm are
used as operands, and in this case no modification takes place. Associated
with the B-registers is a B-test register which, like the accumulator test
register, can be set to record the sign and zero status of any B-register.

Certain B-registers are reserved for the use of fixed store routines and
are therefore not generally available, i.e. information can only be left here
at the owner’s risk unless he is sure that any library routines which he is
using do not use them, or alternatively that an ‘interruption’ will not
arise. This refers to time-sharing features of the machine which are again
beyond the scope of this report, but which it is appropriate to mention
very briefly. The logic of the machine allows for peripheral equipment
to be functioning while the main program is running, and only interrupts
the latter when it is necessary to use the arithmetical units to assemble and
dispatch information which has flowed into the peripheral buffers.

Certain B-registers also have a special purpose, most of which do not
concern us here, except for B127 which is synonymous with the main
control register, and B124 which is also the exponent of the accumulator.
The latter in fact only contains 8 bits, the 16 most significant bits being
zero. Itis these B-registers which are constructed of flip-flops. B0 always
contains zero.

As a result of the above provisions, only B-registers 1-80 are generally
available.



Mercury Autocode in Terms of a Phrase Structure Language 33
The Extracode Insiructions

In all instructions the function part is written in the form B000,
where B denotes a binary digit 0,1, and the Os are octal digits 0-7. They
thus correspond to the internal representation of the function part.
B is normally 0 unless the instruction is an exfracode instruction. These
are not built in instructions like the basic instructions, but instead call in
an appropriate sequence of basic instructions in the fixed store. By this
means it has been possible to introduce relatively complicated operations
into the users’ instruction code, while at the same time avoiding the
corresponding complications in the ‘hardware’. Except for the leading
binary digit, extracode instructions have the same appearance and
properties as basic instructions, and comprise both A-codes and B-codes.
When the extracode sequence is entered, the main control (B127) is
halted and the machine switches over to a special extracode control
register (B126). On completion of the sequence main control is resumed
in the usual way. The precise means by which the entry and exit is
effected, and the way in which the information in Ba, Bm and § is made
available to the constituent basic instructions will not concern us here.

The sort of operations for which extracode sequences are employed
are as follows:

1. Instructions which are just too complicated to be included as basic in-
structions, e.g. discriminations involving ‘greater than’,‘modulus’, etc.

2. The more substantial operations such as double length arithmetic,
complex arithmetic, etc.

3. The elementary functions, i.e. sq. rt., sin, cos, etc.

4. Input and output operations. It will not be possible to enlarge on
this aspect of the computer because it is very closely bound up with
the peripheral supervisor system, which looks after the process of
time-sharing. For this reason we cannot yet specify the forms which
these extracodes will take.

SUMMARY OF ATLAS INSTRUCTIONS USED IN THE SEQUEL
(??? indicates that code digits have not yet been finalized).
Basic A-codes

0310 A =4+ S Here A4, A’ indicate the contents of
0352 A =4 x 8§ the accumulator before and after
0374 A == AlS the operation respectively.

0324 A =385 Similarly for S, §* where § denotes
0311 A =4-S8 the floating-point number stand-
0325 A = —§ ing in the register specified by the

0366 § =4 (modified) address part.



34 R. A. Brooker and D. Morris

The A’ = § and §' = A instructions are straightforward copying opera-
tions and can be used for transferring 48-bit words from one part of the
store to another. In the other operations the result is standardized and
rounded. The precise nature of these operations, while relevant in some
applications of the machine, will not concern us here.

A-extracodes

Two sets of extracodes will be provided, similar to the above, in which
the operand is taken to be:

1. One half of the modified address itself, i.e. 4 of (S 4 contents of
Bm + contents of Ba). This allows the modifier indices (which are
usually in 48-bit address units) themselves to be used as floating-
point operands. The address is normally expressed in units of digit 2.

2. The floating-point number standing in the location following that
of the instruction itself. The address part of the instruction is
irrelevant. After the extracode sequence has been completed (main)
control is returned to the instruction following this number. There
is no equivalent of the S’ = A’ code in this case.

A test codes
0234 =0 If the A test register satisfies the specified
0235 #0 condition, then place n (the address part
1?2?2>0 modified by Bm) in the B-register specified by
0236 =0 Ba

Ba is usually taken to be B127 so that the effect is to transfer control if the
condition is satisfied.

Basic B-codes

Here ba, bm, bt denote the initial contents of Ba, Bm, Bt and as before
a prime indicates the final contents.

n denotes the modified address § + bm, and (n) the 24-bit content of
this address.

012] ba' = n

0122 ba’ = ba —n . )

0123 ba' = —n Some instructions for
0124 ba’' =ba + n setting and altering B
0127 ba' =ba & n registers

0101 ba’ = (n)



0170
0172

0203
0224
0225

0226
12?2

Mercury Autocode in Terms of a Phrase Structure Language 35

bt'
bt'
ba'
ba'

ba' -

ba’
ba'

=n —ba Instructions for setting the
= ba —n B test register
if b 0, bm’ = bm —
: ilf b tm:;‘_;) > o m—2 These become conditional
nif bt £ 0 transfers of control if
nifbt >0 Ba = 127. (The last is

nif bt = 0 an extracode.)

Some extracode instructions

1. A set of ten extracodes for replacing 4 by f(A4) where f is one of
the functions:

sq. rt., sin, cos, tan, exp, log, mod, int. pt., fr. pt., sign

2. A pair of extracodes for the function:
(1) 4" = arctan (§/4)
(2) 4" = /(42 + §?)
In (1) and (2) § will be double B modified in the usual way.
3. A =ay + a4 + a,4% + . . . + a,A", where g, is specified by ba,
and n is given by S + bm.
4. An instruction for the operation:

ba' =n + 2 (int pt A)

5. A pair of instructions for transferring control to and returning from
a subroutine. The subroutines may extend to any depth and for this
purpose the links are nested in a set of consecutive 24-bit registers.
The current position in this nest is kept in B90 which is reserved
for this purpose. B90 is advanced and retarded by 1 (address unit)
respectively for every entry and exit. The entry instruction (£5a)
transfers control to n (i.e. § 4 bm). The exit instruction (E5b) causes
control to revert to the original place in the program. The address
part is irrelevant in this case.

THE NATURE OF THE TRANSLATED PROGRAM

In this section we explain the general layout of the target program
which is illustrated on the accompanying diagram. We have endeavoured
to preserve a fairly close correspondence with the internal arrangement
adopted for MERCURY itself. Thus each chapter of instructions is
assumed to occupy a fixed allocation of consecutive registers. The chapters
are stored in the space allocated to the auxiliary store and extend back-
wards from the end of this ‘store’. What it is not possible to achieve is the



36 R. A. Brooker and D. Morris

same ratio between the size of a chapter and the auxiliary store, which on the

MERCURY is: .
1 chapter = 512 auxiliary variables

There, however, an instruction occupied only half the space of a floating-
point number, and although the instruction code of ATLAS is consider-
ably more powerful than that of MERCURY (especially with the aid of
extracode) it is not powerful enough to render always in 440 ATLAS
instructions the equivalent of 892 MERCURY instructions. Fortunately
it is not necessary if an adequate span of storage is allowed for the com-
bined material (i.e. auxiliary variables and translated program).

The « quantities given on the accompanying layout are used in the
relevant statement definitions by the basic compiling instructions. During
the execution of the translated program the index quantities 1, j, &, [, m,
n, 0, P, ¢, 1, 5, t are kept in B-registers 1-12 respectively. Each chapter is
made up as follows:

<.
-«

30

g3 %34 O35
| | ]

h ¥
I chapter proper
——the field directory (16 half words):
(234 + n) is the address of the main

variable [V],, # being the category
of [V], n=1(1)15

the label directory (128 half words):
(g5 -+ 1) is the control number corre-
sponding to label n, n = 1(1)127

ago 18 the size of each chapter

g, is the difference between absolute and relative (i.e. within a sub-
program) chapter numbers of the current chapter

g0 18 the absolute number of the current chapter

Olgg = Oty — Qagtgy 1S the origin of the label directory of the current
chapter

o3y = dg3 -+ 1281s the origin of the field directory of the current chapter

ag5 = o34 + 16 is the start of the chapter proper

agg : at any stage in the assembly of a chapter agq, a3 + 1 give the
(long) location of the next instruction

#3; : at any stage in the allocation of the main variables, i.e. execution

of the directives [V'] = [N], gy, %37 + 1 give the next available
location.



apoocoine X {NOHAW Ul PRA[CAUI [eLisjew jo noke] Suimoys weifeyq [ ‘o1

(prsem st [ + %) g + ug + *0
Jo asnjea ap st (*n) weaSoxdqns yoea Joj
{uiBuo amy) e, L1nuenb Suipuodsaiiod oy pue
IqUNU [eLISS Yy A1 ‘Ut v 7 [ = 4 IYM

37

(1 +4z+%0) pue (4g + *x) swwsFoidqns fo Goyrasp— [4] ssiqertea urew ay—
(u)ys Jo ssaappe [.A4] seiqeraea [eads paurnad ayp—
ayt soa8  (u +— %)  diopasp  sunnoigns—
{41 sepqerrea [eroads syi—
SUOHINIISUL G3 Y1 AqQ PIsN Jsau aurpnoigns
s901put
weiloxd pajefsuen Aq pasn jo 98eioys Arerodway 10§
soeds Sunfiom  snosuelIosI SUOI}ED0[ § PUE & JUEBISUOD 3Y)
wresSoxd pare] Q
-5ueI} AQ PIsn [eLI)eur
J 4 Lﬁ _ wrexdoxd pajejsuery — <« sa[qeneA Arelfixne A
waad [Nlsz] | [ [omdep|pmdepp [0 e g r0l1— esci—| [ [ ]
Bip Up 0lxp &p Wy o 9% It by Ep



38 R. A. Brooker and D. Morris

In addition to the above the following «’s refer to various lists and
nests used in the process of translation. The terms list and nest are used
here in the sense referred to in the earlier papers.

oy, refers to a double entry circular list giving the control number
corresponding to local labels. Words are added to this list in
pairs, the first being the numerical value of the label, while the
second is the corresponding control number.

ay, refers to a nest giving the points in the target program at which
reference is made to a local label. All references to local labels
are filled in when the directive ‘fill in local labels’ appears.
When each reference first appears the 24-bit location in which
the corresponding control number will ultimately be placed is
filled instead by the numerical value of the label. When the
‘fill in’ directive is encountered these locations are extracted one
at a time from the nest, and then looked up in the list a,, to find
the corresponding control number.

The labels dealt with in this way are ‘local’ labels, that is, labels intro-
duced to facilitate the programming of the auxiliary material PERM and
certain statement definitions.

®9q 18 similar to ay, but refers to the chapter labels, i.e. those which the
autocode user himself uses. There is no equivalent to the list oy,
because the functions of this are taken over by the label directory,
which is part of each chapter and is needed during the execution
of the program.

®g4 is @ nest relating to program cross references, i.e. jumps between
one subprogram and another. Words are added to the nest in
pairs, the first of each pair giving the location at which a
presumptive reference must be corrected, while the correction
itself is given in the second word of the pair.

g5 is the ‘cycle’ nest, and refers to the cycling instructions in
MERCURY autocode which take the form, e.g.

i=1(1)10

repeat

These translate into five instructions, three at the head of the
cycle and two at the end. All five, however, are generated at the



Mercury Autocode in Terms of a Phrase Structure Language 39

beginning of the cycle, and the two which will ultimately be placed
at the end of the cycle are recorded in the nest. Cycles within
cycles up to eight deep are permitted on MERCURY itself,
although this restriction could be relaxed on ATLAS.

THE METHOD OF DESCRIPTION OF A PHRASE STRUCTURE
LANGUAGE

Before presenting the formal description of MERCURY autocode as
a phrase structure language, it is desirable to say something about the
method of description itself, although for details we must refer the reader
to our earlier papers. The secondary or source language is described by
means of the following primary statements: phrase definitions, statement
formats, and statement definitions.

The phrase definitions

These are used to build up classes of logically similar phrases. To each
class is assigned a name, the class identifier, which may then be used in
further phrase definitions and statement formats to indicate that any
phrase of the class in question may be substituted in its place. Class
identifiers are represented by a string of characters enclosed in square
brackets (e.g. [IU] is the class identifier we subsequently assign to the
alternatives: if, unless.) Thus, e.g.

phrase defn: [V] =a, b,¢,d, ¢, f, 8, by u, v, w, %, 9, 2, =

defines the class [V] as consisting of any of the lower case letters
indicated. Similarly

phrase defn: [V']=a',b',c,d, e, f, g, b, v, v, w', x5, 2

defines [F’] as any ‘primed’ letter (except «').

Alternatively we could have defined both [V] and [V’] in terms of an
intermediate class [a — &, ¥ — z] say. Thus

phrasedefn: [a — h,u — z) = a, b,¢,d, ¢, f, g, h, u, v, w, x, y, z followed
by

phrase defn: [V] =[a —hu — z], =
phrase defn: [V'] = [a — b, u — z]'

It is conceptually simpler, however, to write out both definitions in full
and in fact is advantageous to keep the ‘depth’ of a definition as small as
possible.

In MERCURY autocode language [V] is the class of names of special
variables and [V'] the primed special variables. The fact that there is no =»’



40 R. A. Brooker and D, Morris

is connected with the layout of the material in the high speed store of
MERCURY. For the present purpose we just have to accept it as an
instance of the many awkward features that are likely to occur in practical
autocodes.

The phrase definitions following [ V] and [V’] in the formal description
should be fairly clear to the reader who has used MERCURY autocode.
Thus [4] means simply ‘plus or minus’. [Y] is the class of names of
floating-point variables. [@] is the class of operands which the user may
write in a general arithmetical expression. [F] and [G] are similar to
[Q] and [Y] respectively but include the expression TS[N] referring to a
set of temporary storage locations. These are used in certain auxiliary
statement definitions leading up to the definition of the general arithmetic
instruction [Y] = [GE].

[N] and [K] are ‘built in’ classes and describe the form of an integer
and a general constant respectively. Thus if

[D]=0,1,2,3,4,5,6,7,8,9
then [N] = an arbitrary sequence of Ds

and [K] = [N], [N]., .[N], [N]. [N]

However, because they are built-in they do not have to be defined.

Two features which are often present in the form of a phrase or state-
ment are repetitive appearance of an item and optional appearance. In order
to describe these situations we introduce the qualifiers * and ?. Thus:

[4][B*][C]means [A][B][C] or [4][B][B][C]or [4][B][B][B][C] etc.
[A][B?][C] means [4][C] or [4][B][C]
[A][B*?][C] means [4][C] or [A][B][C] or [4][B][B][C] etc.

Although convenient these qualifiers are not essential and the above
classes could be defined by means of recursion and the ‘nil’ class, thus

[B*] = (in order of preference) [B][B*], [B]
[B?] = (in order of preference) [B], nil
[B*?] = (in order of preference) [B*], nil

These are in fact how the * and ? qualifiers are handled behind the
scenes.

The reader may have noticed in the foregoing examples that no
commas occurrcd in the expressions listed as the alternative forms of a
phrase definition. Since the comma is used as a primary separator we
denote the appearance of a comma in the secondary phrases by [,].
Similarly for space [SP] and end of line [EQOL]. These special forms
cannot therefore be used as class identifiers.



Mercury Autocode in Terms of a Phrase Structure Language 41

Statement formats

These are similar to phrase definitions except that they describe one
phrase only, namely a form of statement. This may be a statement used
in the source language or an auxiliary statement as mentioned earlier.
In the latter case we allow the form to include primary commas (there is
no need of a separator) since such statements will only appear in statement
definitions where the distinction between the two is still preserved. The
primary comma corresponds to an internal identifier which has no
equivalent in the source language. Examples of statement formats are:

statement format (auxiliary): 4 = [4.0.][F]
statement format: [Y] = [GE][EOL)]

The statement definitions

To each statement format corresponds a statement definition. The
former describes the form of a statement, the latter describes the action
which is to be taken when the form is recognized. The means by which
a particular statement is recognized as representing some general form is
described in the earlier papers, and does not concern us here. In most
cases the action to be taken is to assemble the equivalent set of instructions
in the target program but in the case of declarative statements such as
[V]— [N] the equivalent action is to enter certain information in a list
to be used later. Statements can of course be partly imperative and
partly declarative, and both operations are in fact treated by means of
list compiling instructions, the only difference being that in the first case the
‘list’ in question is the target program itself. Very often the ‘meaning’
of a statement, in the above sense, can be expressed in terms of the meaning
of a sequence of other less complex statements, the subexpressions of the
main statement being parameters of the substatements. It is necessary there-
fore to have some means of resolving a statement (and in general any
expression) into subexpressions consistent with its known structure, and
if necessary to build up new expressions from these subexpressions. It is
also desirable to be able to compare different expressions in order to
select distinct courses of action.

Thus in general a statement definition consists of three -types of
primary instruction :

I. Basic list compiling instructions.
2. Substatements.

3. Expression handling operations (resolving, testing, etc.}

4



42 R. A. Brooker and D. Morris

A floating address system is employed for the purpose of control
transfers and any primary instruction can be labelled; for example,

1] — 2 unless [¥] = [V’]

is an instruction (type 3) labelled 1.

The basic compiling instructions

There is a central global group of 24-bit registers ajag05 . . . which
do not form a field (i.e. cannot be referred to as «r). In addition to this
global set there is a set of local registers 8,8,8; . . . associated with each
statement definition. The compiling instructions are concerned with
selecting processing and comparing the information in these registers,
and in the registers whose address is contained in these registers. Thus, e.g.

ayg = Py + (o + 3)

means a,y = f, + the contents of the register whose address is «; + 3.
We may speak of the conventional list «, as denoting the set of consecutive
registers

o T ete
a, o +1 +2 o+3 « +4

Another kind of list is the ¢hain in which each 24-bit word is accompanied
(as the more significant half of a 48-bit word) by the address of the ‘next’
word. Thus:

Pl

oy ﬁl@l ﬂ.](‘BQ 116')3

a; @ 1 denotes («, 4+ 1), etc. Further details can be found in the earlier
papers.

The parameter operations

We discuss first the means by which the individual phrases are
identified. Both the parameter phrases of the statement heading (i.e.
the first ‘line’ of the definition) and those derived from them are normally
referred to by writing the relevant class identifiers. If the same class of
phrase appears more than once in any logical path through a definition,
the different appearances of the class identifier are distinguished by means
of a label (written inside the identifier brackets). Thus for example we
may write ¢ divide ([GE[1], [GE/2]). The conventions of labelling are
not rigid and we only require that subsequent references to each expression



Mercury Autocode in Terms of a Phrase Structure Language 43

bear the correct label, and that ambiguity is avoided. It is also necessary
to be able to refer to a particular appearance of a ‘repeated’ phrase, and
for this purpose we attach another label, in this case enclosed in round
brackets. Thus, for example, given the ‘repeated’ phrase [Q*/1] we refer
to the second @ in the sequence as [Q*/1(2)]. In the use of floating
references such as [@Q*/1(«,)] or [@*/1(B,)] the current value of the «
or 8 concerned determines the particular appearance of the phrase within
a sequence. The above interpretation is not relevant in the case of
[N(«,)] and [N(B,)] etc., and we attach a quite different significance to
these identifiers. Either one can be written in place of a conventional
N in a substatement, and means insert the current value of the « or § in
question at this point.

To return to the question of generating new phrases from those.
appearing in the statement heading, the instructions used for this purpose
are:

let [#] = some [#] expression

and let [#] = some [=] expression

In the first of these the Lh.s. refers to a particular phrase appearing in
the statement heading (or introduced by a previous ‘let’ instruction)
while the r.h.s. is an explicit phrase of a form consistent with foregoing
definitions of the Lh.s. and its subphrases.

For example, if the definitions

(£7] = [£][T]
and [7] = [@*][Q?]
have been previously given we may write

let [£T] = [£][T]
or even let [+T] = +[Q]

if it is known that the [+ T'] in question takes the form of a single 4-[@Q].
When alternative forms are possible a single instruction can be used both
to introduce the subphrases of a particular alternative, and to take some
alternative course of action if {or unless) the specified alternative form
appears. Thus for example

— 1 unless [7T"] = [Q]
Throughout the logical path stemming from this instruction, the

newly introduced phrase @ can be referred to; however, in the alternative
path labelled 1 it remains ‘unknown’.



44 R. A. Brooker and D. Morris

In the second type of let instruction the new phrase introduced is the
r.h.s. expression and this is subsequently referred to by the identifier
appearing on the Lh.s. New phrases of this type are compounded from
previously introduced phrases (and basic symbols), again in a manner
consistent with the foregoing phrase definition of the Lh.s. This type of
‘let’ instruction does not give rise to conditional forms. Another type of
conditional instruction is, however, required in order to compare different
appearances of the same class of phrase. For example:

— 1 if [GE/1] = [GE|2]
Finally two further instructions should be mentioned, namely:

[ap] == category of [=] e.g. f, -= category of [¥]
[2f] = number of [#] e.g. B; = number of [ T%*)]

In both of these the = refers to a particular ‘known’ phrase. The former
instruction determines the principal category to which the phrase belongs
within its class, while the second instruction (which applies only to
‘repeated’ classes) determines how many times the phrase in question has
actually been repeated.

Finally it should be noted that the statement heading itselfis essentially
a parameter operation of the form:

let [instruction] = [statement heading]

It formally ‘introduces’ the constituent phrases of the statement,

Substatements

A substatement is a particular statement in which some of the con-
stituent expressions (or subexpressions of them) may have been replaced
by explicit phrases, and others by parameter phrases derived in one of
the ways described above. Thus e.g. 4 = 4 x [@*(B,)] is a particular
form of 4 = [A4.0}[F].

The effect of these is to cause the parameters in question to be sub-
stituted and then to call in the corresponding statement definition. In
effect the basic compiling instructions, such as e.g.

Bo = + [N] + [N] and [aB] = (osq + B2) + B2 + Bs

which are particular forms of [¢8] = [word][6][word] (see table below),
are also treated in this manner. In this case, however, the corresponding
statement definition is a built-in interpretive routine.



Mercury Autocode in Terms of a Phrase Structure Language 45
A summary of the built-in expressions and formats

In order to recognize the basic listing instructions and parameter
operations in addition to the statements which the user defines, we supple-
ment the statement format dictionary by a dictionary of busli-in operations. This
dictionary consists of the following formats:

[4] — [word]

[2f] = [word][6][word]
([addr]) = [word]

([addr]) = [word][6][word]
— [«fN][{U][word][$][word]
— [«BN]

let [#] == [some = expression]
let [7] = [some = expression]
— [afpN][{U][#] = [some = expression]
— [«fNI[IU][7] = [n]

[2B] = category of [«]

[¢8] = number of [«]

END

The definitions of the following expressions are also ‘built-in’,
[0-3] =0,1,2,3
[D] = 03 13 2: 33 4') 53 6: 7: 8) 9
[N] = [D*]
[K] = [N], [N]., .[N], [N].[N]
a = al, a2, etc.
g = Bl, B2, etc.
[“ﬁ] =a, f
[«8N] = a, B, [N]
[addr] = [«], [«B] + [«BN], [+8] — [«BN], [«f] ® [xAN]
[word] = [addr], ([addr]), [N].[0-3], .[0-3], [N]
[6] =+, — X, /: &s v, $
[¢] ==, > 2,< =<
[{U] = if, unless
[7] = ‘any phrase identifier’
[some 7 expression] = ‘any expression consistent with the
definition of [=]’.

AN ILLUSTRATION OF A TYPICAL STATEMENT DEFINITION

As an illustration of a typical statement definition we shall describe
the general structure of the definition of 4 = [4.0.][F]
The first step is to determine the category of the [4.0.] phrase. Because



46 R. A. Brooker and D. Morris

of the way [4.0.] has been defined this does not completely resolve the
arithmetical operation involved and in the cases 4 = A[+][F] and
A =[4?][F] it is necessary to distinguish the 4+ and — signs. This is
done by means of the first half dozen instructions, as a result of which
B, = 1,2, 3, 4,5, 6 corresponding respectively to the cases 4 = 4 + [F],
A=AX[Fl, A =A[[F], A=[F],A=A —[F]and 4 = —[F]. We
then examine the form of the [F], distinguishing first whether it is a [Q]
ora TS[N], and then if a [@] whetheritis a [Y][K] or [I]. The relevant
instructions are — 3 unless [F] = [Q], — 4 unless [@] = [¥], — 5 unless
[Q] = [K],1let [Q] =[] and let [F] = TS[N]. The last two are necessary
in order to ‘introduce’ [/] and TS[N] even though these cases follow as a
result of exclusion.

In the case [F] = [Q] = [Y] there are five alternative forms for [¥]
to be considered. In every case, however, the effective address of the
operand is described by two quantities, the presumptive address and the
category of the index. Thus e.g. if [Y] = x, then the presumptive address
is the location corresponding to x, and the index category is 3
(corresponding to i =1, j =2, k=3, etc.). These quantities are
determined by separate statement definitions since they are also used
elsewhere. They are called in by the instructions ‘S, = presumptive
address of [Y]” and ‘f; = index of [Y].” Given f, and S, the statement
A = [4.0.] [Y] translates into a single instruction with ba = 0, bm = B,,
§ = f, and an appropriate function code [FD]. This latter is set by
one of a ‘table’ of instructions ‘let [FD] = ???? selected through a
multiway switch — §,. These all return to the substatement [FD], 0, g,
B; representing the general statement [FD], [word], [word], [word].
This is followed by the EnD of the statement definition.

The case [F] = [@] = [K] is dealt with by a similar table but employs
the set of extracodes which assume the operand is the number in the
location following the instruction itself. Similarly the case [F] = [Q] =
[1] involves the extracodes which interpret the 24-bit integers § + bm + ba
as the operand. In this case § = 0, ba = 0, and bm is the category of [[]
so that the effect is to use the index quantity (in one of the B-registers
Bl — B12) itself as the floating point operand. In the case [K] we have
introduced the substatement ‘insert [K]’ which (though not formally
defined anywhere) means plant [K] in locations ayg, s + 1.

Finally the case [F] = TS[N] is treated by means of the first ‘table’
of (basic) instructions but with 8, = a;;, + 2[N] and §; = 0.

THE FORMAL DESCRIPTION OF MERCURY AUTOCODE
Note: The first set of primary statements describe the form in which



Mercury Autocode in Terms of a Phrase Strusture Language 47
basic and extracode instructions are written in other statement definitions.
phrase defn: [FD] = [BD][0D][0D][OD]
phrase defn: [BD] =0, 1
phrase defn: [0D] =0,1,2,3,4,5,6,7
statement format (auxiliary): [FD], [word], [word], [word]
statement defn: [FD], [word/1], [word/2], [word/3]
let [FD] = [BD][0D/1][0D/2][0D/3]
Bl = category of [0D/1]
p2 = category of [0D/2]

B3 = category of [0D/3]
p4 = category of [BD]}

p4 =8 x p4-1

p4 = p4 + pl-1

p4 =8 x f4

p4 = p4 + p2-1

p4 =8 x p4

p4 = p4 + p3-1

p4 = 128 x p4

p4 = p4 + [word/(1]
p4 =32 x p4

p5 = [word/2]/4

B4 = p4 + B5

(«36) = p4

(236 + 1) = [word/3]
36 = 36 4 2

END

Note: The following relate to the simple arithmetical instructions used
in MERCURY autocode.

phrase defn: [V] =4, b, ¢, d, e, f, g, h, u, v, w, x, 9, 2, w

phrase defn: [V =o', b, ¢, d', ¢, f, g, k', v, o', w', &), 2
phrase defn: [I] = 1,5, kL, m,n,0,p,q,7,5,t

phrase defn: [+] = +, —

phrase defn: [¥] = [V, ['], [V1[N], [VIU], [VI(III[£]IN])
phrase defn: [Q] = [Y], [K], [{]

phrase defn: [F] = [Q], TS[N]

phrase defn: [G] = [Y], TS[N]



48 R. A. Brooker and D. Morris

phrase defn: [4.0.] = (in order of preference) A[+], A%, 4/, [£7?]
statement format (auxiliary): 4 = [4.0.][F]
statement defn: 4 = [4.0.][F]

fl1 = category of [4.0.]
—1 unless [4.0.] =4 —
Bl =5
-2
1] =2 unless [4.0.] =
Bl =6
2} —3 unless [F] = [Q]
—4 unless [@Q] = [Y]
B2 = presumptive address of [¥], 83 = index of [Y]
6] g1 = 1 + 10, — g1
11] let [FD] = 0310, — 17
12] let [FD] == 0352, — 17
13] let [FD] = 0374, — 17
14] let [FD] = 0324, — 17
15] let [FD] = 0311, — 17
16] let [FD] = 0325
17} [FD], 0, 3, B2, END
4] — 5 unless [Q] = [K]
gl = Bl + 20, — pl
21] let [FD] == 1???, - 27
22)] let [FD] = 1???, — 27
23] let [FD] = 17?7, — 27
24] let [FD] == 1?? 9, — 27
25] let [FD] == 1?2??, — 27
26] let [FD] = 1???
271 [FD], 0, 0, 0, insert [K], END
5] let [Q] = {I]
p2 = category of [I]
Bl = gl + 30, — BI
31] let [FD] = 1???, — 37
32] let [FD] = 1???, — 37
33] let [FD] = 1???, — 37
34] let [FD] = 1???, — 37
35] let [FD] = 1???, — 37
36] let [FD] = 12??
37]) [FD], 0, 2, 0, END
3] let [F] = TS[N], 2 = «ll + [N] + [N],83=0,—>6



Mercury Autocode in Terms of a Phrase Structure Language 49

statement format (auxiliary): [G] = 4
statement defn: [G] = 4
— 1 unless [G] = [Y]
p2 = presumptive address of [Y], 83 = index of [¥]
2] 0366, 0, 3, B2, END
1] let [G] = TS[N], 2 = «ll + [N] + [N], 83 =0, — 2
statement format (auxiliary): [«f] = presumptive address of [Y]
statement defn: [«f] = presumptive address of [¥]
Pl == category of [¥], — f1

1] let [¥] = [V], B2 = category of [V], [28] = 3 + #2 + 2 — 2,
END

2] let [Y] = [V'], p2 = categoryof [V'], [¢B] = «2 + 2 + B2 — 2,
END
3] let [Y] = [V][N], 3 = [N], > 6, END
4] let [Y] = [V][{],3 =0,—6
5] let [Y] = [V([I][£][N]), #3 =[N], —6 unless [+] = —,
g3 =0 —p3
6] B2 = category of [V], [«f] = («34 + £2) + B3 + 53
— 7 if [«f] # 0O, print fault (7)
7] END
statement format (auxiliary): [«f] = index of [¥]
statement defn: [«f] = index of [Y]
f1 = category of [Y], — f1
1] [#f] = 0, END, 2] — 1, 3] — 1, 4] let [¥] = [V][[], 6][«8] =
category of [I] END
5] let [Y] = [VI([ZI[£][N]), — 6
phrase defn: [|@] = /[@]
phrase defn: [T] = [@*][|Q?]
phrase defn: [+ 7] = [+][T]
phrase defn: [GE] = [£?][LT*?)]
statement format (auxiliary): 4 = [GE]
statement format (auxiliary): 4 = [£?][T]
statement format (auxiliary): 4 = A[4+][7T]
statement defn: 4 = [GE]
let [GE) = [+ ?)[T][+ T*?]
4 =[+?)[T]



50 R. A. Brooker and D. Morris

— | unless [+ T*?] =[4T¥]
pl = number of [ 4+ T*]
p2 =1
2) let [+ T*(82)] = [£)(T]
4 = A[£][T]
p2=p241
—2if gl > 2
1] END

statement defn: 4 = [?][T]

let [T] = [@*][|Q?]
4= [£2[Q*(1)]
A1 = number of [Q*]
—1ifgl =1
p2 =2

2] 4 =4 x [@*(52)]
f2 = p2 + 1
—2if gl > B2

1] — 3 unless [|Q?] = [[Q]
4 = 4/[Q]

3] EnD
statement defn: 4 = A[+][T]
— 1 unless [T] = [Q]

A4 = A[+][¢]
END
1] TS1 = 4

let [T} = [@*][|Q7]
4 = [£][Q*(1)]
Bl = number of [Q*)
> 2if Bl = 1
f2 =2

3] 4 =4 x [@*(52)]
p2 = f2 + 1
— 3if gl = B2

2] — 4 unless [|Q?] = /[Q]
4 = 4/[Q]

44 =4+ TS
END



Mercury Autocode in Terms of a Phrase Structure Language 51

statement format: [Y] = [GE][EOL]
statement defn: [Y] = [GE][EOL]

4 = [GE]
[¥] =
END
phrase defn: [N or I] = [N], []]
statemnent format (auxiliary): [FD], [word], 0, [N or ]
phrase defn: [+ Nor /] = [+][Nor ]
statement format: [/] = [+ ?][Nor I][ N or I*?][EOL]

Note: This represents only a subset of the index arithmetic instructions.
In practice, however, the majority of them are of this form which lends
itself to a more efficient treatment than the generalcase: [I] =[GE][EOL).
The special case must of course come before the general case in order of
preference.

statement defn: [/] = [+ ?][N or I][4+ N or I*?][EOL]

let [FD] = 0121
~> ] unless [4?] = —
let [FD] = 0123
1] [FD], 20, 0, [N or I]
— 2 unless [+Nor I*?] = [+ Nor I*]
f1 = number of [+ N or I¥*]
2 =1
4] let [+ N or I*(2)] = [+][N or []
let [FD] = 0124
— 3 unless [+] = —
let [FD] = 0122
3] [FD], 20, 0, [N or I]
2 =p2 +1
—4if 2 < Bl
2] B1 = category of [[]
0121, p1, 20, 0

END
statement defn: [FD], [word], 0, [N or I]

— 1 unless [N or I] = [N]
Bl =2 x [N]

[FD], [word], 0, A1

END



52 R. A. Brooker and D. Morris
1] let [Nor 1] = [I]
pl = category of [/]
[FD], [word], 1, 0

END

Note: The remainder of the index instructions are recognized under
the following heading which in fact includes a wider class of instructions

than is actually allowed in MERCURY autocode.
statement format: [I] == [GE][EOL]
statement defn: [[] = [GE|[EOL]
A = [GE]
pl = category of [1]
1???,61,0,0
END

Note: The next section deals with the autocode instructions for
evaluating elementary functions. The extracodes involved have been
described in the introduction.

phrase defn: [Fx] = sq rt, sin, cos, tan, exp, log, mod, int pt, fr pt,
sign

statement format: [Y] = ¢[Fx]([GE])[EOL]

statement defn: [Y] = ¢[Fx]([GE])[EOL]

A = [GE]
p1 = category of [Fx]
— Bl

1] let [FD] == 1?22, — 11
9] let [FD] -= 1222, — 11
3] let [FD] = 1?2?22, — 11
4] let [FD] = 12?2, - 11
5] let [FD] - 12?2, — 11
6] let [FD] - 1222, — 11
7] let [FD] == 12?2, -» 11
8] let [FD] — 12?2, — 11
9] let [FD] = 12?2, — 11

10] let [FD] = 122?

11] [FD], 0, 0, 0

[¥] = 4
END



Mercury Autocode in Terms of a Phrase Structure Language 53
Note: This example could be shortened by means of special table
definition and look-up operations. Thus:
table defn: [FD[1]==122?, 1?22, 12?2, 1?22, 1?22, 1?22, 1?72,
1?7?22,12?2,1???, and
statement defn: [Y] = ¢[Fx]([GE])[EOL]
A = [GE]
f1 = category of [Fx]
[FD] = table [FD/1(p1)]

[FD], 0,0, 0
(Y] = 4
END

phrase defn: [Fxy] = divide, arctan, radius
statement format: [Y] = ¢[Fx]([GE][,][GE])[EOL]
statement defn: [¥] = ¢[Fxy]([GE[1][,][GE/2])[EOL]
TS2 = [GE[2]
A4 = [GE/[1]
Bl = category of [Fxy)
1] let [FD] == 0374, — 4
2] let [FD] = 1?2??, — 4
3] let [FD] = 1?2??
4] [FD], 0,0, «10 + 4
[Y1=4
END
statement format: [/] = ¢intpt([GE])[EOL]
statement defn: [I] = ¢intpt([GE])[EOL]
A = [GE]
Bl = category of [[]
1?2?22, 81,0,0
END
Note: The extracode used here is E4.

statement format: [Y] == ¢poly([GE])[VIO[ ][N or I][EOL]
statement defn: [Y] = ¢poly([GE])[V]O[,]J[N or I][EOL]

4 = [GE]

0121, 24, 0, [N or I]

pl = category of [V]



54 R. A. Brooker and D. Morris

0121, 23, 0, («34 + 1)
12?2, 23, 24, 0
[Y]=4

END

Note: The extracode used here is E3.

statement format: [¥] = ¢parity([GE])[EOL]
statement defn: [Y] = ¢parity([GE])[EOL]

A = [GE]
122?,22,0,0
0127, 22,0, 2
0121, 22, 22, 0-1
1?22, 0, 22, 0
END

Note: The extracodes used here are E4 and 4’ = n

statement format: intstep ([N])[£OL]
statement defn: intstep ([N])[EOL]

0324, 0, 0, «3 + 11
0121, 25, 6, 0

0121, 26, 0, («34 + 13)
0121, 27, 0, («34 + 6)
0121, 28, 0, (a34 + 8)
nest(x23) = a36 + 1
0121, 29, 0, [N]

1?77, 25,0, a3 + 7
END

Note: The extracode used here is £5a. The ‘nest’ instruction records
the reference to a chapter label. The precise details of this instruction
(which is really a substatement) can be found in Ref. (1), where it is
described as ‘add [word] to nest [«f]’. We now prefer the form ‘nest

([«p]) = [word]".
statement format: 592, 0 [EOL}
statement defn: 592, 0 [EOL]
1??2,0,0,0
END

Note: The extracode used here is E5b.



Mercury Autocode in Terms of a Phrase Structure Language 55

Note: The next set of statement definitions describe the method of
labelling autocode statements, the system of ‘local’ labels adopted in
some of the auxiliary material, and all the statements involving reference
to such labels. These include the conditional and unconditional jump
instructions, the across, down and up instructions, the cycling instructions,
and the auxiliary statement call in SR.

statement format: [N])

statement format (auxiliary): ([N])

statement format (auxiliary): SR([N])[EOL]

statement defn: [N])

(233 + [N]) = «36
END

statement defn: ([N])
list («21) = «36
list («21) = [N]
END
Note: ‘list ([«f]) = [word]’ is described in Ref. (1) as ‘add [word] to
list [«f8]’.
statement defn: SR([N])[EOL]
(29 + [N]) = «36
END
statement format (auxiliary): call in SR([N])
statement defn: call in SR([N])

1?9?, 0,0, a9 + [N]
END

Note: The above is simply equivalent to the extracode instruction E5a.

statement format: jump [N][EOL]
statement format: jump ([/])[EOL]
statement format: [/]) = [N])[EOL]
statement format: [/]) = [/])[EOL]
statement defn: jump [N}{EOL]

nest(a23) = «36 4 1

0121, 127, 0, [N]

END



R. A. Brooker and D. Morris
statement defn: jump ([/])[EOL]

Bl = category of [[]
0121, 127, g1, 0
END

statement defn: [I]) = [N])[EOL]

p1 = category of [/]
nest(x22) = 36 + 1
0121, 1, 0, [N]
END

statement defn: [/]) = [{/1])[EOL]

Pl = category of []]
p2 = category of [I/1]
0101, 81, B2, «33

END

statement format (auxiliary): fill in local labels

statement defn: fill in local labels

4] Bl = nest («22)

B2 = a2l

5 (B24+1) = 0
3=l

> 2 (B1) = (52)

B2 =2 @1

— 3 unless 2 = «21
print fault (23)

2] (B1) = (A2@1)
— 4 unless (222 + 1) =0
1] delete «21 @ 1
5] — 1 unless («2141) =0
END
phrase defn: [—] = —
phrase defn: [=#>>] = =, #, >, >
statement format: jump[N][,][Y][=#>=][—?][K][EOL]
statement format: jump[N][,][—?][K][=#>=][Y][EOL]
statement format: jump[N][,][Y][= %> =][Y][EOL]



Mercury Autocode in Terms of a Phrase Structure Language

statement format: (auxiliary): — [N] if A[=%#>2>]0
statement defn: jump[N][,][Y][=#>=][—?][K][EOL]

4 =[Y]
~ ] unless [—?] = —
A =4+ [K]
-2

114 =4 — [K]

2] = [N]if A[=#>2>]0
END

statement defn: jump[N][,][— ?][K][= > >][Y][EOL]

- | unless [—7] = —
A = —[K]
—2
1] 4 = [K]
214=4—1[Y]
— [N]if A[=%>2>]0

END

statement defn: jump[N]|[,][¥/1][=#>=>][Y/2][EOL]

A4 = [Y[1] —[¥[2]
— [N]if A[=%>>]0
END

statement defn: — [N] if A[=%>>]0

Bl = category of [=7>>]
— pl
1] let [FD] = 0234, — 5
9] let [FD] = 0235, — 5
3] let [FD] = 17?2, -5
4] let [FD] = 0236
5] nest(a23) = «36 + 1
[FD], 127, 0, [N]
END

37

Note: The machine codes involved here are the A-test instructions

described in the introduction.

statement format: jump[N][,][{][=#>=][—"?][N][EOL]
statement format: jump{N]|[,][—?][N][=#>=][{][EOL]

statement format: jump[N][,][[][=#> =][{][EOL]

5



58 R. A. Brooker and D. Morris

statement format: (auxiliary): — [N] if Bi[=#>2>]0
statement defn: jump[N][,][{/1][=#>=][—?][N/2][EOL]
Bl = category of [1/1]

B2 = [N/2]
— lunless [—?] = —
p2 =0 — B2 '

11 0172, 81, 0, f2
— [N]if Bf[=#>>]0
END
statement defn: jump[N][,][ —?][N/1][= %> =>][1/2][EOL]

Al =[N)1]

—1 unless [—?] = —

Al =0 — Bl
1] 2 = category of [1/2]
0170, 52, 0, 81
— [N]if Bi[=%#>=>]0
END
statement defn: jump[N][,][Z/1][=%>=][1/2][EOL]

pl = category of [I/1]
B2 = category of [1/2]
0172, p1, 62,0
— [N]if Bi[=#>=>]0
END
statement defn: — [N] if Bi[=5%>>]0
Bl = category of [=#>2>], — f1
1] let [FD] = 0224, — 5
2] let [FD] = 0225, — 5
3] let [FD] = 12?2, -5
4] let [FD] = 0226
5] nest(«23) = «36 + 1
[FD], 127, 0, [N]
END
Note: These are the B-test instructions also mentioned in the

introduction.

statement format: [I] = [N or []([—?][N or I][N or I][EOL]
statement defn: [/] = [N or I/1]([—?][N or I/2])[N or I/3][EOL]

p1 = category of [I]
p2 = a36 + 6



Mercury Autocode in Terms of a Phrase Structure Language 59

0121, g1, 0, [N or I/1]
0121, 127, 0, p2
— 1if[—?] = —
0124, g1, 0, [N or 1/2]
2] 0172, B1, O, [N or 1/3]
0225, 127, 0, g2
nest(«25) = (f2)
nest(«25) = (f2 + 1)
nest(«25) = (f2 + 2)
nest(«25) = (82 + 3)
«36 = p2
END
1] 0122, g1, 0 [N or 1/2]

— 2
statement format: repeat [EOL]
statement defn: repeat [EOL]
(«36 + 3) = nest(«25)
(236 + 2) = nest(«25)
(236 + 1) = nest(a25)
(x36) = nest(«25)
236 = «36 + 4
END

Note: ‘([addr]) = nest([«f])’ is the reverse operation to ‘nest([«f]) =
[word]’. It extracts from the nest the last word entered.

phrase defn: [—N] = —[N]

statement format: across [N]/[N][—N?][EOL)]

statement defn: across [N/1]/[N/2][—N?][EOL]

pl = «31
— 1 unless [ -N?] = —[N]
pl =0

nest(«24) = «36 + 1
nest(«x24) = [N]

1] 2 = g1 + [N[2]
B3 = «30 x 2
B4 = a7 — B3 + [N]1]
0101, 127, 0, p4
END



60 R. A. Brooker and D. Morris

statement format: down [N]/[N][—N?][EOL]
statement defn: down [N/1]/[N/2][—N?][EOL]

Bl = 31
~— | unless [-N?] = —[N]
pl =0

nest(«24) = «36 + 3
nest{«24) = [N]

1] 2 = 81 + [N]2]
B3 = «30 x B2
Bt = a7 — B3 + [N]1]
0124, 21, 0, 512
1?22,0,0, p4
END

Note: The extracode involved is ESa.

statement format: up [EOL]
statement defn: up [EOL]
0122, 13, 0, 512
1???2,0,0,0
END

Note: The extracode involved is F4a.

Note: The following are the statement definitions for preserve, restore
and the ¢6 and ¢7 instructions, all of which are concerned with the
transfer of material between the working store and the auxiliary store.

statement format: preserve [EOL]
statement defn: preserve [EOL]
call in SR(2)
END
statement format: restore [EOL]
statement defn: restore [EOL]

call in SR(3)
END

phrase defn: [6or 7] =6, 7

statement format: ¢[6 or 7]([GEN)[Y][,][N or I][EOL]
statement defn: ¢[6 or 7]([GE])[Y][,][N or I][EOL]

4 = [GE]
Bl = presumptive address of [Y]



Mercury Autocode in Terms of a Phrase Structure Language 61

B2 = index of [Y]
— 1 unless [6 or 7] = 6
1???,22,0,0
0121, 23, 2, g1
2] 0121, 24,0, [N or I]
call in SR(1)
END
111???,23,0,0
0121, 22, g2, g1
— 2

Note: The following are the declarative statements which come at the
beginning and end of an autocode chapter.

statement format: chapter [N][EOL]
statement defn: chapter [N][EOL]
— 1 unless [N] =0
@32 =0
—2
1] 232 = «31 + [N]
2] 1 = 30 x «32

33 = a7 — fl
234 = «33 4+ 128
235 = 34 + 16
36 = 35
037 = «l
p2 =0

3] (233 +82) =0
p2=p2+1
— 3if f2 < 143
END

statement format: [V] — [N][EOL]

statement defn: [V] — [N][EOL]

Bl = category of [V]
— 1 unless («34 + g1) #0
print fault (2)

1] («34 + 1) = a37
37 = «37 + [N] + 1
— 2 unless 37 > 480
print fault (6)

2] enD



62 - R. A. Brooker and D. Morris

statement format: variables [N][£OL]
statement defn: variables [N][EOL]

Bl = [N] + o3l
B2 = 230 x Bl
B3 = a7 — 2 + 128
p4 =1

1] (34 + B4) = (83 + p4)
Bt = p4 + 1
—~1ifpe <15
END

statement format: programme —[N][EOL]
statement defn: programme — [N][EOL]

a3l = «32

Bl = («8)
(81) = [N
(Bl + 1) = 231
(«8) = Bl + 2
END

statement format: close [EOL]
statement defn: close [EOL]

1] 1 = nest(a23)
A2 = (B1)
B3 = (a33 + f2)
~ 2 unless 83 = 0
print fault (3)
2] (B1) = B3
— 1 unless («23 4 1) =0
— 6 unless 32 = 0
3] Bl = nest(«24)
B2 = nest(x24)

B3 = aB + 2
5] — 4 if (3) = B2
g3 — p3 + 2

— 5 unless 3 = («8)
print fault {13)
4] (B1) = (B1) + (83 + 1)
— 3 unless («24 + 1) =0
6] END



Mercury Autocode in Terms of a Phrase Structure Language 63

Note: The ‘faults’ are those diagnosed by the standard MERCURY
autocode program. Thus e.g. fault (3) means that a label has not been
set. The interpretation of the statement format—oprint fault ([N])—like
other output instructions, is tied up with the supervisor program which is
beyond the scope of this report.

Normally translation ceases on encountering the close of a chapter 0
and the machine starts to execute the program at the first instruction of
chapter 0. However, for reasons explained below it may be more con-
venient to postpone execution until all the material associated with a
program has been read (i.e. its data and possibly further chapter 0’s):
and an ‘end of message’ directive is encountered. Chapter 0 will, in any
case, be entered through the ‘initial sequence’ in PERM.

statement format (auxiliary): prepare to read a M.A. program [EOL]
statement defn: prepare to read a M.A. program [EOL]

set al — «12 inclusive
borrow «21 — «25 inclusive
set 230 = 512, «31 =0
236 = al2

0121, 118, 0, «10

0121, 21, 0, 6 — 1024
0121, 127, 0, «7 + 144
SR(1)

(1)0324, 22, 24,0 — 1
0???,23,24,0 — 1
nest(«22) = «36 + 1
0203, 127, 24, 1
1??2,0,0,0

fill in local labels
SR(2)

call in SR(4)

0121, 22, 0, «l

0121, 23,21, 0

0121, 24, 0, 512

call in SR(1)
1?22,0,0,0

SR(3)

0121, 22, 21,0

0121, 23, 0, «1

0121, 24, 0, 512

call in SR(1)



64 R. A. Brooker and D. Morris

call in SR(5)

1??7,0,0,0

the sequence corresponding to SR(4)
the sequence corresponding to SR(5)
END

Note: The first three and last two lines of this definition are informal
statements referring to sequences which we have omitted to describe in
detail. SR(4) is a sequence to pack the 12 B-registers containing the
indices 4, j,. . ., ¢ into three spare locations at the end of the working
store, namely a4 + 1, a4 + 2, a4 4+ 3. SR(5) is the reverse operation.

The above statement must precede each MERCURY autocode
program in order to prepare for its translation.

The following are the statement formats of the decimal input
instructions and of numerical data in floating decimal form, also the rmp
instruction.

statement format: read ([Y])

statement format: read ([/])

statement format: K[exponent ?] [EOL]
phrase defn: [exponent] = [,][N]

Note: This is not in fact adequate to describe the actual form used on
MERCURY at present in which single spaces are ignored and a double
space serves in place of an [EOL] as a terminal symbol. However, it will
indicate the general idea.

statement format: rmp

In the general case a MERCURY autocode program consists of a
main program tape which takes the form

chapter 1 chapter 2. . . chapter N chapter 0

followed by a supplementary tape on which numerical data and/or
further instructions (in the form of chapter 0’s) can be punched. This
supplementary tape is read under the control of the main program itself,
the data by means of the read instructions, and the chapter 0’s by means
of the rmp (‘read more program’).

A possible arrangement on a machine like ATLAS is to translate the
entire supplementary tape before starting to execute the main program.
In the case of the numerical data this translation will amount to the
conventional process of decimal to binary conversion, while the chapter
0’s will be translated in the usual way. The supplementary tape can then



Mercury Autocode in Terms of a Phrase Structure Language 65

be simulated in the store of the machine by an ordered list whose items
are floating-point numbers and/or chapter 0’s. The effect of executing a
read ([Y]) instruction therefore is to select the next item (a number) from
this list and plant it in [¥]. Similarly the effect of an rmp instruction is to
copy the next chapter 0 over the existing chapter 0 and enter this at the
first instruction.

The following are the statement formats of the output instructions.
We do not give the corresponding statement definition since the whole
business of output (and input for that matter) is closely tied up with the
supervisor system. The same applies to certain other autocode instructions,
e.g. end, halt, hoot, etc.

statement format = print ([GE]) [N or ], [N or []
statement format = newline

statement format = space
to which must be added
statement format (auxiliary) = print fault ([N])

Roughly speaking the effect of the output instructions is to feed the
numbers and characters to be printed into a buffer store, where it takes its
turn in the queue of material waiting to be processed and printed by the
peripheral supervisor,

The foregoing description of MERCURY autocode is not complete.
The principal omissions are the complex and double length arithmetic
instructions, and the matrix operations. Given the appropriate extracodes
however, (and of course this is 999, of the work!) the statement definitions
would be comparatively trivial since all that is necessary in the target
program is a call sequence to set the ‘program parameters’ for the extra-
code routine.

REFERENCES

1. An Assembly Programme for a Phrase Structure Language, Computer Journal, October
1960.

2. An Assembly Programme for a Phrase Structure Language (concluded), Computer
Journal, January 1961.



