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PROGRAMMING IN IMP 

These notes started as lecture notes for students of Computer 

Science 1, using the IMP language on E.M.A.S. (The Edinburgh Multi- 

Access System), but have been revised slightly in an attempt to make 

them also of some use to other groups. There are still some references 

to special facilities provided for the Computer Science 1 class, but 

the text makes it clear when these occur. 

It is particularly important that anyone intending to input 

IMP programs on cards should look at Appendix A, note (3), and find 

out what convention they have to observe in regard to the quotation 

mark character ("). 

More detailed descriptions of IMP as implemented on any 

particular Computer Science or E.R.C.C. machine may be obtained from 

the Computer Science Department or E.R.C,C. respectively, 

P.D, Schofield, 
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SECTION 1 : INTRODUCTION 

A complete PROGRAM is used to describe the details of some computation 

that we wish to have carried out. Programs can be written in a variety of 

different programming languages, and these notes describe one such language, 

called IMP. In practically every programming language, there are some 

details that vary slightly from machine to machine, and also from time to 

time as improvements are made to the language. These notes refer primarily 

to the version of Imp available in October 1976 on the I.C.L. 4-75 computers, 

operating under the Edinburgh Multi-Access System. Users of Imp on other 

machines will need to note a few mincr variations. Also, the method of 

submitting a program to the machine and having that program run will vary 

from machine to machine, 

A minimum Imp program consists of: 

(i) The keyword begin. 

(ii) A list, in order, of the instructions we want carried out. 

(iii) The keyword end of program. 

Of the different types of instruction that may be given under (ii) above, 

the most important is the call of a ROUTINE. A routine call is an instruction 

to carry out some standard sequence of operations, achieving some frequently 

required end. Many routines have been defined as a basic part of Imp, and 

are permanently available for all to use; later on, we shall see how 

additional routines can be defined by the programmer (and his colleagues) to 

suit the needs of their particular field of interest. In the case of students, 

yet another set of routines is sometimes defined by a lecturer and made 

available to his class, 

To call a routine, we simply write down the NAME of the required routine, 

followed in most cases by some supplementary information that is placed in 

brackets after the name. Very often, the name of the routine will give a 

good idea of what is does. If we are exceptionally fortunate, or our needs 

are very simple, there is the slight chance that the combination of just one or two 

of the routines available to us will correspond exactly to the whole computation 

we require. An example is given on the following page.
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begin 

PRINT TABLE OF (9) 

end of rap 

The routine PRINT TABLE OF, used here to provide an exceptionally brief first 

example, is clearly of extremely limited value; although it does happen to be in the 

library of special routines available to Computer Science 1 students in Edinburgh, 

it is not generally available to, nor likely to be required by others. It causes 

a simple multiplication table (as met in ones earliest schooldays) to be printed 

at the appropriate output device (the console, if the program is being run from a 

console; usually a Line Printer in other cases). The supplementary information 

given in brackets (officially called a PARAMETER) determines that it will be a 

9-times table that is produced, though any other integer (i.e. whole number) could 

- have been given. 

To write more useful programs, we shall have to study a list of the more 

common library routines available, and build up what ve require from these. In 

addition, we shall need to consider: 

(i) How to allocate names to storage space (VARIABLES) in which numbers, 

strings of characters, etc., can be placed by one instruction, ready 

for subsequent use by a later instruction(s). (Section 2). 

(ii) How to cause a choice to be made between two courses of action, 

depending upon the progress of the program so far. (Section 4). 

(iii) How to cause one, or a group, of instructions to be carried out 

several times. (Section 5). 

(iv) How to create new routines of our own, and use them, (Section 10) 

Before looking at any of these in detail, let us consider a very slightly more 

complex program. Suppose that we wish to write a program to print out an N-times 

table, but do not know at the time of writing what value we shall want for N. 

The solution is to arrange that before printing the table, our program reads as 

DATA a number giving the value of N required. This is done by using « standard 

routine, whose name is READ. This routine will cause data to be taken from 

whatever is the appropriate source of input (the console, if the program is being 

run from a console; from an extra card added after end of program if the program
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is being submitted on cards). Our program now begins to look like this. 

READ (N) 

PRINT TABLE OF (N) 

The first routine reads a number as data, and stores it in a place called NW; 

the second uses this value of N to determine what multiplication table to print. 

But before using the VARIABLE called N, we must DECLARE our wish to have a storage 

location set up for this purpose. Since, in this example, we shall only store 

integers in H, we write our declaration: 

integer N 

Our whole program then is as follows: 

begi 

integer N 

READ (N) 

PRINT TABLE OF (N) 

end of program 

This is perfectly satisfactory, but let us add 2 more routine calls: 

begin 

integer N 

READ (N) 

PRINT TABLE OF (N) 

PRINT STRING("THAT CONCLUDES MY FIRST PROGRAM") 

NEWLINE 

end of program 

The PRINT STRING routine causes a string of characters - in this case 

it is THAT CONCLUDES MY FIRST PROGRAM - to be sent to the output, after 

the N-times table, of course. When printed on an output device, lines of 

output are stored until terminated by the character which indicates the end 

of a line and the start of a new one. This character is sent to the output 

by calling the standard routine NEWLINE.
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Comments 

In addition to containing instructions to be obeyed, any worth-while program 

will always include COMMENTS. These are pieces of program which have NO EFFECT 

when the program is executed, but are inserted to serve a different but MOST IMPORTANT 

function - to make the program more legible to human readers, both the author and 

others. A comment consists of the keyword comment, followed by any sequence of 

characters. Note that if comments extend over two or more lines, each line will 

have to start with the keyword comment. 

begin 
comment The purpose of this program is to print 

comment out an N-times multiplication table. 

integer N 

READ (N) 

PRINT TABLE OF (N) 

PRINT STRING (“THAT CONCLUDES MY FIRST PROGRAM. *) 

NEWLINE 

end of program 

Since comments are used very widely, it is convenient to have an alternative 

and shorter way of writing the keyword comment. An exclamation mark is used for 

this purpose. 

begin 

' The purpose of this program‘is to print 

' out an N-times multiplication table. 

integer N 

READ (N) 

PRINT TABLE OF (N) 

PRINT STRING ("THAT CONCLUDES MY FIRST PROGRAM. *) 

NEWLINE 

end of program 

 



- 1.5 =- 

The structure of a simple program 

A program consists of a sequence of STATEMENTS. We may distinguish four main 

classes of statement: 

(i) DECLARATIONS, These are preparatory statements, allocating 

names to various entities, chiefly variables. 

(e.g. integer N) 

(ii) INSTRUCTIONS. These are the statements that cause things to 

happen: data to be read in, values to be stored 

in variables, calculations to take place and 

results to be output. 

(iii) COMMENTS, Statements that are inserted for the benefit 

of the human reader, but have no effect at run-time. 

(iv) BRACKETING STATEMENTS. Statements that mark the beginning and end of 

certain groups of statements. For example, 

begin and end of program mark the beginning and 

end of a whole program. Shortly ve shall meet 

others, such as cycle and repeat, which mark the 

beginning and end of a group of instructions to be 

executed several times over. 

  

The correct order of statements in a simple program. 

Comments may be placed anywhere. Apart from this, the correct order is: 

(i) begin 

(ii) The declarations. 

(iii) The instructions, interspersed with bracketing statements as necessary. 

(iv) end of program. 

Two (or more) statements on one line. 

In our programs so far, each statement has been written on a separate line. 

If desired, however, two or more statements may be written on one line, provided they 

are separated by semi-colons. For example: 

READ (N) ; PRINT TABLE OF (N) 

It is often convenient to put one instruction and a short comment upon that 

instruction on the same line. For example: 

READ (N) ; comment 4 determines which table is to be printed.



In our first program, we had examples of letters of the alphabet being used in 

three different contexts: 

(a) In Keywords. 

In many books on programming languages, our attention is drawn to the 

keyvords of the language by printing them in lower-case letters and either printing 

them in bold type, or by underlining them. Throughout these notes, underlining 

will be used (e.g. begin). When we come to input to the computer, however, most 

devices have neither lower case nor underlining; instead we shall represent keywords 

with upper case letters and prefixing vith a % character (e.g. EBEGIN). See 

Appendix A for details; and note that if a keyword is broken up into separate words, 

as it may be for legibility, then a % character is placed in front of each. (e.g. 

SEND %0F %PROGRAM). 

(b>) In Names. 

In our earlier example, we saw that we refer to routines by their NAMES. 

Shortly we shall also need to allocate names to VARIABLES and, later on, to a few 

other entities in the language. A name always starts with an upper-case letter of 

the alphabet (A,B,C..... Z) and may be followed by one or more digits (0,1,2,..... 9), 

or by further letters, or a mixture of the two. 

Examples X, SUM, A2B3, PRINTSTRING 

Notes (i) There is no limit on the length of a name. 

(ii) Hote the distinction: keywords consist of underlined 

letters (marked by %), names consist of non-underlined 

letters and digits. 

(c) In Strings. 

In our earlier example, we were concerned with the string of characters:~ 

THAT CONCLUDES MY FIRST PROGRAM, It was not a keyword, nor was it the name of 

anything; it was simply a sequence of 32 characters (27 letters, 4 spaces and one 

full stop) which we wanted manipulated as one - in this case it was to be printed 

out. We mark out the extent of the string by enclosing it between quote characters. 

A string may consist of anything from 0 to 225 characters. (Some further details 

are given in the section on string constants). 

Note As convenient for legibility, spaces may be freely inserted 

almost anywhere in a program, without altering the meaning. 

Hence, the routine name PRINTSTRING, is more legible if written 

PRINT STRING. Two exceptions to this are: 

(i) Spaces within a string count as characters of that string. 

(as one would wish). 

(ii) If spaces are inserted within keywords, additional % 

characters afe required, as above.
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SECTION 2 - DECLARATIONS 

(i) SCALARS 

Before we can use a variable we must specify what sort of variable we want and 

what its name is to be. The main types of variable are: 

(a) numerical (subdivided into real and integer - see below) 

(b) string A string variable can store a sequence of characters. 

DECLARATION MEANING 

integer A, B3 I intend to use two variables which I will call A and B3. 

They must be capable of storing integer (whole number) values 

in the range -2147483648 to +2147483647. (That is -231 to ty), 

real C I intend to use a variable which I will call C. It must be 

capable of storing "real" values, that is a number which may be 

either an integer (e.g. 17) or a number with a fractional part 

(e.g. 12.261). On many current machines, the range of real 

numbers that can be stored is (approximately) + 71x 10; and 

they are stored to (about) 7 significant decimal digits. 

(This can be changed to 17 significant digits if long real 

variables are declared). 

string (16) S,T I intend to use two variables which I will call S and T. They 

must be capable of storing atrings of anything up to 16 

characters each. For example: 

"EDINBURGH" (9 characters) 

"COMPUTER SCIENCE” (16 characters - the space counts) 

When declaring a string variable, one gives an upper limit on the 

length of string that can be stored. (16 in this example). 

The largest upper limit permitted is 255. Thus, string (256) S 

would be an illegal declaration. 

Notes 

(1) The compiler automatically allocates locations to the variables as they are 

declared, The programmer does not need to concern himself with where the variables 

are located - he always refers to them by the names he has declared for them. 

(2) When the values stored in integer variables are multiplied or added the exact 

answer ia produced. When doing arithmetic on real variables the answers are 

"rounded off" to (about) 7 significant figures.
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(ii) ARRAYS 

We can also declare a whole array of variables, all having the same name, but 

distinguished from one another by means of a "subscript", which is written in 

brackets after the name of the array. 

Exaoples 

integer array D(1:4) 

real array B(1:9),F,¢(-3:2) 

string (25) array P(1:50) 

These cause the allocation of space to four integer variables D(1), D(2), D(3) 

and D(4), nine real variables E(1) to £(9), twelve real variables F(-3) to P(2) 

and G(-3) to G(2), and fifty string variables (each of maximum length 25) P(1) to 

P(50). 

Note the difference between : integer array p(1:4) 

and : inteyer D4 

The former creates four Variables, of which one is referred to as d(4); the 

latter creates one variable D4, 

UNIQUE USE OF NAMES 

Names cannot be used simultaneously for two different purposes. For example: 

integer A 

integer array A(1:10) 

would be faulted by the compiler. 

Other types of declaration, associating names with multi-subscript arrays and 

with the user's own routines, functions and predicates etc. will be explained later. 

The same prohibition on simultaneous use of a name for two purposes applies to all 

such declarations. (However, see later section on local and global variables).
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(iii) MULTI-SUBSCRIPT ARRAYS 
  

We have already seen how to declare arrays with one subscript. Arrays with 

two subscripts can also be delcared. 

Example Meaning 

real array A(1:2,1:3) Declare 6 real variables 

to be known as follows:- 

A(1,1) a(1,2) a(1,3) a(2,1) a(2,2) a(2,3) 

[ TT J TT} 
It is often easier to think of these in two dimensions, and it may be our 

  

  

desire to do so that motivates the declaration of a two-subscript array:- 

  

  

  

  

    

Arrays with more than two subscripte can be declared ina similar way:- 

real array B(M:N+1,1:5,-1:3),C,D(-10: 10) 

integer array F(1:3,1:5,1:20,1:30) 

string (20) array G,H(1:3,1:3,1:10) 

Notes 

(1) The maximum number of subscripts is 6, 

(2) Any of the array bounds may be given as integer expressions, for example 

see B above, but in this case we have to ensure that M and W have values 

assigned before reaching the declaration. (Also see later section on block 

structure).
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(iv) DECLARATION OF CONSTANTS 

In general, the declaration of a variable is a preparatory statement, causing 

a storage location to be allocated and to be given a name. At this stage, no 

value is stored in this location, Subsequently, instructions will be given (see 

next section) to store @ value, change it, etc. 

Sometimes it is convenient to have a storage location allocated and to be 

given a value which will not be altered during the subsequent stages of the 

program. In such cases we can make the declaration and assign this fixed value 

in one statement, by declaring a const integer, real or string. For example: 

const real E = 2,7182818, G = 9.80665 

const string (25) VENUE = "LEVEL 3 of APPLETON TOWER" 

const integer CLASS SIZE = 152 

Arrays of const's can also be useful, and may be declared as follows:- 

const string (4) array DAY (1:7) = "MON", "TUES", "WED", "THUR", 
"FRI", "SAT", "sun" 

const integer array P(11:40) = 3(10), 6, 4 (19) 

The first sets DAY (1) equal to "MON", DAY (2) equal to "TUES", etc. The 

second declaration sets the first 10 elements of P (i.e. P(11) to P(20) inclusive) 

to the value 3, the next one (i.e. P(21))to the value 6 and the remaining 19 to 

the value 4, 

Notes (1) Although two or more const scalars may be declared in one statement 

(see the two const reals above), a separate declaration is needed for 

each const array. 

(2) Const arrays are limited to one dimension {one subscript). 

(3) The bounds of a const array must be constants - thus in the last 

example, the constant bounds (11:40) could not be replaced by dynamic 

bounds such as (M:N), 

(4) The values assigned to the elements of a const array are separated 

by commas. If the list spreads over two or more lines, the continuation 

symbol (c) is not necessary (though permitted), provided the line ends 

with @ comma,
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SECTION 3 = SOME BASIC ROUTINES 

Having declared the variables we shall need, we now give a sequence of 

instructions. A program is normally supplied with a file of DATA upon which to 

act, and we shall clearly need routines to read information from our data file 

and place it in our variables. As indicated in section 1, the data file may 

consist of characters typed in at the console or it may be supplied on punched 

cards. It may also consist of a file already stored on EMAS (The Edinburgh 

Multi-Access System). 

The data consists of a sequence of characters, These can be read 

individually, but more often we wish to read a group of characters forming either 

an integer (e.g. 17), a real number (e.g. 3.1) or a string (e.g. "MORRIS 1300"), 

Routines to read such sequences and place them in variables of appropriate type 

are given below, 

(i) INPUT ROUTINES 

MEANING 

READ (A) Take the next (unread) number from the data file 

and place its value in A, which may be an integer or 

areal variable. If A is an integer variable, then 

it is essential that the next number occurring in the 

data is an integer. If A is real, then any number 

is acceptable. 

READ STRING (5) Take 4 string of symbols from the data and place 

it in string variable 5. In the data, the beginning 

and end of the string aust be shown by quote marks, 

although the quote marks themselves do not count as 

part of the string. (Also see page 8.4). 

Note It is often inconvenient to have to place 

quotes around every string in our data, as required 

by the READ STRING routine. An alternative routine 

which inputs non-nugerical data one character at a 

time is:- 

READ ITEM (S) Take one character from the data, and place it 

in the string variable 5. The single item read may 

be a letter, a digit, a punctuation mark, a space 

(occurring between printing characters) or even the 

“newline” character which is deemed to exist between 

the end of one line and the beginning of the next. 

Since it is known that only one character is to be 

read, no quotes are used,
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Notes (1) Omce a character has been read (as part of a string or number), we 

move forward along the data file and cannot read that character again. 

(Except by re-running the program, ) 

(2) When reading a succession of numbers from a data file, the numbers 

must be separated by spaces, or placed on separate lines. Other characters 

such as commas or semi-colons between numbers will cause a fault. 

(ii) OUTPUT ROUTINES | 

At some stage of the program ve shall need to print out some results of our 

calculation. These will go to an OUTPUT device (this may be the computer console, 

or a Line Printer) or an OUTPUT file to be stored on EMAS. Where the results 

go depends upon the system being used (and can also be affected by instructions 

described in section 17), but does not affect us here. Irrespective of where they 

-goO, we use the same output routines. 

MEANING 

WRITE (1*J+3,4) Evaluate the numerical value of the first 

| INTEGER expression (i.e. I*J+3) and write this 

value to the output (device or file), using 1 

position for the sign and 4 for the digits of the 

number; that is 5 positions in all. This routine 

can only deal with integer expressions. (The 

figure 4 can, of course, be varied). 

PRINT (X+#Y,3,2) Evaluate the REAL expression (i.e. X+¥) and 

print its value, using 1 position for the sign, 

3 for the digits before the decimal point and 2 

for the digits after the decimal point taking 

1+3+1+2=7 positions in all, (The figures 3 and 

2 can of course be varied). 

PRINT FL (X+Y,3) Evaluate the expression X+Y and print its 

value in floating point form, with 3 digits after 

the decimal point. (In floating point form, 

6.321@ -3 means 6.321 x 1073), 

PRINT STRING ("MORRIS 1300") Evaluate the expression in brackets (which 

PRINT STRING (S,"AND".T) will be of type string), and print it. In the 

first example, the expression consists of a 

constant string of 11 characters (the quotes mark 

the beginning and end, but are not printed 

themselves). In the second example, the 

expression consists of the string presently stored 
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in S followed by the constant 3-character 

string AND, followed by the string presently 

stored in T. 

SPACE Write one or more 'space' characters to the 

SPACES (4) output. When a space character is printed, it 

causes the printer to move 1 column to the right 

across the page. 

NEWLINE Write one or more 'newline' characters to the 

NEWLINES( 3) output. When a newline character is printed, 

it causes the printer to move to the start of 

a new line. 

NEWPAGE Write a 'newpage' character to the output, 

When printed, this causes the line printer to move 

to the top of a new page. At a console, it has 

no effect. 

(iii) ASSIGNMENT JNSTRUCTIONS 

One operation very frequently required is to work out some expression 

involving the values currently stored in one or more of our variables, and 

perhaps also some constant values. Instead of sending the answer to the output 

device or file (as with WRITE and PRINT STRING), we may wish to place the ansver 

back in a variable for use again later. Since this operation will be required 

frequently, a special concise notation is used for it:- 

A=B+C Work out the expression on the right (i.e. the 

value of B plus the value of C) and then nake A have 

this value, If the contents of A,B and C before 

carrying out this operation vere 

A B C 

then on completion the contents would be 

A B Cc 

p(1) = (3) + B-7 Work out D(3) + B - 7 and then make D(!) have this 

value,
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Note (1) When a value is assigned to a variable, any value previously stored 

in that.variable is lost. (e.g. The value 5 in A in the example above). 

(2) The 'equals' sign (*) is used in a slightly unusual way in assignment 

instructions, In particular, note: 

(i) A=B+e#C is @ normal assignment. 

B+CA is meaningless. (The left-hand side must be the 

mame of a variable previously declared.) 

(ii) Bec means: put a copy of the value now in C, into B. 

c#B means: put a copy of the value now in B, into C. 

(iii) A®A +43 is quite normal, resulting in 3 being added to 

the value stored in A. 

(3) On the right-hand side of an assignment, we may write any expression 

that will work out to give a value of the correct type, as follows:- 

an integer variable can only store integer values. 

@ real variable can only store real values, (But if the value 

calculated is an integer (3, say)this will automatically 

be converted to the corresponding real value 3.000000000 

if required for storage in a real variable.) 

astring variable can only store string values. 

(4) The operations of addition, subtraction, multiplication and division - 

are represented by +, ~, “and / (sometimes //) respectively. For fuller 

details, see Section 8, - 

(iv) ASSIGNMENT OF STRING EXPRESSIONS. (also see Section 7) 

Arithmetic operations are not meaningful to apply to strings, At 

this stage, we are concerned with only one operation on strings, called 

CONCATENATION (represented in expressions by a full stop), which places 

one string immediately after another. For example, the instructions: 

S = “TIMBUKTOO" S “TIMBUKTOO" 
will store as follows: 

T = “EDINBURGH" T "EDINBURGH" 

  

A subsequent instruction T = S." IS FAR FROM ",T 

will result in this: 

  are ee ae 
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SECTION & (A) - CONDITIONAL INSTRUCTIONS 

(i) if...then...else 

Sometimes, at some point in the computation, we shall need to make a choice 

between two courses of action. In our earlier program to read a number (N) as data 

and print the corresponding multiplication table, we might feel that if N turns out 

to be 0, it vould not be worth printing a O-times table, but that instead we should 

print a brief explanatory message. To achieve this, ve should need to arrange that 

once a value for N has been read, we test to see whether or not MN equals 0. The 

flow of control would be: 

     
     

does N= 

PRINT MULTIPLICATION 
TABLE 

and one way of writing the program would be: 

begin 

comment This program follows the flow diagram above, 

integer N 

READ (N) 

if N= 0 then start 

PRINT STRING ("NOT WORTH PRINTING O-TIMES TABLE") 

NEWLINE 

NEWPAGE 

PRINT TABLE OF (N) 

  

end of program 

It is worth noting that the above program would have exactly the 

same output in all cases if we swopped over the two alternative routes, and 

at the same time negated the condition; that is wrote: it H#0
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comment The condition has been negated. 

integer i 

READ (N) 

if N #0 then start 
NEWPAGE 

PRINT TABLE OF (N) 

finish else start 

PRINT STRING("NOT WORTH PRINTING O-TIMES TABLE") 

NEWLINE 

end of program 

(ii) Omitting else 

It quite often happens that one of the tvo alternative paths involves taking 

no action. In the above program, for example, we might decide that in the N = 0 

case we should refrain from printing anything at all, even the 'NOT WORTH PRINTING' 

message. If there are no instructions to go between the second start and finish, 

  

  

the whole of this section, including the keyword else, are omitted. This gives: 

  

begin 
comment This program will produce no output if 

comment N turns out to be 0. 

integer N 

READ (N) 

if N #0 then start 

NEWPAGE 

PRINT TABLE OF (N) 

finish 
end of program 

(iii) Omitting start and finish 

If there is only one simple instruction between the start and finish, then the 

start and finish can themselves be omitted, and the one instruction is put in place of 

  

the start. Thus, if we decide to omit the NEWPAGE instruction, ve can use the 

following very useful and simple form of conditional instructions. 

if "#0 then PRINT TABLE OF (N) 

and another useful abbreviated form permits if.... then .... else im one line, 

if = 0 then PRINT STRING ("NOT WORTH IT") else PRINT TABLE OF (R)
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(iv) Further conditions. 

So far, conditional clauses have involved comparison of two numerical quantities 

either for equality (=) or for non-equality (#). The four other natural comparisons 

will be written in normal mathematical notation, namely: },} .¢€ , % meaning 

“greater than", "greater than or equal to", "less than" and “less than or equal to" 

respectively. For input to the computer, however, the non-availability of the 

characters % and ¢ leads us to represent these by two characters each. 

Thus: 

Written form Form for input to computer 

if A» B then nee <IF A>® B <THEN sth * @ 

if P+Q ¢ C-17 then \.... SIF P+Qé= C-17 STHEN ..... 

(v) Comparison of strings. 

Tvo strings may be compared in the same six ways. It should be remembered, 

however, that any spaces present count as part of strings. Hence the 3-letter string 

"CAT" is NOT equal to the 4-letter string "CAT ", as the latter has an extra space. 

In the context of strings, "greater than" is taken to mean “comes LATER IN 

DICTIONARY ORDER than". Hence 

if S } “SMITH” then PRINT STRING (S) 

would cause the string stored in S to be printed only if it came later in dictionary 

order than "SMITH". A “dictionary order" relationship between strings that contain 

characters other than letters of the alphabet does exist, but will not be discussed 

at this stage. 

(vi) Use of unless 
  

Any condition written with an if clause may alternatively be expressed in the 

negative form using an unless clause. 

if N#O then ..... ) 
) are exactly equivalent 

unless H =O then ..... ) 

if A}B then ..... ) 
) are exactly equivalent 

unless AZ B then ..... ) (Note: < MOT ¢ )
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(vii) The instruction stop 
  

The execution of a program automatically terminates upon reaching end of program, 

In certain cases it is convenient to terminate prematurely if some special 

circumstance arises (say, if N = 0), and for this purpose the instruction stop is 

provided, 

    iLL THE 

INSTRUCTIONS WE 
WANT IN NORMAL 
CASES, 
i.e, WHEN N # 0 

     

  

     

  

At first sight, we might think that this calls for an "if ..... then ss... else” 

construction, but since execution of a stop instruction causes the program to stop, 

the following is simpler, 

begin 
integer N 

READ (N) 

if N = O then start 

PRINT STRING ("NOT WORTH PROCEEDING") 

NEWLINE 

  

sstencees pewvees >» : We only reach this point if N #0 

If we are prepared to omit the warning message when N=0, the whole 

start/finish group might be contracted to: 

if N=0O then stop
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SECTION 4(B) - FURTHER FORMS OF CONDITION 

(i) Writing conditions on the right, 

In the case of conditional instructions that do not make use of start, finish 

or else, we may write the instruction first, followed by the condition, Thus the 

following are exactly equivalent: 

ifn #0 then WRITE (N,2) 

WRITE(N,2) if N #0 

and, of course, both are also equivalent to the following two: 

unless N= 0 then WRITE (N,2) 

WRITE(N,2) unless N = 0 

The form to be chosen depends upon individual taste and upon which best mirrors the 

way we wish to think about the condition being tested. Most people would regard 

the third version above as inelegant, and therefore generally to be avoided, 

Remember Those alternative forms with the condition 

on the right are NOT permitted when start, 

finish or else is involved. 

(ii) Concatenating two instructions 

If start/finish brackets enclose a very small (normally no more than 

two) unconditional instructions, a concise form is permitted. 

if N # O then start 
READ (X) 

SUM = SUM + X 

finish 

may be written in one statement: 

if N# © then READ (X) and SUM = SUM + X 

Note This is only allowed if both the instructions to be concatenated are 

unconditional instructions. If one itself involves another condition, 

we cannot avoid the start/finish . For example: 

if N# O then start 

READ (X) 

if X> 0 then SUM = SUM + xX 
finish
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(iii) Compound conditions, Examples are:- 

I> T and Z = 13 then heeee 

I> YT or a= 13 then soree 

=
 

=
 
7
s
 

X>Y and Z=13 andA+B=C+D then..... 

(X>Y and Z2=13) or A+B=C+D then... Is 
ks 

A€BC then..... 

ACB<€C and C4€D then..... is 
16 

Notes 

1. The third example gives three simple conditions connected by and. The 

nuaber of and's is not limited. The same applies to a sequence of or's, 

2. Where and and or are both used within the same condition, brackets are 

required (as in the fourth example) to avoid ambiguity, 

3. Following normal mathematical notation, the fifth example is a more 

compact way of writing: 

if A€B and BC then ..... 

4. However, this contraction cannot be extended, and the following would be 

faulted (But see the sixth example above for an acceptable form) 

if A<B<K CKD then..... 

5. The components of a multiple condition are examined from left to right 

and testing ceases as soon as sufficient is known to decide whether or not to 

carry out the main instruction. Thus, supposing in the first example above, that 

the test for "X >» Y" shows thie condition to be unsatisfied (i.e. X is not 

greater than Y) then it is unnecessary to test for Z = 13 and so the value 

stored in Z will not be examined. 

6. or means “inclusive or". Thus the second condition above means:- 

"if X>Y or 2=13 OR BOTH" 

(iv) Conditions involving string resolution. 

See Bection 7.
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SECTION 5 (A) - REPEATING GROUPS OF INSTRUCTIONS 

(CYCLES) 

If a group of instructions is placed between the bracketing keywords cycle and 

repeat, then as soon as the last instruction of the group iss completed, we shall start 

all over again with the first instruction, and go on ...... 

begi 

comment This first version is unsatisfactory, because 

comment there is nothing to make it terninat-e. 

integer N 

cycle 

READ (N) 

PRINT TABLE OF (N) 

repeat 

end of program 

There are many ways of writing in the arrangements to tterminate the loop. 

(i) Using a control variable 

Suppose that we know exactly how many times we wish to go round the loop; let 

it be 10 times. We must declare an extra integer to be weed to count 1,2,3,4.....10. 

Let us give it the name COUNT. 

begin 
comment The meaning of the cycle belovis as follows 

comment "First time round, set COUNT equal to l, 

comment Each time round, increase COUNT by IL and 

comment Stop the cycle at the end of the t Emme when COUNT = 10" 

integer N, COUNT 

cycle COUNT = 1, 1, 10 

READ (N) 

PRINT TABLE OF (N) 

repeat 

end of program
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The control variable (COUNT in the above case) must be an integer, but there 

is no need for it to start with the value 1, nor for it to go up in steps of 1. 

Furthermore, we can use the value of the control variable to make slightly different 

things happen each time round the cycle. 

begin 

comment The control variable, let us call it 'I' this time, 

comment will take in turn the values 2, 7, 12, 17 and 22, 

comment Thus we get 2-times, 7-times....22-times tables printed. 

integer | 

cycle I= 2, 5y ee 

PRINT TABLE OF (1) 

repeat 

end of program 

(ii) Using a conditional exit. 
EE 

Any cycle/repeat loop will be terminated if an exit instruction is obeyed. 

begin 

comment Below, when N turns out to be zero, the exit will 
  

comment cause the cycle/repeat loop to be terminated. By 

comment putting it before the printing instruction, ve avoid 

comment putting out the O-times table. 

integer N 

cycle 

READ (N) 

if N = 0 then exit 

PRINT TABLE OF (N) 

repeat 

comment When exit occurs, the program resumes from 

comment immediately after the repeat (i.e. from here). 

PRINT STRING ("STOPPING NOW BECAUSE WN = 0.") 

NEWLINE 

end of program 

Note: The instruction exit is only valid inside a cycle/repeat loop and 
  

causes &n exit from that loop, If it appears between start/finish 

brackets (which are themselves necessarily enclosed inside cycle/repeat), 

it causes an exit from the enclosing cycle/repeat.
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(iii) Using an until clause. 

If, in the above, we decided to allow the 0-times table to be printed before 

exiting from the cycle, we should need to move the line with the conditional exit 

down one: 

cycle 

READ (N) 

PRINT TABLE OF (N) 

if N = 0 then exit 

repeat 

In a case like this, where the conditional exit comes immediately before the 

repeat, we are allowed to write the loop in a slightly more compact fora: 

until N = 0 cycle 

READ (N) 

PRINT TABLE OF (N) 

repeat 

Note that, although the condition is written on the line with the cycle, the test is 

actually made at the end of the loop, which will therefore always BE EXECUTED AT 

LEAST ONCE, The flow diagram looks like this: 

  
      

    Condition 

is not (yet) 
satisfied 

(i.e. WN #0) 

Condition 
is 

satisfied 

(N = 0)



(iv) Using a while clause. 
Eee 

while and until clauses are negatives of one another in much the same way as if 

and unless. (Remember that "if N #0" and “unless N = 0" are equivalent), but they 

also differ in the TIME at which the test is carried out. When controlling a cycle 

with a while clause, the test for existing is made BEFORE carrying out the first 

instruction of the loop. 

     

     

  

Condition patisfied 

  

  

.Condition 
NOT 

INSTRUCTIONS satisfied   
begin 

comment This program reads a POSITIVE integer (N), then 

comment calculates and prints the remainder when N is 

comment divided by 7. This is done by repeated subtraction 

comment of 7, continuing as long as N is 2 T. In case 

comment WN is originally less than’7, we need to test BEFORE 

comment the first subtraction is carried out. 

integer i 
READ (N) 

vhile N } 7 cycle 
N=#N -T7 

repeat 
comment This program assumes POSITIVE input data. 

PRINT STRING (“REMAINDER = “) 

WRITE (N, 1) 

HEWLINE 

end_of program 

Note The above example is intended to be simple to understand, 

This is not generally an efficient method of finding a 

remainder (unless N is known to be small).
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Some restrictions in the use of cycles. 

(1) In the case of a cycle with a control variable (i.e. cycle I = M,N,P+3) the 

controlling variable (I) must be an INTECER variable. The three integer expressions 

for first value, increment and final value (i.e. M, N and P+3) may contain variables 

as this example shows, but they must work out so that the cycle terminates, That is, 

the difference between (P+3) and M must be an exact non-negative multiple of N. 

(2) A cycle may be controlled by ONLY ONE of (i) a control variable, (ii) a 

while clause, (iii) an until clause, In other words it is invalid to write: 

until X = 0 cycle I = 1,3," 

On the other hand, a cycle controlled by any one of the above three may also have an 

exit instruction within, 

NESTING OF CYCLES 

A cycle/repeat group may itself be enclosed in a further cycle/repeat. A 

common need for this arises when operating on 2-subscript arrays, 

A(1,1) A(1,2) a(1,3) 

A(2,1) a(2,2) a(2,3) 

This cycle will read three numbers from 

the data file into A(1,1), A(1,2) and 

A(1,3), thus filling the first row, 

=
=
 cycle COL = 1,1,3 

READ (A(1,COL)) 

repeat 

    

cycle ROW = 1,1,2 ;! These nested cycles will read six numbers 

cycle COL = 1,1,3 ;! imto A(1,1), A(1,2), A(1,3) followed by 

READ (A(ROW,COL)) ;$ A(2,1), A(2,2) and a(2,3), 

repeat 

repeat 

  

cycle COL = 1,1,3 But by reversing the order of the cycles, 

gix numbers would be read in, column by 

column. That is in the order A(1,1), A(2,1) 

followed by A(1,2), A(2,2), followed by 

A(1,3), a(2,3) 

=
 

cycle ROW =1,1,2 

READ (A(ROW,COL)) 

repeat 

repeat =— =
 
=
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SECTION 5(B) - SHORTENED FORMS OF vhile/until 

Cycles controlled by while or until clauses and containing a small number 

(usually one) of simple unconditional instructions, may be written in abbreviated 

forms, analagous to those used in place of start/finish groups. 

(i) Consider the previous example of taking a remainder when N is divided by 7. 

while N%7 cycle 

N=eN-7 

repeat 

This can be contracted to either of the following equivalent forms: 

(a) while NQ7 then N=N-7 

(b) N=N-7 while N37 

(ii) A cycle to read and sum a set of numbers which are know to be terminated 

with a zero, is (assuming SUM and X have been declared): 

SUM = 0 

until X=0 cycle 

READ (X) 

SUM = SUM + x 

repeat 

Two possible and exactly equivalent contractions are: 

(a) SUM = 0 

until X = 0 then READ (X) and SUM = SUM + X 

() SUM = 0 

READ (X) and SUM = SUM + X until X = 0
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SECTION 6 : LIBRARY ROUTINES & FUNCTIONS 

These may be classified as follows:- 

(a) Routines e.g. READ STRING (S) 

NEWLINE 

WRITE (I*J,3) 

SORT STRING ARRAY (X,1,50) 

PRINT STRING (s.TJ 

READ (I) 

(b>) Functions (i) integer functions e.g. LENGTH (S) 

INT (Y + 3.1) 

(ii) real functions e.g. SQ RT (Y*Z) 

(iii) string function e.g. DATE 

A routine call is a complete instruction. A function, on the other hand, is 

used as part of an instruction. Its purpose is to generate ONE VALUE. This value 

must then be used as part (or the whole) of an expression of appropriate type - 

integer, real or string. 

Por example, suppose the following declarations had been made:- 

integer I1,J,K ; yealY,Z2 ; string (50) S,T,U 

Then the following would be possible statements:- 

I = LENcTH (S) + 17 

Z = SQ RT (Y * 2) 

PRINT STRING ("TODAY IS “.DATE) 

Note that we describe a function as an integer function, real function or string 

function, depending upon the nature of the value it produces ag its result; this 

has nothing to do with the types of the parameters given in brackets, In fact, 

neither of the examples of integer functions given above takes integer-type 

parameters, LENGTH takes the name of a string as parameter (but gives as its 

result an INTEGER giving the number of characters currently stored in that string 

variable), INT takes a real expression as parameter (but gives as its result 

the INTEGER value nearest to the real expression. )
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Before we are able to use a library routine or function, we need to be told: 

(a) Its type: routine, integer function, real function or string function, 

(>) Its NAME, 

(c) The number and type of parameters required. 

(d) What it does. 

These first three are sometimes written as a “specification, in the form:- 

routine spec SORT STRINC ARRAY (string array nane X, integer A,B) 

integer fn spec LENGTH (string nage S) 

string fn spec DATE 
routine spec PRINT (real EXPR, integer DP1, DP2) 

routine spec WRITE (integer EXPR, DP) 

routine spec SWOP INTECERS (integer name I,J) 

In this context, the nates used for the FORMAL PARAMETERS are of no significance, 

and only serve to show how many actual parameters of each type are required when we 

call the routine. We have (so far) nine types of formal parameter: 

integer array name ) 

real array name ) 

string array name ) 

integer name 

real name 

string name ) 

integer ) 

real ) 

atring ( ) ) 

  

Actual Parameter Needed 

The name of an array of appropriate type 

(integer, real or string) e.g. A 

The name of a single variable (or single 

element of an array) of appropriate type (integer, 

real or string) e.g, S A(7) B(I,J) 

An expression of appropriate type (integer, 

real or string), except that an integer expression 

may be used in place of a real expression = (but 

not vice versa). e.g. I*J Y+3.1 S.T 

Note that WRITE takes two integer (i.e. integer expression) parameters, while 

SVOP INTECERS takes two integer name parameters. Hence we can use the expression 

(1*J) in 

WRITE (I*J,3) 

but NOT as a parameter to the routine READ . In any case, it would be hard 

to ascribe a meaning if we did write: 

READ (I*J)



SUMMARY OF LIBRARY ROUTINES & FUNCTIONS AVAILABLE 

(i) Common input and output ROUTINES. 

These were described in Section 3: 

(ii) STANDARD INTEGER FUNCTIONS 

READ READ STRIMG READ ITEM 

WRITE . PRINT PRINT FL 

PRINT STRING 

NEWLINE NEWLINES NEWPAGE 

SPACE SPACES 

In the tables below, the type of parameters taken by each function vill 

be indicated in brackets after the NAME of the function. 

Name 

INT 

INT PT 

TMOD 

REM 

LENGTH 

Parameters 

(integer I) 

(integer I,J) 

(string name S) 

(iii) Standard STRING FUNCTION 

FROM STRING (string name S, integer 

The value calculated is: 

The nearest integer to the real expression 

given as parameter, X. 

The integral part of X, Note that 

INT PT(3.73) is 3, but that 

INT PT(-3.73) is -4, 

The modulus (absolute value) of I. 

Hence, IMOD (-3) gives +3. 

The remainder when I is divided by J, 

##® Provided for Computer Science 1 

students - not in standard IMP, *## 

The number of characters in the string 

variable S, 

I,J) A copy of the Ith to the Jth 

characters (inclusive) of S, The string 

variable 3 is itself unaltered, Also see 

section 7.



(iv) Standard REAL FUNCTIONS 

SQ RT 

MOD 

FRAC PT 

EXP 

SIN 

TAN 

ARCSIN 

ARCCOS 

ARCTAN 

Parameters 

(real X) 

(real X) 

(real X) 

(real X) 

(real X) 

(real X) 

{real X) 

(real X) 

(real X) 

(real X) 

(real X,Y) 
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The value it calculates: 

The (non-negative) square root of X. 

The absolute value of X. 

e.g. MOD (-3.73) * 3.73 

The fractional part of X 

e.g. FRAC PT (3,73) = 0.73 

FRAC PT (-3.73) = 0.27 

The logarithm to base e, 
x 

e . 

The usual trigonometric functions, but 

note that X is in radians, 

sin ‘x, where | X | ¢ 1 and the result is 

in the range -/2 to 1/2, 

cos, where | X | ¢ 1 and the result is 

in the range 0 to Il. 

tan | (¥/Xx) with the result in the range 

-—lto +l. If X»> 0, the result is in 

the lst or 4th quadrant. If X < 0, the 

result ig in the 2nd or 3rd quadrant.



(v) 

##OnNOTe 

(vi) 

(vii) 

TIME, DATE & CPU TIME 

Name 
  

TIME 

DATE 

CPU TIME 

Parameters 

NONE 

NONE 

NONE 

- 6,5 - 

The value it calculates is: 

The time of day when the function is 

called given as an 8-character 

STRING. For example: "14:27:31" 

(24-hour clock) 

The date when the function is called, 

given as an 8-character STRING. 

For example: "27/10/76" 

This gives a REAL number, for the 

amount of time in seconds spent by 

the Central Processing Unit on the 

execution of this program, up to the 

time of calling the function. Since 

the starting time for this "clock" 

is undefined, this function should 

always be called TWICE, and the 

difference between the two values 

taken. The result is accurate 

to 0,001 seconds. 

Users other than Computer Science 1 students will need to give an 

external specification before using any of the above three functions. 

This takes the form: 

external real 

PRIVATE LIBRARIES 
  

external string fn spec TIME 

external string fn spec DATE 

fn spec CPU TIME 

Computer Science 1 students should also look in the supplement of 

additional library routines and functions provided for the class. 

OTHER STANDARD LIBRARIES 

Information on these is issued by the ERCC, but will not be required 

by Computer Science 1 students.



- Tel - 

SECTION 7 : MORE OPERATIONS ON STRINGS 

STRING RESOLUTION 

This is an instruction peculiar to strings and it allows us to search a string 

for the (first) occurrence of some sequence of characters. For example, suppose we 

have made the assignment 

S = “JOHN SMITH, 8 BLANK TERRACE, EDINBURGH. TBL 668 1212” 

then 

S=> 7.(", ").U 

will assign to T a copy of the characters found in § before the first occurrence of 

the expression in brackets (i.e. comma apace) and to U a copy of those after it. 

S will REMAIN UNALTERED. More generally, we have on the right a sequence of 

alternate string expressions in brackets and string variables. Returning to the 

above, 

S -> NAME.(", *).ADDRESS.(* TEL *). PHONE NO 

will cause JOHN SMITH to be assigned to string variable NAME, 

8 BLANK TERRACE, EDINBURGH. to ADDRESS 

and 668 1212 to PHONE NO. 

Notes 

(a) The expressions in brackets may be general string expressions (variables, 

constants, functions, etc.) but the string variable names which alternate with 

them, and appear without brackets, may only be variables since values are to 

be assigned to them. 

(b) If the expression sought does not occur, the program is terminated with a 

run-time fault. 

CONDITIONS INVOLVI RING RESOLUTION 

The condition 

if S—pP.("*").Q then .... 

tests to see if S can be resolved in this way. If it can, copies of the components 

are assigned to P, Q and, of course, the instruction at ..... is carried out. If 

not, none of these events takes place. 

The resolution operator ( -» ) is not allowed in a two-sided condition. Hence 

if T=S-—> P.(**").Q then .... 

ig invalid, but could correctly be written 

if T = S and S-> P.("**").Q then ....
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TAKING A FIXED PORTION OF A STRING ( FROM STRING ) 

The string function FROM STRING (parameters: string name S, integer I,J), 

gives as its result a copy of the Ith to the Jth characters (inclusive) of the 

string S.. It LEAVES S UNALTERED, For example, if string variable P is 

currently storing: 
MARY QUEEN OF SCOTS 

then the instruction: Q = FROM STRING (P,6,10) 

will assign to Q the 5-character string: QUEEN 

LENGTH OF A STRING ( LENGTH ) 
  

The integer function LENGTH (parameter: string name &) gives as its 

result the number of characters in the string currently stored in §. Thus 

with the value in P as above, an instruction: 

I = LENGTH (p) 

would result in the value 19 being assigned to I, 

LOOK-AHEAD IN THE DATA FILE ( NEXT ITEM ) 

Sometimes we shall wish to'look ahead' to see what the next character 

in the data file is, without actually reading it, For example, to find out 

whether or not it is safe to try to read a number with the READ routine, 

(If the next character in the data is a letter, then an attempt to use READ 

will cause the program to be faulted,) 

The string function NEXT ITEM gives as its result a l-character string 

corresponding to the next character in the data file, BUT LEAVING THAT 

CHARACTER OFFICIALLY UNREAD, so that it is still there to be used again when 

we give an instruction to read it officially, This function takes NO PARAMETERS. 

The value of the function may be assigned to a string variable, but rather more 

frequently our idea of ‘looking ahead’ is to decide whether or not it is safe to 

proceed, For example: 

if "O"¢ NEXT ITEX ¢*9* then READ (xX) 

Note that although the above check is sufficient to ensure that it is safe to 

use "READ", it is not always necessarily vhat we want - the next item might be 

@ space or newline, and the character AFTER THAT could still be a digit 0-9.
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SPECIAL STRING CHARACTERS. 

###® The facilities on this page are not part of standard IMP *#** 

(i) NEWLINE CHARACTERS. - ( SNL ) 

If we wish to write down the string constant consisting of one 

nevline character, this can look a bit awkward and inelegant. 

READ ITEM (S) 

it ss" 
"then COUNT = COUNT + 1 

To avoid this inelegance, we can write SNL (standing for STRING 

NEW LINE) instead. Thus the above becomes: 

READ ITEM (S) 

if S$ = SNL then COUNT = COUNT + 1 

(ii) SKIPPING ITEMS IN THE DATA FILE . ( SKIP ITEM ) 

The routine SKIP ITEM (parameters NONE) simply reads a character 

from the data file but makes no use of it ('throws it away') so that 

the next character after it in the file is now next in line to be read. 

while NEXT ITEM =" " or NEXT ITEM = SNL then SKIP ITEM
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SECTION 8 ; NUMERICAL AND STRING EXPRESSIONS 

We have alread seen any places where integer, real and string 

expressions are written in IMP programs - on the right-hand side of 

assignment instructions, in conditions and as actual parameters to routines 

(when parameters are called by value). Integer expressions are also used 

_ as bounds in array declarations, as array subscripts and as bounds for 

cycles. String expressions can also be used between the brackets of string 

resolution instructions such as; S => Til ,scceecsaeee) U 

While noting that in all the above cases we can use any expr- 

ession of the correct type, there some cases in the language where we are 

constrained to write a constant, rather than an expression. Such places 

are indicated by .... in the following: 

(a) As the maximum length in string declarations. 

string (....) array PETE (M : N+1) 

(b) In the bounds for CONST arrays (also OWN arrays, described later). 

In the list of initial values given to CONST and OWN arrays. 

const integer array TABLE (see : eee) B newer ' '#ee » Feee » 

INTEGER EXPRESSIONS Consist of: 

Integer variables connected by the operators: 

Integer constants (e.g. 45) + = * // | vhere * is multi- 

Integer functions plication, // division and ** is for 

exponentiation (raising to a power). 

NOTE The result of integer division (using the operator //) is rounded 

down. The result of 7//2 is the integer 3, 

  

REAL EXPRESSIONS Consist of: 

Real OR integer variables connected by any of the operators: 

Real OR integer constants + - * / o ™, ° 

Real OR integer functions 

NOTES (1) Real division (using /) involves no more rounding than is 

necessary to match the precision availeble in real variables, 

(2) Integer operands (variables, constants and functions) may be 

used in real expressions, but not vice versa,
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NOTE (3) The exponentiation operator (**) raises operands to a power, 

but this power must be an integer (positive or negative). Thus 

X**3 represents x3, 

(4) Apart from an initial + or - sign, all arithmetic operators 

must appear directly between a pair of operands; two adjacent 

operators are not allowed. Thus x? 

x ** (-3) and not as X ** -3, 

will have to be written as 

(5) Real constants may be in either fixed point form: 3.725 

or in floating point form: 1,732@3 meaning 1,732 x 107 

1.732@-3 meaning 1.732 x 10 

The constant ® (i.e. 3.14159265..... ) may be written in IMP 

3 

programs as PI (or « or £ or $, depending upon the particular 

compiler and input device in use), 

STRING EXPRESSIONS Consist of: 

String variables 

String constants (e.g. "MORRIS 1300") connected by the operator 
for concatenating, which is 

a full stop (.) 
String functions 

NOTE ON STRING CONSTANTS. 

String constants are written between quotes, and may consist 

of up to 255 characters. The quotes marking the begining and end of 

the string do not form part of the string. Hence | 

"THE CAT" 

is a string of length 7 (6 letters and 1 space). 

The empty or NULL string (of length 0) is of course represented 

by two quotes with nothing between them, i.e. "" 

This should not be confused with a string consisting of one or 

more spaces, which might be "“ " ohe space 
or nn 6 two spaces, etc, 

Newline characters can appear in strings like this: 

"THIS STRING IS SPREAD . 

OVER TWO LINES" 

If a quote character is required in a string, it is immediately 

followed by another, to show it is not a terminating marker. 

“WHO SAID ""nNo""?7" is the way to write the string: WHO SAID "NO"?
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PRECEDENCE OF ARITHMETIC OPERATORS. 

If we consider the expression A+tB*C we might think of evaluating it in two 

ways, i,e. as (A+B)*C or as A+(B*C). It is easily seen that these do not in general 

give the same value. So we have precedence rules which define the order of evaluation 

in the absence of brackets. For two adjacent operators (like * and + above), the 

operation of the higher precedence in the table below is carried out first. 

ae (highest precedence) 

* or / or // 

+ or - (lowest precedence) 

Where two adjacent operators are of equal precedence according to the table 

the one appearing to the left in the expression to be evaluated takes precedence, 

We can always use brackets to over-ride the above rules of precedence. When 

in doubt it is wise to insert brackets for safety and clarity. Extra brackets do 

no hars. 

The ‘left-hand precedence’ between + and - agrees with normal (mathematical) 

usage, 

e.g. By A-B+C we mean (A-B)+C and not A-(B+C) 

EXAMPLE MEANING 

A/B*C (a/B)*C 
a/(B*C) (a)/(B*C) 
Av*BIC (a**B)*c 

a**(ptc) (a)**(B*C) 

Note that it is necessary to bracket denominators containing more than one ters, 

A common mistake is to write A/2*B when A/(2*B) ie intended. 

N oon - ane MODULUS SIGNS WARNING - SEE BELOW 

If we wish to take the absolute value of an expression, we enclose the 

expression between exclamation marks, Thus 

'x-¥! 

yields the (positive) difference between XI and Y. This operation may be applied 

to either integer or real expreasions, and gives a result of the same type as the 

original expression, 

*** WARNING *** This modulus operator may soon be removed from some 

IMP compilers, Use MOD and IMOD instead. (See section 6.)
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SECTION 9 : INNER BLOCKS - LOCAL AND GLOBAL VARIABLES. 

Inside a program we may use an inner block, Its structure, with its local 

declarations at the head, and its instructions following, is identical to that of 

the main program, except that it is terminated by end instead of end of prozram. An 

inner block may be regarded as a compound instruction. 

begin ) 
sees declarations ) 

baeaaa ) 

) 
eeses ) ) 

'iiae o ) ) 

begin ) ) 

“sees declarations | ) 

_ inner block ) instructions MAIN PROGRAM 

coves) instructions ) 
ccoee ) ) 

end ) 
bees ) ) 

_— ) 
end of program ) 

One casm where this is useful is when we require to declare an array whose 

bound is not known until some part of the calculation has been completed. For example:- 

begin 

integer WN 

READ(N) ;: Nis the size of array required 

begin 

integer array A (1:N) 

reese 

end 
end of program
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LOCAL AND GLOBAL VARIABLES 

It ie important to appreciate the sphere of influence of the declarations made 

in the inner and outer blocks, 

A declaration appears at the head of a block and normally remains valid throughout 

that block until cancelled by the end terminating the block, It aleo remains in 

force upon descent to an inner block, UNLESS the same name is declared in the inner 

block, In the latter case, the variable is held in abeyance while the machine is 

executing the inner block, coming into force again when the end of the inner block 

is reached. 

Within any particular block, we call a variable declared within that block 

a LOCAL VARIABLE while one declared in any exterior block is called a GLOBAL 

VARIABLE. 

These points are illustrated in the following example: 

(i) begin (i) begin 
integer A integer A 

Azi Az| 

begin begin 
integer A,B,C integer B,C 

ones oeeee 

B= 1 B= 1 

C=4 C=#4 

A=B+C | A=B+C 

end end 
WRITE (A,2) WRITE (A,2) 

end of program end of program 
Here the name A refers to quite distinct Here A is global to the inner block since 

variables in the inner block and the this time A has not been re-declared. In 

outer block, The WRITE instruction will this case the WRITE instruction will print 

print the value !, the value 5, 

SCOPE OF VARIABLES. 

It is important to realise that on leaving a block, all local variables 

declared within that block are lost. Thus in the examples above, if the WRITE 

instruction on the penultimate line had attempted to write B or C, the program 
would have been faulted, 

Although inner blocks will not be needed very often, the idea of locel 

and global variables and their scope, is most important, In the next section 
on defining our own ROUTINES and FUNCTIONS, the same principle applies,
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SECTION 10 ; DEFINING OUR OWN ROUTINES & FUNCTIONS 

(A) ROUTINES 

When designing a program to solve a problem, we first try to decompose the 

problem into smaller elements. This enables us to view the structure of the program 

as a whole, without initially having to bother about the fine detail of all the 

steps. Also, it often turns out that essentially the same sequence of instructions 

is required in several places in the program. We may also recognise that particular 

sequences may be of use in the future for similar programs. It is therefore very 

convenient to be able to define our own routines, which may then be used in our 

program in the same way as the library routines, 

Before we can call one of our own routines in a program, we must make sure 

its name, and the number and type of parameters required, is declared, This may 

be done by placing a specification (spec) among the declarations at the head of the 

program, The form of the spec is exactly as used in the discussion on library 

routines, and indicates that the details of the routine will be given in a routine 

block later on in the program. Alternatively, we can, in all but exceptional cases 

described later, place the whole body of the routine at the head of the program, 

where it may be thought of as a declaration of name, parameters and what the routine 

does, The body of the routine has a structure similar to that of a main program 

except that in place of begin and end of program, we have routine sescscsenes 

and end, Between these we put the local declarations (if required), followed by 

the instructions, For example, anyone not having access to the Computer Science 1 

library routine "SWOP INTEGERS" could add it for himself by inserting four lines 

as ~~ follows:- 

begin 
routine SWOP INTEGERS (integer name I,J) 

integer K ;! local variable for a copy of I 

K=I ; TeJ ; J#®K ;! while value of J is moved to I 

end 
—_——= 

comment The above routine for swopping any two integers is now 

comment available throughout the program to follow 

integer P,Q 

integer array A (1:10) 

SWOP INTEGERS (P,Q) .! this first routine call causes 

SWOP INTEGERS (A(1),A(10)) s+ the routine above to be carried out 

eeennces ,+ but with P and Q in place of the 

ececeeee ;: Gummy names I and J, respectively. 

end of program 3+ second time: A(1) and A(10), 
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Note that the positioning of the routine body at the head of the program 

has nothing to do with the time the routine will be executed - the routine 

will be executed when it is CALLED, that is at the line “SWOP INTEGERS (P,Q)". 

In the call, we are told that the ACTUAL PARAMETERS P & Q are to be used in 

place of the dummy FORMAL PARAMETERS (I and J), 

Another example: 

routine READ REAL ARRAY (real array name X, integer A,B) 

! This routine reads real numbers from the data file into 

! the real array X, from X(A) to X(B) inclusive. 

integer I 

cycle I= A, 1, B 

READ (X(I)) 

repeat 

end 

real array A,B (1:100), C (0:20) 

READ REAL ARRAY (B, 1, 100) ;! read 100 numbers into array B. 

READ REAL ARRAY (A,51, 100) 3! read 50 numbers into array A, 

READ REAL ARRAY (C, 0, 20) ;! read 21 numbers into array C, 

end of program 

Note This routine is defined with a formal parameter real array name, 

This means that it can only be used to act upon a real array, and 

furthermore only upon a l-dimensional real array. Unfortunately, 

separate routines will have to be defined if we wish to read 

a sequence of integers into an integer array, or real numbers into 

a 2- or 3}-dimensional array. 

RETURNING FROM ROUTINES 

  

See notes two pages on for the use of the instruction return
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(B) FUNCTIONS 

These may be added at the head of the program in a manner almost identical to 

that for a routine. The first line of the function indicates the type of function 

it is (integer, real or string) and since the purpose of a function is to produce 

ONE VALUE to be used (e.g. in an expression), we need a special form of instruction 

to indicate when the result has been calculated. This takes the fora: 

result = sse88 

begin 

integer fn LARGER OF (integer P,Q) 

! this function finds the larger of two integer values. * 

if P>Q then result © P else result = Q 

end 
= 

real fn LARGEST IN (real array name X, integer A,B) 

! This function finds the largest member of X from X(A) to X(B), inclusive 

integer I ; real LARGEST 

LARGEST = X(A) ;! Try this, compare all others with it 

eycle I = Atl, 1, B ;: This assumes A€ B, See note over page. 

if X{I)>LARGEST then LARGEST = X(I);! On finding bigger one, take it, 

repeat 
result = LARGEST 

end 

integer I,J,K,L, M; real Y,2 ;! MAIN PROGRAM STARTS HERE 
real array A(1:100) 

1 = LARGER OF (J,K) + LARGER OF (L-1,™) 

Z = LARGEST IN (4,51,100) 
ee 

*teee 

end of program 

  

ee
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NOTES ON FUNCTIONS 

(a) On reaching "result = ....." in a function, this result is accepted as the 

value, and no further instructions in the function are performed. Hence the first 

function above could equally well be written:- 

integer fn LARGER OF (integer P,Q) 

if P > Q then result = P 

result = Q 

end 

since the line “result = Q" is only reached if the condition "P >» Q" has failed. 

(>) In the second example, it is for the same reason that we must defer giving 

"result = " until after completing the cycle/repeat. 

(c) The second example assumes that B is strictly greater than A. If we wish 

to allow for the possibility of them being equal, we could add, as the first 

instruction of the function:- 

if A*=B then result = X(A) 

(d) Since the purpose of a function is to produce ONE VALUE, we should not want 

to assign new values to any of the parameters during the course of executing the 

function. Por this reason, we should expect to call all parameters by value. 

In fact, Imp only allows arrays to be called by name. This forces us to call 

X as a real array name in the second function above, 

RETURNING FROM ROUTINES 

We have seen above that we leave a function on executing the 

instruction result = .... , and that this need not necessarily arise at 

the textual end of the function, 

The event that causes the program to leave a routine may be 

either reaching the textual end of the routine 

or executing the instruction return. This instruction may, like the 

Fesult = of a function, be made conditional. For example, if we have a 

routine to sort an array into some order from X(A) to X(B), say, we may wish 

to insert a conditional return at the begining to deal with the possibility 

that the array has only one (or even less) elements: 

af A>B then return
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SECTION 11 : RECURSIVE ROUTINES AND FUNCTIONS. 

To write a routine to sort an array (say, an integer array) into 

ascending order by the method of 'selecting the largest', we might start 

planning as follows: 

(i) Pind the position of the largest member of the array. 

(ii) Swop this largest member with the right-hand member. 

Position of the largest 

  

      
  

X(a) T I Coo [ 

We now have one element (the right-hand one) in its final resting 

place; it can now be disregarded and the rest of the problem is simply to 

sort the remaining members of the array. Now, this is exactly the same in 

nature as the original problem, but one smaller, so that step (iii) is: 

(iii) Sort an array one smaller than the original one. 

The Computer Science 1 library contains a function and a routine 

to carry out steps (i) and (ii) above. Step (iii) can be carried out by 

calling our main sorting routine from within itself, a process known 43 

RECURSION. 

routine SELECT SORT (integer array name X, integer A,B) 

integer P 
;! Using C.S.1 special routines. 

P = POS BIG INTEGER (X,A,8B) ;! Find posn. of largest. 

SWOP INTEGERS ( X(P),X(B) ) ;! Swop it with the end one. 

SELECT SORT (X,A,B-1) if A < B-1 :! Leaving the end one 

end ;: alone, sort the rest. 

NOTES (1) It is important to make sure that a routine or function written 

recursively will not carry on calling itself indefinately. In this 

case, each call on SELECT SORT acts on an array of one less elements 

than in the previous call, so that it will suffice to insert a simple 

condition to miss out the recursive call when the array consists of 

one element (which, of course, cannot help but be in the correct order). 
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BOTE (2) In this case, the recursion can, if we wish, easily be avoided by 

using a simple cycle instead. In more complex situations, this may not 

be so easy, and recursion can provide a great simplification in our 

thinking, 

(3) The above version of the routine will fail if called with A and B 

initially ‘inside out', that is A> B. It is instructive to re-write 

it as follows: 

routine SELECT SORT (integer array name X, integer A,B) 

integer P 

return if A >B ;! Nothing needs to be done. 

P = POS BIG INTEGER (X, A, B) ;! Find largest. 

SWOP INTEGERS (x(P), X(B)) ;! Swop it with the end one, 

SELECT SORT (X, A, B-1) ;! Sort the remainder, 

end 

RECURSIVE FUNCTIONS. 

Similarly, functions may be written recursively, Consider the 

problem of finding the Highest Common Factor of two integers, P and Q, say, 

using the Euclinean algorithm. 

(i) Find the remainder (R), when P is divided by Q. 

(ii) If R = 0, then the H.C.F. is Q. 

(iii) Otherwise, we need to find the H.C:F. of Q and R, - 

integer fn HCF (integer P, Q) 

integer R 

Re P-P//Q*Q «| Same as the C51 function REM 

if R = 0 then result * Q ;! The HCF required. 

result = HCF (Q, R) ;! We only reach here if R # 0 

end 

HOTE Once again, our recursive function has an escape clause (if R = 0) 

to ensure that it does not call itself indefinately,
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SECTION 12 : EXTERNAL ROUTINES AND FUNCTIONS 

DEFINING EXTERNAL ROUTINES AND FUNCTIONS. 

A file of external routines and/or functions takes the following form: 

external routine A(integer array name X) 

end 

external routine PRINT DECODED (string(31) 8) 

* a. = .   
* * -. «* 

end 

external real fn CUBE ROOT (real x) 

result =... we « 

2 

3 i 
; 
: 
> 

3 
f ; é 

end 
end of file 

E
a
t
 

th 
A
 
gl
e 

This file is compiled in the normal way. After this, the routines A and PRINT DECODED, 

and the real function CUBE ROOT may be used in any program, provided that program 

contains an appropriate “external spec" (see next page). 

nk
 

“# WARNING When stored by EMAS, the names of your external routines and functions 
  

are TRUNCATED to the first 6 characters. You must take care, therefore, to avoid 

using two names with the same first 6 characters. 

Notes (1) Unlike a main program, a file of external routines has no begin 

statement. Instead of end of program , it terminates with end of file. 

(2) If we require any global variables, accessible from two or more of the 

routines or functions, these have to be declared as own or const variables 

(see next section). (There is a third possibility, external variables, 

described in the IMP language manual, but these are not normally to be 

recommended),
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CALLING AN EXTERNAL ROUTINE OR FUNCTION. 

To use an external routine or function in a program, we give an “external spec" - 

this is the same as the first line of the routine (or function), with the keyword 

gpec added. 

begin 

external routine spec PRINT DECODED(string(31) S) 

external real fn spec CUBE ROOT (real X) 

real X,Y 

READ (X) 

Y = CUBE ROOT (X) 

PRINT DECODED ('*A23B!PZ7R') 

end of program 

*# WARNING Be very careful that the parameters you give for your external spec 

are identical to those given for your external routine (or function). NO CHECK 

is made when the program is run, and if the parameter lists differ, then chaos 

will usually result. ("ADDRESS ERROR" at run-time is a likely consequence), 

GLOBAL VARIABLES FOR A FILE OF EXTERNAL ROUTINES. 

If we require some global variables accessible from several external 

routines in one file, it is no good declaring an ordinary variable at the 

head of the file - being outside of a program or external routine, this would 

be illegal. We are, however, allowed to declare either CONST or OWN variables 

at this point. See section 2(iv) for CONST and section 13 for OWN variables. 

Hote that it is also permissible to put ea record format statement at the head 

of a file of external routines in the same way, and the format will apply 

to all the external routines.
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SECTION 13 : OWN VARIABLES, 

OWN variables are almost the same as CONST variables (which were 

described in section 2(iv) - but avoiding the word 'variables' because we 

were describing things that could not be varied). Storage space for both OWN 

and CONST variables is allocated and initial values are assigned when the 

program starts execution; the difference is that OWN variables can subsequently 

be altered by the program. 

On leaving a routine (or function or inner block), all variables 

declared locally within that routine become inaccessible. However, whereas 

ordinary variables then cease to exist (the space allocated to them is normally 

re-used for some other purpose), OWN and CONST variables continue in existance 

“behind the scenes". Thus if and when the program returns to execute this 

routine on a later occasion within the same run of the program, OWN and 

CONST variables will once again become accessible and will contain the values 

left there at the end of the previous visit to the routine. Note that the 

initial value given with the declaration of OWN variables is assigned once, 

and once only, each time the program is run. 

routine ANYTHING 

own integer I = 0 

I=I +] 

* . . * * * * 

end 

Like any other local variable, I is of course only accessible from 

within the routine (or from within any routine/function/block embedded within 

the routine). When the program starts, I takes the initial value 0, as in the 

declaration. On reaching the instruction I12*1+1 #£4for the first time, I 

will increase to 1, Assuming that none of the later instructions within the 

routine alters I, it will still be 1 on leaving the routine; thus on entering 

the routine the next time, I will start with the value 1 and immediately be 

increased by 1 to 2. Thus I will always be storing an integer corresponding 

to the number of times the routine has been entered. (Note that it will be 

the number of times the routine has been entered since we started this - 

present run of the program - the fact that we ran it several times earlier 

to-day has no bearing.) 

Note An OWN variable declared at the head of a file of external routines 

may be accessed from within any of then,
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SECTION 14 : BYTE INTEGERS, SHORT INTEGERS, LONG REALS 

BYTE INTECERS, SHORT INTEGERS 

To economise in storage it is sometimes convenient to declare: 

! occupies 2 bytes (16 bits). 

;! range of values stored: -32768 to +32767. 

short integer I 
=
 

byte integer J ;! occupies 1 byte (8 bits), 

;! range of values stored: 0 to 255. 

Hotes (1) Although short integers are seldom used, byte integers are useful for 

storing symbols, See section 18, 

(2) Short integers and byte integers may be used in any integer expression. 

(3) The value of an integer expression (including normal integer variables) 

may be assigned to a short or byte integer, provided the value obtained lies 

in the ranges given above. 

(4) ** WARNING. Short or byte integer variables may not be used as the 

control variable for cycles, 

(S) Arrays may be declared in the obvious way: 

short integer array A(0:999) 

byte integer array §_B(1:2000) 

(6) Name-type or value-type parameters to routines may be of type short 

integer or byte integer. 

LONG REALS 

long real X,Y -! each occupies 8 bytes (64 bits). 

long real array Z(-1000;1000) 

Long real variables can store the same range of values as real variables, but to 

& greater precision (between 14 and 15 decimal digits instead of between 6 and 7). 

Hote If the special statement reals long is placed at the head of a program: 

reals long 

begin 

this has the effect of turning all declarations and parameters of type 

real into the corresponding ones of type long real, (Computer Science 1 

students need not do this, as it is inserted for them sutomatically,)
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SECTION 15 : RECORD VARIABLES. 

Suppose that we wish to store the following data about some 

children: 

(a) Name - Up to 30 characters. Use a string(30). 

(b) Age in months - A byte integer will serve (Max. value = 255). 

(c) Height in inches - Kept to nearest 0.1". We need a real. 

It will be convenient if we can store these three pieces of infor- 

mation in one variable, which can be manipulated as a whole, For this we 

need to define a new type of variable, known as a record, To define a new 

type of variable, we first give @ record format ; having done that, we are 

able to declare scalars and arrays as follows:- 

record format BABY (string(30) NAME, byte integer ACE, real HEIGHT) 

record Rl, R2 (BABY) 

record array KID (1:100) ( BABY ) 

Because they have been declared as of type BABY, records Rl, Re and 

all elements of record array KID consist of 36 bytes, like this: 

  

  

  

NAME field AGE field HEIGHT field 
(1+#30 bytes) (1 byte) (4 bytes) 

Rl 

R2 ~ 

KID(1) " 
  

K1D(100) | — | 

A complete record is referred to by its name (e.g. R2 or KID(12)). 

—
—
 

=
 

s
e
 
=
 

  

Assignments to complete records must have on the right-hand side either 

another record of the same format, or 0. For example: 

R2 = KID(13) -" All fields of KID(13) are copied to R2, 

Rl = 0 -! All fields of Rl are set to 0 (for numerical 

-! fields) or to the null string (string fields). 

Individual fields may be referred to separately, as shown on the 

mext page.
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PIELDS WITHIN RECORDS. 

To refer to an individual field, we give the name of the whole 

  

record, followed by the underline character (_) and the name of the fieid 

required. 

Rl_NAME is the NAME field of record Rl. It can be treated as any 

other string variable, For example: 

PRINT STRING (R1_NAME) 

Rl NAME = "A.B. SMITH" 

R2_HEIGHT is the HEIGHT field of record R2. It can be treated as any 

other real variable. For example: 

R2 HEIGHT = R2 HEIGHT + 2.5 

KID(3) AGE §§ is the AGE field of record KID(3). It can be treated as 

any other byte integer variable. For example: 

KID(3)_AGE = R2_AGE 

WRITE(KID(3)_AGE,3) 

ARRAY FIELDS WITHIN RECORDS. 
  

Suppose that we wish to store records, each containing (a) the name 

of a student and (b) an array of his marks in each of 12 examinations. A 

suitable set of declarations might be: 

begin 

record format STUDENT (string(30) NAME, integer array MARK(1:12)) 
  

record array CSl (1:200) (STUDENT) 

record A,B (STUDENT) 

  

  

We can now refer either to a whole record (e.g. A or CS1(34)), 

or to the MARK field (which is an integer array) or to an individual 

element of of a MARK array. 

A_MARK is an integer array, giving the twelve marks stored in 

record A. It can be treated as any other integer array, 

for example, 1t can be passed as a parameter to a sorting 

routine: 

SORT INTEGER ARRAY (A MARK,1,12) 

CS1(I)_MARK(J) is an integer variable, giving the mark in the Jth exam 

of the student whose record is in CS1(I),
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RECORDS AS PARAMETERS PASSED TO ROUTINES /FUNCTIONS. 

Records and record arrays passed as parameters to routines or 

functions may only be passed by name. In addition, each such parameter must 
be followed by a record spec statement, indicating what type of record it is. 
In the following example, note that the one record format statement at the 
begining of the program is valid within both the routines that follow it, 
in accordance with the normal scope rules. It is also valid for the 

declaration at the start of the main program. 

begin 

record format BABY (string(30) NAME, byte integer AGE, real HEIGHT) 

routine SWOP RECORDS (record name X,Y) 

record spec X (BABY) ;! Note that unfortunately, a separate spec 
record spec Y (BABY) ! statement is needed for each parameter. 
record Z (BABY) ;! A dump variable, needed as usual. 

Z=X ; X=Y¥ 3; YeZ 

end 

routine SORT RECOKD ARRAY (record array name R, integer A,B) 

record spec R (BABY) >: Takes same form as for scalars above, 
integer I 

cycle I = A,1,B-1 

if R(1)_HEIGHT > R(I+1) HEIGHT then SWOP RECORDS (R(I),R(I+1)) 
repeat 

SORT RECORD ARRAY (R,A,B-1) if B-l > A 

end 

MAIN PROGRAM STARTS HERE 

record array KID (1:1000) (BABY) 

record P,Q (BABY) 

etc . etc * 
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SECTION 16. 

ROUTINES/ FUNCTIONS AS PARAMETERS 

Suppose that we wish to have one routine that will print a table of square roots, 

cube roots or cosines, etc. as required. We clearly need the name of the required 

functionto be passed as a parameter, for example:- 

TABULATE (SQ RT) 

TABULATE (CUBE RT) 

TABULATE (COS) 

In another case, we might wish to write a routine that would see how long some 

nominated sorting routine took to sort an array of 100 random numbers. in this case, 

a routine would need to be passed as a parameter. For example:- 

TIME SORTING BY (QUICKSORT) 

TIME SORTING BY (BUBBLESORT) 

In a realistic example we should almost certainly need some further parameters 

(e.g. a string to be printed as a heading for the table, the size of the table to be 

printed, or of the array to be sorted, etc., etc.). For clarity, however, these will 

be omitted in the examples below. 

The routine/function is passed as a parameter in a fairly natural way, except 

that one extra statement is needed: if the function or routine being passed as 

parameter has the formal name F, we need a "spec" statement to say what parameter(s) 

P itself takes. And, of course, the actual functions used (e.g. 8Q,RT, CUBE RT COS 

in the above) will have to confors. 

routine TABULATE (real fn F) 

apec F (real X) ;! The actual function passed as 

;! parameter must conform to this and 

integer I -! take just one real value parameter. 

cycle I 20, 1, 10 

NEWLINE .! Tabulates the function F(I) for 

WRITE (1,2) sf Tw O, 1, 2, cecevees 10. 

PRINT (F(1),4,4) 

repeat 
NEWLINES( 2) 

end
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An example of a ROUTINE passed as a parameter to a routine:- 

routine TIME SORTING BY (routine ANYSORT) 

_ spec ANYSORT (integer array name X, integer A,B) 

  

integer array P (1:100) ;! Stores the numbers to be sorted, 

integer | 

real T .! To measure the time taken, 

cycle I = 1, 1, 100 ;! Fill an array with 100 random 

P(I) = RANDOM INTEGER -! numbers, using the function from 

repeat ‘! the CS1 library. 

T = CPU TIME 

ANYSORT (P, 1, 100) -! ANYSORT is the dummy name for any 

PRINT (CPU TIME - T, 3, 3) ;! sorting routine, whose actual name 

end ;! will be given when the routine is called. 

MINOR NOTE, 

4 

In the example on the previous page, the routine TABULATE requires 

as actual parameter a real function. In fact, the standard functions SQ RT 

and COS are defined as long real functions. Although this distinction has 

been irrelevant to us so far, it is significant when a function is passed as 

‘a parameter. If we require to pass any of the long real standard functions to 

our TABULATE routine, @ simple way to reconcile the parameters is to place the 

special statement reals long at the head of each program or file of external 

routines concerned. This has the effect of turning all declarations and 

parameters of type real into the corresponding long real types. In fact, 

this is done automatically for Computer Science 1 students.
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SECTION 17 : INPUT AND OUTPUT STREAMS. 

In all our discussion so far, we have assumed that all the data 

being read by our input routines (READ, READ STRING, etc.) comes in one 

STREAM from just one file (or input device); and similarly that all our out- 

put is sent in one stream to just one file (or output device). Depending 

upon the computer we are using and the operating mode, there will be DEFAULT 

OPTIONS which, in the absence of instructions to the contrary from the 

program, determine the devices to be used for the input and output streams. 

These, and the methods of over-riding them, are not part of our IMP program 

and do not concern us here. However, we may wish to include instructions 

in our program to arrange for input data to be taken from two or more 

a@ifferent streams (coming from different files/devices), or to send our 

output to two or more streams (being stored or printed on different files/ 

devices), To arrange for this, we use the routines SELECT INPUT and 

SELECT OUTPUT, which both take an integer value as parameter. 

real X 

READ (X) ;: This comes from the default input 

aeesaees .! getream, as no instructions to the 

wees wae -' contrary have been given. 

SELECT INPUT( 2) .! From now on, until changed again, 

READ (X) ;! input comes from STREAM 2, 

end of program 

NOTES (1) Output streams are selected in just the same way with the 

routine SELECT OUTPUT. 

(2) Computer Science 1 students can choose stream as follows: 

For input: Input stream 1, 2, 3 or 0. (Input O is the console), 

For output: Output stream 1, 2, 3 or 0. (Output O is the console). 

(3) Other users will have to use one set of numbers for input 

streams and a different set for output streams. 

(4) ®* WARNING ** Both input and output streams are buffered line 

by line. Unfortunately, when we select a new stream we lose any 

data remaining in any half-read line on the old input stream, A 

subsequent re-selection of the old stream will resume reading at 

the beginning of the following line. On calling SELECT OUTPUT, any 

half-complete line on the old stream is terminated with a newline,
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SECTION 18 : SYMBOLS 

String variables, functions, etc,, are designed to facilitate 

operations upon non-numerical quantities, However, they suffer from the incon- 

venient limitation of having a maximum length of 255 characters, Moreover, to 

access an individual character (say the 7th) of string S, we have to use the 

unveildy function | 

T = FROM STRING (S, 7, 7) 

We can, of course, store information in an array of 1-character 

strings: 

string (1) array $(1:1000) 

but if we are going to have to store our non-numerical characters in one- 

character units anyway, there is the alternative of storing them as whet are 

known as SYMBOLS. This is more economical in storage than using one-character 

strings, but denies the facilities of concatenation and resolution, Fach 

symbol is regarded as equivalent to an integer in the range 0 - 127, and thus 

symbols can be stored in integer or, for economy of storage, byte integer 

variables. Corresponding to the routines and functions so far considered 

for input and output of strings, we have equivalent ones for operating 

on symbols being stored as integers. 

string (1) S, T, U integer I, J, K 

READ ITEM (S) READ SYMBOL (I) 

T = NEXT ITEM J = NEXT SYMBOL 

** = NEXT SIG ITEM ** K = NEXT SIG SYMBOL 

** SKIP ITEM SKIP SYMBOL 

PRINT STRING (S) PRINT SYMBOL (I) 

PRINT STRING ("Q") PRINT SYMBOL ('Q') 

U = "a" K = ‘A’ 

if "A" @ 5S ¢ "2" then .. if 'A' ¢ 1 ¢ 'Z" then ... 
** if S = SNL then... if I = NL then... 

* if S # SEM then... = if I #¢ EM then... 
    

Notes (1) ** indicates facilities that are not part of standard IMP. 

(2) Constant symbols are written single primes; constant strings 

are written between double primes (quotation marks) as shown 

in the examples above. 

(3) The integers I,J,K above could , for economy of storage, have been 

declared as byte integers.
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CONVERSION BETWEEN ONE-CHARACTER STRINGS AND SYMBOLS. 

string fn spec TO STRING (integer N) 

integer fn spec CHAR NO (string name 8S, integer I) 

TO STRING takes the symbol whose equivalent numerical 

value is N, and gives as its result the same character, .in the 

form of a l-character string. 

CHAR NO does the inverse: it takes the Ith character of 

string S and gives as its result the same character as a symbol. 

Examples of use. 

integer 1,J ; string (1) 8 ;  string(10) T 

I = CHAR NO (T,3) : ! I now stores a symbol 

S = TO STRING (J) - ! § now stores a l-character string 

Note 

From its name, one might expect that FROM STRING would be the 

inverse of TO STRING , but it is in fact a quite different thing. ( FROM 

STRING copies a part of a string to form another string). 

ARITHMETIC RELATIONSHIPS BETWEEN SYMBOLS, 

Although we do not normally need to know what numerical values 

correspond to different symbols, it is useful to know that successive letters 

of the alphabet correspond to successive integers. Since symbols are 

‘stored in integer, or byte integer, variables, we can carry out addition 

and subtraction operations to convert from one letter to another. Thus: 

the expression "AT +] gives '‘B' 

the expression 'y' #1 gives ‘'Z'
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One case where this property is useful is in the declaration of an array whose 

subscripts can be written as symbols. 

integer array COUNTER ('A';'Z') 

This would be the natural declaration if we wished to count the frequency of occurrence 

of the different letters of the alphabet in a piece of text. Another natural use 

would be to cycle from 'A' to 'Z' setting these counters to QO. 

cycle i = 'A',1,'Z" 

COUNTER (i) = 0 

repeat 

LOWER CASE LETTERS 

Lower case letters (a,b,....z) can also appear as symbols. They have different 

numerical values from those of upper case letters, but are themselves ordered in the 

natural way. Thus: 

the expression ‘'a' +1 gives 'b' 

the expression ‘w' +1 gives 'x' 

CONVERSION BETWEEN UPPER AND LOWER CASE 

Because of the above relationships, it is clear that: 

the difference between 'A' and ‘a’ 

is the same as the difference between 'B' and 'b' 

and as the difference between 'Z' and 'z', 

If, therefore, an integer I stores an upper case letter as a symbol, 

then the corresponding lower case symbol is given by: 
I+ ‘at - ‘A’, 

For example, we might write: 

if "A'<I<'Z' then I= 1+ ta! - ‘A!
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EMAMPLE Counting the letter frequency in one sentence of text. In order to count 

upper and lower case letters together, we first convert all lower case letters into 

corresponding upper case letters, 

begin 

integer array COUNT ('A':'Z') for counting letters 

=
=
 

integer I 

cycle I= 'A'’, 1, 'Z' initialise counters 

COUNT(I) = 0 

repeat 

cycle 

READ SYMBOL (I) 

if I= '," then exit sentence ends on a full stop 

if 'a' € 1 ¢'z' then I= I +"A' - ‘a! convert lower case to upper 

C
d
 

c
t
 

if 'A’ € 1 € 'Z" then COUNT(I)=COUNT(I)+1 increment corresponding 

=
e
 

counters. 

;! tabulate results, 

repeat 

cycle I= 'A', 1, ‘2° 

t
a
 

NEWLINE 

PRINT SYMBOL(I) 

WRITE (COUNT(I), 6) 

repeat 

NEWLINE 

end of program 

NUMERICAL VALUE OF THE DIGITS 0-9 

Rather unfortunately, the “numerical value" of the symbol '2' is not the decimal 

integer 2, However, the usual relationship holds:- 

the expression '0' +1 gives the symbol '1' 

the expression ‘O' +9 gives the symbol '9' 

Thus if we have an integer variable holding an integer known to lie in the range 

0-9, we can get the corresponding symbol by adding 'O', 

integer I,J 

IsT7 ;: I stores the integer 7. 

J =I + 'o' ;: J stores the symbol 7.
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SECTION 19 : POINTER VARIABLES. 
  

Suppose that we have a routine 

routine A (integer P, integer name Q) 

then on entry to the routine, we assign to P the value of the actual parameter 

given, but place in Q a POINTER to the actual parameter corresponding. When- 

ever the routine refers to Q, we actually use the location to which Q is 

pointing. In a rather similar way, we can declare POINTER variables (integer 

name, real name, record name, etc., and also integer array name, string 
  

array name etc.). 

  

begin 

integer array A (1:100,1:100) 

integer name Q -' a POINTER variable 

Q can now be made to point to any integer variable (say, A(I,J+3)) by 

Q== A(I, J+3) 

Q is now synonymous with A(I, J+3), and provides a concise may of writing it. 

Q=Q+1 unless Q=0 

is & more concise way of writing the same instruction with A(I, J+3) and it 

also saves the program from having to evaluate the address of the same two- 

dimensional array element three times in rapid succession. 

NOTES (1) It is clearly necessary to make Q point to an integer location 

(using Q = =...) before it is meaningful to make an ordinary assign- 

ment (Q = .....). 

(2) An example of both a record name and an array name is: 
  

begin 

record format STUDENT(string(30) NAME, integer array MARK(1:1; 

record array CS] (1:200) (STUDENT) 

record name R (STUDENT) 

integer array name M 

R== CS) (1h) -! Ris short for the lith record. 

M= = CS) (I) _ MARK ;! Mis an integer array 

7! M(6) is an integer
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SECTION 20 : MAPPING FUNCTIONS, 

Mapping functions have some features similar to those of pointer variables, 

dn that they allow us to define how a whole set of “alternative names" are to 

be allocated to certain variables, | 

As a practical example, note that some IMP compilers only allow us to 

declare i-dimensional arrays. In such cases, we are generally able to obtain the 

eonvenience. of 2~dimensional arrays by declaring a |-dimensional array and 

allocating pecond names by means of a mapping function, 

ACO) a(t) —sa(2)_— (3) — (4) (5) —s a) (7) 
  

B(O,0) B(O,1) B(O,2) B(O,3) B(1,0) B(i,1) B(1,2)  B(1,3) 

real array a(0:7) 

real map B(integer I,J) 

result = = A (4*I + J) -! NOTE: use the = = sign, as 

ae ;! with pointer variables, *** 

Any reference to B(1,3), for example, will cause an entry to the mapping 

function B; this will evaluate the resulting address you want to use, namely 

“the same as the address of A(4*1+3)", which ia A(7). 

Hotes (1) Other types of map (string map, integer map, etc.) are written in 

a similar fashion, . 

(2) A map has the same structure as a function, except that the 

instruction that causes the calculation to cease is yesult = = , rather 

than result =. The right-hand side of this result instruction must be 

something that gives the address of a variable of the correct type. (i.o. 

a string variable for a string map, etc.) 

(3) Since the result of a map is the address of the variable you want, 

the map may (unlike a function) be used on the left as well as the right- 

hand side of an assignment, For example: 

B(1,0) = B(1,0) + 3 

(4) Since each reference to B involves executing the body of the 

mapping function, it is somewhat slow,
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SECTION 21 : JUMPS, LABELS AND SWITCHES 

In earlier sections, a number of methods have been described for controlling 

the order in which instructions are executed. These have involved: 

(i) if ceccee then weceeee C1BC cevesens 

(ii) start & finish 

(iii) while ...ssseee 

(iv) until ..ceceeee 

(v) cycle & repeat 

(vi) exit, stop, return, result = 

In a well-structured program, these will suffice for nearly all purposes. 

If we wish to make a test to determine which of two alternative paths is to be 

followed, then "if .... then .... else ....", together with "start & finish" 
      

will be quite convenient, If we have more than two possible routes, however, 

we can be forced into testing on a succession of conditions, To avoid great 

inefficiency, we shall probably need nested start / finish groups, and this can 

soon become cumbersome, 
en 

Suppose the following program structure is required. (Only three possible 

routes are shown, for simplicity, but there could of course be many more.) 

(A) 

     
       

   

  

7 

value of I+J 

? 

(B) 

  

(F)
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To meet this requirement, we need the following:- 

(i) At point (A), to be able to choose between going to one of points 

(B), (C) or (D). If the choice involves testing for the value of an 

integer expression, one convenient way of doing this is to use a 

SWITCH JUMP. 

(ii) Having divided into three (or more) paths, a properly structured 

program will normally require to merge again, to point (E), say. 

This can be achieved with SIMPLE JUMP instructions. Being simpler, 

these will be described first, 

JUMPS TO SIMPLE LABELS 

  

Jump instructions meaning 

— Le JUMP TO the label L2, That is, instead of 

going on to the next instruction in sequence, 

break off from here and resume from the statement 

labelled Le, 

Simple labels 

L2: NEWPAGE The simple label, L2 say, is followed by a colon 

PRINT STRING(*® ... *) and placed on the left of the statement from which 

etc. we wish to resume execution, 

Notes (1) 

(2) 

(3) 

(4) 

(5) 

A simple label can be any legal Imp name, Such names do NOT have to 

be declared. (But see next paragraph for switch label names that do.) 

The label can come either earlier or later in the program text than 

the corresponding jump instruction (i.e. we can jump either forvards 

or backwards), but both must be within the same routine, function or block. 

Owing to the high risk of introducing errors that can be very hard to 

locate, jump instructions should NEVER be used when any of the methods 

listed at the top of the page would be applicable in a convenient way. 

Ae an alternative to a name, it is possible with some Imp compilers to 

use a positive integer as « label. 

The arrow (+>) is printed with a "minus" and "greater than" sign,
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SIMPLE JUMP INSTRUCTIONS (WITH CONDITION ) 

ifN=Othen -» L2 This is exactly the same as the previous 

READ (X) example, except that the jump only takes place 

if N= 0. Otherwise the program naturally 

continues with the next instruction, say 

READ (X). 

JUMPS TO SWITCH LABELS 

If we wish to be able to jump to one of many points in the current block, 

depending upon the value of an integer expression (I+J, say), then we must DECLARE 

(in the usual place at the head of the routine, function or block) an array of 

labels. For example: 

switch $(6:10) 

and the jump is written 

> § (I+J) 

and the labels are ~~ 

S(6):  wewese 

The structure of the program to implement the flow diagram given earlier 

would now be like this: 

begin 

switch S (6:10) ;! a declaration of labels 5(6) to 8(10) 

“> § (183) ;! evaluate I+J and jump to correct label 

1) ee -! start here if I+J=6 

> 199 ;: NOTE THIS IS USUALLY WANTED **### 

S(T): sesee -! start here if I+J=7 

“> 19 

S(10):.e00 »! and here if IsJ=10 

LOD: .eces ;! all routes meet together again here
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Some notes on SWITCH LABELS 

(1) 

(2) 

(3) 

(4) 

As with simple jumps, the jump instruction and all the 

corresponding labels must be inside the same block, routine 

or function, In addition, the switch declaration must 

also be in the same block, routine or function. That is, 

there is no possibility of using a "global™ switch name, 

The bounds of the switch declaration must be CONSTANTS, 

Hence 

switch S (M:N) 

would be invalid. 

It ig not necessary for all the labels in the range declared 

to appear in the program, For example, 5(8) and 8(9) do 

not appear in our example above. On the other hand, if, in 

that example, I+ were to evaluate to 8 or 9 upon reaching 

the switch jump, then a run-time fault would naturally occur, 

Without the —> L99 jumps, our example would have resulted 

in the program running on from the instructions at 8(6) 

to continue with those that follow labels S({7) and 8(10), 

This is not the structure normally required. Mo such 

jump was needed at the end of the instructions at 8(10), 

since label L99: was on the next line anyway.
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APPENDIX A 

i rams on C Punche On-Line Consol 

Certain symbols used in the written version of the language are not available 

on card punches and On-Line Consoles. Special conventions must be adopted as 

follows: 

(1) Keywords 

(a) Keywords (begin, end, etc) are punched with a % character inmediately 

preceding the letters. The word must then be separated from other symbols 

by something other than a letter, 

Ho spaces are permitted within one keyword, but, integer array name may for 

example be regarded as one or three keywords and hence may be punched 

as INTECER SARRAY SNANE 

or INTEGERARRAYNAME 

(b) The % symbol acts as a shift character denoting that the sequence of 

letters immediately following are to be interpreted as keyword letters, It 

is cancelled by anything which is not a letter. 

(2) Use of Spaces 

Within the program (but not always within Job Control or data) spaces may be 

inserted anywhere on a line to improve legibility. Such spaces are disregarded by 

the compiler except that 

(a) A space marks the end of the 'underlining' in keywords. 

(b) Certain sequences of characters, known as STRINGS, are indicated 

by placing them between quote characters ("), Between quotes, spaces DO 

count, so that 

"THE CAT" 

is a string of length 7 (six letters and one space). 

(3) String conventions on card input, 

Anyone inputting IMP programs on cards should check on the current 

conventions regarding quotation marks. In many cases, the quote character 

on cards is taken to mean that the previous character is to be disregarded. 

If such a convention is still in force, quote marks must obviously not be 

used to delimit strings. In these cases, the single prime (') is used instead. 

Example: 

"THE CAT'
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(4) Maximum length of line 

Lines of program and data should be limited to 72 characters, as the 73rd 

and later characters will be disregarded. Most consoles only print 72 characters 

on a line, 60 you normally see when information ia going to be lost. Beware, 

however, when uging cards as they can take up to 80 characters - although the 

card punches can and should be set to prevent you going beyond coluan 72, 

(5) Continuation onto a further line (program only) 

Normally, each instruction in a program will be written on a separate line, 

However, long instructions or declarations may be continued onto a second (or 

further) line by punching 4 before reaching the 72nd position on the line. This 

facility is available in program only, not within Job Control cards, nor data. 

Its chief use is for punching long instructions of more than 72 characters. 

(6) Composite characters 

Certain composite characters have to be represented by a peir of 

characters as follows:- 

is represented by the two characters > # 

ls represented by the two characters < * 

is represented by the two characters => 

is represented by the two characters <- *
J
j
i
n
a
y
v
 

(7) Characters not available on_ card punches and some consoles 

If the input keyboard does not have the following characters, they are 

represented as follows:- 

# is inputas # 

w isinputas £ or $ 

~ ig inputas =
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APPENDIX B — Notes on Fault Finding, 

1, COMPILE TIME FAULTS. 

(a) Recognised (numbered) Faults. 

If the compiler recognises what appears to be the intended syntactical 

  

structure of a statement, but detects a violation of some rule of the language, 

a fault number and a short message describing the nature of the violation vill 

be printed out. The message normally gives enough information for us to identify 

the fault. There are two possible messages that are worthy of further comment 

here, 

(i) FAULT 108 (EM CHAR IN STMNT) DISASTER 

This means “End-of-message character in statement", and arises when 

the compiler reaches the end of the source file without recognising our 

end of program. We may have mis-spelt it, omitted it. This fault can also 

arise if we try to compile an empty or non-existent file, 

(ii) FAULT 19 (WRONG NUMBER OF PARAMETERS) 

This can mean either the wrong number of parameters given for a routine 

or the wrong number of subscripts given for an array access, 

Either of these can sometimes occur through the omission of a comma in, 

for example, = parry (X+¥, 3.5) since spaces do not count in program, and the 

35 will be mistaken for 35 decimal digits being demanded before the decimal point. 

(b) Syntax Faults, 

This means that the compiler has encountered a statement which does not 

conform to any of the acceptable syntactical structures, To the human, the fault 

often appears ridiculously trivial, For example:- 

too few closing brackets: READ (A(H) 

excess of commas: real X,Y,Z, 

  

(c) Side-effects of carlier faults, 

Example 1: cyclee I= 1, 1, 10 

repeat 

Here the first line will be faulted for syntax (faulty spelling of cycle). 

As a consequence, the compiler will be unaware of our intention to start a cycle 

and will find a spurious fault: 

FAULT 1 (REPEAT TOO MANY)
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Example 2: reall TOTAL 

TOTAL = 0 

TOTAL = 0.7 

Here the first line has a syntax fault and so the declaration will not be 

acknowledged, Hence the second line will be faulted for "name not declared". In 

in attempt to avoid the same fault message each subsequent time you use TOTAL, the 

compiler will declare "TOTAL" for you. Unfortunately it will guess you intended 

it as an integer and subsequent attempt to assign a real value (0.7) to a supposedly 

integer variable will case yet another spurious fault (Real quantity used in 

integer expression. ). 

2. RUN TIME FAULTS. 

If your program fails at run time, you will receive the message 

MONITOR ENTERED FROM IMP 

The MONITOR will then proceed to give you several valuable items of 

diagnostic information, as follows 

(i) A message briefly describing the type of fault. Some notes on 

interpreting these messages is given on the next page. (B,3) 

(ii) The line number in your program where the failure occurred, ALWAYS 

IDENTIFY THIS ON YOUR PROGRAM LISTING, 

(iii) A list of the scalar variables in force at the time of failure, 

and the values stored in them, if any, (Arrays are not printed, 

as they are liable to be large, and hence time-consuming to print.) 

DO NOT RUSH to alter your program until you have made use of the above 

information to discover why it went wrong. If the cause of the failure 

does not come easily, it often helps to work through part of the program 

with pencil and paper, writing down the values you would expect to be 

stored in the different variables at each stage of the computation,
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RUN-TIME FAULTS (continued) 

It may be useful to give the following few notes in explanation of the 

run-time fault messages. For further details, see the "Edinburgh IMP Language 

Manual", section 13, 

(i) | ARRAY BOUND FAULT 21 

Attempt to use A(21) when array A was declared only (1:20), for example. 

(ii) INPUT ENDED 

You have tried to read more data (using READ, READ STRING, etc) 

than you provided in the data file, This is often caused by getting the 

program into an unintentional loop. 

(iii) UNASSIGNED VARIARLE 

You have tried to use the contents of a variable which has had nothing 

put in it. 

(iv) SYMBOL IN DATA ‘R' 

While trying to read a number, you have come across a symbol which 

cannot form part of a number, for example: R. 

(v) ILLEGAL CYCLE 

You have tried to start a cycle with control variable which will 

never terminate e.g. 

cycle I = 2,K,10 

where K = 3, 

(vi) CAPACITY EXCEEDED 

The string you are trying to assign is longer than the maximum lencth 

declared for this variable. 

(vii) NOT ENOUGH STORE 

You are trying to use more of the store than is available to you. 

Note that multi-dimensional arrays run away with a lot of space, 

(viii) DIVIDE ERROR 

Usually a division by zero.


