THE IMPROVEMENT OF PROGRAM BEHAVIOUR IN
PAGED COMPUTER SYSTEMS

Cs J. PAVELIN

University of Edinburgh
August 1970

THE DMPROVEMENT OF PROGRAM BEHAVIOUR IN PAGED CQMPUTER SYSTEMS

The thesis initially considers two cuestions: what is meant by
Rrogran behaviour in a paged computer system, and what is meant by
its Lprovegent. The former, especially, demands a general
discussion on paging and its uses end abuses in modern operating
systems, Reference is mede to a brief study of the behaviour
of some KDFY programs, The problen of pegtmucturing s progran
in order to improve its paging behaviour, is then investigated; a
solution using glugboring techniques is suggesteds A schene to
perforn such a restructuring automatically, on the bagis of
monitored informetion from the program at run-time, has been
implemented on the ICL 4~70, This scheme is desecribed and sone
results presented; these show that considerable improvement can be
obtained.

This work was :upported by International Computers Ltd.

INTRODUCTION

CHAPTER I: Paging and progran behaviour

CHAPTER II: Improvement of program behaviour

CHAPTER III: Formael restructuring of prograns

CHAPTER IV: Practical aspects of the restructuring technique

CHAPTER Vi The restructuring scheme

CHAPTER VI: Results and conclusions

REFERENCES

APPENDIX A: A brief study of progran behaviour on the KDF9

APPENDIX B: Some implementation details of restructuring scheme
APPENDIX C: Properties of the mean working set size

ubilisation vhatever the degree of muliiprogramming.

2) A ‘wirtusl store' (see introduction) can be realised, a great
convenience for the user.

3) Use of memory is made flexible; a program cen be loaded
vithout the need for a large area of conbiguous vacant store.

(The mapping mechenisn sulves all relocation problems in physical
gtore.)
In paging gystens we have in addition:

4) extreme slmplicity, owing to the fact that a page can be
loaded arbitrarily inte eny ovailable page frames If allocstion
ig in non~constant size units, cs these are loaded ond unloaded the
vacant store repidly fregments into blocks of varying lengths,
tWhen a starage request is made, the systom hes to search for a
auitable unoccupied section or perheps rechurfle the code around the
store to wreate one. duch problems, and the considerable software
overheads associated with their solution, do net crise in the
paging situation. In addition the constancy of size meens one
less set of verisble parancters in the gysten,

Digadvantages

1) Mechanisms which map fron the progran name space into actual
address space can be expensive (the hardwere components), and
result in an increase in average addressing time,

2) The tables conteining information about units necessary to
the address mepping mechanisn (e.c. page tables) teke up valusble
space in main nenory,

3) There is greater softwere (and possibly hardwere) overhead
in moving several smell areas of data between working store and
backing store, than one large areas (Thus the total overhead in

1.2

transferring a couplete progran into store is greater for smaller
units,)
And finally the additional factor sgainst paging systems.

4) Since page sizes are fixed, their boundaries will normally
be iuposed more or less arbitrarily on a progran, This makes it
more difficult to reap the profit from advantage 1 than in the
case where varisble size units of allocation can be chosen to
reflect the structure of the program to some degree.

Paging thus gives the gain of advantage 4 while foregoing part
of the potential benefits expressed in advantage 1. The
realisation of the latter is in eny case far from easy; but this is
particularly true in the paging environment. However it was not
aimply the failure to achieve these benefits that led to unfortunate
results in sone early paging systeus, but a lack of appreciation of
the fact that this is where the problem lay.

(We mote in passing that the choice of ideal page glge is a
compronise between the overheads of 2 and 3 above, and the gains of
advantage 1. For the latter to exist at all, the size clearly
has to be fairly small compared to the average progran requirenents;
this gives an upper bound, but in practice it is not clear what
Joyer bound the disadvantages impose. The commonly chosen page
gize of about 1000 words may be dictated more by tradition than
measured efficiency considerations. Shemer and Shippey (ref.4)
detail the effects of page size,)

2¢ THE ALLOCATION PROBLEM
The problen aripses from the fact that there is no sure way of
knowing which parts of a progran will be referenced in a particular

1.3

run or time-slice. Short of loading the yhole program, which
obviously extracts none of the potential benefits of advantage 1,
there must be at least some occasions when reference is made to a
page not in mein memory, i.e. a paege-fault occurs. It is at
these times that whatever action the system takes introduces a
possible cause of inefficiency.

1) The normel course is to load the referenced page (loading
only after a faulting reference is known es degand paging). If
there is an aveilable page-frame, i.e. one not ocoupled by pages of
en active progran, there is no difficulty (but even then it should
be noted that the 1/0 overhead involved in loading a set of pages
is lese when requests ere made eltogether than when each page is
loaded asingly after a page-fault.)

More significant is the likely case that there is no availsble
space when the page-feult occurs. This makes it necessary to
over-write ~ after writing back if necessary - a page, either of
the progran concerned, or of another, This in iteelf is not
significent, but it becones so if the overwritten page is required
again in the current run or time-slice of its progrem. Bvery
reloading represents a possible loss of efficiency over whole
progran roll-in roll-out methods.

One could pegervg for the progran before it is allowed in
store a sufficient space allocation to ensure that the sbove
situation never occwrred, but this extreme would probably le=d to
recervation of almost the total progran size, and again scarcely
realise one of the main benefits of the small alloeation unit,

2) The other alternative, in a time-sharing system, is to use
the faulting reference to terminate the tinme-slice, the program

1.4

being unloaded to make room for others, This is no solution
though; there will be an increase in the proportion of time spent
loading and unloading prograns, and a decrease in CPU utilisation,.
An upper bound to the length of the time-slice is a constraint
erising from the demands of a good response time for a large nuuber
of users; a systen is unwvise to reduce a time-glice more than these
inefficient demands of tine-gharing already dictate.

Thus the attempt to take some of advantage 1 of the last
section may lead to pora movenent of pages between backing store and
main memory (page swepping). A very simple model can demonstrate
at least the possibility of this incressed 1/0 swamping the milti-
programuing adventage which apparently arises from having more
prograns in store.

Suppose program i is allocated store size s; over a long
period, and that es faulte occur, pages of i (chosen according - to
some strategy) ere overwritten. Take ss a unit of time, the
average page fotch tinme from immediate baecking store, (Page write
tine is not explicitly included as only those pages which have
changed have %o be written back - this can be allowed for in the
average fetch time if necesssery.) For rotating backing store
devices, the unit is typically a few thousend instruction cycles,

Let rj(s;) be the average nuwber of page faulto that occur
fron program i during e unit of its own processing time (this is
the progran's page-fault rate). An upper limit to the ratio of
its CPU time : real time is 1:l+r;(e;) e (101)

(this is an wpper limit because time when the program is ready to
use the CPU but it is unavailsble, is ignored). Then the totel

L5

CPU utilisation is bounded above by:
2
all progse.

If the total core size is M, end a set of similer prograns sre each

allocated store 8 (giving fault rates r(s)), the number of such
prograns that can be sccommodated is M/s; the CPU utilisetion is

then at most:
i i
s a8

mn&m-ilnbjocttomdngw'ef
length T (between which ite pages ore removed), end it references
8(T) distinet pages in such o time-slice, Assuning wholly demand
paging, then r as defined above will achieve its minimum value of
8(1)/T for g=8(t)s For allocations greater than 8(7), the
efficiency will clearly fall. But consider & very smell s,
perhaps just two or three pages; little knouledge of program
beheviour is required to see that the interval between feaults can
easily be no more then a few instructions. The value of r (in the
above units) would then be over a thousand and the CPU utilisation
practically mero, except with a vast main nenory, It is obvious
how irrelevant the multiprogramming adventage (effectively the
maltiplier M/s) can become if page~faults occur with great rapidity.
(Note also how & mmall time-slice - T < 1 in the defined units -
imposes an immediate bound on achievable efficiency),

Somevhere between the extremes of store allocation, there will
be an optimum. The difficulty lies in finding it, or equivalently
finding the optimun mumber of the prograne currently competing for
pervice, to allow in store. It will depend at any moment on the

1.6

behaviour of =11 the prograns, the replacement strategy being used,
and other system variables. The best allocation will be
contimnously varying and moderm gystems adopt adaptive strategies
(refs.5,6); these respond to changing progren demands end try and
maintain page~-faulting at an acceptable level, even if sone
prograns have to be given a large proportion of their total size.

The overwhelming significance of the page fetch time should be
quite clear; it is because our time unit is extremely leng compared

to instruction times (end therefore to likely intervals between
page faults) that efficiency problems can so easily arise (see e.g.
Denning ref.7). Bulk core store chesp enough to replace the
rotating drun normally used for immediate backing store at present,
could revolutionize the efficiency of tine sharing systems,

Inexplicably, some esrly cystem designers allowed the concept
of peging to obseure the problems of storage allocation, All
active programs fought simultancously for the aveilable store with
the inevitable results that excessive page swepping led to
congestion and very low CPU utilisation. Howover prograns were
believed to behave under paging, there would seen to be no reason
to have adopted such e policy.

Hoteg on formula l.2

This formula only purperts to give ingight into gross aspects
of systen performance, but since it is referred to later in this
chapter, a mention of the principel limitations is given here.

1) Retio 1.1 is an upper limit only attained when there is a
small number of programs and the CPU utilisation is fairly low,
In practice the situation is worse than the model suggests - there

1.7

will be oceasions when a program is held up not for I/0 but
beceuse another process is using the CPU, (Even a moderately
accurate treatnent of multiprogramming is complex, and depends on
probability models for aspects of progranm behaviour - gee ref.S.)

2) The page fetch time is not constant. Worsge still, its
average will lengthen when queueing for 1/0 channels starts to
take placse. This may be due to heavy page faulting of active
prograns, or pages filtering through lower levels of store (dise
to drum ete.), via the main nemory.

3) OPU tdme lost due to system use or 1/0 eycle stealing is
not allowed for.

On all these counts, formula 1.2 gives an optimistic view of
the situation.

3. PROGRAM BEHAVIOUR

A progran which references a large proportion of its pages
within short time intervals is generally said to be 'badly behaved'
(or have a high ‘vagrancy'). A good operating system must expect,
and be able to cope with, programs displaying any behaviour pattern;
a badly behaved progran simply yields lese of the sdvantages of
small-unit allocation, However & lmowledge of general character-
isties of average programs, or perhape of particular gystem software,
is useful for performance prediction, aspects of design, and for
evaluation of paging as en allocation method. Since the much
cited and pessimistic study by Mne, Jackson and Melseae (ref.9),
there have been numerous other empirical investigations of paging
behaviour (e.g. refs. 10,11,12).

Unfortunately it is not easy te decide just what to measure;

the complete page reference history of a process is very d@ifficult
to sum up briefly but usefully in a quantitative manner, although
qualitative statements (such as 'well~behaved') can be made.

Many studies have avoided the difficuliy by emamining not how the
program behaves in absolute page reference temms but terms relating
to its performance when run under s given strategy of allocation and
replacement (refs.ll,13), A typicel meamuwe is the total munber
of page faultec or sometimes a highly system dependent statistic
such as total elapsed time. Such investigations are very useful
if there is some relation to real operating systems, but it must be
remenbered that the results mey sey more about the particular
allocation schemes than about the program behaviour under paging.
Other workers (refs.9,12) heve simply made direct measurements of
possibly relevent statistics - e.g. the average mumber of
instructions obeyed in a page before a branch to another page, or
the average mumber of pages accessed between supervisor calls.
There has been genersl agreement that prograns in general display a
higher vagrancy than originally hoped (ref.9 implies that the
conception had been of 'a high speed memory filled with a page or
two from each of many prograns requiring processing') but more
specific concluamions are rarely reached,

Appendix A contains a brief deseription of a pilot etudy made
on an knglish Electric K.D.F.9 computer using en interpretive
method and imposing a page grid on the programs, This is a
mm_pmmamahmm-mm
on a non-paged me~hine, The investigation wae designed simply
to provide data for preliminary assessment of the restructuring

19

techniques of chapter III, but the opportunity wes teken to examine
more geaeral aspecis of behaviour of the few prograns tested.
Some results are quoted in the appendix and later on in this

chaptar.

Before considering empirical behaviour in deteil, a mention is
made of the amalytic approach. This attempts to characterise the
reference behaviour of & program in tems of a fow easily defined
patterns - cyelic, sequemtisl, random etc, (refs.4,14). (See slse
II1,2, III.3). lHowever as yet there seems to be no published
evidence, that real programs can be successfully modelled in this
way - it nay be that the paramecters of each pattern wvery mich too
repidly to be emenable to snelysis, It is difficult enough to
spot gross beheviour patterns without also requiring thet they be
deduced from more basic assumptions.

4s RESTRICTED STORE BEHAVIOUR

One area of study, end an important factor in some, perhaps
badly designed, operating systems, is the way prograns behave when
constrained to run in a constant and linited quantity of store.
The usual neasure is the average muibor of page-faults per unit of
computation tine of the program (or its inverse, the expected
processing time interval between pege faults). The variables are:

a) the muber of page frames of menory allocated (s),

b)mmh«mmwsmunmumum.
this is the method of choosing which of the s pages is replaced
when an out-of-stare page is referenced. In faet although much
effort has gone into empiricsl studies of replacement strategies

(esge refsell,15), resulte seem to imply they are not such a
significant factor as might be expected. Belady (ref. 15)
compared some well imown strategies with the theoretical optimum:
that attained by a best decision based on a knowledge of the whole
future reference pattern. His published gxwhu indicate that
there is little consistent and significant difference between any
of the better replacement algorithms, which on average genersted
rather more then twice the theoretical minimum number of page-faults.
Bven a purely random page replacement decision gave only about
three times the minimum. The following sections will assume the
'Least Recently Used' (LRU) strategy - that page is removed which
has not been referenced for the longest time. (This is one of
the best, although there may be implementation diffioculties. It
is sometimes said that LRU fares badly on prograns displaying a
'eyelic character', i,e. the mere fact that a page has not been
accessed for a long period is indication that it will be required
again shortly. In prectice this consideration cen hardly apply
with the precision required to affect the strategy adversely,
although artificial examples are easily constructed,)

The significent relationship is thus that between the average
feult rate (r) and the store allocated (s). » will be defined as
in formila 1.2 (section 2).

Zorn of x/s curve
o Imowledge of progrem behaviour is required to deduce the
following:
a) For sufficiently large s (i.e. the total progran sise),
r will be zero (neglecting page-faults arising from initizl loading).
b) r will incresse (or more strictly not decrease) as s

1.1

inecreases, For supposing the same program is considered under
store allocations @ and sy where & > sp. Under the LRU
Mhy.-paga-mninthoalmw-amrmtoa
page not in the last 8; referenced - and so obviously not in the
last sy referenced. &th.tﬂlti&ﬁtloﬁedinﬂwkmt-
which thus hes at least the page-fault rate of 8.

1t is intuitively reasonsble »nd experimentslly verifiable
that b holds aluost inveriably with any replacement strategy.
m.mnrmmmummmwchn
will not be true. Belady et al. (ref. 14) give an exmmple with
the 'First-in Firet-out' (FIFO) algorithn end quote a case of such
an enomaly arising in praetice with two close values of s for a
particular progren.

Suppose a program at meen intervals 'c' makes a random
reference to one of a set of 'a' pages. If 's' pages are allowed
mm(lg.cgn). the probability of a reference being external is
(a=s)/a. The resulting page-feult rate would thus be:

rua;(l-f)

If e is very suall, say compareble with the time of one machine
instruction, then for gny s less than a, the fault rate wdll be
intolerably large. (E.g.ifth.ununit-thopaslfltchtm-
is 5000c, =19, @20, then r=250, This would mean 250 faults for
an amount of processing equal to the time of a single page-fetch).

Now the reference beheviour of a program to the whole set of
1t|paen1amnymtungnhthugmuﬂinmvpﬂad
d.mwmumamamm

continually referred to, with frequencies of no more than a few

1.12

instructions, Such a mucleus may consist of only the current
instruction page and data pege but it may be much larger. There
is no resl practical point, though, in exemining how the program
behaves in less store - the significant behaviour srea must be
when st least this amount of store is allocated end the efficiency
of the progran itself is becoming at least tolerable.

If the remaining pages of the program were being accessed
randonly, but with some longer period, there would again be a
linear decrease of page~fault rate with inereasing store.
However in practice, some pages being more favoured than others, the
probability of external reference drops more rapidly for lover
values of 8 as these more popular pages become more likely to be
accomnodated. (This faect of locality of information references
forms a central part of the woriing set notion of Denning (ref.6,16)
~ see next section). Fig.l-l shows the general form of the curve.
Oritical parts of the curve of two examples from the KDFY study
(Appendix 4) ere given in fig.1-2, These show the area vhere the
average fault-rate, over periods shown on the graph, is between 1
and 10 faults per 10K instructions. Coffman and Varian (ref,l1l)
give exanples of this curve for come prograns on the IBM 360/50,
although mich of their data appears to be with very limited store
leading to extremely high page-fault rates.

Belady =nd Xuelmer (ref. 17) state to have found that a
section of the curve can offen be spproxinated by: r=b/g% where
the value of k for many prograns is approxinately 2. (In their
notation e=as®, where e is the expected intervel between faults,
Belady in ref.l15 states this formula in what appears to be a
slightly different connection; the page size !{/s is varying end the
total memory size M is constant.) This would imply that log r

(page-fault rate)

if random access to
a central 'nuclé&us'
of pages \

\

8 (store allocabed)

Pig 1-1 Charaecter of restricted store behaviour

(page-faults/10K instructions)

program C (KDF9 study)
total size 25 pages
im. instructions intpt.

2 13 14 15 16 17 18 19 20

(page-faults/10K instructions)

program B (KDFS study)
total size 22 pages

61 zm. instructions intpt.
5
L
3.
o]
11
11 12 13 14 D 16

s (pages)

Fig 1-2 Examples of restricted store behaviour

s (pages)

log r
1_

program C
glope approx. =-4.6

0. 51
950 1.1 162 1o
log s
logr
1
1. O
program B
slope approx.-4.9
-
0. 5
o . ¥ v L]
1.0 1.05 1¢1 115 1.2

log s
Fig 1-3 Test of hypothesis r=as ® for programs of fig 1-1

plotted egainot log s were a straight line of alope -k. Fig.l-3
shows this relation plotted for the examples of fig.l-2. A
linear approximation with both these programs gives values of k much
greater than two -~ almost five in fact. However it seems likely
that the soctions of the curvec to which ref, 17 refers were in the
lower ends of gtore allocation -~ the KDY curves represent areas of
relatively lower fault rates, although probebly the importent area
from the practical scheduling point of view, It ig in eny case
worth examining this formule and its implications briefly, to give
ingight into its paraneters.

lake a8 before the pege fotch time (typically ebout 5ms) as
time unit, Write b=g,® in the sbove formils, and we have:

ra(-ols)k we(143)
Then s, represents that store allocation with which the program
will fault, on average, once during an amount of processing time
equal to the page fetch tine. With, say, half this allocation,
the rete vill be 2* faults per unit processing time,
If we cubstitute for r in formula 1.2 (section 2), we get:

as an upper bound to efficiency.
-(m,,k??)

This hes a nexioun where 1+ao(l-k)s ™ = 0

i.0, at: 8= so(h-l)m or r=1/(k-l) (if k>1)

The optimel allocation is thus slightly greater than s, (for any
value of k- 2), end the axpected CPU interval between feults will
be rather greater than the page fetch time. Note that in both
the examples of fig 1-2, to reduce the mean fault rate to, say, 1
in 5K instructions, an allocation of about 3/4 of the total program

.1

size is required. In short time-glices the initial loading
beconmes a significant part of the total page movement, i.,e. the
value of r in the formula 1.2 will not be the same as the
restricted store rate. We look at this situation at the end of
the next section.

The r/s graph (or, if formila 1.3 is considered acceptable,
gimply the values of 5y and k) is a way of quantitively summing up
certain reference characteristics of a program under paging - the
problen of section I,3. However it is not considered a very
satisfactory description of program behaviour for the following
reasons.

a) Limited store behaviour is not a factor relevant to
modern operating systems, which do not attempt to compress too many
prograns into main store but allow the program demands to determine
a variable store allocation.

b) The replacenent strategy must be specified, and can add
its own discontinuous characteristics to the result.

e) The fault rate can very greastly from one interval to
another, even during what would be regarded as a single phase of a
progran. Ag defined above, r is of course an average, a quantity
which mey have little meaning in this context.

The next section conagiders a system independent and more
suitable measure of program behaviour.

5., THE WORKING SiT FUNCTION

The woricing got W(t,T) of a process «t an instant t was defined
by Demning (ref.6,16) to be that set of pages referenced in the
preceding processing time interval of length T, where T is known as

the yoriing set parameter. The wopking mot size, s(t,7), is the
number of pages in W(t,T), i.e, the number of distinet pages
referenced during the last T seconds of execution,

Demning suggested that recently used pages will constitute a
good prediction of the immediate requirements, end that for
effieient running these pages, once loaded should be preserved in
core. He proposed an allocation scheme based upon the following:

1) A progren is not run unless there is sufficient space in
main memory for its working set (for some value of T).

2) Until the process blocks, or the time-glice terminates, e
page in W(t,T) must not be reuoved from memory.

Denning proves (ref.16) the superiority of this, in terns of
store utilisation for the same rate of page faults, over certain
fixed store strategies.

1f 1(ty,%p) ie a procesaing interval, we can define for a given
I
T,5 (T) as the aversge working set gize over the interval I, i.e.:

E

sI(T) = / ;(z.i')au
L

If I is taken over the whole program run, or a large number of runs
if it is dota dependent, we shall write 8(T); this simply means the
average munber of pages the progran accesses in all possible
processing intervels of length T. As a function of T, S-(T) hes
the following properties.

1) It is continuous and right and left differentisble, This
is perhaps momentarily swprising since s(t,T) is a step function
both in ¢ and 7 (store references occurring at discrete ingtents).

2) 8(0)=0 and 8(T) is non-decreasing and concave downwards.

3) The slope at T is the mean rate at which pages cutside

W(t,T) are referenced, i.e. the average page-fault rate that would
result if the strict working set allocation policy were observed
(by average we simply mean total page-feults/totel time I).

Fig. l-4a shouws the general character of the curve.

Derming (ref.16) using slightly different definitions proves 2
and a theorem equivelent to 3. Ve give in Appendix C alternative
proofs from first principles; these are interesting in their
emphagis on the eontimuity of 8(1).

If Iis a period over which the working set size o(t,T,) is
constant, we can state as a corollary to 3: the slope of S%(I) at
T=T, will give the average fault rate if the program is run in a
restricted store under the 'loast recently used' replacenent
strategy. This follows because the contents of the store under
this strategy form a working set for some value of T. If the
size of this is constant for T=I_ , the LRU strategy is oquivalent
to the striet working set allocation strategy.

The average working set (WS) curve sppears to be a useful
description of paging behaviour not only becsuse of its immediate
definition but also property 3. Denning's strategy depends on the
fact that recontly used pages are a good predictor of immediate
requivements: Jjust how good 5(%,T) is as a predictor is measured by
the rate af which new pages are entering it. Thie is not Just of
relevance to a gystem which uses the working set strategy - many
systeus rely on a certain amount of prepaging at the beginning of a
tine-alice in order to reduce the amount of demand paging. The
assumption is normally that recently used pages - perhaps those of
the last time-alice - are likely to be used in the current one.
Thus the slope of the working set curve at T has a general

1,17

interpretation: the average value as a predictor of the pages

accessed in time-alices T, One might say that a really badly
Mpmnmmm-mmamrlmmm
accsss large nmumbers of i%s pages in much intervals, giving a large

velue of 5(Ty) but will change ite set of secessed pages from one
interval to the next, giving a large dS/aT at 1,

Suppose fig l-4b represents part of the 3 curvee of two
prograng. mmxaorlmgthrlthvmammm
the same munber of peges 8. Suppose both were being mun
subject to time-slices of T4 In many systens they would not
appear oqually well behaved, The gteep alope of the curve for
progran 1 at Q(8,,7;) indicates that the pages of one interval ere
not on average a good predictor for the nexi, a preloading strategy
would lead to more page-faults than with progran 2, The alope of
mutmummtawlmmmapmmua
references to the same set of S; pages in successive intervals, and
these will be suceessfully preloaded.

If the working set sizes had been fairly constant over the
progran runs, the effect of rwming then in restricted store cen be
seen. In, say, an amount of store S, program 1 will run at a much
higher fault rate even though the store is initially filled up more
quickly with progrem 2. (This can be produced by program 2 making
rapid access to a linmited muiber of pages, while progran 1 travels
slowly but sequentislly through a very large number,)

As a description of program behaviour, S(1) suffers from one
defect of the restricted store curves; it is an gverngg and cannot
reflect slow changes of behaviour over periods long compared to the
range of values of T examined, A progran might consish of two

.18

s(T)

T
a)

S(T) program 1
PR e o e e ey T e Q program 2
SO b e e i a0 e A :

:
I
I
|
i
I
i
1
1
|
|
4
T4 T
b)
A
S(T)
| __———WS curve
So L C

T
e) o T

s(T)

18
16
14
12 program C
total size 25 pagt
1m. instructions
10; intpt.
8‘
6
_—slope of 1/5K instns,
4 o
/'/
-
21 el
- ol s
- 5K 10K 20K 30K LOK 50K
T (instruction count)
a)
s(T)
151
14
13 program B
total size 22 page
12 =m. instruections
intpt.
11}
10
.8lope of 1/5K instns.
9 F
”
//
8 il
7~
//
7 o
63 5K 10K 20K 30K LO¥% 50K

T (instruction count)
b)

Fig 1-5 Examples of average WS curves

phases in one of which two pages are constantly accessed, and in
the other twenty. The average working set size of 11 for
intervals small compared to the phase length, is not very
enlightening, (However even in this case, the slope will be very
amall, indicating a generally good predicting behaviour, This is
of course true, except at the time when control goes from one phase
to the other - it is only this which causes any slope at all.)

In such circunstances, the behaviour of the program is best sumed
up by giving vorking set curves for, and the duration of, each
phase separately,

There is one type of program about which additional informetion
is required to make much use of the WS curve: one that is highly
interactive, The time-glice is necessarily determined by the
pmmumpmmmmmMmhmmmu
very short. To deduce anything useful about the program, the
order of magnitude of these processing intervals is needed in order
that attention may be directed on to the relevant portion of the
WS curve, It is of course large highly interactive programs which
are the bane of any time-sharing systen, paged or otherwise.

Letermination of WS curves

In practice it is impossible to measure s(t,T) at every
reference instant t, or for every lemgth of interval 7, One
chooses a sequence of values of T in a relevant region (this may
depend on the system - a sufficient range will probably be between
half the page fetch time and twice the maximunm time-slice to which
the progran will be subjected), and simply measure the average
mdmweossodinaawm-mhofudxlmthu
possible (see Appendix A).

1.19

Figs., 1~5a, 1=5b show points on the S(7) curve for two
programs on the KDFY (see Appendix A) with simulated page sizes of
500 (48-bit) words. 7 is measured ag instruction count. The
periods I congisted of one million and half a million instructions,
respectively. The total progran sizes given are actually the total
extents of reference during the test periods; the declared store
requirements in a partitioned environment may well have been more
(especislly since a run~time stack was involved). Obviously such
requirenonts would have to bo known if a comperison with non-paged
performance were to be made.

The following comments about l-5a are given as an example of
what is illustrated by the WS curve. Asgune a page fetch time p
of 5000 instructions,

1) On average, the program accesses half its pages in very
short processing intervals, of length just over p.

2) The working set alloecation to achieve an average fault rate
of 1/p - perhaps considered acceptable - is about 16 pages
(envisage 'smoothing out' the curve), not much over half the total
program size. This corresponds to a WS parameter of 15K
ingtructions, or 3p. Alternatively one could say thet if the
time-glices were greater than 3p, preloading the pages referenced
during the previous time-clice would be successful to the extent
that an interval of at least p would be expected to elapse before a
new page is refercnced.

3) If the program were highly interactive with processing
intervals of, say, 2K ingtructions, it would be very badly behaved.
On average 10 pages are accessed in even such short intervals, and
the steep slope at T=2K indicates that it will be of little use
trying to reduce demand peging by preloading the referenced pages

1.20

of the previous interval.

Additiongl Notos
We ecan now continue the calculation of the last section,

examining the effect of short time-asliceas, Assuming the page-
fault rate is constant end given by the formila 1.3: r=(s/s)“
we have by integration, WS size 8(T)=((k*l)nok‘l')m’l.

Thus the time to access 8 distinct pages is:

gt =
.ok (ke+1) m

If a program is wholly demand-paged in a time-glice T, the total
mumber of faulte would bes

R L

This is the first s foults to £ill the allocated store, followed by
the steady fault-rate r for the remeining part of the tine-glice
(essumed positive).

The average feullt rate as defined in formula 1.2 is then:

gere- =r+g .k
T e T kel

and the upper bound to efficiency is thus:

i
(1+ g kgek
o ggp S

Fig 1~6 shows the value of this funetion for T=1 and 1/3,
8520, k=3, M<100, up to the value of &=8(1), the total number of
pages referenced during the time-slice, The optimun allocation
is seen to be not far below this level, and the efficiency drops

1.21

efficiency

0.7

0. €]

total pages
referenced in
time-glice

0. Uy

ol
8%3

0. 3]

0.2

T TSR O CIRE T T TN R R)
store s

Fig 1-6 Total efficiency in short time-slices

rapidly for values of 8 less than the optimun. Even at optimunm,
efficiencies are low for small values of the time-slice, well known

to be true in any system. In such ecircunstances some degree of
pre-paging, to cut down the total load time, is desirable if it can

be done accurately.

Note that for a progran in 'steady state' (i.e. constant
working set siges), fig. 1l=4 c gives an interesting method of
determining the total number of page-feults if a progran is
restricted to store §, and runs for time T,, demend paging fron
nothing to begin with, as in the above example. The horizontal
at 8, intersectas the WS curve at P; the tangent here intersects
the ordinate at T, in A, Then AT, is the total number of faults.

6, CONCLUSIONS

This chepter has attempted to identify precicely the
advantages inherent in paging and the problems involved in the
extraction of a real benefit. It is seen that the vital issue is
not the strategy for the choice of page replacement following a
page~-fault, although this is significant. It is rather the
control of these page-faults by the choice of which prograns to
allow to run and how mich ptore to allocate to each at any moment.
The shortsightedness of some carly paging allocation strategies is
now generally accepted, and paging schemes tend to be designed at
least with Denning's general prineiples in mind,

However many investigetions, both empirieal and theoretical,
of program behaviour have until recently been dominated by early
ideas; moet effort has gone into replacenent strategies and

1.22

restrictod storc behaviowr, and few genersl conclusions have been
reached. It is of course difficult to judge the importance of
paging overheads (points 2 and 3 in gection 1) without mich infore
nation from real systens. But the reference behaviour of
average prograns is very important, and it is suggected that
studies of mean working set aurves for a large range of progranms
mmmwmwz«:ummm-
judgment of the potential efficaey of paging. It was not amongst
the ainms of this theais to do this: the results frou the KDY study
are presented for example only. The KDFY is not in any case a
mum,m-mmmmm‘ormwmn
method used, the remults are limiteds It is hoped, however,
that they give some insight into relevent aspects of program
behaviour under paging.

1. INTRODUCTION

In a gingle~lino batch gystem, the only feature of a progranm's
behaviour relevant to its own, or the systen's, performance is ite
totel elaspeed time: that is ite processing time + such I/0 tinme which
cannot be overlapped with processing, To gptimisge a progran's
behaviour under these conditions simply means to minimise the CPU
tine required to perform the job, and by suitable buffering to
achieve as mich I/0 in parallel as posaible, In a multiprogramming
scheme where prograns are loaded into variable size partitions, the
progran gize becomes an additional factor, since the total nmusber
of jobs vhich can be accommodated in main store affects the
miltiprogramming facility. A user demanding a large partition is
likely to find his job is delayed to run in slack periods;
alternatively (or also) he will inour a greater cherge. If o
‘mnnmuhm:tthmotmtﬂ
processing time, a complex optimisation problem may arise, Ths
situation is still further complicated in modern dynamic allocation
systens vhere only parts of the program need be in working store at
any moment. The pattern of reference within a program becomes a
factor highly relevant to performance, particularly in a time-
sharing environment where e continual swapping between main memory
and backing store is necessary. Optimization is now a process
far removed from simply minimizing the total processing time.

The poseibility of designing or reorganising progrens to
improve their behaviour under paging has been at least guggested
since the time when paging studies were first made. Fine et al,

2.1

(ref,?) made some general muggestions {although with little
convietion) and more recently Kuelmer and Rendell (ref.18) leid
down some intuitively reasonable rules of progranm design, the
foremost advocating not to access e wide vardety of pages in repid
succession. Wmvasmmatmmw.
redesign of algorithns (ref.10), a change in data storage methods
(ref.19), or & fulrly arbitrary repackaging of parts of a program
(refs20) can give an enormous improvement in progran performence.

If there is a potential for sach improvement, it is desirable
to devise a gygtonctic approach to optimisation in a paging
environnent. This chapter discusses the fundementel difficulties
which unfortunately arise at every level of consideration of this
problem.

2, THE ADMS OF OPTIMISATION

At a theoretical level, & significant problem in the definition
of tho ultimate ainm of prograenm optimisation, One can distinguish
three distinet quantities to each of which some degree of attention
might be directed.

a) progran performance

b) 'cost' to the systen

c) charge incurred

The performengce of a non-interactive progrem must be judged as
the total time from the first presentation of the program to the
aysten (i.e. including the queueing time in a batch system), until
completion., This measure may also be considered setisfactory in
the case of taske which interact with the programmer, his own
response times being deducted from the total. However a

subjective element erises in that machine response times for small
amounts of processing are gemerally considered more significant,
tine for time, than for lengthy computational work; an appropriate
weighting could allow for this.

The 'cost' to the system is a rather less readily defined
concept., The physicel wear and tear on the hardware is obviously
of no significance here; the cost must be regarded as the disruptive
effect which the program causes to the system, i.e. the effect on
the performance of all the other users. A numerical expression of
the systen cost of a program P could thus reasonsbly be defined as
the difference between observed mean completion time of other users,
and that which would have been observed had P never entered the
gygten. If there are no other users this is sero. In a single
strean batch system where jobs are run in the order they are
presented, a program causes s cost proportional to its own elapsed
time on the machine - subsequent jobs ere displaced by this amount.
In this case the optimisation of program performance and of system
cost would be equivalent processes. However this equivalence need
not occur in more complex systens. An idealised example follows
and demonstrates this fact; it is hoped this will also give ingight
into systen cost.

Example of svaten cost

We envisage a simple multiprogrammed betch systenm with two
fixed size partitions; the two programs in store st any moment
compete for the use of the single CPU, but they use separste 1/0
channels (whose store-cycle stealing effect is ignored). The
only factors affecting performsnce et any moment are the ratios of

2.3

the proeessing time to the extra I/0 time (i,e. not overlapped by
its oun processing) for each program.
Denote these by n,my (sl=ny), i=1,2, for pertitions 1 and 2,
Each program obtains the CPU for a real time proportional to its
demand, thui.napeﬂodin\hidxprog.l'amumhnv proge.2's
is ny. wodwmthtmrmgthﬂomﬁorpml.
there is a period mm, in which neither program cen use the CPU,
Thus the assumptions of the model are:

Prog. 1 has the CPU my/(l1vynp) of totel tine

Prog, 2 % " %’(l’nj.aa) n " 1

The CPU is idle mmy/(lemmp) ® " " (Hote lemny=
" ‘ny)

Suppose the average program in the system has characteristies
(nym), and a progrean P of characteristiecs (lq,qg) enters partition
2. Assmme its total processing time ie Bny end I/0 time Bmy, so
E would be the elapsed time of F if it were running on its owms
We require to caleulate the cost of P in an average environment.

The proportion of totael tine spent processing P when there is
an average program in the other partition is found froam the formulae
above, Since the total processing requirement of P is Hny, its
elapsed time must be:

e = E(l+mp) = E+Bmy ~—(2,1)

Thus half the prograns in the system - those in the queue for this
partition - heve been disploced by this amount.

The progrome in the other partition which are running during

this elsapsed tine e would, had an average program been in place of
E, have lasted:

o(1f)/(1vmp) = E(1w)
llote their performance has worsened or improved according as the

2ed

CPU demend of P (np) is greater or less then average (n). Thus
the queue for partition 1 has been displaced:
o=B(1+n?) —(2.2)
The total system cost is the average of (2,1) and (2.2), i.e.
EO~P) ¢ Bmy ——(2.3)
compared to a progran performance (excluding time in batech queue
over which the program has no control here) of the elapsed time 2,1,

Suppose, say, that n is near unity, i.e. the average program
has high processing content., Intuitively, then, a program which
is 1/0 bound (n2 small) will have little cost to the system - this
is confirmed by (2.3) where Emny (= n X program processing time) is
the dominant tern. The displacement of jobs in its own partition
is largely counterbalanced by the extra progregs in the other
partition to which the CPU is more often available, Thus
suppose a program could be redesigned at the expense of considerable
1/0 time but making a saving of some processing time (for example
writing out data to backing store might save having to pack it in a
complex way to fit into store). This would increase E but decrecse
BEn,, Then (remembering we have assumed n near one), the cost to
the systen (2.3) may be decreased while the program elapsed time
(2.1) is increased.

This example also shows the dependence of both program
performance and cost upon the environment, i.e. on the character-
isties of all the active programs. A knouledge of the systenm
without an idea of the average load on it may be insufficient for
Judgement of optimisation criteria.

It should be clear that it may achieve nothing to define a

245

cogt function directly in terms of progrem utilisetion of some key
resource, or es the sum of much functions, unless the result can be
shoun to bear a relation to practical performance meamures. The
store utilisation - the (elapsed) time-space integral over main

memory - of a program is an example of such a function. It may
indeed often accurately reflect aspects of cost, but this needs to
be showm, otherwise any other than gross manipulations on it may be
empty mathematicel juggling, (lote that in this comnection, the
model of section I.2 is relevant, The assumptions there were

equivalent to taking the total efficiency of a set of similar

prograns as bounded above by M/R, where R is the rate of store

utilisation per unit processing time of each program. Under the
assumptions of thig model, then, store utilisation indeed bears a
close relation to efficiency and therefore (see below) to system
cost. But one should bear in mind the severe limitations, listed
previously, of the model.)

Systen gfficioncy has been used earlier to mean 'effective CPU
rate' (e.c.r.), i.e. the rate at which instructions of user programs
are obeyed, Thie is a reasonable expression of gystem performance;
the cost of a progran could therefore be defined in terms of its
effect on the total e.c.r. of mll the gther programs in the system.
E.cer. is not a wholly satisfactory measure however, since delays
to 1/0 bound prograns will not be reflected so largely as delays to
highly CPU bound processes. Also in the time-sharing situation
there is again the complication of response tines being
eonsidered a key factor in performance. The odd situation
aripes thet it is the legg important factor to which attention must
be directed in the measurement of program cost, Up to a certain

level of saturation, moet time-sharing systens will consider the
maintenance of a good response time for highly interactive jobs more
important than a high overall efficiency; it is thus the latter
whose degradation becomes apparent when a 'high cost' progran
enters the systen.

In a sense the optimal program performance should coincide
with minimum gystem cost; this will ensure that a user's efforte to
improve his own program are entirely in the 'right' direction from
this gystem point of view. However this point becomes elmost
irrelevant in the 'ideal' system which ninimizes system cost by
reflecting it back into the performence of the program. A
progran which would nornslly be considered 'badly behaved' is given
lower priorities on gystem queues and will have control less often
(equivalent in a batech systen to rescheduling a long job to run in
a slack period). The performance of a badly behaved program
suffers, but other users are shielded fron its effects. The
total system performance is only degraded in es mich as it includes
the perfornence of the errent program,

The third target muggested for possible optimisation was the
charge made to the user. It seems intuitively obvious thet the
variable part of such a charge should be related to the system cost
and nothing else. This means that a job run at a quiet period -
overnight, say - will be charged less than the same job at a time
of heavy demand. It aleo means that if the system genuinely
succeeds in reducing the systen cost of a 'bad' program, resulting
in poor performance of the latter, there is no need to make the
additionel penalty of a high charge. Charging algorithms in
general for multiprogrammed systems tend to be fairly arhitrary

27

and sometimes utterly wrong, but the matber will not be pursued
hare.

This discussion, although probably reising more questions than
it has answered, has tried to illuminate the problems arising from
what is meant by 'optimisation of performance', We have seen
that in the ideal case progranm performance is the significant
variable; the apparent conflict between optinmisation of this and of
systen cost, disappears. Realisation of this ideal situation is

& task for the gystem designer.

3., EXPLICIT MINIMISATION FUNCTION

At a practical level, the first task in a gystemetic
optimisation is the expression of some approximation to performance
as a function of progran definable characteristics over which there
is some degree of control. In a aingle-line batch system the
function is of course the total CPU time + non-overlapped 1/0 time;
in the fixed partitioned miltiprogrammed case modelled in the last
section, » function giving more weight to the CPU time would be
necessary, Hovever the problem is more difficult in a dymanic
allocetion systen. It is not enough to define gygten
characteristics (e.g. store utilisation, number of page faults)
which themselves gepend on the progran behaviour; we reqiire a
function controllable and measurable at the level of program.

The ninimisation scheme described later in this thesis takes
as its function the average working set sisze, S(T) (see section
1,5), the processing time being unaltered., Any value of T may be
M-hwmhmdummymwnwnpmtopmm
auﬂluwmﬁmmw. In a systen using

248

Denning's working set allocation scheme (ref 6), 8(T) is closely
rolated to performance. For this gysten attempts to reduce page-
fault rates to an acceptable level by ensuring that any program in
core has s store allocation equal to its current working set size:
programg are only allowed in core when such space is svailable
(note that if thero is a priority rule favouring smell prograus,
aystem costs ere equalised), If the strategy works, total system
performence depends mainly on the mumber of progrsme that ean
simultaneoudly exist in core, i.e. the miltiprogramning facility.
The averege space allocated to a program is the mean working set
slze and dlearly is a key feature.

However it is suggested that under gny adaptive allocetion
strategy, a highly beneficial effect will result from a significent
reduction of the above function for a suitable value of 7. This
simply makes explicit the general precept that one should attempt
to reduce the muber of pages referenced in short intervals (ref,18),

4. METHODS OF OPTIMISATTION

Techniques of optimlsing page reference behaviour can be
divided roughly into two classos; we call these 'design level' and
'eoding level' methods.

Almost certainly, the largest improvements in progran behaviour
can come fron an intelligent design (particularly of data layoutc),
ained at reducing the spread of references over short periods.
This has been impressively demonstrated by Brawn and Gustaveon
(ref.10)wio reprogrammed three problems (matirix inversion, date
correlation, sorting), involving large-scale data reference on the
M4/ l4X experimentel system. Under a FIFO page replacement
strategy, the amount of store required for efficient performance

was reduced very substantially: by a factor of six in one case.
These were obviously particular (and initially very badly behaved)
prograng; a more general approach is that of McKellar and Coffman
(ref,19) vho exanine the paging rate (under a fixed store strategy)
that results from natrix operations under different nethods of
nmatrix storage.

However the redesign of prograns to improve paging behaviour
is necessarily an imprecise procedure and impossible to examine in
a general way. A definitive approach to optimisation must confine
iteelf to 'coding level'; by this is meent either the choice of
page boundaries ceross existing code and data, or a complete
repackaging of parts of the progran among pages. There has been
some work dealing with methods of locating reasonable gogment
boundaries (refs. 21,22,23) and more recently such studies have
suggested paging systems as en area of possible epplieation (refs.
2/y25)s The only work to which the suthor has discovered
Mmmmwmmmmmwof
Raging behaviour has deseribed the experiments of Comeau (ref.20).
AWMMemuﬂnmw-Mpmm
appears in ref. 18 (pl0l3).

The great advantage of optimisation at this level is its
amenity to automation; the possibility exists of repackaging being
perforned by a compiler, perhaps using the results of automatic
monitoring software. Whether the whole process is worthwhile must
be judged by the same criteriac as with any optimising compiler,

The degree of improvement obtained must be balanced sgainst the
time and effort in producing it. The results obtained from the
scheme deseribed later suggest that optimisation would be well

2,10

Jjustified on the large, often used system programs (compilers, etec.)
which are often a principal cause of poor system performance.

Theoretical aspects of progran restructuring are examined in
the next chapter,

1. INTRODUCTION

For restructuring purposes a program is envisaged as being
partitioned into a collection of blocks - henceforth termed ghunka.
This partitioning may extend over the whole program, or simply over
part of it: perhaps just the instructions and not the data. The
assumption implicit throughout this chepter is that the chunks cen
be rearranged in any order and can thus be packed into pages in any
desired mammer. Such a rearrangenent nay require alterations or
additions to be mede to the chuniks - for instance extra instructions
could be necessary to maintain the correct flow of control. It is
assumed that any changes in the dynamic pattern of reference to
the chunks (with respect to process run time) thus caused cen be
regarded as insignifiecant. The gizes of the chunks are also
assuned to be given and to include any increases that the above
alterations may cause.

A gimple but coarse partitioning would be such that each chunk
was an entire loadable module; relocation is then an easy matter,
At a very fine level, one might take the small instruction sequences
between one branch instruction and the next, or individual data items,
Normelly as the chuni: sizes become smeller, the difficulties
asgociated with their quantity increase but the potential for the
improvement of progran behaviour alse increases considerably.

The few actual examples given in this chapter are for clarification
and necesgarily deal with a very fow chunks, but it must be
remembered that in practice there may be many hundreds. Practical
difficulties concerning choice of chunks, repackaging etc. can be

3.1

very comsiderable but all such deteils are left to the next chapter.
The following two sections comment on some theoretical work

which has already been done in areas based on the above aspect, and

which has possible relevance in the paging situation,

2, THE STATIC GRAPH

The simplest representation of program structure is as a
directed graph whose nodes are the program chunks, Suppose the
chunks are mumbered from 1 to n. We make a directed link fron
chunk i to chunk j if:

n)hWhi can be directly followed by an
instruction in j (this covers mot only jump instructions but a
'drop through' from i to j).

b) An instruction in i can reference data in j.

¢) An instruction in j can reference data in i.

Thus a data reference is represented by a directed link in each
direction (alternatively this can be regarded ag a non-directed
link),

The resulting graph is equivalent to a (n x n) matrix S with
m=1nmuaunkmmklhj.su=00wu.
S is known as a Boolean gonnectivity matrisx.

This is a construct based purely on the ghatic structure of
the progren and could be easily generated st compile time, The
mere presence of a reference or branch from chunk i to j
Justifies a link; the frequency with which this path is taken,
or whether it is taken at all at yun time, is not relevant.

Greph theoretical techniques can then be epplied to yield
certain information about the program structure (refs, 21,22),

3.2

Chunk j is said to be reachable from i if there exists a set of

links forning a directed path from i to j» Ramemoorthy (ref.21)
hag shown how to use 8 to form the peachability matrix R,
(rijwifamlmlyﬂjumahm&ui). This shows up

redundent clunks (which can never be entered) and blind alley
errors (sets of chunks which once entered can never be left).

Consider the relation between nodes i end j defined by:
' 1s reachable from j aad J is reachable frem 1 (rgy = ry; =)',
This is easily shown to be an equivalence relation; the nodes of
the graph can therefore be partitioned into disjoint equivalence
classes, Those consisting of more than one element are known in
graph theory as maxinal strongly copmected subgrephs. In
programuing terms, such a subset represents & set of chunks which
cannot be pevigited once control hes passed out of it; the
partition is therefore a reasonable initial segmentation of the
program. Ramamoortly deseribes how to identify these subsets
mmmdubmﬁyutﬁ.x.

Although interesting and elegant, the graph-theoretical
approach is probably of very limited epplication. The MSC
subgraphs will often be very large - perhaps the whole progran
excluding the initielisation section (this wAll be true of any
progran with a central main loop). They are in eny case likely
%o represent phases which are quite clear cut at the design level
and form nsbural and obvious elements of segmentation without
recourse to formal techniques. Hore significantly very little
can possibly be deduced sbout the run-time flow of control from
this static model of progran ctructure,

3.3

3. THE DOIAMIC GRAPH

The above model can be simply extended to store some
infornation sbout dynamic behaviour. Interchunk links are given
6 numericsl weight proportional to the nmumber of times the link is
traversed when the program is run, i.e. define:

834 o< the number of times control is tranaferred from chunk
i to chunk j (or reforence mede to data chunk j from i),

Thoa«hdmﬂ:erottimahﬂmmﬁmﬂinpnﬂiml&mh
mtmmtm;mmmerm-“wm‘m.
We define s;; to be mero for each i.

Two particular subsets can be identified: ‘entry chunks’,
mmamummwomtum»mm,m
‘exit clumks' from which control can pass direectly out. It is
convenient to represent the external enviromment by an additionsl
chuni, This is linked by eppropriate weights to all entry and
exit chunks, end the gystem is now closed. Assuming control
begins in the external environment and eventually ends there, the
mmotthmﬁghhcnld&aﬁhﬂuwdmkumltethm
of the exit weights, i.e. for all i:

N
8y = =n,; (say) where N is the nuuber of
> By F“u | e
Thon,‘mpmtotuhmmum-&mu

entered.

Put pg= Sid all 4i,j
by |
Ihaupuiaﬂupmpm#morthntommorcﬂlﬁui
which go %o j. Given that control is in chunk i end po other
M»&Jﬂvbew“ﬂapmbabmtyofjmm

next chunk,

Thlngnlpuﬂ Ztu =n, for each j

i.e.g(nl)hahﬁmkorcfthomﬂp“).

This fact could be of practicsl use in the construction of
the 8 matrix of a progran, If date is gathered by direect
mw-tmmm,mmmniwumm
quantities to meamwre, However if en approximation were being
mwmmmwmaummm.mmmm
be easier to guess. These are more local quantities than the
ou.mmmwxwvanmdm.
mmm*mmnw'-mr,mn‘mbemmm
(using customary matrix methods for the determination of
eigenvectors), and henee 8,

Fig. 3-la gives an example of a graph with possible weights
(au).mm.mmmmmmwpumnv
Wmmwmu“mqammwwm.

It should be noted that the above relationship between P and
mmwmauapmmwmu
mdmmum;uama.nmno:p“nmmuzm;m
-.twmmmmwhmmm,um
at all, on the cuwrrent clumk (although it is true that the
derivation is pointless if the dependence is slight). Thus in
themhofﬂg.}l.iti-wtomt\dthmam
information that C be a subroutine called from either B or D and
returming thereto. mﬂmmcuwmw
its predecessor - given that the clmnk sequence has been BC, the
probability is 1 that the next is B again. The faet that p., =%

345

A)

D

|
|

|

|

|

c |
) |
|

|

]

Fig 3~1 Dynamic Graphs

simply means that over a long period, one half the exits from C go
to B (bocause in this cage one half the entrios come from B).

Approaches to the dynamie graph of & program (rofs.21,23,26)
have inveriably used a larkov model (ref, 27), teking the clumke to
represent the states of a homogenoous larkov chain. This makes
the assurption that the probability of the next reference being to
clunk j, say, dopends only on the eurrent chunk i, and is
independent of time or the previous clwmnk history, All the
rosults from the theory of Markov processes can then be uped (in
particular the limiting state probability vector p, if it existe,
satisfies p'P=' where P is the transition probability matrix).
mnmmth.tmmmmhm
modelled in this way; the presence of procedures, loops ete.
imnediately add a highly 'non-Markovian' elenent, This is not to
say that sich a model cannot be useful in exanining broad aspects of
progran behaviour or in similation experinents, but it is probably
of little use in prectical restructuring problems.

Lhe sognent problen

A repackaging problem which has been considered (refs, 21,23)
is vhat is termed here the 'sogment' problen, This has possible
use in the paging situation, and also demcnstretes an application
of the 83§ graph (uncluttered with notions of probability); we
therefore examine it briefly,

It is required to group the chunks into gegmenta of some
maximun slge L, so that the mumber of inter-segment jumpe during a
long period is minimiged. The obvious application is to divide
up a large program to run in a smaller machine with a minimum number
of complete overlays.

3.6

Write "u’“"ij";xi' This is proportional to the number
of times control passes between chunks i and i, If L ip e subset
of the chunks, define:

sctamal comeativiky of A=

ich, J¢A
m.umumlwmmormmtmwmofa
is crossed; so the segment problem is to partition the chunks so
that the sum of the external comnectivities of each subset is
minimiged, (It is trivial that this is equivalent to maximising

ﬂnmdmwzcg)
10¢4

humtwwmmmwmm
program runs, WWMMMMWW
part of one, it need not be true unless the program exhibits the
stationary behaviour that the lMarkov model assunes.

ug.mmunmmuuueummpmmm.
If a meximn of three chunks per segment were allowed, the dotted
Lines show the bost partitioning (I and G may be interchanged).
The sun of the woights crossing boundaries is 14. The oum of the
external connectivities is 4+14*10=28, each link being counted wdce.

The problem is then quite precisely defined. Given that the
mmmmamwwwwm
frequencies over a long period, the sun of the external
Mﬂﬂosdauﬁcfmﬁahinthmmmto
twice the inter-segment transfer fyequency. lothing else about
the program is required or noed be assuned.

Unfortunately in the genersl case the diacovery of the
optimum grouping is extremely diffieult., To enumerate all the
valid partitions and work out the result for each one would be quite

3.7

out of the question for any but a very few chunks. We have a
problem of at least the order of the trawvelling salesman problem
(ref. 28) with the additional difficulty that no dynamic programming
techniques to reduce the amount of computation without immense
storage problems, suggest themselves. (It is not obvious how to
avoid the repeated computation of the external comnectivity of any
particular subset). Any practical solution must involve a
heuristic technique, hopefully to lead to a near optinal result.
We do not discuss this here (ref. 21 suggests a method), although
the method of section 7 dealing with a slightly related problem
would probably be effective, Two points are worth making for the
unwary, though.

a) In fig.3-le, the chunk in a segment by itself in the best
grouping, i.e. G, is not the leagt uged chunk which is C,

b) The best partitioning has not necessarily the least number
of segments. If, in fig.3-2, three chunke can be packed to a page,
the three segment packing is obwiously far better than any into just

two segnmentas.

10

Fig.3-2

3.8

4. RELEVAHCE TO THE PAGING PROBLEM

First thoughts on the question of the improvement of progranm
behaviour under paging might suggest an approach like that above:
suppose we restructure into pageg so as to minimise the inter-page
tranafers, would this have a highly beneficial effect?

Intuitively one would expect an improvement: control would
remain in any one page for longer periods, and rarely used chunks
would tend to be removed from the main paths, reducing the effective
size of the program. However it is suggested that an emphasis on
crossing boundaries is completely misplaced in the paging situation.

For instance, a tight loop over a page boundary, lasting say
#us. and involving fifty jumps is likely to be no more significant
than a single branch. Once both pages are in store, and no
reasonable allocation strategy would invelve the removal of either
within dms, of being used (unless the end of a time-slice
intervened), mo further cost is ineurred by further transfers firom
one to the other. A @ingle reference to each of several pages
during a short period will normally represent far worse behaviour
then repeated boundary crossings of two or three pages. Thie
means that the ability to choose where a page boundary should lie
across the code of a progran may not be very useful, One could
of course use it to separate two adjacent but dynanically widely
separate sections (perhaps a subroutine from its casually following
ood.),bntthomﬁdllhltmcﬁwﬁuofmingto”t
lengths %o avoid loops over page boundaries has possibly little
validity,

An extreme example of the lack of importance of direct
connectivity in the paging context is shown in fig,3-3, This

3.9

e
=
~

3

N
>
~
-

5
L 5
-~
-~
-~
2
A
b
g,
~
3! ul 5!
&
7~
Vd
P
#
7

Fig 3-3 Irrelevance of Direct Connectivity

shows clunks which can be paclked two to a page. Control passes

from clunk 1 to & random one of 3,4,55¢+05 theon to 2 which switches
to the corresponding one of 3';4',5';..« eand then back to 1 again,
A possible sequence is thus 1525'1323'l.... Suppose the

processing tine intervel between two entries to 1 is feirly short,
compared to the average time-slice, Then the two chunks 1 and 2
are always going to be referenced, and within short periods of each
other; they are obviously best packed together. Chunk 3 may
rarely be referenced, but when it is (and only then) o call of 3!
fellows; 33' should be packed together, similarly 44' ete. Thus
the most effective packing, in the majority of paging environments
at least, would give a zero external connectivity to each page and
would be the worst solution to the segment problem.

Generally in the paging situation one is interested in program
behaviour over periods which, although only measured in milli-
seconds, still contain hundreds of references to perhaps many
pages. In these circunstances the comnectivity matrix contains
informetion on %oo fine a scale to be of much use in restructuring,
However it does form a fairly compact way of expressing elements of
progran structure. It is obviously tespting to redefine the
coefficients as a form of 'dynamic distance'; thus 3 and 3' in the
above example will have a comnection sinee they sre always called
within a short time of each other. We shall see how consideration
of a precise paging problem leads to just this approach,

5. THE VORKING SET PROBLEM

As steted in IL.4, the paging funetion which is our target for
mininisation is the average working-set size for some given time
interval. We seck a packing of the chunks into pages which

3.10

minimises the mean number of pages referenced in intervals of the
given length,

It should be noted that this function is additive over varicus
parts of the program; if it is only feasible %o restructure part
(e.g. the instructions and not the data), this can be treated on
its own, the contribution of the rest to the total working-set
gize not being relevant. In practice this property is essentialt
large progrems will often consist of meny modules only linked
together at run-tinme end containing librery and system routines;
it would not be practicsble to demand that the whole program be
restructured at once (unless chunking were done at the gross modular
level), For example, a ocheme which sought %o minimise page-
faulting when a progran was run in a given n pages of store would
be of acadenic interest; one could do nothing without information
about the Yolal progran.

Intuition (end the contimuity of S(I)) suggests that a good
restructuring for an interval length T will be good for any T in
the neighbourhood of Ty. However fig.3-4 shows a possible
nmm:wtmuwmrmmrlmrz. Any
restructuring is likely to make a large improvenment throughout the
unp.hutﬂ-ttor?lualmgwmapﬂnlbr'!aﬁm
versa. Two simple examples (allied to those in the last section)
are given to demonstrate the importance of the time-secale.

Sxample 1

Fig 3-6 shows chunks which may be packed up to three to a page.
Control resides in A and B for a time Ty, then C and D for the same
period, then E and F, and then the eycle begins again, If T, is
large compared to the WS parameter T, the optimal grouping is

3.11

original

/

optimal for To

optimal for Ty

T N

Fig 3-4 Effect of Restructurings on Working-set Curves

XA BY A'B
XY AA' BB'
5. T

Fig 3-5 Working-set curves of Example 2

¥
v
|

-~

Fig 3-6 Importance of Time Scale, Example 1

v

~~

_](
X

ol

A' B'

Mig 3-7 Importance of Time Scale, Example 2

AB CD EF. In most intervals (a proportion 1-1/T;) only one page
will be referenced, uhile with any packing into just two pages, both
will be referenced in at least 1/3 of the intervels. (On the other
hand, if 7 is smell, gll the chumks will be referenced in any WS
interval, and they mist be packed o8 densely es possible, ABC DEF,
For T=T; both these groupings give the same result.
Zaple 2

This is shown in fig 3-7. The clunks can be packed two to a
page, control residing in each chunk for unit time. Control
flows XAYA' or XPYB' with equal probability. Ap in the example
of section 4, if T is large the best packing is XY AA' BB', but for
emall T the direct commections hecome significant, and a packing
such as XA BY A'B' is better (A' and B' can equally well be given a
page each). Actual values of the working set size are easily
celeulated (by considering the likelihood of each possible ehunk
Sequence oceurring in an interval); fig 3-5 shows the VS curves
for each of the structurings above.

As in the case of the dynamie graph and the segment problem,
we adopt an empirical approach to the solution of this problem;
rather then trying to construct a model we simply attempt to
neasure data directly related to the specified VWS parameter and
work with this, This makes no simplifying assunptions about
progran behaviour, but we must guard against the risk that the
practical effort of obtaining data outweighs the gain caused by
restructuring.

6. AN EXPLICIT FORMULATION
Suppose the program is monitored over a long period (perhaps

3.2

over many runs), and e record is made of which clunks ere
referenced in each of a large munber of processing intervals of
length T, After N such intervals, this record ig contained in a
(nxl)ma\bw-ruslifd:ukiiaulhdinthojth.
Moml,rutﬂ,Mm.

Given any grouping of the clunks into pages, the musber of
pages referenced in any interval is easily seen from R, and
therefore the average mumber for all the monitored intervals. it
for any restructwring this average is close to the actual average
working sot size of the progrem (which is of course & theoretical
measure defined over all possible intervals of all possible runs of
the progran), R ie seid to be = pepresentative record, For most
large programs it is probebly emough that every chunk hase been
entered a few times, slthough this mey talke mawy thousands of
intervals if the chunks are mmall (see Chapter 4)s (For a set of
intervals to be truly representative of reference behaviour, it
would have to contain every possible chunk combination repeated
scecording to the frequency of its occurrence in all muns, an
utterly impractical requirement with more than a very few chunks,
R is sufficient for the limited information needed in this context,)

The optimal restructuring is then taken as that which gives
the best results based on the tested intervals,

Dawle

nuuou»g
E
OHMHHOOD M
HMOoOOOKHOC N
cCOoOHOoOOF w
HrHrOCOoOOCO &
coHFOOK W

3.13

The six chunks A-F can be packed up to three to a page, and we
make the unlikely supposition that the matrix above, containing the
reference information of just 5 intervels, is representative.
Consider for example the grouping ABC DEF, The first page is
called in every interval except the fourth (none of chunks A,B or C
being referenced then). The other page is referenced in 21l five
intervals. The mean munber of pages per interval is thus
(4#5)/5 = 1.8, The optimel clustering, easily found here by trial
end error, is ACD BEF, The result for this is (3+3)/5 = 1.2,
Given sufficient monitoring data, then, we have a simply and
precisely defined problem, just as in the case of the segment
problem. As with the latter however, there is no obvious solution
procedure: exhaustive emumeration of all valid structurings cannot
be consgidered. A further difficulty here lies in the large
quantity of data, growing with the number of intervals tested; in
the segment case ell the necessary information is stored in the
constant size (n x n) array (although with several hundred chunks
this is not small). A practical solution will depend on the
development of a heuristic method which yields a good restructuring,
and a way of avoiding the problems associated with the storage and
access of reference data from perhaps many thousands of intervals,

7. THE SDMILARITY ARRAY

With each chunk in the above problem is essociated its (1 x N)
reference vector. It is intuitively clear that two chunks which
are nomally referenced together in intervals are likely to be both
in the same page in a good structuring - we are trying to mininise
the wastage caused by only small parts of pages being referenced
during an intervel. Thus it seens reasonable to attempt to group

3.14

the chunks eccording to the 'similarity' of the reference vectors.
For instance, in tackling the example of section 6 above, an
obvious first move would be %o group chunks A and D together on
this basis.

Eopressed in this way, some resemblance is seen to the well-
imown clustering problems which arise in classification theory (or
nunericel taxonowy) (refs. 29,30), and more recently in certain
other fields such as pattemn recognition (ref, 31). In these
studies it is assumed that there is a given set of glements each
defined by the values of an associated set of gtiributeg. The
values are usually binary, indicating simply presence or absence of
an attribute,. For emample if the elements are diseases, they
might be characterised by a set of symptoms; if ingects, by various
physical characteristics, In general terns, it is required to
forn glugters of elements such that those in the came cluster sppear
to look alike, and are dissimilar to elements in other clusters,
The success of the result is jJudged by criteria relevant to the
problem area; thus it might be hoped that oll diseases in one cluster
be amenable to similar treatment.

The first step in such clustering teclmiques is always to
manmm&\d»nelmh-“ma
defined coefficient of simllarity between elements i and j. The
choice of a satisfactory definition of this depends on the
particular problem, Examplos are:

1) nunber of attributes present in i and j

or 2) mj«umu&mummm

Coefficients are often normalised to give a result between zero and
am;tmluzahunisdiﬂddbytbotommotamm,

3.15

the similarity will be unity for elements with identical attribute
sets. The gimilarity array is then taken sg sumaing up all the
relevant information about the relationship of the elements to each
other; it is used as the sole data to some glustering algoxithm
which groups the chunks into classes,

The reseblance of the above to the wrking set problem is
obvious if we interpret reference to a chunk in a given intervel as
the possession by that chunk of the appropriate attribute. The
difference ig in the final objective: the clusgters of chunks which
will fomm peges are strictly limited in size.

A great sttraction of defining a pairuise 'closeness' between
chunks, and working purely with this, is that the similarity array
is a compact way of storing data - it ney be built up during the
monitoring process, and the problem of hendling an indefinitely
large quantity of interval reference date is avoided. If there
‘ave n clumks, an (n x n) array S is initialised to sero. At the
end of each interval, put (for all 1,j):

TR TRE! gﬂmmumsg:mw

A count is also kept of the total number of intervals N.

Hoticing that the diagonal elements will econtain the
frequencies of use of each chunk, we can work out from S any pair-
wise relationship between two of the original reference vectors, and
therefore any similarity coefficient,

R.gnu number of intervals i and j both ealled

e, of intervals i the
%84 "4 bothcunndurbothl::)‘j ony

It is important to notice that the similarity array does not of
course preserve all the original informstion (it is as though we

3416

replaced the co-ordinates of a set of points by the distance
between them, the slements here being defined in a very large
dimensional space with an wmsual measure of distance), Thus
thwmmummmfmumuw
chunks in four intervels: :

A looL A 1001
B 1010 and B 1010
c 1100 ¢ ool

Both situctions would give the seme set of peirwise similarity
coefficients (on any definition of the latter). The difference
in the mutual relation between A, B and C, which is somewhat
closer in the second case (since the references to all are confined
to three intervals), cammot be expressed.

Choice of similarity coefficiont

Various coefficients were used with data obtained from the
KDFY study (eee appendix A), the most consistently successful being
dq];-“, the number of intervels in which both chunks are
referenced, This puts no weight on zero matches: intervals in
which neither chunk is called. These, then, are no more
slgnificant than intervels in which one ehunk is referenced and not
the other, thus:

A 111.001.001.00
B 11100100100

would have the same similarity as

A 11101201100
B 11110110111

In the first case, A and B should obviously go in the same page; in
the second, the high nunber of mismatches may make this a bad policy,
However in practice, the density of 1's in the reference vectors of
most ohunics is quite low, and the positive match seems to be the

3e17

glgnificant factor; attempts to weight zero matches or put a
negative weight on mimmatches gave in general less good results.
Given any coefficient, a situation can usually be constructed for
which it will be perfoct or disastrous; what is required is the one
suitable for the sort of behaviour that computer programs, chunked
in the chosen mamner, display. It is of course quite a simple
matter to change the similarity coefficient in the clustering
progran.

The definition of the similarity erray is the first step in a
suggested heuristic solution to the explieit problem of section 6.
But by contimuing the approach ot the end of section 4, we might
have reached this point without ever defining the problem in precise
terms., Connectivity es used there could be regarded as the
frequency with which two clunks are called within a very short time
of each other, Having decided that this was too immediate a
relation to be relevant, we might have simply extended this to 'the
frequency with which the two echunks are referenced within a period
T of each other', and thus defined the similarity coefficient.

8., CLUSTERING ALGORITHMS

The second stage of the heuristic solution of the restructuring
problem is a glugtaring procedure which, taking the similarity array
as input, forms the chunks into groups of total size less then a
page. The KDFY data was used to investigate various clustering
tochniques,

In most of the clustering procedures, a search is first made
for the two clumis which have the greatest similarity to each
other, These are grouped together, and a new similarity is

defined between this group, treated as a single entity, and all the
other chunks., m;pmumwamw”m
link (ineluding the newly defined ones), combine the appropriate
(groups of) clmunks, and work out, in some defined way; new
similarity coefficients. We thus obtain clusters of chunks vhich,
ag the procedure continues, grow by merging with unclustered chunks
or with each other, So far this has a close resemblance to some
ﬂ@umamzatm.mamumuuw
the requirement thet the ultimete groups of chunks be less than a
page in size. In the elgorithn finally adopted, clusters were
simply not allowed to grow greater than a page: if two clusters hed
& combined gize more than this, their similarity coefficient was set
to zero, thus ensuring that they would not merge. Somo earlier
attempts vere made to avoid this rather unsatisfactory 'discontimuous’
effect of page size, In one case, clusters were allowed to grow
indefinitely, pages being peeled off as they formed; in others
atteupts were made to reflect cluster size in the simllarity
coefficient, However the results of these more complex algorithms
were generally less good, and thoy were ebandoned.

The above nethod demande a definition of similarity between
two groupg of chunka. The choice found to be most successful, and
finally adopted, was the arithmotic mean of ell the inter-group
sinllarities of the constituent chunks, This iz mot particularly
logicel (a choice more consistent with the adopted similarity
coefficient would be the greatest link), but it gave the best
results of the fairly simple definitions tested.

The other area of experiment in clustering made use of the
Theory of Clumps (refs,32,33). This rigorously defines the

3.19

notion of a cluster, by specifying that it chould have some precise
property. hﬂmabpc#WNmnnddhﬁ;manmhilma
R-Clump (ref. 32) which is a set S such that for every element of 5,
the sum of the comnectivities (similarities) to the remsining
nenbers exceeds the sum of the comnectors to all elements not in S,
Methods are given in the references of discovering clumps (of which
there may be & very large number) from a given similarity array.
Unfortunetely, no way was found of relating clumps to the
fixed size groupings required, and generally little success was had
in applying clumps to this problem - unless non-overlapping clumps
a little under @ pege in size happoned to exist, Bven careful
hand clustering after examining clumps produced did not give as good
results as the automatic procedure described previously. However
it was felt that clumps could make natural units of program, and
in certain circunstances might be useful in the construection of
suitable yariehle size segmenis, the intersection of clumps perhaps
giving an indication of which chunks could be usefully duplicated.

The following small exarple illustrates the clustering method
finally adopted. lio assume the chunks (denoted A to F) are of
unit size, and the page mize is three units. Suppose the interval
reference record were as showm in the srray below.

;
8
:

OWHUOUPE

OHKFHOMOKM M
oHMFOMOO N
HOCOOMK W
HOHMOKO »
HFOMHMOMO W
COOOHHKF O
oHMHOFOGC =
coHOMHOF ®
HOQOMMKE W
rooooro
HFoorHOrO
HooOrOMKM
ocrHoOoHOM

3.20

The similarity matrix (after setting its diagonal elements to zero)

ig:

A B CDUZEVPFOG
A 0 4 53 3 823 3
B 0 2 4 2 07
c 0 0 4 4 1
5 °% 3%
FP . 0 0
G 4]

(B,G) is the maximun element; chunks B and G therefore combine to
give BG, and we define a new array:

A BG C D E F
A 0 355 1 2 2
BG 0 154 2 0
c 0 0 4 4
D 0 2 0
E o 3
4 0

E.g. (BG,0) = #((B,0)+(G,0)) = #(2+1) = 1.5
A and C now combine to give:

AC BG D E F
AC 0 0 053 3
BG O 4 2 0
b 0 2 0
E 0 3
F 0

llote that the size of the chunks AC+BG has exceeded the page size,
so (4C,BG)=0, If this hed not been so, the similarity would have
been ((A,B)+(4,6)+(B,0)+(C,G))/4, i.e. the average of the links
between the griginal econstituents,

BG and D combine to give:

AC BGDE F
AC 0O 0 3 3
BGD 0 0 ©
B o 3
F 0

An arbitrary choice is made from the remaining equel non-zero
elements, say (AC,E). This gives as the final packing:
ACE BGD ¥

3.21

In the original thirteen intervals, this would have given a total
page reference of 23, (If in the final array, (E,F) had been
chosen as the greatest clement, the result would have been 24 with
AC BGD EF)

9. COMMIIS AND COHCLUSIOHNS

A page boundary camnot be envisaged like s segment boundary,
dividing two logically separate parts of a program. The
intelligent choice of page leyout, although profoundly affecting
progran behaviour, is essentially a low level decision, being
dependent on the lengthe of various bits of code and data, and the
fairly short period reference pattern between then,

Section 6 showed that the problem of reduction of average
working set size ecan be formulated quite precisely in terms of
observed reference behaviour, but in seeking a prachical solution
we must abandon precision and work upon ideas of a 'dynanic
distance' between one chunk and another, with respect to the chosen
tinme-scale. It is this time-scale which is important, and makes
structural program models which concentrate on direct links between
one chunk and another, of not mich use when applied to peging
problems,

In general there is no way of telling how close to the optimum
are the results from the clustering algorithm; this is particularly
true with the large scale problems arising from big programs (and
it is after all just these whose optimisation is most important),
Extrapolation from the results of small problems like the example
of the last section, is hardly wvalid. However a large mamber of
restructurings (many 'by hand' after careful examination of the

3u22

results) was tried with the KDFY data, and there wae never a
significant difference between the best result and that from the
adopted clustering algorithm, There is thus good reason to
believe that the algorithm achieves by far the greater part of the
possible improvenment,

In practice, it is the degree of improvement which these
methods attain, and the feasibility of using them, which are the
important matters, These are the concern of the rest of this
thesis.

3423

1. INTRODUCTION

This chapter axamines tho practical decigions which must be
made in the accomplishment of program restructuring based on the
ideas of II1.5 ete. For an optimisation process to be generally
worthuhile, it should not only produce a significant improvement in
paging behaviour, but itself should be as rapid as possible, The
ideal is that this process should be as transparent to the uger as
perhaps peging itself should be: the program during its normal
course of rumning would be monitored (without apparent decrease in
efficiency) and restructure itself when necessary, without user
intervention. It is impossible to aclieve quite this, in normal
circunstances, so the resulis oblalned from restructuring cen only
be practically judged in the light of the effort in achieving then,

In order to test the practicality of the methods, and
investigate the degree of lumproveuent obtainable, a restructuring
schene (henceforth referred to as RS) was implomented for prograns
written in the I language (a developuent of Atlas Autocode) for
the ICL 4~75 computer., This scheme is deseribed in full in
chapter V and sppendix B, However this chapter, in discussing
general practical principles, makes reference to the decisions made
in the implementation (although some of these were necessarily
determined by the I language or the compiler on which RS was
based) .

4ed

2. CHUNKS
Chunk, gige

Two nilitating considerations affect the average size of clunks.
It should be clear that the smaller they are, the better are the
potential results of restructuring, There is less chance that the
same chunk will contain parts of a progran dynamically far removed
from each other, there is more flexibility in repacking, and
scarcely used sections (failure paths, etc.) ave more likely to be
isolated and able to be removed from the main paths. On the other
hand the averege size of chunks affects their total mumber; the
similarity array storing reference data for a big program becomes
impracticably large if the chunks are too small. Not only the
anount of computation by the clustering algorithn increases (roughly)
as the square of the mumber of chunks, but - more crucially - congte-
ant reference to a very large array during both data collection and
restructuring phases will make the whole process very inefficient
in a paging environment, To a certain extent, this can be
overcome in a mamner deseribed later in section 4; similarity date
ummqathommhundm,mmgmgof
chunks takes place on the basils of this, and the process is
repeated. The disadvantege of a very large erray is replaced by
the necessity for a muiber of data collection phases. FHowever it
seens to be the case thet in large programs, many chunks are
scarcely used; providing that the array contains information on,
say, 1/4 of the number of chunks, very few collection phases are
necessary, The restructuring of programs with several hundred
chunks has been quite sstisfactory using arreys with a side of
length less than one hundred.

This means that although a feasible choice for a chunk would be
the entire unit of compilation (module), we can deal with much
smaller chunk siges. Ve therefore consider a fine chunking within
the unit of compilation: this is in any case essential if the
structure of the language, or the customary use made of it, leads

to modules very large compered to a page size (as is currently true
with I®),

Chunk boundaxdes in inatmotions

A chunk boundary is likely to be superfluous unless it is in
one of the following positions (which we shall demote hranch points).
The two types will often coincide,

1) Immediately following an instruction which can transfer
control elsewhere.

2) Imediately preceding an instruction to which control may be
transferred from elsewhere.

This second case is very important - initialisation code often
'msm'm.mm.mmm'MW'm
will normelly be better removed to another page.

Example
comment initialisation;
branch point e 2. ... comuent end of initialisation;
$ ene
branch point type L. gebo Ly

lote that goto L being a non~conditional brench, it mist also be
followed by a branch point of type 2 or by redundant code,

A chunk boundary at eny other than branch points would separate
the code into two parts practically certain to be both entered or

4e3

both not entered in the same time-slices. (Although the boundary
would not be gite pointless: the smaller clunks might give more
ﬂd.unty-pwhaplinﬂmngupmﬂnbhmo’linhnml
which ware bound to be called in the same time-slices anyway.
Algo the two parts are not necessarily dynamically identicel, as
the end of a time~interval will sometimes oceur while control is
within omo of them). The finest worthwhile partitioning is tims
obtained by taking boundaries st gll branchpoints. In practice,
however, some subset of theso would have to be chosen to avoid the
very large muber of chunks which would arise, An obvious first
approvimetion would be the starts and ends of subroutines, sinco
these are almost certain to be dynanically separate from their
contertual sarroundings. It is the 2iner subdivision upon which
it is fer more Aiffieult to decide,

A programmer chooging boundaries himself would be sble to make
intelligent choices based on a prediction of his progran's dynamic
flow. One example in which such knowledge is useful, is the
branehpoint following o conditional branch.

Example

B wiet e
A boundary efter stetement (1) is velusble if control normally pesses
to L, and (2) is a large chunk of rarely used code - perhaps a
failure path, Similarly it ie needed if (2) is often entered
from elsevhere (via labol 1) again making (1) end(2) dynamicelly
removed from each other. On the other hand, the boundary mey be
superfluous if the commonest peth passes through (1) and (2), 4
normelly being false,

If chunking is being performed automatically by a compiler,

baty

some method must be devised of choosing a suitable subset of the
branchpoints. These are easily recognisable by a high-level
lenguage compiler (not necessarily true in an assembly language with
branchpoints of type 2), and the language statements can give
useful clues as to which points are most likely to be suitable for
chunk boundaries. V.4 deseribes and discusses the way RS makes
its choice.

If o chunk does not end in a non-conditional branch (not
including procedure calls) there is a chance of 'dropping through’
to the next ehunk. Obviously if the two chunks are not adjacent
after restructuring, a branch instruetion will have to be
generated after the first., For this reason, and to facilitate
monitoring (see next section), it is convenlent to generate at
compilation time a nonconditional branch at the end of every chunk
that does not already terminate in one. (In RS the nature of the
choice of chunk boundaries ensure that meny alreedy do). Thus the
above example would be compiled as if it had been:

(1) a.:Aﬁumx.

clhunk bounda®y. . . o o - o goto
(2) | ; § PR

Little need be lost, for if, after restructuring, chunks (1) and (2)
are still in the same page, they can be made adjacent, and the goto

M removed (as it ecould be from any chunk which grisinally ended in
this instruction and is adjacent to (2) in the final arrangement).

Sata chunidng

IMP is en Algol-like language where much of the data will be
dynanieally created on a run-time stack; for this to be chunked in
the manner defined previously is not feasible., Own (static)

4eS

variables could be included, the own variables of each subroutine
probably being conveniently regarded as e chunk, On meny
timesharing systems, the requirement of shareable, ande-m
invariant, code would preclude the packing of data with the code
which refers to it. In any case, only a little thought is
Whmhﬁmdam,mwm,mm
al mogt a single page of working set sisze - over the policy of
simply ensuring that as code sections sre packed together, so are
the corresponding data sections.

In general, the choice of effective chunk bounderies on data
will be fairly clear; there are however two practicel considerations
against dsta-clunking,

1) Collection of reference data will probebly require
interpretation.

2) Repacking data chunks and keeping references correct can
be very complicated.

RS confines itself to code (and some constants) only; it would
therefore be of little use with progrems whose paging problems
arise from large scele date reference: matrix inversion, list-
procesaing etc. I% is in any case felt that such problems ere not
amenable to formal restructuring methods, and are better attacked at
the design stage (refs.10,19).

3., COLLECTION OF REFERENCE DATA

Unless some sophisticated hardware monitoring deviee is
available, the methods of collecting the necessary chunk reference
information are:

1) interpretation of the program,

4eb

2) monitoring by means of additional instructions planted
within the progran.

Interpretation is almoct essential if data chunking is to be
included, the generation of instructions to trap every data
reference being hardly practicable. However the slowness of
interpretive methods makes then most unsuitable for gathering the
amount of representative data required, especially for a large
piece of data-dependent softwere where meny runs night be neocessery
before a valid restructuring ean be performed. Assuming code
restructuring only, we therefore look at just where instructions
have to be incorporated for a program to monitor its own behaviour
in order to yield the required information,

We note that the data in the similarity array can be collected
by knowing only the processing instants of chunk ghangegs behaviour
within a chunk, or in a routine external to the area of
restructuring is not relevant, llow onee the 'dropping through'
case has been eliminated (see last section), a chunk can only be
entered by a tranch instruction. Thus all necessery information
can be obtained by monitoring the instructions which transfer
control, there being no need to include any which are known to lead
outside the restructuring area (although entries jngto the area may
have to be trapped), or which are lmown to leave control within the
seme chunk, This can be achieved by replacing all such branches
by instructions which pass the original target address to
monitoring routines. These can make a record of the target clhunk,
update the similarity array if necessary and then return directly
to the target address in the program. The only additional data
required is a means of finding the containing chunk from the
target addreas.

bl

for every branchpoint (excluding those following procedure calls).
A monitored branch instruction consists of a load of the target
internal label into a registor, followed by a jump into memiter,
Arrays which were formed at compile time cen tranclate internal
labels both to addresses and containing-chunk musbers.

The efficiency of the self-monitoring progran thus depends on
the nunber of instructions which have to be repluced, and on how
efficient the monitoring routines can be made. Most computation
and additional store reference is performed whon the similarity

array has to be updated at the end of cach (simulated) working set
interval; the length of this then also has an effect.

4e PARTIAL CLUSTERING

A clustering algorithm will teke the similarity arrey end
dtmkatmuhmm,andpmmﬂaunofmchmkmimw
the method of III.8, Here we describe the 'partial clustering'
procedure mentioned earlier,

Suppose there are m chunks, but the maximun size of similarity
array we are prepared to accept has space for only n (less then m).
mﬂngﬂnm”tormmm.dxﬂhr&ty&hhm
stored for n of the chunks -~ denote this subset (the gimilarity
subget) by N, I can be chosen arbitrarily, but given no other
information, the first n ehunks referenced during the runs can be
used. in arbitrary subset might be wasteful in that some of its
chunks may not be referenced at all. Ideally, the similarity
mwmumnmmummmtnu
not known in edvence which these will be. Apart from the

similarity data on N, a count is kept of the frequency of use (i.e,
nunber of intervals during which access is made) for each of gll the
chunks.

When it is decided to perform the first clustering, a search is
made for the highest frequency of use, say £, of all the chunks pot
in N, The clustering procedure outlined in III.8 is only
continued up to the point where no inter-group similarities remain

which are greater than f. 1% cannot be taken further because
chunks not in N may have had linkeges es great as £ (if a full size
sinilarity aivay had been formed) with clunks in N, The program

ie now regarded as consisting of a pey set of chunks: the original
m-n not in N, any groups which formed during the clustering
process, and those chunks in N whieh did not go into groups.
Unless no groups at all were formed, there will be less chunks than
before.

The process of data gathering and clustering is now repeated,
but with one important improvement. The subset N need no longer
be randon, since we now have data from the previous set of runs,
Taking the frequency of use of & group of chunke as that of its most
used member, we take as our subset N, the n most commonly used
'new chunks's In this way although little clustering may take
place during the first restructuring, the second and subsequent
ones are far more succecsful, and the number of chunks decreases
rapidly.

A complete clustering can obviously take place when there are
less than n chunks remeining. Alternatively, some accepted degree
of use can be decided upon, say 0.1% of the total intervals, and
the process completed uhen none of the ehunks outside N are used

49

more than this, it being assumed thet the contribution of such
chunks to the mean working-get size is ingignificant.

The smaller is the similarity array, the more times the cycle
of data gathering and restructuring must be repeated. However
the data in the early stages need not be representative in the
‘sense of 111,6, since only a mubset of the chunks are really
involved. This is particularly true of the initial monitoring
phase when little clustering will probably oeceur; it primarily
serves to obtain the approximate relative use frequencies of the

more common chunks, It is not easy for RS to decide when
sufficient data has been obtained; the scheme makes no attempt to
do this end leaves it to the discretion of the user when %o
restructure,

5. REPACKING CHUNKS

The clustering procedure caleulates how clunks should be
grouped into pages, but actually achieving this packing can give
practicel difficulties. Again we have the situation that the
finer the level of chuniing, the more problems are created; if we
had adopted the complete unit of compilation as a chunk, repacking
would be simply achieved by presenting the modules to loader in
the eppropriate order.

Repacking involves chenging all references to (relative)
instruction addresses within tho restructuring area. However it
is just such references that have already been intercepted because
of the requirements of monitoring; relocation of code thus
presents fewer additional difficulties. In RS, all the relevant
branchpoints have their addresses in an array used by monitor

4410

(see section 3); if #epacking is followed by updating this array,
mm.Wmmmmmumm
without altering the code in each chunk at all. The partial
elustering process can thus be physically carried out quite easily.,

The final replacement of monitoring instructions with the
originel jumpe is complicated if the former take up more space.
(nm.‘mwummmmnanw
was such that the monitoring instructions took up no more room
than those they replaced, and no problen arose - see Appendix B),
One could overurite the superfluous code with dummy instructions,
but this neans that the extra size of the code may counteract the
gain achieved by restructuring. Both this problem, and the
untidyness and heavy machine dependence of the repacking routines
(in RS) can be alleviated by operating on an intermediate code
which is machine independent, with symbolic code eddresses.
Repacking would be performed on this, the only machine dependent
data required being the clunk sizes (whon nonemonitoring code is
produced), and the page size; a translation of the intermediate
code would produce cbject code, monitoring or othervise.

In sone eases it might be possible to restructure at the
source language level itself, However normally the structure of
the language (seope of labels and names, do-loops, ete.) apart
from the structure of individual statements (e.g. see gycle
statement in chapter V), makes it impossible to perform the
restructuring of small instruction chunicts at this level. In IMP
all that could be achieved would be the repacking of subroutines
within their containing block, quite simply performed on the sourece
code. It would be also necessary to have a directive such as

align on page boundary within the language.

1. INTRODUCTION
Thiachptcrducﬂ.boatba‘brucﬁwoﬂuuotunmm
8chene designed to improve paging behaviour of IMP prograns written
for the ICL 4~75. This is a high~speed 32 bit word machine (with
an instruction set identical to that of the IBM 360/50), If
operated in paged mode, a virtual store is provided to the extent
otthM;mmmummﬂmm
mechenien regards the virtual store as divided into 16 page
'segmenta’. Addresses are specified in hyleg which are 8-bit
undts; a wopd aligned eddress is thus one divisible by 4.
Awimman-mmzlus.

An initial motivation for implementing the restructuring scheme
was the proposed Edinburgh Multi-Access Systen (EMAS), a general
purpose time-sharing system being written for the 4=75 by a joint
MMI@NWWMMWW&WW
Science. However the system is not yet fully operational (at the
time of writing), and all results of program restructuring have
been obtained by rumning under 7J, a batch system run on the 4~75 in
non-paged node. This was made possible by using the System
Interface liodule (SIM), written by the Edinburgh Regional Computing
Centre. mmmm&s—wm«mtwd73,
allowing the loading, linking and running of object program files
vhichhunMpro&mndtothnMMuﬂmnndW.

An evaluation of the results of restructuring could be made
quite slmply by means of the very monitoring instructions which the
scheme plants in the programs under test. These were used, apart

5.1

fron gathering chunk reference information, to investigate paging
behaviour (over code only), so that werking set graphs could be
constructed before end after restructuring, There was thus little
logical difference between obtaining such results on EMAS or
73/S1M, Hovever two arees of informetion ave necesserily lacking:
the effect of WS size on program performance under a typical time-
sharing scheduler, and the performance of the restructuring scheme
dlgelf in a paged environment.

mma—mmmmuotmumnm;
large programs. However the size of these makes them unsuitable
for providing examples of output from the scheme in the compact
form necessary here. Thie chapter, therefore, makes all its
illustrative references to a single mmall progran written
especially for this purpose, The code of this progranm is only
mmapmmm,éwmmuum
it are of no significance; but it is hoped that it demonstrates the
good and bad features of the scheme.

Low level aspects of design and implementation are left to
Appendix B, Of IMAS iteelf, few features concern us here (see
refs.3%y35), those which do are dealt with very briefly,

2, PROGRAMS IN IMP

The restructuring scheme is designed for programs written in
IMP, the language in which most of EMAS is witten. IMP was
developed from Atlas Autocode, an Algol-like language with block
and procedure structure and a run-tine data stack. Such features
awmumwmmhwmwm
example and the discussion in section 4.

5.2

Inita of compilation

Some of the envirommental features of IP have developed in a
alightly ad hoc mammer and the terminology to date is not quite
gtandard; thet adopted here is personsl. The unit of compilation
- the podile ~ may consist of either of the following,

1) A pain-nrocram. This has ite outer block delimited by
hezin and gpd of progran.

2) One or more gghernal xoutines. The module will have the
form:

sxkornal roubing pl(possible paremeters)

and
extomal, routine pR(.o)

L2

ey

ees

torninated by snd of file

Each external routine is similar to any other procedure in an IMP
progran, except that it may be entered, and paramoters passed, from
an independently compiled module. The word ggtermal, and the
fact of not being contained in an outer bloeck, is the only
difference in form.

Object Frogran files
An object program file in BMAS (ref, 35) is divided into three
digtinet areas.

1) Code area: this contains instructions and constants,
invariant during the rumning of the program, and thus capable of
being shared if necessary by independent users.,

5.3

2) General linkage area pattern (GLAP): this contains
initialised deta required by the program. There will also be
space for the insertion of linkage information (i.e., sbsolute
mmammmuwum)muﬁ;mumm
to other modules,

3) Linkage dete erea: containg informetion about the entry
points in the code of fhig file for use by the loader in setisfying
external references by other files,

Such a file is produced by compilation of an IP module, A
main~progran will have a single entry point at the begimning, given
a standerd nane by the compiler; a set of external routines will
have one for each routine(naned pl, p2)etec, in the exsmplo above).

!omupmmautotobjmuhumnhmh
the loader - it is assumed that one of these files containg a main-
prograns The user is provided with his own copy of the GLAP
(known as the GIA) for each file, neecessery linkages are made end
the main-program is entered, This entry, and 21l entries made to
MMMM.MMWM“%MM
certein mashine registers and parts of the run-time stack, The
mmo:apmmmmmmmmmnmm,
providing that the code produced, and the object file formet follow
the conventions,

If at least one module is in IMP, additional associated externsl
routines are sutomatically linked in. Apart from standard I1/0
routines thare is a module lmown as Pexn (permanent) containing
standard matorial vequired by the compiled code but not comveniently
ecompiled in-line,

Thmtotnmmmrmmutbm,tb

Sele

unit of compilation. Thus if the required area of restructuring
is a set of external routines, these must be compiled togethar.
Reference data is collected by en enlarged Perm: this must be
explicitly linked in at run-time since the chunking I compiler is
not one of the standard system compilers. It is assumed that the
code area of an object module begins on a page boundary; obviously
nothing can be achieved if page boundary positions cannot be
guaranteed.

3. SUMARY OF RESTRUCTURING SCHEME

Fige5=1 shows the course of the production of an object module
with optimised structure. The production or use of files is shown
by dotted lines.

The module is compiled to give code conmtaining monitoring
instructions, and additional tables in the GLAP, Ve shall say
such an object file is in 'Meformat' (Monitoring). Compilation
also produces a ghmnk inforpation f£ile which contains various
information (size of chunks, ete.) necessary to the restructuring
routines, and stores reference data (notably the similarity array)
between runs.

After each run of the object module, or to be precise a progran
containing it, the chunk information file is automatieally updated
with the latest chunk reference data. (The information file is
not required for the program run, but only for the storing of the
similarity array at the end; under EMAS, although the information
file could only be associated with one process at any time, others
could share the object file if they so wished,) When it is
decided that sufficient data is collected (a user decision) the

545

chunk
information
file

P sl -
I\

I
I
I
I
I
I
I
|
|
I
J
I
|
I
I
|
l
|
I
I
I
|
I

produce
final object

Fig 51

>

object
(M=format)

-+\

restructure
object

final
restr?

object file
(N-format)

Restructuring scheme

source

run object

update chunk
information
file

sufficient
runs?®

restructuring progran is used to produce e new object file (still
in M-format) end chunk information file., For a large moduls,
this process of running and restructuring may have to be repeated
several times, After the final restructuring (a gysten deecision),
a further program comverts the M-format object file to an ordinary
N-formet (Normel) file,

4. THE COMPILER

The compiler for the restructuring scheme was developed from
an early IMF compiler written for the EMAS project by M, Falla,
asslsted by A.Freeman and T.Head. When implementation had
reached an advenced state, this compiler was superseded by another,
and effectively sbandoned, Ite evailability, end a structure
highly suiteble for the necessary developments, made it an obvious
choice as a bagis for the restructuring scheme. A brief
structural description, end the changes which were msde, are given
in Appendix B.

1f required, the compiler will produce en l-format object module
directly; its normal use however is to produce a chunked and self-
monitoring object program, together with an associated chunk
informetion file. The whereabouts of these files must be
specified on appropriate job control cards. M-format code is
mﬁlythunlﬂthuﬂ-ta‘t,mﬂnﬂwumchpuw
ginee it Wmammmmotmmme
routines.

Figs, 5=2,5=3 chow the compiler listing of a smell demonstra-
tion program (this generates pseudo-randon bridge hands, and
prints then with an opening bid). The statements omitted at the

546

A I T ead'VT LVERAMANIINATY VEeEN LN L2207

Fig 5-2

%ZBYTEINTEGERARRAY HAND(0:3,2:14)
15 %ZOWNBYTEINTEGERARRAY S(0:3)="S','H','D','C"’
16 #INTEGER POINTS,BALANCE,LIMIT,CUT
17 %ZINTEGERARRAY DIST.PTS(0:3)
18 ZOWNINTEGER HANDCOUNT=0 :
19 ZROUTINE INITIALISE:; ! INITIALISES PACK
20 %INTEGER I,J.K
21 K==1
22 AZCYCLE I=0,16,48; | SUIT
23 %ZCYCLE J=2,1,14; ! VALUE
24 DEAL(K+J)=1+J
25 4#REPEAT:; K=K+13:; %REPEAT
26 XEND; ! OF INITIALISE
27 YROUTINE SHUFFLEs | SHUFFLES AND CUTS PACK
28 ZBYTEINTEGERARRAY A(1:52)
29 RINTEGER I,J ‘
30 %CYCLE I=1,1.26
L% A(2*I=1)=DEAL(I); A(2*1)=DEAL(53=1)
2 %REPEAT
33 CUT=CUT+11
24 %IF CUT>=52 %THEN CUT=CUT=52
35 XIF CUT=0 XTHEN CUT=1
36 %CYCLE I=1,1,CUT
Bl DEAL(S2-CUT+1)=A(1); %REPEAT
38 ZCYCLE I=CUT*1.1,52
39 DEALCI=-CUT)=A(I); %ZREPEAT
40 %END; | OF SHUFFLE
41 %ZROUTINE DEALPACK
42 %“OWNBYTEINTEGERARRAY T(11:14)="J",'Q"', "K', ",
43 %ZINTEGER I,J,K.M
A POINTS=0;BALANCE=0
45 %IF HANDCOUNT&7=0 %THENSTART
46 NEWPAGE; %ZPRINTTEXT'BRIDGEHANDS'
47 NEWLINES(3): Z%ZFINISH
49 XCYCLE J=2,%,14
50 HAND(I,J)=0:; %REPEAT: %REPEAT %5
51 %ACYCLE I=1,4,49
52 HAND(DEALCI)>>4 ,DEALCI)&15)=1
53 ZREPEAT
S5 K=0; PRINTSYMBOL(S(I)); SPACES(3)
56 M=0; ! COUNTS POINTS
5% %ZCYCLE J=14,-1,11
58 =>1 %IF HAND(I,J)=0 -
59 SPACE;PRINTSYMBOL(T(J)):K=K+T:M=M+J=1(
60 4 1: %REPEAT
61 %“1F HAND(CI,10)#0 %THENSTART
62 WRITE(10,2):; K=K+1; %ZFINISH
63 ./OCYCLE J=90"102
64 =->2 %1F HAND(I,J)=0
65 K=K+1; WRITEC J.,1)
66 7 %ZREPEAT
67 %IF K=0 ZTHEN %PRINTTEXT' =='
68 ZIF 1<=M<=3 %ZAND K=1 %THEN M=M=1
69 PTSC(I)=M; POINTS=POINTS+M; DIST(I)=K
70 ZIF K>5 %ZTHEN BALANCE=BALANCE+K=5
71 #IF K<2 %THEN BALANCE=BALANCE+2-

Compiler Listing

{4 NEWLINE:? #ZREPEAT
73 HANDCOUNT=HANDCOUNT+1

74 %ZEND: ! OF DEAL

75 INITIALISE:; READCCUT); READ(LIMIT)

76 =>2 %ZIF 0<=CUT<=52

17 %ZPRINTTEXT 'INVALID CUT':; %STOP

78 2 SHUFFLE; SHUFFLE; SHUFFLE? SHUFFLE

79 1: SHUFFLEs DEALPACK

80 %BEGIN; ! BIDDING BLOCK

81 %INTEGER LS,NO.SUITPTS

82 #SWITCH B(0:20)

83 ZINTEGER I, N

84 %ROUTINE BIDSUIT(ZINTEGER 1)

85 WRITE(I,1): SPACEs PRINTSYMBOL(S(LS))
86 %END ‘

87 ZXROUTINE NTC(ZINTEGER I)

88 WRITECI,1)7 %ZPRINTTEXT' NT'

89 %END

90 NO=3

91 %CYCLE 1=0,1,3

92 %IF DISTCI)>NO %THENSTART

93 LS=1; NO=DIST(I)

94 %FINISH:; %REPEAT

95 %IF LS=0 %AND DIST(3)=NO %THEN LS=3
96 SUITPTS=PTS(LS)+5*(NO=-4); SPACES(18)
97 N=BALANCE: %IF N>3 %THEN BALANCE=3
98 ->B(BA|ANCE)

99 BC(0): =>2 %I1F POINTS>=12

100 NB: APRINTTEXT' NO BID's =>1
101 2: %1F POINTS<=15 %THENSTART
102 «>3 %IF SUITPTS>10
103 NTC1)s =>13 %FINISH
104 %ZIF _POINTS<20 %THENSTART

105 3 BIDSUIT(1)s =>1; %FINISH
106 %Z1F POINTS>=23 ZTHEN =>TC
107 %1F SUITPTS>=15 %ZTHEN BIDSUIT(2) %ELSE NT(2
108 ->1
109 B(1): ZIF POINTS=11 %AND SUITPTS>10 %THEN =>3
110 ->NB %IF POINTS<=11
111 ->3 %IF POINTS<=18
112 =>7 %1F POINTS<22
113 TC: ZPRINTTEXT' 2 C(ACOL)': =>1

114 B(2): =>PR %IF POINTS<10
115 ->6 %IF POINTS>=12
116 =>3 %1F _SUITPTS>10; =>N8

117 B(3): =>PR %IF POINTS<S

118 6 =>3 %IF POINTS<=18=N

119 =>TC _%IF POINTS>=22=N
120 7: ZIF SUITPTS>15 ZTHEN I=2 ZELSE I=1
121 e

122 PR: SUITPTS=5*(NO=4)+POINTS

123 ->NB %IF SUITPTS <=20; =>9 %IF 1S<2
124 9: %IF SUITPTS<=27 %THEN 1=3 %ELSE I=4
125 =>NB %I1F SUITPTS <=22

126 %ZIF SUITPTS >30 %THENSTART

127 I1=5; =>8; %FINISH

128 8: BIDSUIT(I)

129 - %END:z | OF BIDDING BLOCK

130 NEWLINES(3)

131 ->1 %I1F HANDCOUNTSLIMIT

132 %ENDOFPROGRAM :

Fig 5-3 Compiler Listing

CODE OCCUPIES

ROUTTABLE SIZE

CHUNKNUMBER

CHUNK
ADDRESS
LINE

CHUNK
ADDRESS
LINE

CHUNK
ADDRESS
LINE

D

11
2668
82

21
3762
114

4246

164

224
19

12
2768
84

22
3836
117

BYTES

3 4
460 822
27 36
13 14
2928 3016
87 90
23 24
3866 3926
118 120
Fig 5-4

>
1048
41

15
3308
99

25
3968
122

1406
51

16

3338

100

26
4042
124

Chunk Posgitions

1682
-7 4

17
3360
101

27
4142
128

1988
63

18
3480
105

2358
75

19
3630
109

10
2506
78

20
3738
113

beginning are specifications of external I/0 procedures. The
source program is listed as it is read; mince the compiler makes a
gyntaex analysis of gll the progranm statements prior to further
processing (this wes originally designed to improve paging behaviour
of the compiler), the chunk bounderies are not worked out when the
listing is made. These are given at the end of compilation
(£ige5=4) and have been ruled on the listing for clarity. The
following discussion of the choice of chunk boundaries is carried
out with reference to this program. Keywords, for example
#BEGIN, in the listing are written here as begin; the jump
instruction '-> label', is denoted by 'gotio label',

Choice of chunk boundarios

A clunk boundary sppears in the following positions.

1) Before and after procedure and function declarations. Thus
one appears before line 19 (pouting initialise), and after line 26;
in this case there is no finer subdivision. lote there is no
boundary after the gnd at line 129; this is simply the end of an
inner block (starting at line 80), and program control will pass
through it,

2) Before and after switeh declaretions, The statement
'suiteh B(0:20)* at line 82, compiles to a vector (over which
progran eontrol jumps) of 21 words which contain the (relative)
instruction addresses of left-hand labels B(0), B(1), ete. It
happens here that only four of these labels are defined - the other
addresses in the vector will be set 'unessigned’'. Such a vector
is always regarded as a single clunk, Here the final boundary is
drawn after 'integer I,N' which is a doclarator generating no code,

3) Before explicit left hand labels, but only if:

5.7

a) the preceding statement is a branch (conditional or otherwise), or
b) the code length of the curremnt chunk is greater than some limit
(currently 256 bytes, i.e. 1/16 of a page). _
Thus label 2 at line 78 causes a chunk boundary, being preceded by
a ghop instruction (which terminates the program run). Similarly
there is a boundary at B(0) (line 99), preceded by a goto, and
?C (line 113), by a conditional goto, On the other hand, label 1
(nmm)bumt”abmdnnitmmmam,
and the preceding chunk boundary is well within 256 bytes. lote
that a procedure call is mot counted as a branch in (a) above =
thus label 1 at line 79 is not preceded by a boundary, despite the
procedure call 'SHUFFIE', There are no side exits from IMP
procedures, so control must return from 'SHUFFLE' hofore reaching
the label, The case for a boundary after a procedure cell is thus
not congidered as strong as that for one after an ordinary brench,

4) Before gygle stetements, but only if (b) holds. GCyole
heralds a loop (similer to the Algol for statement), the end of
which is marked by yepeat. (The code generated at gydle consists
of initialisation code, setting up the loop, followed by the
implicit left~hand label, the top of the loop proper. The ehunk
boundary, if one is generated, goes before this labely As
examples, line 36 is preceded by a chunk boundary, line 38 being
vithin 256 bytes of this, is not,

5) Before gtaxt (in conditions), but only if (b) holds,
start and Linlgh are statement brackets in IMP, used in the
construction:

548

if A then start

Linigh elee gtart

Lindah
The glge clause is optional,
mmmummmmbmumm
in the illustrated program, Line 105 may appear to be an example,
but the ehunk boundary here arises from the label 3 following the
implicit jump over the 'then' clause, '

The ebove rules for the determinetion of chunk boundaries
mist be viewed with the realisation that the total mumber of chunks
is not %o be too large. in average of 25 chunks per page would
give 500 chunks for a 20 page module, Using a similarity array
of gide 100, .tmsmmmwmbow.
This is aceeptable for such a large program, but more chunks would
Mhmmuammvws
extending the time of optimisation and making it less worthuhile.
Thus although it is easy to point to omissions in the choice of
boundaries, it is less ea@y to find an improvement that does not
lead to appreciably more chunks. The above selects those
branchpoints which eppear to have the strongest case (section IV,2),

Some diseussion may explain the rules adopted. Congider the
following situation.

(1) &L A then goto L
(2) M -

The statement (1) may be dynamically distant from (2) for two

5.9

respons: elther the path to L may be taken, or label M reached from

somewhere else., If statement (1) is not a branch, there is less
reason for a boundary between (1) and (2). Thus suppose we hsve:
MM-—T———
code length 1

d (1) =1
(2) M3 oes

Suppose in the above example, & boundary is not put before M, but in
fact M is normally entered from elsewhere, the preceding code
perhaps being concerned with initialisation, An amount of space
1 will then have been effectively wasted within the page; the
greater is 1, the more importent this may be. This is the reason
for the eondition (b), asbout the length of the current chunk, being
applied at certain times, An example in the illustrated program
is et line 75, onwards. The initial entry to the progrem reaches
here (after jumping over the procedure declarations). Up to
label 1 (line) is initialisation code, the mein loop of the
program returning to label 1 as each bridge hand is gemerated.
Thus although a boundary before this label would have been more
intelligent than that before label 2, the only “wmste' is the
comparatively short quantity of code generated by line 78, ir
label 2 had not been present, the initialisation code would have
been long enough to force a boundary before label 1.

Boundaries are more likely to appesr before agplicit left hand
labels than other branch-points - it being considered that labels
are likely to be entered from a number of statically distent
points. The last third of the example program has a large mumber
of chunks compered with the rest, the explicit labels produecing

5.10

more boundaries than gygle or gtart statements, Whether in
Mmuammmmwmdw
in the module under test; it may be that the preponderance of
explicit lebels in IMP programe is still an influence of the Atlas
Autocode from which it was developed (this did not contain the
statement brackets gtaxt or £inigh). The chunking part of the
compiler has been written so as to make changing the choice
procedure for chunk boundaries an easy matter.

The idea of obtaining information from the programmer as to
the choice of chunk boundaries was rejected as being an interference
and intolerably arduous in a large program. Knowing the algorithm
he can of course force a decision - for example, writing goto 1
before line 7, in the program shown. There is a case for the
provigion of a directive which forces a chunk boundary and which the
programmer may add if he wishes having seen the boundaries which the
compiler produces.

5. COLLECTION OF REFERENCE DATA

At run-time, the desired length of working set intervel (the
slpilarity intexrval) mist be specified to job control, and a speeial
rmmu;ummmm,wmmwwu
then built up in the GIA of the module concerned. Processing
time was increased about five times in the experimental programs.
This is rather more than hoped, but the monitoring code in Pern
could have been rewritten in machine code to give some improvement.
Little effort was made in this direction: the processing time was
not great enough to be a problem in the tests made, and the
performance in a time-sharing system would probably be a function

5.1

far more of paging behaviour than processing time. (As an example
of the extra paging, consider a program with 300 chunks (say 12

pages of code) and a similarity array of side 100, The array is
symmetrical, and its elements halfword, it would thus ocaupy 2525
worda, With this number of chunks, the additional tables would
occupy about as mich space again, so there would be an extra five
frequently accessed pages. The additional length of code in the
monitoring Pern is quite small,)

If required, additional 'page monitoring' can be simultaneously
included, In this case, apart from recording the chunk entries
end processing times (meldng allowance for the extra time spent
obeying the monitoring code itself), Perm enters a further routine
which can note the current code page. In this way, any points on
the average working set graph can be found (valid because the
F-format modwle is the same size as the normal compiled one would
have been). Use of 'page monitoring' increases processing time
8till more - about double in the tests made.

At the end of each run (when the instruction gtop or
endofprocran is reached), the similarity array and other reference
data is written to the chunk information file (if this has not been
specified, the results are simply lost), or merged with any
information there from previous runs. If the similarity array
embraces all the chunks, merging consists simply of adding on the
current array; but if not (section IV.4), the similarity subset on
the file may not be the same as that in the current run, In this
cage; a valid sgimilarity array may only exist for the intersection
of the chunk subsets (see Appendix B), The problems which then
arise may be visible to the user through the increesed time of the

5.12

file updating process.

Fig.,5-5a shows the end of the printer O/ from a 1un of the
small demonstration program. The similarity interval is 1Oms.
(shown as 1000, since the unit is 10 microseconds). The only
output here from the monitoring Perm is the final line, giving the
mnber of similarity intervals. The remainder, after the
'progran ends' message, is output by the page-monitoring routines.
These have recorded pege references in intervals of lengths between
one quarter and four times the similarity interval. The 'total
faults' column gives the mumber of pages accessed in all processing
intervals of each length; thus mean working set sizes can be
calculated, For example, in this run the mean WS size for the
similarity interval iteelf (1000) is 217/190 = 1,14, lormally the
output from several runs will be used to evaluate the results.
We elso have the frequency (mumber of similarity intervals) with
which each page is accessed. Fig. 5-5b shows similar output fron
a large program (progranm 5 - see next chapter).

If required, importent parts of the clunk information file cen
be printed. An example after two runs of our test progran is
shown in fige. 56, 5«7, The quantity 'selectno' is the size of
the similarity array if this has been restricted to less than the
number of chunks, It wes here deliberately made very small, at
18 small enough to ensure partiel restructuring was necessary (for
demonstration purposes). This meximun allowsble length of side of
the array is determined at compilation by an initialised variable in
the compiler (normally 80, at present) - it could be made a data
pareneter to the scheme if necessary.

For each chunk, its length in bytes is given, for use by the

5.13

N

OO ¢
e~ >» 3
0O~ O N

L

10 8 &
10 98

OcOoIxTW”W
> XX
O

10 ¥
: NO BID

hkkxkk PROGRAM ENDS %k

INT. LENGTH NO. INTS TOTAL FAULTS

250 728 751
500 - 380 408
1000 190 217
2000 95 122
4000 47 74
PAGE ACCESS FREQUENCY (INTLENGTH= 1000)
¥ 190
2 27

INTERVALS 190

INT. LENGTH NO« INTS TOTAL FAULTS

625 877 2558
1250 439 1707
2500 219 1122
5000 109 719

10000 54 416
PAGE ACCESS FREQUENCY (INTLENGTH= 2500)
1 51
2 171
3 72
4 24
5 51
6 77
7 22
8 23
9 63
10 57
11 92
e 93
13 95
14 88
15 141
16 2

INTERVALS 219

b)

Fig 5-5 Output from Monitoring Routines

)IT ASSQCIATED FILE

JNS SO FAR
0 OF INTERVALS
ELECTNO

0 OF RECHUNKINGS

0 OF CHUNKS
ILE LENGTH

HUNK
HUNKLENGTH
RANCHTO
RANSLATE
REQ OF USE

HUNK
HUNKLENGTH
RANCHTO

RANSLATE
REQ OF ySE

N =~ -

21
74
101

404

2
8 362
0 19
2
-

22 23

30 60
135 129

4
218

116

24
42
147

2

5
358
30

97
25
74
152

5

8. 9 10 11 12

276 306 370 148 160 92 152

6 7
32 40
6 7
209 204
26 27
100 104
147 0
. 16

0 58

Fig 5-6

0 0 59 0 0
8 9 10 11 12
226 e 182 59 11

Chunk Information File

13 14
88 292
0 0
. 13
8 63

15
30
101
14
31

16
22
102
15
40

17

120
113

10

18
150
102

12

20
24
102

LEADING PARTS OF CHUNKING ARRAY

_. .
OCVOONOWV LN =

—a
—

-l ad wd =B e b
CO~NOWVMES WY

NN

3 B 5 6

1 0 0 0

1 0 0 0
115 68 9 0
116 57 19

97 59

209

-

7 8

0 0

0 0

0 2

0 0

39 27
183" 377
204 196
226

Fig 5-7

9 10 11
2 1 0
2 1 0
1 79 40
0 80 0
0 58 0
0 el 0
0 26 2
0 53 18
2 1 0
182 59

59

Similarity Array

==
~

cCUW-_2000000

—
—

—
—

13

NO OVvWoOo o

-2
L o

~n

W W —
- L2 O O NOODO=-=200

W -
- N

-
w

N W ~N
NO O OO W00 OVO O

oSN
O -

O VOOO NOMO O o

VNN - v o
COW~N VOO ™

(=RejejleleleoleolelelefoleNeleleRe)

.
-J

-
o

(= RejlejleBeBalesBeleleBeleleleleleRlele)]

restructuring process. The line 'branchto' will be explained in
appendix B, '"Translate’'; only present if 'pelectno' has
mmzmmm.mimsmmamnmmmty
array - thus the 13th. row and colum of the latter refers to
chunk 14. Although a similarity array of size 18 was allowed,
the two mubsets of these two runs were not the same, and data on
only 16 chunke could be Lept in the similarity array. The last
line gives the total frequency of use (in sinilarity intervals) of
each chunk in the runs %o date. Fig.5-7 shows the complete
similarity array, (lormally only the 2z20 submatrices centred
on the principel diagonal are printed. Since here 'selectno’ is
less than 20, we obtain the whole array). As an example, note a
common but unfortunate situation, from the restructuring point of
view. There is a high sinilarity between chunks 3 and 4, and
between 3 and 27 (translated to 16 in the array), but chunks 4 end
27 have only two intervals in common, Chunk 27 is alweys shortly
followed by 3 and this leads to chunk 4, but the latter is nearly
always too distant from 27 to be in the seme 1lOms., time-slice.

6. ERESTRUCTURLNG

When a seguence of runs is judged sufficiently representative,
the user calls the restructuring program. This produces a
restructured object file - still in M-format -~ and a new chunk
information file. lNormally the total number of chunks will have
decreased, sone having merged during the clustering process
(see IV.4). If no chunks outside the similarity subset were
referenced at ell in the last series of runs (or the array embraced
all the chunks anyway), a £imal restructuring will be performed.

5.14

This means thet the clustering process proceeds to completion, and
each group of chunks is output from the stert of a page boundary,
ingtead of simply following one after the other, =8 when a partial
clustering has teken place. Hote that even a final clustering
produces sn objeet file in M-format; this is necessary at present
in order that the page monitoring routines can be used %o
investigate final paging behaviour, A conversion progran is used
to overwrite the monitoring branches (tables in the chunk
information file are required), to produce en N-format file,

With a large module, the normal course will be to repeat the
process of run and restructure until the scheme produces a final
restructuring. The paging behaviour will improve slightly each
time - the grouping of chunke although not correet with respect to
page boundaries, will have some effect, If a restructured version
ie required guickly, one can demand a 'final restructuring' eny
time, and produce an N-format file from this. (This could be used
for temporery service purposes while continuing the optimisation of
the original version). The effect of premature final
regtructuring is reported in the next chapter.

The restructuring program is in two distinet phases: (1) the
clustering algorithm, which works out the new chunk groupings, and
(2) the section which works out chunk orderings and generates the
new files. (See appendix B for some of the problems which arise.)
Fig.5-8 shows output from the first restructuring - from the array
of £ig.5=7 « of the bridge-hand progran. Two groups of chunks
have formed; there are only 17 chunks in the new object medule (and
the new chunk information file). NHote that the actual chunk
numbers are given under the 'old chunks' heading, not the translated

5.15

W

O

RECHUNKING ROUTINE

INTERMEDIATE RECHUNKING

OLD CHUN

v W n

12
13
17

KS

10 $- 11 #re" 16

—————————

224
228

354
218
358
160
104
9
22
22

2%e
268
298
370
148
158

88

120

15

NEWCHUNK

1

2

3

4

5

6

7

8

9

10

11

VE

13

14

15

16

17
% %k k- 0
% de ok 224
% o e K 452
% e ke 806
%* % e R 1024
krxw 1382
*xkkx 1542
*hkkx 1648
wexx 1740
*kkk 1762
ek 1784
**kk 2078
*kwew 2346
*uwk 2644
*kxkx 3014
kxkk 3164
**;* 3316
*wkx 3404
Fig 5-8

Output

from Restructuring Program

P S —————
e ————————

b e i e e i s e) e SR S\l B Sl i B S

RECHUNKING ROUTINE

FINAL RECHUNKING

INTERVALS 427

Fig

5=9 Final Restructuring and Run

b)

NEWCHUNK OLD CHUNKS
1 1 2 4 12
2 11 17
ke 0 1 224
Je oo v 224 2 228
Wk 452 3 1332
*uxwe 1784 & 1230
—~ *xxv 3014 St 4R
*hww 3162 10 108
*x*xx 3270 12 74
wxwx 3344 6 152
*kkw 3496 ¢ 150
*kkk 35648 p 88
*xkx 3734 8 120
*kkx 38564 13 22
**kkx 3878 14 52
*%kkk 303 1°5 42
*kkk 3972 16 74
*xkx LOOR 1 24
wwhww 4122 17 100
a)
~ =
S A K0 RTE L
H J 6 3
< D 102
] c 7 6 2
NO BID
*xkkkPROGRAM ENDS** k%
INT. LENGTH NO. INTS TOTAL FAULTS
= 250 1630 1631
: 500 855 856
1000 427 428
2000 2935 214
3 4000 106 107
& PAGE ACCESS FREQUENCY CINTLENGTH=
1 427
2 1
<

versions which specify similarity array positions., The three
columns of figures with asterisks show the new addresses of the
chunks ~ gee appendix B, The new object module was run, and a
£inal restructuring performed (necessarily, since the number of
chunks is less than 'selectno'); fig.5-9a shows this (the first line
of chunks is cut off at the right hand gide).

We notice that the only achievement of restructuring this
progran was to remove two chunks not used at all during the test
runs (griginally ehunks 20 and 26), the remeinder of the program
being packed into a single page. Fig.5-9b shows the end of a
long run of the final M-format module; during this run, (original)
chunk 20 happened to be entered once giving the result shown,

Obviously for service use, the conversion program is used to
obtain a final H-format file,

5416

VI BESULIS AND CONCLUSIONS

1, EXPERIMENTAL DATA

This chapter deseribes the results of restructuring four I¥
modules, with code sizes between 4 and 16 pages. The only changes
made to the source modules as received from their authors were the
trivial ones made necessary by the restrictions in the rather
out~of-date I’ compiler on which the restructuring scheme is based,
Some details of the modules (referred to as P,Q,R,S) are as follows.

desaription code-gize (words) no. of
1 page = 1024 wds chunks

P Generator of 4150 59
(nain-progran) W&Qm

from a

structure grammar

A for 8300 268
?ndma'-) ngnmimtm;

syntactic macro-scheme
l(lw) mof&amm e

a

syubol. manipulation

language.

Phase 2 of the chunking 15500 334

S
(external rtn,) IMP compiler.

The number of chunks is determined not only by the length of
the progran but by other factors: mumbers of jumps, programming
style (see V.4). Thue although the choice procedure yields an
average of about 25 elunks per page, this can vary greatly between
programs. In particular P has far less chunks than would be
axpected, Q far more,

For each module, the maximum allowed size (determined at
compilation time) of similarity array was 80. Thus only for

6.1

program P could a complete arrey be generated at run~time, giving
the necessity for only one restructuring. For program S the
number of chunks would have made a larger similarity array edvisable
in normal circumstances.

2, EXPERIMENTS .

The nain experinents consisted of performing the complete
restructuring process on each program, aimed at minimising the mean
working-set size (code only) over 25 ms. periods. Points on the
working-set curves were found before and after restructuring; these
were for the multiples 4,%,1,2 and 4 of the similarity interval.
Figs. 6-1 to 6=/ show the two graphs obtained for each module.
(Note the difference in the scales of the vertical axes in the four
figures.)

The tabloe below gives the zedictions (as a fraction of the
original) in the average WS mize, for the similarity intervel, and
also for 6§ and 100 ms. intervals.

P Q R S

25ms, 0,60 0,40 0.48 0.42
Gins, 0,53 0425 0.36 0.32
100ms, 0,58 0uldy 0.51 0.dd
no, restructurings 1 FA A 6

no. similarity 1100 700 470 640
ints.

For 25ms. intervals, there is a saving in mean WS size of at
least 40% in all the programs. For longer intervals the variation
ip fairly small but the reduction worsens for very short time-
intervals. This is because the WS sizes are very small and the

6.2

Page aize becomes donminant; no restructuring can cause less than
one page to be referenced in an interval,

Below each graph in figs, 6-1 to 6«4 is shown the number of
aimilarity intervals in which each page ies accessed before an after
restructuring (some were not referenced at all aftervards - see
below). lote that in progrems P and R the most used page after
restructuring is accessed less times than the most used before.

Data

All the programs were highly date-dependent; and considerable
effort was required to establish data which was considered fairly
representative of the preaumed use of each progran. Progran P
had & single set of data (giving a long run), prograne Q and S each
had two different sets; while R had three. All the data was used
in each monitoring phase of the restructuring precess. The number
of similarity intervels in the table above refers to the total
number with all the sets of data. The variation in mean WS sigzes
in the same program for different sets of data were generally fairly
emall; the greatest difference was between the two sets of data of
prograen Q (one contained a large muber of macros and the other
mot). The results with the individual runs (initially, and after
restructuring) are shown by the dotted lines in fig. 6-2,

One statistic which appeared not to be reflected in the results
was the mumber of chunks not referenced gi gll during the runs of
each program. This varied from the least in program P, almost
wholly used, to the greatest in program Q, in which aebout one third
of the progran chunks were not referenced at all (this was despite
the data for Q being congidered representative - much of the
unreferenced material dealt with the analysis of assembly-code

6.3

statements which may be incorporated in IMP programs, although
would be rare). This contrasts with the fact that P gave the
greatest reduction in WS gize after restructuring, and Q the least
of the four programs. The compression of progranms simply by the
removal of non-used chunke is not such a significant factor in the
W8 size reduction as might have been thought. This had
accldental support from an early test of program (when an error
existed in the file-updating routine which led to a alightly
invelid clustering (not dotected by examination of the results),
alihough all the umused chunks were still removed, The reduction
in mean VS sizo was then only 15%.

Additional Yegts

Figs, 6-5a and b show the effect of restructuring with different
simllarity intervals. Apart from the 25ms. tests, program Q was
restructured using a 10ms, interval, and progran S uging a 200ms
interval; the worlking set graphs of the results are shown es dotted
lines. In each cage the graph differs little from the former
25ms, restructuring (contimmous lines), but the effect discussed in
III.5 and shown in fig.3-4, is quite visible.

Fig. 6=6 demonstrates premature £igal restructuring with program
R, the worst behaved, although not the largest, program. The
results were obtained with a single set of test data. After each
run, apart from partial restructuring and contimuing with the test,
a final restructuring (see V.6) was produced and a WS curve obtained
from the result. lote the swrprising fact that the greatest
improvement is obtained at the last restructuring, implying that the
positions of lesser used clunks in the program are quite signifiecant.

6u4

3. CoNCLUSIONS

Reorganising parts of a program to improve its paging behaviour
is essentially an engineering problem; the result may beer little
relation to the conceptual logicel structure necessary for good
design, construction and understanding of the program. Thus
nothing can be achioved by attempting to exanine the clumk groupings
produced in such large programs a8 those just considered. This is
en argunment for restructwring being en automatic process with which
the programmer would not wish to be concerned.

A very large degree of improvement is obtainable, although it
mist be borne in mind that owr results are reductions of mean WS
aize over code only, and in the prograns tested date reference
might have been expected %o contribute as much or more to the WS
size as the code. The effect on page-faulting in a gemuine
operating system would depend on the scheduling algorithm; one
would expect that nomally the reduction would be at least as good
as that of the WS size, but it could be much more. Thus we have
not attempted to simulate bohaviour under, say, a restricted store
scheduler (I.4) and claimed (with judicious choice of store eize)
a 95% reduction in page-fanlts; such experiments would be
nigleading and a waste of time,

The severest problems are practical ones: the large quantity
of data, the cost of obteining reference information from the
program, ete. Unless these problems can be solved, discussion of
theoretical techniques for restructuring programs becomes quite
academic. It is hoped that the methods deseribed in this thesis
are sufficiently practical and produce sufficiently large
improvements tc be worthy of consideration in the improvement of
the behaviour of large and frequently used programs. The

645

clustering techniques at the basis of the methods appear to be very
effective in this field and may have more general application in
the area of program structuring: organising, say, the components of
a systen for efficient movement within a storage hierarchy.

Rendell and Kuelmer (ref.2) have written: 'In the present
state-of-the-art, any but the most minor attempts at re-packing are
probably best regarded as last-ditch efforts at recovering fron
inadequate hardware, operating system strategies, and/ar programming
style.' It is hoped that this thesis has advanced the 'state-of-
the-art', if only in small measure encugh to cause some modification
of the above statement.

646

S | (pages)

initial

after restructuring

0 10K 20K 30K L4OK 50K 60K 70K 80K 90K 400K
< (Fs.)

Spread of (25ms. interval) accesses amongst pages

Before restructuring After restructuring
703 21
598 583
581 602
810 108
543 4

Fig 6-1 Results of restructuring program P

(pages)

initial o i

e O aeeN P

oo ®®
n; &

’ .
........
..........)/7
BTN e s e
3

after restructuring

10K 20K 30K LOK 50K 60K 70K 80K 90K 2OOK)
j o ps.

Spread of (25ms. intervals) accesses smongst pages

Before restructuring After restructuring

587 420
623 662
379 175

74 76
105 51
250 28

A2 0
299 0

L5 0

Fig 6-2 Results of restructuring program Q

1

10

(pages)

initial

after restructuring

10

100
T (ms.)

Spread of (25ms. intervals) accesses amongst pages

Before restructuring

Fig 6-3

164
L22
330
115
201
239
227
101
117
211
234
211
176

After restructuring

359
101
411
161

Results of restructuring program R

(pages)

initial

after restructuring

10

100
T (ms.) .

Spread of (25ms. intervals) accesses amongst pages

Before restructuring

Fig 6-4

138
L &L
241

65
181
247

68

62
206
191
272
259
267
263
L19

L

After restructuring

216
65
314
478
115
297
223
90
31
31
21
37

QO OoOwWwm

Results of restructuring program S

(pages)
program Q

..+ (10me. restructuring)

(25 ms. rest

10 20 30 40

& T (ms.)

(pages)
program £

(25 ms. restr.)

\

(200 me. restr.

50 100 150 200 250 300 350 1,00

b) T (ms.)

Fig 6-5 Restructuring to different lengths of WS interval

(pages) program R

(one set of test data)

original

1 restr

10 20 30 Lo
T (ms.)

Fig 6-6 Effect of premature final restructuring

In order of citation.

1.

2.

3.

5.

6.

e

e

DEINIS, J.B. Segmentation and the design of multiprograrmed
computer systems. J. ACM 12,4 (Oct. 65), 589-602.,

RANDELL, B, AND KUEHNER, C.J, Dynamle storage sllocation
gystens. Coma, ACHM 11,5 (May 68), 297-305.

KILBURN, T., EDMARDS, D.B.G., LANIGAN, M.J, AND SUMNER, F.H.
One-level storage system, IRE Tyans, EC 11,2 (Apr. 62),
223235

SHEMER, J.E. AND SHIPPEY, G.,A. Statisticel enalysis of
paged and segmented computer systems, IEEE Trans., EC 15,6
(Doc.66), 855-863.

WEIZER, N, AND OPPENHEDMER, G, Virtual memory management in
a paging enviromment. AFIPS Proe. SJ0C, Vol. 34 (1969),
249256,

DENNING, P.J. The working set model for paging behaviour,
Comm. ACM 11,5 (May 68), 323-333.

DENNING, P.J. Thrashing: ite causes and prevention, AFIPS
Proe, FJCC, Vol.33 (1968), 915-922.

GAVER, D.P. Probability models for muliiprogramming
computer systems. J. AGM 14,3 (July 67), 423-438.

FINE, G.H., JACKSON, C.W. AND MCISAAC, P.V. Dynamic progrem
behaviour under paging. Proe. ACM 21t Netional Meeting
1966,

BRAWN, BARBARA 8., AND GUSTAVSON, FRANCES G, Program
behaviour in a paging environment. AFIPS Proe, FJCC, Vol,
33 (1968), 1019-1032,

1l.

16.

17,

19.

20,

COFPMAN, E.G. AlD VARIAN L.C. Further experinental data
on the behaviour of programs in a paging environment.
Comm, ACH 11,7 (July 68), 4T1-4The

FREIBERGS, I.F. The dynamie behaviour of prograns,.
AFIPS Proc, FJCC, Vol. 33 (1968), 1163-1167.

O'NEILL, R.W. Iperience using a time-shared multi-
programming ogystem with dynamic eddress relocation hardware.
AFIPS Proe. SJCC, Vol. 30 (1967), 611-621,

BELADY, L.A,, NELSON, R.A AND SHEDLER, G.S. An anomaly in
space-time characteristics of certain programs running in a
paging machine, Comm. ACM 12,6 (June 69), 349-353.
BELADY, L.A. A study of replacement algorithus for a
virtual storage computer. IBM Systems J. 5,2 (1966),
76-101,

DENMING, P.J. Resource allocation in multi-process computer
gystems. (Ph.D. thesis) Massachusetts Institute of
Teclmology, May 1968,

BELADY, L.A. AND KUEHNER, C.J. Dynemie space-sharing in
computer systems. Comm, AGH 12,5 (May 69), 282-288,
EKUEHNER, C.J. AND RAIDELL, B, Demand paging in perspective.
AFIPS Proc. FJCC, Vol. 33 (1968), 1011-1017,
McKELLAR, A.C. AND COFFMAN, E.G. The organization of
matrices and matrix operations in a paged multiprogramming
environment, Comm, ACM 12,3 (Mar, 68), 153-164,

COMEAU, L.W. A study of the eoffect of user program
optimisation in a paging system. ACM Symposium on operating
gystem principles, Gatlinburgh, Tennesee, 1967.

R.2

25,

RAMAMOORTHY, C,V. The analytic design of a dynamic look
ahead and progran segnenting system for multiprogrammed
computers. Proe, ACH 2lst National Meeting 1966,
MARTMONT, ROSALIND B. Application of graphs and Boolesn
matrices to computer programming. ﬂuwé.&
(Oct, 60), 259-268, '

KRAL, J. One way of estimating froquencies of jumps in a
program. Comm, ACM 11,7 (July 68), 475-480,

LOWE, T.C. Analysis of Boolean progran models for time-
shared paged environments. Comm. ACH 12,4, (Apr, 69),
199=205.

LOWE, T.C. Automatic segmentation of cyclie program
structures based on commectivity and processor timing.
Comm, ACH 13,1 (Jan. 70), 3-6.

FOLEY, J,D. A Markovien model of the University of
Michigan executive gystem. Comm. ACM 10,9 (Sept. 67),
584588 .

FELLER, W. Introduction to probability theory end its
applications, Vol. 1. Joln Wiley & Sons (New York), 1950,
GOMORY, R.BE. The travelling salesman problem. Proe.
IBM Scientific Computing Symposium on Combinatorial Problems
(1964), 93-117.

SOKAL, R.R. AND SNEATH, P.H.A. Prineiples of mumerical
taxonoiy, W.H. Freeman & Co. (San Franeiseo and London),
1963,

BONNER, R.E. On some clustering teelmiques. IRM J, Res.
and Dev, 8,1 (Jan. 64), 22-32,

R.3

32.

33.

35.

MATTSON, R.L. AND DASMAN, J.E. A technique for determining
and coding subclasses in pattern recognition problems. I
J. Res. and Dev. 9,4 (July 65), 294~302,

NEEDHAM, R.M. AND PARKER-RHODES, A.F. The theory of clumps,
Cambridge Lenguage Research Unit Report M.L.126 (1960),
NEEDHAM, R.M. The theory of clumps II, Cambridge Lenguage
Regearch Unit Report M.L.139 (1961).

WAIKER, J.G. AND WHITFIELD H. (ED.) EMAS System Reference
Mermal, Edinburgh University Department of Computer Selence
and ICL (1970).

VALKER, J.G. AND WHITFIELD H. (ED.) EMAS Primary Subsystem
Reference Menual., Edinburgh University Department of
Computer Seience and ICL (1970).

APPENDIX A.

1, INTRODUCTION

In order to obtain data for preliminary development and testing
of effective restructuring algorithms based on the ideas of chapter
III, an initial study was made of the reference behaviour of some
prograns written in Atlas Autocode (A.A) for en inglish Rlectric
KDF9 computer, This was a single-address machine with a memory
of 16K 48-bit words, only the firet 8K being aveilable for
:Lnsfn'uctim. It was non paged, and the prograns tested had thus
in no wey been organised to run in a paging environment,

2. COLLECTION OF REFERENCE DATA

logt of the data was obtained using a modification of an
already availeble DY interpreter which had been previously written
by ¥Mr, T, Head. This was itself written in A.A., and when
compiled with snother A.A. progran caused the latter to be obeyed
interpretively - the flow of address references could thus be easily
traced. To simulate chunking (see chepter III), grids were
imposed separately on the code and data, dividing them into equal
gize blocks. The interpreter was made to produce (on magnetic
tape) a stream of reference statistics; each consisting of the
number of instructions obeyed so far (representing time) followed
by a block mumber, Successive accesses to the same bloeck were
not recorded, On the code a block size of 50 words was normally
imposed. This was rather large and also the arbitrery divisions
imposed by the grid would normally in no way coincide with natural
structure; in fact a division might easily pass through a single
ingtruction. However it was supposed that although this would

subgtantielly reduce the degree of improvement obtainable by
restructuring, it would not invalidate the testing and development
of the restructuring methods.

Imnediate problems which arose if a reasonable length of run
of the program wes to be monitored were:

a) an imenge quantity of data wes produced,

b) the interpreter was very time-consuming, pertly due to a).

It was necessary to reduce the amount of date in a way which would
not affect the resulis of such experiments as would be performed on
it. These would congigt mainly of forming similarity arrays and
investigating working set sizes (see chapters I1,II1), on the basis
of intervals of various lengths starting from about 1000 instructions,
This being large compared with the time between different block
references, the following reductions in the quantity of date had a
negligible effeet on results,

a) As far as repeated accesses to the same block were
concerned, date and code were treated separately, Thus if two
successive references to the same code (say) block were seperated
by a data chunk reference, the code chunk would not appear the
second tine,

b) The '"time' wae only output every 128 instructions, To
identify this it was preceded Ly zero; instruction chunke were
given positive nuubers, data, negative.

e) Mithin a 128 inmtruction period, any data sequence of the
fornm dy dy dj dpeeedy dy (ignoring intervening instruction chunks)
resulted siuply in the output dy dy. Such sequences were very
common in the programs examined, owing to the common gituation of
references to parts of a large array being interspersed with access

A2

to scalars at the base of the data stack.

d) Since rearrangement was to be performed only on the code,
the imposition of 50 word chunks was confined to this; both the
data and 'Pern’' (the permanent or slave routines which the compiler
linked to every A.A. program) being blocked into the minimun page
size which would be simulated (250 words). This meant that page
reference data could still be obtained for the progran as a whole.

The interpretation speed was then processor dependent end was
about 50000 instructions per mimite; this number of instructions
producing on average about 4000 words of data. Bven with the
fairly linited machine time available, it now became quite feasible
to interpret a million instructions during a run (although even this
only represents a fow seconds of the program's actual run-time,)

In one case (program D below), deta wes gathered not by the
memmmmwnathmmA.A.mm
~ these monitored the flow of reference only within the code.

Chunk boundaries could then be chosen at natural dividing points.
In practice most of the chunks were taken simply as the subroutines
of the program: the insertion of monitoring instructions to trap any
transfers of control between chunks was then a straightforward
procedure, The chunk numbers and corresponding CPU time (in
place of instruction count) were written up to magnetic tape in the
same format as that produced by the interpreter.

Once a data tape was produced, all investigations were made on
this, no further reference to the program being made. '

A3

3. DATA AHALYSIS PROGRAMS

Pl and P2 (simulate progren yun)
Pl simultaneously simulated runs of the program under each of

a set of given time-glices with a single given store allocation.
Bvery chunk had an associated page mumber: part of the data to Fl.
Thus each chunk on the data stream gives rise to a page reference,
end the paging behaviour (under some simulated page size) of the
progren can be studied either in its original form or with any
redistribution of chunks into pages.

The simulated store associated with each length of time-slice
is represented by a vector, with an entry for each page to indicate
whether it is in or out of store; if in, a note of the time of the
most recent reference is kept, Within a2 time-slice, pages were
loaded only when referenced, Once the allocated store was full,
subsequent references external to this store would result in a page
being unloaded according to the 'least recently used' strategy.

At the end of a time-glice, the whole store was cleared. For
each length of time-glice, a record was kept of the following.

a) The total number of page-faults (references to out-of-gtore
pages).

b) If required, the proportion of the total mmber of intervals
in which exactly i faulte ocourred, for all i from 1 to some given
n.

¢) The mumber of intervals in which more distinet pages were
referenced than the amount of store allocated (i.e. unloading had to
take place).

By teking a very large store allocetion, it can be ensured that

Ao

no unioading can occeur during any time-slice. The average number
of page-faults per intervel then gives an approximation to the
average woricing set size (section I.5) for the corresponding time-
slice length.

If a large timo-slice is taken, with e smaller store allocation,
the restricted store behaviour can be studied, within each interval,
(only for very small store sizos will the result be significantly
affected by the measures to reduce data described sbove.)

P2 wvas a variant of PL written to give a more explicit
exanination of restricted store behaviour, Ho time-aslicing was
performed, but several store zllocations eould be considered
simultaneously. The time when the store was first filled we
recorded: the average fault rate after this time thus gave a measure
of genuine restricted store behaviour. If required, P2 would also
print out the mumber of periods between page-faults which were less
then any specified quantity.

Ziming: This depended largely on the amount of information required
from one pass through the data stream. The elapsed times of the
simlations of a million instructions all lay between 5 and 12
ninutes,

Figs. A1, A2 give examples of printer O/P from PL (the
length cf the time-slice is indicated by 'residence period'), Fig.
A-3 gives an example from P2, In this last figure the fact that
time is only recorded every 128 instructions results in the 'stors
filled' time being the came for store sizes 12,13 and 14; in fact
they were of course alightly different, This erose from progran

B (see section 4).

ADS

E3 (produce similarity srray)

This generated s similarity array (section III,7) for each of
a set of interval lengths read in as data. The results were
written up to magnetic tape. The average amount of store (in
terms of the chunk unit,) referenced per interval was recorded -
representing the average working set size if a very small page size
was taken, and obviously very much a lower bound to the possible
average size obtainahle after restructuring.

Later versions of this progrem (and P4 below) reduced the
number of chunks by not ineluding any which were not referenced at
all during the run. A translation table was used to remumber
chunks which were accessed. Before this was done, the largest
program examined gave a similarity array too great for the
available KDF9 store.

Zindng: for the largest arrays an average of 4 minutes elapsed
time.

The diagonal elements of the arrays were printed out in order:
these represent the frequency of chunk use. FigA=/, shows an
example of the printer O/P (cut off at the right hand side). The
‘sections’' message indicates where the array is written on magnetie
tape.

P4 (restyucture into pages)
?4dn¢kmdﬂnohmklimopagoamthohad.aofam4ty

array output by P3, the page size being data to P4. Hany methods

of clustering were tried, the reduction in the average working set

size being the criterion of judgement of results. Chapter III

glves some details and deseribes the algorithm finally adopted.

The final chunk positions were both printed end uritten to magnetic

4.6

RESIDENCE PERIOD = 2500
SPACE AVAILABLE = 21

NO INTERVALS 187
PAGE FAULTS/INTERVAL 1081

PROPN OF INTERVALS IN wHICH Top FAULTS OCCUR ©,CO00

RESIDENCE PERIOD = 5000
SPACE AJAILABLE = 21

NO INTERVALS 94
PAGE FAULTS/INTERYAL 1135 "

PROPN OF INTERVALS IN WHICH Top FAULTS OCCUR 0.000

RESIDENCE PERIOD = 10000
SPACE AVAILABLE = 21

NO INTERVALS 47
PAGE FAULTS/INTERVAL 12040

PROPN OF INTERVALS IN WHICH TOp FAULTS OCCUR Ue00Q

RESIDENCE PERIOD = 15000
SPACE AVAILABLE = 21

NO INTERVALS 32
PAGE FAULTS/INTERVAL 1337

PROPN OF INTERVALS IN WHICH TOop FAULTS OCCUR Ue00Q

RESIDENCE PERIOD = 20000
SPACE AVAILABLE = 21

NO INTERVALS 24
PAGE FAULTS/INTERVAL 1358

PROPN OF INTERVALS IN WHICH TOp FAULTS OCCUR 0.000

RESIDENCE PERIOD = 30000
SPACE AVAILABLE = 21

NO INTERVALS 16
"PAGE FAULTS/INTERVAL 1375

PROPN OF INTERVALS IN WHICH TOp FAULTS QCCUR 06000

_...Fig A-1 _Example-of -output from P4t =

RESIDENCE PERIOD = 5000
SPACE AVAILABLE = 25

NO INTERVALS 200
PAGE FAULTS/INTERVAL 11,74

DISTN OF PAGE FAULTS/INTEAVAL

1 0,000
2 0,005
3 0,010
4 0000
5 . 0,000
6 0000
7 0050
8 0030
9 0150
10 0«150
11 Oell15 X
12 0«C75
13 0115
14 0.070
15 0105
16 0,085
17 0035
18 N.000
19 0005
20 0000

PROPN OF INTERVALS IN WHIcH Top FAULTS 0CCUR Ca000

RESIDENCE PERIOD = 10000
SPACE AVAILABLE = 25

NO INTERVALS 100
PAGE FAULTS/INTERVAL 13,85

DISTN OF PAGE FAULTS/INTERVAL

1 0000
2 0000
3 " 0010
4 0000
5 0000
6 0,000
7 06010
8 ‘0s0C00
9 0e040
10 0090
X [| 0040
12 04070
13 0120
14 : 0e140
15 06190
16 De150
17 0el110
18 : 0.010
19 0010
20 0,010

pQQ?N DFVINTEQVALS IN WHICH TAp FAUI TS oCCUpr O.

~

)

0o

e

Fig A-2 Example of output “from P1

|

@ ¢ 9 9 @ 9 ¢ 9V ¢ 9 9V © 9V YV ¢ @

TESTTIMES: 600000

STORES12E= 15

STORE FILLED AT 191104

NO PAGE FAULTS 171

LAST FAULT AT 459776

NO _INTS LESS THAN 5000
- B 1000

STORESIZE= 14

STORE FILLED AT 190976

NO PAGE FAULTS 209

LAST FAULT AT 459776

ND INTS LESS THAN 5000

1000 -

STORESIZ2E= 13

STORE FILLED AT 190976
NO PAGE FAULTS 27¢
LAST FAULT AT 459776

NO INTS LESS THAN 5000
1000

STORESIZE= 12

STORE FILLED AT 190976
NO PAGE FAULTS 360
LAST FAULT AT 459776

NO INTS LESS THAN . 5000
1000

149
144

185
172

251
235

336
318

Fig A-3 Example of output from P2

NO INTERVALS 46
S1ZE/INTERVAL 60854,0
SECTIONS 366 = 373

USE FREGUENCY

19 46 31 46 45 16 - 18 18 18 l9 5 1
22 20 19 197 e 20 17 16 12 12 2 11
14 b 5 4 4, 3 & 4 2 2 2
NO INTERVALS 23
SIZE/ZINTERVAL 6800,0
SECTIONS 374 = 381
USE FREQUENCY .
10° 23 19 23 23 10 g g 9 10 4 1
14 13 13 13 4 13 13 11 9 .9 2 9
9 6 5 “ 4 3 5 3 2 1 1 1
Fig A-L4 Example of part of output from P3
7 Y >
{ { T - - ’ ’
PAGE CHUNKS
1] 83 84 85 Bés 2 3 4 32 i3I LENGTH
2 5 6 8 34 35 764 80 8l 82 7 LENGTH
3 9 48 49 B84 80 52 51 53 719 LENGTH 450
4. 10 54 58 62 B7 66 61 55 29 63 LENGTH
5 11 12,13 14 23 24 37 38 39 4% LENGTH
) 15 16 47 &0 859 74 75 91 90 36 LENGTH
7 17..48. .19 22 20 - 21 .25 a6 27 .28 LENGTH
8 30 31 LENGTH 100
9 41 72 93 . B7. 88 . 42" 89 4377578 LENGTH
10 44 45 46 LENGTH 150
11 64 65 LENGTH 100
12 67 68 69 70 71 LENGTH 250

Fig A-5" Example of’part of output from P4

tape in a suiteble form for inmput to Pl or P2,

Ziming: processing time roughly proportional to the size of the
array -~ about one mimute for 40 chunks.

Fig.A=5 gives an example of printer O/P from P4.

4e INVESTIGATIONS AND RESULTS

The reference data from four A.A. programs was used to develop
the restructuring methods. The way that data is presented to Pl
pernits a page size of any multiple of the largest chunk size to be
simulated; however the results presented here assume a 500 (48-bit)
word page sisze, Vorking set curves, each covering intervals
between 2K and 50K instructions, were obtained before and after
restructuring; some restricted store behaviour was also examined.
The table gives details of the programs, assuning a 500 word page
gize, 'Perm' was ebout 1500 words, i.e. 3 pages, and was not
considered part of the code for restructuring purposes.

no,code no.(used) total instructions
pages date pages size interpreted

A (mumerical snalysis) 5 2 10 % willion
B (simulated et):—l:inl 7 12 2 % m.
¢ (2nd E:: A.A. compiler) 11 1n 25 1 m.
D (1st A.A. 6 - - 20 sec.
(lst phase conpiler)® (mmum)

The results with the program in its initial form, and after
restructuring using the clustering algorithm finally adopted, are
shown in figs.A=6 to A-9, The restricted store behaviour where
given refers to the average fauli-rate once the allocated store is

* Data obtained by instructions added by hand - see section 2

A7

first filled, and not over the whole program run.

Erogs A

Starting at any time, this uses nearly all its pages very
rapidly, a sudden flattening of the average WS curve oceurring
between W8 and W=D, This is reflected in the restricted store
behaviour, the average fault rate changing from excessive to
virtually zero with store allocations of & and 9. The effect of
restructuring (to a time-slice of 10K) reduces the WS sizes by about
& page and a half, This small reduction makes an enormous
difference to the paging rete that resulte when the program is
restricted to run in 7 or 8 pages. Thig is an indication of how
unsatisfactory is restricted store behaviour as a summary of program
reference pattern.
frog. B

This progran consisted of two clear phases, the first of which
was quite compact, no more than 10 pages being referenced in any
interval. The code of the phases was quite separate in the
initial version, and restructuring could meke little improvement in
this respect. The reduction in meen WS gize at T=10K is about
10%.

The difference in size between the two phases meant that there
was & high variation in the WS gize about its meen - there is thus
no conneciion between the restricted store behaviour and the average
WS curve (see section I.5). Fig.A-3 is the P2 output for progranm
B, and it shows that a store of 12 pages wee not filled until some
200K instructions: the restricled store behaviour is effectively
that for the (much larger) second phase alone,

A8

£rog. C

The glope of the WS curve for this program falls off quite
glovly - even at T=50K it is still quite steep. Program C would
thus be badly behaved (in the sense of section I.5). The mesn
WS size for 10K intervals is reduced by about 137, With well
chogen chink boundaries this large and loosely comnected program
has probebly considerable potential for improvement. Fig -3 is
the restricted store curve for prog. C originally.
Erog. D

This cannot be compared directly with the others as the working
sels refer only %o the code. Because of the intelligent cholce of
chunk boundaries program D would be expected to yield results
similer to those of the restructuring scheme (see chapter VI); the
main difference is that the chunks here are larger and the potential
for improvement presumably less. There is epproximately a 35%
reduction in the average code WS asize for 20K intervals after
restructuring.

A9

(pages) initial

after restructuring

T 13 T3 K 20K Tk ST Tak
T (instructions)

restricted store behaviour

store allocated mean page-fault rate/10K insts.
original after restr.
9 0.04 -
8 Jad 0.22
7 2k 1.6
6 - 23

Fig A-6 WS curves and restricted store behaviour, program A

b

wn

3

10

(pages) initial i

after restructuring

T 2 L) . B L) L

LOK w5k SOk
T (instructions)

restricted store behaviour

store allocated mean page-fault rate/10K insts.
original after restr.
15 Le2 2.6
14 51 367
13 648 5.3
12 88 7.9

Fig A-7 WS curves and restricted store behaviour, program B

S (pages)

20 1

initial

174

ter restructuring

o 5K oK 1Sk aox 30x woK " sox
T (instructions)

Fig A-8 WS curves, program C

W0

8 | (pages)

2.5

after restructuring

is

1 5K \OK 20% 30K LOK 50K

T (FS')

Fig A-9 WS curves (code only), program D

1., THE COMPILER AND CODE PRODUCED

The compiler, both as originally received and in the developed
version, consists of three mein phases. |

Phase 1: this performs a syntax analysis of each source
statement and produces a sequential file of 'analysis records’'.
There is also some degree of global statement checking (e.g.
correspondence of ghart and Linigh).

Phase 2: this is the main compilation phase. The analysis
records are processed, and a sequential file of so called ‘code
units' produced.

Phase 3t object code is generated fyom the phase 2 O/P.

Apart from the data file, a large quantity of global data links
the phases. In prineciple, phases 1 and 2 could be merged, the
analyeis record of each statement being passed to phase 2 as it is
generated; they had been separated in the initial design in order to
try and improve program behaviour in the paging environment for which
the compiler was originally planned.

Prior to developments directly connected with the restructuring
scheme, the following are the main changes made to the compiler as
initially received,

(1) External routine compilation wes implemented.

(2) "Perm' (see V.2), which originally had to be compiled with
(i.e. the source text placed immediately in front of) any progrem,
wvas mede into an extermal routine. Linked in at run-time, this
could be shared by any modules produced by this compiler.

(3) The compiler itself, initlally a single 'main-program'

(section V.2) was divided into external routines - the three phases
above, additional globel routines, and a controlling mein-program,
All global variables were passed between external routines through
paraneters. This caused a slight degree of inefficiency, but the
imnmense gain in convenience of development (which was normally
concentrating on one phase at & time) strongly outweighed this,

Henceforth, references to the 'original' compiler assume the
above changes nade. Only those features of the compiler and code
generated, which affect the restructuring scheme are described in
any detail.

Srenching instructiong
Production of a self-monitoring program involved changes to the

instructions that transfer control; the implementation of these in

the original compliler is therefore described. Reference is made

to fige. B-la, B-2a, which show parts of the lN-format code generated
from the small demonstration program discussed in chapter V. The
line mumbers, printed out for each statement, correspond to those in
figs. 5-2, 5=3. With this line number is given the current code

address (repeated).

There are 16 32-bit registers on the 4~75. Any may be used
in addressing, only the lower 24 bits being esignificant in this case.
For addressing purposes, register O is always taken as containing
Zerc. In the following assembly code representation of
instructions, b (bese), i (index), and 1 (1ink) refer to registers
(i.e. are integers between O end 15), d (displacement) is en integer
between 0 and 4095; and ¢ is an integer between 0 and 15 which
yields a truth value when compared with the current value of a
hardwere condition code (in particuler, fxue is always given if

B.2

e=15). Addrosses are evaluated in bytes.
The only machine-code branching instructions which the compiler
generates are:

1) BCR e,b (Branch on Condition Register)

2) BC cyd(b,i) (Branch on Condition)

3) BAL 1,d(b,1) (Branch And Link)

4) BAIR 1,b (Branch And Link Register)

During the running of code produced by the compiler, the contents of
two reglsters remain constant, and are used to evaluate addresses
within the code area. Register 12 (set up according to a gystenm
standard by the calling module) pointe to the begimning of the code
of the current module. legister 9 pointe to the beginning of
Pern (see V.2). This is set up on entry to the module, the
address of Perm (an external routine) being found from the linkage
information in the GIA,
fern entries

The various entries into Perm required by the compiled code ere
all in the first 4096 bytes (1 page-length), This means they can
be accessed by a single branching instruction to an appropriate
displacement on the contents of register 9.

Thus an array access (e.g. line 96, first statement) causes

B.3

[| ' RN P N) / g N o b SRS] L SIS W ¢ /

. ST 135506509 - 153 . ST T1H: POC 0, 52D

LINE 88 CA= 2958 2958 LINE 88 CA= 2958 2958

. L V=005 . 13) - L 113 00, 153

° STM 4, 14, 16C 11) o STM e Tb4, 16¢ T4

. LA i B R TR [1B - LA 150 ¥2400, 11

. ST 15% 0-07.213) s ST 15 Q€ 0% 139

B MVC 64C &4, 11), 64C 7) ~ MVC G4C 4,4 64 7)

. Mve -68(C 4, 11)., 420C 13) . MVC 68(4, 11), 420(C 13)

. LM 12 Vhsi:316€C 13) . LM 12, 145 3165 13)

" BALR 15, 14 " BALR 15, 14

. ST 15 0 €U0 T3) . ST 13+ 0€¢ 04 132

LINE 88 CA= 2996 2996 LINE 88 CA= 2996 2996

. BAL 15+ &0¢-0,-9) » BAL 15, 40050, 5)

. DC X*0003" » DC X2 0003

NT NT

LINE 89 CA= 2006 3006 \ LINE 89 CA= 3006 3006

. ST e - 0.C U .- 15 . ST 7« 0C 0, 13)

. LM 46 S ¥ BT) . LR T4as 7

. BCR 15,15 s OB C 15, 1708¢ 0, 9)

LINE 90 CA= 2016 3016 4 LINE 90 CAs= 3016 3016

LINE 91 . CA= 3022 3022 LINE 91 CAs= 3022 3022

. LA 7+ 200¢C 0, 8) LA 7; 200¢ 0, 8) °

: . O AT s n\’s\/\/\/\/\//\/\r/\/\ PV eV

DA SO v 9 N NNENY Y V1 10, 88¢C v, 0)

« BC 7. 3060¢ 10, 12) e BE 7, 1576(0, 9)

LINE 95 CA= 3158 3158 LINE 95 CA= 3158 3158

« BALR 10, 0 « BALR 10, 0

. L 0, 1 462805 13) - Lo« 0, 42800, .13)

. C 0, 188¢C 0, -8) . C 0, 188C 0, 8)

. BC Te 42 04:10) . BC 7 G2% U5 109

. LA Pt B a0 . LA 4P s i o

. BAL 15, 444 ¢C 0.»9) > BAL 15, 444C 0, 9)

. L O, 3192850, 87 - » L 0, 192¢.0, 8)

. c 0., 0C 0, 14) - c 0, 0C 0, 14)

o BC 7+ 42¢ 0 10) ac sine BIG T b6 0y 109

. MVC 188¢ 4, 8), 432(C 13) - MVC 188¢C &4, 8), 432C 13)

LINE 96 CA= 3202 3202 LINE 96 CA= 3202 3202

™ L 2 188(0, 8) . L 24 188(0, 8)

. LA 14, 168(. 0, 8) o LA 14, 168¢ 0, 8)

. BAL 15 L4609 5 BAL 15, 444¢C 0, 9)

. L 0. 192¢ 0, 8) . L 0 1224 0782

. S 0¢ 5120 20,25132 - S 0, S1246 0 13D

. L T 52800 137) SR R z, 52805 13

- MR Cea i) > MR 2¢ 0

. A 3, 0C 0, 14) * A L R 0 3 GO + P 55

. ST 314968 0, R) . ST 3, 196C 0, 8)

LINE 96 CA= 3256 35236 LINE 96 CA= 3236 3236

. L 1150 (20 +1 5 . L I PR & s R [

. STM bo 165 360112 . STM By 1R 64 A1)

. LA B 7 AT o R o . LA o JoUEay & R I, &

. ST 15, 0C 107 T3 . ST 45 0¢ 0137

. MVC 64%C-%,-91), 552¢ 15) » MVC 64C &y 1130 5328 13)

. LM 2R es f2l " Y35) . LM 1285483720 015)

. BALR * 15, 14 . BALR 15, 14 ;

. ST 11060y 15) . ST 11 ¢:-0C-.0,-13)

LINE 97 CA= 3268 3268 LINE 97 CA= 3268 3268

. MVC 2048054, 8)y 140(8) = MVC 204C &4, 8)., 140(8)

LTNF QT AL e B2 I A el NE a7 rA=- FHTIS TR
‘a) N-format code b) M-format code

Fig B~1

. MVE
LINE 98
o BCR

. BAL

b L5 DE
LINE 99
LINE-— 99
BALR

100
BAL
DC
NO BID

" % 8 8 e« 8 8 8w
-
-
m

LINE 100
. &
. BC
LINE 101
LINE 101
. BALR

L

c

BC

L

BC

L

BC
INE 102

BALR

L

c

BC

L

BC
INE 103

L

STM

LA

ST

MVC

L

BAL
INE 103
g
BC
LINE 103
LINE 104
B BALR
. E :
e C

@ & ™ € @ & & 8 8 & T @ ® 9 © 8 8 T8 = & ¢ 8 =

140¢ 4, B), 432¢ 130 Y7

CA=
b Py
0, 0
15,
X'00

CA=

CA=

”100\

0., 5
0, 1
e 2
10,
15,
CA=
10,

45

CA=
15,
Xx'00

CA=
10+
15
CA=
CA=
10,
0, 5
05 =i
5, 2
10,
15,
10,
15,
CA=
10,
025
014
11
10,
154
CA=
11,
4, 1
15,
15,
64 (
14,
15,
CA=
10,
15,
CA=
CA=
10«
0., 5
0, 1

MV C
3294 3294 LINE 98
40¢ 0, 8) — L
1396¢ 0, 9) » BAL
000A6C" & D
3308 3308 | LINE 99
3308 3308 ' LINE 99
0. . BALR
36C 0, 13) % L
36(C 0, 8) 6 C
0¢ 0, 10) . 8C
332¢ 0., 9) . LA
3360¢ 10, 12) " BC -
3330 3330 LINE 100
332(0' 9) \ - LA
3338¢C 10, 12) . BC
3338 3338 LINE 100
40¢ 0, 9) . BAL
07") DC
NO BID
3352 3352 LINE 100
336¢C 0, 9) » LA
76¢ 10, 12) al LR
3260 3360 LINE 101
3360 3360 LINE 101
0 . BALR
0L 0% 13) 8 L
36(C 0, 8) - C
0¢C 0, 10) - BC
332¢ 0, 9) " LA
3390¢ 10, 12) 4 BC
332¢ 0., 9) . LA
3450¢C 10, 12) - BC
3390 3390 LINE 102
0 . BALR
24¢C 0, 13) 3 L
96(0, 8) . c
20¢ 0. 10) ’ BC
332¢.0..9) 3 LA
3480¢ 10, 12) - 8C
3512 36492 LINE 103
06 0.9%) 5 L
b, 16C 11) 3 STM
72¢ 0, 11) . LA
0¢C 0, 13) . ST
4, 11), 420(C 13) i MV C
332¢ 0. 9) 2 LA
2928¢ 14, 12) : BAL
3442 3442 LINE 103
336¢ 0, 9) - x LA
76{ - 10, 12) 3 BC
3450 3450 LINE 103
3450 3450 LINE 104
0 A BRALR
40¢C 0, 13) ~ L
36C 0, 8) B QP

a) N-format code

140C &4, 8), 432(13)
CA= 3294 3294
2, 140¢C 0, 8)

0, 0
15, 1396(0,
X'0000003¢C"
CA= 3308 3308
CA= 3308 3308
10, 0
0, 536(0,
0, 136C 0,
3, 20C 0O,
10, 100¢ 0, 0)
15, 1576C 0, 9)
CA= 3330 3330
107 101¢ 0pe 0) -
15, 1576(C 0, 9)
CA= 3338 3338
15, 40C 0 9)
X'0007"*

9)

13)
&)
10)

3352 5352
102¢ 0, 0)
1576(C 0, 9)
3360 3360
3360 3360

CA=
10,
15,

CA=

CA=
10, O
D4 S20 ¢ 0
0. 136¢ 0
52 20C 0.
100 105¢ . 0%
19 157600,
100 1.06C D7 09
1581586 Q592

CA= 3390 3390
10, O
o 9260 0,
196C 0,
20€ 05
109¢ 0. 0)
1576¢C 0, 93

3412 3412
B 015D
14, 16¢C 11)
Tl Oy 119
0¢. 0, 13D
v [S e G)
85C -0, 0)
1640¢ 0, 9)
3442 3442
102¢ 0, 0)
15768 .0 %)
3450 3450
3450 3450

13)

8)
10)
0)

92)

13)

8)
10)

PETYINE U, S NS W QR ek NS
- > s = o
n

OSSN VIs A0 NNO A

- e s o As =

15,

b) M-format code

Fig B=2

the instruction 'BAL 15,444(0,9)" to be generated. The
digplacenent addresses of the various entries to Perm are of course
knows %o the compiler,

internal Jjwms

A general address within the code of the compiled module is
not immediately accessible, and two instructions are required to
tranafer control. Congider a Jump to address 'a' relative to the
begimning of the module, Choose the nearest multiple of 4006
below, or equal to, &, i.e, find p so that (a-4096p) is between 0
and 4095 inclusive (say, d)s p is the muber of the page (relative
to the code start) in which the target address lies, and 4006p the
(relative) page address.

Now Perm contains an immediately accessible table of multiples
of 4096; the appropriate multiple is loaded into register 10:

L 10,disp(0,9) load register 10 with 4096p
and the transfer of control to address a can be written:

BC ¢,d(10,12) branch (on condition) to address a.
An example is golio 1, the last statement of line 100, The
(relative) address of label 1 is 4172, and 336 is the address in
Pern of the integer 4096,

Note that jumps into the first 4096 bytes of the module are
treated in the same way, zero (the zero multiple of 4096) being
loaded into register 10, This is despite the fact that such
addresses are accessible in one instruction; this inefficieney in
the original compiler wes convenient for the restructuring scheme.
Anternal progedure calls

These are very similar, the page address being loaded into
register 14 instead of 10, An example is the first statement of

2o

line 103, the last two ingtructions. The previous instructions
here evaluate the procedure parsmeter and store it on the stack,
together with cuwrrent values of the registers.
Conditionals

The evaluation of conditions leeds to short-distance forward
jumps which can be treated differently from above. The absolute
address of the beginning of the conditional statement is loaded
into register 10 (achieved by BALR 10,0 which loads the link
without branching), and mubsequent jumps are made relative to the
address in this register, An example is at line 95.
sSultchos

A jup %o a switch label involves access to the switch vector
of relative code-sddresses, the vector iteelf being stored in the
code area. An entry in Perm deals with this; the in-line code
sinply evaluates the switch index and links into Perm, these
instructions being followed by the relative address of the switch
vector. An example appears at line 98; the dummy instruction
YBCR 0,0' has been generated to elign the switch address on a word
boundary. This address is given in hexadecimal form after DC (De-
fine Constant), Perm cen locate the vector, pick up the
appropriate address inside it, add the code base (register 12) and
branch to the resulting address.
£recedure retums

The absolute return address has been stored on the stack at
call time; this is lomded to register 15 (along with the restoration
of other registers with their call-time values), and a direct
return made using the BCR instruction (e.g. line £9).

B.5

Ectexnal procedure calls
These are calls of an extermal routine in another module, and

the calling sequence must follow a system standard. The GLA (the
bese of which is indexed by register 13) contains the absolute
address of the external routine entry point and other necessary
information. This is loaded into reglsters; in particular,
register 1, will contain the entry point address, and exit is made
to the new module via BAIR 15,14 (see line 96, second statement).

Soupilation
ummw,mmm'hmdd—

this contains the address of every point within the module to which
explicit reference can be made, e.g. lsbels, procedure entries,
suitch vectors, ete. The phase 2 output makes every code address
reference by an index to rttable. For example, consider the
sequence:

(1) L: goto M

(2) M: goto L
On compilation of (1), space would be reserved in rttable for L
and ¥ (asmuming this is the first reference to them). The code
address of L would be entered in rttable, but that for M is not yet
imown. The phase 2 output for goto M, would refer to the index
of the rttable entry for M. Compilation of (2) would find space
for L and M reserved, and the address of M can now be entered.
The code unit output by phase 2 for gotio L still refers to the
rttable index, despite the fact that the eddress of L is now known;
only during phase 3 are the contents of rttable required.

B.5

Hond toring dnatructlions

In an M-formet object module, code address references are still
made through rttable, which thus becomes a pun-tine array. There
are four additional entries to Perm, the popitoring entries
concerned with (1) jumps, (ii) procedure calls, (iii) switch jumps,
and (iv) procedure returns. Ordinary Perm entries and external
procedure calls do not have to be monitored since they lead outside
the restructuring area and control must return inside the same chunk,
The code for these is therefore unchanged. Figs. B-1b, B-2b ghow
the M-format code corresponding to B-la, etc. The details of the
monitoring entries are as follows,

(1) A branch to the address in rttable(i) would appear as:

LA 10,1(0,0) (Load Address)
Set i in register 10

BC ¢,1576(0,9) Branch (on condition) to
appropriate Pern entry.

As before this is two four-byte instructions - an example is the
final statement of line 100, The index i can only be loaded in a
single instruction if it is less than 4096, This would not be a
problen with any but very large modules (probably greater than 30
code pages); rttable had lese than 2000 entries with the largest
program tested. The remedy is to replace i by i-4096 and branch
to a different entry in Perm, but this trivial extension has not

(11) An internal procedure eall is exactly similar (1line 103),
The Pern entry address is seen to be 1640,

(i1i) The (relative) code addresses in the switeh vector are
replaced by the indices of their rttable emtries, Also, following
the switeh jump, the address of the switch veector itself is

B.7

replaced again by the rttable index. The example of the latter at
line 96 shows that the address of the switch monitoring entry to the
special Perm is the same as the switch entry address in the ordinary
Pern.

(iv) At a procedure return, the pointer to the stack area
uhere registers were preserved at call time is loaded into register
1/, and a branch into Perm performed. As can be seen firron the
example at line 89, the total code-length is unaltered.

The branches inside evaluation of conditions remain unaltered;
these need not be monitored as they camnot lead outside the

containing chunik,

Chunidng, phage 2

Phase 2 determines eclmnk boundaries as deseribed in V.4. The
chunks are numbered from 1 upwards, and at this stage three arrays
preserve all the necessary information about each chuni, These
arrays are:

1) chunidlength - contains length in bytes of eaeh chunk,

2) chunian - indexes the rttable entry which contains the
address of the begimning of each chunk,

3) branchto -~ if a chunk ends in a branch to an explieit
target address (i.e. not a procedure retwrn), this containg the
rttable index of the target.

A non-conditional jump is generated at the end of any chunk
which does not already terminate in one; for example at the end of
line 99 (chunk 15). Those are also generated in the N-format
code, making this very slightly longer (normally less than 1%) than
in the original compiler. Apart from this, and the three arrays
above, the output from phase 2 is the same as it was before the

B.8

restructuring developments.

lote that by the rules for the determination of chunk
boundaries, some chunks will consist simply of a non-conditional
branch, The cape:

chunic
Le: gptog M

o —
N oes

is obvious. More common is the case of branches which oceur over
procedures or switch vectors. The former, especially, oceurs
frequently; the procedures in I are normally placed together at
the begimning or end of the containing bloeik. Between each
procedure, this compiler generates a branch to skip over it, giving
a trivial clamk,

Such chunks are ignored in the chunking errays and the rttable
entry is changed to eliminate the chunk from the dynamic flow, i.e,
the entry for L in the above example would be changed to the address
of M. As an example from the small test program, we see (£ig.5-4)
that ehunk 12 begins at relative address 2768 and chunk 13 at 2928,
but the length of chunk 12 (£ig.5-6) as sppears in 'clunklength' is
only 152 bytes. The odd clunk will diseppear entirely after the
first restructuring.

Ehage 3

As phase 3 encounters code unite which would generate branches
of the types (1)-(iv) discussed previously, the monitoring versions
are output if an 'M-formet' flag has been set. These being the
seme length as the instructions they have replaced, nothing else
need be altered in the production of the gode ares of the object

B.9

file.

Phase 3 must also output the positions of all the monitoring
ingtructions; this is so they may be eventually overwritten after a
final restructuring is performed. The positions are output as
displacements fron the conteining chunk boundary, eech being
characterised by one of the four types.

One further array is constructed, known as 'chunkno', This
is the same length as rttable, and gives the nusber of the chunk
which contains the address in each rttable entry. The three arrays
chunkno, chunkrn, and rtteble are output in the data area of the
compiled program. All other tables are not needed during the
progran run and are written to the chunk information file. ‘hese
conaist of 'chunklength', 'branchto', and the tables indicating
positions and types of monitoring instructions within the eode.

We have seen how certain features of the compiler could be used
to provide the gymbolic code addressing convenient for restructuring;
but the question may arise as to why the phase 2 cutput was not
iteelf teken as the level of restructuring, a poligy to which the
brief discusaion at the end of IV.5 may have pointed. Although
possible, there were two disadvantages against using this
intermediate code.

1) It was very space-consuming (about three times the length
of the final object file); this together with the very large
quantity of global data required would have meent that a vast
quantity of information had to be kept throughout the restructuring
of a large program.

2) In some areas considerable redesign would have been
necessary to make the code units relocstesble within the intermediate

B.1l0

code file.
It was felt that these overcame the (undoubted) disedvantages
of working at machine code level.

2, MOMITORING REFEREICE BEHAVIOUR

In general three arrays collect run-time chunk reference
information.

1) The similarity array s. Ve refer to the (i,j)th,
elenent as s(4,]).

2) The chunk reference vector. 7This indicates which
chunks have heen referenced during the current working-set intervael.

3) The translate table, tr. This is only present if the
nuuber of chunks is greater than 'selectno', the allowed sise of the
sinilarity array. For each chunk i there is an emtry tr(i). If
tr(1) is negative or zero, it contains the negated frequency of use
(ise. the mumber of similarity intervels in which reference has
occurred) of chunk i so fer. If positive, chunk i is in the
sinilarity subset, and tr(i) gives the row/column of this chunk in
the similarity array. The frequency of use will then of course be
contained in the diagonal element of that array.

sl

To monitor the behaviour in similerity intervals, it is
obviously necessary to know the program processing time as it would
be if it vere not being monitored (its J-time), i.0. all the time
spent ingide monitoring routines must be subtracted from the
procesaing time as obtained firom supervisor. The current value of
this extre time is maintained (see below) in a variable 'timeerror',
and the N-time cen thus be obtained, A% each monitoring entry to

B.1l

Perm, if the current similarity intervel has not expired, the chunk
reference vector is marked with the current chunk, For each of
the four types of monitoring entries, a stendard path with a
standard amount of processing is followed, and this amount is
added to 'time-error'. However if the N-time shows that a
sinilarity interval is over, the similarity array must be updated
(deseribed below), involving an unspecified amount of computation;
to maintain the value of 'timeerror' correctly, the processing time
is obteined before and after the updating procedure, and the
difference added in.

Undating similarity array

If a full simdlarity array is being used, one is added to every
olement (i, j) if chunks i end j are both marked in the interval
reference vector.

However the situation is more complex if a partial array is
being used. The translate table is first updated, For each
chunk i marked in the chunk reference vector:

(a) if t(i) > 0, no action,

(b) if tr(d) < 0, set tr(i)=tr(i)-l (frequemncy of use),

(e) if tr(i) = 0: if the similarity subset is as large as allowed,
perforn (b); otherwise set tr(i) to the next unassigned row/column
of the similarity array (i enters the similarity subset).

Then for all i,J marked in the chunk reference vector such that
tr(i) end tr(j) are positive, add one to s(tr(i),tr(j)).

Although the translation process involves a good deal of
computation, note that it is only performed at the end of similarity
intervels; most of the monitoring entries into Perm simply involve
updating the chunk reference vector,

B.1l2

Honitoring entriop

Any entry to a new chunk will be trapped by one of the four
types of monitoring instructions (i) to (iv) (see section I);
updating the reference information as deseribed sbove will be termed
'metering' the chunk.

Entries (i) and (ii): the rttable index of the target addrvess
enables the latter and the containing chunk number (fronm 'chunimo!)
to be found. The clunk is metered end exit made to the target
address. In the case of entry (ii), the standard procedure call
mechanisn has preserved the values of the registers on the stack, to
be restored at procedure return. One of these locations, whose
contents are not required at return, is replaced with the current
(ealling) chunk mumber,

Entry (iii): the address and chunk-number of the switch vector
is eveluated from the rttable index supplied; this chunk is then
metered. The appropriste entry in the switch veetor is then
accessed, this gives the rtteble index of the terget address, whose
chunk is metered. Control is finally trensferred to the target
address,

Entry (iv): at a procedure return, Pern is entered with a
pointer to the work area in the stack where the values of registers
at call time were preserved - these give the return address and the
chunk mumber (entry (i1)). A clhunk cannot end with a procedure
call instruction, so the chunk after return will be the same as that
at call-time, the chunk can therefore be metered before returning to
the target address. lote that to find the containing chunk simply
from the return address would have required a search through all the
chunk addresses.

B.13

Lage sondtoring

If 'pege monitoring' is switched on, target addresses are
passed, together with the N-time, to an axternal routine which
records paging behaviour (processing time readings are made before
end after each entry, to maintain the correct value of timeerror).
This routine can examine behaviour in the same way as the 'simulate
running' programs in the KDIY study (appendix A), remembering that
only code references are being trapped here. lean working-set
sizes were caloulated for the miltiples $,3,1,2 and 4 of the
einilarity interval, This would of course have been considersbly
more complex if the size of the M-format code were not the same as
that of N-formet; a mapping onto l-format addresses would have been
necessary %o examine the correct paging behaviour of the original
program.

A very alight error may be introduced; if a chunk lies over a
page boundary (which cannot oceur after the final restructuring) and
is entered in the first page, a drop-through into the second page
may not be recorded if the next branch obeyed exits from it. This
could make paging behaviour initially appeer slightly better than it
really is, and the effect of restructuring slightly less good, but
the effect is probably insignifiecant.

Updating chunk information file

Reference information is written to the chunk information file
at the entry to Perm arising from ghop or endofprocran. If thie
is the first run of this particular structuring of the module, the
sinilerity srray and the translate table (if present) are simply
copied on to the file. If tranclate tables are not present, the
samtym-mmmmmmmww

element to that on the file, If partial arrays are present
however there is the problem thet the similarity subset of a run
may not be the same as that already on the file; a new similarity
array has to be constructed from two others which contain
information on two different mubsots of the chunks.

The first task is the construction of the new similarity
subset for the new array. Any chunk with a nogative entry in
@ither trenslete table is debarred as some information on its
sinilarity with other chunks is not available, Also thers is no
point in including any chunk not refarenced eo far at all (a zero
in both translate tables). The mumber of chunks eligible may be
greater than the similarity array allows, in which case some will
have to be discarded; it may be less - as was the case with the
bridge-hand progran (chepter V) after two yruns. Given the new
similarity subset, all the information is availeble to produce a
nev translate table and similarity erray; the process is straighte
forwerd, if long.

These complaxities could be avoided by using a standard
similarity subset - this could either be chosen at compile-time or
initialised at run~tine from that on the clunk information file.
The former course might be wasteful (see IV.4), the latter would
mean that the progran puy was not independent of the chunk
information file; it was thus decided to implement the process as
described above. Hovever it is not clear that it was worthwhile;
with large programs, little elustering occurs during the firet
restructuring, and after this, tranclate tebles are written back
into the GIAP in any case.

B,15

3. CLUSIERING

The clustering routine, the first phase of the restructuring
progran, contains the algoritha briefly deseribed in IIL1.8, Using
the sinilarity array and chunk lengths on the information file, it
foras groups of chunks, either proceeding to completion or stopping
vhen the greatest linkage between clusters falls below a specified
quantity.

Suppose there are m chunks, end the similarity subset (H) is of
aize n. Thus a tranalate table exists only if n is less than m,

Initially, the m chunk numbers are stored as m single-element
lists which will be linked together appropriately as the chunks
combine into clusters. A teble p is sot up consisting of m
pointers to these liste; as clusters form, each non-gerc clement of
p points to the head of the list of chunks in a cluster (the order
of chunks at this stage is arbitrary). Elenents of p not pointing
to lists ave set to sere. Initially p(l) to p(n) correspond to
the similerity erray rows; tims if a translate teble is present,
list i is indexed by p(tr(i)), otherwise by p(i). In the former
cage, the remeining p(n+l) to p({m) point arbitrarily to the rest of
the lists corresponding to chunks not in N,

Two further arrays have, in a similar manner, entries
corresponding initially to each chunk and later to each cluster,
These are:

nuam(d) s the number of chunks in each cluster
tialised o 1)

gize contains the size of cach cluster in bytes (initially
(u'thd.uofuehmg (

The variable 'limit! is set to the maximun frequency of use of all
clunks outside the similarity subset, or to zero if a final

B.16

restructuring is taking place. The diagonal clements of the
similarity array are set to zero. Remembering its syumetry,
8(i,j) is regarded as the same element as s(j,1) in the following
skotch of the clustering algorithn,

1) Find the gresetest element of array, say s(k,1). Exit
if this is not greater than "limit’'.

2) ILink list p(1) on the end of 1ist p(k). Set p(1) to
Zero

3) For each i%k or 1, such that p(i)=0:

8(i,1) =0

. ’i'?‘.t'.'i‘fi; ":-mn'& k; ?mﬂ(n

5) For ixk such that p(i)%0 and size (i)+size(k))pagesisze,
set a(k,1)=0.

6) Go to step 1.

The formila in step 3 for the average similarity between the
original constituent chunks of two clusters is easily verified to be
correct at any stage of the clustering procedure. To aid the
search for the maximum element in step 1, a vector is maintained to
contain the maximum element of each row of the array; merging of
clusters normally affects few of the maxima, and the total time of
searching is reduced.

If e fingl restructuring is being performed, it remains to pack
all the chunks as tightly as possible (including those originally
not in N) within page-size groupings.

At termination, the non-zero elements of p point to the list-
heads of the new clunk groupings; these of course contain actual
chunk mumbers, the complication of translation having been removed
at the start. This set of pointers and the lists of chunks are

B.17

passed to the second phase of the restructuring progran.

4 GHEIERATION OF HEW FILES
Sode area

The code area of the restructured object file is generated a
chunk at a time. If a final restructuring is being performed,
each cluster of chunks (which forms a 'new chunk') begins on & page
boundary, otherwise the groups are output immedietely following each
other. Since all explicit code-address references are made
through rttable, the chunks can be reordered without any change to
them being necessary. The only difficulty in gemeration of the
code area is the determination of the order of the chunks within
each group (or page, in a final restructuring). This is affected
by two considerations.

1) Alignnent: in certein eircumstances (e.g. a jump to a switch
label), full-word constants appear in the eode and these must be
aligned on a full-word boundary. After restructuring, then, the
containing chunk must be aligned in the same way ss before,
Although it ean cause slight inefficiency, it is convenient not to
meke special cases, and to align gll eclhunks on the same type of
boundary (wdth respect to full-word) as previcusly.

2) A clunk ending in a branch to the beginmning of another chunk
in the sane cluster can be placed immediately before it, and the
branch removed.

Normally as each output is made there is a search for a
suitably aligned chunk (otherwise a halfword of dumy instructions
is necessary). This will be overridden by case (2) which saves
two words of the branch instruction.

B.18

An extample of removal of the final branch is chunk 15 (figs.
Sely5=6). At compilation, this effectively had o have a
'goto IB' added at the end, the total length then being 30 bytes.
Fig 5-8 shows chunks 15 and 16 are in the same cluster in the first
restructuring. The three columns below show the new code address,
chunic nimber and length of each old chunk as it is generated; it is
seen that chunk 15 is before 16, and its length is now only 22,

Fig 5-9a, the final restructuring shows an example of alignment;
the echunks 11 and 17 (renumberings after first restructuring) being
neither full-word aligned have caused the second cluster to begin
at address 4098, instead of the page address 4096.

Other changes

A new GIAP has to be written; not only the rttable entries are
changed, but chunlyn and chunimo must refer to the new 'chunks'.
Also, if necessary, a translate table is written back into the
GIAP %o select the similarity mubset for the next series of runs.
This will consist of the most frequently used chunks (regarding the
frequency of a cluster as being that of its most used constituent
chunk) of the last series of runs, Also changed are the addresses
of the entry points to the module; a new linkage data area of the
object file is therefore necessary.

Obviously, a new chunk information file has also to be written,
At the end of this process, the information and object files have
exactly the format as might have been produced by the cowpiler,
except that a similarity subset may be written into the GLAP of the
objeet file, and the mumber of restructurings so far is recorded in
the information file.

The final restructuring produces files in the same format; the

B.19

new chunks are now of course pages. To convert the M-format file
to N-format, the monitoring instructions, whose locatione are
obtainsble from the tables in the information file, are overwritten
with the original branching instructions (using addresses obtained
fron rtteble). The only other alteration is the reduction of the
length of the GLAP by removing the various chunking arrays.

B.20

AFPENIEX C.

We give here proofs of the mean working-set properties stated
in I.5 (this is an alternative approach to that of Demning, ref,16).
We take I as a large processing interval (0,i), perhaps
extending over many runs of the program. The lower end-point is
taken as zero for convenience; we make no assumption that pages are
not referenced outside the period I, i.e. before time zero or after
time i. The working set W(%,T) and its sisze o(t,T) refer to
pages referenced in the process time-interval (t-1,t) which we shall
define as half-open, i.e. include the lower end-point, but not the
upper.
Then: .
sfm = 3 f s(t,)at

Vhere I is understood, we shall write this as 5(T).

1) SMT) is contimuous and right and left differentiable;
end its dlope is the mean rate at which pages outside W(%,T) are
referenced.

Pxroof

When a reference is made to a page not in W(%,T), the page is
said to gnter the woricing get. For a given T, denote the times
of all such entries by O=tg,ty, e tFi. (This set is of course
a function of T, For convenience we have taken t,=0, tj=i; in
fact it is not necessary for the end-points to be themselves
working-set entry points). Denote the lengths of the intervals
betwoen entry points by iney = tney = tpe Bach &, narks a page
feult if the contents of the main memory were maintained strictly

C.1

at the working set of T.

Tale ¢> 0 but less than tho store cyele time, i.e. locs than
the intervel between any two successive page refercnces. Thig is
certainly sseller than any in.

Suppose t is in the interval (t,,tne) (see fig. C-1).
Consider the function £{t) = s(t*e,T+e)-s(t,T), Thie
represents the number of distinet pages referenced in the interval

B(t,t*e) vhich were not referenced in A(t-T,%),

For 4, {t{tye = o £(t)=0. For otherwise there is s first
extra page roferenced at some d %y and not referenced in (t,d)
or in A, It thus enters the working set 1(d,1), which would make
d an additional entry point between &, and U4

For ths1~e (4 {tpe1, £(t)=l. The entry page at tnsy is the
extra page. Since o is less than all i, tyep camot be reached
and a similar argument to that above shows that £(t) is no greater
than 1.

(lote that the above does not involve pages leaving working
sets, since the two intervals concexmed in f have a common starting
point,)

A5
Then: _[£(t)dt = 0.(tpey = @ =) * Lu(tpey = Bey *+ @)

Summing all such integrals gives:

Ey-i

f a(tve,T+e)dt - j ;(t,T)dt = Ne

k=0

Trensforming t+e to ¢ in the first integral and substituting S for
its definition gives eventually:

8(10)=3(1) = f + Jﬁ f 8(t,T+e)dt - }; j 8(t,T+e)at

C.2

For sufficiently small e, both integrands take a constant value.
(Congider for instance the first, The integrand represents the
pages referenced in (i~T-e,t). Pages are accessed at discrete
intervels: if the first access before time ~T is at -T-e,, and the
firet after tine O is at ey, teke e less than e; and e;, Then
for 0<{t<{e, 8(t,T+e)=s(0,1)+1, smero being a working-set entry
point,) Ve thus have:
w.g.f

e vhere E = 8(0,7)-8(i,T)
8(1) is therefore right-differentiable (and is similarly shown to
be left differentiable, but the two slopes are not necessarily
equal. The 8 curve is continuous but consiste of very small
straight line pegments). For large i, the term B/i is negligible,
and the slope of S(T) is thms N/i, N is the total number of
page-faults and i is the total time: the result follows by
definition,

2) 8(0)=0 and S(T) is a non-decreasing function of T,
These properties are obvious.

3) If for T) %, 8(t,T) = s(t,t) for a range of values of T,
then 5(T) is linear or concave downwards at all points in the range.
The condition must be mede since we have not dissllowed the
poseibility of page references before t=0, which would appear in the
working-sets of instants within I. Uithout the condition, the
theorem is not necessarily true.

Exoof
Consider instants t,t+e, vhere 0<e< T (poe £ig.C-2).
8 = o(tee,Tve)-a(t,T) represents the muber of distinet

C.3

pages referenced in the interval A(t,t+e) which were pot referenced
in the interval B(t-T,t).

8, = 8(tve,M20) ~s(t,T+e) reopresents the muber of
distinot pages referenced in A and pot in C(t-T-e,t).
But C contains B, so the pages referenced in B are a mubset of those
in 6, It follows that:

8) 8
Integrating over ¢ in I, we have

[;(tm.mm- f ;(t.!)dt) / L.(«.,mm- / ;(g,,..m

Dividing by i, transforming the t+e to © in two of the integrals,
and substituting S for its definition gives:
25(1+)-3(T)~5(T+20) }

e

X f (a(t,1420)-a(t,Tve))at + 3 j (8(t,+0)-a(t,T+26))at

P integrand e & P W R
3 .
3?21.1(Somamphion, $(E,T90)m0(s, Tias)*8(8,) for
8.
Thus:

8(1+2e) - 8(1+e) (8(T+e) ~ 8(1)
This is a sufficient condition for concavity, and the result is
proved.

C.4

Y int te fnw
- A — ¢ -
Fig C-1
t—]’-—e tTT t t‘.’e
- B —€ >
< c >

Fig C-2

