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iH 	 OF OCji 1AAVI(JR IN PAGED 	fliJR 

The tlwai3 initially considers tim queutiona: what iv meant by 

prqgram behaviour in a paged computer uyøten, and what is meant by 

its icroyient. 	The former, especially, demands a general 

discussion on paging and its Uses and abuses in idarn operating 

system. 	Reference is made to c brief study of the behaviour 

of some KD9 programs. 	The problem of rasthicturin a program 

in order to t'rçrove its paging behaviour, is then investigated; a 

solution using Q1MA6=1W techniques is ouggeated. A acheue to 

Perform such a restructuring autometicafly, on the basis of 

monitored infornxtiou i'rozn the program at run-tiiae, has been 

implemented on the ICL 440. 	This scheme is described and eoue 

results presented; these show that considerable improvement can be 

obtained, 

This work was pported by International Coutera Ltd. 
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utilL.ation whatever the degree of matiprogramming. 

A 'virtual store  (am introduction) can be reclieod, a great 

conviiencie for the user. 

Use of m.—j ic made flexible; a program can be loaded 

without the need for a large arec of oniouc vacant store. 

(The mapping iiiocheniaii aolvee all relocation problacw in p4quica3. 

store.) 

In systems we have in additions 

etretze simplicitq., owing to the fact that a page can be 

loaded arbitrarily into any cvailable page frame. 	If allocation 

in in xn-ocsiatant uize unite, c , s these are loaded a. unloaded the 

vacant store zid.ly fragenta into bloekL of xy 	langtlw. 

Mm a storage reeGt is made, the vutom has to eoaroh Or a 

iitable unoccupied section or per1ap ro1ii:fle tho code a'ound the 

otoro to areate one. 	Ouch oblew, and the ooniiorcb1e software 

overheads asiiociatod with thoir solution,, do net crie in the 

pagthg situation. 	In addition the conatanrj of cisc macno one 

ieee cot of variable para3oteru in the 4Vtem. 

)4e}wLizta irthiCh map frou the program name space into actual 

address apace can be e,q*nsive (the hardware 000nenta), and 

result in an increase in average addressing time. 

The tables containing information about unite necessary to 

the address mapping iiocbenisi (o.c.  page tables) take up valutbie 

apace in main reiicry, 

More is greater softwere (and possibly hardware) overhead 

in moving several small areas of data between working store and 

hai*lng atoro, than me large ares • 	(lime the total overhead in 
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transferring a complete prograi into store 18 greater for arialler 

units.) 

And finnily the additional factor against Rag= trstena. 

4) Sinoe page sizes are fixed, thr boundaries will normally 

be imposed mw or lees arbitrarily on a progrw. 	This makes it 

more difficult to reap the profit from advantage 1 than in the 

case where variable size units of allocation can be chosen to 

reflect the structure of the program to some degree. 

Paging thus  gives the gain  of advantage 4 while foregoing part 

of the potential benefits expressed in advantage 1. 	The 

realization of the latter is in any case far from ear; but this is 

particularly true in the paging environment. 	however it was not 

simply the failure to achieve these benefits that led to unfortunate 

results in some early paging aystewp but a lack of appreciation of 

the fact that this is whore the problem lay. 

(We note in passing that the choice of ideal page size is s 

compromise between the overheads of 2 and 3 above, and the gains of 

advantage 1. 	For the latter to exist at all, the size clearly 

has to be fairly ønall compared to the average prograii recLuirsoents; 

this gives an upper bound, but in practice it is not clear what 

,I&= bawd the disadvantages impose. The 'onuonly chosen page 

size of about 1000 words may be dictated more by tradition than 

meau'ed efficiency considerations. 	8hagea' and cMppey (ref -.4) 

detail the effects of page size.) 

2. T}tI AlLOCATION Pfl3L4 

The problem arisea from the fact that there is no eare way of 

knowing which parts of a program will be referenced in a partioular 
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run or time-clioe. 	abort of loading the Aauk program, which 

obviously extracts none of the potential benefit a of advantage 1, 

theae izzet be at least some ooca&-orw when reference is made to a 

page not in main memory, i.e. a page-fault occurs. 	It is at 

these times that whatever action the yten takes introduces a 

possible cause of inefficiency, 

The norriial course is to load the referenced page (loading 

z-y after a faultinc reference is 	as 40QUW paging). 	If 

there is an available page-frame, i.e. one not occupied 1r pages of 

an active program, there is no difficulty (but even than it eheu24 

be noted that the I/O overhead involved in loading a set of pages 

is less when requests are made altogether than uhen each page is 

loaded singly after a page-fault.) 

More significant is the likely case that there is no available 

space uhen the page-fault occurs. 	This makes it necessary to 

over-write - after writing back if necessary - a page, either of 

the program concerned, or of another. 	This in itself is not 

significant, but it becomes so if the overwritten page is required 

age-in in the current in or tine-slice of its program. 	every 

reloading represents a possible loss of efficiency over whole 

program roll-in roll-out methods. 

One could reserve for the program before it is aUoid in 

store a sufficient space allocation, to enare that the above 

situation never occurred,, but this extreme wild probably lead to 

reservation of sa]iut the total program size, and again scarcely 

realise one of the main benefits of the small allocation unit. 

The other alternative, in a timo-charing system, is to use 

the faulting reference to terminate the tine-slice, the program 
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being unloaded to male room for others, 	This is no solution 

though; there will be an increase in the proportion of time spent 

loading and unloading proama, and a decrease in CPU utilisetion. 

An upper bound to the length of the time-slice is a constraint 

arising from the demexzta of a good response time for a large number 

of users; a system is wzise to reduce c tine-ulico core than these 

inefficient demands of tirio-sharing already dictate. 

Thos the attect to take eons of advantage 1 of the last 

section may lead to rir ixveient of pages between. backing store and 

rein memery (giq1nv). 	A very siople model can demonstrate 

at least the possibility of this increased 110 simning the nvlti-

progrsn!atng advantage which apparently arises from having more 

programs in store. 

Suppose program i is allocated store size s over a long 

period, and that as faults occur, pages of i (chosen a000rding, to 

some strater) are overwritten 	Take as a unit of time s  the 

average page fotch tine from Immediate backing store. 	(Page write 

time is net explicitly included as only those pages which have 

changed have to be written back - this can be allowed for in the 

average fetch time if necessary.) 	For rotating backing store 

devices, the unit is typically a few thousand instruction cclea. 

Let rj(aj) be the average rizuber of page faults that occur 

from pro'wa i ckzring a unit of its own processing time (this is 

the program's naL!e-fault ratq). An upper 33-r'4-t to the ratio of 

its U'u time ireai tii.e is lilij(j) 	 (1.1) 

(this is an upper limit  bemuse time when the program is ready to 

use the CPU but it is unavailable, is igred). 	Than the total 

IL.  
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CPU uti1ition is bounded above trs 

N 	 1 
7 	l4Tj(e) 

all progs. 

If the total core size isM, and a set of similar proama are each 

allocated store a (giving fault rates r(o) ), the rt*mber of much 

programs that can be a coodated is Ij/a; the CPU utilisetion is 

then at istx 
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(1.2) 

Suppose each program is subject to processing time-slices of 

length T (between ithith its pages ore removed), and it references 

s( T) distinct pages in mach a time - s34 . 	Asenzdng wholly demand 

paging, than r as defined above "ill achieve its minimum value of 

$(T)tr for or--B(t). 	F*" allocations greater than 8(), the 

of 	will clearly fall. 	But consider a very small a, 

pethaps just two or three pages; little hnowledge of program 

behaviour is required to see that the interval between faults can 

easily be no more than a Let, instructions. 	The value of r (in the 

above units) would then be over a thousand and the CPU utilisation 

practically so, except with a vatt main memory. 	It is obvious 

bow irrelevant the i*i1tiproaiziing advantage (effectively the 

multiplier Va) can become if page-faults occur with great rapidity. 

(Note also how a 	11 time.-a].ioe - T 1 in the defined unite 

impoms an inmediate bound on achievable efficiency), 

acevhere between the extreme of store allocation, there will 

be an optinlim. 	The difficulty lies in finding it, or equivalently 

finding the optimum mzther of the programs currently competing for 

services  to allow in store. 	It will depend at any moment on the 
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behaviour or LU the pro=, the replacement strategy being used, 

and other system variables. 	The boat allocation will be 

oontiriiously varying sal ncdexi tutena adopt adaptive strategies 

(ref a.,6); theoe reapand to chAnging poei demands and try and 

maintain page-faulting at an acctab].e jove]., oven if oor 

programs have to be given  a large proportion of their total size. 

1;Z'L 

quite clear; it is because our time unit is extremely lone compared 

to instruction times (end therefore to likely intervals between 

pegs faults) that efficiency problems cen so easily aria. (see e.g. 

Doming ref.?). 	Bulk core store cheap enoui to repinos the 

rotating drum nornelly used for immediate backing store at present, 

could revolutionize the efficiency of tine sharing systems. 

Ineçplicab]y, some early system doRignera allowed the concept 

of paging to obsare the problems of storage  allocation. 	All 

active proi'ams fought olr11ltameoualy for the available store with 

the inovitablo results that exoeusivo page swepping led to 

congestion and very low CPU utilisation* 	However proeme wore 

believed to behave under paging, there would seem to be no reason 

to have adopted such a policy. 

.w 

This farti1a only purport a to give insight into gross aeots 

of system perfornano., but sinoe it is referred to later in this 

chapter, a mention of the principal limitations is given here. 

1) Ratio 1.1 is an upper ]-i-iiit only attained when there is a 

11 izamber of programs and the CPU utilization is fairly low. 

In practice the situation is weree then the r*del enggsats - there 
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will be occasions ikien a program is held up not for I/O but 

because another process is using the (311. 	(Wen a iderate1y 

accurate treatiznt of multiprogramming is complex,, and depends on 

probability models for aspects of program behaviour - see ref.8.) 

The page fetch time is not oon8tant. 	Worse still, its 

average will lengthen when queueing for I/O channels starts to 

take place. 	This may be duo to heavy page faulting of active 

programs, or pages filtering through lower level., of store (disc 

to drum etc.), via the niri  msnry. 

(3U tiras lost due to wjvtm use or I/U cycle ute&.ing is 

not allowed for. 

On au these counts, formula 1.2 gives an optizdstio view of 

the situation. 

3. PROG1AM BV1(JR 

A program which references a large proportion of its pages 

within short time intervals is generally said to be 'badly behaved' 

(or have a high vagrancy'). 	A good operating system iust expect, 

and be able to oope with, programs di1aying arr behaviour pattern; 

a badly behaved program simply yields less of the advantages of 

1l-unit allocation. 	However a knowledge of general character- 

istics of average programs, or perhaps of psrtilar system software, 

is useful for performance pre.ction, aspects of dosigi, and for 

evaluation of paging as an allocation mathed. 	since the much 

cited and pessimistic study by Fins, Jackson and 1461aaac (rof.9), 

there have been numerous other eipirical investigations of paging 

behaviour (e.g. rote. 10,11,32). 

Unfortunately it is not eamV to decide Just what to meawre; 



the oolete pate reference history of a process is very difficult 

to aam up briefly but usefully in a quantitative Lunoor s  although 

qualitative utatezenta (ouch a 'wall-behaved') aen be made. 

iny atudieø have avoided the di ic*i1ty IW emmiiiing not bow the 

program behaves in absolute page reference terna but terms relating 

to itc performance %then run uer a given strategy of allocation and 

rep1aoit (ref s.110 13). 	£ typioal mscu*zre is the total wzaber 

of page £Sulta or aauetiiisa a highly syuan dspendeit statistic 

such as total elapsed time. 	Such investigations are very useful 

if there is some relation to real operating aVotsms s, but it tvat be 

remembered that the results may say more about the pertilar 

allocation schemes than about the program behaviour Ufl( paging. 

Other workers (rot s.9,12) have simply made direct ineamaremente of 

possibly relevant statistics - e.g. the average wmber of 

instructions obeyed in a page before a branch to another page, or 

the average  number of pages accessed beten supervisor calls. 

There has been general agreement that programs in general display a 

higher vagrancV than originally hoped (ref.9 implies that the 

conception had been of 'a 14,j'  speed merry filled with a page or 

two frau each of many programs requiring pro ceasing') but more 

specific conclusions are rarely reached. 

Appendix A contains a brief description of a pilot study made 

on an &Wish ELectric K.D.F.9 oom*iter using an interpretive 

method and isposing a page grid on the programs. 	This is a 

typical proaen'e for gethering data from pro'aas actually ii1g 

on a men-paged w-hine. 	The investigation mo o designed simply 

to provide data for preliminary aaaeewiisnt of the restructuring 
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tecIniquez of chapter III,, L'wt the opportunity was taken to nxnmin 

more genaral aeots of behaviour of the few proans toatod, 

oio reuu].ta are quoted in the aUx and later on in thi3 

-S 

Before consideringempirical behaviour in detail, a mention is 

made of the analytic approach. This attte to charaoterioe the 

reference behaviour of a Program in terms of a few easily defined 

Patterns - cyclic* eecaantiml, random ate. (refa.4,14). (.e also 

111,2, 111.3). Ilowev'er as yet there seems to be no Published 

evidence that  reel proazaa can  be aacoeeel1y modelled in this 

way - it nay be that the paranotera of each pattern vary iiaeh too 

rapidly to be amenable to analysis. It is difficult enough to 

spot gross behaviour patterns without also requiring that they be 

deduced A'on more basic aeamptions. 

4. FaMEECTED 8T1E BEHAVIOUR 

One area of study, and an iortant factor in enme, perhaps 

b..fly ds4.gned, operating syatetis, in the way Programs behave when 

oonatrainad to xiin in a constant and limited quantity of store. 

The u'al iasaan'e is the average m1tr  of page-faults per unit of 

ooiutation time of the program (or its inverse, the ai.cted 

processing time interval between page faults). 	The variables are: 

the rianüer of page frames of memory allocated (a), 

the rep3.aceit u'at.'s owe the  allocated store is UU, 

this is the method of dx,oaing 'hith of the a pages is replaced 

then an out-of-store page is reforenood. 	In fact although isaoh 

effort has gene into devirical adiea of repisoement strategies 
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(e.g. ref s.]l,15), results seem to imply they are  not  ouch a 

significant factor as night be expected. 	Bolady (ref. 15) 

compared some well )non strategies with the theoretical optimums 

that attained by a boot decision based on a knowledge of the whole 

future reference pattern. 	his published graphs indicate that 

there is little consistent and significant difference between any 

of the better replacement algorithms, which on average generated 

rather more than twice the theoretical riinicwn number of page-faults. 

Ivon a purely random page replacement decision gave only about 

three times the ninl-rlvn. 	The following sections will assume the 

'Let Recently Used' (LRU) strategy - that page is removed which 

has not been referenced for the longest time. 	(This is one of 

the best, although there may be inlamentation difficulties. 	It 

is sometimes said that LRU fares badly on programs disp1aring a 

'cycliccharacter' s  i.e, the mere fact that a page has not been 

accessed for a long period is indication that it will be required 

again shortly. 	In practice this consideration can hardly apply 

with the precision required to affect the strategy adversely, 

although artificial extu1ae are easily constructed.) 

The significant relationship is thus that between the average 

fault rate (r) and the store allocated (a). 	r will be defined as 

in for,aCIa 1.2 (section 2). 

No Incid.edge of program behaviour is rociirod to deduce the 

followings 

For aifficiently large a (i.e. the total program size), 

r will be zero (neglecting page-fault arising from initial loading), 

r will incroass (or more strictly not decrease) as a 
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increases. 	For aippoathg the same pre'am iD oonLdered under 

store aUooaticna ej and e where 	e. Under the LWJ 

strate, a page-fault in the sl  system represents a reference to a 

page not in the last Sj referenoed - and so obviously not in the 

last a2 retorenoed. 	So the fault is reflected in the e2  system 

th.toh t&ie has at least the page-fault rate of 91 . 

It is intuitively reasonable end expiraentaUy verifiable 

that b holds almost invariably with arq rWUON=t strategy. 

However, perveroe reference strings can be constructed for which it 

will not be true. 	Beisdy at al. (ref. 14) give  an  wcRWle with 

the 'First-in First-out I (FIFO) algOrit&i and qUote a case of such 

an anomaly arising in practice with two close values of a for a 

particular pro'an. 

Soppose a Program  at imsen intervals 'o' makes a rRlvinin 

reference to one of a set of 'a' pages. 	If 'e' pages are allowed 

in core (3. a a), the probability of a referenoo being external is 

(a-s)/a, 	The resulting page-fault rat. would thus be: 

If o is very Mal 1,  say ooarablo with the time of one machin 

instruction, then for a= a less than as  the fault rate will be 

intolerably large. 	(E.g. if the time unit - the page fetch time - 

is 5000c, s=19, a0, then r=250. 	This would mean 250 faults for 

an amount of Processing equal to the time of a single page-fetch). 

NOW the reference behaviour of a prof'am to the whole set of 

its pages is normally nothing like this; however within arq period 

Of a few nfl' 1 aeocIs there is usually a acloun of pages being 

cOfltirIlRlly referred to, with freqionci.e of no sore than a few 
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instructions. 	Such a nucleus may consist of only the current 

instruction page and data pegs but it may be riuch larger. 	There 

is no real practical point, though, in exndn1ig how the progran 

behaves in ].eaa storo - the aii.fi cant behaviour area ciiat be 

when at least this amount of stare is allocated and the efficiency 

of the program itself is becoming at least tolerable. 

If the remaining pages of the program were being accoaod 

randomly., but with some longer period, there would again be a 

I inear den'eaae of page-fault rate with incs.'eaing store. 

However in preotice, some pages being more favoured than others, the 

probability of arbernal reference drops more rapidly for lower 

values of a as these more popular pages become more like]y to be 

accommodated. 	(This faat of laonlit7 of information references 

forms a central pert of the working set notion of lMnning (ref .6,16) 

- see next section). 	1ig. 1-1 above the general form of the curve. 

Critical parts of the curve of two wamples from the K]W9 study 

(Appendix A) are given in fig.1-2. 	These øhev the area where the 

avme fault-rate, over periods ehown on the graph, is between 1 

and 10 faults per 10 instructions. 	Coffman and Varian (ref.11) 

give exwvIes of this curve for wime programs on the I4 360/50, 

although rith of their data appears to be with very limited store 

leading to extremely high page-fault rates. 

Belady and 1uthner (ref. 17) state to have found that a 

section of the curve can often be approximated by* rt/ ek where 

the value of Ic for neny programs is approximately 2. 	(In their 

notation eed', where e is the expected interval between faults. 

I3elady in ref.15 states this foroula in what appears to be a 

slightly different connection; the page eisa We is varying and the 

total rriry size U is constant.) 
	

Thin would imply that log r 
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(store allocabed) 

Fig 1-1 	Character of restricted store behaviour 
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plotted a9'in1t log a Were a atraight line of elope -k. 	ig.1-3 

shows this relation plotted for the exam ples of fig.1..2. 	A 

linear apprxdmation with both these programs gives values of k nvth 

greater than two - almost five in fact. 	However it seems likely 

that the sections of the curves to which ref. 17 refers mwe in the 

lover er1a of store allocation - the KD.F9 curves repre sent areas of 

relatively lower fault rates, although probably the important area 

from the practical sche duling point of view. 	It is in atW  cam 

worth ommi nina thio forvlc and its implications briefly, to give 

insight into its parameters. 

Take as before the page fetch time (t,pic"Uy about Sma) an  

time unit • 	RritG bzl~k in the above fozls, and we have: 

k 
r (aja) 
	

('.3) 

Then s, represents that store allocation with which the program 

will fault, on average, once during an am ount of processing time 

eqial to the page fetch time. With, sey, half this allocation, 

the rate will be 2k  faults per unit processing time. 

If we ubatitizte for z' in formula 192 (section 2), we gets 

11 	 as an upper bound to efficienr. 
e(1+a 	)  

This has a mexizeam there l+aok(1-k)i = 0 

i.e. at: 	a = so  (k-1) 
1/k 

 or r1/(k.'.1) 	(if k>3.) 

The optimal allocation is tIun slightly greater than 	(for ar 

value of k-'2) #  aM the mcpected CPU interval betweon faults will 

be rather greater than the page fetch time. 	Note that in both 

the eriip1e9 of fig 1.2, to reduce the i'i fault rate to, say, 1 

in 5K Instructions, an allocation of about 3/4 of the total program 
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size is required. 	In short time-slices the initial loading 

becomes a significant part of the total page ioovemit, i.e. the 

value of r in the fornvla 1.2 will not be the same as the 

restricted store rato. 	We look at this situation at the end of 

the next section. 

The r/o sraph or, if formula 1.3 is considered acceptable, 

simply the values of u o  and k) is z '. my of quantitively a11lvtlne up 

certain reference characteristics of a program under paging - the 

problem of section 13. 	However it is not considered a very 

satisfactory deecription of program behaviour for the following 

reasons. 

a) Limited store behaviour is not a factor relevant to 

modern, operating aDratimp which do not attempt to ooraoo too many 

programs into min  store but allow the program deniwdo to determine 

a variable store allocation. 

bj 	The replacement st'stsgy rizat be specified, and can add 

its own discontinuous characteristics to the result. 

o) 	The fault rate can very greatly from one interval to 

another, even during what would be regarded as a si-ng) phase of a 

program, 	As defined above, r is of course an average, a quantity 

which mey have little meaning in this context. 

The next section considers a system independent and more 

suitable measure of program behaviour. 

5 • THE 1R1NG &C JNCTIOU 

The imrkin# not W(t,T) of o process at an instant t wa g defined 

by Denning (ref.6,16) to be that set of pages referenced in the 

preo&iT processingtine interval of length T, there T in kno'ai as 
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the irkin.g aetramater. 	The wcrkini ad  aize s(t,T), is the 

number of pages in W(t,T), i.e. the number of distinct pages 

referenced during the last T seconds of execution. 

Denning tzggeeted that reoent3.y used pages will conatitute a 

good prediction of the immediate requirements,, end that for 

efficient running these pages, once loaded should be ireserved in 

core. 	He proposed an allocation scheme booed upon the followings 

A irotem is not run unless there is sufficient apace in 

main memor7 for its working set (for some value of T). 

Until the process blocks, or the time-elico terminates, a 

page in tJ(t,T) v*wt not be roved from memory. 

Dwting proves (ref.16) the enperiority of this, in turns of 

store sati3.iaation for the same rate of page fwmlts, over curtain 

fixed store atrategiel3, 

If I(t1,t2) is a processing interval, we can define for a given 
I 

T,S (T) as the average working eat size over the interval I, i.e.; 

= 	J 0(t#  T)dt 

If I is taken over the whole proarn run, or a large zzsxaber of runs 

if it is data dependent, we ghR11 write 3(T); this simply means the 

average number of pages the pr'oam accesses in all possible 

prooeselng intervals of length T. 	As a function of T, 51 (T) has 

the following properties. 

It is continuous and right and left differentiable. 	This 

is perlzpu nomantarily surivining since s(t,T) is a step function 

both in t and T (store references oonzrring at discrete instants). 

3(0)=O and 8(T) is non-decreasing and ooncave deunvurds. 

The slope at T is the mean rate at which pages outside 
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bI(t,T) are referenced, i.e. the av.rage page-fault rate that would 

result if the strict working set allocation policy were observed 

(by average we simply mean total page-fault Wtotel. time I). 

Fig. 1-4a shows the general character of the curve. 

Denning (ref .16) using slightly different definitions proves 2 

and a theorem eaiva1ent to 3. 	We give in Appendix C alternative 

proofs from first principles; these are interesting in their 

eiba&.s on the oontit'{ty of 8(T). 

If I is a period over which the working set size s(t,T0) is 

constant, we can state as a corollary to 3: the slope of 81(T) at 
TT, id 1 I give the average fault rate if the pro'am is run in a 

restricted store under the least recently used' replacement 

strategy. 	This follows because the contents of the store under 

this strategy form a working not for some value of T. 	If the 

size of this is constant for TT, the LIW strategy is oqiivalent 

to the strict working set allocation strategy. 

The average working set (W8) curve appears to be a ueei'il 

description of paging behaviour not only because of its imeodiat. 

definition but also property 3. 	1rmig' a strategy depends on the 

fact that recently used pages are a good predictor of immediate 

rezirementa: Just hew good s(t,T) is as a predictor is meamred by 

the rate at which new pages are entering it • 	This is not Just of 

relevance to a system which uses the working set strategy - mmny 

systems rely on a certain annunt of j*epaging at the beginning of a 

tiae-alioe in order to reduce the amount of demand paging. 	The 

aaition is normally that recently used pages - perhaps these of 

the last time-alice - are likely to be used in the current one. 

Thus the slope of the rking set curve at T has a general 
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interpretation: the average value as a predictor of the pages 

accessed in time-olioon T. 	One might esy that a really badly 

behaved pro'an running in tine -alicos of length T i uv.Ald not only 

access large nunbere of its pages in ouch intervals, giving a large 

value of 	but will dhange ite set of acoeaaod pages from one 

interval to the next, giving a large dWdT at T 1. 

.*appoee fig l-b represents part of the 3 curves of two 

poma. In intea'valø of length T1  thj both access on average 

the memo wrnbor of pages 61 . 84p000 both uwa being run 

subject to tine..alioe of 
	

In neny 67otems ther mould net 

appear ocua.U.y well behaved. 

program 2. at (31,T1) indicates that the pages of one interval are 

net on average a geod predictor for the next, a preloading strategy 

would lead to more page-faulto than with program 2 9 	The &.ope of 

the latter is cleat flat at T 1  indicating this prom makes its 

referanoea to the some set of 3 page a in successive intervals, and 

theeo will be au000sfUlly preloaded. 

If the vorldmg sat sizes had been fairly constant over the 

program runs, the effect of running then in restricted store can be 

seen. 	In, say, an aneunt of store &2, program 1 will run at a much 

hi  fault rate even though the store is initially filled up more 

quickly with program 2. 	(This can be produced by program 2 neing 

rapid access to a ]ithtod azubar of pages, while program 1 travels 

slowly but noentiaUy through a very large aziiter.) 

As a description of program behaviour, 3(T) au.fforo from one 

defect of the restricted storecurve; it is an qat'aiq and cannot 

reflect slow thangea of behaviour over periods long ooarod to the 

range of valUe (3 of T examined. 	A program i4pjt oonIst of two 
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phaao in one of which two pages are constantly accessed, and in 

the other twenty. 	The average working set size of 11 for 

intervals wall ooerod to the phase length, is not very 

enlightening. 	(However oven in this case, the elope will be very 

enall, indicating a generally good predicting behaviour. 	hia in 

of course true, except at the time when control goes from one phase 

to the other - it is only this which causes any elope at all.) 

In such circumstances, the behaviour of the program is beat enizmed 

up bV giving working oat curves for, and the duration of, each 

phase separately. 

There is one type of program about which additional information 

is required to make much use of the W8 curve: one that is highly 

interactive. 	he time-slice is necessarily determined by the 

program if the procesa1mg interval between console interactions is 

very short. 	To deduce anything useful about the program, the 

order of magnitude of these processing intervals is needed in order 

that attention nay be directed on to the relevant portion of the 

WS curve, 	It is of course large highly interactive pro'ama which 

are the bane of any tine-sharing system, paged or otherwise. 

In practice it is impossible to measure a(t,T) at every 

reference instant t, or for every length of interval. T. 	one 

chooses a sequence of values of T in a relevant region (thin may 

depend on the system - a sufficient range will probably be between 

half the page fetch time and twice the niaxiiII time-slic e  to which 

the program will be subjected), and ainly measure the average 

number of pages accessed in as many intervals of each length as 

possible (see Appendix A). 
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rigs. 1-5a, 1-Sb ahoy points on the s(i) curve Lor two 

programs on the KDI9 Case Appendix A) with siniiliatad pegs sizes of 

500 (48-bit) words. 	T is masa2red as instruction count. 	The 

periods I consisted of one mUUon and )i1f  a million  instructions, 

respectively. 	The total program sizes given are actually the total 

extents of reference during the teat periods; the declared store 

requirements in a partitioned envircsnt may well have been more 

(especially since a rum-tine stack wes involved). 	Obviously such 

requirer*mta would have to be known if a comparison with non-paged 

perforimnco were to be made. 

The ioUowing ootvaents about 1-5a are given as an earample of 

what is illustrated tir the W3 curve. Asaune a page fetch time p 

of 5000 instructions. 

On average, the program accouses half its pages in very 

short processing intervals, of length Just over p. 

The working act allocation to achieve an average fault rate 

of ]/p - perhaps considered acceptable - is about 16 pages 

(envisage 'othing out' the curve), not much over half the total 

program size • 	This corresponds to a 143 parameter of 15K 

instructions, or 3p. 	Alternatively one could say that if the 

time-slioee were greater than 3p# preloading the pages referenced 

during the previous tine-alice would be successful to the extent 

that an interval of at least p would be expected to elapse before a 

new page is referenced. 

If the program ware highly interactive with processing 

intervals of, say, 2K instructions, it would be very badly behaved. 

On average 10 pages are accessed in oven such short intervals, and 

the steep elope at T2K irl-l-oatea that it will be of little use 

trying to reduce deiwlil paging by pr.loedirig the referenced pages 
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of the previous interval. 

We can now oontixnie the calculation of the last section, 

examining the effect of short tiz-a1ioea. 	Aaun('ig the page- 

fault rate is constant and given by the forr'iii 1.3: 

we have by integration, W8 size (T)((k+1)sT)h11. 

TIia the time to access a distinct pages is: 

k+1 = ___ 
r(k.l) 

If a program is mholly demand-caged in a time-slice ,  T, the total 

azn**r of faults would be: 

)r 
r (k+1) 

This is the ffrat a faults to fill the allocated store, follod by 

the steady fault-rate r for the remaining part of the time-alice 

(assumed positive). 

The average fault rate as defined in formula 1.2 is then: 

r- a 
T 	(k+1)T 	T k+1 

and the uppw bound to efficiency is thus  

+ &(..IL) + 00kj.k) 
T kl 

Fig 1.6 shows the value of this function for Tl and 313, 

k=3, 14=100p up to the value of ff8(L), the total number of 

pages referenced during the time-alice, The optimum allocation 

Is seen to be it far below this level, and the efficiency drops 
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rapidly for valuo& of a less thnn the opt1iri. 	Even at opt1nhim, 

effincies are low for small values of the tirno..a].ice, mall known 

to be true in any ayataa. 	In each oircuiastanoes some degree or 

pre.çeging, to cut dovn tho total loud tinie, is desirable if it can 

be done accurately. 

Note that for a program in 'steady state' (i.e* mwtAmt 

working out eise), fig. 1-4 a gives an interesting method of 

determining the total umber of page-faults if a program is 

restricted to store So  and runs for time T0, demand paging from 

nothing to begin 4th4 as in the above 8xszle. 	The horizontal 

at 	intersects the JS curve at P; the tangent hero intersects 

the ordinate at T0  in A. Then AT0  is the total umber of faults. 

6. CONC1II&U 

This chapter k*a attempted to identify precicely the 

advantages inIent in paging and the problems involved in the 

extraction of a real benefit. 	It is Been that the vital issue is 

not the strategy for the choice of page replacement  following a 

pageu-fault, although this is significant. 	It is rather the 

oontrol of these page-faults bV the choice of which programs to 

allow to rim and how much store to allocate to each at any moment. 

The shortsightedness of some early paging allocation strategies in 

now generally accepted, and paging schemes tend to be designed at 

least with 'ining'  a general, principles in mind,  

Ibavez' 1*137 investigations, both empirical and theoretical, 

of program behaviour have until recently been dominated by early 

ideas; met offart has ____ into replacement strategies and 
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retrj.,tod store behaviour, and few general ooncluolons have been 

reached 	It i of course difficult to judge the inortanoe of 

paging oveiteada (points 2 and 3 in øection 1) without much infor. 

r*tici fron real. uyatevi. 	But the reference behaviour of 

average prograria iv V017 izxortwit, and it is suggested that 

studies of mean working set eiron for a large range of programs 

operating in virtual memories would torn a good baeia for 

judgment of the potential officecy of paging. It woo net amongst 

the aims of this thesis, to do this: the realta froui the KD19 study 

are pro suitted for amriple only. 	The KD9 is net in any ones a 

paged mach' j, and mainly owing to the sq>mse of the interpretive 

method used, the rezlts are limited. 	It is hoped, hover, 

that thv give some,  infcljlt into relevant aspects of program 

behaviour under paging. 
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1* 

1. IRIIWJGTIcI 

In asingle-lino batch system, the only feature of a program's 

behaviour relevant to its oi, or the system's, performance is it 

total olapeod time: that is its processing time • such I/O time which 

cazuiot be overlapped with pzvcecning. 	To ctAi10 a program's 

behaviour under these onrxlitions eily means to mirA ol se the CPU 

time reqaired to perform the Job, and by suitable buffering to 

achieve as much I/O in parallel as possible. 	In a multiprogramming 

schema i,thsre programs, are loaded into variable size partitions, the 

program g1z* become an additional factor, since the total iilnther 

of Jobs which can be accommodated in main store affects the 

nialtprorvqng facility, 	£ uwr driing a large partition is 

likely to find his job is delayed to run in alack periods; 

alternatively (or also) he viii incur a grter chai'o. 	If a 

decreased sine could be achieved at the aaqenee of greater 

processing time, a oonplex opti4aation problem may arise. 	Th3 

situation is still further ootliceted in rdn dynamic allocation 

systems where only parts of the program need be in working store at 

any moment. 	The pattern of reference vithin a program becomes a 

factor highly relevant to performranoo, particz1erly in a time-

sharing environment MhWe a oontiral swapping between rr1 n memory 

and banking store is necessary. 	Optimization is new a process 

far removed from oinly m{riimfing  the total processing time. 

The possibility of deaiLng or reoriniaing programs to 

improve their behaviour under paging has been at least aiiaated 

since the time mhen paging studies were first made. 	?ine at a]. 
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(ref.9) undo cone general ioetiona (although with little 

conviction) and more reoently Kushner and Rande.0 (ref.18) 1i1i 

do cone intuitively reasonable rules of program design, the 

foremost advocating net to access a wide variety of pages in rapid 

succession. 	1cperinnts have ohoi that in certain wratems, 

redesign of algorithms (rei'.lo), a change in data storage methods 

(r'ef.19), or a fairly arbitrary repackaging of partc of a program 

(ref.20) can give an enorrx*is irrovetent in program perfonanoe. 

If there is a potential for such improvement, it is desirable 

to devise a yatotiq approach to optimiation in a paging 

wrvirorneut • 	This chapter discusses the Awdamental difficulties 

%Ohich unfortunately arise at every level of oonsideration of this 

problem. 

2. THE £It1 OF OPTD8TION 

At a theoretical level, a aigoificant problem ir, the definition 

of the ultimate aim of program optimisation. One can distinguish 

three distinct quantities to each of which come degree of attention 

might be directed. 

'!L) 

b) 'coot' to the system 

o) charge inøarred 

The pezformnce of a non-interactive program z*zot be judged as 

the total time from the firut iiroiientation of the program to the 

system (i.e. including the queueing time in a batch rataa), until 

completion. 	This measure may also be ooneiArod eatisfactory in 

the case of tasks which interact with the programmer, his o 

reaponas times being deducted fron the total. 	Ibwevo.r a 
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subjective element arises in that machine rospone times for 5rlfl11 

amounts of processing are generally oonsidered iie significant, 

time for time, than for lengtby computationalwork; an appropriate 

weighting could allow for this. 

The 'cost' to the system in a rather lees readily defined 

conoept. 	The phyoic1 war and tear on the hardware is obvioualy 

of no signif'icanoe hero; the coat must be regarded as the diaruptive 

effect which the px'o'am causes to the system, i.e. the effect on 

the performance of all the other users. 	A a2merical expression of 

the system coat of a program P could timia reasonably be defined as 

the difference between observed mean completion time of other users, 

and that which wad have been observed W P never eiçej theJ 

retata. 	If there are no other users this is zero. 	In a single 

stream batch system where jobs are run in the order they are 

presented, a program causes ii coat proportional to its oini elapsed 

time on the machine - subsequent jobs are displaced by this amount. 

In this case the optimioation of program performance and of system 

coat would be equivalent processes. 	However this equivalence need 

not occur in more oompl4K systems. An idealised exwçle follows 

and demonstrates this fact; it is hoped this will also give insight 

into system cost. 

Io envisage a simple nsiltiprogrsamed batch system with two 

fixed size partitions; the two programs in store at any moment 

compete for the use of the single CPU, but they use separate I/O 

Channels (whose store-cycle stealing effect is ignored). The 

only factors affecting performance at any moment are the ratios of 
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the prooeuing time to the extra I/O time (i.e. not overlapped by 

its own processing) for each program. 

Denote these by nj smj  (=L..aj), i1,2, for partitions 1 and 2. 

Each pro'am obtains the CPU for a real time proportional to its 

demand, the in a period in 'which prog.l's CPU time is n, prog.2'a 

is n2 . 	We also aazme that during the I/O period ra of program 1 1, 
there is a period mni2  in 'which neither pro'am can use the CPU. 

Thus the assumptions of the model wet 

Frog. 1 has the CPU n1/(1+3n2) of total time 

Prog. 2 " " " n0/(1+njn2) " 	' 

The CPU is idle 	m1n1(1+nn2) " 	" 	" (Note 1njn2= 

appoae the average program in the itratem has characteristics 

(nom), and  a  Program  P of characteristics (n2,m2) enters partition 

2. 	Assume its total processing tine is 	and I/O time &, co 

9 would be the e1aped time of P if it were running on its owi. 

We reqiire to oa1ia1ate the coat of P in an average environment. 

The proportion of total time went processing P when there is 

an average program in the other partition is found from the formulae 

above, 	since the total processing reciirenent of P is % 0, its 

elapsed time met box 

	

a = E(1+nn) = E+&n2 	(2,1) 

TM&a half the programs in the iyatem - those in the cpeue for this 

partition - have been di1coed by this amount. 

The Programs in the other partition which are running during 

, have lasted: 

= F. (1+n 

Note their performance has moraened or improved according as the 
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CPJ dmr,1 of }) (a2) is greater or less then average (n). 	Thus 

the queue fOr partition 1 has been displaced; 

e-..E(19n2) 	 (2.2) 

The total system cost is the average of (2.1) and (2.2), i.e. 

(1-2) • 	(2.3) 

ocared to a program porforxzmnoe (excluding time in batch queue 

over which the program has no control here) of the elapsed time 2.1. 

8ppose, any, that n is near unity, i.e. the average program 

has high processing content. 	Intuitively, then, a program which 

is I/o bound (m me' 1) will have little coat to the system - this 

Is confirmed by (2.3) where Enn2 (= n X program processing tine) is 

the dominant term. 	The displacement of jobs in its own partition 

is largely counterbalanced by the extra progress in the other 

partition to which the CPU is more often available, 	Tbaa 

I/O time but mRking a saving of some prooeaing time (for example 

writing out data to backing store might save having to pack it in a 

colex irmy to fit into store). 	This would increase E but decrease 

1 2* 	Then (remembering we have assumed n near one), the coat to 

the system (2.3) may be decreased while the program elapsed time 

(2.1) is increased. 

This example also shows the dependence of both program 

performance and cost upon the environment, i.e. on the character.-

iøtioa of all the active programs. 	A knowledge of the system 

without an ides of the average load on it may be insufficient for 

judgment of optimisatici criteria. 

It should be clear that it may achieve nothing to define a 
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coot function directly in tarma of program utilisotion of sane key 

resource, or as the aim of arch function, unless the result can be 

shoun to beer a relation to practical performance neaau'es. 	The 

store utilisation - the (elapsed) time-apace integral over main 

macory - of a program is an exwqile of aith a fUnction. 	It may 

indeed often aoonrate3y reflect aspects of cost, but this needs to 

be ihewn, otherwise any other then gross manipulations on it may be 

enty mathentical juggling. 	(Note that in this connection, the 

model of section 1.2 is relevant. 	The asaamptiona there were 

equivalent to t&cI.rig the total efficiency of a set of nipdlnr 

programs as bounded above by Wit, where it is the rate of store 

utilisation per unit procewir2g time of each program. 	Under the 

aaiinptiona of J&W model, then, store utilisation indeed bears a 

close relation to efficiency and therefure (see below) to system 

coat. 	But one should beer in mind the severe )imi-tationa, listed 

previously, of the model.) 

system 	has been used earlier to =an 'effective CPU 

rate' (o.c.r.), i.ee the rate at which instructions of user programs 

are obeyed. 	This £3 a reasonable expression of system performance; 

the cost of a program could therefore be defined in term of its 

effect on the total o.c.r. of all the aW= programs in the eyetem. 

L e.r. is not a wholly satisfactory rieacure however, since delays 

to i/o bound programs will not be reflected so largely as delays to 

highly CPU bound prooeseea. 	Also in the time-sharing situation 

there is again the oorlioation of response times being 

considered a key factor in perforaanoe. 	The odd aituation 

arises that it is the lesa important factor to which attention nswt 

be directed in the measurement of program cost. 	Up to a certain 
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level of saturation, I2xst time-sharing systems wil1 consider the 

ntene of a good recnse time for highly interactive jobs more 

iMorUmt then a high overall efficiency; it is this the latter 

,whose degradation becomes apparent mhen a 'high cost' prowt 

enters the system. 

In a sense the optimal proam performance should coincide 

with inirwa system coot; this will ensure that a user's efforts to 

improv, his omn program are entirely in the 'right' direction from 

this system point of view. 	However this point becomes almost 

irrelevant in the 'idea)) system which minimizes system ooet by 

reflecting it back into the perfortasnee of the program . 	A 

ato?am which wm1d normally be conaidared 'badly behaved' is given 

lower priorities on system queues and will have control lees often 

(equivalent in a batch system to rescheduling a long job to zim in 

a slack period). 	The performance of a bwU..y behaved program 

suffers, but other users ore shielded from its effects. 	The 

total system performance is only degraded in as such as it includes 

the performcnoe of the errant pro'am. 

The third target suggested for possible optimisation, was the 

charge made to the user. 	It seems intuitively obvious that the 

variable part of such a charge should be related to the system coat 

and nothing else • 	This means that a job run at a quiet period - 

overnight, say - will be charged less than the same job at a time 

of heavy demand. 	It also means that if the ayetetn genuinely 

succeeds in reducing the syateri cost of a 'bad' j*oaia, resulting 

in poor performance of the latter, there is no need to make the 

additional penalty of a high charge. 	Charging algorithms in 

general for u*ltiproaziuned systems tend to be fairly arbitrary 
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and sometimes utterly wrong, but the matter will not be pur wed 

here. 

This diecumsion, although probably raising more questions than 

it has 8navered, has tried to illuminate the problems arising from 

what is meant by 'optimisation of performance'. 	We have seem 

that in the ideal case program performance is the oigifi cant 

variable; the apparent conflict between optimisation of this and of 

system Cost, disappears. 	R14 setion of this ideal situation is 

a task for the uVotem deeir. 

3. 	?LICIT 1INI141TI 	fl1Cc 

At a practical level, the first task in a Mnwtwwtic 

optimisation is the expression of acne approzimotion to performance 

as a fUnction of program definable chamoteriatica over thioh there 

is same degree of control. 	In a 	gle'line,  batch eystem, the 

function is of course the total CPU time + rrn-overlapped I/O tine; 

in the fixed Partitioned nv1ttprograimiod case modelled in the last 

section, function giving re weight to the CPU time would be 

necessary, HWWW the problem is sore difficult in a cbrnwnic 

allocation tyaten. 	It is not enough to define avatem 

characteristics (e.g. store utilisation, inther of pap faults) 

which themselves dqpxI an the program behaviour; we rep ire a 

function oontro.Uab].e and meatmrable at the level of program. 

The iifnireetion nohow described later in this thesis takes 

as its function the average irking set size, 8(T) (see section 

1.5) 1, the processing time being unaltered. 	Any value of T may be 

chosen - the moat witable choice may vury A'oa program to program 

as well as dand on the Mrstem strategy. In a aVatsm using 
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Dexuiingl& working net allocation oche (ref 6), S(T) is closely 

rolatod to poi'fcrnce. 	For this iaten attepta to reduce page- 

fault rates to on aooeptable level by ensuring that any program in 

core baa a atoro allocation equal to its current working set size: 

pro gram are only allowed in core when ouch apace is available 

(note that if there is a priority rule favouring 11 pregraiia, 

ratem costa are equalised). 	If the strate' works, total system 

performance depends winly on the r*znor,  of rzograms that can 

iTTIIItaZ1eOUa1y emist in core, i.o, the riiltipi'arncdng facility. 

The averege speos allocated to a program is the mean woi4dtg set 

size aM clearly in a key feature. 

However it is suggested that under M adaptive allocation 

atrate', a highly beneficial effect will remit from a significant 

reduction of the above function for a suitable value of i. 	This 

simply makes explicit the genera]l, preo,t that me should attet 

to reduoe the rLnber of pages referenced in short intervals (ref.18). 

4. IMMDS OF OPTIELTIW 

Tichntcee of o'ptiud.aing page reference behaviour can be 

divided roughly into two classes; we can thee. 'design level' and 

'coding level' methods. 

A1at certainly, the largest içrovenenta in program behaviour 

can come from an intell,igant design (particularly of data layoutp), 

aimed at reacing the apread of referenoes over ahert periods. 

This has been iureaaively demonstrated by Drawn and (]ustavoon 

(ref.lO)ubo rapro'amed three problere (matrix inversion, data 

oorzelaticn, sorting), involving large-scale data r'eferenoe on the 

1444/441 mperimental, 'aten. 	Under a FIFO page rcrplaoaisnt 

sta'ate, the amount of store required for efficient perfoznoe 
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's reduced very a&batantinllyz by a factor of six in one case. 

These were obviously, parti*i1ar (and ird.t('].]y very badly behaved) 

programs; a more genera]. approach In that of McKellar and Coffman 

(ret.19) who 	minA the paging rate (under a fixed store strategy) 

that results from matrix operations under different methods of 

matrix atoroge. 

Ikw,er the redesign of programs to iurova paging behaviour 

is neoeaaarily an ireoiae procedure and iuoeeible to examinn in 

a general my. 	£ definitive approach to optimisation must confine 

itself to 'coding level'; by this In meant either the choice of 

page boundaries comes existing code and data, or a couiq)lete 

repackaging of parts of the proen among pages. 	There has been 

some work dealing with methods of locating reasonable semnt 

boundaries (refs. 21,22,23) and more recently such studies have 

suggested paging systems as an area of possible application (rats. 

24,25). 	The only work to which the wither has discovered 

reference relating to rape ckkg-ng solely for the improvement of 

psiing behaviour has deaoxibed the experimmts of Comeau (ref.20). 

A brief and pesitlm4  ati o ounmery of the iinediately apparent problems 

appears in ref. 18 (pl013). 

The great advantage of optimisation, at this level is its 

amenity to autoition; the poas 4hiltty exists of r *cging being 

performed by a ooq4ler, perhaps using the results of automatic 

monitoring software. 	Whether the whole process is worthwhile zisiet 

be judged by the same criteria as with any optimising compiler. 

The degree of izirovenent obtained n*iut be balanced qs 1 flst the 

time and effort in producing it. 	The rewlta obtained from the 

scheme described later aiggest that optiniastion would be well 
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Justified an the large, often uaod system program (ccqilera, etc.) 

which are often a principal cue of poor system performance. 

Thec,eticel aspects of program restructuring are ecaiined in 

the next -. 
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1. I1D1JCTII 

For restructuring purposes a program is envisaged as being 

partitioned into a collection of blocks - henceforth termed nFin1a. 

This partitioning may extend over the whole program, or simply over 

part of it: perhaps just the instructions and not the data. 	The 

assumption implicit throughout this chapter is that the chunks can 

be rearranged in any order and can thus be peaked into pages in any 

desired manner. 	Such a rearrangement ray recla ire alterations or 

additions to be made to the chunks for instance extra instructions 

could be necessary to maintain the correct flow of control. 	It is 

assumed that any changes in the dynamic pattern of reference to 

the thanks ('4th respect to process run time) thus caused can be 

regarded as insignMoant. 	The MIMA of the chin- . are also 

assumed to be given and to include any increases that the above 

alterations may cause. 

A simple but coarse partitioning would be such that each chunk 

was an entire loadable module; relocation is then an easy matter. 

At a very fine level, one might take the eauil instruction sequences 

between one branch instruction and the next, or individual data items, 

1krccl1y us the chunk sizes become smaller, the difficulties 

associated with their qwwtity increase but the potontial for the 

improvement of program behaviour also increases considerably. 

The few actual examples given in this chapter are for clarification 

and necessarily deal with a very few c1imk, but it must be 

remembered that in praotioo there ray be many hundreds. Practical 

difficulties concerning choice of chunks, repackaging etc. can be 
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very considerable but all ouch details are left to the next chapter. 

The following two sections coxnt on some theoretical work 

bthioh 1*0 already been dome in arose based on the above aspect, and 

which bee possible relevance in the paging situation. 

2. THE STATIC GRAPH 

The aLiz1eat representation of program structure is as a 

directed graph whose nodes are the program ch&wica. 	Mppoee the 

chunks are riimhered from 1 to n. 	We noire a directed link frou 

chink i to chink j if  

An instruction in i can be directly followed by an 

instruction in j (this covers not only jump instructions but a 

'drop through ,  from j  to j). 

An ina1'u otion in i can reference data in J. 

An instruction in j can reference data in i. 

Thus a data reference is represented by a directed link in each 

direction (alternatively this can be regarded as a non-directed 

linJc). 

The resulting graph is equivalent to a (n x n) matrix S with 

ajj = 1 if there in a link fran chum i ta i, ajj = 0 otherwise. 

S is known as a Boolean czpnectivitj matrix. 

This is a construct based purely on the static structure of 

the program wd could be easily generated at compile time. 	The 

mere presence of a reference or branch from thi'nk i to j 

justifies a link;  the frequency with ithioh this path is taken, 

or whether it is taken at all at run time, is not  relevant. 

Graph theoretical techniques can then be applied to yield 

certain information about the program structure (refs. 21,22). 
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Clunk j is sid to be rthable froni j if there aaciata a set of 

links forming a directed path from i to j. 	xiort1 (ref.21) 

has alxrimi how to use 8 to farrii the reathabilitv itri R, 

(rjj  O if and on3,v if .1 is reachable from i). 	This shows up 

r&"vnt )nk (ithiob can never be entered) and b11,v  alley 

errors (sets of chink which once entered can never be left). 

Consider the relation between nodes i and j defined by: 

'i is reachable from i gW  .1 is reachable from i. (rj = rj1  =3.)'. 

This is easily thoaz to be an equivalence relation; the nodes of 

the graph can therefore be partitioned into disjoint equivalence 

classes. 	Those consisting of more than one element are known in 

graph theory as inc1r1 atri'1v amctad abgrapha. 	In 

Programming tome, ouch a subset represents a not of oIinka which 

cannot be revisited once control hen passed out of it; the 

partition is therefore a reasonable initial segnntat.tcn of the 

program, 	imort1r describes how to identify these subsets 

using the reachability matrix, 

Alt&*igh interesting and elegant, the grapb-theoretical 

approach is probably of very limited application. 	3ze 130 

abgrapha will often be very large - perhaps the whole program 

wi3Miig the initiRl{eation section (this wiU be txue of any 

program with a central main loop). 	6 hsy are in any case likely 

to represent phases which are quite deer out at the design level 

aid form natural and obvious elements of segsentation without 

reocurae to foriel techniques. 	More significantly very little 

can possibly be deduced about the rtui.-tima flow of control from 

this static ixdel of program ctructuro, 
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3. TIM& D•IAiaG GHAPIi 

The above model can be simply extended to store come 

information about dirinjc behaviour. 	Intorcñmk 111*8 Gre given 

a rmmrjcal weight proportional to the number of tiiee the link is  

traversed when the program in urn, i.e. define; 

8j1 2C the number of tiraee control in tranaferred from chunk 
i to chunk-  j (or reference made to data think j from i), 

he actual number of times lin are traversed in particular runs in 
not in,ortant here; only the mtiq of the a over long periods. 

We define cjj  to be zero for each i. 

Two particular subsets can be identified: 'entry iilmnk', 

those which can be directly entered from the external world, and 

'exit ImIç fr01!1 which control can pass directly out. 	It in 
convenient to represent the external environment by an additional 

chunk, 	Thia in RnId by appropriate weights to all entry and 

exit chunks, and the røtorn in now closed. 	A$cIm1 rig control 

begins in the external environment and eventually ends there, the 

curn of the weights on links entering any chink in equal to the am 

of the exit weights, i.e. for all i; 

== n (my) where N in the ziimber of 
=1 	 j=i 	 c&Eflke.. 

The nj  are proportionel to the total nunther of tines each chink in 

entered. 

Put Pjj = 	 all i,j 
flj 

Then pij  in  the proportion of the total  number of exits i'om i 

which go to J. 	Given that control is in chink I and 	other 

infotion, Pjj may be regarded as the probability of J being the 
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next cb 2nk. 

N 
1 1  

Then 	fljpjj 	 mij 	fl 	for each J 

i.ø. (n ,) is a left elgvnveator of the matrix P(p jj ). 

This foot could be of practical use in the construction of 

the 8 matrix of a program. 	If data is gathered by direct 

monitoring at process run-tizae, the a and n i, would be the easiest 

quantities to aoaan'o. 	ikwever if an apprdtion were being 

sought by oct..ntion, eape'Ia2].y in a large program, the pjj  would 

be easier to izeaa. 	Theae are more local quantities than the 

Bijo to which the  constant of proportility edda a global effect. 

Froe the estimated 'jbabUity' matrix?, the n can be calculated 

(USIM9 ontomary matrix methods for the determination of 

eigxvoctora), and hence S. 

Fig. 3-la gives an exajTVle of a Omph with possible wmiijite 

and jig. .3-1b the corresponding graph with p4  and flj. 

(Any 	4P3.e of the aij  and ni gives equivalent  graphs). 

It Wwuld be noted that the above reationehip between P and 

the use frequency vector a is a purely arithmetical consequence of 

the definitions; the derivation of p ij  is not aipposed to inply that 

at ar7  moment  the next thnik to be entered depends solely, or even 

at all, on the current aI*mk (although it is true that the 

derivation is pointless if the dependence is alight). 	Thus in 

the WCaMP19 of  fig.3-1, it is quite consistent with the given 

information that C be a subroutine called from either B or D and 

returning thereto. The successor to C is determined entirely by 

its predecessor - given that the 'tunic sequence has been BC, the 

probability is 1 that the next is B aln. 	The fact that p. 
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eirly L1OUn that OV(U' it long period, one half the axite from C go 

to B (because in this cave one half the entrioo oomo from B). 

Approaioo to the d,nenzio Craph of a program (r.:ifa,21,23,26) 

have invariably uood a 'kov model (ref. 27), tak:Lg the tih'mlcs to 

represent the atates of a Ixganooua ItaqwV chain. 	This makes 

the asticn that the probability of the next reference being to 

chink j, aay, depends 2AIX on the current chunk is and is 

indepenIett of time or the previous d*mk hietory. All the 

results from the theoiy of Irknv processes can then be unod (in 

particular the limiting state probability vector 16 if it ed.ate, 

eativtiee 'P' rthero P in the transition probability matrix). 

lbwever it eeeina unhikel..y that any nartitiflnr program can be validly 

modelled in thin imys  the presence of pr000durea, loopy etc. 

iediately add a highly 'nom.4irkovian' element. 	This in net to 

my that such a model cannot be useful in awaining broad aspects of 

program behaviour or in simulation experiznte, but it is probably 

of little use in practical restructuring problea. 

A repackaging problea '.tzich has been considered (refs. 21,23) 

is %hat, in termed here the 'oograent • problen. 	Thin has possible 

use in the paging situation, and also demonstrates an application 

of the N graph (uncluttered with notions of probability); we 

therefore examine it briefly. 

It is reqzired to group the thnnlca into AQCMAA of ao 

min1ti aim L, so that the number of inter-segment Juua during a 

long period is ndniadsed. 	The obvious application is to divide 

up a large progrnm to in in a Smaller much! ne with a mirdTalm number 

of ooçlete overlays. 
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Irite Cjj = 	+  ji - Thic is proportional to the number

of time control passes between c}*mks i and j • 	If A to a subset 

of the think, define: 

terna1. non tivjt of A = 	,' 	 cii 
i€ A, J A 

'1a is n'oportionil to the number of times that the boundary of A 

Is aroused; so the segment problem is to partition the chunks no 

that the sin of the external cor9lectivities of each aiboet to 

fal W ml  sod. 	(It is trivial that this is equivalent to maximising 

the sin of the intarna]. oojieativitiaa. / 	aj) 

is, JEA 

Note that the intereemt jue are only Mini rd 	over rn8ny 

prosanL ztma. Over any par'Giou2Jr run, and certainly over any 

part of one, it need it be true unless the program exhibits  the  

stationary behaviour that the Irkov mode]. asaixase. 

Fig. 3-1c shows the connectivitiee oij  for the previous example. 

It g xiir'1 of t10e rthunke per ooaant were allowed, the dotted 

lines show the boat partitioning (1 aM G ray be interchanged). 

~LhO SUM Of thD WightS jin boJzj IA 34. 	The oum of the 

external oonnectivitiea is 4+14+1()20, each link  being counted twice. 

The problem to then quite precisely defined. 	Given that the 

original aii  are accurately proportional to inter..ohxnk transfer 

frequencies over a long period, the azm of the external 

oonneotivitiee of a set of aegnenta is in the same proportion to 

twice the inter-.eegraont transfer frequemq. 	Nothing also about 

the program is required or need be aetzmed. 

Unfortunately in the general case the discovery of the 

optin'ua groWdM is extrenel.y difficult. 	To enumerate all the 

valid partitions and work out the remilt for each one would be quite 
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out of the question for any but a very few chinks. 	We have a 

problem of at least the order of the travelling saleer.n pro 1 1.un 

(ref. 28) with the additional difficulty that no dmamio programming 

teohniquea to reduce the amount of computation without immense 

storage probi, sugmat themselves. 	(It is not obvious hew to 

avoid the repeated computation of the aderml connectivity of any 

partioular zbaet). 	Any practical solution naist involve a 

heuristic tachoiqu., hopefUlly to lead to a near optimal result. 

We do not disousa this here (ref. 21 suggests a method), although 

the method of section? dealing with a slightly related problem 

would probably be effective e 	 Two points are worth making for the 

unry, 	ugh. 

In figj-la, the chunk in a segment by itself in the best 

ouping, i.e. U, is not the ]eact ugod chunk which is C. 

The best partitioning has not necessarily the least number 

of segments. 	If, in fig, 3-2., three chunks cnn be packed to a page, 

the three segment packing is obviously far better then any into just 

two segments. 

I 	 I 

I 	 I 
I 	 I 
I 	 I 

Fig.3-2 
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4, aiyauci  TO Ta PAGING PRLL4 

First thoughts on the question of the improvement of program 

behaviour under paging night wggest an approach like that above: 

ppoae me restructure into Dagan so as to tflifliJniØ5  the inter-page 

transfers, would this have a highly beneficial effect? 

Intuitively me would eqmt an inzvvntz oontrol would 

remain in any one page for longer periods, and rarely used abinks 

would tend to be removed from the main paths, reducing the effective 

aLse of the program. 	However it is azggeated that an emphasis on 

crossing boundaries is completely misplaced in the paging situation. 

For instance,, a tight loop over a page boundary, lasting my 

ems, and involving fifty jumps is likely to be no more significant 

than a sinple branch. 	(e both pages are in store, and no 

reasonable allocation strategy would involve the removal of either 

within ins, of being used (un].esa the end of a time-lioe 

Intervened)., no further cost in incurred by further transfers from 

one to the other. 	A single reference to each of several pages 

during a exu't period will noroa].]y represent far worse behaviour 

than repeated boundary ci'os1riga of two or three pages. 	This 

means that the ability to choose uhare a page boundary should lie 

across the code of a program may not be very useful. 	(e could 

of course use it to separate two adjacent but dyn&iically widely 

separate sections (perhaps a subroutine from its caaaally fOl1OIJiUg 

code), but the aaperflcial]y attractive ides of going to great 

lengths to avoid loops over page boundaries has possibly little 

validity. 

An extreme example of the lack of importance of direct 

connectivity in the Paging context is showo in fig.3..3. 	This 
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chows ebinks which can be packod tuo to a page. 	Control passes 

from chm1  1 to a random one of 3,4,5,..., then to 2 which s4tohe 

to the corresponding  one of 3',4',5',... and then beck to 1 ain. 

A poa&ble sequence is time 1525 11323 11 .... 	343POSO the 

processing time interval botiweon two entrieo to 1 ic fairly short,, 

ooared to the average tiel.too. 	Then the twD clunks 1 and 2 

are alweya going to be referenced, and within abort periods of each 

other; they are obviously  beat pecked together. 	Chunk 3 may 

rarely be referenced, but when it is (and only then) a call of 3' 

follows; 33' abaul4 be packed together, similarly rirly 44' etc. 	Thea 

the most effective packing, in the majority of paging environments 

at least, would give a zero external connectivity to each page and 

would be the worot solution to the segment problen. 

Generally in the paging situation one is interested in program 

behaviour over periods which, although only measured in ndlli-

seom4e, still contain herlreda of references to perhaps many 

pages. 	In these circumstances the connectivity matrix contains 

information on too fine a scale ,  to be of much use in roctructuring. 

However it does form a fairly ooq*ot my of expressing elements of 

program structure. 	It is obviouuly teqting to redefine the 

coefficients as a form of 'dynamic distance'; thus 3 and 3' in the 

above a=Wle will have a connection since they are always nailed 

within a abort time of each other. 	We sha.11 sea hew consideration 

of a precise paging problem leads to just this approach. 

5 • 	1K*UING S' PRWL21 

As stated in 11.41 the paging  function which is our target for 

MiTilmisation is the average working-set size for soma given tima 

interval. 	Ue eook a packing of the chunks into pages which 
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Minimises  the mean number of pages referenced in intervals of the 
given length. 

It should be noted that this function is additive over various 

parts of the program; if it is only fes4hle to restructure part 

(e.g. the instructions and not the data), this can be treated on 

its oai, the contribution of the rest to the total working-wt 

size not being relevant. 	In practios this property is essentials 

large Program  wili often consist of meny modules only linked 

together at run-time and containing library and system routines; 

it would not be practicable to demand that the whole prorwa be 

restructured at once (unless chunking were done at the gross modular 

level). 	For wcançlo, a scheme which sought to mininijee page- 

faulting when a program vas run in a given ii pages of store would 

be of academic intci'eat; one could do nothing without information 

about the tottil program. 

Intuition (cud the continuity of (T) ) emggests that a good 

restructuring for an interval, length T1 will be good for any T in 

the n.ighbourheod of T1. 	However fig. 3-4 shows a possible 

situation for two widely different values T 1  and T2, Any 

restructuring is likely to make a large inravenent throughout the 

rang., but that for T1 is a long way from opti-ne.1. for T2 and vice 

versa • 	Two simple examples (allied 'ed to those in the last section) 

are given to denetrate the importance of the time-scale, 

Fig 3-6 shows thluik which may be packed iq to three to a page. 

Control resides in £ and B for a time T 1, then C and D for the same 

period, then E and F, and then the cycle begins ngain. 	If T, is 

large ocopared to the US parameter T, the optimal grouping is 
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AB GD ZF. 	In most intemmas (a proportion ].T/4 ) only one page 

will be referenced, ikiile with any packing into just two pages, both 

will be referenced in at least 113 of the intervals. 	(k the 	other 

hand, if T1 is zLl, jLU the chwAs 411 be referenced in any W8 

interval, and they iist be packed a densely as poa4ble, ABC Dy'. 

For TT1  both these groupings give the same result. 

This is shom in fig 3-7. 	The elimka can be packed two 	to a 

page, control residing in each chink for unit time. 	Control 

flows WA' or XBD' with equal probability. 	As in the mile 

of section 4, if T is large the beat packing is X! AA' BB', but for 

small T the direct coimectiona become idtfiawit, and a packing 

such as XA BY A'B' is better (A' and B' can wally well be given a 

Page each). Actual values of the working set size are eaaUy 

calculated (by insidering the likelihood of each posaiblo chunk 

sequence occurring in an interval) j  fig 3-5 &x,va the US curves 

for each of the st'ucturinge above. 

As in the case of the dynamic graph and the .eent problem, 

we adopt an empirical approach to the solution of this problem; 

rather than trying to construct a nodal we siWly attet to 

measure data directly related to the specified US parameter and 

work with this. 	This r*keu no simplifying assumptions about 

program behaviour, but we met guard against the risk that the 

practical effort of obtaining data outweighs the gain  caused by 

restructuring. 

6. AU wiaCIT FOR1JLATIOU 

&zppose the program is uEnitored over a long period (perhaps 
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over marq ims), and a re(x)rd is umcle of which chinks are 

referenced in each of a large riiriiber of prooeaal-'3c intervals of 

length T. 	After N zzich intervals, this record is contained in a 

(n x N) array R vhere rjj  =1 if c)'nk I is called in the J th, 

interua]., rj  = 0, otherviec. 

Given az' graVing of the nhika  into pages, the "rmIr of 

pages referenced in a*r interval is easily seen from R, and 

therefore the average auéer far all the monitored intervals. 	If 

for any restructuring this average is close to the actual average 

mrking set size of the pz'owi (which is of course a theoretical 

measure defined over all possible intervals of all possible iina of 

the pi'oaui), a is said to be c roreaentative record. 	For most 

large pro'ama it is probably enough that every thank has been 

entered a few tines, although this may take iij thousands of 

intervals if the thimlcc are wall (see Chapter 4). 	(?cr a set of 

intervals to be tri.tl.y representative of roforonco behaviour, it 

*z1d have to contain every posifhlo chink ooIxthetim repeated 

according to the freqienay of its occurrence in all ror.s, an 

utterly inr*ctice1 requireiit with more than a very few chunks, 

R is wfficient for the 11JTh{1(j informmtim needed in this context.) 

The optimal restructuring is then taken as that which gives 

the beat results based on the tested intervals. 

intervals 1234 
8 
A 
	

00101 
B 
	

01000 
C 
	

10000 
D 
	

].)1O1 
10010 

P 
	

01010 
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The Six abinks A-F can be packed up to three to a page, and we 

make the unlikely supposition that the matrix above, containing the 

reference iniftrmation of just 5 intervals, is representative. 

Consider for exaxle the grouping ABC DEF. 	The first pegs is 

called in every interval except the fourth (none of chinks L,B or C 

being referenced then). 	The other page is referenced in all five 

intervals. 	The man number of pages per interval is thus 

(4s5)/5 = 1.8. 	The optimal clustering, easily found here by trial 

and error, is LCD BEF. 	The rocult for this is (3+3)15 = 1.2. 

Given sufficient nKmitoring data, then, we I*ve a eiii].y and 

precisely defined problem s, just as in the case of the aegukant 

problem. As with the latter however, there is no obvious solution 

proc"wes exhaustive emLaeration of all valid structuringa cat 

be considered. 	A further difficulty hero lies In the large 

quantity of data, growing with the number of intervals tested; in 

the segment case all the necessary information is stored in the 

constant size (n x xi) array (although with several I*xnth'ed thimk 

this is not 	1i). 	A practical solution will depend on the 

development of a heuristic method which yields a good restructuring, 

and a my of avoiding the problems associated with the storage and 

access of reference data from perhaps mezr thousands of intervals. 

7. THE SLmAazTx AM" 

Jith each nhmk in the above problem is associated its (1 x N) 

reference vector. 	It is intuitively clear that two thrnk0 which 

are norinaiJy referenced together in intervals are likely to be both 

in the earns page In a good structuring - we are trying to mini rrmiae 

the wastage caused by only itii parts of pages being referenced 

during an interval. 	Thus it seems reasonable to atteçt to group 
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the thnnk8  according to the 'similarity' of the reference vectors. 

For inatenoe, in tackling the axwqple or section 6 above, an 

obvious first move would be to group tthunk A aM D together on 

this basis, 

Expressed in this iaq#  some reoembaanoe is seen to the well-

known clustering problems uhich arise in classification theory (or 

numerical tffrrmor) (rots. 29,30), eM more recently in certain 

other fields rnch as pattern recognition (ref. 31). 	In these 

studies it is assumed that there is a given vet of AIMMAR each 

defined by the values of an associated set of attributec. 	The 

values are uenaUy binary, indicating siMly presence or absence of 

an attribute. 	For exomple if the elements are diseases, they 

might be ohersoterised by a eat of symptoms; if insects, by various 

physical oharaoteriatioa. 	In general terms, it is required to 

form clusters of e1eita such that those in the was cluster appear 

to look alike, and are dianimilar to elements in other clusters. 

The wooeea of the result is judged by c.teria relevant to the 

problem area; tbuc it might be 1ped that all diseases in one cluster 

be amienable to adndlnr treatment. 

The first step in wch clustering technioea is slweys to 

construct a nirTd 1aritr ax'&v 8, whene elements Dij measure a 

defined coefficient of similarity between elements i and J. 	The 

cheioe of a satisfactory definition of this depends on the 

particular problem. baWles are  

1) 	zazinber of attributes present in i and j 

or 2) amber of attributes either present or absent in both 
± and J. 

Coefficients are often normalised to give a reiilt between zero and 

one; tbua if 2 above ir, divided by the total number of attributes, 
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the imi1Rrjt3T  will be unity for elements with identical attribute 

sets. 	The similarity array is then taken as aiidYig up all the 

relevant information about the relationship of the elements to each 

other; it is used as the sole data to some ru 	rinj' l-j1t}v 

which groups the obunka into classes. 

The reeeithlsunoe of the above to the wrking not problem is 

obvious if we inter&'et reference to a chink in a given interval as 

the possession by that chunk of the appropriate attribute. 	The 

difference is in the final objective: the clusters of chunks which 

will form pages are strictly limited in aize. 

A great attraction of defining a psirwise 'oloaenea& between 

thimk, and wrking purely with this, is that the similarity array 

is a ooiact way of storing data - it ciay be built up during the 

monitoring process, and the problem of huW 1 1Ag an indefinitely 

large quanUty of interval reference data is nveided. 	If there 

are n obunka, an (n x n) array 6 is injtin1  seed to zero. 	At the 

end of each interval, put (far all i1  j): 

5jj = 5ji • 1 	if and only if chunks i and j have both 
been referenced during the interval. 

A count is also kept of the total number of intervala N. 

Noticing that the diaxal elements will contain the 

frecenciea of use of each dmk, we can work out from 8 any pair-

wise relationship between two of the original reference vectors, and 

therefore any airiilarity ooeffioient. 

E.g Bij 	 number of intervals i and 3 both called 

26jfN..a ,7sj 	minbor of intervals i and 3 the some 
(both celled or both not) 

It is iiçortant to notice that the similarity  array does not of 

course preserve all the original information (it is as though we 
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replo cod the oo-orditea of a not of points by the diotanoe 

betwen then, the elements here being defined in a very large 

dimenatonal space with an wiaaa1 moaalre of distance) • 	Thus 

consider 

 

two possibilities for the reference histories of three 

oI*znka in tour intervals: 

£1001 	 £1001 
BlCtLO 	and 	B1(XLO 
C 1100 	 C oct]. 

Both situctiona wMild give the same oat of pairwise similarity 

coefficients (on arW definition of the latter). 	The difference 

in the mutual relation between A s  B and Cl  which is somewhat 

closer in the cecoM case (since the references to all are confined 

to three intervals), cannot be expressed. 

Various coefficients were used with data obtained from the 

KD19 study (see appendix A), the most consistently aocesofU1 being 

ainç1y a, the number of intervals in which both c1inko are 

ref aren el, 	This puts no weight on ao utche s intervals in 

which neither n}iiink is called, 	Those, then, are no more 

I.iificant than intervals in which one 'nk is referenced and net 

the other, thus: 

A 	11100100100 
B 	11100100100 

would have the snno similarity as 

A 	11101101100 
B 	11110110111 

In the first case, A and B should obviously go in the same page; in 

the second,*  the high number of mismatches may make this a bad policy, 

lbwver in practice, the density of l's in the referenoo vectors of 

neat O} *nkø is quite low, and the positive match some to be the 
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Lificant factor; attempts to 1iEj't z'o matches or put a 

negative might on miatcheu gave in general leau good results. 

Given any coefficient, a situation con urludiy be constructed for 

which it will be perfect or disastrous; what is required is the  one 

suitable for the sort of behaviour that computer proama, chunked 

in the chosen nezer, di1ay. 	It is of course quite a ai1e 

matter to change the sim1arity coefficient in the clustering 

program. 

The definition of the similarity array is the first step in a 

aggested heuristic volution to the explicit problem of section 6. 

But by oontimiing the approach at the and of section 4, we might 

have reached this point without ever defining the problem in precise 

terms. 	Coimeotivity as used there could be regarded as the 

frequenr with which two thvnke  we called within a very abort time 

of each other. 	Having decided that this was too imnediate a 

relation to be relevant, we might have simply extended this to the 

freqiancr with which  the tw ckamka are referenced within a period 

T of each other', and tli&a defined the aimiJ irity coefficient. 

S. CWF1I1G AIGO1aT1a 

The esooM stage of the heuristic solution of the restructuring 

problem is a cntarin procedure which, taking the aimili'ity array 

as input, i'ca'ma the abiwks into groups of total size lees than a 

page, 	The KM data was used to investigate various clustering 

tethn4qiaea. 

In moat of the clustering procedures, a search is first made 

for the t* chunks which have the greatest ailmilarity to each 

other. 	These are grouped together, and a new *imi1 rity is 
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defined between this group, treated as a ainri 'i entity, and all the 

other nhmk. 	Thia process is then repeated find the greatest 

link (inoinding the newly defined ones), combine the appropriate 

(groups of) n}inik, and work out, in sone defined way, new 

advAlmarity ooetficierrta. 	We this obtain clusters of o}un1ca %hiah, 

as the proaecu'a continues,, grow by merging with uncluatered think 

or with each other. 	So far this has a close resethlanoe to some 

llgoritIz3a of an'il taxonomy, but a departure is necessitated by 

the requirement that the ultimate groups of chunks be less than a 

page in &dze. 	In the algorithm finally adopted, clusters were 

aiq2.y not allowed to grow greater than a page: if tuo clusters had 

a combined aLso mare than this, their ntmfl nrity coefficient wee eat 

to zero, this ensuring that they would not merge. 	SOW earlier 

attoopte vero made to avoid this rather unsatisfactory 'discontiisaoue' 

effect of page size. 	In one ORSO., clusters were allowed to grow 

indefinitely, pages being peeled off as they formed; in others 

attempts were made to reflect cluster eisa in the similarity 

coefficient, 	lbwever the results of these more 000plax algorithms  

were generally ieee good, and they were abandoned. 

The abovo method dennMa a definition of nim{iirity between 

two 'ouns of chunkp. 	The choice found to be most successful, and 

finally adopted, was the arithmetic mean of all the inter-group 

similarities of the constituent 	 This is not particularly 

logical (a choice more oonedstent with the adopted &-m(larity 

coefficient wm1d be the greatest link), but it gave the boat 

results of the fairly simple definitions tested. 

The other area of qeriment in clustering made use of the 

Theory of (ZLwçs (refs.32,33), 	This riLjoroufl].y defines the 
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nation of a cluster, by specifying that it uhould have some precise 

Property. 	Various typeo of O1WT( are defined; an ea1e Is the 

R..Clu' (ref. 32) ithi.cb in a set S ouch that for every element of &, 

the man of the ooinieativitiea (e1ra{1ii-itieu) to the remaining 

members scoeeds the main of the oonnectore to all elements net in S. 

I4etlmda are given in the referanoes of discovering o1nne (of ithich 

there may be a very large number) f2'cia a given si milarity array. 

Unfortunately, no way was found of relating olw2pa to the 

fixed aiee groupings required, and generally little sucooss was had 

in applying clumps to this problem - unless nen-overlapping clumps 

a little under a page in size happened to wdot. 	Jven crefu1 

hand c]natering after examining cluie produced did net give as good 

x'emalte as the automatic procedure described previoualy. 	however 

it was felt that aluiia could make natural unite of program, and 

in certain alrowwbanoes might be useful in tho construction of 

suitable varih1e size 	the intersection of claza perhaps 

giving an indication of which n'ink could be usefully duplicated. 

The foUowing ameill aawvle illustrates the clustering method 

finally adopted. 	We asmaie the chunks (denoted £ to F) are of 

	

unit size, and the page size is three uniteo 	&jppose the interval 

reference record Uwe as shown in the array below. 

into. 	12345678910]l]2].3 
dunk 

A 	1010010110011 
B 	0011110011110 
C 	110001111000]. 
D 	0001100000110 

1101101100000 
1100001000001 

G 	0011100011110 
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The similarity matrix (after setting its diaons1 elements to zero) 

is: 

ABCDFG 
A 	0451223 
13 	024207 
C 00441 
D 0204 

032 
F 00 
0 0 

(B,G) is the iyinii e1ent; chunks B and G therfore combine to 

give 130, and we define a new array: 

A DOG D E F 
A 	0 3,55 1 2 2 
DO 0 	154 2 0 
C 0044 
D 020 

03 
F 0 

E.g. (BG,c) = J<(B..C)+(G o C)) 	(2+1) = 1.5 

A and Cnewcombine to give: 

AGBGD El 
AC 0 	0 	0.53 3 
DC 0 	4 2 0 
D 020 

03 
F 0 

Note that the size of the chunks AC+BQ has exceeded the pege size, 

so (Ac, BG)=0, 	If this had net been so, the ei mi)  rity mu1d have 

b.so ((A,B).(A,G)+(B,c)+(c,G))/4, i.e 0  the average of the links 

between the 9rjpths1 oorwtituents, 

130 and D oo(ne to give: 

AC BGDE P 
AC 0033 
BGD 	0 0 0 
S 	 03 
F 	 0 

An arbitrary choice is made from the remaining equal non-zero 

elements,, say (Ac,S). 	This gives as the fi1 peeking: 

ACE DOD F 
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In the original thirteen intervals, this would have given a total 

page referenoe of 23. 	(If in the finni array, (ii,?) had been 

chosen as the greatest element,, the remi].t would have been 24 with 

AC BGD &) 

9. COICOMS AND CWCLU8IS 

A page boundary oaiut be envisaged like a segment boundary, 

d±v1Mng two logically separate parts of a program. The 

intolligant choioe of page layout, although profoundly affecting 

program behaviour, is essentially a low lovel decision, being 

dependent on the lengths of various bits of code and data, and the 

fairly short period reference pattern between then. 

Section, 6 showed that the problem of reduction, of average 

working not size can be formulated quite precisely in terms of 

observed reference behaviour, but in seeking a practical solution 

we enet abandon precision and work upon ideas of a 'dyoanic 

distance between one chink and another, with respect to the chosen 

time-scale. 	It is this tine-scale which is inortant, and makes 

structurel program models which ooncentrato on direct Links between 

one chunk and another, of not r*oh use when applied to pavinr' 

problems. 

In general there is no way of telling how close to the optimum 

are the results from the clustering algorithm; this is particularly 

true with the large scale px'ob].exna arising from big pxvgrwn.s (and 

it is after all just these whose optimisation is moot Important). 

1trspolation from the results of i11 problems like the example 

of the last section, is hardly vuli' • 	lizievor a large number of 

restructurings (many 'by band' after careful exniiination of the 
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results) was tried with the kiDi9 data, and thore was never a 

aigziifioant difference between the beat reiJ.t and that from the 

adapted clustering algoritkwa. 	Te is this good reason to 

believe that the algorithm achieves br far the greater part of the 

possible irovenent. 

In praetioe, it is the degree of inrovenent which these 

aetheds attain, and the feasibility of using thea, which are the 

iaportant matters. 	Theos are the ooncern of the rest of this 

thesis. 
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IV 	LIC 	 is 	 J(TUflG 

1. IWZ1JJQTIcZ 

made in the a000lihmeart of program restructuril ig,  based on the 

ideas of 111.5 etc. 	For an aptimieation prooeou to be generally 

thdilo, it uhould not only produce a nignIficant improvement in 

ping behaviour, but itself atx)uld be as rapid as possible. 	The 

ideal is that this process should be as transparent to the user as 

perhaps paging itself ebzld be: the program during its normal 

course of running would be monitored (without apparent decrease in 

effic.tenr) and restructure itself when necessary, without user 

intervention. 	It is impossible to achieve quite this, in rrn*1 

circumstances, so the rea4.ltg3 obtained from restructuring can only 

be pracaUy judged in the light of tho effort in athieving them. 

In order to test the practicality of the methods, and 

investigate the degree of improvement obtainable, a restructuring 

scheme (heiioeforth referred to as ES) w oo implemented for prograLw 

written in the LT lanizage (a development of Atlas Autoonde) for 

the ICL 4-75 computer. 	This scheLiw is described in full in 

cI2apter V and appendix B. 	however this chapter, in discussing 

general practical princilea, askss reference to the decisions mede 

in the  implementation (although some of these were necessarily 

determined by the I} language or the compiler on whiah ES  use 

beoed). 
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2. CHU1K 

Two militating  considerations affect the average size of cI'n1e. 

It should be clear that the wailer they are, the better are the 

potential relts of restructuring. 	There is loss chance that the 

own chunk will contain parts of a program dynamically for removed 

from each other, there is more flexibility in repacking, and 

scarcely used aectima (failure paths, etc.) are more likely to be 

isolated and able to be removed from the main paths. 	On the other 

hand the average size of chunks affects their total m1m1r; the  
im4 L arity array storing reference data for a big program becomes 

izractioably large if the chunks are too small. 	Not only the 

amount of computation by the clustering algorithn increases (roughly) 

as the oqaro of the number of chunks, but - more crucially - oonst-. 

ant reference to a very large array during both data collection and 

restructuring phases will make the whole process very inefficient 

in a paging environment. 	To a certain extent, this can be 

overcome in a manner described later in section 4; similarity data 

is only ool].00ted on the more covonly used chinks, A= merging of 

chunks taken place on the beato of this, and the process is 

repeated. The disadvantage of a very large array is replaced by 

the necessity for a amber of data collection phases. 	Jbwver it 

some to be the case that in large programs, many chunks are 

scarcely used; providing that the array contains information on, 

say, 1/4 of the xsamber of chunks, very few collection phase s  are 

necessary, 	The rtructuring of programs with several hundred 

thmils has bean quite satisfactory using arrays with a aide of 

length lees than one hundred. 
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This naana that although a feasible choice for a chunk would be 

the entire unit of compilation (z3odu.le), we can deal with much 

smaller ç)iipk  sizes. 	We therefore consider a fine obunIdn within 

the unit of compilations this is in any case essential if the 

structure of the ]-'uage, or the ø1atoir7 use mods of it, leads 

to xdu].se very large compared to a page size (as is enz?ently true 

with II). 

A chink boundary is likely to be peri3noue unless it is in 

one of the following positions (which we chall denote branch points). 

The two types will often coincide, 

ILMdi.atoly foUouing an instruction which can transfer 

control elsewhere. 

Iiiediate1y preceding an instruction to which control my  be 

transferred frc elsewhere. 

This escxrxl case is very iiçortant - initiali&ttion code often 

'drops through' into a min loop, and the fcriuer 'once only' code 

will nornlly be better removed to another page. 

branch point type 2 - - - - 
Li 

branch point type 3,  

aQQMUtA initialieation; 
S.. 

S.. 

and of inifl-alieation; 
• S0 

S.. 
into L; 

Note that adja L being a rj*1 branch, it aust also be 

followed by a branch point of type 2 or by redundant code. 

A chunk boundary at any other than branch points would separate 

the code into two parts practically certain to be both entered or 
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both not entered in the uarao time-slices. 	(AlthouL4l the boundary 

would not be ci.tte pointless: the smaller cJumka might give more 

flexibility - 1e2'hala in f(rnrt g  up available apaooe in two pages 

which were bound to be celled in the saw tirae-.elio.a anway. 

Alm the two parts are not necessarily drnwiicel1y ,  identical, as 

the end of a time-interval will sometimes occur while control is 

within 01)9 of them). 	The finoøt wrthishilo partitioning in tliaa 

obtained by taking bowiiartes at = branohpointa. 	In practice, 

'wsvw, Done athciet of theao would have to be chosen to avoid the 

very large number of thrnka which would arice. 	An obvious first 

approximeticn would be the atarta and aMa of wbroutinoe, ainoo 

theee are alinoot certain to be dyramioal].y separate from their 

contextual azrroundinga. 	It is the f4.ner subdivision upon %Jhith 

it is far more difficult to decide. 

A yngra,igaer choosing boundaries h{MLf would be able to make 

intelligent choices based on a prediction of his program's dmamio 

flow. 	Ow example in which such kviedge Lu uaeful, in the 

1anaIipoint ftllowing n conditional branch. 

Rrpm1e 

ci) 	At1toL 
2) 	Mz 

A boundary after atatemt (1) is valuable if control normally passes 

to L, and (2) is a large chunk of rarely used code - perhaps, a 

failure path. 	Similarly it is needed if (2) is often entered 

from elsethare (via label II) again making (1) and(2) dynamically 

rerved from each other. 	On the other hand, the boundary may be 

aperfluoua if the oovIx)nest path passes through (i) and (2), A 

normally being false. 

If &imki.ng in being perfornd autoticaUy by a couiiler, 
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some method must be devised of choosing a suitable subset of the 

branchpointe. 	These are easily recognisable by a high-.1.vel 

I anguage compiler (not necessarily this in an assembly language with 

branoIoints of type 2), and the language statements can give 

useful cbiea as to which points are most likely to be suitable for 

thiink boundaries. 	V.4 describes and diaaeaee the .my R8 makes 

its choice. 

If a obIu* does not and in a i-conditional branch (not 

j1 procedure calls) there is a chance of 'dropping through' 

to the next &nk. 	(bviously if the two o1'nko are not adjacent 

after restructuring, a branch instruction will have to be 

generated after the first • 	For this reason, and to facilitate 

monitoring (see next section), it is convenient to generate at 

compilation time a nonconditirinal branch at the and of every chunk 

that does not already terminate in one. (In HS  the nature of the  

choice of chink boundaries ensure that many already do). 	This the 

bove exale would be coix41ed as if it had been: 

jAtheniotoL 
chink bour&Iary., - - - - - 	potq 1.1 

Mz goo 

Little need be lost, for if, after restructuring, chinks (1) and (2) 

are still in the same page, they can be made adjacent, and the goto 

M removed (as it could be from any chunk which ori'1nR1lv ended in 

this instruction and is adjacent to (2) in the final arrangement). 

JU& is an Algol-like language where much of the data will be 

dynamically created on a run-time stack; for this to be &uinIed in 

the 'x'er defined previously is not feasible. 	Qe (static) 
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variables could be included, the own variables of each subroutine 

probably being oonviient].y regarded so a &IIpIe. 	on raa 

tiJMeharing systems, the requirement of shareable, and, therefore 

invariant, code would preclude the packing of data with the code 

which refers to it. 	In any case, only a little thought is 

required to see that such a procechiro, often advocated, could save 

at nx)st a single page of working set size over the policy of 

eiqly arsring that as cede sectIme are packed together, no are 

the corresponding data sections. 

In general, the choice of effective &tmk  bou]arias on data 

will be fairly clear; there are however tw practical considerations 

ca1 'Rt data-chunking. 

Collection of reference data will probably require 

Interpretation. 

Racking data chunks and keeping references correct can 

be very oolicated. 

B confines itself to code (and some constants) only; it wou3A 

therefore be of little use with program whose paging problems 

arise from large scale data r6fWMO81 matrix inversion, list-

procesaing etc. 	It is in any case felt that such problems are not 

amenable to formal rostra oturing methods, and are better attacked at 

the design stage (refo.1049). 

3. OOLLQTION OF IMWWJCd DATA 

Unless some sophisticated herdre nitoring device is 

available, the methods of collecting the nooesoary chunk reference 

information ares 

1) interpretation of the program, 
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2) wnitoring by neans of additional instructions planted 

within the program. 

Interpretation is almost essential if data nhinking is to be 

int'iwecl, the generation of instructions to trap every data 

reference being hardly practicable. 	However the s3 	so of 

interpretive uetIxxts sekea then moot unsuitable for gathering the 

amount of representative data required, especially for a large 

piece of data-dependent software there many runs might be necessary 

before a Yalid restructuring can be perforned. 	Aoiirt(g code 

restructuring only, we therefore look at Just where instructions 

have to be incorporated for a program to monitor its ova behaviour 

in order to yield the required information. 

We note that the data in the øimi1rity array can be collected 

by knowing only the processing instants of chunk cthami'ea; behaviour 

within a hunk, or in a routine external to the area of 

restructuring is not relevant. 	Now owe the 'dropping through'  

case has been e11idated (use last section),, a chunk can only be 

entered by a branch instruction. 	Thus all necessary information 

can be Obtained by monitoring the instructions which transfer 

control, there being no need to include any which are known to lead 

outside the restructuring area (although entries intq the area may 

have to be trapped), or which are Iawn to leave control within the 

saw obunk. 	This can be achieved by replacing all such branches  

by instructions which pass the original target addresa to 

monitoring routines. 	These can make a record of the target chunk, 

Update the similarity array if flOOO88a7 and then return directly 

to the target address in the program. 	The only wbiitional data 

required is a means of finding the containing nhuy3r from the 

target address. 
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In PS, the ooqiler generates an internal label (an integer) 

for OVGzy 1z'ano}oint (excluding those following procedure calls). 

A monitored branch instruction ccmsista of a load of the target 

internal label into a regiutor, followed by a jump into monitor. 

Arrays which were forced at ooqile time can trcnlato internal 

labels both to addresses and oontaining-.chunk mitherc. 

The efficiency of the self-monitoring program thus depends on 

the azuber of instructions which have to be replaced, and on how 

efficient the monitoring routines can be made. 	Most coqutation 

and additional store reference is perfornod tdxii the similarity 

array has to be updated at the and of each (siiniatei) working set 

interval; the length of this then also has an affect. 

4, PAIIAL CLU3TERIHG 

A clustering algorithm will take the  {rmi1ity array and 

e)nu* sizes as input, and produce a list of new dunk groupings by 

the method of 111.8 • 	hare we describe the 'partial clustering' 

Procedure mentioned earlier, 

ppcae there are a &unks, but the nmod.im*m size of id-'4larity 

array we are prepared to accept has space for only n (less than in). 

Daring the first set of monitoring runs, similarity data is only 

stored for n of the thupks - denote this mthsot (the nir4i nrity 

aihaet) by N. 	N can be chosen arbitrarily, but given no  other 

information, the first n &ikS referenced during the  runs can be 

used. 	An arbitrary oubest might be wasteful in that sone of its 

chinks may not be referenced at all. 	Ideally, the i4mulrity 

subset ia,uld consist of the  n most commonly used tthmmk, but it is 

not knowa in advance iE.mioh theee i41]. be. 	Apart from the 
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simflzity data on N, a count is kept of the freqiency of use (i.e. 

17A I 	of intervals during which access is wade) for each of &U the 

When it is decided to perform the first clustering, a search is 

wade for the highest freaengy of use, say 1, of all the ch'nkø 

in N. 	The clustering procedure outlined in 111.8 is only 

continued up to the point where no inter-group similarities remain 

which are greater than f. 	It cannot be taken further because 

Jria not in U nay have had linkigea  as j3eat as f (if a fUll size 

ty array had been formed) with chunks in N. 	The program 

is now regarded as consisting of a --- not of chunks; the original 

w.n not in N, any groups which formed during the clustering 

process, and these chunks in N which did not go into roupa. 

Unless no groups at all were formed, there will be lees tthtn*  than 

before. 

The pro 0088 of data gathering and clustering is now repeated, 

but with one important improvement. 	The subset N need no longer 

be random, since we now have data from the previous set of rune. 

Takig the teqiencj of use of a group of chunks as that of its most 

used member, we take as our subset N, the n most commonly used 

'new thimk' 	In this iaiy although little clustering way take 

place during the first restructuring, the second and subsequent 

ones are far more successful, and the number of chunks decreases 

rapidly. 

£ complete clustering can obviously take place áien there are 

lees than n chunks remaining. 	Alternatively, some accepted degree 

of use can be decided upon, my QX of the total intervals, and 

the process completed uhan none of the c}iwlcp outside N are used 
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more than this, it being auwued that the contribution of such 

chunks to the mean wrkin-.set size is insignificant. 

The wall er is the almilarity array, the more times the cycle 

of data gathering and restructuring must be repeated. 	However 

the data in the early stages need not be representative in the 

sense of 111.6, since only a subset of the chunks are really 

involved. 	This is particularly true of the initial monitoring 

phase when little clustering will probably occur; it primarily 

serves to obtain the apprtirlraato relative use frequencies of the 

more ooimn ohu*s. 	It is not ear for ES to decide when 

sufficient data has been obtained; the scheme makes no attempt to 

do this and leaves it to the discretion of the user when to 

restructure, 

5, LU'ACNG C1A1NL1 

The clustering procedure calculates how chinks should be 

grouped into pages, but actually achieving this packing can give 

practical difficulties. 	Again we have the situation that the 

finer the level of oliznldng, the more problems are created; if we 

had adopted the ooiilete unit of compilation as a chink, repacking 

would be simply achieved by presenting the me&].ea to loader in 

the appropriate order. 

Rapa&dng involves changing all references to (relative) 

instruction addresses within the restructuring area. 	However it 

is Just such references that have already been intercepted because 

Of the requirements of monitoring; relocation of code thee 

Presents fewer additional difficulties. 	In RS, all the relevant 

ana1ointe have their adth'eeeea in an array used by monitor 
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(see section 3); if ±packing is followed by updating this array, 

we have a rearranged but still monitoring version of the program 

without altering the code in each otmie at all. 	The partial 

clustering process can tlszø be p}raLcaUy carried out cite easily. 

The final replacement of mitoring instruction, with the 

original June is ooeplicated if the ibrzaar take up more spaoe. 

(In Ba, the inpiementation of the compiler on which It was baud 

was such that the rr**itoring instructions took up no m*'e room 

than those they replaced, and no problem arose - see Appendix B). 

One could overwrite the superfluous code with dwW instructione, 

but this means that the extra size of the code may counteract the 

gain achieved by restructuring. 	Both this problem, and the 

Untidywas cad heavy machine dependence of the repacking routines 

(in R) can be ailaviatod by operating on an inteximdiate code 

which is mathiine izIependent, with anabolic code addressee. 

Repacking would be performed on this, the only inaoh1ici dependent 

data required being the chunk sizes (when nonusuonitoring code is 

produced), and the page size; a translation of the intermediate 

code would produce object code, monitoring or otherwise. 

In acme cases it sight be possible to restructure at the 

source lauiags level itself. 	However norniall.y the structure 	of 

the language (scope of labels and names, do-loops, etc.) apart 

from the structure of I 1v1iiIe1 statements (e.g. see cycle 

statement in chapter,  V), makes it iossible to perform the 

restructuring of ft'11 instruction 019Mko at this level. 	In 	D 

all that could be achieved would be the repacking of mabroutinea 

'within their containing block, quite sily,  performed on the course 

code. 	It would be also necessary to have a directive each as 

n1itn on xçe heurv1cry within the Language. 
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This chapter describes the structure and use of a restructuring 

scheme desid to improve paging behaviour of IAP pro'ams written 

for the ICL 475. This is a high..opeed 32 bit word machine (with 

an instruction not identical to that of the I4 360/50), 	If 

Operated in paged mode, a virtual store is provided to the extent 

of 24 bit addressing; the page size in 1024 words and the addressing 

mechanism regards the virtual store as divided into 16 page 

, segmental. 	Addressee are specified in bytes which are 8.-bit 

units; a n'd RlinnglEl address is thw one divisible by 4. 

Average instruction tines are about 2 1u 0  

An initial metivation for implementing the restructuring scheme 

was the proposed EdinburghMulti-1&caes .ratem (EMAS), a general 

purpose time-.shsri.ng  9WVt6M being written for the 445 by a joint 

teem from ICL and the Edinburgh University DEçsrtuent of C=uter 

Science, 	However the lVatem is not yet fully operational (at th e  

time of writing), and all remits of program restructuring have 

been obtained by running under 7J, a batch MVtm  run on the 4-75 in 
neat-paged node. 	This wee made possible by using the system  
Interface Module (8114), written by the Edinburgh Regional Caxçuting 

Centre. 	provides an 1iA-type interface on top of 7J, 

211 Ming the loading, linking and running of object program files 

which have been produced to the 24L8 Specifications and conventions. 

An evaluation of the results of restructuring could be acds 

quite ein1y by means of the very miitoring instructions which the 

scheme plants in the pro'ama under test. 	These were used, apart 
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from gathering oIink referuee information, to irrusatigate paging 

behaviour (over code only), so that working not graphs could be 

constructed before and after restructuring. 	There was thee little 

logical difference between obtaining such results on XKAS or 

7J/81M. 	Thwever two areas of information are neceeserily 2.aokiv'tgs 

the effect  of  W3 uize on program peri'brt*noe uMer a typical time-

sharing aohealer, and the performance of the restructuring scheme 

itn1f in a paged envirorent. 

The next chapter details the results of experiments on fairly 

large prograxas. 	however the size of these makes them unsuitable 

for providing "xailos of output from the scheme in the 000pact 

form necessary here. 	This chapter, therefore, makes all its 

illustrative references to a single seall program written 

especially for this purpose. 	The code of this program is only 

Just over a page in size, so the actual results of restructuring 

it are of no eificano.; but it is hoped that it demonstrates the 

good and bad features of the scheme. 

low level aspects of design and isplomentation are left to 

Append I Ir B • 	Of EW itself, few features concern us here (see 

refs.34,35), these which do are dealt with very briefly. 

2. PROGBA18 IN DW 

The restructuring scheme is designed for programs written in 

DW, the language in which most of XMAS is written. 	D1I wee 

developed from Atlas Aut000de, an 1lgo1-'ie language with block 

and prooec1re structure and a run-time data stack. 	aach features 

of the language as are relevant here should be made clear by the 

2'a%le and the discussion in section 4. 
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te of the environtal features of 11W have developed in a 

slightly ad boo manner and the terminology to data is not ciite 

standard; that adopted here is personal. 	The unit of xopilation 

- the AgMI& may xnaist of either of the following. 

A im-roz. This has its outer block de11"4 ted try 

!' 
El. 

One or more tftr!i. routinca. The Module will have the 

fore 

II 

S.. 

terminated by 
	

I of file 

aOh exterT*l routine is s3iniler to awj other procedure in an IMP 

proam, except that it may be entered, and parameters passed, from 

an independently oocçiled module* The ward Adfi=&L and the 

fact of not being contained in an outer block, is the only 

difference in form. 

In object proam file in EIL (ref. 35) is divided into three 

distinct .re. 

1) Code area: this contains instructions and constants, 

invariant during the rwMing of the program, and then capable of 

being duavd if necessary by irKlepeadent users. 
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General llnkag, area pattern (GLAP)s this  oontln 

initialised date required by the program. 	There will also be 

aoe for the insertion of linkage information (i.e. abeoluta 

addresses not known witil load tizn) anabling to be made 

to other modules, 

Lksee data area; oontaine information about the entry 

points in the code of this file for use by the loader in satisfying 

terzi1 references by other files. 

Such a file is produced by 000pilation of an I}U' module, A 

nJ.o'wa will have a single entry point at the begiiming, given 

a standard name by the oopiler; a cot of external routinoo will 

hevo one for each routine(r*od p1, 14etc. in the =apple above). 

To run a progran, a not of object files enut be specified to 

the loader - it is assumed that one of those files contains a main-

program. 	The user is provided iLth his own copy of the GIAP 

(kzft1 as the GL&) for each file, necessary linkages are made and 

the main-program is entered. 	This entry, and all entries made to 

other external routines, fbUoi, conventions as to the contents of 

certain math1ne registers and parts of the run-time r#aok. 	The 

modules of a program need wt all have been written in IMP, 

prv4vltlg that the code produced, and the object file format follow 

the conventions. 

If at least one module is in X', additional associated eKterml 

routines are suto*tically linked in. Apart from vtwxuLTd i/o 

routines there is a uxxLo known as Pei (permanent) containing 

standard material required by the oomçi]ed code but not conveniently 

compiled in-line. 

The unit of restructuring f'br our purposes is the mh*le, the 
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unit of couipilation. 	Thus if the required area of retrueturing 

is a set of external routines, these cawt be compiled together. 

Boference date is collected by an enlarged 1: this ziiat be 

licitlX linked  in at run-tiue amos the o}'inid.ng I compiler is 

not one of the standard oVatem oori4laas. 	It is assumed that the 

code area of an object module begins on a page boundary; obviously 

nothing can be achieved if page boundary positions cannot be 

guaranteed. 

3. W,20RY 07 RE3T11UC11JRING 8GI. 

Fig.5-1 shows the course of the production of an object nodule 

with optimised structure. The production or use of files in shown 

by dotted lines. 

The nodule is compiled to give code containing monitoring 

instructions, and additional tables in the GLAP. 	'de shall say 

such an object file is in '14-format' (Monitoring). 	Couilation 

also produces a thq 	 which contains various 

information (size of thik&, etc.) necessary to the restructuring 

routines, and stores reference data (notably the Sirni1rity array) 

between runs. 

After each run of the object module, or to be precise a program 

containing it, the obwk information file is automatically updated 

with the latest chink reference data. 	(The information file is 

not required for the program run, but only for the storing of the 

similarity array at the end; under EI8, although the information 

file could only be associated with one process at any time, others 

could there the object file if they so wished.) 	When it is 

decided that sufficient data is collected (a user decision) the 

5.5 



source 

compile 

- 
- 

chunk 	
F

object 
information  

( 
(M-format) 

 ) file run object 

___•f 	'i 
\ 	 - - 

I \ 	 I 
I 

I 	 I 
\ 	

/ 
I 	 / 
I 	 / 
I 	 / 

\ 
I 	 / I 	 \ 
I 	 /\ 

I 	 / 

I 	/ 
I 	/ 
I 	/ 	restructure 

/ 	object 

I 	/ 
1/ 
I' 

update chunk 
information 

file 

sufficient 
runs? 

Y 

_- final 
, s_ restr 	

I' 

produce 
final object 

<(Nfmat)  

Pig 5-I 	Restructuring scheme 



restructuring pran is used to produce c new object file (still 

in l-format) and chunk information file. 	For a large module, 

this process of x1nnlng and restructuring my have to be repeated 

several tiaes. 	After the fin" restructuring (a trsten decision), 

a further pro'ea converts the M-fot object file to an ordinary 

N-format (Normal) file. 

4. THE COMPILER 

The compiler for the restructuring sohene was developed from 

an early I}U ooiilar written for the zjw project by 1. FRUR 
assisted by A.1'eenan and T.Iieed. 	When implementation had 

reached an advanced state, this compiler woe superseded by another, 

and effectively abandoned. 	Its availability, and a structure 

highly suitable for the necessary developments, made it an obvious 

choice as a basis for the restructuring echeTi,. 	A brief 

structural description, and the changes which were made, are given 

in Appendix B. 

If required, the compiler will produce an N-format object module 

directly; its normal use however is to produce a chunked and self-

monitoring object proaa, together with an associated t}1mlc 

information file. 	The whereabouts of these fileø enat be 

specified on appropriate job control cards. 	14--format code is 

actly the sane length as N-format, but the GI1AP is enoh gre eter 

since it contRfrzS tublec necessary for the r"um4ig of the monitoring 

routines. 

Figs. 52,53 cihow the ooiler listing of a 	11 demonstra- 

tion Program (this generates peeudo-re.zztom bridge hand, and 

prints them with an opening bid). 	The statements omitted at the 
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IJCSL.I.)) 

14 BYTEINTEGERARRAY 	HAND(0:3 ,2:14) 
15 OWN5YTEINTEGERARRAY 	S(03)='S' , 'H'. '0', 'C' 
16 0/.'INTEGER 	POINTS,BALANCE, LIMIT,CUT 
17 %INTEGERARRAY 	DIST.PTS(0:3) 
18 OWNI'TEGER 	HANDCOUN!T=0 
19 %ROUTIrE 	INITIALISE; 	! 	INITIALISES 	PACK 
20 %INTEGER 	I,J.K 
21 K=-1 
22 %CYCLE 	1=0,16,48; 	! 	 SUIT 
23 %CYCLE 	J=2,1,14; 	! 	 VALUE 
24 DEAL(K+J)1+J 
25 %REPEAT; 	K=K+13: 	7.REPEAT 
26 XEND; 	I 	OF 	INITIALISE 

27 XROUTTNE 	SHUFFLES 	! 	SHUFFLES 	AND 	CUTS 	PACK 
28 %3YTE1NTEGERARRAY 	A(1:52) 
29 %INTEGER 	I,J 

2 	 30 %CYCLE 	11.1,26 
31 A(2*I-1)=DEAL(I), 	A(2*I)DEAL(53I) 
32 %REPEAT 
73 CUTCUT+11 

IF 	CUT>52 	%THE4 	CUT-CUT-52 
% I 	CUT.O %THN_CUr1  

V 	 iy, 'CYCLE 	1=1,1 ,CUT 
37 DEAL(52-CUT+I)=A(I); 	%REPEAT 
38 %CYCLE 	1C1J1+1,1,52 
39 DEAL(I-CUT)A(I); 	7SREPEAT 
40 %ENiD; 	I 	OF 	SHUFFLE 

41 %ROUTINE 	DEALPACK 
42 %OWNBYTE I NTEGERARRAY 	1(11:14) = 'j ', 'Q' , 'i(' 
43 %INTEGEP 	I,J,K,M 
44 POINTS=O;BALANCE=O 
45 ZIF 	HANDCOUNT&7=0 	7ITHENSTART 
46 NEWPAGE; 	%PRINTTEXT' BRIDGEHANDS' 
47 NEWLINES(3); 	%FINISH 
48 %CYCLE 	1=0,1,3 
49 °/CYCLE 	J=2.1.14 
50 1AND(I,J)=p; 	%REPEAT; 	%REPEAT 
51 %CYCLE 	1=1,4,49 
52 H.AND(DEAL(I)>>4,DEAL(I)&15)=1 
53 %REPEAT 
54 %CYCLE 	1=0,1,3 
55 K=0; 	PRINTSYMBOL(S(I)); 	SPACES(3) 
56 M0; 	! 	COUNTS 	POINTS 
57 %CYCLE 	J=14,-1.11 
58 ->1 	%IF 	HAND(I,J)=O 	- 
59 SPACE;PRINTSYM5OL(T(J));K=K+1;M=M+J1C 
60 1: 	%REPEAT 
61 7IF 	HAND(I,10)O 	THENSTART 
62 WRITE(10,2); 	K=K+1; 	%FINISH 
63 7-CYCLE 	J=9,-1,2 
64 ->2 	%IF 	HAND(I,J)=O 
65 K=K+1; 	WRITE(J,1) 
66 2: 	%REPEAT 
67 IF 	K0 	XTHEN 	%PRINTTEXT' 
68 ZIF 	1<M<=3 	%AND 	K1 	7.THEN 	M1-1 
69 PTS(I)M; 	POINTS=POINTS+M; 	DJST(J)K 
70 ZIF 	K>5 	7.THEN 	BALANCE8ALANCE+K-5 
71 7OIF 	K<2 	%THEN 	BALANCEBALANCE+2- 

Fig 5-2 Compiler Listing 



fl? 	 !'JEWLINE; XREPEAT 
73 	 HAND COUNTHANDCOLJNT+1 
74 	 %END; ! OF DEAL 

75 	 INITIALISE; READ(CUT); READ(LIMIT) 
76 	 ->2 %IF 0<=CUT<=52 
77 	 %PRINTTEXT 'INVALID CLjT'; %S OP 
78 	2: 	SHUFFLE; SHUFFLE; SHUFFLE; SHUFFLE 
79 	1: 	SHUFFLE; DEALPACK 
80 	 %BEGIN; ! BIDDING BLOCK 
81 	 4INTEGER LS,NO,SUITPTS 
82 	 %SWITCH 8(0:20) 
83 	 7INTEGER I,:4 
84 	 XROUTINE 8IDSUIT(%INTEGER I) 
85 	 WRITE(I,1); SPACE; PRINTSYMBOL(S(LS)) 
86 	 END 

87 	 %ROUTINE NT(%INTEGER I) 
88 	 WRITE(I,1); %PRINTTExT' NT' 
89 	 '/0END 

90 NO3 
01 %CYCLE 	1=0,1,3 
92 %IF 	DIST(I)>N0 	THENSTART 
93 LS1; 	NODIST(I) 
94 %FINISH; 	REPEAT 
95 %IF 	LSO 	%AND 	DIST(3)=No 	%TtIEN 	LS=3 
96 SUITPTSPTS(LS)+5*(NO_4); 	SPACES(18) 
97 NBALANCE; 	%IF 	N>3 	%THEN 	BALANCE=3 
98 ->R(BALM,E  
99 8(0): ->2 	IF 	POINTS>=12 

100 NB: VøPRINTTEXT' 	NO 	BID'; 	->1 
101 2: IF 	POINTS<=15%THENSTART 
102 ->3 	ZIF 	SUITPTS>10 
103 NT(1 ) ; 	 ->1; 	%FINISI 
106 .j I F POIN!S20JTj1 ENSIAR.r______________________ 
105 3: BIDSUIT(1), 	->11 	'/.FINISH 
106 ZIF 	POINTS>=23 	ZTHEN 	->TC 
107 ZIF 	SUITPTS>=15 	/.THEN 	BIDSUIT(2) 	ZELSE 	NT(2 
to_s ->1 
109 8(1): %IF 	POINTS11 	%AND 	SUITPTS>10 	ZTHEN 	->3 
110 ->NB 	%IF 	POINTS<=11 
111 ->3 	ZIF 	POIIJTS<=18 
112 ->7 	ZIF 	POINTS<22 
113 IC: %PRINTTEXT' 	2 	C(ACOL)'; 	->1 
114 B(2): ->PR 	7-IF 	POIUTS<10 
115 ->6 	/.IF 	POINTS>=12 
116 _->3 	-IF..  SUIJTS1Q;>NB 
117 B(3): ->PR 	701F 	POINTS<S 
118 6: ->3 	ZIF 	POINTS<18-N 
119 LcI.F_PPJ T2i________________________ 
120 7: ZIF 	SUITPTS>15 	%THEN 	1=2 	ZELSE 	1=1 
121  
122 PR: SUITPTS=5*(N0_4)+POINTS 
123 -?.1F.IP_T<E20; 	->9 	ZIF 	LS<2 
124 9: ZIF 	SUITPTS<=27 	ZIHEN 	1=3 	%ELSE 	1=4 
125 ->NB 	ZIF 	SUITPTS 	<=22 
126 ZIF 	SUIIPTS 	>30 	7.THENSTART 
127 1=5; 	->8; 	°'F1NISH 
128 8: BIDSUIT(I) 
129 1: ZEND; 	! 	OF 	BIDDING 	BLOCK 

130 	 NEWLINES(3) 
131 	 ->1 ZIF HANDCOUNT<LIMIT 
132 	 7.ENDOFPROGRAM 

Fig 5-3 Compiler Listing 



w 	 V 

- r L OCCUPIES 	6246 	yTES 

ROUTTABLE 	SIZE 164 
CHUNKNUMF3ER 27 

CHUNK 1 2 3 4 5 6 7 8 9 10 
ADDRESS 0 224 460 822 1048 1406 1682 1988 2358 2506 
LINE 1 19 27 36 41 51 57 63 75 78 

CHUNK 11 12 13 14 15 16 17 18 19 20 
ADDRESS 2668 2768 2928 3016 3308 3338 3360 3480 3630 3738 
LINE 82 84 87 90 99 100 101 105 109 113 

CHUNK 21 22 23 24 25 26 27 
ADDRESS 3762 3836 3866 3926 3968 4042 4142 
LINE 114 117 118 120 122 124 128 

Fig 5-4 Chunk Positions 



bogi,m4 g are ar.ecificatims of external I/u pro cocfl'ea. 	The 

source pro'am is listed as it is read; since the compiler makes a 

'ntax analysis of sU the program statements prior to fUrther 

processing (this was originally designed to improve paging behaviour 

of the compiler), the obink boundaries are net worked out when the 

listing is ido, 	These are given at the and of compilation 

(fig. 5-4) and have been ruled on the listing for clarity. 	The 

following diconesion of the choice of nhmk boundaries is carried 

out with reference to this proam. 	Keywrds, for =ample 

%BGIN, in the listing are written here as beid-n; the jump 

instruction '—> label', is denoted by 'ioth label'. 

A chink boiiiybiry appears in the following positions. 

Before and after procedure &nd function declarations. 	Thas 

one appears before line 19 (routine iitin 	and after 1AflA  26; 

in this case there is no finer subdivision. lbte there is no 

bow4sry after the Od at line 129; this is simply the aM of an 

inner block (starting at Line 80), and program control will pass 

through it. 

Before and after switch declarations. 	The statement 

'switch B(0:20) ,  at line 82, compiles to a vector (over which 

program control jumps) of 21 words which contain the (relative) 

instruction addresses of left-hand labels B(0), B(l), etc. 	It 

happens here that only four of these labels are defined - the other 

addresses in the vector will be set 'unaeRigd' • 	Such a vector 

is always regarded as a single chink, 	Here the t4n1 boundary is 

th'aisi after 'intoer I ,N' which is a doclarator generating no code. 

Before explicit left hand labels, but only  if:  
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the PrOOOding DtatGc6nt is a 1anch (iitional or otIxrwiue), or 

the code length of the current chink is greater than seae 11in(t 

(z'tLy 256 bytes, i.e. 1/16 of a page). 
This label 2 at line  78 causes a chink boundary, being preceded by 

a atn instruction (which terminates the program run). 	WAilarly 

there is a boundary at B(0) (li-n. 99), preceded by a AAQ v  and 

TC (line 113), by a c,m'1tl-ona]. to, 	On the other h, label 1 

(li-n. 60) does net cause a boundary; it does not fellow a branch, 

and the preceding chink boundary is W11 id.tbin 256 bytes. 	Ikte 

that a procedure call in net counted as a anch in (a) above 

this label 1 at line 79 in not  preceded by a boundary, despite the 

procedure call 'SIITJFFLE'. 	There are no aide axite from IMP 

procedures, a) control rust return ftom 'SHUIFLE' before reaching  

the label. 	'ibo case for a boundary after a procedure call is this 

not conaideroci as strong as that for one after an ordinary branch. 

Before  j=W& statements, but only if (b) holds. 	Cvoio 
heralds a loop (sindJ.er to the Algol I= statement),, the and of 
which is marked by reneat. 	(The code generated at i.yc10 consists 

of initialisation code, setting up the loop, followed by the 

implicit left-had label, the top of the loop proper. 	The chink 

boundary, if one is generated, goes before this 1abe] 	As 

'sp1e8, hr's 36 in preceded by a n}sntlr boundary, line 38 being 

within 256 bytes of this, is net. 

Before start (in conditiona), but only if (b) holds. 

start and finish are statement brackets in 11*', used in the 

constructions 
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A tJistart 

... 

Iin1sh else atart 

The jam clause is optiol. 

The condition of distance from the preceding boundary is never mat 

in the illustrated pro,'wn. 	Line 105 may appear to be an eiq1e, 

but the ckznk boundary here arises from the label 3 following the 

inlicit jump over the 'thee' clause. 

The above rules for the determination of chunk boundaries 

must be viewed with the rAaliaation that the total number of chunksJ 

is not to be too large. 	An average of 25 o}iinka per page ixiuld 

give 500 eliuika for a 20 page module. 	Using a &-rnilarity array 

of aide 100, at least 5 restructurings would probably be necessary. 

This is acceptable for such a large pz'o'mm, but more diank  would 

lead to more restructurings or a larger similarity army: 

extending the time of optind.eation and making it less art1zthi1e. 

Thus although it is easy to point to omissions in the ohoico of 

boundaries,, it is leas ea' to find an inrovement that does n ot 

lead to appreciably more chunks. 	The above selects those 

branolçointa uhich appear to have the strongest case (section IV.2). 

Some discussion, may explain the rules adopted. 	Consider the 

following situation. 

(1) JS AjothL 

(2) 	14: 	000 

The statement (1) may be 4ynamioa]J.y distant from (2) for two  
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reasons: either the path to L may be taken, or label k4 reached from 

eoneáere else. 	If atatecnt (1) is not a branch, there is less 

reason fbr a boundary between (1) and (2). 	Thus suppose we have: 

n1nk boundary 

code length l 

(2) 	it: •,, 

Suppose in the above scamplep a boundary is not put before M, but in 

fact It is normally entered from olu.vhere, the preceding code 

perhaps being concerned with initialisation. 	in aixiunt of spaos 

1 will then have been effectively wasted within the page; the 

'eatea' in 1, the zxire important this may be. 	This in the reason 

for the corrution (b), about the length of the currant ohw*, being 

applied at certain times, 	in ezan1e in the Illustrated program 

is at line 75, onwards. 	The initial entry to the program reaches 

hero (after Jumping over the procedure declarations). 	Up to 

label 1 (line ?)) is initialisation code, the main loop of the 

program returning to label 1 as each bridge hand in generated. 

Thus although a boundary before this label would, have been more 

int1l1gent than that before label 2, the only 'waste' is the 

ooiarativel.y abort qiantity of code generated by lira W. 	If 

label 2 had not been present, the initialisation code would have 

been long enough to force a boundary before label 1. 

Boundaries are xaore likely to appear before explicit left hand 

labels than other branch-points it being oonaider.d that labels 

are likely to be entered from a azmber of statically distant 

points. The last third of the emaople program has a large number 

of th%urks oompared with the rest, the explicit labels producing 
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more boundaries than ci'icle or start statements. 	Whether in 

general this is a good decision depends on the style of programming 

in the module under test; it mogr be that the pre**xIerenoe of 

plioit labels in DU programs is still an influence of the Atlas 

Autocode from which it waa developed (this did not contain the 

statement brackets start or 19nij). 	The ahunki part of the 

compiler has been written so as to make nhrmj.ng  the choice 

procedure for think boundaries 811 .ai matter. 

The idea of obtaining information from the programmer as to 

the choice of t)nmk boundaries was rejected as being an interference 

EKI intolerab]r arduous in a large program. Knowing the algorithm 

he can of oouroe force a decision - for example, writing ggtQ 1 

before line 71, in the program shown. 	There is a ease for the 

provision of a directive -which forces a chunk boundary and which the 

programmer may add if he wishes having seen the boundaries which the 

compiler produces. 

.-. 

At run-tine, the desired length of vorking set interval (the 

airflnyjty interval) must be specified to job control, and a special 

Perm linked in; as computation prooeeda, the 51JTriP'ity am is 

then built up in the QIA of the module concerned. 	Processing 

time Mae increased about five time in the eqerT!tntal programs. 

This is rather more than hoped, but the monitoring code in Porn 

could have been rewritten in aa'th{me code to give some improvement. 

Little effort was made in this directions the processing time was 

not great emowj to be a problem in the teats made, and the 

performance in a time.eshaz'ing ataten would probably be a function 
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far more of paging behaviour than prooesaing time. 	(As an exaz1e 

of the e$ra paging, consider a program with 300 chunks (my 12 

pages of code) and aelm' liirity  array of side 100. 	The array is 

yi1retriol, and its elements halfwc,a'd, it would tliw occupy 2525  

words. With this nunber of *}ink8,  the addjtjiyn] tables would 

occupy about as ziich apace agein, so there wuld be an extra five 

frecaent1.y accessed pages. The additional length of code in the 

monitoring Perm is wit. mail.) 

If required, additioxl page monitoring' can be si nilitanecualy 

included. 	In this case, apart from recording the obndr entries 

and processing times (making ql1onoe for the extra time spent 

obeying the mitoriug code itself), ?erm enters a further routine 

which can note the current code page. 	In this wayp any points on 

the average working set graph can be fc*zxil (valid because the 

J-format module is the same size as the normal compiled one would 

have been). 	Use of page monitoring' increesos prooeaeing time 

still more - about double in the teats made. 

At the end of each xian (when the instruction utm or 

andnfpro'an is reached), the similarity array and other reference 

data is written to the chink information file (if this has not  been 

specified, the results are simply lout), or merged with any 

information there from previous rims. 	If the $imi 1 arity array 

embraces all the think, merging consists ai.n1y of adding on the 

current array; but if not (section IV.4), the simUarity wbeet on 

the file may not be the sane as that in the current run. 	In this 

case, a valid similarity array may only exist for the intersection 

of the ol*n)r subsets (see Appendix B). 	The problems which then 

arise may be visible to the user tlu'cugh the increased time of the 
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file updating procene. 

?ig.5-.5a abovs the and of the printer 0 from a urn of the 

m'aU demonstration prom. 	The ithni1a*'ity interval in 1(Aaa. 

(shown an 1000, since the unit in 10 microLI000rKin). 	The only 

output here from the monitoring Perra is the final line, giving the 

number of admil arlty intervals. 	The reainder, after the 

'program ends' moneage, in output by the page-monitoring routines. 

Thene hevo recorded page reference a in intervals of lengths between 

one quarter and four times the simileiity interval. 	The 'total 

faults' column given the number of pages acoenned in all prooeaaing 

intervals of each length; than mean working not sizes can be 

calulated. 	For amn1e, in this urn the mean WS nine for the 

0ilz4t'ity interval itself (1000) in 217/190 = 1.14. 	?krmally the 

output from several runs will be used to evaluate the results. 

We also have the frequency (number of almilarity intervals) with 

which each page in accessed. 	Fig. 5-Sb ahowa amilv output from 

a large program (program S - see nact chapter). 

If required, important parts of the chunk information file can 

be printed. 	An example after two rune of our teat program in 

shoun in figs. 5-6, 5.7. 	The quantity 'neleotno' is the size of 

the iiliwtlity array if this has been reatrioted to lean than the 

number of cink. 	It man here deliberately made very wa ll., at 

18 	' 1 anough to eruazre partial restructuring vas nooeeeary (for 

demonstration purposes). 	This rawdraw allowable length of aide of 

the array in determined at oei2atioii by an initialised variable in 

the ocmiiler (normauy 80, at present) - it could be made a data 

parameter to the scheme if necessary. 

For each oIink, its length in bytes is given, for use by the 
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r' 7 ) 

H A 0 4 
D J7 
C J 8 7 5 	3 

1 NT 

S 	J 10 8 	4 
H 	K 10  9 	2 
D 	K9 

C 	A109 
NO BID 

*****PROGRAM ENDS***** 

INT. LENGTH 	NO. INTS 	TOTAL FAULTS 

	

250 	 728 	 751 

	

500 	 380 	 408 

	

1000 	 190 	 217 

	

2000 	 95 	 122 

	

4000 	 47 	 74 

PAGE 	ACCESS FREQUENCY (INTLENGTH 	1000) 

1 	 190 
2 	 27 

INTERVALS 190 

a) 

WE 

	

INT. 	LENGTH 	NO. INTS 	TOTAL FAULTS 

	

625 	 877 	 2558 

	

1250 	 439 	 1707 

	

2500 	 219 	 1122 

	

5000 	 109 	 719 

	

10000 	 54 	 416 

PAGE 	ACCESS FREQUENCY (INTLENGTH 	2500) 

	

1 	 51 

	

2 	 171 

	

3 	 72 

	

4 	 24 

	

5 	 51 

	

6 	 77 

	

7 	 22 

	

8 	 23 

	

9 	 63 

	

10 	 57 

	

11 	 92 

	

12 	 93 

	

13 	 95 

	

14 	 88 

	

15 	 141 

	

16 	 2 

INTERVALS 219 

Fig 5-5 Output from Monitoring Routines 



)IT ASSOCIATED FILE 

JNS 	SO 	FAR 2 
D 	OF 	INTERVALS 404 
ELECTNO 18 
D 	OF 	RECHUNKINGS 0 
0 	OF 	CHUNKS 27 
RE 	LENGTH 8 

HUNK 1 2 3 4 5 6 7 8. 9 10 11 12 13 14 15 16 17 18 19 20 
HUNKLENGTH 224 228 362 218 358 276 306 370 148 160 92 152 88 292 30 22 120 150 108 24 
RANCIITO 7 0 19 0 30 32 40 0 0 59 0 0 0 0 101 102 113 102 116 102 
RANSLATE 1 2 3 4 5 6 7 8 9 10 11 12 • 13 14 15 • • • 

REQ 	OF 	USE 2 2 115 116 97 209 204 226 2 182 59 11 8 63 31 40 10 12 18 0 

HUNK 21 22 23 24 25 26 27 
HUNKLENGTII 74 30 60 42 74 100 104 
RANCHTO 101 135 129 147 152 147 0 
RANSLATE • • • • 16 
REQ 	OF 	USE 7 3 5 2 5 0 58 

Fig 5-6 Chunk Information File 
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LEADING PARTS OF CHUNKING ARRAY 

1 	2 	3 4 5 6 7 8 

1 2 	2 	1 0 0 0 0 0 
2 2 	1 0 0 0 0 0 
3 115 68 9 0 0 2 
4 116 57 19 0 0 
5 97 59 35 27 
6 209 183 177 
7 204 196 
8 226 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

9 	10 11 12 13 16 15 16 17 18 

2 	1 0 0 0 0 0 0 0 0 
2 	1 0 0 0 0 0 0 0 0 
1 	79 40 6 9 21 29 48 0 0 
0 	80 0 0 0 0 0 2 0 0 
0 	58 0 0 0 0 0 0 0 0 
0 	27 0 0 7 0 0 0 0 0 
0 	26 2 1 25 2 1 0 0 0 
0 	53 18 3 53 10 13 9 0 0 
2 	1 0 0 0 0 0 0 0 0 

182 59 11 63 31 40 58 0 0 
59 11 28 31 40 50 0 0 

11 5 2 0 9 0 0 
63 16 17 19 0 0 

31 21 27 0 0 
40 33 0 0 

58 0 0 
0 0 

0 

Fig 5-7 Similarity Array 



restructuring process. 	The line 'branchto '411 be explained in 

appendix B. 	'Translate', only present if 'oeleotno' has 

restricted the array, selects the submt of &iznka in the similarity 

array - thas the 13th. row and oolnn'n of the latter refers to 

thunk 14. 	Although a w(m11 'ity array of size 18 was allowed, 

the two mabeets of these two rune ware not the ease, and data on 

only 16 chinko  could be kept in the emiltrity array. 	The last 

line gives the total frequency of use (in airailiarity intervals) of 

each chunk in the runs to date. 	1?ig.5u.7 chowa the oorlete 

aimilarity array. 	(Norri1Ir only the 2(20 aabttricea centred 

on the principal, diagonal are printed. 	Since here 'solootz' is 

ieee than 20, we obtain the whole array). 	As an wcwlo, note a 

eon but unfortunate situation, from the restructuring point of 

view. 	There is a high dift1larity between chinks 3 and 4, and 

between 3 and 27 (translated to 16 In the array), but chunks 4 and 

27 have only two intervals in ceon. 	Ghuk 27 is alweya shortly 

followed by 3 and tbici leads to chunk 4, but the latter is nearly 

always too distant from 27 to be in the sene 10na. tizaa..olioe. 

6. 1TRUCTWQNG 

4bon a sequence of runs is judged sufficiently representative, 

the user calls the restructuring program. 	This produces a 

restructured object file - still in IS-format - and a new hjnk 

information file. 	IkWMRl1Y the total nuier of chinks will have 

decreased, some having merged during the clustering process 

(see IV4). 	If no clpinkia outside the e1j,4 1 evity subset ware 

referenced at all in the last series of runs (or the array enlwaoed 

the nhink5 anmy), a f1],,  restructuring will be performed. 
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This means that the clustering process proceeds to completion, and 

each gz'ou of chunke is output from the start of a page boundary, 

instead of eirp1.y fbUDving one after the other, ca when a partial 

clustering has taken place. 	Note that even a DMI clustering 

produces an object file in 1-fort; this in necessary at present 

in order that the page monitoring routines can be used to 

investigate tint4 paging behaviour. 	£ conversion pro'on is used 

to overwrite the monitoring branches (tables in the chunk  

information file are requirod), to produce an N-format file. 

With a large mei1.o, the zriiul course will be to repeat the 

process of run and restructure until the se1mm proioea a final 

restructuring. 	The paging behaviour will ir4xvve slightly each 

time - the grouping of o1nkp sitheugh not correct 4th respect to 

page boundaries, will have sow effect. 	If a restructured version 

is required cick4, one can demand a 'finel restructuring' any  

time, and produce an N-format file from this. 	(This could be used 

for temporary service purposes while continuing the optimisation of 

the original. version). 	The effect of premature final 

restructuring is reported in the nt chapter. 

The restructuring program is in two distinct phases: (i) the 

clustering algorithm, which works out the now chunk groupings, and 

() the section which works out thrnk orderings and generates the 

new files. 	(see appendix B for some of the problems which arise.) 

)ig.58 shows output from the first restructuring from the array 

of fig.57 - of the bridge-hand program. 	Two groups of o}'inks 

have formed; there are only 17 dunks in the new object modLLU (and 

the new n)imk information file) • 	Note that the actual chank 

numbers are given under the 'old chunks' heading, not the translated 
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RECHUNKING 	ROUTINE 

INTERMEDIATE RECHUNKING 

NEWCHUNK 	OLD CHUNKS 

1 1 
2 2 

3 3 	4 	10 	5 	11 	27 	16 	15 
4 6 	7 	8 	14 
5 9 
6 12 
7 13 
8 17 

9 18 
10 19 
1.1 20 
12 21 
13 22 
14 23 

15 24 
16 25 
17 26 

0 1 	224 

224 2 	228 

**** 	452 3 	354 
**** 	806 4 	218 

,r** 	1024 5 	358 
**** 	1382 10 	160 
*** 	1542 27 	104 

**** 	1648 11 	92 
**** 	1740 15 	22 
**** 	1762 16 	22 

**** 	1784 14 	292 
**** 	2078 6 	268 
**** 	2346 7 	298 
**** 	2644 8 	370 

I' 

**** 	3014 9 	148 

**** 	3164 12 	152 

**** 	3316 13 	88 

*** 	3404 17 	120  

Fig 5-8 Output from Restructuring Program 



RECHUNKI NG ROUTINE 

FINAL RECHUNKING 

NEWCHUNK 	OLD CHUNKS 

1 1 	2 	5 	3 	4 	6 	9 	10 	14 	12 	7 

2 11 	17 

0 1 224 

224 2 226 
**** 452 3 1332 
**** 1784 4 1230 
**** 3014 5 148 

3162 10 108 
3270 12 74 

**** 3344 6 152 
**** 3496 9 150 

3648 7 88 
**** 3736 8 120 
**** 3856 13 22 
**** 3878 14 52 
**** 3930 15 42 
**** 3972 16 74 

4098 11 24 
**** 4122 17 100 

S 	A K 10 7 2 
H 	J 6 3 
D 	102 
C 	762 

NO BID 

*****PROGRAM ENDS***** 

INT. LENGTH 	NO. INTS 	TOTAL FAULTS 

250 	 1630 	 1631 

500 	 855 	 856 

1000 	 427 	 428 

2000 	 213 	 214 

4000 	 106 	 107 

PAGE ACCESS FREQUENCY (INTLENGTH 	1000) 

1 	 427 

2 	 1 

INTERVALS 427 

b) 

Fig 5-9 Final Restructuring and Run 



versions iddoh apseify aimilarity al?ay positions. 	The three 

ooTh, w of figures with asterisks øhev the new addressee of the 

hunk - ass appendix Be 	The now object module was urn, and a 

11na1  restructuring performed (neoesacrily, since the "nmber of 

chunks is lees than Ise]4t); fig.5-9a ahewa this (the first line 

of chunks is out off at the right hand side). 

We notice that the only achievement of restructuring this 

program was to remove two chunks not used at all during the test 

urns (ori'l.n1.y oliznka 20 and 26), the reiinder of the program 

being packed into a single pegs. 	Pg.5-9b shows the end of a 

long run of the final M.-fort nodule; during this xan, (origin*1) 

chunk 20 happened to be entered ones giving the result tho'ai. 

Obviously for service use, the conversion program is used to 

obtain a finjil  N-format file. 
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1. 	akaaz4riAL Wk  

This chapter deaoribsa the results of restructuring four DI' 

nodules s  with code sizes between 4 and 16 pages. 	The only thegsa 

ide to the source idulee as received from their authors were the 

trivial ones made necessary by the restrictions in the rather 

out-of--date DI' compiler on which the restructuring scheme is based. 

Some details of the modules (referred to as P,,R,$) are as follows. 

description 	code-size (words) no. of 
1 page = 1C4 wds chunks  

P Gonoratoa, of cyntax- 4150 59 
(mein-.progrt) tables for Q (below) 

from a plwaaa- 
structure grammar 

A iyntwc-axmlyser fbr 3300 268 
(main-program) I2, incorporating a 

ntactio macro-scheme 

R Part of an interpreter 13050 292 
(maim-program) for a (&iiiiiirted) on-line 

rmbol manipulation 
language. 

8 Phase 2 of the rthinking 35500 334 
(external rtn.) DI' ooqiler. 

The amber of chinks is determined not only by the length of 

the program but by other factors: azmbera of jwie, programming 

style (see V.4). 	Thus although the choice procedure yields an 

average of about 25 chunks per page, this can vary greatly between 

programs. 	In partionlar P has far lees chunks than would be 

cpected, Q far more. 

For each module, time ifinn  allowed øiao (determined at 

compilation time) of oiniilerity  array we 80. 	Thus only for 
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program P could a complete array be generated at run-tine, giving 

the necessity for only one restructuring. 	For program 3 the 

rvmbsr of chunks would have nede a larger similarity array advisable 

in normal oir*imntances. 

U1111 4 11414 IT  

The main eacporliaents consisted of performing the complete 

restructuring process on each program, &iMgd  at  minimising  the seen 

working-set size (code only) over 25 ma. periods. 	Points on the 

working-set ourvss were found before and after restructuring; these 

e for the nsilti].ou 	1,2 and 4 of the Sin(nIeity 

Figs. 6.1 to 64 tlx,w the two grapbs obtained for each irdule. 

(Note the differmce in the scabs of the vertical axes in the four 

figures.) 

The table bebov gives the reductinni' (as a fraction of the 

original) in the average WS size, for the jdW3sn'ity interval, and 

also for (4 and 100 ma. intervals. 

P Q it S 

25ae. 060 0.40 0.48 042 

6Ima. 0.53 0.25 0.36 032 

10(ns. 0.58 0.41, 0.51 0.44 

z. roatructuringa 1 4 4 6 

M. siId.I2rity 1100 700 470 640 
Into. 

For 25ma. intervals, there is a saving in moan US size of at 

least 40% in all the program. 	For longer intervals the variation 

is fairly 	1 but the reduction worsens for very short tine.- 

intervals. 	This is because the US sizes are very ci!l and the 
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page size becomes dominant; no restructuring can cause lees then 

one page to be referenced in an interval. 

Below each graph in figs. 6-1 to 6-4 is shown the number of 

aimll*aity intervals in which each page is accessed before an after 

restructuring (acme ire not referenced at all afterwards - see 

below). 	Note that in program P and R the most used page after 

restructuring is accessed 10130 times than the mot used before. 

All the px'o'aian were highly data-depdwit, and o"('ierable 

effort was required to establish data which was conLd.dez'ed fairly 

representative of the premed use of each Program. 	Pro'am L 

had a single set of data (giving a ling  run), proems Q and 8 each 

had two different sets, while R had three. 	All the  data was used 

in each monitoring phase of the restructuring process. 	The number 

of eim11mity intervals in the table above refers to the total 

nwther with all the sets of data. 	'ihe variation in mean US aims 

in the  seine pro'wa for different sets of data were generally fairly 

iipli; the greatest difference was between the two sets of data of 

program Q (one contained a large number of macros and the other 

not). 	The results with the iiylividas]. rune (initially, and  after 

restructuring) are shown by the dotted lines in fig. 6-2. 

One statistic which appeared not to be reflected in the reai].ta 

was the number of nhunku not referenced at a]]. daring the sins of 

each pro'em. 	This varied from the least in program P, almost 

aàUy used, to the greatest in program Q, in which about am third 

Of the program thiuke ware not referenced at all (this we despite 

the data for Q being considered representative - such, of the 

unreferenced material dealt with the analysis of assitbly_ood. 
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statements which my be incorporated in DP programs, although 

would be rue). 	This contrasts with the fact that P gave the 

greatest reductiou in W8 size after restructuring, and Q the least 

of the four programs. 	The compression of programs simply by the 

removal of non-used chunks is not much a significant factor in the 

WE size reduction as might have been thought. 	This had 

accidental support from an early test of program Q when an error 

existed in the file-dating routine which led to a slightly 

invalid c.bst.ring (not detected by aairtriation of the results), 

although all the unused &u*u were still removed. 	The reduction 

in mean 115 size 's then only 15%. 

Figs. 6-5a and b show the effect of restructuring with different 

id(1z irity intervals. 	Apart from the 25ma. teats, program Q mug 

restructured using a lAne, interval, and program S using a 200ma 

interval; the working eat graphs of the results are thoic as dotted 

lines. 	In each case the graph differs little from the former 

2ma, restructuring (oontir*zoua lines), but the effect discussed in 

111.5 and shown in fig.3-4, is quite visible. 

Fig. 6..6 demonstrates premature ffn1 restructuring with progren 

As  the worst behaved, although not the largest, program. 	The 

results were obtained with a single not of toot data. After each 

run, apart from partial restructuring and continuing with the teat, 

a flv& restructuring (see V.6) wa s prockoed and a WS curve obtained 

from the result. 	Note the surprising fact that the greatest 

improvement is obtained at the last restructuring, irljing that the 

positions of lesser used âzn*s in the program are quite sigi 4 ioant. 
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3. CLU3ION 

Beorgenining parts of a program to ixove its paging behaviour 

is essentially an gineering problem; the result my bear littie 

relation to the conceptual logical structure necessery for good 

design, conatruotion and understanding of the program. 	Thus 

DOW can be achieved by attempting to trnmfne the nhmk  groupings 

produoed in aiali large programs as these just considered. 	This is 

an argiiit for restructuring being an automatic process id.th '4iich 

the prograzr would not wish to be concerned. 

£ very large degree of improvement is obtainable, although it 

must be borne in mind that our results are reductions of mean V3 

size over code only, and in the programs tested data r.fereoce 

might have been cpected to oorrtribute as much or more to the W8 

size as the code. 	The effect on page-faulting in a gemiie 

operating crsten gould depend on the scheduling algorithm; one 

jj,u.1d expect that normally the reduction isuld be at least as good 

as that of the U3 size, but it could be LaJ.ch more. 	Thus we have 

not atteited to simulate behaviour under, say, a restricted store 

scheduler (1.4) and claimed (with judicious choice of store size) 

a 95% reduction in page.-faulta; such experiments woulid be 

m3ew1th and a waste of time. 

The severest problems are practical ones: the large quantity 

of data, the coat of obtaining reference infariation from the 

program, etc. 	Unlea these problems can be solved, discussion of 

theoretical techniques for restructuring programs becomes q1dte 

aoadeuio. 	It is hoped that the methods described in this thesis 

are aiffisiently practical and produce sufficiently large 

improvements to be irtby of oo'u 1deration in the i,rov*i.nt of 

the behaviour of large and frequently used programs. 	The 
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eluaterthg teohni4a.e at the 1*52.3 of the methods appear to be very 

effective in this field and may have more general application in 

the area of program. st'aoturing: orgisni f'i.ng, say, the components of 

a system for efficient movement within a storage hierarc. 

Randall and Kushner (ref.2) have written: 'In the present 

state-of-the-art, any but the uvet minor attemltn at re-peaking are 

probably best regarded as last-ditch efforts at revering from 

iz*deiate hardware, operating mystem atr'ato4ea, end/ca' programming 

style. 	It is hoped that this thesis has advanced the 'øtate-of-. 

the-art', if only in 11 neaw. eiii to oee name iMf1oation 

of the above statement. 
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S 

2 

I 

T (j.ts.) 

Spread of (25ms. interval) accesses amongst pages 

Before restructuring 

703 
598 
581 
810 
543 

After restructuring 

21 
583 
602 
108 

14 

Fig 6-1 	Results of restructuring program P 



S 1(pages) 

5 	 initial 

3 

after restructuring 

10K 20K 30K 40K 50K 60K 70K 80K 90K lOOK 
T (is.) 

Spread of (25ms.  intervals) accesses amongst pages 

Before restructuring 	After restructuring 

587 1420 
623 662 
379 175 

714 76 
105 51 
250 28 
12 0 

299 0 
145 0 

2 

17 

[I] 

Fig 6-2 Results of restructuring program Q 
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100 
T (me.) 

Spread of (25rns,  intervals) accesses amongst pages 

3efore restructuring 	After restructuring 

1614 359 
1422 101 
330 1411 
175 161 
201 320 
239 76 
227 .148 
101 70 
117 63 
211 7 
2314 0 
211 0 
176 0 

S 

11 

10 

9 

8 

7 

6 

5 

14 

7 

2 

I 

Lei 

Fig 6-5 	esults of restructuring program R 



S 

7 

6 

5 

14 

2 

I 

0 	10 	 50 	 100 
T (ms.) 

Spread of (25ms.  intervals) accesses amongst pages 

lefore restructuring 

138 
14814 
2141 

65 
181 
2147 

68 
62 

206 
191 
2 7 2 

259 
267 
263 
1419 

14 

After restructuring 

216 
6 

3114 
1478 
115 
297 
223 

90 
31 
31 
21 
37 

5 
0 
0 
0 

Fig 6-14 	Results of restructuring program S 
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Pig 6-5 Restructuring to different lengths of WE interval 
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Fig 6-6 Effect of premature final restructuring 



In order of citation. 

DlNIS, J.B. 	e,ntation and the design of m1tiprognamed 

ooçut' utaa. 	J. ACM 32,4 (Oct. 65), 589..6(L 

1W1DLL, B. MW IWlU, C.J. 	Dynamic storage allocation 

ayetoa. 	Corn. ACM 11,5 (May 68), 297.-305. 

KIL}3URN, T., IW4AIWS9  D.B.G., L&NIGAN, N.J. AND SUMMER, F.M. 

One-level storage eyeteia. 	IRE Trans. EC 3102 (Apr. 62), 

223-235. 

8H14, J.E. ADD uI1flI1EY, G.A. 	StatiaU.*l imi tlyaja of 

paged and segmented computer avotems. 	IE frans. EC 15,6 

(ec.66), 855.-863. 

WEIZ1 9  N. AND OIPIIR, G. 	Virtual 501fl017 IlYSCoIaent in 

• paging environimont • 	AFD'S Proc. SJCC, Vol. 34 (1969), 

249-256. 

DI{NNING, P .J. 	The working set n,del for pl-ng behaviour. 

Corn. ACM 11,5 (May 68), 323-333. 

DNNING, P .J. 	Tha'ashing: its causes and prevention. 	ALPS 

Proc. FJCC, Vol.33 (1968), 915-922. 

(EVER, DP. 	Probability models for ii1tipronmth49 

ooquter ayntens. 	J. ACM 14,3 (July 67), 423-438. 

FINE, G.M., JACKSON, C.U. AND MCI8AAC, P .V. 	Dnauiio program 

behaviour under paging. 	Proc. ACM 21st National Meeting 

1966. 

BB&WN, BA.M3A.RA. 8., AND GU8'.AV3ON, FRANCIS C. 	Program 

behaviour in a paging enwilronment. 	AFIPS Proc. FJCC, Vol. 

33 (1963), 1019-1032, 

B.). 



U. C0FP4AN, B.G. AiD VAItt*tI L.C. 	Further eqerinmital data 

on the b.Imviour of proaIaa in a paging enviromment. 

Comm. ACM U,? (JU1y 68), 473-474. 

FB8, I .F • The cVnwie behaviour of proana. 

AiP8 Proc. ?JCC, Vol. 33 (1968), 1163-1161. 

o'NgLLL, LW. 	1ibqianoe uwLng a time-shared atulti, 

prnnvi1ig avutem with dyimio addreee relocation hardware. 

A.FIP8 Pzoc. 3JCC, Vol. 30 (1967), 611-621. 

BEADY, L.A., NEL'3W, LA AND {IwU, G.S. 	An ara].y in 

)aoe-time cIw2UotoI'iutia8 of certain proems running in a 

paging rohine. 	Co. AM 12,6 (JUne 69) 1, 349-353. 

B]LADI, L.A. 	A study of replacement algorithea for a 

virtual atorage ociçutar. 	I4 aystems J. 592 (1966), 

78-101. 

MW14G, P.J. 	ileaource allocation in multi-prooeao computer 

yatacia. 	(Ph.D. thesis) Hasmebusetts Institute of 

Teoi)logy, May 1968. 

17, BLA1)X, L.A. AND MORN& CJ. 	 thing in 

ocquter Watme. 	Cciun.. ACM 12,5 (Nay 69), Z32-238. 

KUIWI96 C .J • AND BANDELL, B. 	DrarwI paging in per.otive. 

AFIP3 Proc. YJCC, Vol. 33 (1968), 1011-1017. 

I4nJC 1iLTAR, A.C. AND C(4AN, B.G. 	The ox w'isation of 

itrioee and matrix operations in a paged nz1t.tpro'acaiing 

eivir -in  xt. 	Comm. ACM 12,3 (Mar. 68), 353-164, 

CCMZW, L.W. 	A study of the effect of user pro'aa 

optimisation in a paging system. 	ACM SVmposium on operating 

aysten principles, Gatlinl*zrgh, T 	1967. 



iWWOMHY., C.V. The analytic dea4p of a dynamic look 

ahead and program segmenting ay'otem for multiprogrammed 

computers. 	iroc. ACM 21st National Meeting 1966. 

14*.RIM(2T, ft0ALIND B. 	Application of graphs and Boolean 

matrices to cout' programming. 	Sim Review 2 94 

(Oct. 60), 259-268. 

KRAL, J. 	One my of estimating frequencies of Jumps in a 

program. 	Comm. ACM 11 1,7 (July 68), 475-480. 

LWJ, T .C. 	Analyais of Boolean program models for time- 

shared paged environments. 	Comm* ACM 1281 4, (Apr. 69) 0  

191-205. 

25 • LOWS, T .0 • 	Automatic aegnantation of cyclic program 

structures baead on connectivity and processor tirthvj. 

Comm, ACM 13,1 (Jan. 70), 3-6. 

26, 70LI, J.D. 	A Narkovian model of the University of 

l'tthigalL executive gVgtgm. 	Comm. ACM 10.9 (Sept. 67), 

584.588. 

FELI2R, W. 	Introduction to probability theory and its 

pplioationo, Vol. 1. 	John Ialey & Sons (Nov York),  1950. 

aotir, R.E. 	The travelling salesman problem. 	Proc. 

I4 Scientific Computing 4mposium on Coithinatorial Problems 

(1964), 93-117. 

3OKAL, R.R. AiID SIThATH, P .LA. 	Principles of ranaerioal 

txo13!. 	W.H. Frewaan & Co. (San Francisco and London), 

1963. 

BOiN(, RJ. 	On some clustering teclmiqueo. 	III'! J. Res. 

and Dev. 8,1 (Jan, 64), 22-.32, 

L3 



L. I4T0, R.L. AND DAi24AN, J.. 	A tecimique for dotining 

azi coding aibolaaaee in pattern reoogition prob1esa. 	II 

J. Res. and Dev. 9,4 (.bly 6) 10  294-30. 

N11i&M, R.H. AND PON WMDDFS,, A.F. 	The theory of clumps. 

Cambridge Inguage iercb Unit Report 14.1.126 (1960). 

N1ThiAM, R.H. 	7he theory of "1u'ça II. 	Cambridge ImflgtIkg 

Reseerch Unit Report 14.1.139 (1961). 

34, 4TX1, J.G. AND WMTFIMD H. (ED.) WAS System Ifsrence 

manual, 	1dinbuz'gh University Department of Computes' Science 

and 101 (1970). 

35. WAIAER, J .G • AND WITFIW H. (ED.) 	SIAS Primary SubeWstem 

Referenoe 14n14. 	Ed.lnbiu'gh University Dep'tment of 

Computer Science and 101 (1910). 

11.4 



IIr1RoDucTIoN 

In order to obtain data for preliminary development and testing 

of effective r.atructning algorithms based on the ideas of chapter 

III, an initial study was made of the reference behaviour of sose 

programs writtsn in Atlas Aut000da (*.i) for an 1g1iah 1.eotric 

KDJ9 computer. 	This was a oingle-44dreae machine with a mstiry 

of 16K 48-bit words, only the first 8K being available for 

instructions. 	It was non paged, and the programs tested had tliae 

in no way been oriniøed to run in a paging environment. 

C0LLCTI01I OF 1FCE DATA 

Moat of the data was obtained using a modification of an 

already available 1.2I interpreter which had been previously written 

by Mr. T. Heed. 	This we itself written in A.A., and when 

compiled with another A.A. program caused the latter to be obeyed 

interpretively - the flow of adth'eaa references could thus be easily 

traced. 	To g4j'i1te chm3dig (see chapter III), grids more 

imposed separately on the code and data, dividing then into equal 

size blocks. 	The interpreter was ude to produce (on magnetic 

tap.) a stream of reference statistics; each consisting of the 

number of instructions obeyed so far (representing time) followed 

by a block izather. 	Suooeadve acoesees to the name block Were 

not recorded. 	(i the code a block size of 50 words was normally 

imposed. This was rather large and also the arbitrary divisions 

imposed by the grid would normally in no '.my coincide with natural 

structure; In fact a division might easily peas through a single 

instruction. 	however it waa supposed that although this would 
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substantially reduce the degree of improvement obtainable by 

restructuring, it would net invalidate the testing and development 

of the restructuring methods. 

Immediate problems which arose if a reasonable length of run 

of the program we to be monitored wwo z 

an imimene quantity of data we produced, 

the interpreter was very time-.00niring, partly due to a). 

It was necessary to rechaoe the waount of data in a way which would 

net affect the results of ench expez'iiaenta as wxad be performed on 

it • 	These would coxmist n&-Yi1y of forrning Rit(l.ity  arrays and 

investigating werking set aizeø (see chapters, 1,111), on the basis 

of intervals of various lengths starting from about 3.000 instructions. 

This being large compared with the time between different block 

references, the foUoving redactions in the quantity of data had a 

negligible effect on results. 

As far as repeated accesses to the same block ware 

conoerned, data and code were treated separately. 	This if two 

successive references to the sa me code (say) block were separated 

by a data thu* reference, the code alaink would net appear the 

second time, 

The 'tine' was only output every 128 instructions. 	To 

identity this it was preceded by zero; instruction ohmcs  were 

given positive ainbea'a, data, negative. 

Dc&wwkT:wr 

form d1 d2 d1 2•  .d1 d2 (ignoring intervening instruction c}links) 

resulted ainç].y in the output d d2. 	Such aequenoes were very 

ootimn in the programs omminedp owing to the common situation of 

references to parts of a large array being intarapereed with access 
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to scalars at the bae of the data utack. 

d) Since rearrangenent we to be performed only on the code, 

the ixrçoaition of 50 word tm* WU confined to this; both the 

data and 'Perm' (the perr1arAnt or alave routines which the compiler 

linked to every A.A. program) being blocked into the minirim  pegs 

size which would be Rintflated (250words). 	This meant that UM 

z'eferenee data could still be obtained far the program as a whole. 

The Interpretation speed we then prooeeuor dependent and we 

about 50000 instructions per ndiiite; this number of instructions 

producing on average about 4000 words of data. 	1ven with the 

fairly 1iitted ma}iine time available, it now became qiaite feasible 

to interpret a million instructions during a rim (although even this 

only represents a few seconds of the program's actual run-time.) 

In one case (program D below), data we gathered not by the 

interpreter but by instructions hand written into the A.A. program 

- these monitored the flow of reference only within the code, 

Chunk boundaries could then be chosen at natural dividing points. 

In practice most of the chunks were taken ainq)ly as the subroutines 

of the program; the insertion of monitoring instructions to trap any 

transfers of control between chunks we then a straightforward 

procedure. 	The thmk  rsiinbera and oorreEspo'vli CPU time (in 

pleae of instruction count) ware written up to iiegiaetio tape in the 

same format as that produced by the interpreter. 

Once a data tape we produced, all investigations were made on 

this, no fUrther reference to the program being made. 
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3. DATA Ai1AII3 PROG115 

Fl &T41taneOUe1y sirilated limB of the program under each of 

a set of given time-slices with a single given store allocation. 

Sr3T thn* had an associated pegs rarnber a part of the data to Pi. 

Thus each think  on the data stream gives rise to a page reference, 

and the paging behaviour (under some "n1ated page size) of the 

program can be studied either in its original form or with arq  

redistribution of chunks into pages. 

The airrii1-tad store associated with each length of time-slice 

is represented by a vector, with an entry for each page to 1s1ioete 

whether it is in or out of store; if in, a note of the time of  the 

meet recent reference is kept. 	Within a time-saUce, pages were 

loaded only when referenced. 	Once the allocated store was fall, 

subsequent references external to this store would result in a page 

being unloaded according to the 'least recently used' strategy. 

At the end of a time-slice, the whole store was cleared. 	For 

each length of time-alice, a record was kept of the following. 

The total number of page-faults (rorenoea to out-of-store 

pages). 

If required, the proportion of the total nuther of intervals 

in which era otly i faults oczrr.d, for all i frosTi 3. to sone given 

no 

a) The number of intervals in which more distinct pages iimre 

referenced t)wi the amount of store allocated (i.e. unloading had to 

take place). 

By tiking a very large store allocation, it can be anaared that 
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no unloading ma ooar during mW time-slice. The average mambar 

of page-faults per interval than giveci an approrl mtion to the 

average rking set size (action 1 .5) for the oorreepci&ding time-

slice length. 

If a large time-slice is tikon, with a aUer stare alloostion, 

the restricted store behaviour can be studied, within each interval. 

(Only for very =01 1 store sizon will the rolt be eiitftcant1y 

affected by the measures to recb.toe data described above.) 

P2 was a variant of P1 written to give a more eViiait 

n'nation of restricted store behaviour. 	10 time-alioing uas 

perbrmed, but aeverel store aUoontInna could be considered 

simultaneously. 	The time when the store was first filled was 

recorded: the average fault rate after this time thus gave a measure 

of genuine restricted store behaviour. 	If required, P2 would also 

print out the iirther of periods between page-faults which were lees 

than any opecMed quantity. 

ini1r: This depended largely on the aunt of information reciired 

from one pass through the data stream. 	The elapsed tines of the 

ei-11Rtiono of a mi  "(on inatctiona all lay between 5 and 12 

mi'Etee. 

Figs. A-i, A.2 give e'wLp1ea of printer 0/P from P1 (the 

length of the tine- shoe is Indicated by 'residence period'). 	Fig. 

A-3 gives an examle from P2. In this last figure the fact that 

time is only recorded ovary 128 insuationa results in the 'store 

filled' time being the eame for store sizes 12 9 13 and 14; in fact 

they were of course slightly different. This arose from program 

B (see section 4). 
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This generated c simi1 rity array (section III.?) for each of 

a set of interval lengths read in as data. 	The results were 

written up to ieagnetic tape. 	The average aix*mt of store (in 

terms of the thnir'k unit) referenced per interval was recorded - 

representing the average working set size if a very c''11 page size 

was taken, and obviously very ititch a lover bound to the possible 

average size obtainh1  a after restructuring. 

Later versions of this program (and 14 below) reduced the 

r*aiuber of chunks by not including any tIiioh were not referenced at 

all during the run. 	A translation table was used to renumber 

&rnkC which were accessed. 	Before this was done, the largest 

program examined gave a similarity array too great for the 

available On store. 

Timini: for the largest arrays an average of 4 minutes elapsed 

time. 

The diagonal elements of the arrays were printed out in order * 

these represent the frequencr of chunk use. 	Fig.A..4 above an 

canle of the printer 0/P (cut off at the right hand side). The 

sections' message indicates  where the array is written on magnetic 

tape. 

P4 clustered the chink into pages on the basis of a R4mllRrity 

array output by P3, the page øize being data to P4. 	Mai metlmde 

of clustering were tried, the reduction in the average working out 

also being the criterion of judgement of results. 	Chapter III 

gives some details and describes the algorithm finally adopted. 

The fin1  chink positions were both printed and written to mitio 
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RESIDENCE PERIOD = 	2500 
SPACE AVAILABLE = 21 

NO INTERVALS 	j7 

PAGE FAULTS/INTERVAL 	10.1 

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR O.COO 

RESIDENCE PERIOD 	5000 
SPACE A  AILABLE 	21 

NO INTERVALS 	94 
PAGE FAULTS/INTERVAL 	11.35 

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR C.UCC 

RESIDENCE PERIOD = 10000 
SPACE AVAILABLE = 21 

NO INTERVALS 	47 
PAGE FAULTS/INTErVAL 	12.40 

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR 00000 

RESIDENCE PERIOD = 15000 
SPACE AVAILABLE = 21 

NO INTERVALS 	32 
PAGE FAULTS/INTERVAL 	13.37 

PROPN OF INTERVALS IN WHICH Top FAULTS OCCUR u.00 

RESIDENCE PERIOD = 20000 
SPACE AVAILABLE = 21 

NO INTERVALS 	2 4  
PAGE FAULTS/INTERVAL 	13.5 

PROPN OF INTERVALS IN WHICH TOP FAILTS O'.CUR Q.QQij 

RESIDENCE PERIOD 	30000 

SPACE AVAILABLE 	21 

NO INTERVALS 	16 
PAGE FAULTS/INTERVAL 	13.75 

PROPN OF IrTERVALS I 	WHICH ICP FAULTS OCCUR O.00O 

--Fig A-I 	Example of output from P------- 



RESIDENCE PERIOD = 	500 
SPACE AVAILABLE 	25 

NO INTERVALS 	200 

PAGE FAULTS/INTERVAL 	3174 

DI.STN 	OF PAGE 	FAULTS/INTERVAL 

1 0.000 

2 0.005 

3 0.010 
4 0.000 

5 0.000 

6 0.000 

7 0.050 

8 0.030 

9 0.150 

10 0.150 

11 0.115 

12 0.C75 
13 0.115 
14 0.070 

15 0.105 

16 0.085 

17 0.035 

18 0.000 

19 0.005 

20 0.000 

pROpN OF INTERVALS IN WHTrH TOP FAULTS 'CCUP 0.0 0 0 

RESIDENCE PERIOD = 	10000 

SPACE AVAILABLE 	25 

NO INTERVALS 	100 

PAGE FAULTS/INTERVAL 	1.85 

DISIN OF PAGE 	FAULTS/INTERVAL 

1 0.000 
2 0.000 

3 0.010 

4 0.000 

5 0.00u 

6 0.000 

7 0.010 

8 0.000 
9 0,040 

10 0,090 

11 0,040 

12 0.070 
13 0.320 

14 0.140 

15 0.190 

16 0.150 
17 0.110 

18 0.010 

19 0.010 

20 0,010 

pROpN OFITEPVALS Y 	i''T 	Tr.P 	r 	'CCJ 	0.0Th 

Fig A-2 Example of output 'from P1 
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TESTTIMFs 	600000 

STORESIZEn 	15 
STORE 	FILLED 	AT 	191104 
NO 	PAGE FAULTS 	171 

- LAST FAULT AT 	459776 
No 	INTS LESS 	THAN 5O11 14 

1000 144 

STORESIzE= 	14 
STORE 	FILLED 	AT 	190976 
NO PAGE FAULTS 	209 
LAST FAULT 	AT 	459776 
NO 	INTS LESS 	THAN 5000 185 

1000 172 

SToRESIZE= 	13 
STORE 	FILLED 	AT 	190976 
NO PAGE FAULTS 	276 
LAST 	FAULT 	AT 	459776 
NO 	INTS LESS 	THAN 5000 251 

1000 23 

STORESzzEs 	12 
STORE 	FILLED 	AT 	190976 
NO PAGE FAULTS 	360 
LAST FAULT AT 	459776 
P40 	INTS LESS 	THAN 5000 336 

lou') 11 

Fig A-3 Example of output from P2 



NO INTERVALS 	46 

SIZE/INTERVAL 	6054,0 

SECTIONS 	366 	373 

USE FREQUENCY 

	

9 	46 	31 	46 	45 	Ic 	l 	I 	 19 	5 

	

22 	20 	19 	9 	4 	20 	17 	16 	12 	12 	2 	11 

	

14 	6 	5 	4 	4 	3 	6 	& 	2 	2 	2 	2 

NO INTERVALS 	23 

SIZE/INTERVAL 	6800.0 

SECTIONS 	374 - 381 

USE FREQUENCY 

	

10 	23 	19 	23 	23 	IC 	9 	9 	9 	10 	4 

	

14 	13 	13 	13 	4 	13 	13 	11 	9 	.9 	2 

	

9 	6 	5 	4 	4 	3 	5 	3 	2 

9 

Pig A—Li Example of part of output from P3 

PAGE 
1 

CHUNKS 
1 83 84 69 86 	2 3 4 32 33 LENGTH 

2 5 6 C 34 35 	76 30 81 2 7 LENGT 

3 9 48 49 51'  SQ 	52 51 53 79 LENGTH 	450 

4. 10 54 58 6 2 57 	66 61 55 29 63 LENGTH 

5 11 12.13 14 23 	24 37 38 39 40, LENGTH 

6 15 16 47 60 59 	74 75 91 90 36 LENGTH 

7 17 18 19 22 20 	21 25 26 27 23 LENGTH 

8 30 31 LENGTH 100 

9 41 72 73 87 88 	42 89 43 77 78 LENGTH 

10 44 45 46 LFNTH 150 

11 64 65 LENGTH 100 

12 67 68 69 71 71 L1sGTI 1  250 

Fig A-5'  Example of part of output from PL. 



tape in a itable form for input to P1 or P2. 

Tind.nAz prOCeBiing time roughly proportional to the size of the 

array - about one minute for 40 ch3nko. 

Fig..A.-5 gives an example of printer 0/P from P4. 

4, ItWIWIIGATIWS AND RJLTS3 

The reference data from four A.A. programs was used to develop 

the restructuring methods. 	The way that data is presented to P1 

permits a page aims of axv multiple of the largest alimk size to be 

simulated; however the results presented here aaLzmo a 500 (48-bit) 

word page size. 	Working set curves, each covering intervals 

between 2K and 50K instructions, were obtained before and after 

restructuring; some,  restricted store behaviour was also examined. 

The table gives details of the programs, assuming a 500 word page 

size, 	'Perm I was about 1500 words*  i.e. 3 pages, and was not 

considered part of the code for restructuring purposes. 

A (r'4mer.tael analysis) 

B (øiriil ated on-line 
Interpreter) 

C (2nd phase A .A. ooiiler) 

D (let pizas A.A. ooiler)m  

no.00do 	.(u13ed) 
pages data pages 

	

5 	2 

	

7 	12 

	

1]. 	II 

	

6 	- 

total instructions 
size interpreted 

10 * tdilion 
22 *m. 

25 la. 

- (zo sea. 
CPU time) 

The results with the program in its initial farm, and after 

restructuring using the clustering algorithm finally adopted, are 

abom in figs.A6 to 1-9. The restricted store behaviour where 

given refers to the average fault-rate once the allocated store is 

Data obtained by instructions added by ___ - see section 2 
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first filled, and not over the whole pro"sa run. 

Starting at any tine, this uses nearly all its pages very 

rapidly, a sudden flattening of the average WS curve occurring 

between Wid and W9. 	This is reflected in the restricted store 

behaviour, the average fault rate changing from exoesuive to 

virtually zero with store allocations of 8 and 9. 	The effect of 

restructuring (to a time.-slioe of 10K) reduces the WS siza by about 

a pege and a half, 	This small reduction makes an enormous 

difference to the paging rate that results when the program is 

restricted to rim in 7 or 8 pages. 	This is an indication  of how 

unsatisfactory is restricted store behaviour as a pniry  of program 

reference pattern. 

Proit B 

This program consisted of two clear phases, the first of which 

was quite ooxact, no more than 10 pages being referenced in any 

interval. 	The code of the phases was quite separate in the 

initial version, and restructuring could mks little iiroyement in 

this respect. 	The reduction in mean WS size at T10E is about 

10%. 

The difference in size between the two phases meant that there 

was a high variation in the W8 size about its mean there is thee 

no coriiotion between the restricted store behaviour and the average 

W8 curve (see section 1.5). 	Fig.&3 is the P2 output for program 

B, and it shows that a store of 12 pages wee not filled until some 

200K instructions: the restricted store behaviour is effectively 

that for the (much larger) second phase alone. 
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Pros. C 

The slope of the WS curve for this program falls off cp.iit. 

slowly - even at T5(E it is still quite steep. 	Program U  would 

thus be badly behaved (in the sense of section 1*5)6 	The mn 

WS aisie for 1CK intervals is reduced by about 13. 	With well 

thoeesi ink boundaries this large and loosely connected program 

has probably considerable potential for iiçroveoent. 	Fig 1-3 is 

the restricted store curve for prog. C origLiUy. 

Pro. D 

'This cenn,t be coepaz,ed directly uith the others as the working 

eats refer only to the code. 	Because of the intelligent choice of 

unk boundaries proan 1) would be expected to yield results 

oid1er to these of the restructuring scheme (see chapter VI); the 

in difference is that the i,}vmk  here are larger and the potential 

for ijrovemaent preaazsably lees. 	There is appraxiutely a 35% 

reduction in the average code 11$ also for 2(1 intervals after 

restructuring. 
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restricted store behaviour 

store allocated 	mean page-fault rate/10K mats. 
original 	after restr. 

9 	 0004 	- 

8 	 5.3 	0.22 

7 	 2)4 	 1.6 

6 	 - 	 23 

Fig A-6 WS curves and restricted store behaviour, program A 
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restricted store behaviour 

store allocated 	mean page-fault rate/10K mats. 
original 	after restr. 

15 	 4.2 	 2.6 

iL 	 5.1 	3.7 

13 	 6.8 	 5.3 

12 	 8.8 	 7.9 

Fig A-7 	WS curves and restricted store behaviour, program B 



C 
Li (pages) 

0 	5k 	iolc 	 ISK 	aOK 	 30K. 	 toK 	 Sotc. 

T (Instructions) 

1ig —b 	cuLves, p1ogfa 



5K 	OY.. 	 20 Y. 	 30K 	 Itloic 	 5O 

T (/25.) 

Fig A-9 	VS curves (code only), program D 



1. THE GILJR JaiD ONE P1UJCD 

The compiler, both as originally received and in the developed 

version, consists of three main phases. 

Phase 1: this perfc*'me a syntax analysis of each source 

statement and produces a sequential file of 'Rnalyeia records'. 

There is also oom degree of global statement checking (e.g. 

correspondence of start and £initha). 

?baee 2: this is the main compilation phase. 	The analysis 

records are processed, and a sequential file of so called 'code 

units' produced. 

Phase 3' object code is generated from the phase 2 0. 
Apart from the data file, a large quantity of global data Links 

the phases. 	In principle, phases 1 and 2 could be merged, the 

analysis record of each statement being passed to phase 2 as it is 

generated; they had been separated in the initial desiga in ardor to 

try and improve pro'am behaviour in the peing environment for which 

the compiler was originally planned. 

Prior to developments directly connected with the restructuring 

scheme, the following are the main changes made to the compiler as 

I itially received. 

Rcternal routine compilation we implemented. 

'Perm' (see V.2) 0  which originally had to be compiled with 

(i.e. the source text placed inuedietely in front of) arr program, 

van weds into an external routine. 	Li-niced in at run-time, this 

could be shared by any nodules produced by this compiler. 

The compiler itself, initl-n117 a single 'wei program' 

BJ. 



(section V.2) was divided into acternal routines - the three pI*eea 

above, additional globel routines, and a controlling msim.prograza. 

All global variables were passed between et.rzal routines tJ*'ough 

parameters. 	This caused a slight degree of inefficiency, but the 

i,ivnmn gem in convenience of development (which was normally 

concentrating on one phase at a tine) strongly outweighed this. 

Henceforth, references to the • original' compiler asazae the 

above changes nedo. 	Only those features of the compiler and code 

generated, which affect the restructuring scheme are described in 

any detail. 

& 	instructions 

Production of a self-monitoring program involved thRflge8 to the 

instructions that transfer control; the implementation of these in 

the origirl. compiler is therefore described. 	Reference is nede 

to figs. B-la, B-2a, which abov parts of the N-format code generated 

from the emell demonstration program discussed in chapter V. 	The 

11e aznthere, printed out for each statement, correspond to these in 

figs. 5-2, 5-3. 	With this line number is given the currant code 

address (repeated). 

There are 16 32-bit registers on the 4175. 	Any may be used 

in addressing, only the lower 24 bits being 'Lgn(fioant in this case. 

For addressing purpo see, register 0 is aiweys taken as containing 

aezo. 	In the foUowtng assembly code representation of 

instructions, b (base), i (inb'), and ]. (link)  refer to registers 

(i.e. are integers between 0 and 15), d (displacement) is an integer 

between 0 and 4095, oM c is an integer between 0 and 15 which 

Yields a truth value when compared with the current value of a 

hardware ciorklition coda (in particular, true is always given if 
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o15). 	Addresma are evaluated in 1,toa. 

The only machine-code branizig instructions which the copUer 

generates are 2 

XE o,b (Branch on Condition Register) 
If a yields truq. branch to 
address contained in register b 

DC o,d(b,i) (Branch on Condition) 
If o yields trm  branch to the 
address obtained by sunning d, 
the contents of b and the contents 
of i. 

BAL l,d(b,i) (Branch And T4,n)c) 
Jvaluate address as above, and 
branch there, leaving the lini 
(address of instruction following 
the 	L) in register 1 

BALR l,b (Branch And Link Register) 
Branch to address contained in 
register b, leaving link  in 
register 1. 

During the running of code produced by the coi]er, the contents of 

two registers remwin constant, and are used to evaluate addressee 

within the code area, 	Register 12 (set up according to a qystem 

standard by the calling module) points to the beginning of the code 

of the current module. 	Register 9 points to the beginning of 

Perm (me V.2), 	This is set up on entry to the module, the 

address of P 	(an external routine) being found from the linrnga 

information in the GIA. 

The various entries into Perm required by the compiled code ar. 

all in the first 4096 bytes (1 page-length). 	This means they  can 

be accessed by a single branching instruction to an appropriate 

dilaoit on the contents of register 9. 

Thus an array access; (e.g. Inn 96, first statement) causes 
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I 	, 1 . 	L I 	4.._ 	U 	I 

• ST 11, 	O( 0, 	13) • 	ST 11, 	0( 0, 	13) 
LINE 88 CA= 2958 	2958 LINE 	88 CA= 2958 	2958 
• L 11, 	0( 0. 	13) • 	L 11, 	0( 0, 	13) 
• STM 4, 	14, 16( 	11) • 	SIN 4, 	14, 16( 	11) 
• L  15, 	72( 0, 	11) • 	LA 15, 	72( 0, 	1 1 ) 
• ST 15, 	0( 0, 	13) • 	ST 15, 	O( 0. 	13) 
• MVC 64( 	4, 11). 	64( 	7) • 	MVC 64( 	4, 11), 	64( 	7) 
• MVC 68( 	4, 11). 	420( 	13) • 	MVC 68( 	4, 11), 	420( 	13) 

• LM 12, 	14, 316( 	13) • 	LM 12, 	14, 316( 	13) 
• BALR 15, 	14 • 	BALR 15. 	14 

ST 11, 	0( 0, 	13) • 	ST 11, 	0( 0, 	13) 
LINE 88 CA= 2996 2996 LINE 	88 CA= 2996 2996 
• BAL 15, 	40( 0, 	9) • 	9AL 15, 	40( 0, 	9) 

• DC X'0003' • 	DC X'0003' 
NT NT 

LINE 89 CA= 3006 3006 LINE 	89 CA= 3006 1 006 

• ST 7, 	0( 	0, 1.3) • 	ST 7, 	0( 	0, 13) 
• LM 4. 	15, 16( 	7) • 	LR 14, 	7 

B C R 15, 	15 • • 	BC 15, 	1708( 0, 	9) 

LINE 90 CA= 3016 	3016 LINE 	90 CA= 3016 	3016 
• MVC 192( 	4, 8), 	432( 	13) • 	MVC 192( 	4, 8), 	432( 	13) 

LINE 91 CA= 3022 	3022 LINE 	91 CA= 3022 	3022 
LA 7, 	200( 0, 	6) • 	LA 7, 	200( 0, 	8) 

• L 	 '.0. j, 	9. 	. 	- • 	L' 	•1o, 88( 0, 	0) 

BC 7, 	3060( 10, 	12) • 	EC 7, 	1576( 0, 	9) 

LINE 95 CA= 3158 	3158 LINE 	95 CA= 3158 	3158 

• BALR 10, 	0 • 	BALR 10. 	0 

• L 0, 	428( 0, 	13) • 	L 0, 	428( 0, 	13) 

• C 01 	188( 0. 	) . 	C 0, 	188( 0, 	8) 

• BC 7, 	42( 0, 	10) • 	BC 7, 	42( 0, 	10) 
• LA 2, 	3( 	0, 0) • 	LA 2, 	3( 	0, 0) 

• LA 	---14. 152( 0., 	8) LA 152( 0, 	8) 

• BAL 15, 	444( 0, 	.) • 	B A L 444( 0, 	9) 

• L 0, 	192( 0, 	8) • 	L 0, 	192( 0. 	8) 

• C 0. 	0( 	0, 14) • 	c 0, 	0( 	0, 14) 
• BC 7, 	42( 0, 	10) • 	BC 7, 	42( 0. 	10) 

• MVC 188( 	4, 8), 	432( 	13) • 	MVC 188( 	4, 8), 	632( 	13) 

LINE 96 CA= 3202 	3202 LINE 	96 CA= 3202 	3202 

• L 2, 	188( 0, 	8) • 	L 2, 	188( 0, 	8) 
• LA 14, 	168( 0, 	8) • 	LA 14, 	168( 0. 	8) 

SAL 15, 	444( • 0. 	9) • 	BAL 15, 	444( 0. 	9) 

• L 0, 	192( 0, 	8) • 	L 0, 	192( 0. 	8) 

• S 0,512(0.13) I • 	S 0,512(0,13) 

• L 3, 	528( 0, 	13) • 	L 3, 	528( 0. 	13) 

• MR 2, 	0 • 	MR 2. 	0 
• A 3, 	0( 	0, 14) • 	A 3, 	0( 	0, 14) 

• ST 3, 	196( 0, 	8) • 	ST 3, 	iQ6( 0, 	8) 

LINE 96 CA= 3236 	3236 LINE 	96 CA= 3236 3236 

• L 11,0(0,13) • 	L 11.0(0,13) 
• SIN 4, 	14, bC 	11) • 	SIM 4, 	14, 16( 	11) 

• LA 15, 	72( 0. 	11) • 	LA 15, 	72( C", 	11) 
• ST 15, 	0( 0, 	13) • 	ST 15, 	O( 0. 	13) 

• MVC 64( 	4, 11), 	532( 	13) • 	MVC 64( 	4, 11), 	532( 	13) 

• LM 12, 	14, 372( 	13) 
• 

• 	LM 12, 	14, 372( 	13) 

B A L R 15, 	14 • 	BALR 15, 	14 

• ST 11, 	0( 0, 	13) • 	ST 11, 	0( 0, 	13) 

LINE 97 CA= 3268 	3268 	1  LINE 	97 CA= 3268 	3268 

• NyC 204( 	4, 8), 	140( 	8) • 	MVC 204( 	4, 8), 	140( 	8) 

L'NV 97 c= •'? •'I 	3'7' IT.IC 	07 r- 37' 	77/ 

a) N-format code 
	 b) M-format code 
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• 	MVC 	140( 4, 8), 432( 13) 
LINE 	98 	C= 	3294 3294 

L 	2, 140( 0, 8) 
• B C R 	0, 0 
• 	BAL 	15, 1396( 0, 9) 
• 	DC 	X'00000A6C' 
LINE 	99 CA= 	330 3308 
LINE- -99 	CA= 	3303 3308 
• 	BALR 	10, 0 

L 	0, 536( 0. 13) 
• 	C 	01 146( 01 8) 
• 	BC 	3, 20( 0. iC) 
• 	L 	10, 332( 0, 9) 
• 	BC 	15, 3360( 10, 12) 
LINE 	100 	CA= 	3330 3330 
• 	L 	10, 332( 0. 9) 
• 	BC 	15, 3338( 10, 12) 
LINE 	100 CA= 	3338 3338 
• B A L 	15, 40( 0, 9) 
• 	DC 	X'0007' 

NO BID 

LINE 	100 	CA= 	3352 3352 
• 	L 	10, 336( 0. 9) 
• 	BC 	15, 76( 10, 12) 
LINE 	101 	CA= 	3360 3360 
LINE 	101 	CA= 	3360 3360 
• B A L R 	10, 0 
• 	L 	0. 520( 0, 13) 
• 	C 	0, 136( 0, 8) 
• 	BC 	5, 20( 0. 10) 
• 	L 	10, 337(  0, 9) 
• 	BC 	15, 3390( 10. 12) 

• 	L 	10, 332( 0, 9) 
• 	BC 	15, 3450( 10, 12) 
LINE 102 CA= 	3390 3390 
• B A L R 	10. 0 
• 	L 	0, 524( 0. 13) 
• 	C 	0, 196( 0, 8) 
• 	BC 	11, 20( 0, 10) 
• 	L 	10, 332( 0. 9) 
• 	BC 	15, 3480( 10, 12) 
LINE 	103 	CA= 	3412 3412 
• 	L 	ill 0( 01 13) 
• 	STM 	4, 14, 16( 11) 
• 	LA 	15, 72( 0, 11) 
• 	ST 	15, 0( 0. 13) 
• 	MVC 	64( 4, 11), 420( 13) 
• 	L 	14, 332( 0, 9) 

BAL 	15, 2928( 14, 12) 
LINE 	103 	CA= 	3442 3442 
• 	L 	10, 336( 0. 9) 
• 	BC 	15, 76( 10, 12) 
LINE 	103 	CA= 	3450 3450 
LINE 	104 	CA= 	3450 3450 
• 	BALR 	10. 0 
• 	L 	0, 540( 0, 13) 
• 	C 	0, 136( 0, 8) 

a) N-format code  

• 	HVC 	140( 4, 8), 43( 1.) 
LINE 	98 CA= 	324 324 
• 	L 	2, 140( 0, 8) 
• 	BCR 	0. 0 
• 	BAL 	15, 1396( 0, 9) 
• 	oc 	X'0000003C' 
LINE 	99 C= 	3308 3308 
LINE 	99 CA= 	3308 3308 
• 	BALR 	10, 0 
- 	L 	0, 536( 0. 13) 
- 	C 	0, 136( 0, 8) 
• 	BC 	3 	20( 0. 10) 
• 	LA 	10, 100( 0, 0) 
- 	BC 	15, 1576( 0, 9) 
LINE 	100 	CA= 	3330 3330 
- 	LA 	10, 101( 01 0) 
• 	BC 	15, 1576( 0, 9) 
LINE 100 	CA= 	3338 3338 
• 	BAL 	15, 40( 0. 9) 
• 	DC 	X'0007' 

NO BID 

LINE 	100 	CA= 	3352 3352 
• 	LA 	10, 102( 0. 0) 
• 	BC 	15, 1576( 0, 9) 
LINE 	101 	CA= 	3360 3360 
LINE 101 	CA= 	3360 3360 
• B A L R 	10, 0 
• 	L 	0. 520< 0, 13) 
• 	C 	0, 136( 0, 8) 
• 	BC 	5, 20( 0. 10) 
• 	LA 	10, 105( 0. 0) 
• 	BC 	15, 1576( 0. 9) 

• 	LA 	10, 106( 0. 0) 
• 	BC 	15, 1576( 0, 9) 
LINE 102 CA= 	3390 3390 
• 	BALR 	10. 0 
• 	L 	0. 524( 0, 13) 
• 	C 	0, 196( 0, 8) 
- 	BC 	ii, 20( 0, 10) 
• 	LA 	10, 109( 01 0) 
• 	BC 	15, 1576( 0, 9) 
LINE 	103 	CA= 	3412 3412 
- 	L 	11,0(0,13) 
• 	STM 	4, 14, 16( ii) 
• 	LA 	15, 72( 0, ii) 
• 	ST 	15, 0( 0. 13) 
• 	tIVC 	64( 4, 11), 420( 13) 
• 	LA 	14, 85( 0. 0) 
• 	5AL 	15, 1640( 0, 9) 
LINE 103 	CA= 	3442 3442 
• 	•LA 	10, 102( 0. 0) 
• 	BC 	15, 1576( 0, 9) 
LINE 	103 	CA= 	3450 3450 
LINE 	104 	CA= 	3450 3450 
• 	BALR 	10, 0 

• 	L 	0, 540( 0, 13) 
J-_• 	.0 	1, 	1'6 

b) M-format code 

Fig B-2 



the jnntruution 'I3AL 25941.4(0,9)' to be generated. 	The 

displacement M4reaeea of the various entries to Perm are of ooure 

known to the aoilar. 

Internel Jwi 

A general adth'eae within the code of the compiled module is 

not immediately accessible, and tuo instructions are reciir.d to 

transfer oontrol. Consider a Juzç to address 'a' relative to the 

beginning of the nodule. 	Moose ,  the neareet multiple of 4096 

below, or equal to, a, i.e. find p so that (a.-4096p) is between 0 

and 4095 inclusive (say, d). 	p is the raather of the page (relative 

to the code start) in which the target address lies, and 4096p the 

(relative) oe address, 

Nov Perm contains an irnediatoly accessible table of multiples 

of 4096; the appropriate multiple is loaded into register 10: 

L l0,diap(0,9) 	load register 10 with 4096p 

and the transfer of control to address a can be written: 

BC o,d(10,12) 	'anoh (on oorvlition) to address a. 

An GCOM16 is ARta 1, the last statement of line 100. 	The 

(relative) address of label 1 is 4172, and 336 is the address in 

Perm of the integer 4096. 

Note that jumps into the first 4096 brtea of the module are 

treated in the same '.y, aero (the zero multiple of 4096) being 

loaded into register 10. 	This is despite the fact that aoh 

addressee are accessible in one instruction; this inefficiency in 

the original coniler was convenient for the restructuring SOIIAInS. 

Xkterfla] t)roanf1) calls 

These are very R{m(lsn,  the page adc1reso being loaded into 

register 14 instead of 10. 	An øp1e is the first statement of 
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line 1Q3, the last tmo intrtructions. 	The previouo instructions 

here evaluate the procedure pareter and store it on the stack, 

together with current values of the registers. 

Olk1iti-flflhIl2 

The evaluation of conditions 1eed to short-distance forward 

Jws uhich can be treated differently from above. 	The absolute 

address of the beginning of the conditional statement is loaded 

into register 10 (achieved by B&LR 10,0 which loads the link 

without branching), and iiibseent jumps are made relative to the 

address in this register. 	An emanple is at fli'e 95. 

A juap to a switch label involves access to the switch vector 

of relative code-addressee, the vector itself being stored in the 

code area. An entry in Pen deals with this; the in1in cods 

eiixj].y evaluates the switch ix4c and links into Pen, these 

instructions being fo3lo1 by the relative address of the switch 

vector. 	An exaWle appears at line 96; the dtiy instruction 

'BCE 0,0' has been generated to elii the switch edchsea on a word 

boundary. 	This address is given in hndee1rsl form after DC (I).- 

fine Conatant) • 	Pen can boats the vector, pick up the 

appropriate address inside it, add the code bass (register 12) aM 

branch to the resulting address. 

Pro oethire rethrna 

The absolute return address has been stored on the stack at 

call time; this is loaded to register 15 (along with the restoration 

of other registers with their call-.tine values), and a direct 

return made,  uRing the BCE instruction (e.g. line 9). 
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AdQual mzre  au3ja 
These are calls of an external routine in another module, and 

the oilllnc sequence must follow a zVotem standard. 	The GL& (the 

base of which is indeced by register 13) contains the absolute 

address of the extertal routine entry point and other necoasery 

information. 	This is loaded into registers; in particular s, 

register 14 will contain the entry point addreas s  and exit is made 

to the new nednie via BALE  15 0,14 (see line 96, second statement). 

Gilktion 

As ooi2ation proceeds, an array rttable' is constructed - 

this contains the address of every point within the module to which 

explicit reference can be made, e.g. labels, prooedsre entries, 

switch vectors, etc. 	The phase 2 output makes every code address 

reference by an index to rttable. 	For exanl]e, consider the 

sequence: 

L3gotoM 

I4sotoL 

On oonç,ilation of (1), spuos would be reserved in rttsblo for L 

and X (assn,dng this is the first reference to then). 	The code 

address of L would be entered in rttable, but that for H is net yet 

knoun. The phase 2 output for adQ M, iauld refer to the IWO  

of the rttabl.e entry for H. 	Conpilation of (2) would find ac. 

for L and M reserved, and the a&h'eaa of 14 can new be entered. 

The code unit output by phase 2 for AojQ L still refers to the 

rttahl• 4nz  deite the fact that the address of L is new krxni; 

only during phase 3 are the contents of rttable required. 
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In an M-foremt object module, code address references are still 

nikde through rttat*].e, uhich thee becomes a run.-time array. 	There 

are four additional entries to Pam, the nnniorjng entries 

concerned with (i) jwa, (ii) procedure calls, (iii) switch juna, 

and (iv) procedure rethrna. 	Ordinary Pam entries and extane]l, 

procedure cells do not have to be monitored since they lead outside 

the restructuring area and control *tat rethrn maid, the earns chink •  

The code for these is therefore unchanged. 	Figs. B-].b, B-2b ahew 

the M-format code corresponding to B-la, etc. 	The details of the 

monitoring entries are as follows. 

(i) A branch to the address in rttatle(i) would appear as i 

IA 104(0,0) 	(Load Address) 
set i in register 10 

BC o,2576(O,9) 	lh'axzch (on condition) to 
appropriate Pam entry. 

As before this is two four-byte instructions - an amople is the 

fir1 statement of line 1iX. 	The index i can only be loaded in a 

single instruction if it is less than 4096. 	This would not be a 

problem with any but V927  large modules (probably greater than 30 

code pease) j rttahle bad less than 2000 entries with the largest 

program tested. 	The remedy is to replace i by 1-4096 and branch 

to a different entry in Pam, but this trivial extension has not 

been implemented. 

(it) An intirz*l proosdure call is exactly ei4iar (Wiii 103). 

The Pam entry address in seen to be 1640. 

(iii) The (relative) code addresses in the switch vector are 

replaced by the indices of their rttable entries. 	Also, following 

the switch jump, the address of the switch vector itself is 
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replaced-coin by the rttable iix1c. 	The !rwple of the latter at 

1iYA 96 shewa tlmt the address of the switch monitoring entry to the 

special Pm is the as= as the switch entry address in the ordinary 

Pca'ra. 

(iv) At a iwooee return, the pointer to the stack area 

where registers were preserved at cell tine is loaded into register 

14, and a branch into Pera perforned. 	As can be seen from the 

a'1e at line 89, the total code-length is unaltered. 

The branches inpi-de evaluation of oondi1.ona rrin unaltered; 

these need not be monitored as they cannot lead outside the 

containing th•n'iIe •  

Phase 2 determines chunk boundaries as described in V.4. 	The 

chinks are azea'ed from 1. upwards, and at this stage tbr.e arrays 

preserve all the necessary information about each chink. 	These 

arrays are; 

alLnklength - contains length in bytes of each thn*, 

nhukrn - indcee the rttable entry which contains the 

address of the beginning of each rnk, 

t,ranohto - if a &qn3c ends in a branch to an mcpliait 

target address (i.e. not a procedure return), this contains  the 

rttable iMi  of the target. 

A non-conditional, Jusp is generated at the and of any chink 

which does not already terminate in one; for ==Wle at the end of 

line 99 (chunk 25) • 	These are also generated in the N-format, 

code, m&dng this  very slightly longer (normally less than 1%) than 

In the origin1 oorçiler. 	Apart from this, and the three arrays 

above, the output from phase 2 is the sene as it was before the 
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restructuring dave1opirite. 

Note that by the rules for the determination of chunk 

M 	 .c!r7"I 

branch. 	The oases 

thimk 
L  

N: 

is obvious. 	More common is the case of branches which occur over 

procedures or switch vectors. 	The forasr, 	i1 'ii jy!, occurs 

frequently; the procedures in 11W are rrl1y placed together at 

the beginning ng or and of the oont1ninC block. 	Between each 

procedure, this compiler generates a branch to skip over it, giving 

a trivial c}c. 

Such &*u*a are ignored in the chunking arrays and the rttable 

entry is changed to ellTrinRte the thsink from the dynamic flow, i.e. 

the entry for L in the above ompple mould be changed to the ad&esa 

Of M. As an scale from the ii test program s  we we (fig.5.4) 

that thmik 12 begins at relative address 2768 and thwik 13 at 292, 

but the length of dunk 12 (fig.5.6) as ajeara in '__]nktengtht in  

only 352 bytes. The odd vri}iinc will diseppear entirely after the 

first restructuring. 

As p1*.. 3 encounters coda units which uould generate branches 

of the types W-(iv) discussed, previouely, the monitoring versions 

are output if an 1 4-forTiat' flag has been set. 	These being the 

sace length as the instructions they have replaced, nothing else 

need be altered in the production of the aadLACM of the object 
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file. 

Phase 3 naist also output the positions of all the unitoriag 

instructions; this is so they may be eventually overm'it ten after a 

fina l[  restructuring is performed. 	The positions are output as 

dileoements from the containing o}u* bouiry, each being 

characterised by one of the tour types. 

One further array is oonatruoted, bzai as ''1nkno' to 	This 

its the seas length as rttabl, and gives the r*zther of the chunk-  

èiioh contains the adth'eec in each rttable entry. 	The tin'se arrays 

e}iinkno, chnkrn, and x'tteble are output in the data area of the 

compiled program. 	All other tables are not as.d.d during the 

program run and are written to the chunk inZrmation file. 	ibese 

consist of 'ohmklength', 'inanobto', and the tables indicating 

positions and types of moinitoring instructions viUd.n the code. 

We have goon hew certain features of the ooniler could be used 

to provide the awabolic cod, addressing convenient for restructuring; 

but the question may arise as to VIq the phase 2 output we not 

itself taken as the lavol of restructuring, a policr to which the 

brief discussion at the and of IV-5 may have pointed. 	Altlx,ugh 

possible, there were two disadvantages ag 4n't using this 

intermediat, code. 

It WRO very aoe-consuming (about three time the length 

of the final object file); this together with the very large 

quantity of global data required would. have iesnt that a vast 

quantity of information had to be kept throug)ut the restructuring 

of a large program. 

In eoi areas otni4erable redeaii  would have been 

necessary to make the code units relocateabie within the intermediate 

B.1O 



code file. 

It was felt that these overcame the (undoubted) disadvantages 

of working at 55th1n code level. 

2. IIOULTOIWG REMO= BEH&VIJR 

In general three arrays collect run-time climk reference 

The 1ni.rjty array 0. 	Je refer to the (i,j)th. 

element as a(i,J). 

The ehink  reference vector. 	This indicates which 

chink, have been roferenoed during the current working-net interval. 

The translate table., tr. 	This in only present if the 

number of thanku is greater than 'aeleotno', the allowed mine of the 

8ii1l1'ity array. 	For each diunk i there is an entry tr(i). 	If 

tr(i) is negative or zero, it contains the negated frequency of use 

(i.e. the tinther  of similarity intervals in which referenos has 

occurred) of chink i so far. 	If positive, duwk i is in the 

&rri{iarity subset, and tr(i) gives the roWooluen of this chunk in 

the &i*1 1 i.ty array. 	The frequency of use will then of oouree be 

contained in the diMgomel  element of that array. 

To xsnitcr the behaviour in OLMLIsrity intervals, it is 

obviously necessary to know the program processing tine as  it  WMM 

be it it were not being =xdtored (its time), i.e. all the ti me  

)ent inside nonitoring routines must be aibtraoted from the 

processing time as obtained from supervisor. 	The current value of 

this extra time is maintained (see below) in a variable 'tiiea'ror', 

OW the N-time can thus be obtained. 	At each 'iitoring entry to 
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Per2n, if the  current RiMilArity intorval ha a not expired, the c}iink 

reference vector is irked with the currant thnk. 	For each of 

the four types of IKinitoriag entriee, a standard path with a 

8tRTlfht'd amount of processing is followed, and this awiwit is 

added to 'time-error' • 	Ibwu,v.,r if the H-tim shows that a 

similarity interval is over, the inlarity array u*aat be updated 

(described below), involving an unspecified awiimt of computation; 

to maintain the value of 'timeejTor 1  correctly, the prrJceaing timej 

in obtained beibre and after the updating procedure, and the 

difference added in. 

If a full 5iriiiriity  array is being used, one is added to every 

element ( i, j) if f}ivks i and j  are both marked in the interval 

reference vector. 

1b,ever the situation is more ooLex if a partial array is 

being used. The translate table is first updated. For each 

thIU* i marked in the nhrn* reference vector 

if tr(i) > 0, no action, 

if tr(i) < 0, not tr(i)tr(i)-1 (feiencr of use), 

(o) if tr(i) Oi if the al-nllarity subset is as large as allowed, 

perform (b); otherwise set tr(i) to the next unassigriAd row/colIlmt 

of the iinii1in'ity array (i enters the 1riil'ity subset). 

Then for all i,J marked in the ok*ink reference vector much that 

tr(i) and tr(J) are positive, add one to a(tr(i),tr(j)). 

Although the translation process involves a good deal of 

ooiutation, note that it is only perforir*ed at the  end of similarity 

intervals; most of the ritoring entries into Perm sinly involve 

updating the ohenk reference vector. 
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Ajr entry to a new chunk will be trapped by one of the four 

types of icnitoring instructions (i) to (iv) (aee section I); 

updating the reference information an described above will be termed 

'metering' the chunk.n 

Entries (i) and (ii): the rttable index of the target address 

enables the latter and the containing chunk number (from 'chumInvi') 

to be found. The chunk in metered and exit medo to the target 

address. 	In the cane of entry (ii), the standard procedure can 

mechanism has preserved the values of the registers on the stack, to 

be restored at procedure return. 	One of these locations, whose 

contents are not required at return, is replaced with the current 

(calling) ckazi* raither. 

Entry (iii): the address and chunk-runther of the switch vector 

is evaluated from the rttable index supplied; this chunk is than 

metered. 	The appropriate entry in the switch vector is then 

accessed., this gives the rttable index of the target address, whose 

011211k is metered. 	Control is BAaIJy transferred to the target 

address. 

itry (iv): at a procedure return, Porn is entered with a 

pointer to the work area in the stack where the values of registers 

at cal]. time were preserved - these give the return address and the 

chunk number (entry (ii)). 	£ chunk nnwt and with a procedure 

call instruction, so the chunk after return will be the name an that 

at osU..tioe, the chunk can thss'efore be metered before returning to 

the target address. 	Note that to find the containing niqnk j].y 

from the return address would have required a search through all the 

chunk addresses. 
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If 'page monitoring' La \JitChed on, target addressee are 

passed, together with the -ti, to an acternal routine  whUh 

records paging behaviour (processing time readings are made befC'e 

and after each entry, to maintain the correct value of timsearor). 

This routine can 	bchaviouz' in the saw my as the '4j11lat. 

r'nn4"g • prowas in the KIZ9 study (appendix A), reraathering that 
only code references are being trapped hero. 	Mean vorkingget 

sizes wwQ ca1lated for the multiples *,+,1,2  and 4 of the 

eln.fluity interval. 	This uVald of 004fl'Se hay, been considerably 

more complex if the size of the M-format code were not the eame as 

that of N--format; a mapping onto 11-format addresses 'miuld have been 

necessary to ammine the correct paging behaviour of the origirl 

program. 

A very s].i,ht error z*y be introduced; if a chunk lies over a 

page boundary ('which cannot occur after the final reathota'ing) and 

is entered in the first page, a drop-t1'oui into the second page 

may not be recorded if the naet branch obeyed ecitø from it • 	This 

could make paging behaviour initially appear slightly better than it 

really is, and the effect of restructuring slightly less good, but 

the effect is probably inaigntfiaant. 

1ferenoe info vt1oi is written to the chunk infbrmation file 

at the entry to Penn arising from atoD or endoproam. 	If this 

is the first run of this pertioular,  structuring of the module, the 

similarity array and the translate table (if present) are simply 

copied on to the file. 	If translate tables are not present, the 

iailarity arrays from aubaeaant runs are simply added eletnerrt by 
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oloment to that on the file. 	If partial arrays are present 

hewever there is the problea that the similarity subset of a run 

y net be the acne as that already on the file; a new __ 

array baa to be øonatruotod from tw others which contain 

information on two different subsets of the abadw.k 

The first task is the oonatruction of the new a1mi1s'ity 

subset for the new array. 	Any thiink with a nogetive  entry in 

&Ubu tren&-ete table is debarred as some inftiraction on its 

admi la"Ity with other h'nk  is net available, 	Also there is no 

point in including any chenk net referenced so far at all (a zero 

in both translate table a). 	The rzther of &iir&ka eligible may be 

eater then the siTn{1ity array allowa, in which case oozes will 

have to be discarded; it may be lees - as was the case with the 

bridge-hand program (chapter V) after two rims. 	Given the new 

e(t(larity subset, all the information is available to produce a 

new translate table and gimI1ity Tay; the process is straight.. 

for'ird, if Long. 

Those ooz1itiea could be avoided by using a standard 

similarity enbost - this could either be ahesen at oozile-tine or 

jj+A 1ieed at rull-tims from that on the ohm L information file. 

The former course miit be vauteful (so. IV.4), the latter muld 

mean that the pro"aza nW was net independent of the chimk 

information file; it was thus decided to i1amerit the process as 

described above. 	However it is net clear that it was worthwhile; 

with large programs, little clustering 000nre during the first 

restructuring, and after this, translate tables are written back 

into the GIAP in any case. 
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3. GUi'NG 

The c1z.wting routine, the first pse of the rost'ucturing 

contains the n1wrIthm briefly described in 111.8. U4ng 

the 1ii  larity array end tthwk  leiigtha on the inforuation tile, it 

forms groWs of ch3nks, either proceeding to co1etion or stepping 

then the amtest lialaw between cLusters falls below a specirled 

iantity. 

Aippase there are a nhun-,  and the airiflrity subset (N) is of 

size n. 	Thea a translate table exists only if ii is less than a. 

Ini+il ly, the a obunk xzibera are etc*'ed as a aingl.cleruit 

1-tate 1thich will  be linked together appropriately as the çmkp 

oon,bine into clusters. 	A table p is sot up oonaieting of a 

pointers to these Lists; as clusters torn, each non.-zero e1ent of 

p points to the head of the list of csm1e in a cluster (the order 

of cinka at this stage is arbitrary). 	3.aite of p not pointing 

to liota are set to zero. 	Initially p(1) to p(n) correspond to 

the lm41.'ity  array rows; thee if a translate table is present, 

list i Is induced by p(tr(i)), otherwise by p(i). 	In the former 

case, the remaining p(n+l) to p(m) point arUtrax'i3y to the rest of 

the lists corresponding to oimke not in N. 

Tw further aiaya have, in a n(l _ senner, entries 

corresponding initially to each o1iink and later to each cluster. 

These are 

am(i): contains the number of chunks in each cluster 
(initialised to 1) 

size(i) : contains the size of each cluster in bytes  (initially 
the size of each *n) 

The variable Ilimit' is sot to the naxinwa frequency of use of all 

o}mke outside the similarity iba.t, or to sero if a f1iit1 



rtrtacturing is taking place. 	The diagonal elements of the 

,{ii1arity array are set to zero. 	Remembering its qpnetry,, 

a(i,j) is regarded as the same element as 8(J,i)  in the following 

sketch of the clustering alg(ritha. 

Find the greatest e1er4rit of array, my e(k,l). 	Mdt 
if this is not greater than 'limit'. 

Link list p(l) on the and of list p (k). 	$.t p(l) to 
some 

For each ik or 1, such that p(i)Os 

I 	 riia(kLs(i k) + zm(l).s(i.l) ai,k, 	 + x*im(l) 

s(i,l) : 0  

mum(k) := mum(k) + 
size(k) 3= size(k) + ___ 

For each i*k such that p(i)O and size (i)+eizo(k)>psgeaise, 
set ø(k,i)0. 

Goto step l. 

The fortaila in step 3 for the average aiNil.nrity  between the 

ori ginal constituent cv*s of two clusters is easily verified to be 

correct at any stage of the clustering prooere. To aid the 

search for the mamirmim element in step 1, a vector is iintined to 

contain the mexinim element of each row of the array; merging of 

clusters normally affects few of the maxlme #  and the total time of 

searching In reduced. 

If a JIMI restructuring is being performed, it remains to pack 

all the chmko as tightly as possible (inoi!IRtng these originally 

not in H) within page-size groupings. 

At termination, the non-zero elements of p point to the list-

heads of the now clz groupings; these of course contain actual 

cimnic x*3era, the complication of translation having been removed 

at the start. 	This set of pointers and the lists of chunks are 
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passed to the aeoorxd phase of the restructuring program. 

4. a1ki(&TIW OF NEW PURS  

The code area of the restructured object file is generated a 

chunk at a ti. 	If a final  restructuring is being performed, 

each cluster of chxnks (thith forms a 'new chunk I) begins on a page 

bouztary, otherwise the groups are output imeediately following each 

other. 	Mmos all earplicit code-.addreae references are made 

through rttable, the chunks can be reordered without any change to 

them being necessary. 	The only difficulty in generation of the 

code area is the determination of the order of the thiinIe within 

each group (or page, in a final restructuring). 	This is affected 

by two considerations. 

Alignments in certain circumstances (e.g. a jump to a switch 

label), full-rd constants appear in the code and these mast be 

aligned on a full-rd boundary. 	After restructuring, then, the 

containing chunk zi*aat be aligned in the same way as before. 

A1thougk it can cause slight inefficiency, it is convenient not to 

make special canes, and to align SU chunks on the came type of 

boundary (with respect to full-word) as previously. 

A chunk ending in a branch to the beginning of another chink 

in the same cluster can be placed immediately before it, and the 

branch removed. 

Normally as each output in made there is a search for a 

suitably aligned thmk (otherwise a IalArd of &uW instructions 

is necessary). 	Thin will be overridden by cane (2) ithich eaves 

two words of the branch instruction. 



An cmwle of iermal of the final branch is chunk 15 (figs. 

5-40-6). At ooni1ation, this effectively had to have a 

'to I' added at the end, the total length then being 30 bytes. 

Fig 5-8 ahewe a}'*s 35 and 16 are in the sane cluster in the first 

restructuring. 	The tI*'ee ooliums below,  show the new crde address, 

Iimk rgirber and length of each o]4 chunk as it is generated; it In 

seen that 0}ink  35 is before 16, and its length is now only 22. 

.g 5-9*, the f9n1  restructuring dme an 'ere1e of e3iit; 

the eI*flkø U and 17 (za*aberi.ngs after first restructuring) being 

neither full.-rd alied have caused the second cluster to begin 

at address 4098, instead of the page adth'oaa 4096. 

Ot' abom 

A new GLAP has to be written; not only the rttable entries are 

changed, but #*u*rn and thmk  razet refer to the new 'chinks'. 

Also, if n000seer7, a translate table is written back into the 

GL&P to select the sli1  '-erity enbaet for the next series of urns. 

This will consist of the most frequently used nhinka (regarding the 

frequency of a cluster as being that of its mat used constituent 

clunk) of the last series of rune. 	Aleo changed are the addressee 

of the entry points to the module; a new linkage data area of the 

object file is therefore necessary. 

Obviously,, a new,  cu* information file has also to be written. 

At the and of this process, the information and object files hay. 

aicaot]y the format as might have been produced by the oovi1er, 

except that a similarity enbaet may he written into the MAP of the 

object file, and the number of restructurings so far is recorded in 

the information file. 

The final restructuring produces files In the seme format; the 



new otimko are now of oczroe *gen. 	To convert the M..forint file 

to N-format, the tnitoring instructions, whose locations are 

obtainable from the tables in the information file, are overwritten 

with the original branching instructions (using addresses obtained 

from rtt4btt). 	The on3.y other alteration is the reduction of the 

length of tho GIP by reving the various chunking arrays. 
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Ai'iULX C. 	 01.,  Ti 	O1GG BI 

We give hare proofs of the mean rki.ng-aet properties stated 

in 1.5 (this is an alternative approach to that of Dm'ing, ref.16). 

We take I as a large pr cessig interval (o,i), perhaps 

ctMIiiYg over rimny zina of the program. 	The lower end-point is 

taken as zero for ooxrvenioe; we ranks no aaaintion that pages are 

not referenced outside the period I, i.e. befOre time zero or after 

time i. 	The imirk1ig set W(t,T) and its size ø(t,T) refer to 

pages referenced in the process time-interval (t-, t) mh1ch we ____ 

define as half-open, i.e. include the lower end-point, but not the 

Upper. 

Thant 
11 

31(T) 	= 	s(t,tt jI 
Jo  

Where I is understood,, we dall cite this as S(T). 

1) 	áL(T) is continuous and right and left differentiable; 

and its elope is the mean rate at uhich pages outside J(t,T) are 

referenced. 

liJben a reference is weds to a page not in %J(t,T), the page is 

Said to enter the working IMA 	For a given T, denote the times 

of all enah entries by Ot0,t1, ... ti. 	(This not is of course 

a function of T. 	For convenience we have taken 	ti; in 

fact it is not neosasery for the end-points to be themselves 

working-set entry points). 	Denote the lengths of the intervals 

between entry points by i +  = t 1  - t,. 	Each t nerks a page 

fault if the contents of the mein memory were 1-ntaInsd strictly 
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at the working set of T. 

Take e> 0 but 1003 than the store tc1e ti, i.e. locia than 

the interval between azy tun successive page references. 	This is 

ctain].y awMLer than any in* 

zppoae t is in the interval (t,t,.1) (see fig. c-.l). 

Cona11t, the function t(t) = a(t+e,T.o)—ø(t,T). 	This 

represents the number of distinct pages referenced in the interval 

B( t, t+e) which were not referenced in £( t—T, t). 

Pb? 	t K 	•, f(t)). 	PCI' othOI'145S there is a first 

extra page refei'enoed at some 4 K t1 and not referenced in (t,d) 

or in A. 	It thus enters the '.n.'king not I(d,T) which would make 

d an additional entry point between t. 

For t+]..0 ( t 	t(t)=i. 	The entry page at t,+1 is the 

extra page. 	Since a is 3.oaa than all inj, t 1.2 as  be reached 

and a L3Imfln,  argument to that above shows that f(t) is no greater 

than 1. 

(Note that the above does not involve pages leaving working 

sets, since the two intervals concerned in £ have a common starting 

point.) 

!Ibent 	J  f(t)dt : 

	

. t) + 3. (t,i ti1.1 + a) 

Summing all such integrals gLveus 

J a(t+e,T+e)dt 	J e(t,T)dt = Me 
€0 

Tranafc2lning t+e to t in the first lfltSgI'a and substituting S for 

its definition gives eventually: 

__________ = • i,.., r a(t,T+e)dt - a'-. fa(t,T+e)dt ie ie  
C 
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For sufficiently riii1l  a, both integz'.nda take a constant value 

(Consider for inatanoe the first. 	The integraM represents the 

pages refireiced in 
	

Pages are accessed at discrete 

intervals: if the first access before time .-T is at -T-.e1, and the 

first after time 0 is at e2, take e less than e1 and e2 	Then 

for 0 <t < at  s(t,T+e)e(O,T)+l, zero being a wrking-aet entry 

point.) 	We time have: 

= J1 • 
• 	i i 	where E = s(0,T)-e(i,T) 

(T) is therefore right-differentiable (mid is sLatlw4 ahoim to 

be left differentiable, but the tz) slopes are not necessarily 

equal. 	The S *.rve is contizaicue but consists of very amell 

straight line segments). 	For large i, the tin E/i is negligible, 

and the slope of SM is time N/i. 	N is the total zazahar of 

page-faults and i is the total time: the result follows by 

definition. 

S(0)=O and 3(T) is a non-decreasing function of T. 

These properties are obvious. 

If for T> t, a(t,T) = a(t,t) for a range of values of T, 

thin i(T) is linear or concave doinwarcts at all points in the range. 

The condition niaat be made since ws have not disallowed the 

possibility of page references before t), which would appear in the 

*rking—sets of instants within I. 	'Without the condition s, the 

theorem is not neo.asarily true. 

Consider instants t,t+e, where 0 eK T (eec fig.C-2). 

= 	e(t'e,T+e)-e(t,T) represents the aui,er of distinct 
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pages referenced in the interval A(t,t+e) uhich ire =I referenced 

in the interval B( t-T, t). 

(t+e,T+2e) -'a(t,T+e) rresents the auer of 

distinot pages referaoed in A and MI in c( t-T-e, t). 

ftzt C oonta.tna B, so the pages referenoed in B are a wheat of these 

in C. 	It foUows tt: 

81) 82 

Int.gratixg over t in I, we have 

jo(t+e,,T*e)dt - j s(t j T)dt >/ J0(t+e*T+29)dt - J' s(t,Ti.)dt 

Dividing )r  i, tranafca'zing the te to t in two of the integrals, 

and wbetituting 3 for its definition gives: 

23(T+e)-8(T)..$(T+2e) 	>7 
1f (+e 	 e 

e( t,T+2)-n(t, T+e) )dt + 	a( t,T+e)-a( t,T+2e) )dt 

On the miS: 	First integral in greeter than zero, since so in the 
integraixl; ceoorxl integral is zero, since by the 
initial aoition, a(t,T+e)=a(t,T+2o)+a(t,t) for 
Ote. 

Tkws 

3(T+2a) - $('i+e) ( 3(T.e) - 3(T) 

Thin is a aLffj.cnt coMition for concavity, and the reaalt is 

proved. 
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