
THE II'EDVFEWI OF PIGRA14 B1AVIOUR IN

PALED OQ-iliTi't si&"r&w

C. J. PVLIN

Ph.D.

Univereity of Edinlargh

Auuøt 1970

—:x

U

iH 	 OF OCji 1AAVI(JR IN PAGED 	fliJR

The tlwai3 initially considers tim queutiona: what iv meant by

prqgram behaviour in a paged computer uyøten, and what is meant by

its icroyient. 	The former, especially, demands a general

discussion on paging and its Uses and abuses in idarn operating

system. 	Reference is made to c brief study of the behaviour

of some KD9 programs. 	The problem of rasthicturin a program

in order to t'rçrove its paging behaviour, is then investigated; a

solution using Q1MA6=1W techniques is ouggeated. A acheue to

Perform such a restructuring autometicafly, on the basis of

monitored infornxtiou i'rozn the program at run-tiiae, has been

implemented on the ICL 440. 	This scheme is described and eoue

results presented; these show that considerable improvement can be

obtained,

This work was pported by International Coutera Ltd.

Knom

INTB.ODUcTIcV

CHAPTER I: 	Paging and program behaviour

CHAPTER II: Iriproveciant of program behaviour

CHAPTER UI Formal restructuring of pianie

CHAPTER IV:]?rsctioal aspects of the restructuring technique

CHAPTER Vi 	The restructurine uobeme

CHAPTER VI: Results and conclusions

I?ENCES

APPENIX A: A brief study of program behaviour on the KD!9

APPENDIX B: 3ccie ii1erientation details of restructuring scheme

APPENDIX C: Properties of the mean working set size

utilL.ation whatever the degree of matiprogramming.

A 'virtual store (am introduction) can be reclieod, a great

conviiencie for the user.

Use of m.—j ic made flexible; a program can be loaded

without the need for a large arec of oniouc vacant store.

(The mapping iiiocheniaii aolvee all relocation problacw in p4quica3.

store.)

In systems we have in additions

etretze simplicitq., owing to the fact that a page can be

loaded arbitrarily into any cvailable page frame. 	If allocation

in in xn-ocsiatant uize unite, c , s these are loaded a. unloaded the

vacant store zid.ly fragenta into bloekL of xy 	langtlw.

Mm a storage reeGt is made, the vutom has to eoaroh Or a

iitable unoccupied section or per1ap ro1ii:fle tho code a'ound the

otoro to areate one. 	Ouch oblew, and the ooniiorcb1e software

overheads asiiociatod with thoir solution,, do net crie in the

pagthg situation. 	In addition the conatanrj of cisc macno one

ieee cot of variable para3oteru in the 4Vtem.

)4e}wLizta irthiCh map frou the program name space into actual

address apace can be e,q*nsive (the hardware 000nenta), and

result in an increase in average addressing time.

The tables containing information about unite necessary to

the address mapping iiocbenisi (o.c. page tables) take up valutbie

apace in main reiicry,

More is greater softwere (and possibly hardware) overhead

in moving several small areas of data between working store and

hai*lng atoro, than me large ares • 	(lime the total overhead in

1.2

transferring a complete prograi into store 18 greater for arialler

units.)

And finnily the additional factor against Rag= trstena.

4) Sinoe page sizes are fixed, thr boundaries will normally

be imposed mw or lees arbitrarily on a progrw. 	This makes it

more difficult to reap the profit from advantage 1 than in the

case where variable size units of allocation can be chosen to

reflect the structure of the program to some degree.

Paging thus gives the gain of advantage 4 while foregoing part

of the potential benefits expressed in advantage 1. 	The

realization of the latter is in any case far from ear; but this is

particularly true in the paging environment. 	however it was not

simply the failure to achieve these benefits that led to unfortunate

results in some early paging aystewp but a lack of appreciation of

the fact that this is whore the problem lay.

(We note in passing that the choice of ideal page size is s

compromise between the overheads of 2 and 3 above, and the gains of

advantage 1. 	For the latter to exist at all, the size clearly

has to be fairly ønall compared to the average prograii recLuirsoents;

this gives an upper bound, but in practice it is not clear what

,I&= bawd the disadvantages impose. The 'onuonly chosen page

size of about 1000 words may be dictated more by tradition than

meau'ed efficiency considerations. 	8hagea' and cMppey (ref -.4)

detail the effects of page size.)

2. T}tI AlLOCATION Pfl3L4

The problem arisea from the fact that there is no eare way of

knowing which parts of a program will be referenced in a partioular

1.3

run or time-clioe. 	abort of loading the Aauk program, which

obviously extracts none of the potential benefit a of advantage 1,

theae izzet be at least some ooca&-orw when reference is made to a

page not in main memory, i.e. a page-fault occurs. 	It is at

these times that whatever action the yten takes introduces a

possible cause of inefficiency,

The norriial course is to load the referenced page (loading

z-y after a faultinc reference is 	as 40QUW paging). 	If

there is an available page-frame, i.e. one not occupied 1r pages of

an active program, there is no difficulty (but even than it eheu24

be noted that the I/O overhead involved in loading a set of pages

is less when requests are made altogether than uhen each page is

loaded singly after a page-fault.)

More significant is the likely case that there is no available

space uhen the page-fault occurs. 	This makes it necessary to

over-write - after writing back if necessary - a page, either of

the program concerned, or of another. 	This in itself is not

significant, but it becomes so if the overwritten page is required

age-in in the current in or tine-slice of its program. 	every

reloading represents a possible loss of efficiency over whole

program roll-in roll-out methods.

One could reserve for the program before it is aUoid in

store a sufficient space allocation, to enare that the above

situation never occurred,, but this extreme wild probably lead to

reservation of sa]iut the total program size, and again scarcely

realise one of the main benefits of the small allocation unit.

The other alternative, in a timo-charing system, is to use

the faulting reference to terminate the tine-slice, the program

1.4

being unloaded to male room for others, 	This is no solution

though; there will be an increase in the proportion of time spent

loading and unloading proama, and a decrease in CPU utilisetion.

An upper bound to the length of the time-slice is a constraint

arising from the demexzta of a good response time for a large number

of users; a system is wzise to reduce c tine-ulico core than these

inefficient demands of tirio-sharing already dictate.

Thos the attect to take eons of advantage 1 of the last

section may lead to rir ixveient of pages between. backing store and

rein memery (giq1nv). 	A very siople model can demonstrate

at least the possibility of this increased 110 simning the nvlti-

progrsn!atng advantage which apparently arises from having more

programs in store.

Suppose program i is allocated store size s over a long

period, and that as faults occur, pages of i (chosen a000rding, to

some strater) are overwritten 	Take as a unit of time s the

average page fotch tine from Immediate backing store. 	(Page write

time is net explicitly included as only those pages which have

changed have to be written back - this can be allowed for in the

average fetch time if necessary.) 	For rotating backing store

devices, the unit is typically a few thousand instruction cclea.

Let rj(aj) be the average rizuber of page faults that occur

from pro'wa i ckzring a unit of its own processing time (this is

the program's naL!e-fault ratq). An upper 33-r'4-t to the ratio of

its U'u time ireai tii.e is lilij(j) 	 (1.1)

(this is an upper limit bemuse time when the program is ready to

use the CPU but it is unavailable, is igred). 	Than the total

IL.
'0)

CPU uti1ition is bounded above trs

N 	 1
7 	l4Tj(e)

all progs.

If the total core size isM, and a set of similar proama are each

allocated store a (giving fault rates r(o)), the rt*mber of much

programs that can be a coodated is Ij/a; the CPU utilisetion is

then at istx

	

14
	

(1.2)

Suppose each program is subject to processing time-slices of

length T (between ithith its pages ore removed), and it references

s(T) distinct pages in mach a time - s34 . 	Asenzdng wholly demand

paging, than r as defined above "ill achieve its minimum value of

$(T)tr for or--B(t). 	F*" allocations greater than 8(), the

of 	will clearly fall. 	But consider a very small a,

pethaps just two or three pages; little hnowledge of program

behaviour is required to see that the interval between faults can

easily be no more than a Let, instructions. 	The value of r (in the

above units) would then be over a thousand and the CPU utilisation

practically so, except with a vatt main memory. 	It is obvious

bow irrelevant the i*i1tiproaiziing advantage (effectively the

multiplier Va) can become if page-faults occur with great rapidity.

(Note also how a 	11 time.-a].ioe - T 1 in the defined unite

impoms an inmediate bound on achievable efficiency),

acevhere between the extreme of store allocation, there will

be an optinlim. 	The difficulty lies in finding it, or equivalently

finding the optimum mzther of the programs currently competing for

services to allow in store. 	It will depend at any moment on the

1.6

behaviour or LU the pro=, the replacement strategy being used,

and other system variables. 	The boat allocation will be

oontiriiously varying sal ncdexi tutena adopt adaptive strategies

(ref a.,6); theoe reapand to chAnging poei demands and try and

maintain page-faulting at an acctab].e jove]., oven if oor

programs have to be given a large proportion of their total size.

1;Z'L

quite clear; it is because our time unit is extremely lone compared

to instruction times (end therefore to likely intervals between

pegs faults) that efficiency problems cen so easily aria. (see e.g.

Doming ref.?). 	Bulk core store cheap enoui to repinos the

rotating drum nornelly used for immediate backing store at present,

could revolutionize the efficiency of tine sharing systems.

Ineçplicab]y, some early system doRignera allowed the concept

of paging to obsare the problems of storage allocation. 	All

active proi'ams fought olr11ltameoualy for the available store with

the inovitablo results that exoeusivo page swepping led to

congestion and very low CPU utilisation* 	However proeme wore

believed to behave under paging, there would seem to be no reason

to have adopted such a policy.

.w

This farti1a only purport a to give insight into gross aeots

of system perfornano., but sinoe it is referred to later in this

chapter, a mention of the principal limitations is given here.

1) Ratio 1.1 is an upper]-i-iiit only attained when there is a

11 izamber of programs and the CPU utilization is fairly low.

In practice the situation is weree then the r*del enggsats - there

fti

will be occasions ikien a program is held up not for I/O but

because another process is using the (311. 	(Wen a iderate1y

accurate treatiznt of multiprogramming is complex,, and depends on

probability models for aspects of program behaviour - see ref.8.)

The page fetch time is not oon8tant. 	Worse still, its

average will lengthen when queueing for I/O channels starts to

take place. 	This may be duo to heavy page faulting of active

programs, or pages filtering through lower level., of store (disc

to drum etc.), via the niri msnry.

(3U tiras lost due to wjvtm use or I/U cycle ute&.ing is

not allowed for.

On au these counts, formula 1.2 gives an optizdstio view of

the situation.

3. PROG1AM BV1(JR

A program which references a large proportion of its pages

within short time intervals is generally said to be 'badly behaved'

(or have a high vagrancy'). 	A good operating system iust expect,

and be able to oope with, programs di1aying arr behaviour pattern;

a badly behaved program simply yields less of the advantages of

1l-unit allocation. 	However a knowledge of general character-

istics of average programs, or perhaps of psrtilar system software,

is useful for performance pre.ction, aspects of dosigi, and for

evaluation of paging as an allocation mathed. 	since the much

cited and pessimistic study by Fins, Jackson and 1461aaac (rof.9),

there have been numerous other eipirical investigations of paging

behaviour (e.g. rote. 10,11,32).

Unfortunately it is not eamV to decide Just what to meawre;

the oolete pate reference history of a process is very difficult

to aam up briefly but usefully in a quantitative Lunoor s although

qualitative utatezenta (ouch a 'wall-behaved') aen be made.

iny atudieø have avoided the di ic*i1ty IW emmiiiing not bow the

program behaves in absolute page reference terna but terms relating

to itc performance %then run uer a given strategy of allocation and

rep1aoit (ref s.110 13). 	£ typioal mscu*zre is the total wzaber

of page £Sulta or aauetiiisa a highly syuan dspendeit statistic

such as total elapsed time. 	Such investigations are very useful

if there is some relation to real operating aVotsms s, but it tvat be

remembered that the results may say more about the pertilar

allocation schemes than about the program behaviour Ufl(paging.

Other workers (rot s.9,12) have simply made direct ineamaremente of

possibly relevant statistics - e.g. the average wmber of

instructions obeyed in a page before a branch to another page, or

the average number of pages accessed beten supervisor calls.

There has been general agreement that programs in general display a

higher vagrancV than originally hoped (ref.9 implies that the

conception had been of 'a 14,j' speed merry filled with a page or

two frau each of many programs requiring pro ceasing') but more

specific conclusions are rarely reached.

Appendix A contains a brief description of a pilot study made

on an &Wish ELectric K.D.F.9 oom*iter using an interpretive

method and isposing a page grid on the programs. 	This is a

typical proaen'e for gethering data from pro'aas actually ii1g

on a men-paged w-hine. 	The investigation mo o designed simply

to provide data for preliminary aaaeewiisnt of the restructuring

1.9

tecIniquez of chapter III,, L'wt the opportunity was taken to nxnmin

more genaral aeots of behaviour of the few proans toatod,

oio reuu].ta are quoted in the aUx and later on in thi3

-S

Before consideringempirical behaviour in detail, a mention is

made of the analytic approach. This attte to charaoterioe the

reference behaviour of a Program in terms of a few easily defined

Patterns - cyclic* eecaantiml, random ate. (refa.4,14). (.e also

111,2, 111.3). Ilowev'er as yet there seems to be no Published

evidence that reel proazaa can be aacoeeel1y modelled in this

way - it nay be that the paranotera of each pattern vary iiaeh too

rapidly to be amenable to analysis. It is difficult enough to

spot gross behaviour patterns without also requiring that they be

deduced A'on more basic aeamptions.

4. FaMEECTED 8T1E BEHAVIOUR

One area of study, and an iortant factor in enme, perhaps

b..fly ds4.gned, operating syatetis, in the way Programs behave when

oonatrainad to xiin in a constant and limited quantity of store.

The u'al iasaan'e is the average m1tr of page-faults per unit of

ooiutation time of the program (or its inverse, the ai.cted

processing time interval between page faults). 	The variables are:

the rianüer of page frames of memory allocated (a),

the rep3.aceit u'at.'s owe the allocated store is UU,

this is the method of dx,oaing 'hith of the a pages is replaced

then an out-of-store page is reforenood. 	In fact although isaoh

effort has gene into devirical adiea of repisoement strategies

1.10

(e.g. ref s.]l,15), results seem to imply they are not ouch a

significant factor as night be expected. 	Bolady (ref. 15)

compared some well)non strategies with the theoretical optimums

that attained by a boot decision based on a knowledge of the whole

future reference pattern. 	his published graphs indicate that

there is little consistent and significant difference between any

of the better replacement algorithms, which on average generated

rather more than twice the theoretical riinicwn number of page-faults.

Ivon a purely random page replacement decision gave only about

three times the ninl-rlvn. 	The following sections will assume the

'Let Recently Used' (LRU) strategy - that page is removed which

has not been referenced for the longest time. 	(This is one of

the best, although there may be inlamentation difficulties. 	It

is sometimes said that LRU fares badly on programs disp1aring a

'cycliccharacter' s i.e, the mere fact that a page has not been

accessed for a long period is indication that it will be required

again shortly. 	In practice this consideration can hardly apply

with the precision required to affect the strategy adversely,

although artificial extu1ae are easily constructed.)

The significant relationship is thus that between the average

fault rate (r) and the store allocated (a). 	r will be defined as

in for,aCIa 1.2 (section 2).

No Incid.edge of program behaviour is rociirod to deduce the

followings

For aifficiently large a (i.e. the total program size),

r will be zero (neglecting page-fault arising from initial loading),

r will incroass (or more strictly not decrease) as a

1.1].

increases. 	For aippoathg the same pre'am iD oonLdered under

store aUooaticna ej and e where 	e. Under the LWJ

strate, a page-fault in the sl system represents a reference to a

page not in the last Sj referenoed - and so obviously not in the

last a2 retorenoed. 	So the fault is reflected in the e2 system

th.toh t&ie has at least the page-fault rate of 91 .

It is intuitively reasonable end expiraentaUy verifiable

that b holds almost invariably with arq rWUON=t strategy.

However, perveroe reference strings can be constructed for which it

will not be true. 	Beisdy at al. (ref. 14) give an wcRWle with

the 'First-in First-out I (FIFO) algOrit&i and qUote a case of such

an anomaly arising in practice with two close values of a for a

particular pro'an.

Soppose a Program at imsen intervals 'o' makes a rRlvinin

reference to one of a set of 'a' pages. 	If 'e' pages are allowed

in core (3. a a), the probability of a referenoo being external is

(a-s)/a, 	The resulting page-fault rat. would thus be:

If o is very Mal 1, say ooarablo with the time of one machin

instruction, then for a= a less than as the fault rate will be

intolerably large. 	(E.g. if the time unit - the page fetch time -

is 5000c, s=19, a0, then r=250. 	This would mean 250 faults for

an amount of Processing equal to the time of a single page-fetch).

NOW the reference behaviour of a prof'am to the whole set of

its pages is normally nothing like this; however within arq period

Of a few nfl' 1 aeocIs there is usually a acloun of pages being

cOfltirIlRlly referred to, with freqionci.e of no sore than a few

1.12

instructions. 	Such a nucleus may consist of only the current

instruction page and data pegs but it may be riuch larger. 	There

is no real practical point, though, in exndn1ig how the progran

behaves in].eaa storo - the aii.fi cant behaviour area ciiat be

when at least this amount of stare is allocated and the efficiency

of the program itself is becoming at least tolerable.

If the remaining pages of the program were being accoaod

randomly., but with some longer period, there would again be a

I inear den'eaae of page-fault rate with incs.'eaing store.

However in preotice, some pages being more favoured than others, the

probability of arbernal reference drops more rapidly for lower

values of a as these more popular pages become more like]y to be

accommodated. 	(This faat of laonlit7 of information references

forms a central pert of the working set notion of lMnning (ref .6,16)

- see next section). 	1ig. 1-1 above the general form of the curve.

Critical parts of the curve of two wamples from the K]W9 study

(Appendix A) are given in fig.1-2. 	These øhev the area where the

avme fault-rate, over periods ehown on the graph, is between 1

and 10 faults per 10 instructions. 	Coffman and Varian (ref.11)

give exwvIes of this curve for wime programs on the I4 360/50,

although rith of their data appears to be with very limited store

leading to extremely high page-fault rates.

Belady and 1uthner (ref. 17) state to have found that a

section of the curve can often be approximated by* rt/ ek where

the value of Ic for neny programs is approximately 2. 	(In their

notation eed', where e is the expected interval between faults.

I3elady in ref.15 states this foroula in what appears to be a

slightly different connection; the page eisa We is varying and the

total rriry size U is constant.)
	

Thin would imply that log r

1.13

(store allocabed)

Fig 1-1 	Character of restricted store behaviour

. 	iges)

t u dy)
ge a
intpt.

r I (page-faults/10K instructions)
91'\

8

7

6

5

3

2

I

program C KDF9 study)
total size 25 pages
Irn. instructions intpt.

	

2 	13 	iL 	1 	46 	 1
1
9O

S (pages)

	

/ 	 • 	 •

Fig 1-2 Examples of restricted store behaviour

1.3 	1 e 35 	1 .1 	• I 5 	1 .

log

•1.

0.

14

"9

log

0.

14.6

I

log s

log S

1— 	t of v 'Do t1eiE 	Pb prorr&rs of fi

plotted a9'in1t log a Were a atraight line of elope -k. 	ig.1-3

shows this relation plotted for the exam ples of fig.1..2. 	A

linear apprxdmation with both these programs gives values of k nvth

greater than two - almost five in fact. 	However it seems likely

that the sections of the curves to which ref. 17 refers mwe in the

lover er1a of store allocation - the KD.F9 curves repre sent areas of

relatively lower fault rates, although probably the important area

from the practical sche duling point of view. 	It is in atW cam

worth ommi nina thio forvlc and its implications briefly, to give

insight into its parameters.

Take as before the page fetch time (t,pic"Uy about Sma) an

time unit • 	RritG bzl~k in the above fozls, and we have:

k
r (aja)
	

('.3)

Then s, represents that store allocation with which the program

will fault, on average, once during an am ount of processing time

eqial to the page fetch time. With, sey, half this allocation,

the rate will be 2k faults per unit processing time.

If we ubatitizte for z' in formula 192 (section 2), we gets

11 	 as an upper bound to efficienr.
e(1+a)

This has a mexizeam there l+aok(1-k)i = 0

i.e. at: 	a = so (k-1)
1/k

 or r1/(k.'.1) 	(if k>3.)

The optimal allocation is tIun slightly greater than 	(for ar

value of k-'2) # aM the mcpected CPU interval betweon faults will

be rather greater than the page fetch time. 	Note that in both

the eriip1e9 of fig 1.2, to reduce the i'i fault rate to, say, 1

in 5K Instructions, an allocation of about 3/4 of the total program

1.14

size is required. 	In short time-slices the initial loading

becomes a significant part of the total page ioovemit, i.e. the

value of r in the fornvla 1.2 will not be the same as the

restricted store rato. 	We look at this situation at the end of

the next section.

The r/o sraph or, if formula 1.3 is considered acceptable,

simply the values of u o and k) is z '. my of quantitively a11lvtlne up

certain reference characteristics of a program under paging - the

problem of section 13. 	However it is not considered a very

satisfactory deecription of program behaviour for the following

reasons.

a) Limited store behaviour is not a factor relevant to

modern, operating aDratimp which do not attempt to ooraoo too many

programs into min store but allow the program deniwdo to determine

a variable store allocation.

bj 	The replacement st'stsgy rizat be specified, and can add

its own discontinuous characteristics to the result.

o) 	The fault rate can very greatly from one interval to

another, even during what would be regarded as a si-ng) phase of a

program, 	As defined above, r is of course an average, a quantity

which mey have little meaning in this context.

The next section considers a system independent and more

suitable measure of program behaviour.

5 • THE 1R1NG &C JNCTIOU

The imrkin# not W(t,T) of o process at an instant t wa g defined

by Denning (ref.6,16) to be that set of pages referenced in the

preo&iT processingtine interval of length T, there T in kno'ai as

1.15

the irkin.g aetramater. 	The wcrkini ad aize s(t,T), is the

number of pages in W(t,T), i.e. the number of distinct pages

referenced during the last T seconds of execution.

Denning tzggeeted that reoent3.y used pages will conatitute a

good prediction of the immediate requirements,, end that for

efficient running these pages, once loaded should be ireserved in

core. 	He proposed an allocation scheme booed upon the followings

A irotem is not run unless there is sufficient apace in

main memor7 for its working set (for some value of T).

Until the process blocks, or the time-elico terminates, a

page in tJ(t,T) v*wt not be roved from memory.

Dwting proves (ref.16) the enperiority of this, in turns of

store sati3.iaation for the same rate of page fwmlts, over curtain

fixed store atrategiel3,

If I(t1,t2) is a processing interval, we can define for a given
I

T,S (T) as the average working eat size over the interval I, i.e.;

= 	J 0(t# T)dt

If I is taken over the whole proarn run, or a large zzsxaber of runs

if it is data dependent, we ghR11 write 3(T); this simply means the

average number of pages the pr'oam accesses in all possible

prooeselng intervals of length T. 	As a function of T, 51 (T) has

the following properties.

It is continuous and right and left differentiable. 	This

is perlzpu nomantarily surivining since s(t,T) is a step function

both in t and T (store references oonzrring at discrete instants).

3(0)=O and 8(T) is non-decreasing and ooncave deunvurds.

The slope at T is the mean rate at which pages outside

1.16

bI(t,T) are referenced, i.e. the av.rage page-fault rate that would

result if the strict working set allocation policy were observed

(by average we simply mean total page-fault Wtotel. time I).

Fig. 1-4a shows the general character of the curve.

Denning (ref .16) using slightly different definitions proves 2

and a theorem eaiva1ent to 3. 	We give in Appendix C alternative

proofs from first principles; these are interesting in their

eiba&.s on the oontit'{ty of 8(T).

If I is a period over which the working set size s(t,T0) is

constant, we can state as a corollary to 3: the slope of 81(T) at
TT, id 1 I give the average fault rate if the pro'am is run in a

restricted store under the least recently used' replacement

strategy. 	This follows because the contents of the store under

this strategy form a working not for some value of T. 	If the

size of this is constant for TT, the LIW strategy is oqiivalent

to the strict working set allocation strategy.

The average working set (W8) curve appears to be a ueei'il

description of paging behaviour not only because of its imeodiat.

definition but also property 3. 	1rmig' a strategy depends on the

fact that recently used pages are a good predictor of immediate

rezirementa: Just hew good s(t,T) is as a predictor is meamred by

the rate at which new pages are entering it • 	This is not Just of

relevance to a system which uses the working set strategy - mmny

systems rely on a certain annunt of j*epaging at the beginning of a

tiae-alioe in order to reduce the amount of demand paging. 	The

aaition is normally that recently used pages - perhaps these of

the last time-alice - are likely to be used in the current one.

Thus the slope of the rking set curve at T has a general

1.17

interpretation: the average value as a predictor of the pages

accessed in time-olioon T. 	One might esy that a really badly

behaved pro'an running in tine -alicos of length T i uv.Ald not only

access large nunbere of its pages in ouch intervals, giving a large

value of 	but will dhange ite set of acoeaaod pages from one

interval to the next, giving a large dWdT at T 1.

.*appoee fig l-b represents part of the 3 curves of two

poma. In intea'valø of length T1 thj both access on average

the memo wrnbor of pages 61 . 84p000 both uwa being run

subject to tine..alioe of
	

In neny 67otems ther mould net

appear ocua.U.y well behaved.

program 2. at (31,T1) indicates that the pages of one interval are

net on average a geod predictor for the next, a preloading strategy

would lead to more page-faulto than with program 2 9 	The &.ope of

the latter is cleat flat at T 1 indicating this prom makes its

referanoea to the some set of 3 page a in successive intervals, and

theeo will be au000sfUlly preloaded.

If the vorldmg sat sizes had been fairly constant over the

program runs, the effect of running then in restricted store can be

seen. 	In, say, an aneunt of store &2, program 1 will run at a much

hi fault rate even though the store is initially filled up more

quickly with program 2. 	(This can be produced by program 2 neing

rapid access to a]ithtod azubar of pages, while program 1 travels

slowly but noentiaUy through a very large aziiter.)

As a description of program behaviour, 3(T) au.fforo from one

defect of the restricted storecurve; it is an qat'aiq and cannot

reflect slow thangea of behaviour over periods long ooarod to the

range of valUe (3 of T examined. 	A program i4pjt oonIst of two

1.18

S (T)

T

S (T)

Sl
S2

program I

program 2

b 	
T1 	T

A

S(T)

s o

curve

T0 	T
C)

T (instruction count)

a)

T (instruction count)
b)

S (T)

13

18

16

114

12

0

g

S (T)

15

1)4

1•

12

11

10

9

8

7

6

Fig 1-5 	Examples of average INIS curves

phaao in one of which two pages are constantly accessed, and in

the other twenty. 	The average working set size of 11 for

intervals wall ooerod to the phase length, is not very

enlightening. 	(However oven in this case, the elope will be very

enall, indicating a generally good predicting behaviour. 	hia in

of course true, except at the time when control goes from one phase

to the other - it is only this which causes any elope at all.)

In such circumstances, the behaviour of the program is beat enizmed

up bV giving working oat curves for, and the duration of, each

phase separately.

There is one type of program about which additional information

is required to make much use of the W8 curve: one that is highly

interactive. 	he time-slice is necessarily determined by the

program if the procesa1mg interval between console interactions is

very short. 	To deduce anything useful about the program, the

order of magnitude of these processing intervals is needed in order

that attention nay be directed on to the relevant portion of the

WS curve, 	It is of course large highly interactive pro'ama which

are the bane of any tine-sharing system, paged or otherwise.

In practice it is impossible to measure a(t,T) at every

reference instant t, or for every length of interval. T. 	one

chooses a sequence of values of T in a relevant region (thin may

depend on the system - a sufficient range will probably be between

half the page fetch time and twice the niaxiiII time-slic e to which

the program will be subjected), and ainly measure the average

number of pages accessed in as many intervals of each length as

possible (see Appendix A).

1.19

rigs. 1-5a, 1-Sb ahoy points on the s(i) curve Lor two

programs on the KDI9 Case Appendix A) with siniiliatad pegs sizes of

500 (48-bit) words. 	T is masa2red as instruction count. 	The

periods I consisted of one mUUon and)i1f a million instructions,

respectively. 	The total program sizes given are actually the total

extents of reference during the teat periods; the declared store

requirements in a partitioned envircsnt may well have been more

(especially since a rum-tine stack wes involved). 	Obviously such

requirer*mta would have to be known if a comparison with non-paged

perforimnco were to be made.

The ioUowing ootvaents about 1-5a are given as an earample of

what is illustrated tir the W3 curve. Asaune a page fetch time p

of 5000 instructions.

On average, the program accouses half its pages in very

short processing intervals, of length Just over p.

The working act allocation to achieve an average fault rate

of]/p - perhaps considered acceptable - is about 16 pages

(envisage 'othing out' the curve), not much over half the total

program size • 	This corresponds to a 143 parameter of 15K

instructions, or 3p. 	Alternatively one could say that if the

time-slioee were greater than 3p# preloading the pages referenced

during the previous tine-alice would be successful to the extent

that an interval of at least p would be expected to elapse before a

new page is referenced.

If the program ware highly interactive with processing

intervals of, say, 2K instructions, it would be very badly behaved.

On average 10 pages are accessed in oven such short intervals, and

the steep elope at T2K irl-l-oatea that it will be of little use

trying to reduce deiwlil paging by pr.loedirig the referenced pages

1.20

of the previous interval.

We can now oontixnie the calculation of the last section,

examining the effect of short tiz-a1ioea. 	Aaun('ig the page-

fault rate is constant and given by the forr'iii 1.3:

we have by integration, W8 size (T)((k+1)sT)h11.

TIia the time to access a distinct pages is:

k+1 = ___
r(k.l)

If a program is mholly demand-caged in a time-slice , T, the total

azn**r of faults would be:

)r
r (k+1)

This is the ffrat a faults to fill the allocated store, follod by

the steady fault-rate r for the remaining part of the time-alice

(assumed positive).

The average fault rate as defined in formula 1.2 is then:

r- a
T 	(k+1)T 	T k+1

and the uppw bound to efficiency is thus

+ &(..IL) + 00kj.k)
T kl

Fig 1.6 shows the value of this function for Tl and 313,

k=3, 14=100p up to the value of ff8(L), the total number of

pages referenced during the time-alice, The optimum allocation

Is seen to be it far below this level, and the efficiency drops

1.21

0 .

C).

0 .

0.

0 .

0 .

efficiency

14 	5 	6 	7 	8 	9 	10 	11 	12 	13 	114
store s

Fig 1-6 	Total efficiency in short time-slices

rapidly for valuo& of a less thnn the opt1iri. 	Even at opt1nhim,

effincies are low for small values of the tirno..a].ice, mall known

to be true in any ayataa. 	In each oircuiastanoes some degree or

pre.çeging, to cut dovn tho total loud tinie, is desirable if it can

be done accurately.

Note that for a program in 'steady state' (i.e* mwtAmt

working out eise), fig. 1-4 a gives an interesting method of

determining the total umber of page-faults if a program is

restricted to store So and runs for time T0, demand paging from

nothing to begin 4th4 as in the above 8xszle. 	The horizontal

at 	intersects the JS curve at P; the tangent hero intersects

the ordinate at T0 in A. Then AT0 is the total umber of faults.

6. CONC1II&U

This chapter k*a attempted to identify precicely the

advantages inIent in paging and the problems involved in the

extraction of a real benefit. 	It is Been that the vital issue is

not the strategy for the choice of page replacement following a

pageu-fault, although this is significant. 	It is rather the

oontrol of these page-faults bV the choice of which programs to

allow to rim and how much store to allocate to each at any moment.

The shortsightedness of some early paging allocation strategies in

now generally accepted, and paging schemes tend to be designed at

least with 'ining' a general, principles in mind,

Ibavez' 1*137 investigations, both empirical and theoretical,

of program behaviour have until recently been dominated by early

ideas; met offart has ____ into replacement strategies and

1.22

retrj.,tod store behaviour, and few general ooncluolons have been

reached 	It i of course difficult to judge the inortanoe of

paging oveiteada (points 2 and 3 in øection 1) without much infor.

r*tici fron real. uyatevi. 	But the reference behaviour of

average prograria iv V017 izxortwit, and it is suggested that

studies of mean working set eiron for a large range of programs

operating in virtual memories would torn a good baeia for

judgment of the potential officecy of paging. It woo net amongst

the aims of this thesis, to do this: the realta froui the KD19 study

are pro suitted for amriple only. 	The KD9 is net in any ones a

paged mach' j, and mainly owing to the sq>mse of the interpretive

method used, the rezlts are limited. 	It is hoped, hover,

that thv give some, infcljlt into relevant aspects of program

behaviour under paging.

1.23

1*

1. IRIIWJGTIcI

In asingle-lino batch system, the only feature of a program's

behaviour relevant to its oi, or the system's, performance is it

total olapeod time: that is its processing time • such I/O time which

cazuiot be overlapped with pzvcecning. 	To ctAi10 a program's

behaviour under these onrxlitions eily means to mirA ol se the CPU

time reqaired to perform the Job, and by suitable buffering to

achieve as much I/O in parallel as possible. 	In a multiprogramming

schema i,thsre programs, are loaded into variable size partitions, the

program g1z* become an additional factor, since the total iilnther

of Jobs which can be accommodated in main store affects the

nialtprorvqng facility, 	£ uwr driing a large partition is

likely to find his job is delayed to run in alack periods;

alternatively (or also) he viii incur a grter chai'o. 	If a

decreased sine could be achieved at the aaqenee of greater

processing time, a oonplex opti4aation problem may arise. 	Th3

situation is still further ootliceted in rdn dynamic allocation

systems where only parts of the program need be in working store at

any moment. 	The pattern of reference vithin a program becomes a

factor highly relevant to performranoo, particz1erly in a time-

sharing environment MhWe a oontiral swapping between rr1 n memory

and banking store is necessary. 	Optimization is new a process

far removed from oinly m{riimfing the total processing time.

The possibility of deaiLng or reoriniaing programs to

improve their behaviour under paging has been at least aiiaated

since the time mhen paging studies were first made. 	?ine at a].

21

(ref.9) undo cone general ioetiona (although with little

conviction) and more reoently Kushner and Rande.0 (ref.18) 1i1i

do cone intuitively reasonable rules of program design, the

foremost advocating net to access a wide variety of pages in rapid

succession. 	1cperinnts have ohoi that in certain wratems,

redesign of algorithms (rei'.lo), a change in data storage methods

(r'ef.19), or a fairly arbitrary repackaging of partc of a program

(ref.20) can give an enorrx*is irrovetent in program perfonanoe.

If there is a potential for such improvement, it is desirable

to devise a yatotiq approach to optimiation in a paging

wrvirorneut • 	This chapter discusses the Awdamental difficulties

%Ohich unfortunately arise at every level of oonsideration of this

problem.

2. THE £It1 OF OPTD8TION

At a theoretical level, a aigoificant problem ir, the definition

of the ultimate aim of program optimisation. One can distinguish

three distinct quantities to each of which come degree of attention

might be directed.

'!L)

b) 'coot' to the system

o) charge inøarred

The pezformnce of a non-interactive program z*zot be judged as

the total time from the firut iiroiientation of the program to the

system (i.e. including the queueing time in a batch rataa), until

completion. 	This measure may also be ooneiArod eatisfactory in

the case of tasks which interact with the programmer, his o

reaponas times being deducted fron the total. 	Ibwevo.r a

2.2

subjective element arises in that machine rospone times for 5rlfl11

amounts of processing are generally oonsidered iie significant,

time for time, than for lengtby computationalwork; an appropriate

weighting could allow for this.

The 'cost' to the system in a rather lees readily defined

conoept. 	The phyoic1 war and tear on the hardware is obvioualy

of no signif'icanoe hero; the coat must be regarded as the diaruptive

effect which the px'o'am causes to the system, i.e. the effect on

the performance of all the other users. 	A a2merical expression of

the system coat of a program P could timia reasonably be defined as

the difference between observed mean completion time of other users,

and that which wad have been observed W P never eiçej theJ

retata. 	If there are no other users this is zero. 	In a single

stream batch system where jobs are run in the order they are

presented, a program causes ii coat proportional to its oini elapsed

time on the machine - subsequent jobs are displaced by this amount.

In this case the optimioation of program performance and of system

coat would be equivalent processes. 	However this equivalence need

not occur in more oompl4K systems. An idealised exwçle follows

and demonstrates this fact; it is hoped this will also give insight

into system cost.

Io envisage a simple nsiltiprogrsamed batch system with two

fixed size partitions; the two programs in store at any moment

compete for the use of the single CPU, but they use separate I/O

Channels (whose store-cycle stealing effect is ignored). The

only factors affecting performance at any moment are the ratios of

2.3

the prooeuing time to the extra I/O time (i.e. not overlapped by

its own processing) for each program.

Denote these by nj smj (=L..aj), i1,2, for partitions 1 and 2.

Each pro'am obtains the CPU for a real time proportional to its

demand, the in a period in 'which prog.l's CPU time is n, prog.2'a

is n2 . 	We also aazme that during the I/O period ra of program 1 1,
there is a period mni2 in 'which neither pro'am can use the CPU.

Thus the assumptions of the model wet

Frog. 1 has the CPU n1/(1+3n2) of total time

Prog. 2 " " " n0/(1+njn2) " 	'

The CPU is idle 	m1n1(1+nn2) " 	" 	" (Note 1njn2=

appoae the average program in the itratem has characteristics

(nom), and a Program P of characteristics (n2,m2) enters partition

2. 	Assume its total processing tine is 	and I/O time &, co

9 would be the e1aped time of P if it were running on its owi.

We reqiire to oa1ia1ate the coat of P in an average environment.

The proportion of total time went processing P when there is

an average program in the other partition is found from the formulae

above, 	since the total processing reciirenent of P is % 0, its

elapsed time met box

	

a = E(1+nn) = E+&n2 	(2,1)

TM&a half the programs in the iyatem - those in the cpeue for this

partition - have been di1coed by this amount.

The Programs in the other partition which are running during

, have lasted:

= F. (1+n

Note their performance has moraened or improved according as the

tMA

CPJ dmr,1 of }) (a2) is greater or less then average (n). 	Thus

the queue fOr partition 1 has been displaced;

e-..E(19n2) 	 (2.2)

The total system cost is the average of (2.1) and (2.2), i.e.

(1-2) • 	(2.3)

ocared to a program porforxzmnoe (excluding time in batch queue

over which the program has no control here) of the elapsed time 2.1.

8ppose, any, that n is near unity, i.e. the average program

has high processing content. 	Intuitively, then, a program which

is I/o bound (m me' 1) will have little coat to the system - this

Is confirmed by (2.3) where Enn2 (= n X program processing tine) is

the dominant term. 	The displacement of jobs in its own partition

is largely counterbalanced by the extra progress in the other

partition to which the CPU is more often available, 	Tbaa

I/O time but mRking a saving of some prooeaing time (for example

writing out data to backing store might save having to pack it in a

colex irmy to fit into store). 	This would increase E but decrease

1 2* 	Then (remembering we have assumed n near one), the coat to

the system (2.3) may be decreased while the program elapsed time

(2.1) is increased.

This example also shows the dependence of both program

performance and cost upon the environment, i.e. on the character.-

iøtioa of all the active programs. 	A knowledge of the system

without an ides of the average load on it may be insufficient for

judgment of optimisatici criteria.

It should be clear that it may achieve nothing to define a

2.5

coot function directly in tarma of program utilisotion of sane key

resource, or as the aim of arch function, unless the result can be

shoun to beer a relation to practical performance neaau'es. 	The

store utilisation - the (elapsed) time-apace integral over main

macory - of a program is an exwqile of aith a fUnction. 	It may

indeed often aoonrate3y reflect aspects of cost, but this needs to

be ihewn, otherwise any other then gross manipulations on it may be

enty mathentical juggling. 	(Note that in this connection, the

model of section 1.2 is relevant. 	The asaamptiona there were

equivalent to t&cI.rig the total efficiency of a set of nipdlnr

programs as bounded above by Wit, where it is the rate of store

utilisation per unit procewir2g time of each program. 	Under the

aaiinptiona of J&W model, then, store utilisation indeed bears a

close relation to efficiency and therefure (see below) to system

coat. 	But one should beer in mind the severe)imi-tationa, listed

previously, of the model.)

system 	has been used earlier to =an 'effective CPU

rate' (o.c.r.), i.ee the rate at which instructions of user programs

are obeyed. 	This £3 a reasonable expression of system performance;

the cost of a program could therefore be defined in term of its

effect on the total o.c.r. of all the aW= programs in the eyetem.

L e.r. is not a wholly satisfactory rieacure however, since delays

to i/o bound programs will not be reflected so largely as delays to

highly CPU bound prooeseea. 	Also in the time-sharing situation

there is again the oorlioation of response times being

considered a key factor in perforaanoe. 	The odd aituation

arises that it is the lesa important factor to which attention nswt

be directed in the measurement of program cost. 	Up to a certain

2.6

level of saturation, I2xst time-sharing systems wil1 consider the

ntene of a good recnse time for highly interactive jobs more

iMorUmt then a high overall efficiency; it is this the latter

,whose degradation becomes apparent mhen a 'high cost' prowt

enters the system.

In a sense the optimal proam performance should coincide

with inirwa system coot; this will ensure that a user's efforts to

improv, his omn program are entirely in the 'right' direction from

this system point of view. 	However this point becomes almost

irrelevant in the 'idea)) system which minimizes system ooet by

reflecting it back into the perfortasnee of the program . 	A

ato?am which wm1d normally be conaidared 'badly behaved' is given

lower priorities on system queues and will have control lees often

(equivalent in a batch system to rescheduling a long job to zim in

a slack period). 	The performance of a bwU..y behaved program

suffers, but other users ore shielded from its effects. 	The

total system performance is only degraded in as such as it includes

the performcnoe of the errant pro'am.

The third target suggested for possible optimisation, was the

charge made to the user. 	It seems intuitively obvious that the

variable part of such a charge should be related to the system coat

and nothing else • 	This means that a job run at a quiet period -

overnight, say - will be charged less than the same job at a time

of heavy demand. 	It also means that if the ayetetn genuinely

succeeds in reducing the syateri cost of a 'bad' j*oaia, resulting

in poor performance of the latter, there is no need to make the

additional penalty of a high charge. 	Charging algorithms in

general for u*ltiproaziuned systems tend to be fairly arbitrary

2.7

and sometimes utterly wrong, but the matter will not be pur wed

here.

This diecumsion, although probably raising more questions than

it has 8navered, has tried to illuminate the problems arising from

what is meant by 'optimisation of performance'. 	We have seem

that in the ideal case program performance is the oigifi cant

variable; the apparent conflict between optimisation of this and of

system Cost, disappears. 	R14 setion of this ideal situation is

a task for the uVotem deeir.

3. 	?LICIT 1INI141TI 	fl1Cc

At a practical level, the first task in a Mnwtwwtic

optimisation is the expression of acne approzimotion to performance

as a fUnction of program definable chamoteriatica over thioh there

is same degree of control. 	In a 	gle'line, batch eystem, the

function is of course the total CPU time + rrn-overlapped I/O tine;

in the fixed Partitioned nv1ttprograimiod case modelled in the last

section, function giving re weight to the CPU time would be

necessary, HWWW the problem is sore difficult in a cbrnwnic

allocation tyaten. 	It is not enough to define avatem

characteristics (e.g. store utilisation, inther of pap faults)

which themselves dqpxI an the program behaviour; we rep ire a

function oontro.Uab].e and meatmrable at the level of program.

The iifnireetion nohow described later in this thesis takes

as its function the average irking set size, 8(T) (see section

1.5) 1, the processing time being unaltered. 	Any value of T may be

chosen - the moat witable choice may vury A'oa program to program

as well as dand on the Mrstem strategy. In a aVatsm using

2.8

Dexuiingl& working net allocation oche (ref 6), S(T) is closely

rolatod to poi'fcrnce. 	For this iaten attepta to reduce page-

fault rates to on aooeptable level by ensuring that any program in

core baa a atoro allocation equal to its current working set size:

pro gram are only allowed in core when ouch apace is available

(note that if there is a priority rule favouring 11 pregraiia,

ratem costa are equalised). 	If the strate' works, total system

performance depends winly on the r*znor, of rzograms that can

iTTIIItaZ1eOUa1y emist in core, i.o, the riiltipi'arncdng facility.

The averege speos allocated to a program is the mean woi4dtg set

size aM clearly in a key feature.

However it is suggested that under M adaptive allocation

atrate', a highly beneficial effect will remit from a significant

reduction of the above function for a suitable value of i. 	This

simply makes explicit the genera]l, preo,t that me should attet

to reduoe the rLnber of pages referenced in short intervals (ref.18).

4. IMMDS OF OPTIELTIW

Tichntcee of o'ptiud.aing page reference behaviour can be

divided roughly into two classes; we can thee. 'design level' and

'coding level' methods.

A1at certainly, the largest içrovenenta in program behaviour

can come from an intell,igant design (particularly of data layoutp),

aimed at reacing the apread of referenoes over ahert periods.

This has been iureaaively demonstrated by Drawn and (]ustavoon

(ref.lO)ubo rapro'amed three problere (matrix inversion, data

oorzelaticn, sorting), involving large-scale data r'eferenoe on the

1444/441 mperimental, 'aten. 	Under a FIFO page rcrplaoaisnt

sta'ate, the amount of store required for efficient perfoznoe

2.9

's reduced very a&batantinllyz by a factor of six in one case.

These were obviously, parti*i1ar (and ird.t('].]y very badly behaved)

programs; a more genera]. approach In that of McKellar and Coffman

(ret.19) who 	minA the paging rate (under a fixed store strategy)

that results from matrix operations under different methods of

matrix atoroge.

Ikw,er the redesign of programs to iurova paging behaviour

is neoeaaarily an ireoiae procedure and iuoeeible to examinn in

a general my. 	£ definitive approach to optimisation must confine

itself to 'coding level'; by this In meant either the choice of

page boundaries comes existing code and data, or a couiq)lete

repackaging of parts of the proen among pages. 	There has been

some work dealing with methods of locating reasonable semnt

boundaries (refs. 21,22,23) and more recently such studies have

suggested paging systems as an area of possible application (rats.

24,25). 	The only work to which the wither has discovered

reference relating to rape ckkg-ng solely for the improvement of

psiing behaviour has deaoxibed the experimmts of Comeau (ref.20).

A brief and pesitlm4 ati o ounmery of the iinediately apparent problems

appears in ref. 18 (pl013).

The great advantage of optimisation, at this level is its

amenity to autoition; the poas 4hiltty exists of r *cging being

performed by a ooq4ler, perhaps using the results of automatic

monitoring software. 	Whether the whole process is worthwhile zisiet

be judged by the same criteria as with any optimising compiler.

The degree of izirovenent obtained n*iut be balanced qs 1 flst the

time and effort in producing it. 	The rewlta obtained from the

scheme described later aiggest that optiniastion would be well

2.10

Justified an the large, often uaod system program (ccqilera, etc.)

which are often a principal cue of poor system performance.

Thec,eticel aspects of program restructuring are ecaiined in

the next -.

2.].].

ow

1. I1D1JCTII

For restructuring purposes a program is envisaged as being

partitioned into a collection of blocks - henceforth termed nFin1a.

This partitioning may extend over the whole program, or simply over

part of it: perhaps just the instructions and not the data. 	The

assumption implicit throughout this chapter is that the chunks can

be rearranged in any order and can thus be peaked into pages in any

desired manner. 	Such a rearrangement ray recla ire alterations or

additions to be made to the chunks for instance extra instructions

could be necessary to maintain the correct flow of control. 	It is

assumed that any changes in the dynamic pattern of reference to

the thanks ('4th respect to process run time) thus caused can be

regarded as insignMoant. 	The MIMA of the chin- . are also

assumed to be given and to include any increases that the above

alterations may cause.

A simple but coarse partitioning would be such that each chunk

was an entire loadable module; relocation is then an easy matter.

At a very fine level, one might take the eauil instruction sequences

between one branch instruction and the next, or individual data items,

1krccl1y us the chunk sizes become smaller, the difficulties

associated with their qwwtity increase but the potontial for the

improvement of program behaviour also increases considerably.

The few actual examples given in this chapter are for clarification

and necessarily deal with a very few c1imk, but it must be

remembered that in praotioo there ray be many hundreds. Practical

difficulties concerning choice of chunks, repackaging etc. can be

3.1

very considerable but all ouch details are left to the next chapter.

The following two sections coxnt on some theoretical work

bthioh 1*0 already been dome in arose based on the above aspect, and

which bee possible relevance in the paging situation.

2. THE STATIC GRAPH

The aLiz1eat representation of program structure is as a

directed graph whose nodes are the program ch&wica. 	Mppoee the

chunks are riimhered from 1 to n. 	We noire a directed link frou

chink i to chink j if

An instruction in i can be directly followed by an

instruction in j (this covers not only jump instructions but a

'drop through , from j to j).

An ina1'u otion in i can reference data in J.

An instruction in j can reference data in i.

Thus a data reference is represented by a directed link in each

direction (alternatively this can be regarded as a non-directed

linJc).

The resulting graph is equivalent to a (n x n) matrix S with

ajj = 1 if there in a link fran chum i ta i, ajj = 0 otherwise.

S is known as a Boolean czpnectivitj matrix.

This is a construct based purely on the static structure of

the program wd could be easily generated at compile time. 	The

mere presence of a reference or branch from thi'nk i to j

justifies a link; the frequency with ithioh this path is taken,

or whether it is taken at all at run time, is not relevant.

Graph theoretical techniques can then be applied to yield

certain information about the program structure (refs. 21,22).

3.2

Clunk j is sid to be rthable froni j if there aaciata a set of

links forming a directed path from i to j. 	xiort1 (ref.21)

has alxrimi how to use 8 to farrii the reathabilitv itri R,

(rjj O if and on3,v if .1 is reachable from i). 	This shows up

r&"vnt)nk (ithiob can never be entered) and b11,v alley

errors (sets of chink which once entered can never be left).

Consider the relation between nodes i and j defined by:

'i is reachable from i gW .1 is reachable from i. (rj = rj1 =3.)'.

This is easily thoaz to be an equivalence relation; the nodes of

the graph can therefore be partitioned into disjoint equivalence

classes. 	Those consisting of more than one element are known in

graph theory as inc1r1 atri'1v amctad abgrapha. 	In

Programming tome, ouch a subset represents a not of oIinka which

cannot be revisited once control hen passed out of it; the

partition is therefore a reasonable initial segnntat.tcn of the

program, 	imort1r describes how to identify these subsets

using the reachability matrix,

Alt&*igh interesting and elegant, the grapb-theoretical

approach is probably of very limited application. 	3ze 130

abgrapha will often be very large - perhaps the whole program

wi3Miig the initiRl{eation section (this wiU be txue of any

program with a central main loop). 	6 hsy are in any case likely

to represent phases which are quite deer out at the design level

aid form natural and obvious elements of segsentation without

reocurae to foriel techniques. 	More significantly very little

can possibly be deduced about the rtui.-tima flow of control from

this static ixdel of program ctructuro,

3.3

3. TIM& D•IAiaG GHAPIi

The above model can be simply extended to store come

information about dirinjc behaviour. 	Intorcñmk 111*8 Gre given

a rmmrjcal weight proportional to the number of tiiee the link is

traversed when the program in urn, i.e. define;

8j1 2C the number of tiraee control in tranaferred from chunk
i to chunk- j (or reference made to data think j from i),

he actual number of times lin are traversed in particular runs in
not in,ortant here; only the mtiq of the a over long periods.

We define cjj to be zero for each i.

Two particular subsets can be identified: 'entry iilmnk',

those which can be directly entered from the external world, and

'exit ImIç fr01!1 which control can pass directly out. 	It in
convenient to represent the external environment by an additional

chunk, 	Thia in RnId by appropriate weights to all entry and

exit chunks, and the røtorn in now closed. 	A$cIm1 rig control

begins in the external environment and eventually ends there, the

curn of the weights on links entering any chink in equal to the am

of the exit weights, i.e. for all i;

== n (my) where N in the ziimber of
=1 	 j=i 	 c&Eflke..

The nj are proportionel to the total nunther of tines each chink in

entered.

Put Pjj = 	 all i,j
flj

Then pij in the proportion of the total number of exits i'om i

which go to J. 	Given that control is in chink I and 	other

infotion, Pjj may be regarded as the probability of J being the

3.4

next cb 2nk.

N
1 1

Then 	fljpjj 	 mij 	fl 	for each J

i.ø. (n ,) is a left elgvnveator of the matrix P(p jj).

This foot could be of practical use in the construction of

the 8 matrix of a program. 	If data is gathered by direct

monitoring at process run-tizae, the a and n i, would be the easiest

quantities to aoaan'o. 	ikwever if an apprdtion were being

sought by oct..ntion, eape'Ia2].y in a large program, the pjj would

be easier to izeaa. 	Theae are more local quantities than the

Bijo to which the constant of proportility edda a global effect.

Froe the estimated 'jbabUity' matrix?, the n can be calculated

(USIM9 ontomary matrix methods for the determination of

eigxvoctora), and hence S.

Fig. 3-la gives an exajTVle of a Omph with possible wmiijite

and jig. .3-1b the corresponding graph with p4 and flj.

(Any 	4P3.e of the aij and ni gives equivalent graphs).

It Wwuld be noted that the above reationehip between P and

the use frequency vector a is a purely arithmetical consequence of

the definitions; the derivation of p ij is not aipposed to inply that

at ar7 moment the next thnik to be entered depends solely, or even

at all, on the current aI*mk (although it is true that the

derivation is pointless if the dependence is alight). 	Thus in

the WCaMP19 of fig.3-1, it is quite consistent with the given

information that C be a subroutine called from either B or D and

returning thereto. The successor to C is determined entirely by

its predecessor - given that the 'tunic sequence has been BC, the

probability is 1 that the next is B aln. 	The fact that p.

3*5

C)

Fig 3-1 Dynamic Graphs

eirly L1OUn that OV(U' it long period, one half the axite from C go

to B (because in this cave one half the entrioo oomo from B).

Approaioo to the d,nenzio Craph of a program (r.:ifa,21,23,26)

have invariably uood a 'kov model (ref. 27), tak:Lg the tih'mlcs to

represent the atates of a Ixganooua ItaqwV chain. 	This makes

the asticn that the probability of the next reference being to

chink j, aay, depends 2AIX on the current chunk is and is

indepenIett of time or the previous d*mk hietory. All the

results from the theoiy of Irknv processes can then be unod (in

particular the limiting state probability vector 16 if it ed.ate,

eativtiee 'P' rthero P in the transition probability matrix).

lbwever it eeeina unhikel..y that any nartitiflnr program can be validly

modelled in thin imys the presence of pr000durea, loopy etc.

iediately add a highly 'nom.4irkovian' element. 	This in net to

my that such a model cannot be useful in awaining broad aspects of

program behaviour or in simulation experiznte, but it is probably

of little use in practical restructuring problea.

A repackaging problea '.tzich has been considered (refs. 21,23)

is %hat, in termed here the 'oograent • problen. 	Thin has possible

use in the paging situation, and also demonstrates an application

of the N graph (uncluttered with notions of probability); we

therefore examine it briefly.

It is reqzired to group the thnnlca into AQCMAA of ao

min1ti aim L, so that the number of inter-segment Juua during a

long period is ndniadsed. 	The obvious application is to divide

up a large progrnm to in in a Smaller much! ne with a mirdTalm number

of ooçlete overlays.

3,6

Irite Cjj = 	+ ji - Thic is proportional to the number

of time control passes between c}*mks i and j • 	If A to a subset

of the think, define:

terna1. non tivjt of A = 	,' 	 cii
i€ A, J A

'1a is n'oportionil to the number of times that the boundary of A

Is aroused; so the segment problem is to partition the chunks no

that the sin of the external cor9lectivities of each aiboet to

fal W ml sod. 	(It is trivial that this is equivalent to maximising

the sin of the intarna]. oojieativitiaa. / 	aj)

is, JEA

Note that the intereemt jue are only Mini rd 	over rn8ny

prosanL ztma. Over any par'Giou2Jr run, and certainly over any

part of one, it need it be true unless the program exhibits the

stationary behaviour that the Irkov mode]. asaixase.

Fig. 3-1c shows the connectivitiee oij for the previous example.

It g xiir'1 of t10e rthunke per ooaant were allowed, the dotted

lines show the boat partitioning (1 aM G ray be interchanged).

~LhO SUM Of thD WightS jin boJzj IA 34. 	The oum of the

external oonnectivitiea is 4+14+1()20, each link being counted twice.

The problem to then quite precisely defined. 	Given that the

original aii are accurately proportional to inter..ohxnk transfer

frequencies over a long period, the azm of the external

oonneotivitiee of a set of aegnenta is in the same proportion to

twice the inter-.eegraont transfer frequemq. 	Nothing also about

the program is required or need be aetzmed.

Unfortunately in the general case the discovery of the

optin'ua groWdM is extrenel.y difficult. 	To enumerate all the

valid partitions and work out the remilt for each one would be quite

3.7

out of the question for any but a very few chinks. 	We have a

problem of at least the order of the travelling saleer.n pro 1 1.un

(ref. 28) with the additional difficulty that no dmamio programming

teohniquea to reduce the amount of computation without immense

storage probi, sugmat themselves. 	(It is not obvious hew to

avoid the repeated computation of the aderml connectivity of any

partioular zbaet). 	Any practical solution naist involve a

heuristic tachoiqu., hopefUlly to lead to a near optimal result.

We do not disousa this here (ref. 21 suggests a method), although

the method of section? dealing with a slightly related problem

would probably be effective e 	 Two points are worth making for the

unry, 	ugh.

In figj-la, the chunk in a segment by itself in the best

ouping, i.e. U, is not the]eact ugod chunk which is C.

The best partitioning has not necessarily the least number

of segments. 	If, in fig, 3-2., three chunks cnn be packed to a page,

the three segment packing is obviously far better then any into just

two segments.

I 	 I

I 	 I
I 	 I
I 	 I

Fig.3-2

3.8

4, aiyauci TO Ta PAGING PRLL4

First thoughts on the question of the improvement of program

behaviour under paging night wggest an approach like that above:

ppoae me restructure into Dagan so as to tflifliJniØ5 the inter-page

transfers, would this have a highly beneficial effect?

Intuitively me would eqmt an inzvvntz oontrol would

remain in any one page for longer periods, and rarely used abinks

would tend to be removed from the main paths, reducing the effective

aLse of the program. 	However it is azggeated that an emphasis on

crossing boundaries is completely misplaced in the paging situation.

For instance,, a tight loop over a page boundary, lasting my

ems, and involving fifty jumps is likely to be no more significant

than a sinple branch. 	(e both pages are in store, and no

reasonable allocation strategy would involve the removal of either

within ins, of being used (un].esa the end of a time-lioe

Intervened)., no further cost in incurred by further transfers from

one to the other. 	A single reference to each of several pages

during a exu't period will noroa].]y represent far worse behaviour

than repeated boundary ci'os1riga of two or three pages. 	This

means that the ability to choose uhare a page boundary should lie

across the code of a program may not be very useful. 	(e could

of course use it to separate two adjacent but dyn&iically widely

separate sections (perhaps a subroutine from its caaaally fOl1OIJiUg

code), but the aaperflcial]y attractive ides of going to great

lengths to avoid loops over page boundaries has possibly little

validity.

An extreme example of the lack of importance of direct

connectivity in the Paging context is showo in fig.3..3. 	This

3.9

Fig 3-3 Irrelevance of Direct Connectivity

chows ebinks which can be packod tuo to a page. 	Control passes

from chm1 1 to a random one of 3,4,5,..., then to 2 which s4tohe

to the corresponding one of 3',4',5',... and then beck to 1 ain.

A poa&ble sequence is time 1525 11323 11 	343POSO the

processing time interval botiweon two entrieo to 1 ic fairly short,,

ooared to the average tiel.too. 	Then the twD clunks 1 and 2

are alweya going to be referenced, and within abort periods of each

other; they are obviously beat pecked together. 	Chunk 3 may

rarely be referenced, but when it is (and only then) a call of 3'

follows; 33' abaul4 be packed together, similarly rirly 44' etc. 	Thea

the most effective packing, in the majority of paging environments

at least, would give a zero external connectivity to each page and

would be the worot solution to the segment problen.

Generally in the paging situation one is interested in program

behaviour over periods which, although only measured in ndlli-

seom4e, still contain herlreda of references to perhaps many

pages. 	In these circumstances the connectivity matrix contains

information on too fine a scale , to be of much use in roctructuring.

However it does form a fairly ooq*ot my of expressing elements of

program structure. 	It is obviouuly teqting to redefine the

coefficients as a form of 'dynamic distance'; thus 3 and 3' in the

above a=Wle will have a connection since they are always nailed

within a abort time of each other. 	We sha.11 sea hew consideration

of a precise paging problem leads to just this approach.

5 • 	1K*UING S' PRWL21

As stated in 11.41 the paging function which is our target for

MiTilmisation is the average working-set size for soma given tima

interval. 	Ue eook a packing of the chunks into pages which

3.10

Minimises the mean number of pages referenced in intervals of the
given length.

It should be noted that this function is additive over various

parts of the program; if it is only fes4hle to restructure part

(e.g. the instructions and not the data), this can be treated on

its oai, the contribution of the rest to the total working-wt

size not being relevant. 	In practios this property is essentials

large Program wili often consist of meny modules only linked

together at run-time and containing library and system routines;

it would not be practicable to demand that the whole prorwa be

restructured at once (unless chunking were done at the gross modular

level). 	For wcançlo, a scheme which sought to mininijee page-

faulting when a program vas run in a given ii pages of store would

be of academic intci'eat; one could do nothing without information

about the tottil program.

Intuition (cud the continuity of (T)) emggests that a good

restructuring for an interval, length T1 will be good for any T in

the n.ighbourheod of T1. 	However fig. 3-4 shows a possible

situation for two widely different values T 1 and T2, Any

restructuring is likely to make a large inravenent throughout the

rang., but that for T1 is a long way from opti-ne.1. for T2 and vice

versa • 	Two simple examples (allied 'ed to those in the last section)

are given to denetrate the importance of the time-scale,

Fig 3-6 shows thluik which may be packed iq to three to a page.

Control resides in £ and B for a time T 1, then C and D for the same

period, then E and F, and then the cycle begins ngain. 	If T, is

large ocopared to the US parameter T, the optimal grouping is

3.1]

na1

-

S BY f.. 'B'

T1 	 T2

2ig 3-Li 	Effect of i-estructurings on .iorking-set Curves

i 	,'orkin-,et curves of Example 2

-

.CUJ(. ,

}ig 3-7 	Importance of Titie Lcale, Example 2

AB GD ZF. 	In most intemmas (a proportion].T/4) only one page

will be referenced, ikiile with any packing into just two pages, both

will be referenced in at least 113 of the intervals. 	(k the 	other

hand, if T1 is zLl, jLU the chwAs 411 be referenced in any W8

interval, and they iist be packed a densely as poa4ble, ABC Dy'.

For TT1 both these groupings give the same result.

This is shom in fig 3-7. 	The elimka can be packed two 	to a

page, control residing in each chink for unit time. 	Control

flows WA' or XBD' with equal probability. 	As in the mile

of section 4, if T is large the beat packing is X! AA' BB', but for

small T the direct coimectiona become idtfiawit, and a packing

such as XA BY A'B' is better (A' and B' can wally well be given a

Page each). Actual values of the working set size are eaaUy

calculated (by insidering the likelihood of each posaiblo chunk

sequence occurring in an interval) j fig 3-5 &x,va the US curves

for each of the st'ucturinge above.

As in the case of the dynamic graph and the .eent problem,

we adopt an empirical approach to the solution of this problem;

rather than trying to construct a nodal we siWly attet to

measure data directly related to the specified US parameter and

work with this. 	This r*keu no simplifying assumptions about

program behaviour, but we met guard against the risk that the

practical effort of obtaining data outweighs the gain caused by

restructuring.

6. AU wiaCIT FOR1JLATIOU

&zppose the program is uEnitored over a long period (perhaps

3.12

over marq ims), and a re(x)rd is umcle of which chinks are

referenced in each of a large riiriiber of prooeaal-'3c intervals of

length T. 	After N zzich intervals, this record is contained in a

(n x N) array R vhere rjj =1 if c)'nk I is called in the J th,

interua]., rj = 0, otherviec.

Given az' graVing of the nhika into pages, the "rmIr of

pages referenced in a*r interval is easily seen from R, and

therefore the average auéer far all the monitored intervals. 	If

for any restructuring this average is close to the actual average

mrking set size of the pz'owi (which is of course a theoretical

measure defined over all possible intervals of all possible iina of

the pi'oaui), a is said to be c roreaentative record. 	For most

large pro'ama it is probably enough that every thank has been

entered a few tines, although this may take iij thousands of

intervals if the thimlcc are wall (see Chapter 4). 	(?cr a set of

intervals to be tri.tl.y representative of roforonco behaviour, it

*z1d have to contain every posifhlo chink ooIxthetim repeated

according to the freqienay of its occurrence in all ror.s, an

utterly inr*ctice1 requireiit with more than a very few chunks,

R is wfficient for the 11JTh{1(j informmtim needed in this context.)

The optimal restructuring is then taken as that which gives

the beat results based on the tested intervals.

intervals 1234
8
A
	

00101
B
	

01000
C
	

10000
D
	

].)1O1
10010

P
	

01010

3.13

The Six abinks A-F can be packed up to three to a page, and we

make the unlikely supposition that the matrix above, containing the

reference iniftrmation of just 5 intervals, is representative.

Consider for exaxle the grouping ABC DEF. 	The first pegs is

called in every interval except the fourth (none of chinks L,B or C

being referenced then). 	The other page is referenced in all five

intervals. 	The man number of pages per interval is thus

(4s5)/5 = 1.8. 	The optimal clustering, easily found here by trial

and error, is LCD BEF. 	The rocult for this is (3+3)15 = 1.2.

Given sufficient nKmitoring data, then, we I*ve a eiii].y and

precisely defined problem s, just as in the case of the aegukant

problem. As with the latter however, there is no obvious solution

proc"wes exhaustive emLaeration of all valid structuringa cat

be considered. 	A further difficulty hero lies In the large

quantity of data, growing with the number of intervals tested; in

the segment case all the necessary information is stored in the

constant size (n x xi) array (although with several I*xnth'ed thimk

this is not 	1i). 	A practical solution will depend on the

development of a heuristic method which yields a good restructuring,

and a my of avoiding the problems associated with the storage and

access of reference data from perhaps mezr thousands of intervals.

7. THE SLmAazTx AM"

Jith each nhmk in the above problem is associated its (1 x N)

reference vector. 	It is intuitively clear that two thrnk0 which

are norinaiJy referenced together in intervals are likely to be both

in the earns page In a good structuring - we are trying to mini rrmiae

the wastage caused by only itii parts of pages being referenced

during an interval. 	Thus it seems reasonable to atteçt to group

3.14

the thnnk8 according to the 'similarity' of the reference vectors.

For inatenoe, in tackling the axwqple or section 6 above, an

obvious first move would be to group tthunk A aM D together on

this basis,

Expressed in this iaq# some reoembaanoe is seen to the well-

known clustering problems uhich arise in classification theory (or

numerical tffrrmor) (rots. 29,30), eM more recently in certain

other fields rnch as pattern recognition (ref. 31). 	In these

studies it is assumed that there is a given vet of AIMMAR each

defined by the values of an associated set of attributec. 	The

values are uenaUy binary, indicating siMly presence or absence of

an attribute. 	For exomple if the elements are diseases, they

might be ohersoterised by a eat of symptoms; if insects, by various

physical oharaoteriatioa. 	In general terms, it is required to

form clusters of e1eita such that those in the was cluster appear

to look alike, and are dianimilar to elements in other clusters.

The wooeea of the result is judged by c.teria relevant to the

problem area; tbuc it might be 1ped that all diseases in one cluster

be amienable to adndlnr treatment.

The first step in wch clustering technioea is slweys to

construct a nirTd 1aritr ax'&v 8, whene elements Dij measure a

defined coefficient of similarity between elements i and J. 	The

cheioe of a satisfactory definition of this depends on the

particular problem. baWles are

1) 	zazinber of attributes present in i and j

or 2) amber of attributes either present or absent in both
± and J.

Coefficients are often normalised to give a reiilt between zero and

one; tbua if 2 above ir, divided by the total number of attributes,

3.15

the imi1Rrjt3T will be unity for elements with identical attribute

sets. 	The similarity array is then taken as aiidYig up all the

relevant information about the relationship of the elements to each

other; it is used as the sole data to some ru 	rinj' l-j1t}v

which groups the obunka into classes.

The reeeithlsunoe of the above to the wrking not problem is

obvious if we inter&'et reference to a chink in a given interval as

the possession by that chunk of the appropriate attribute. 	The

difference is in the final objective: the clusters of chunks which

will form pages are strictly limited in aize.

A great attraction of defining a psirwise 'oloaenea& between

thimk, and wrking purely with this, is that the similarity array

is a ooiact way of storing data - it ciay be built up during the

monitoring process, and the problem of huW 1 1Ag an indefinitely

large quanUty of interval reference data is nveided. 	If there

are n obunka, an (n x n) array 6 is injtin1 seed to zero. 	At the

end of each interval, put (far all i1 j):

5jj = 5ji • 1 	if and only if chunks i and j have both
been referenced during the interval.

A count is also kept of the total number of intervala N.

Noticing that the diaxal elements will contain the

frecenciea of use of each dmk, we can work out from 8 any pair-

wise relationship between two of the original reference vectors, and

therefore any airiilarity ooeffioient.

E.g Bij 	 number of intervals i and 3 both called

26jfN..a ,7sj 	minbor of intervals i and 3 the some
(both celled or both not)

It is iiçortant to notice that the similarity array does not of

course preserve all the original information (it is as though we

3.16

replo cod the oo-orditea of a not of points by the diotanoe

betwen then, the elements here being defined in a very large

dimenatonal space with an wiaaa1 moaalre of distance) • 	Thus

consider

two possibilities for the reference histories of three

oI*znka in tour intervals:

£1001 	 £1001
BlCtLO 	and 	B1(XLO
C 1100 	 C oct].

Both situctiona wMild give the same oat of pairwise similarity

coefficients (on arW definition of the latter). 	The difference

in the mutual relation between A s B and Cl which is somewhat

closer in the cecoM case (since the references to all are confined

to three intervals), cannot be expressed.

Various coefficients were used with data obtained from the

KD19 study (see appendix A), the most consistently aocesofU1 being

ainç1y a, the number of intervals in which both c1inko are

ref aren el, 	This puts no weight on ao utche s intervals in

which neither n}iiink is called, 	Those, then, are no more

I.iificant than intervals in which one 'nk is referenced and net

the other, thus:

A 	11100100100
B 	11100100100

would have the snno similarity as

A 	11101101100
B 	11110110111

In the first case, A and B should obviously go in the same page; in

the second,* the high number of mismatches may make this a bad policy,

lbwver in practice, the density of l's in the referenoo vectors of

neat O} *nkø is quite low, and the positive match some to be the

3.17

Lificant factor; attempts to 1iEj't z'o matches or put a

negative might on miatcheu gave in general leau good results.

Given any coefficient, a situation con urludiy be constructed for

which it will be perfect or disastrous; what is required is the one

suitable for the sort of behaviour that computer proama, chunked

in the chosen nezer, di1ay. 	It is of course quite a ai1e

matter to change the sim1arity coefficient in the clustering

program.

The definition of the similarity array is the first step in a

aggested heuristic volution to the explicit problem of section 6.

But by oontimiing the approach at the and of section 4, we might

have reached this point without ever defining the problem in precise

terms. 	Coimeotivity as used there could be regarded as the

frequenr with which two thvnke we called within a very abort time

of each other. 	Having decided that this was too imnediate a

relation to be relevant, we might have simply extended this to the

freqiancr with which the tw ckamka are referenced within a period

T of each other', and tli&a defined the aimiJ irity coefficient.

S. CWF1I1G AIGO1aT1a

The esooM stage of the heuristic solution of the restructuring

problem is a cntarin procedure which, taking the aimili'ity array

as input, i'ca'ma the abiwks into groups of total size lees than a

page, 	The KM data was used to investigate various clustering

tethn4qiaea.

In moat of the clustering procedures, a search is first made

for the t* chunks which have the greatest ailmilarity to each

other. 	These are grouped together, and a new *imi1 rity is

3.18

defined between this group, treated as a ainri 'i entity, and all the

other nhmk. 	Thia process is then repeated find the greatest

link (inoinding the newly defined ones), combine the appropriate

(groups of) n}inik, and work out, in sone defined way, new

advAlmarity ooetficierrta. 	We this obtain clusters of o}un1ca %hiah,

as the proaecu'a continues,, grow by merging with uncluatered think

or with each other. 	So far this has a close resethlanoe to some

llgoritIz3a of an'il taxonomy, but a departure is necessitated by

the requirement that the ultimate groups of chunks be less than a

page in &dze. 	In the algorithm finally adopted, clusters were

aiq2.y not allowed to grow greater than a page: if tuo clusters had

a combined aLso mare than this, their ntmfl nrity coefficient wee eat

to zero, this ensuring that they would not merge. 	SOW earlier

attoopte vero made to avoid this rather unsatisfactory 'discontiisaoue'

effect of page size. 	In one ORSO., clusters were allowed to grow

indefinitely, pages being peeled off as they formed; in others

attempts were made to reflect cluster eisa in the similarity

coefficient, 	lbwever the results of these more 000plax algorithms

were generally ieee good, and they were abandoned.

The abovo method dennMa a definition of nim{iirity between

two 'ouns of chunkp. 	The choice found to be most successful, and

finally adopted, was the arithmetic mean of all the inter-group

similarities of the constituent 	 This is not particularly

logical (a choice more oonedstent with the adopted &-m(larity

coefficient wm1d be the greatest link), but it gave the boat

results of the fairly simple definitions tested.

The other area of qeriment in clustering made use of the

Theory of (ZLwçs (refs.32,33), 	This riLjoroufl].y defines the

3.19

nation of a cluster, by specifying that it uhould have some precise

Property. 	Various typeo of O1WT(are defined; an ea1e Is the

R..Clu' (ref. 32) ithi.cb in a set S ouch that for every element of &,

the man of the ooinieativitiea (e1ra{1ii-itieu) to the remaining

members scoeeds the main of the oonnectore to all elements net in S.

I4etlmda are given in the referanoes of discovering o1nne (of ithich

there may be a very large number) f2'cia a given si milarity array.

Unfortunately, no way was found of relating olw2pa to the

fixed aiee groupings required, and generally little sucooss was had

in applying clumps to this problem - unless nen-overlapping clumps

a little under a page in size happened to wdot. 	Jven crefu1

hand c]natering after examining cluie produced did net give as good

x'emalte as the automatic procedure described previoualy. 	however

it was felt that aluiia could make natural unite of program, and

in certain alrowwbanoes might be useful in tho construction of

suitable varih1e size 	the intersection of claza perhaps

giving an indication of which n'ink could be usefully duplicated.

The foUowing ameill aawvle illustrates the clustering method

finally adopted. 	We asmaie the chunks (denoted £ to F) are of

	

unit size, and the page size is three uniteo 	&jppose the interval

reference record Uwe as shown in the array below.

into. 	12345678910]l]2].3
dunk

A 	1010010110011
B 	0011110011110
C 	110001111000].
D 	0001100000110

1101101100000
1100001000001

G 	0011100011110

3.20

The similarity matrix (after setting its diaons1 elements to zero)

is:

ABCDFG
A 	0451223
13 	024207
C 00441
D 0204

032
F 00
0 0

(B,G) is the iyinii e1ent; chunks B and G therfore combine to

give 130, and we define a new array:

A DOG D E F
A 	0 3,55 1 2 2
DO 0 	154 2 0
C 0044
D 020

03
F 0

E.g. (BG,c) = J<(B..C)+(G o C)) 	(2+1) = 1.5

A and Cnewcombine to give:

AGBGD El
AC 0 	0 	0.53 3
DC 0 	4 2 0
D 020

03
F 0

Note that the size of the chunks AC+BQ has exceeded the pege size,

so (Ac, BG)=0, 	If this had net been so, the ei mi) rity mu1d have

b.so ((A,B).(A,G)+(B,c)+(c,G))/4, i.e 0 the average of the links

between the 9rjpths1 oorwtituents,

130 and D oo(ne to give:

AC BGDE P
AC 0033
BGD 	0 0 0
S 	 03
F 	 0

An arbitrary choice is made from the remaining equal non-zero

elements,, say (Ac,S). 	This gives as the fi1 peeking:

ACE DOD F

3.21

In the original thirteen intervals, this would have given a total

page referenoe of 23. 	(If in the finni array, (ii,?) had been

chosen as the greatest element,, the remi].t would have been 24 with

AC BGD &)

9. COICOMS AND CWCLU8IS

A page boundary oaiut be envisaged like a segment boundary,

d±v1Mng two logically separate parts of a program. The

intolligant choioe of page layout, although profoundly affecting

program behaviour, is essentially a low lovel decision, being

dependent on the lengths of various bits of code and data, and the

fairly short period reference pattern between then.

Section, 6 showed that the problem of reduction, of average

working not size can be formulated quite precisely in terms of

observed reference behaviour, but in seeking a practical solution

we enet abandon precision and work upon ideas of a 'dyoanic

distance between one chink and another, with respect to the chosen

time-scale. 	It is this tine-scale which is inortant, and makes

structurel program models which ooncentrato on direct Links between

one chunk and another, of not r*oh use when applied to pavinr'

problems.

In general there is no way of telling how close to the optimum

are the results from the clustering algorithm; this is particularly

true with the large scale px'ob].exna arising from big pxvgrwn.s (and

it is after all just these whose optimisation is moot Important).

1trspolation from the results of i11 problems like the example

of the last section, is hardly vuli' • 	lizievor a large number of

restructurings (many 'by band' after careful exniiination of the

3.22

results) was tried with the kiDi9 data, and thore was never a

aigziifioant difference between the beat reiJ.t and that from the

adapted clustering algoritkwa. 	Te is this good reason to

believe that the algorithm achieves br far the greater part of the

possible irovenent.

In praetioe, it is the degree of inrovenent which these

aetheds attain, and the feasibility of using thea, which are the

iaportant matters. 	Theos are the ooncern of the rest of this

thesis.

3.23

IV 	LIC 	 is 	 J(TUflG

1. IWZ1JJQTIcZ

made in the a000lihmeart of program restructuril ig, based on the

ideas of 111.5 etc. 	For an aptimieation prooeou to be generally

thdilo, it uhould not only produce a nignIficant improvement in

ping behaviour, but itself atx)uld be as rapid as possible. 	The

ideal is that this process should be as transparent to the user as

perhaps paging itself ebzld be: the program during its normal

course of running would be monitored (without apparent decrease in

effic.tenr) and restructure itself when necessary, without user

intervention. 	It is impossible to achieve quite this, in rrn*1

circumstances, so the rea4.ltg3 obtained from restructuring can only

be pracaUy judged in the light of tho effort in athieving them.

In order to test the practicality of the methods, and

investigate the degree of improvement obtainable, a restructuring

scheme (heiioeforth referred to as ES) w oo implemented for prograLw

written in the LT lanizage (a development of Atlas Autoonde) for

the ICL 4-75 computer. 	This scheLiw is described in full in

cI2apter V and appendix B. 	however this chapter, in discussing

general practical princilea, askss reference to the decisions mede

in the implementation (although some of these were necessarily

determined by the I} language or the compiler on whiah ES use

beoed).

4..1

2. CHU1K

Two militating considerations affect the average size of cI'n1e.

It should be clear that the wailer they are, the better are the

potential relts of restructuring. 	There is loss chance that the

own chunk will contain parts of a program dynamically for removed

from each other, there is more flexibility in repacking, and

scarcely used aectima (failure paths, etc.) are more likely to be

isolated and able to be removed from the main paths. 	On the other

hand the average size of chunks affects their total m1m1r; the
im4 L arity array storing reference data for a big program becomes

izractioably large if the chunks are too small. 	Not only the

amount of computation by the clustering algorithn increases (roughly)

as the oqaro of the number of chunks, but - more crucially - oonst-.

ant reference to a very large array during both data collection and

restructuring phases will make the whole process very inefficient

in a paging environment. 	To a certain extent, this can be

overcome in a manner described later in section 4; similarity data

is only ool].00ted on the more covonly used chinks, A= merging of

chunks taken place on the beato of this, and the process is

repeated. The disadvantage of a very large array is replaced by

the necessity for a amber of data collection phases. 	Jbwver it

some to be the case that in large programs, many chunks are

scarcely used; providing that the array contains information on,

say, 1/4 of the xsamber of chunks, very few collection phase s are

necessary, 	The rtructuring of programs with several hundred

thmils has bean quite satisfactory using arrays with a aide of

length lees than one hundred.

4.2

This naana that although a feasible choice for a chunk would be

the entire unit of compilation (z3odu.le), we can deal with much

smaller ç)iipk sizes. 	We therefore consider a fine obunIdn within

the unit of compilations this is in any case essential if the

structure of the]-'uage, or the ø1atoir7 use mods of it, leads

to xdu].se very large compared to a page size (as is enz?ently true

with II).

A chink boundary is likely to be peri3noue unless it is in

one of the following positions (which we chall denote branch points).

The two types will often coincide,

ILMdi.atoly foUouing an instruction which can transfer

control elsewhere.

Iiiediate1y preceding an instruction to which control my be

transferred frc elsewhere.

This escxrxl case is very iiçortant - initiali&ttion code often

'drops through' into a min loop, and the fcriuer 'once only' code

will nornlly be better removed to another page.

branch point type 2 - - - -
Li

branch point type 3,

aQQMUtA initialieation;
S..

S..

and of inifl-alieation;
• S0

S..
into L;

Note that adja L being a rj*1 branch, it aust also be

followed by a branch point of type 2 or by redundant code.

A chunk boundary at any other than branch points would separate

the code into two parts practically certain to be both entered or

4.3

both not entered in the uarao time-slices. 	(AlthouL4l the boundary

would not be ci.tte pointless: the smaller cJumka might give more

flexibility - 1e2'hala in f(rnrt g up available apaooe in two pages

which were bound to be celled in the saw tirae-.elio.a anway.

Alm the two parts are not necessarily drnwiicel1y , identical, as

the end of a time-interval will sometimes occur while control is

within 01)9 of them). 	The finoøt wrthishilo partitioning in tliaa

obtained by taking bowiiartes at = branohpointa. 	In practice,

'wsvw, Done athciet of theao would have to be chosen to avoid the

very large number of thrnka which would arice. 	An obvious first

approximeticn would be the atarta and aMa of wbroutinoe, ainoo

theee are alinoot certain to be dyramioal].y separate from their

contextual azrroundinga. 	It is the f4.ner subdivision upon %Jhith

it is far more difficult to decide.

A yngra,igaer choosing boundaries h{MLf would be able to make

intelligent choices based on a prediction of his program's dmamio

flow. 	Ow example in which such kviedge Lu uaeful, in the

1anaIipoint ftllowing n conditional branch.

Rrpm1e

ci) 	At1toL
2) 	Mz

A boundary after atatemt (1) is valuable if control normally passes

to L, and (2) is a large chunk of rarely used code - perhaps, a

failure path. 	Similarly it is needed if (2) is often entered

from elsethare (via label II) again making (1) and(2) dynamically

rerved from each other. 	On the other hand, the boundary may be

aperfluoua if the oovIx)nest path passes through (i) and (2), A

normally being false.

If &imki.ng in being perfornd autoticaUy by a couiiler,

4.4

some method must be devised of choosing a suitable subset of the

branchpointe. 	These are easily recognisable by a high-.1.vel

I anguage compiler (not necessarily this in an assembly language with

branoIoints of type 2), and the language statements can give

useful cbiea as to which points are most likely to be suitable for

thiink boundaries. 	V.4 describes and diaaeaee the .my R8 makes

its choice.

If a obIu* does not and in a i-conditional branch (not

j1 procedure calls) there is a chance of 'dropping through'

to the next &nk. 	(bviously if the two o1'nko are not adjacent

after restructuring, a branch instruction will have to be

generated after the first • 	For this reason, and to facilitate

monitoring (see next section), it is convenient to generate at

compilation time a nonconditirinal branch at the and of every chunk

that does not already terminate in one. (In HS the nature of the

choice of chink boundaries ensure that many already do). 	This the

bove exale would be coix41ed as if it had been:

jAtheniotoL
chink bour&Iary., - - - - - 	potq 1.1

Mz goo

Little need be lost, for if, after restructuring, chinks (1) and (2)

are still in the same page, they can be made adjacent, and the goto

M removed (as it could be from any chunk which ori'1nR1lv ended in

this instruction and is adjacent to (2) in the final arrangement).

JU& is an Algol-like language where much of the data will be

dynamically created on a run-time stack; for this to be &uinIed in

the 'x'er defined previously is not feasible. 	Qe (static)

4.5

variables could be included, the own variables of each subroutine

probably being oonviient].y regarded so a &IIpIe. 	on raa

tiJMeharing systems, the requirement of shareable, and, therefore

invariant, code would preclude the packing of data with the code

which refers to it. 	In any case, only a little thought is

required to see that such a procechiro, often advocated, could save

at nx)st a single page of working set size over the policy of

eiqly arsring that as cede sectIme are packed together, no are

the corresponding data sections.

In general, the choice of effective &tmk bou]arias on data

will be fairly clear; there are however tw practical considerations

ca1 'Rt data-chunking.

Collection of reference data will probably require

Interpretation.

Racking data chunks and keeping references correct can

be very oolicated.

B confines itself to code (and some constants) only; it wou3A

therefore be of little use with program whose paging problems

arise from large scale data r6fWMO81 matrix inversion, list-

procesaing etc. 	It is in any case felt that such problems are not

amenable to formal rostra oturing methods, and are better attacked at

the design stage (refo.1049).

3. OOLLQTION OF IMWWJCd DATA

Unless some sophisticated herdre nitoring device is

available, the methods of collecting the nooesoary chunk reference

information ares

1) interpretation of the program,

4.6

2) wnitoring by neans of additional instructions planted

within the program.

Interpretation is almost essential if data nhinking is to be

int'iwecl, the generation of instructions to trap every data

reference being hardly practicable. 	However the s3 	so of

interpretive uetIxxts sekea then moot unsuitable for gathering the

amount of representative data required, especially for a large

piece of data-dependent software there many runs might be necessary

before a Yalid restructuring can be perforned. 	Aoiirt(g code

restructuring only, we therefore look at Just where instructions

have to be incorporated for a program to monitor its ova behaviour

in order to yield the required information.

We note that the data in the øimi1rity array can be collected

by knowing only the processing instants of chunk cthami'ea; behaviour

within a hunk, or in a routine external to the area of

restructuring is not relevant. 	Now owe the 'dropping through'

case has been e11idated (use last section),, a chunk can only be

entered by a branch instruction. 	Thus all necessary information

can be Obtained by monitoring the instructions which transfer

control, there being no need to include any which are known to lead

outside the restructuring area (although entries intq the area may

have to be trapped), or which are Iawn to leave control within the

saw obunk. 	This can be achieved by replacing all such branches

by instructions which pass the original target addresa to

monitoring routines. 	These can make a record of the target chunk,

Update the similarity array if flOOO88a7 and then return directly

to the target address in the program. 	The only wbiitional data

required is a means of finding the containing nhuy3r from the

target address.

4.7

In PS, the ooqiler generates an internal label (an integer)

for OVGzy 1z'ano}oint (excluding those following procedure calls).

A monitored branch instruction ccmsista of a load of the target

internal label into a regiutor, followed by a jump into monitor.

Arrays which were forced at ooqile time can trcnlato internal

labels both to addresses and oontaining-.chunk mitherc.

The efficiency of the self-monitoring program thus depends on

the azuber of instructions which have to be replaced, and on how

efficient the monitoring routines can be made. 	Most coqutation

and additional store reference is perfornod tdxii the similarity

array has to be updated at the and of each (siiniatei) working set

interval; the length of this then also has an affect.

4, PAIIAL CLU3TERIHG

A clustering algorithm will take the {rmi1ity array and

e)nu* sizes as input, and produce a list of new dunk groupings by

the method of 111.8 • 	hare we describe the 'partial clustering'

Procedure mentioned earlier,

ppcae there are a &unks, but the nmod.im*m size of id-'4larity

array we are prepared to accept has space for only n (less than in).

Daring the first set of monitoring runs, similarity data is only

stored for n of the thupks - denote this mthsot (the nir4i nrity

aihaet) by N. 	N can be chosen arbitrarily, but given no other

information, the first n &ikS referenced during the runs can be

used. 	An arbitrary oubest might be wasteful in that sone of its

chinks may not be referenced at all. 	Ideally, the i4mulrity

subset ia,uld consist of the n most commonly used tthmmk, but it is

not knowa in advance iE.mioh theee i41]. be. 	Apart from the

4.8

simflzity data on N, a count is kept of the freqiency of use (i.e.

17A I 	of intervals during which access is wade) for each of &U the

When it is decided to perform the first clustering, a search is

wade for the highest freaengy of use, say 1, of all the ch'nkø

in N. 	The clustering procedure outlined in 111.8 is only

continued up to the point where no inter-group similarities remain

which are greater than f. 	It cannot be taken further because

Jria not in U nay have had linkigea as j3eat as f (if a fUll size

ty array had been formed) with chunks in N. 	The program

is now regarded as consisting of a --- not of chunks; the original

w.n not in N, any groups which formed during the clustering

process, and these chunks in N which did not go into roupa.

Unless no groups at all were formed, there will be lees tthtn* than

before.

The pro 0088 of data gathering and clustering is now repeated,

but with one important improvement. 	The subset N need no longer

be random, since we now have data from the previous set of rune.

Takig the teqiencj of use of a group of chunks as that of its most

used member, we take as our subset N, the n most commonly used

'new thimk' 	In this iaiy although little clustering way take

place during the first restructuring, the second and subsequent

ones are far more successful, and the number of chunks decreases

rapidly.

£ complete clustering can obviously take place áien there are

lees than n chunks remaining. 	Alternatively, some accepted degree

of use can be decided upon, my QX of the total intervals, and

the process completed uhan none of the c}iwlcp outside N are used

6.9

more than this, it being auwued that the contribution of such

chunks to the mean wrkin-.set size is insignificant.

The wall er is the almilarity array, the more times the cycle

of data gathering and restructuring must be repeated. 	However

the data in the early stages need not be representative in the

sense of 111.6, since only a subset of the chunks are really

involved. 	This is particularly true of the initial monitoring

phase when little clustering will probably occur; it primarily

serves to obtain the apprtirlraato relative use frequencies of the

more ooimn ohu*s. 	It is not ear for ES to decide when

sufficient data has been obtained; the scheme makes no attempt to

do this and leaves it to the discretion of the user when to

restructure,

5, LU'ACNG C1A1NL1

The clustering procedure calculates how chinks should be

grouped into pages, but actually achieving this packing can give

practical difficulties. 	Again we have the situation that the

finer the level of oliznldng, the more problems are created; if we

had adopted the ooiilete unit of compilation as a chink, repacking

would be simply achieved by presenting the me&].ea to loader in

the appropriate order.

Rapa&dng involves changing all references to (relative)

instruction addresses within the restructuring area. 	However it

is Just such references that have already been intercepted because

Of the requirements of monitoring; relocation of code thee

Presents fewer additional difficulties. 	In RS, all the relevant

ana1ointe have their adth'eeeea in an array used by monitor

4.10

(see section 3); if ±packing is followed by updating this array,

we have a rearranged but still monitoring version of the program

without altering the code in each otmie at all. 	The partial

clustering process can tlszø be p}raLcaUy carried out cite easily.

The final replacement of mitoring instruction, with the

original June is ooeplicated if the ibrzaar take up more spaoe.

(In Ba, the inpiementation of the compiler on which It was baud

was such that the rr**itoring instructions took up no m*'e room

than those they replaced, and no problem arose - see Appendix B).

One could overwrite the superfluous code with dwW instructione,

but this means that the extra size of the code may counteract the

gain achieved by restructuring. 	Both this problem, and the

Untidywas cad heavy machine dependence of the repacking routines

(in R) can be ailaviatod by operating on an inteximdiate code

which is mathiine izIependent, with anabolic code addressee.

Repacking would be performed on this, the only inaoh1ici dependent

data required being the chunk sizes (when nonusuonitoring code is

produced), and the page size; a translation of the intermediate

code would produce object code, monitoring or otherwise.

In acme cases it sight be possible to restructure at the

source lauiags level itself. 	However norniall.y the structure 	of

the language (scope of labels and names, do-loops, etc.) apart

from the structure of I 1v1iiIe1 statements (e.g. see cycle

statement in chapter, V), makes it iossible to perform the

restructuring of ft'11 instruction 019Mko at this level. 	In 	D

all that could be achieved would be the repacking of mabroutinea

'within their containing block, quite sily, performed on the course

code. 	It would be also necessary to have a directive each as

n1itn on xçe heurv1cry within the Language.

4.11

It

1., X$flMXJcTIoN

This chapter describes the structure and use of a restructuring

scheme desid to improve paging behaviour of IAP pro'ams written

for the ICL 475. This is a high..opeed 32 bit word machine (with

an instruction not identical to that of the I4 360/50), 	If

Operated in paged mode, a virtual store is provided to the extent

of 24 bit addressing; the page size in 1024 words and the addressing

mechanism regards the virtual store as divided into 16 page

, segmental. 	Addressee are specified in bytes which are 8.-bit

units; a n'd RlinnglEl address is thw one divisible by 4.

Average instruction tines are about 2 1u 0

An initial metivation for implementing the restructuring scheme

was the proposed EdinburghMulti-1&caes .ratem (EMAS), a general

purpose time-.shsri.ng 9WVt6M being written for the 445 by a joint

teem from ICL and the Edinburgh University DEçsrtuent of C=uter

Science, 	However the lVatem is not yet fully operational (at th e

time of writing), and all remits of program restructuring have

been obtained by running under 7J, a batch MVtm run on the 4-75 in
neat-paged node. 	This wee made possible by using the system
Interface Module (8114), written by the Edinburgh Regional Caxçuting

Centre. 	provides an 1iA-type interface on top of 7J,

211 Ming the loading, linking and running of object program files

which have been produced to the 24L8 Specifications and conventions.

An evaluation of the results of restructuring could be acds

quite ein1y by means of the very miitoring instructions which the

scheme plants in the pro'ama under test. 	These were used, apart

5.1

from gathering oIink referuee information, to irrusatigate paging

behaviour (over code only), so that working not graphs could be

constructed before and after restructuring. 	There was thee little

logical difference between obtaining such results on XKAS or

7J/81M. 	Thwever two areas of information are neceeserily 2.aokiv'tgs

the effect of W3 uize on program peri'brt*noe uMer a typical time-

sharing aohealer, and the performance of the restructuring scheme

itn1f in a paged envirorent.

The next chapter details the results of experiments on fairly

large prograxas. 	however the size of these makes them unsuitable

for providing "xailos of output from the scheme in the 000pact

form necessary here. 	This chapter, therefore, makes all its

illustrative references to a single seall program written

especially for this purpose. 	The code of this program is only

Just over a page in size, so the actual results of restructuring

it are of no eificano.; but it is hoped that it demonstrates the

good and bad features of the scheme.

low level aspects of design and isplomentation are left to

Append I Ir B • 	Of EW itself, few features concern us here (see

refs.34,35), these which do are dealt with very briefly.

2. PROGBA18 IN DW

The restructuring scheme is designed for programs written in

DW, the language in which most of XMAS is written. 	D1I wee

developed from Atlas Aut000de, an 1lgo1-'ie language with block

and prooec1re structure and a run-time data stack. 	aach features

of the language as are relevant here should be made clear by the

2'a%le and the discussion in section 4.

5.2

te of the environtal features of 11W have developed in a

slightly ad boo manner and the terminology to data is not ciite

standard; that adopted here is personal. 	The unit of xopilation

- the AgMI& may xnaist of either of the following.

A im-roz. This has its outer block de11"4 ted try

!'
El.

One or more tftr!i. routinca. The Module will have the

fore

II

S..

terminated by
	

I of file

aOh exterT*l routine is s3iniler to awj other procedure in an IMP

proam, except that it may be entered, and parameters passed, from

an independently oocçiled module* The ward Adfi=&L and the

fact of not being contained in an outer block, is the only

difference in form.

In object proam file in EIL (ref. 35) is divided into three

distinct .re.

1) Code area: this contains instructions and constants,

invariant during the rwMing of the program, and then capable of

being duavd if necessary by irKlepeadent users.

5.,

General llnkag, area pattern (GLAP)s this oontln

initialised date required by the program. 	There will also be

aoe for the insertion of linkage information (i.e. abeoluta

addresses not known witil load tizn) anabling to be made

to other modules,

Lksee data area; oontaine information about the entry

points in the code of this file for use by the loader in satisfying

terzi1 references by other files.

Such a file is produced by 000pilation of an I}U' module, A

nJ.o'wa will have a single entry point at the begiiming, given

a standard name by the oopiler; a cot of external routinoo will

hevo one for each routine(r*od p1, 14etc. in the =apple above).

To run a progran, a not of object files enut be specified to

the loader - it is assumed that one of those files contains a main-

program. 	The user is provided iLth his own copy of the GIAP

(kzft1 as the GL&) for each file, necessary linkages are made and

the main-program is entered. 	This entry, and all entries made to

other external routines, fbUoi, conventions as to the contents of

certain math1ne registers and parts of the run-time r#aok. 	The

modules of a program need wt all have been written in IMP,

prv4vltlg that the code produced, and the object file format follow

the conventions.

If at least one module is in X', additional associated eKterml

routines are suto*tically linked in. Apart from vtwxuLTd i/o

routines there is a uxxLo known as Pei (permanent) containing

standard material required by the oomçi]ed code but not conveniently

compiled in-line.

The unit of restructuring f'br our purposes is the mh*le, the

5.4

unit of couipilation. 	Thus if the required area of retrueturing

is a set of external routines, these cawt be compiled together.

Boference date is collected by an enlarged 1: this ziiat be

licitlX linked in at run-tiue amos the o}'inid.ng I compiler is

not one of the standard oVatem oori4laas. 	It is assumed that the

code area of an object module begins on a page boundary; obviously

nothing can be achieved if page boundary positions cannot be

guaranteed.

3. W,20RY 07 RE3T11UC11JRING 8GI.

Fig.5-1 shows the course of the production of an object nodule

with optimised structure. The production or use of files in shown

by dotted lines.

The nodule is compiled to give code containing monitoring

instructions, and additional tables in the GLAP. 	'de shall say

such an object file is in '14-format' (Monitoring). 	Couilation

also produces a thq 	 which contains various

information (size of thik&, etc.) necessary to the restructuring

routines, and stores reference data (notably the Sirni1rity array)

between runs.

After each run of the object module, or to be precise a program

containing it, the obwk information file is automatically updated

with the latest chink reference data. 	(The information file is

not required for the program run, but only for the storing of the

similarity array at the end; under EI8, although the information

file could only be associated with one process at any time, others

could there the object file if they so wished.) 	When it is

decided that sufficient data is collected (a user decision) the

5.5

source

compile

-
-

chunk 	
F

object
information

(
(M-format)

) file run object

___•f 	'i
\ 	 - -

I \ 	 I
I

I 	 I
\ 	

/
I 	 /
I 	 /
I 	 /

\
I 	 / I 	 \
I 	 /\

I 	 /

I 	/
I 	/
I 	/ 	restructure

/ 	object

I 	/
1/
I'

update chunk
information

file

sufficient
runs?

Y

_- final
, s_ restr 	

I'

produce
final object

<(Nfmat)

Pig 5-I 	Restructuring scheme

restructuring pran is used to produce c new object file (still

in l-format) and chunk information file. 	For a large module,

this process of x1nnlng and restructuring my have to be repeated

several tiaes. 	After the fin" restructuring (a trsten decision),

a further pro'ea converts the M-fot object file to an ordinary

N-format (Normal) file.

4. THE COMPILER

The compiler for the restructuring sohene was developed from

an early I}U ooiilar written for the zjw project by 1. FRUR
assisted by A.1'eenan and T.Iieed. 	When implementation had

reached an advanced state, this compiler woe superseded by another,

and effectively abandoned. 	Its availability, and a structure

highly suitable for the necessary developments, made it an obvious

choice as a basis for the restructuring echeTi,. 	A brief

structural description, and the changes which were made, are given

in Appendix B.

If required, the compiler will produce an N-format object module

directly; its normal use however is to produce a chunked and self-

monitoring object proaa, together with an associated t}1mlc

information file. 	The whereabouts of these fileø enat be

specified on appropriate job control cards. 	14--format code is

actly the sane length as N-format, but the GI1AP is enoh gre eter

since it contRfrzS tublec necessary for the r"um4ig of the monitoring

routines.

Figs. 52,53 cihow the ooiler listing of a 	11 demonstra-

tion Program (this generates peeudo-re.zztom bridge hand, and

prints them with an opening bid). 	The statements omitted at the

5.6

IJCSL.I.))

14 BYTEINTEGERARRAY 	HAND(0:3 ,2:14)
15 OWN5YTEINTEGERARRAY 	S(03)='S' , 'H'. '0', 'C'
16 0/.'INTEGER 	POINTS,BALANCE, LIMIT,CUT
17 %INTEGERARRAY 	DIST.PTS(0:3)
18 OWNI'TEGER 	HANDCOUN!T=0
19 %ROUTIrE 	INITIALISE; 	! 	INITIALISES 	PACK
20 %INTEGER 	I,J.K
21 K=-1
22 %CYCLE 	1=0,16,48; 	! 	 SUIT
23 %CYCLE 	J=2,1,14; 	! 	 VALUE
24 DEAL(K+J)1+J
25 %REPEAT; 	K=K+13: 	7.REPEAT
26 XEND; 	I 	OF 	INITIALISE

27 XROUTTNE 	SHUFFLES 	! 	SHUFFLES 	AND 	CUTS 	PACK
28 %3YTE1NTEGERARRAY 	A(1:52)
29 %INTEGER 	I,J

2 	 30 %CYCLE 	11.1,26
31 A(2*I-1)=DEAL(I), 	A(2*I)DEAL(53I)
32 %REPEAT
73 CUTCUT+11

IF 	CUT>52 	%THE4 	CUT-CUT-52
% I 	CUT.O %THN_CUr1

V 	 iy, 'CYCLE 	1=1,1 ,CUT
37 DEAL(52-CUT+I)=A(I); 	%REPEAT
38 %CYCLE 	1C1J1+1,1,52
39 DEAL(I-CUT)A(I); 	7SREPEAT
40 %ENiD; 	I 	OF 	SHUFFLE

41 %ROUTINE 	DEALPACK
42 %OWNBYTE I NTEGERARRAY 	1(11:14) = 'j ', 'Q' , 'i('
43 %INTEGEP 	I,J,K,M
44 POINTS=O;BALANCE=O
45 ZIF 	HANDCOUNT&7=0 	7ITHENSTART
46 NEWPAGE; 	%PRINTTEXT' BRIDGEHANDS'
47 NEWLINES(3); 	%FINISH
48 %CYCLE 	1=0,1,3
49 °/CYCLE 	J=2.1.14
50 1AND(I,J)=p; 	%REPEAT; 	%REPEAT
51 %CYCLE 	1=1,4,49
52 H.AND(DEAL(I)>>4,DEAL(I)&15)=1
53 %REPEAT
54 %CYCLE 	1=0,1,3
55 K=0; 	PRINTSYMBOL(S(I)); 	SPACES(3)
56 M0; 	! 	COUNTS 	POINTS
57 %CYCLE 	J=14,-1.11
58 ->1 	%IF 	HAND(I,J)=O 	-
59 SPACE;PRINTSYM5OL(T(J));K=K+1;M=M+J1C
60 1: 	%REPEAT
61 7IF 	HAND(I,10)O 	THENSTART
62 WRITE(10,2); 	K=K+1; 	%FINISH
63 7-CYCLE 	J=9,-1,2
64 ->2 	%IF 	HAND(I,J)=O
65 K=K+1; 	WRITE(J,1)
66 2: 	%REPEAT
67 IF 	K0 	XTHEN 	%PRINTTEXT'
68 ZIF 	1<M<=3 	%AND 	K1 	7.THEN 	M1-1
69 PTS(I)M; 	POINTS=POINTS+M; 	DJST(J)K
70 ZIF 	K>5 	7.THEN 	BALANCE8ALANCE+K-5
71 7OIF 	K<2 	%THEN 	BALANCEBALANCE+2-

Fig 5-2 Compiler Listing

fl? 	 !'JEWLINE; XREPEAT
73 	 HAND COUNTHANDCOLJNT+1
74 	 %END; ! OF DEAL

75 	 INITIALISE; READ(CUT); READ(LIMIT)
76 	 ->2 %IF 0<=CUT<=52
77 	 %PRINTTEXT 'INVALID CLjT'; %S OP
78 	2: 	SHUFFLE; SHUFFLE; SHUFFLE; SHUFFLE
79 	1: 	SHUFFLE; DEALPACK
80 	 %BEGIN; ! BIDDING BLOCK
81 	 4INTEGER LS,NO,SUITPTS
82 	 %SWITCH 8(0:20)
83 	 7INTEGER I,:4
84 	 XROUTINE 8IDSUIT(%INTEGER I)
85 	 WRITE(I,1); SPACE; PRINTSYMBOL(S(LS))
86 	 END

87 	 %ROUTINE NT(%INTEGER I)
88 	 WRITE(I,1); %PRINTTExT' NT'
89 	 '/0END

90 NO3
01 %CYCLE 	1=0,1,3
92 %IF 	DIST(I)>N0 	THENSTART
93 LS1; 	NODIST(I)
94 %FINISH; 	REPEAT
95 %IF 	LSO 	%AND 	DIST(3)=No 	%TtIEN 	LS=3
96 SUITPTSPTS(LS)+5*(NO_4); 	SPACES(18)
97 NBALANCE; 	%IF 	N>3 	%THEN 	BALANCE=3
98 ->R(BALM,E
99 8(0): ->2 	IF 	POINTS>=12

100 NB: VøPRINTTEXT' 	NO 	BID'; 	->1
101 2: IF 	POINTS<=15%THENSTART
102 ->3 	ZIF 	SUITPTS>10
103 NT(1) ; 	 ->1; 	%FINISI
106 .j I F POIN!S20JTj1 ENSIAR.r______________________
105 3: BIDSUIT(1), 	->11 	'/.FINISH
106 ZIF 	POINTS>=23 	ZTHEN 	->TC
107 ZIF 	SUITPTS>=15 	/.THEN 	BIDSUIT(2) 	ZELSE 	NT(2
to_s ->1
109 8(1): %IF 	POINTS11 	%AND 	SUITPTS>10 	ZTHEN 	->3
110 ->NB 	%IF 	POINTS<=11
111 ->3 	ZIF 	POIIJTS<=18
112 ->7 	ZIF 	POINTS<22
113 IC: %PRINTTEXT' 	2 	C(ACOL)'; 	->1
114 B(2): ->PR 	7-IF 	POIUTS<10
115 ->6 	/.IF 	POINTS>=12
116 _->3 	-IF.. SUIJTS1Q;>NB
117 B(3): ->PR 	701F 	POINTS<S
118 6: ->3 	ZIF 	POINTS<18-N
119 LcI.F_PPJ T2i________________________
120 7: ZIF 	SUITPTS>15 	%THEN 	1=2 	ZELSE 	1=1
121
122 PR: SUITPTS=5*(N0_4)+POINTS
123 -?.1F.IP_T<E20; 	->9 	ZIF 	LS<2
124 9: ZIF 	SUITPTS<=27 	ZIHEN 	1=3 	%ELSE 	1=4
125 ->NB 	ZIF 	SUITPTS 	<=22
126 ZIF 	SUIIPTS 	>30 	7.THENSTART
127 1=5; 	->8; 	°'F1NISH
128 8: BIDSUIT(I)
129 1: ZEND; 	! 	OF 	BIDDING 	BLOCK

130 	 NEWLINES(3)
131 	 ->1 ZIF HANDCOUNT<LIMIT
132 	 7.ENDOFPROGRAM

Fig 5-3 Compiler Listing

w 	 V

- r L OCCUPIES 	6246 	yTES

ROUTTABLE 	SIZE 164
CHUNKNUMF3ER 27

CHUNK 1 2 3 4 5 6 7 8 9 10
ADDRESS 0 224 460 822 1048 1406 1682 1988 2358 2506
LINE 1 19 27 36 41 51 57 63 75 78

CHUNK 11 12 13 14 15 16 17 18 19 20
ADDRESS 2668 2768 2928 3016 3308 3338 3360 3480 3630 3738
LINE 82 84 87 90 99 100 101 105 109 113

CHUNK 21 22 23 24 25 26 27
ADDRESS 3762 3836 3866 3926 3968 4042 4142
LINE 114 117 118 120 122 124 128

Fig 5-4 Chunk Positions

bogi,m4 g are ar.ecificatims of external I/u pro cocfl'ea. 	The

source pro'am is listed as it is read; since the compiler makes a

'ntax analysis of sU the program statements prior to fUrther

processing (this was originally designed to improve paging behaviour

of the compiler), the obink boundaries are net worked out when the

listing is ido, 	These are given at the and of compilation

(fig. 5-4) and have been ruled on the listing for clarity. 	The

following diconesion of the choice of nhmk boundaries is carried

out with reference to this proam. 	Keywrds, for =ample

%BGIN, in the listing are written here as beid-n; the jump

instruction '—> label', is denoted by 'ioth label'.

A chink boiiiybiry appears in the following positions.

Before and after procedure &nd function declarations. 	Thas

one appears before line 19 (routine iitin 	and after 1AflA 26;

in this case there is no finer subdivision. lbte there is no

bow4sry after the Od at line 129; this is simply the aM of an

inner block (starting at Line 80), and program control will pass

through it.

Before and after switch declarations. 	The statement

'switch B(0:20) , at line 82, compiles to a vector (over which

program control jumps) of 21 words which contain the (relative)

instruction addresses of left-hand labels B(0), B(l), etc. 	It

happens here that only four of these labels are defined - the other

addresses in the vector will be set 'unaeRigd' • 	Such a vector

is always regarded as a single chink, 	Here the t4n1 boundary is

th'aisi after 'intoer I ,N' which is a doclarator generating no code.

Before explicit left hand labels, but only if:

5.?

the PrOOOding DtatGc6nt is a 1anch (iitional or otIxrwiue), or

the code length of the current chink is greater than seae 11in(t

(z'tLy 256 bytes, i.e. 1/16 of a page).
This label 2 at line 78 causes a chink boundary, being preceded by

a atn instruction (which terminates the program run). 	WAilarly

there is a boundary at B(0) (li-n. 99), preceded by a AAQ v and

TC (line 113), by a c,m'1tl-ona]. to, 	On the other h, label 1

(li-n. 60) does net cause a boundary; it does not fellow a branch,

and the preceding chink boundary is W11 id.tbin 256 bytes. 	Ikte

that a procedure call in net counted as a anch in (a) above

this label 1 at line 79 in not preceded by a boundary, despite the

procedure call 'SIITJFFLE'. 	There are no aide axite from IMP

procedures, a) control rust return ftom 'SHUIFLE' before reaching

the label. 	'ibo case for a boundary after a procedure call is this

not conaideroci as strong as that for one after an ordinary branch.

Before j=W& statements, but only if (b) holds. 	Cvoio
heralds a loop (sindJ.er to the Algol I= statement),, the and of
which is marked by reneat. 	(The code generated at i.yc10 consists

of initialisation code, setting up the loop, followed by the

implicit left-had label, the top of the loop proper. 	The chink

boundary, if one is generated, goes before this 1abe] 	As

'sp1e8, hr's 36 in preceded by a n}sntlr boundary, line 38 being

within 256 bytes of this, is net.

Before start (in conditiona), but only if (b) holds.

start and finish are statement brackets in 11*', used in the

constructions

5.8

A tJistart

...

Iin1sh else atart

The jam clause is optiol.

The condition of distance from the preceding boundary is never mat

in the illustrated pro,'wn. 	Line 105 may appear to be an eiq1e,

but the ckznk boundary here arises from the label 3 following the

inlicit jump over the 'thee' clause.

The above rules for the determination of chunk boundaries

must be viewed with the rAaliaation that the total number of chunksJ

is not to be too large. 	An average of 25 o}iinka per page ixiuld

give 500 eliuika for a 20 page module. 	Using a &-rnilarity array

of aide 100, at least 5 restructurings would probably be necessary.

This is acceptable for such a large pz'o'mm, but more diank would

lead to more restructurings or a larger similarity army:

extending the time of optind.eation and making it less art1zthi1e.

Thus although it is easy to point to omissions in the ohoico of

boundaries,, it is leas ea' to find an inrovement that does n ot

lead to appreciably more chunks. 	The above selects those

branolçointa uhich appear to have the strongest case (section IV.2).

Some discussion, may explain the rules adopted. 	Consider the

following situation.

(1) JS AjothL

(2) 	14: 	000

The statement (1) may be 4ynamioa]J.y distant from (2) for two

5.9

reasons: either the path to L may be taken, or label k4 reached from

eoneáere else. 	If atatecnt (1) is not a branch, there is less

reason fbr a boundary between (1) and (2). 	Thus suppose we have:

n1nk boundary

code length l

(2) 	it: •,,

Suppose in the above scamplep a boundary is not put before M, but in

fact It is normally entered from olu.vhere, the preceding code

perhaps being concerned with initialisation. 	in aixiunt of spaos

1 will then have been effectively wasted within the page; the

'eatea' in 1, the zxire important this may be. 	This in the reason

for the corrution (b), about the length of the currant ohw*, being

applied at certain times, 	in ezan1e in the Illustrated program

is at line 75, onwards. 	The initial entry to the program reaches

hero (after Jumping over the procedure declarations). 	Up to

label 1 (line ?)) is initialisation code, the main loop of the

program returning to label 1 as each bridge hand in generated.

Thus although a boundary before this label would, have been more

int1l1gent than that before label 2, the only 'waste' is the

ooiarativel.y abort qiantity of code generated by lira W. 	If

label 2 had not been present, the initialisation code would have

been long enough to force a boundary before label 1.

Boundaries are xaore likely to appear before explicit left hand

labels than other branch-points it being oonaider.d that labels

are likely to be entered from a azmber of statically distant

points. The last third of the emaople program has a large number

of th%urks oompared with the rest, the explicit labels producing

5.10

more boundaries than ci'icle or start statements. 	Whether in

general this is a good decision depends on the style of programming

in the module under test; it mogr be that the pre**xIerenoe of

plioit labels in DU programs is still an influence of the Atlas

Autocode from which it waa developed (this did not contain the

statement brackets start or 19nij). 	The ahunki part of the

compiler has been written so as to make nhrmj.ng the choice

procedure for think boundaries 811 .ai matter.

The idea of obtaining information from the programmer as to

the choice of t)nmk boundaries was rejected as being an interference

EKI intolerab]r arduous in a large program. Knowing the algorithm

he can of oouroe force a decision - for example, writing ggtQ 1

before line 71, in the program shown. 	There is a ease for the

provision of a directive -which forces a chunk boundary and which the

programmer may add if he wishes having seen the boundaries which the

compiler produces.

.-.

At run-tine, the desired length of vorking set interval (the

airflnyjty interval) must be specified to job control, and a special

Perm linked in; as computation prooeeda, the 51JTriP'ity am is

then built up in the QIA of the module concerned. 	Processing

time Mae increased about five time in the eqerT!tntal programs.

This is rather more than hoped, but the monitoring code in Porn

could have been rewritten in aa'th{me code to give some improvement.

Little effort was made in this directions the processing time was

not great emowj to be a problem in the teats made, and the

performance in a time.eshaz'ing ataten would probably be a function

5.21

far more of paging behaviour than prooesaing time. 	(As an exaz1e

of the e$ra paging, consider a program with 300 chunks (my 12

pages of code) and aelm' liirity array of side 100. 	The array is

yi1retriol, and its elements halfwc,a'd, it would tliw occupy 2525

words. With this nunber of *}ink8, the addjtjiyn] tables would

occupy about as ziich apace agein, so there wuld be an extra five

frecaent1.y accessed pages. The additional length of code in the

monitoring Perm is wit. mail.)

If required, additioxl page monitoring' can be si nilitanecualy

included. 	In this case, apart from recording the obndr entries

and processing times (making ql1onoe for the extra time spent

obeying the mitoriug code itself), ?erm enters a further routine

which can note the current code page. 	In this wayp any points on

the average working set graph can be fc*zxil (valid because the

J-format module is the same size as the normal compiled one would

have been). 	Use of page monitoring' increesos prooeaeing time

still more - about double in the teats made.

At the end of each xian (when the instruction utm or

andnfpro'an is reached), the similarity array and other reference

data is written to the chink information file (if this has not been

specified, the results are simply lout), or merged with any

information there from previous rims. 	If the $imi 1 arity array

embraces all the think, merging consists ai.n1y of adding on the

current array; but if not (section IV.4), the simUarity wbeet on

the file may not be the sane as that in the current run. 	In this

case, a valid similarity array may only exist for the intersection

of the ol*n)r subsets (see Appendix B). 	The problems which then

arise may be visible to the user tlu'cugh the increased time of the

5.32

file updating procene.

?ig.5-.5a abovs the and of the printer 0 from a urn of the

m'aU demonstration prom. 	The ithni1a*'ity interval in 1(Aaa.

(shown an 1000, since the unit in 10 microLI000rKin). 	The only

output here from the monitoring Perra is the final line, giving the

number of admil arlty intervals. 	The reainder, after the

'program ends' moneage, in output by the page-monitoring routines.

Thene hevo recorded page reference a in intervals of lengths between

one quarter and four times the simileiity interval. 	The 'total

faults' column given the number of pages acoenned in all prooeaaing

intervals of each length; than mean working not sizes can be

calulated. 	For amn1e, in this urn the mean WS nine for the

0ilz4t'ity interval itself (1000) in 217/190 = 1.14. 	?krmally the

output from several runs will be used to evaluate the results.

We also have the frequency (number of almilarity intervals) with

which each page in accessed. 	Fig. 5-Sb ahowa amilv output from

a large program (program S - see nact chapter).

If required, important parts of the chunk information file can

be printed. 	An example after two rune of our teat program in

shoun in figs. 5-6, 5.7. 	The quantity 'neleotno' is the size of

the iiliwtlity array if this has been reatrioted to lean than the

number of cink. 	It man here deliberately made very wa ll., at

18 	' 1 anough to eruazre partial restructuring vas nooeeeary (for

demonstration purposes). 	This rawdraw allowable length of aide of

the array in determined at oei2atioii by an initialised variable in

the ocmiiler (normauy 80, at present) - it could be made a data

parameter to the scheme if necessary.

For each oIink, its length in bytes is given, for use by the

5.13

r' 7)

H A 0 4
D J7
C J 8 7 5 	3

1 NT

S 	J 10 8 	4
H 	K 10 9 	2
D 	K9

C 	A109
NO BID

*****PROGRAM ENDS*****

INT. LENGTH 	NO. INTS 	TOTAL FAULTS

	

250 	 728 	 751

	

500 	 380 	 408

	

1000 	 190 	 217

	

2000 	 95 	 122

	

4000 	 47 	 74

PAGE 	ACCESS FREQUENCY (INTLENGTH 	1000)

1 	 190
2 	 27

INTERVALS 190

a)

WE

	

INT. 	LENGTH 	NO. INTS 	TOTAL FAULTS

	

625 	 877 	 2558

	

1250 	 439 	 1707

	

2500 	 219 	 1122

	

5000 	 109 	 719

	

10000 	 54 	 416

PAGE 	ACCESS FREQUENCY (INTLENGTH 	2500)

	

1 	 51

	

2 	 171

	

3 	 72

	

4 	 24

	

5 	 51

	

6 	 77

	

7 	 22

	

8 	 23

	

9 	 63

	

10 	 57

	

11 	 92

	

12 	 93

	

13 	 95

	

14 	 88

	

15 	 141

	

16 	 2

INTERVALS 219

Fig 5-5 Output from Monitoring Routines

)IT ASSOCIATED FILE

JNS 	SO 	FAR 2
D 	OF 	INTERVALS 404
ELECTNO 18
D 	OF 	RECHUNKINGS 0
0 	OF 	CHUNKS 27
RE 	LENGTH 8

HUNK 1 2 3 4 5 6 7 8. 9 10 11 12 13 14 15 16 17 18 19 20
HUNKLENGTH 224 228 362 218 358 276 306 370 148 160 92 152 88 292 30 22 120 150 108 24
RANCIITO 7 0 19 0 30 32 40 0 0 59 0 0 0 0 101 102 113 102 116 102
RANSLATE 1 2 3 4 5 6 7 8 9 10 11 12 • 13 14 15 • • •

REQ 	OF 	USE 2 2 115 116 97 209 204 226 2 182 59 11 8 63 31 40 10 12 18 0

HUNK 21 22 23 24 25 26 27
HUNKLENGTII 74 30 60 42 74 100 104
RANCHTO 101 135 129 147 152 147 0
RANSLATE • • • • 16
REQ 	OF 	USE 7 3 5 2 5 0 58

Fig 5-6 Chunk Information File

w

LEADING PARTS OF CHUNKING ARRAY

1 	2 	3 4 5 6 7 8

1 2 	2 	1 0 0 0 0 0
2 2 	1 0 0 0 0 0
3 115 68 9 0 0 2
4 116 57 19 0 0
5 97 59 35 27
6 209 183 177
7 204 196
8 226
9

10
11
12
13
14
15
16
17
18

9 	10 11 12 13 16 15 16 17 18

2 	1 0 0 0 0 0 0 0 0
2 	1 0 0 0 0 0 0 0 0
1 	79 40 6 9 21 29 48 0 0
0 	80 0 0 0 0 0 2 0 0
0 	58 0 0 0 0 0 0 0 0
0 	27 0 0 7 0 0 0 0 0
0 	26 2 1 25 2 1 0 0 0
0 	53 18 3 53 10 13 9 0 0
2 	1 0 0 0 0 0 0 0 0

182 59 11 63 31 40 58 0 0
59 11 28 31 40 50 0 0

11 5 2 0 9 0 0
63 16 17 19 0 0

31 21 27 0 0
40 33 0 0

58 0 0
0 0

0

Fig 5-7 Similarity Array

restructuring process. 	The line 'branchto '411 be explained in

appendix B. 	'Translate', only present if 'oeleotno' has

restricted the array, selects the submt of &iznka in the similarity

array - thas the 13th. row and oolnn'n of the latter refers to

thunk 14. 	Although a w(m11 'ity array of size 18 was allowed,

the two mabeets of these two rune ware not the ease, and data on

only 16 chinko could be kept in the emiltrity array. 	The last

line gives the total frequency of use (in airailiarity intervals) of

each chunk in the runs to date. 	1?ig.5u.7 chowa the oorlete

aimilarity array. 	(Norri1Ir only the 2(20 aabttricea centred

on the principal, diagonal are printed. 	Since here 'solootz' is

ieee than 20, we obtain the whole array). 	As an wcwlo, note a

eon but unfortunate situation, from the restructuring point of

view. 	There is a high dift1larity between chinks 3 and 4, and

between 3 and 27 (translated to 16 In the array), but chunks 4 and

27 have only two intervals in ceon. 	Ghuk 27 is alweya shortly

followed by 3 and tbici leads to chunk 4, but the latter is nearly

always too distant from 27 to be in the sene 10na. tizaa..olioe.

6. 1TRUCTWQNG

4bon a sequence of runs is judged sufficiently representative,

the user calls the restructuring program. 	This produces a

restructured object file - still in IS-format - and a new hjnk

information file. 	IkWMRl1Y the total nuier of chinks will have

decreased, some having merged during the clustering process

(see IV4). 	If no clpinkia outside the e1j,4 1 evity subset ware

referenced at all in the last series of runs (or the array enlwaoed

the nhink5 anmy), a f1],, restructuring will be performed.

5.14

This means that the clustering process proceeds to completion, and

each gz'ou of chunke is output from the start of a page boundary,

instead of eirp1.y fbUDving one after the other, ca when a partial

clustering has taken place. 	Note that even a DMI clustering

produces an object file in 1-fort; this in necessary at present

in order that the page monitoring routines can be used to

investigate tint4 paging behaviour. 	£ conversion pro'on is used

to overwrite the monitoring branches (tables in the chunk

information file are requirod), to produce an N-format file.

With a large mei1.o, the zriiul course will be to repeat the

process of run and restructure until the se1mm proioea a final

restructuring. 	The paging behaviour will ir4xvve slightly each

time - the grouping of o1nkp sitheugh not correct 4th respect to

page boundaries, will have sow effect. 	If a restructured version

is required cick4, one can demand a 'finel restructuring' any

time, and produce an N-format file from this. 	(This could be used

for temporary service purposes while continuing the optimisation of

the original. version). 	The effect of premature final

restructuring is reported in the nt chapter.

The restructuring program is in two distinct phases: (i) the

clustering algorithm, which works out the now chunk groupings, and

() the section which works out thrnk orderings and generates the

new files. 	(see appendix B for some of the problems which arise.)

)ig.58 shows output from the first restructuring from the array

of fig.57 - of the bridge-hand program. 	Two groups of o}'inks

have formed; there are only 17 dunks in the new object modLLU (and

the new n)imk information file) • 	Note that the actual chank

numbers are given under the 'old chunks' heading, not the translated

5.15

RECHUNKING 	ROUTINE

INTERMEDIATE RECHUNKING

NEWCHUNK 	OLD CHUNKS

1 1
2 2

3 3 	4 	10 	5 	11 	27 	16 	15
4 6 	7 	8 	14
5 9
6 12
7 13
8 17

9 18
10 19
1.1 20
12 21
13 22
14 23

15 24
16 25
17 26

0 1 	224

224 2 	228

**** 	452 3 	354
**** 	806 4 	218

,r** 	1024 5 	358
**** 	1382 10 	160
*** 	1542 27 	104

**** 	1648 11 	92
**** 	1740 15 	22
**** 	1762 16 	22

**** 	1784 14 	292
**** 	2078 6 	268
**** 	2346 7 	298
**** 	2644 8 	370

I'

**** 	3014 9 	148

**** 	3164 12 	152

**** 	3316 13 	88

*** 	3404 17 	120

Fig 5-8 Output from Restructuring Program

RECHUNKI NG ROUTINE

FINAL RECHUNKING

NEWCHUNK 	OLD CHUNKS

1 1 	2 	5 	3 	4 	6 	9 	10 	14 	12 	7

2 11 	17

0 1 224

224 2 226
**** 452 3 1332
**** 1784 4 1230
**** 3014 5 148

3162 10 108
3270 12 74

**** 3344 6 152
**** 3496 9 150

3648 7 88
**** 3736 8 120
**** 3856 13 22
**** 3878 14 52
**** 3930 15 42
**** 3972 16 74

4098 11 24
**** 4122 17 100

S 	A K 10 7 2
H 	J 6 3
D 	102
C 	762

NO BID

*****PROGRAM ENDS*****

INT. LENGTH 	NO. INTS 	TOTAL FAULTS

250 	 1630 	 1631

500 	 855 	 856

1000 	 427 	 428

2000 	 213 	 214

4000 	 106 	 107

PAGE ACCESS FREQUENCY (INTLENGTH 	1000)

1 	 427

2 	 1

INTERVALS 427

b)

Fig 5-9 Final Restructuring and Run

versions iddoh apseify aimilarity al?ay positions. 	The three

ooTh, w of figures with asterisks øhev the new addressee of the

hunk - ass appendix Be 	The now object module was urn, and a

11na1 restructuring performed (neoesacrily, since the "nmber of

chunks is lees than Ise]4t); fig.5-9a ahewa this (the first line

of chunks is out off at the right hand side).

We notice that the only achievement of restructuring this

program was to remove two chunks not used at all during the test

urns (ori'l.n1.y oliznka 20 and 26), the reiinder of the program

being packed into a single pegs. 	Pg.5-9b shows the end of a

long run of the final M.-fort nodule; during this xan, (origin*1)

chunk 20 happened to be entered ones giving the result tho'ai.

Obviously for service use, the conversion program is used to

obtain a finjil N-format file.

5.16

i,

1. 	akaaz4riAL Wk

This chapter deaoribsa the results of restructuring four DI'

nodules s with code sizes between 4 and 16 pages. 	The only thegsa

ide to the source idulee as received from their authors were the

trivial ones made necessary by the restrictions in the rather

out-of--date DI' compiler on which the restructuring scheme is based.

Some details of the modules (referred to as P,,R,$) are as follows.

description 	code-size (words) no. of
1 page = 1C4 wds chunks

P Gonoratoa, of cyntax- 4150 59
(mein-.progrt) tables for Q (below)

from a plwaaa-
structure grammar

A iyntwc-axmlyser fbr 3300 268
(main-program) I2, incorporating a

ntactio macro-scheme

R Part of an interpreter 13050 292
(maim-program) for a (&iiiiiirted) on-line

rmbol manipulation
language.

8 Phase 2 of the rthinking 35500 334
(external rtn.) DI' ooqiler.

The amber of chinks is determined not only by the length of

the program but by other factors: azmbera of jwie, programming

style (see V.4). 	Thus although the choice procedure yields an

average of about 25 chunks per page, this can vary greatly between

programs. 	In partionlar P has far lees chunks than would be

cpected, Q far more.

For each module, time ifinn allowed øiao (determined at

compilation time) of oiniilerity array we 80. 	Thus only for

6,1

program P could a complete array be generated at run-tine, giving

the necessity for only one restructuring. 	For program 3 the

rvmbsr of chunks would have nede a larger similarity array advisable

in normal oir*imntances.

U1111 4 11414 IT

The main eacporliaents consisted of performing the complete

restructuring process on each program, &iMgd at minimising the seen

working-set size (code only) over 25 ma. periods. 	Points on the

working-set ourvss were found before and after restructuring; these

e for the nsilti].ou 	1,2 and 4 of the Sin(nIeity

Figs. 6.1 to 64 tlx,w the two grapbs obtained for each irdule.

(Note the differmce in the scabs of the vertical axes in the four

figures.)

The table bebov gives the reductinni' (as a fraction of the

original) in the average WS size, for the jdW3sn'ity interval, and

also for (4 and 100 ma. intervals.

P Q it S

25ae. 060 0.40 0.48 042

6Ima. 0.53 0.25 0.36 032

10(ns. 0.58 0.41, 0.51 0.44

z. roatructuringa 1 4 4 6

M. siId.I2rity 1100 700 470 640
Into.

For 25ma. intervals, there is a saving in moan US size of at

least 40% in all the program. 	For longer intervals the variation

is fairly 	1 but the reduction worsens for very short tine.-

intervals. 	This is because the US sizes are very ci!l and the

6.2

page size becomes dominant; no restructuring can cause lees then

one page to be referenced in an interval.

Below each graph in figs. 6-1 to 6-4 is shown the number of

aimll*aity intervals in which each page is accessed before an after

restructuring (acme ire not referenced at all afterwards - see

below). 	Note that in program P and R the most used page after

restructuring is accessed 10130 times than the mot used before.

All the px'o'aian were highly data-depdwit, and o"('ierable

effort was required to establish data which was conLd.dez'ed fairly

representative of the premed use of each Program. 	Pro'am L

had a single set of data (giving a ling run), proems Q and 8 each

had two different sets, while R had three. 	All the data was used

in each monitoring phase of the restructuring process. 	The number

of eim11mity intervals in the table above refers to the total

nwther with all the sets of data. 	'ihe variation in mean US aims

in the seine pro'wa for different sets of data were generally fairly

iipli; the greatest difference was between the two sets of data of

program Q (one contained a large number of macros and the other

not). 	The results with the iiylividas]. rune (initially, and after

restructuring) are shown by the dotted lines in fig. 6-2.

One statistic which appeared not to be reflected in the reai].ta

was the number of nhunku not referenced at a]]. daring the sins of

each pro'em. 	This varied from the least in program P, almost

aàUy used, to the greatest in program Q, in which about am third

Of the program thiuke ware not referenced at all (this we despite

the data for Q being considered representative - such, of the

unreferenced material dealt with the analysis of assitbly_ood.

6,3

statements which my be incorporated in DP programs, although

would be rue). 	This contrasts with the fact that P gave the

greatest reductiou in W8 size after restructuring, and Q the least

of the four programs. 	The compression of programs simply by the

removal of non-used chunks is not much a significant factor in the

WE size reduction as might have been thought. 	This had

accidental support from an early test of program Q when an error

existed in the file-dating routine which led to a slightly

invalid c.bst.ring (not detected by aairtriation of the results),

although all the unused &u*u were still removed. 	The reduction

in mean 115 size 's then only 15%.

Figs. 6-5a and b show the effect of restructuring with different

id(1z irity intervals. 	Apart from the 25ma. teats, program Q mug

restructured using a lAne, interval, and program S using a 200ma

interval; the working eat graphs of the results are thoic as dotted

lines. 	In each case the graph differs little from the former

2ma, restructuring (oontir*zoua lines), but the effect discussed in

111.5 and shown in fig.3-4, is quite visible.

Fig. 6..6 demonstrates premature ffn1 restructuring with progren

As the worst behaved, although not the largest, program. 	The

results were obtained with a single not of toot data. After each

run, apart from partial restructuring and continuing with the teat,

a flv& restructuring (see V.6) wa s prockoed and a WS curve obtained

from the result. 	Note the surprising fact that the greatest

improvement is obtained at the last restructuring, irljing that the

positions of lesser used âzn*s in the program are quite sigi 4 ioant.

6.4

3. CLU3ION

Beorgenining parts of a program to ixove its paging behaviour

is essentially an gineering problem; the result my bear littie

relation to the conceptual logical structure necessery for good

design, conatruotion and understanding of the program. 	Thus

DOW can be achieved by attempting to trnmfne the nhmk groupings

produoed in aiali large programs as these just considered. 	This is

an argiiit for restructuring being an automatic process id.th '4iich

the prograzr would not wish to be concerned.

£ very large degree of improvement is obtainable, although it

must be borne in mind that our results are reductions of mean V3

size over code only, and in the programs tested data r.fereoce

might have been cpected to oorrtribute as much or more to the W8

size as the code. 	The effect on page-faulting in a gemiie

operating crsten gould depend on the scheduling algorithm; one

jj,u.1d expect that normally the reduction isuld be at least as good

as that of the U3 size, but it could be LaJ.ch more. 	Thus we have

not atteited to simulate behaviour under, say, a restricted store

scheduler (1.4) and claimed (with judicious choice of store size)

a 95% reduction in page.-faulta; such experiments woulid be

m3ew1th and a waste of time.

The severest problems are practical ones: the large quantity

of data, the coat of obtaining reference infariation from the

program, etc. 	Unlea these problems can be solved, discussion of

theoretical techniques for restructuring programs becomes q1dte

aoadeuio. 	It is hoped that the methods described in this thesis

are aiffisiently practical and produce sufficiently large

improvements to be irtby of oo'u 1deration in the i,rov*i.nt of

the behaviour of large and frequently used programs. 	The

6.5

eluaterthg teohni4a.e at the 1*52.3 of the methods appear to be very

effective in this field and may have more general application in

the area of program. st'aoturing: orgisni f'i.ng, say, the components of

a system for efficient movement within a storage hierarc.

Randall and Kushner (ref.2) have written: 'In the present

state-of-the-art, any but the uvet minor attemltn at re-peaking are

probably best regarded as last-ditch efforts at revering from

iz*deiate hardware, operating mystem atr'ato4ea, end/ca' programming

style. 	It is hoped that this thesis has advanced the 'øtate-of-.

the-art', if only in 11 neaw. eiii to oee name iMf1oation

of the above statement.

6.6

S

2

I

T (j.ts.)

Spread of (25ms. interval) accesses amongst pages

Before restructuring

703
598
581
810
543

After restructuring

21
583
602
108

14

Fig 6-1 	Results of restructuring program P

S 1(pages)

5 	 initial

3

after restructuring

10K 20K 30K 40K 50K 60K 70K 80K 90K lOOK
T (is.)

Spread of (25ms. intervals) accesses amongst pages

Before restructuring 	After restructuring

587 1420
623 662
379 175

714 76
105 51
250 28
12 0

299 0
145 0

2

17

[I]

Fig 6-2 Results of restructuring program Q

10
	

100
T (me.)

Spread of (25rns, intervals) accesses amongst pages

3efore restructuring 	After restructuring

1614 359
1422 101
330 1411
175 161
201 320
239 76
227 .148
101 70
117 63
211 7
2314 0
211 0
176 0

S

11

10

9

8

7

6

5

14

7

2

I

Lei

Fig 6-5 	esults of restructuring program R

S

7

6

5

14

2

I

0 	10 	 50 	 100
T (ms.)

Spread of (25ms. intervals) accesses amongst pages

lefore restructuring

138
14814
2141

65
181
2147

68
62

206
191
2 7 2

259
267
263
1419

14

After restructuring

216
6

3114
1478
115
297
223

90
31
31
21
37

5
0
0
0

Fig 6-14 	Results of restructuring program S

3

KA

[IJ

I

ru ct uring)

25 ms. rest

S

7

PO

5

2

T (ma.)

50 	100 	150 	200 	250 	300 	350 	1400

T (ma,)

Pig 6-5 Restructuring to different lengths of WE interval

S I (pages) program R
(one set of test data)

7

5

3

2

I]

0 1
10 	 20 	 30 	 140

T (me.)

Fig 6-6 Effect of premature final restructuring

In order of citation.

DlNIS, J.B. 	e,ntation and the design of m1tiprognamed

ooçut' utaa. 	J. ACM 32,4 (Oct. 65), 589..6(L

1W1DLL, B. MW IWlU, C.J. 	Dynamic storage allocation

ayetoa. 	Corn. ACM 11,5 (May 68), 297.-305.

KIL}3URN, T., IW4AIWS9 D.B.G., L&NIGAN, N.J. AND SUMMER, F.M.

One-level storage eyeteia. 	IRE Trans. EC 3102 (Apr. 62),

223-235.

8H14, J.E. ADD uI1flI1EY, G.A. 	StatiaU.*l imi tlyaja of

paged and segmented computer avotems. 	IE frans. EC 15,6

(ec.66), 855.-863.

WEIZ1 9 N. AND OIPIIR, G. 	Virtual 501fl017 IlYSCoIaent in

• paging environimont • 	AFD'S Proc. SJCC, Vol. 34 (1969),

249-256.

DI{NNING, P .J. 	The working set n,del for pl-ng behaviour.

Corn. ACM 11,5 (May 68), 323-333.

DNNING, P .J. 	Tha'ashing: its causes and prevention. 	ALPS

Proc. FJCC, Vol.33 (1968), 915-922.

(EVER, DP. 	Probability models for ii1tipronmth49

ooquter ayntens. 	J. ACM 14,3 (July 67), 423-438.

FINE, G.M., JACKSON, C.U. AND MCI8AAC, P .V. 	Dnauiio program

behaviour under paging. 	Proc. ACM 21st National Meeting

1966.

BB&WN, BA.M3A.RA. 8., AND GU8'.AV3ON, FRANCIS C. 	Program

behaviour in a paging enwilronment. 	AFIPS Proc. FJCC, Vol.

33 (1963), 1019-1032,

B.).

U. C0FP4AN, B.G. AiD VAItt*tI L.C. 	Further eqerinmital data

on the b.Imviour of proaIaa in a paging enviromment.

Comm. ACM U,? (JU1y 68), 473-474.

FB8, I .F • The cVnwie behaviour of proana.

AiP8 Proc. ?JCC, Vol. 33 (1968), 1163-1161.

o'NgLLL, LW. 	1ibqianoe uwLng a time-shared atulti,

prnnvi1ig avutem with dyimio addreee relocation hardware.

A.FIP8 Pzoc. 3JCC, Vol. 30 (1967), 611-621.

BEADY, L.A., NEL'3W, LA AND {IwU, G.S. 	An ara].y in

)aoe-time cIw2UotoI'iutia8 of certain proems running in a

paging rohine. 	Co. AM 12,6 (JUne 69) 1, 349-353.

B]LADI, L.A. 	A study of replacement algorithea for a

virtual atorage ociçutar. 	I4 aystems J. 592 (1966),

78-101.

MW14G, P.J. 	ileaource allocation in multi-prooeao computer

yatacia. 	(Ph.D. thesis) Hasmebusetts Institute of

Teoi)logy, May 1968.

17, BLA1)X, L.A. AND MORN& CJ. 	 thing in

ocquter Watme. 	Cciun.. ACM 12,5 (Nay 69), Z32-238.

KUIWI96 C .J • AND BANDELL, B. 	DrarwI paging in per.otive.

AFIP3 Proc. YJCC, Vol. 33 (1968), 1011-1017.

I4nJC 1iLTAR, A.C. AND C(4AN, B.G. 	The ox w'isation of

itrioee and matrix operations in a paged nz1t.tpro'acaiing

eivir -in xt. 	Comm. ACM 12,3 (Mar. 68), 353-164,

CCMZW, L.W. 	A study of the effect of user pro'aa

optimisation in a paging system. 	ACM SVmposium on operating

aysten principles, Gatlinl*zrgh, T 	1967.

iWWOMHY., C.V. The analytic dea4p of a dynamic look

ahead and program segmenting ay'otem for multiprogrammed

computers. 	iroc. ACM 21st National Meeting 1966.

14*.RIM(2T, ft0ALIND B. 	Application of graphs and Boolean

matrices to cout' programming. 	Sim Review 2 94

(Oct. 60), 259-268.

KRAL, J. 	One my of estimating frequencies of Jumps in a

program. 	Comm. ACM 11 1,7 (July 68), 475-480.

LWJ, T .C. 	Analyais of Boolean program models for time-

shared paged environments. 	Comm* ACM 1281 4, (Apr. 69) 0

191-205.

25 • LOWS, T .0 • 	Automatic aegnantation of cyclic program

structures baead on connectivity and processor tirthvj.

Comm, ACM 13,1 (Jan. 70), 3-6.

26, 70LI, J.D. 	A Narkovian model of the University of

l'tthigalL executive gVgtgm. 	Comm. ACM 10.9 (Sept. 67),

584.588.

FELI2R, W. 	Introduction to probability theory and its

pplioationo, Vol. 1. 	John Ialey & Sons (Nov York), 1950.

aotir, R.E. 	The travelling salesman problem. 	Proc.

I4 Scientific Computing 4mposium on Coithinatorial Problems

(1964), 93-117.

3OKAL, R.R. AiID SIThATH, P .LA. 	Principles of ranaerioal

txo13!. 	W.H. Frewaan & Co. (San Francisco and London),

1963.

BOiN(, RJ. 	On some clustering teclmiqueo. 	III'! J. Res.

and Dev. 8,1 (Jan, 64), 22-.32,

L3

L. I4T0, R.L. AND DAi24AN, J.. 	A tecimique for dotining

azi coding aibolaaaee in pattern reoogition prob1esa. 	II

J. Res. and Dev. 9,4 (.bly 6) 10 294-30.

N11i&M, R.H. AND PON WMDDFS,, A.F. 	The theory of clumps.

Cambridge Inguage iercb Unit Report 14.1.126 (1960).

N1ThiAM, R.H. 	7he theory of "1u'ça II. 	Cambridge ImflgtIkg

Reseerch Unit Report 14.1.139 (1961).

34, 4TX1, J.G. AND WMTFIMD H. (ED.) WAS System Ifsrence

manual, 	1dinbuz'gh University Department of Computes' Science

and 101 (1970).

35. WAIAER, J .G • AND WITFIW H. (ED.) 	SIAS Primary SubeWstem

Referenoe 14n14. 	Ed.lnbiu'gh University Dep'tment of

Computer Science and 101 (1910).

11.4

IIr1RoDucTIoN

In order to obtain data for preliminary development and testing

of effective r.atructning algorithms based on the ideas of chapter

III, an initial study was made of the reference behaviour of sose

programs writtsn in Atlas Aut000da (*.i) for an 1g1iah 1.eotric

KDJ9 computer. 	This was a oingle-44dreae machine with a mstiry

of 16K 48-bit words, only the first 8K being available for

instructions. 	It was non paged, and the programs tested had tliae

in no way been oriniøed to run in a paging environment.

C0LLCTI01I OF 1FCE DATA

Moat of the data was obtained using a modification of an

already available 1.2I interpreter which had been previously written

by Mr. T. Heed. 	This we itself written in A.A., and when

compiled with another A.A. program caused the latter to be obeyed

interpretively - the flow of adth'eaa references could thus be easily

traced. 	To g4j'i1te chm3dig (see chapter III), grids more

imposed separately on the code and data, dividing then into equal

size blocks. 	The interpreter was ude to produce (on magnetic

tap.) a stream of reference statistics; each consisting of the

number of instructions obeyed so far (representing time) followed

by a block izather. 	Suooeadve acoesees to the name block Were

not recorded. 	(i the code a block size of 50 words was normally

imposed. This was rather large and also the arbitrary divisions

imposed by the grid would normally in no '.my coincide with natural

structure; In fact a division might easily peas through a single

instruction. 	however it waa supposed that although this would

Li

substantially reduce the degree of improvement obtainable by

restructuring, it would net invalidate the testing and development

of the restructuring methods.

Immediate problems which arose if a reasonable length of run

of the program we to be monitored wwo z

an imimene quantity of data we produced,

the interpreter was very time-.00niring, partly due to a).

It was necessary to rechaoe the waount of data in a way which would

net affect the results of ench expez'iiaenta as wxad be performed on

it • 	These would coxmist n&-Yi1y of forrning Rit(l.ity arrays and

investigating werking set aizeø (see chapters, 1,111), on the basis

of intervals of various lengths starting from about 3.000 instructions.

This being large compared with the time between different block

references, the foUoving redactions in the quantity of data had a

negligible effect on results.

As far as repeated accesses to the same block ware

conoerned, data and code were treated separately. 	This if two

successive references to the sa me code (say) block were separated

by a data thu* reference, the code alaink would net appear the

second time,

The 'tine' was only output every 128 instructions. 	To

identity this it was preceded by zero; instruction ohmcs were

given positive ainbea'a, data, negative.

Dc&wwkT:wr

form d1 d2 d1 2• .d1 d2 (ignoring intervening instruction c}links)

resulted ainç].y in the output d d2. 	Such aequenoes were very

ootimn in the programs omminedp owing to the common situation of

references to parts of a large array being intarapereed with access

A.2

to scalars at the bae of the data utack.

d) Since rearrangenent we to be performed only on the code,

the ixrçoaition of 50 word tm* WU confined to this; both the

data and 'Perm' (the perr1arAnt or alave routines which the compiler

linked to every A.A. program) being blocked into the minirim pegs

size which would be Rintflated (250words). 	This meant that UM

z'eferenee data could still be obtained far the program as a whole.

The Interpretation speed we then prooeeuor dependent and we

about 50000 instructions per ndiiite; this number of instructions

producing on average about 4000 words of data. 	1ven with the

fairly 1iitted ma}iine time available, it now became qiaite feasible

to interpret a million instructions during a rim (although even this

only represents a few seconds of the program's actual run-time.)

In one case (program D below), data we gathered not by the

interpreter but by instructions hand written into the A.A. program

- these monitored the flow of reference only within the code,

Chunk boundaries could then be chosen at natural dividing points.

In practice most of the chunks were taken ainq)ly as the subroutines

of the program; the insertion of monitoring instructions to trap any

transfers of control between chunks we then a straightforward

procedure. 	The thmk rsiinbera and oorreEspo'vli CPU time (in

pleae of instruction count) ware written up to iiegiaetio tape in the

same format as that produced by the interpreter.

Once a data tape we produced, all investigations were made on

this, no fUrther reference to the program being made.

A.3

3. DATA Ai1AII3 PROG115

Fl &T41taneOUe1y sirilated limB of the program under each of

a set of given time-slices with a single given store allocation.

Sr3T thn* had an associated pegs rarnber a part of the data to Pi.

Thus each think on the data stream gives rise to a page reference,

and the paging behaviour (under some "n1ated page size) of the

program can be studied either in its original form or with arq

redistribution of chunks into pages.

The airrii1-tad store associated with each length of time-slice

is represented by a vector, with an entry for each page to 1s1ioete

whether it is in or out of store; if in, a note of the time of the

meet recent reference is kept. 	Within a time-saUce, pages were

loaded only when referenced. 	Once the allocated store was fall,

subsequent references external to this store would result in a page

being unloaded according to the 'least recently used' strategy.

At the end of a time-slice, the whole store was cleared. 	For

each length of time-alice, a record was kept of the following.

The total number of page-faults (rorenoea to out-of-store

pages).

If required, the proportion of the total nuther of intervals

in which era otly i faults oczrr.d, for all i frosTi 3. to sone given

no

a) The number of intervals in which more distinct pages iimre

referenced t)wi the amount of store allocated (i.e. unloading had to

take place).

By tiking a very large store allocation, it can be anaared that

A.4

no unloading ma ooar during mW time-slice. The average mambar

of page-faults per interval than giveci an approrl mtion to the

average rking set size (action 1 .5) for the oorreepci&ding time-

slice length.

If a large time-slice is tikon, with a aUer stare alloostion,

the restricted store behaviour can be studied, within each interval.

(Only for very =01 1 store sizon will the rolt be eiitftcant1y

affected by the measures to recb.toe data described above.)

P2 was a variant of P1 written to give a more eViiait

n'nation of restricted store behaviour. 	10 time-alioing uas

perbrmed, but aeverel store aUoontInna could be considered

simultaneously. 	The time when the store was first filled was

recorded: the average fault rate after this time thus gave a measure

of genuine restricted store behaviour. 	If required, P2 would also

print out the iirther of periods between page-faults which were lees

than any opecMed quantity.

ini1r: This depended largely on the aunt of information reciired

from one pass through the data stream. 	The elapsed tines of the

ei-11Rtiono of a mi "(on inatctiona all lay between 5 and 12

mi'Etee.

Figs. A-i, A.2 give e'wLp1ea of printer 0/P from P1 (the

length of the tine- shoe is Indicated by 'residence period'). 	Fig.

A-3 gives an examle from P2. In this last figure the fact that

time is only recorded ovary 128 insuationa results in the 'store

filled' time being the eame for store sizes 12 9 13 and 14; in fact

they were of course slightly different. This arose from program

B (see section 4).

A.fi

This generated c simi1 rity array (section III.?) for each of

a set of interval lengths read in as data. 	The results were

written up to ieagnetic tape. 	The average aix*mt of store (in

terms of the thnir'k unit) referenced per interval was recorded -

representing the average working set size if a very c''11 page size

was taken, and obviously very ititch a lover bound to the possible

average size obtainh1 a after restructuring.

Later versions of this program (and 14 below) reduced the

r*aiuber of chunks by not including any tIiioh were not referenced at

all during the run. 	A translation table was used to renumber

&rnkC which were accessed. 	Before this was done, the largest

program examined gave a similarity array too great for the

available On store.

Timini: for the largest arrays an average of 4 minutes elapsed

time.

The diagonal elements of the arrays were printed out in order *

these represent the frequencr of chunk use. 	Fig.A..4 above an

canle of the printer 0/P (cut off at the right hand side). The

sections' message indicates where the array is written on magnetic

tape.

P4 clustered the chink into pages on the basis of a R4mllRrity

array output by P3, the page øize being data to P4. 	Mai metlmde

of clustering were tried, the reduction in the average working out

also being the criterion of judgement of results. 	Chapter III

gives some details and describes the algorithm finally adopted.

The fin1 chink positions were both printed and written to mitio

A.6

RESIDENCE PERIOD = 	2500
SPACE AVAILABLE = 21

NO INTERVALS 	j7

PAGE FAULTS/INTERVAL 	10.1

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR O.COO

RESIDENCE PERIOD 	5000
SPACE A AILABLE 	21

NO INTERVALS 	94
PAGE FAULTS/INTERVAL 	11.35

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR C.UCC

RESIDENCE PERIOD = 10000
SPACE AVAILABLE = 21

NO INTERVALS 	47
PAGE FAULTS/INTErVAL 	12.40

PROPN OF INTERVALS IN WHICH TOP FAULTS OCCUR 00000

RESIDENCE PERIOD = 15000
SPACE AVAILABLE = 21

NO INTERVALS 	32
PAGE FAULTS/INTERVAL 	13.37

PROPN OF INTERVALS IN WHICH Top FAULTS OCCUR u.00

RESIDENCE PERIOD = 20000
SPACE AVAILABLE = 21

NO INTERVALS 	2 4
PAGE FAULTS/INTERVAL 	13.5

PROPN OF INTERVALS IN WHICH TOP FAILTS O'.CUR Q.QQij

RESIDENCE PERIOD 	30000

SPACE AVAILABLE 	21

NO INTERVALS 	16
PAGE FAULTS/INTERVAL 	13.75

PROPN OF IrTERVALS I 	WHICH ICP FAULTS OCCUR O.00O

--Fig A-I 	Example of output from P-------

RESIDENCE PERIOD = 	500
SPACE AVAILABLE 	25

NO INTERVALS 	200

PAGE FAULTS/INTERVAL 	3174

DI.STN 	OF PAGE 	FAULTS/INTERVAL

1 0.000

2 0.005

3 0.010
4 0.000

5 0.000

6 0.000

7 0.050

8 0.030

9 0.150

10 0.150

11 0.115

12 0.C75
13 0.115
14 0.070

15 0.105

16 0.085

17 0.035

18 0.000

19 0.005

20 0.000

pROpN OF INTERVALS IN WHTrH TOP FAULTS 'CCUP 0.0 0 0

RESIDENCE PERIOD = 	10000

SPACE AVAILABLE 	25

NO INTERVALS 	100

PAGE FAULTS/INTERVAL 	1.85

DISIN OF PAGE 	FAULTS/INTERVAL

1 0.000
2 0.000

3 0.010

4 0.000

5 0.00u

6 0.000

7 0.010

8 0.000
9 0,040

10 0,090

11 0,040

12 0.070
13 0.320

14 0.140

15 0.190

16 0.150
17 0.110

18 0.010

19 0.010

20 0,010

pROpN OFITEPVALS Y 	i''T 	Tr.P 	r 	'CCJ 	0.0Th

Fig A-2 Example of output 'from P1

U

TESTTIMFs 	600000

STORESIZEn 	15
STORE 	FILLED 	AT 	191104
NO 	PAGE FAULTS 	171

- LAST FAULT AT 	459776
No 	INTS LESS 	THAN 5O11 14

1000 144

STORESIzE= 	14
STORE 	FILLED 	AT 	190976
NO PAGE FAULTS 	209
LAST FAULT 	AT 	459776
NO 	INTS LESS 	THAN 5000 185

1000 172

SToRESIZE= 	13
STORE 	FILLED 	AT 	190976
NO PAGE FAULTS 	276
LAST 	FAULT 	AT 	459776
NO 	INTS LESS 	THAN 5000 251

1000 23

STORESzzEs 	12
STORE 	FILLED 	AT 	190976
NO PAGE FAULTS 	360
LAST FAULT AT 	459776
P40 	INTS LESS 	THAN 5000 336

lou') 11

Fig A-3 Example of output from P2

NO INTERVALS 	46

SIZE/INTERVAL 	6054,0

SECTIONS 	366 	373

USE FREQUENCY

	

9 	46 	31 	46 	45 	Ic 	l 	I 	 19 	5

	

22 	20 	19 	9 	4 	20 	17 	16 	12 	12 	2 	11

	

14 	6 	5 	4 	4 	3 	6 	& 	2 	2 	2 	2

NO INTERVALS 	23

SIZE/INTERVAL 	6800.0

SECTIONS 	374 - 381

USE FREQUENCY

	

10 	23 	19 	23 	23 	IC 	9 	9 	9 	10 	4

	

14 	13 	13 	13 	4 	13 	13 	11 	9 	.9 	2

	

9 	6 	5 	4 	4 	3 	5 	3 	2

9

Pig A—Li Example of part of output from P3

PAGE
1

CHUNKS
1 83 84 69 86 	2 3 4 32 33 LENGTH

2 5 6 C 34 35 	76 30 81 2 7 LENGT

3 9 48 49 51' SQ 	52 51 53 79 LENGTH 	450

4. 10 54 58 6 2 57 	66 61 55 29 63 LENGTH

5 11 12.13 14 23 	24 37 38 39 40, LENGTH

6 15 16 47 60 59 	74 75 91 90 36 LENGTH

7 17 18 19 22 20 	21 25 26 27 23 LENGTH

8 30 31 LENGTH 100

9 41 72 73 87 88 	42 89 43 77 78 LENGTH

10 44 45 46 LFNTH 150

11 64 65 LENGTH 100

12 67 68 69 71 71 L1sGTI 1 250

Fig A-5' Example of part of output from PL.

tape in a itable form for input to P1 or P2.

Tind.nAz prOCeBiing time roughly proportional to the size of the

array - about one minute for 40 ch3nko.

Fig..A.-5 gives an example of printer 0/P from P4.

4, ItWIWIIGATIWS AND RJLTS3

The reference data from four A.A. programs was used to develop

the restructuring methods. 	The way that data is presented to P1

permits a page aims of axv multiple of the largest alimk size to be

simulated; however the results presented here aaLzmo a 500 (48-bit)

word page size. 	Working set curves, each covering intervals

between 2K and 50K instructions, were obtained before and after

restructuring; some, restricted store behaviour was also examined.

The table gives details of the programs, assuming a 500 word page

size, 	'Perm I was about 1500 words* i.e. 3 pages, and was not

considered part of the code for restructuring purposes.

A (r'4mer.tael analysis)

B (øiriil ated on-line
Interpreter)

C (2nd phase A .A. ooiiler)

D (let pizas A.A. ooiler)m

no.00do 	.(u13ed)
pages data pages

	

5 	2

	

7 	12

	

1]. 	II

	

6 	-

total instructions
size interpreted

10 * tdilion
22 *m.

25 la.

- (zo sea.
CPU time)

The results with the program in its initial farm, and after

restructuring using the clustering algorithm finally adopted, are

abom in figs.A6 to 1-9. The restricted store behaviour where

given refers to the average fault-rate once the allocated store is

Data obtained by instructions added by ___ - see section 2

A.?

first filled, and not over the whole pro"sa run.

Starting at any tine, this uses nearly all its pages very

rapidly, a sudden flattening of the average WS curve occurring

between Wid and W9. 	This is reflected in the restricted store

behaviour, the average fault rate changing from exoesuive to

virtually zero with store allocations of 8 and 9. 	The effect of

restructuring (to a time.-slioe of 10K) reduces the WS siza by about

a pege and a half, 	This small reduction makes an enormous

difference to the paging rate that results when the program is

restricted to rim in 7 or 8 pages. 	This is an indication of how

unsatisfactory is restricted store behaviour as a pniry of program

reference pattern.

Proit B

This program consisted of two clear phases, the first of which

was quite ooxact, no more than 10 pages being referenced in any

interval. 	The code of the phases was quite separate in the

initial version, and restructuring could mks little iiroyement in

this respect. 	The reduction in mean WS size at T10E is about

10%.

The difference in size between the two phases meant that there

was a high variation in the W8 size about its mean there is thee

no coriiotion between the restricted store behaviour and the average

W8 curve (see section 1.5). 	Fig.&3 is the P2 output for program

B, and it shows that a store of 12 pages wee not filled until some

200K instructions: the restricted store behaviour is effectively

that for the (much larger) second phase alone.

A.8

Pros. C

The slope of the WS curve for this program falls off cp.iit.

slowly - even at T5(E it is still quite steep. 	Program U would

thus be badly behaved (in the sense of section 1*5)6 	The mn

WS aisie for 1CK intervals is reduced by about 13. 	With well

thoeesi ink boundaries this large and loosely connected program

has probably considerable potential for iiçroveoent. 	Fig 1-3 is

the restricted store curve for prog. C origLiUy.

Pro. D

'This cenn,t be coepaz,ed directly uith the others as the working

eats refer only to the code. 	Because of the intelligent choice of

unk boundaries proan 1) would be expected to yield results

oid1er to these of the restructuring scheme (see chapter VI); the

in difference is that the i,}vmk here are larger and the potential

for ijrovemaent preaazsably lees. 	There is appraxiutely a 35%

reduction in the average code 11$ also for 2(1 intervals after

restructuring.

A.9

i
S

8

7

6

restricted store behaviour

store allocated 	mean page-fault rate/10K mats.
original 	after restr.

9 	 0004 	-

8 	 5.3 	0.22

7 	 2)4 	 1.6

6 	 - 	 23

Fig A-6 WS curves and restricted store behaviour, program A

0
I.)

II.

In

1!]

It

at

to

T (instructions)

restricted store behaviour

store allocated 	mean page-fault rate/10K mats.
original 	after restr.

15 	 4.2 	 2.6

iL 	 5.1 	3.7

13 	 6.8 	 5.3

12 	 8.8 	 7.9

Fig A-7 	WS curves and restricted store behaviour, program B

C
Li (pages)

0 	5k 	iolc 	 ISK 	aOK 	 30K. 	 toK 	 Sotc.

T (Instructions)

1ig —b 	cuLves, p1ogfa

5K 	OY.. 	 20 Y. 	 30K 	 Itloic 	 5O

T (/25.)

Fig A-9 	VS curves (code only), program D

1. THE GILJR JaiD ONE P1UJCD

The compiler, both as originally received and in the developed

version, consists of three main phases.

Phase 1: this perfc*'me a syntax analysis of each source

statement and produces a sequential file of 'Rnalyeia records'.

There is also oom degree of global statement checking (e.g.

correspondence of start and £initha).

?baee 2: this is the main compilation phase. 	The analysis

records are processed, and a sequential file of so called 'code

units' produced.

Phase 3' object code is generated from the phase 2 0.
Apart from the data file, a large quantity of global data Links

the phases. 	In principle, phases 1 and 2 could be merged, the

analysis record of each statement being passed to phase 2 as it is

generated; they had been separated in the initial desiga in ardor to

try and improve pro'am behaviour in the peing environment for which

the compiler was originally planned.

Prior to developments directly connected with the restructuring

scheme, the following are the main changes made to the compiler as

I itially received.

Rcternal routine compilation we implemented.

'Perm' (see V.2) 0 which originally had to be compiled with

(i.e. the source text placed inuedietely in front of) arr program,

van weds into an external routine. 	Li-niced in at run-time, this

could be shared by any nodules produced by this compiler.

The compiler itself, initl-n117 a single 'wei program'

BJ.

(section V.2) was divided into acternal routines - the three pI*eea

above, additional globel routines, and a controlling msim.prograza.

All global variables were passed between et.rzal routines tJ*'ough

parameters. 	This caused a slight degree of inefficiency, but the

i,ivnmn gem in convenience of development (which was normally

concentrating on one phase at a tine) strongly outweighed this.

Henceforth, references to the • original' compiler asazae the

above changes nedo. 	Only those features of the compiler and code

generated, which affect the restructuring scheme are described in

any detail.

& 	instructions

Production of a self-monitoring program involved thRflge8 to the

instructions that transfer control; the implementation of these in

the origirl. compiler is therefore described. 	Reference is nede

to figs. B-la, B-2a, which abov parts of the N-format code generated

from the emell demonstration program discussed in chapter V. 	The

11e aznthere, printed out for each statement, correspond to these in

figs. 5-2, 5-3. 	With this line number is given the currant code

address (repeated).

There are 16 32-bit registers on the 4175. 	Any may be used

in addressing, only the lower 24 bits being 'Lgn(fioant in this case.

For addressing purpo see, register 0 is aiweys taken as containing

aezo. 	In the foUowtng assembly code representation of

instructions, b (base), i (inb'), and]. (link) refer to registers

(i.e. are integers between 0 and 15), d (displacement) is an integer

between 0 and 4095, oM c is an integer between 0 and 15 which

Yields a truth value when compared with the current value of a

hardware ciorklition coda (in particular, true is always given if

B.2

o15). 	Addresma are evaluated in 1,toa.

The only machine-code branizig instructions which the copUer

generates are 2

XE o,b (Branch on Condition Register)
If a yields truq. branch to
address contained in register b

DC o,d(b,i) (Branch on Condition)
If o yields trm branch to the
address obtained by sunning d,
the contents of b and the contents
of i.

BAL l,d(b,i) (Branch And T4,n)c)
Jvaluate address as above, and
branch there, leaving the lini
(address of instruction following
the 	L) in register 1

BALR l,b (Branch And Link Register)
Branch to address contained in
register b, leaving link in
register 1.

During the running of code produced by the coi]er, the contents of

two registers remwin constant, and are used to evaluate addressee

within the code area, 	Register 12 (set up according to a qystem

standard by the calling module) points to the beginning of the code

of the current module. 	Register 9 points to the beginning of

Perm (me V.2), 	This is set up on entry to the module, the

address of P 	(an external routine) being found from the linrnga

information in the GIA.

The various entries into Perm required by the compiled code ar.

all in the first 4096 bytes (1 page-length). 	This means they can

be accessed by a single branching instruction to an appropriate

dilaoit on the contents of register 9.

Thus an array access; (e.g. Inn 96, first statement) causes

BJ

I 	, 1 . 	L I 	4.._ 	U 	I

• ST 11, 	O(0, 	13) • 	ST 11, 	0(0, 	13)
LINE 88 CA= 2958 	2958 LINE 	88 CA= 2958 	2958
• L 11, 	0(0. 	13) • 	L 11, 	0(0, 	13)
• STM 4, 	14, 16(11) • 	SIN 4, 	14, 16(11)
• L 15, 	72(0, 	11) • 	LA 15, 	72(0, 	1 1)
• ST 15, 	0(0, 	13) • 	ST 15, 	O(0. 	13)
• MVC 64(4, 11). 	64(7) • 	MVC 64(4, 11), 	64(7)
• MVC 68(4, 11). 	420(13) • 	MVC 68(4, 11), 	420(13)

• LM 12, 	14, 316(13) • 	LM 12, 	14, 316(13)
• BALR 15, 	14 • 	BALR 15. 	14

ST 11, 	0(0, 	13) • 	ST 11, 	0(0, 	13)
LINE 88 CA= 2996 2996 LINE 	88 CA= 2996 2996
• BAL 15, 	40(0, 	9) • 	9AL 15, 	40(0, 	9)

• DC X'0003' • 	DC X'0003'
NT NT

LINE 89 CA= 3006 3006 LINE 	89 CA= 3006 1 006

• ST 7, 	0(0, 1.3) • 	ST 7, 	0(0, 13)
• LM 4. 	15, 16(7) • 	LR 14, 	7

B C R 15, 	15 • • 	BC 15, 	1708(0, 	9)

LINE 90 CA= 3016 	3016 LINE 	90 CA= 3016 	3016
• MVC 192(4, 8), 	432(13) • 	MVC 192(4, 8), 	432(13)

LINE 91 CA= 3022 	3022 LINE 	91 CA= 3022 	3022
LA 7, 	200(0, 	6) • 	LA 7, 	200(0, 	8)

• L 	 '.0. j, 	9. 	. 	- • 	L' 	•1o, 88(0, 	0)

BC 7, 	3060(10, 	12) • 	EC 7, 	1576(0, 	9)

LINE 95 CA= 3158 	3158 LINE 	95 CA= 3158 	3158

• BALR 10, 	0 • 	BALR 10. 	0

• L 0, 	428(0, 	13) • 	L 0, 	428(0, 	13)

• C 01 	188(0.) . 	C 0, 	188(0, 	8)

• BC 7, 	42(0, 	10) • 	BC 7, 	42(0, 	10)
• LA 2, 	3(0, 0) • 	LA 2, 	3(0, 0)

• LA 	---14. 152(0., 	8) LA 152(0, 	8)

• BAL 15, 	444(0, 	.) • 	B A L 444(0, 	9)

• L 0, 	192(0, 	8) • 	L 0, 	192(0. 	8)

• C 0. 	0(0, 14) • 	c 0, 	0(0, 14)
• BC 7, 	42(0, 	10) • 	BC 7, 	42(0. 	10)

• MVC 188(4, 8), 	432(13) • 	MVC 188(4, 8), 	632(13)

LINE 96 CA= 3202 	3202 LINE 	96 CA= 3202 	3202

• L 2, 	188(0, 	8) • 	L 2, 	188(0, 	8)
• LA 14, 	168(0, 	8) • 	LA 14, 	168(0. 	8)

SAL 15, 	444(• 0. 	9) • 	BAL 15, 	444(0. 	9)

• L 0, 	192(0, 	8) • 	L 0, 	192(0. 	8)

• S 0,512(0.13) I • 	S 0,512(0,13)

• L 3, 	528(0, 	13) • 	L 3, 	528(0. 	13)

• MR 2, 	0 • 	MR 2. 	0
• A 3, 	0(0, 14) • 	A 3, 	0(0, 14)

• ST 3, 	196(0, 	8) • 	ST 3, 	iQ6(0, 	8)

LINE 96 CA= 3236 	3236 LINE 	96 CA= 3236 3236

• L 11,0(0,13) • 	L 11.0(0,13)
• SIN 4, 	14, bC 	11) • 	SIM 4, 	14, 16(11)

• LA 15, 	72(0. 	11) • 	LA 15, 	72(C", 	11)
• ST 15, 	0(0, 	13) • 	ST 15, 	O(0. 	13)

• MVC 64(4, 11), 	532(13) • 	MVC 64(4, 11), 	532(13)

• LM 12, 	14, 372(13)
•

• 	LM 12, 	14, 372(13)

B A L R 15, 	14 • 	BALR 15, 	14

• ST 11, 	0(0, 	13) • 	ST 11, 	0(0, 	13)

LINE 97 CA= 3268 	3268 	1 LINE 	97 CA= 3268 	3268

• NyC 204(4, 8), 	140(8) • 	MVC 204(4, 8), 	140(8)

L'NV 97 c= •'? •'I 	3'7' IT.IC 	07 r- 37' 	77/

a) N-format code
	 b) M-format code

Fig B-I

• 	MVC 	140(4, 8), 432(13)
LINE 	98 	C= 	3294 3294

L 	2, 140(0, 8)
• B C R 	0, 0
• 	BAL 	15, 1396(0, 9)
• 	DC 	X'00000A6C'
LINE 	99 CA= 	330 3308
LINE- -99 	CA= 	3303 3308
• 	BALR 	10, 0

L 	0, 536(0. 13)
• 	C 	01 146(01 8)
• 	BC 	3, 20(0. iC)
• 	L 	10, 332(0, 9)
• 	BC 	15, 3360(10, 12)
LINE 	100 	CA= 	3330 3330
• 	L 	10, 332(0. 9)
• 	BC 	15, 3338(10, 12)
LINE 	100 CA= 	3338 3338
• B A L 	15, 40(0, 9)
• 	DC 	X'0007'

NO BID

LINE 	100 	CA= 	3352 3352
• 	L 	10, 336(0. 9)
• 	BC 	15, 76(10, 12)
LINE 	101 	CA= 	3360 3360
LINE 	101 	CA= 	3360 3360
• B A L R 	10, 0
• 	L 	0. 520(0, 13)
• 	C 	0, 136(0, 8)
• 	BC 	5, 20(0. 10)
• 	L 	10, 337(0, 9)
• 	BC 	15, 3390(10. 12)

• 	L 	10, 332(0, 9)
• 	BC 	15, 3450(10, 12)
LINE 102 CA= 	3390 3390
• B A L R 	10. 0
• 	L 	0, 524(0. 13)
• 	C 	0, 196(0, 8)
• 	BC 	11, 20(0, 10)
• 	L 	10, 332(0. 9)
• 	BC 	15, 3480(10, 12)
LINE 	103 	CA= 	3412 3412
• 	L 	ill 0(01 13)
• 	STM 	4, 14, 16(11)
• 	LA 	15, 72(0, 11)
• 	ST 	15, 0(0. 13)
• 	MVC 	64(4, 11), 420(13)
• 	L 	14, 332(0, 9)

BAL 	15, 2928(14, 12)
LINE 	103 	CA= 	3442 3442
• 	L 	10, 336(0. 9)
• 	BC 	15, 76(10, 12)
LINE 	103 	CA= 	3450 3450
LINE 	104 	CA= 	3450 3450
• 	BALR 	10. 0
• 	L 	0, 540(0, 13)
• 	C 	0, 136(0, 8)

a) N-format code

• 	HVC 	140(4, 8), 43(1.)
LINE 	98 CA= 	324 324
• 	L 	2, 140(0, 8)
• 	BCR 	0. 0
• 	BAL 	15, 1396(0, 9)
• 	oc 	X'0000003C'
LINE 	99 C= 	3308 3308
LINE 	99 CA= 	3308 3308
• 	BALR 	10, 0
- 	L 	0, 536(0. 13)
- 	C 	0, 136(0, 8)
• 	BC 	3 	20(0. 10)
• 	LA 	10, 100(0, 0)
- 	BC 	15, 1576(0, 9)
LINE 	100 	CA= 	3330 3330
- 	LA 	10, 101(01 0)
• 	BC 	15, 1576(0, 9)
LINE 100 	CA= 	3338 3338
• 	BAL 	15, 40(0. 9)
• 	DC 	X'0007'

NO BID

LINE 	100 	CA= 	3352 3352
• 	LA 	10, 102(0. 0)
• 	BC 	15, 1576(0, 9)
LINE 	101 	CA= 	3360 3360
LINE 101 	CA= 	3360 3360
• B A L R 	10, 0
• 	L 	0. 520< 0, 13)
• 	C 	0, 136(0, 8)
• 	BC 	5, 20(0. 10)
• 	LA 	10, 105(0. 0)
• 	BC 	15, 1576(0. 9)

• 	LA 	10, 106(0. 0)
• 	BC 	15, 1576(0, 9)
LINE 102 CA= 	3390 3390
• 	BALR 	10. 0
• 	L 	0. 524(0, 13)
• 	C 	0, 196(0, 8)
- 	BC 	ii, 20(0, 10)
• 	LA 	10, 109(01 0)
• 	BC 	15, 1576(0, 9)
LINE 	103 	CA= 	3412 3412
- 	L 	11,0(0,13)
• 	STM 	4, 14, 16(ii)
• 	LA 	15, 72(0, ii)
• 	ST 	15, 0(0. 13)
• 	tIVC 	64(4, 11), 420(13)
• 	LA 	14, 85(0. 0)
• 	5AL 	15, 1640(0, 9)
LINE 103 	CA= 	3442 3442
• 	•LA 	10, 102(0. 0)
• 	BC 	15, 1576(0, 9)
LINE 	103 	CA= 	3450 3450
LINE 	104 	CA= 	3450 3450
• 	BALR 	10, 0

• 	L 	0, 540(0, 13)
J-_• 	.0 	1, 	1'6

b) M-format code

Fig B-2

the jnntruution 'I3AL 25941.4(0,9)' to be generated. 	The

displacement M4reaeea of the various entries to Perm are of ooure

known to the aoilar.

Internel Jwi

A general adth'eae within the code of the compiled module is

not immediately accessible, and tuo instructions are reciir.d to

transfer oontrol. Consider a Juzç to address 'a' relative to the

beginning of the nodule. 	Moose , the neareet multiple of 4096

below, or equal to, a, i.e. find p so that (a.-4096p) is between 0

and 4095 inclusive (say, d). 	p is the raather of the page (relative

to the code start) in which the target address lies, and 4096p the

(relative) oe address,

Nov Perm contains an irnediatoly accessible table of multiples

of 4096; the appropriate multiple is loaded into register 10:

L l0,diap(0,9) 	load register 10 with 4096p

and the transfer of control to address a can be written:

BC o,d(10,12) 	'anoh (on oorvlition) to address a.

An GCOM16 is ARta 1, the last statement of line 100. 	The

(relative) address of label 1 is 4172, and 336 is the address in

Perm of the integer 4096.

Note that jumps into the first 4096 brtea of the module are

treated in the same '.y, aero (the zero multiple of 4096) being

loaded into register 10. 	This is despite the fact that aoh

addressee are accessible in one instruction; this inefficiency in

the original coniler was convenient for the restructuring SOIIAInS.

Xkterfla] t)roanf1) calls

These are very R{m(lsn, the page adc1reso being loaded into

register 14 instead of 10. 	An øp1e is the first statement of

B.4

line 1Q3, the last tmo intrtructions. 	The previouo instructions

here evaluate the procedure pareter and store it on the stack,

together with current values of the registers.

Olk1iti-flflhIl2

The evaluation of conditions 1eed to short-distance forward

Jws uhich can be treated differently from above. 	The absolute

address of the beginning of the conditional statement is loaded

into register 10 (achieved by B&LR 10,0 which loads the link

without branching), and iiibseent jumps are made relative to the

address in this register. 	An emanple is at fli'e 95.

A juap to a switch label involves access to the switch vector

of relative code-addressee, the vector itself being stored in the

code area. An entry in Pen deals with this; the in1in cods

eiixj].y evaluates the switch ix4c and links into Pen, these

instructions being fo3lo1 by the relative address of the switch

vector. 	An exaWle appears at line 96; the dtiy instruction

'BCE 0,0' has been generated to elii the switch edchsea on a word

boundary. 	This address is given in hndee1rsl form after DC (I).-

fine Conatant) • 	Pen can boats the vector, pick up the

appropriate address inside it, add the code bass (register 12) aM

branch to the resulting address.

Pro oethire rethrna

The absolute return address has been stored on the stack at

call time; this is loaded to register 15 (along with the restoration

of other registers with their call-.tine values), and a direct

return made, uRing the BCE instruction (e.g. line 9).

B.5

AdQual mzre au3ja
These are calls of an external routine in another module, and

the oilllnc sequence must follow a zVotem standard. 	The GL& (the

base of which is indeced by register 13) contains the absolute

address of the extertal routine entry point and other necoasery

information. 	This is loaded into registers; in particular s,

register 14 will contain the entry point addreas s and exit is made

to the new nednie via BALE 15 0,14 (see line 96, second statement).

Gilktion

As ooi2ation proceeds, an array rttable' is constructed -

this contains the address of every point within the module to which

explicit reference can be made, e.g. labels, prooedsre entries,

switch vectors, etc. 	The phase 2 output makes every code address

reference by an index to rttable. 	For exanl]e, consider the

sequence:

L3gotoM

I4sotoL

On oonç,ilation of (1), spuos would be reserved in rttsblo for L

and X (assn,dng this is the first reference to then). 	The code

address of L would be entered in rttable, but that for H is net yet

knoun. The phase 2 output for adQ M, iauld refer to the IWO

of the rttabl.e entry for H. 	Conpilation of (2) would find ac.

for L and M reserved, and the a&h'eaa of 14 can new be entered.

The code unit output by phase 2 for AojQ L still refers to the

rttahl• 4nz deite the fact that the address of L is new krxni;

only during phase 3 are the contents of rttable required.

B.S

In an M-foremt object module, code address references are still

nikde through rttat*].e, uhich thee becomes a run.-time array. 	There

are four additional entries to Pam, the nnniorjng entries

concerned with (i) jwa, (ii) procedure calls, (iii) switch juna,

and (iv) procedure rethrna. 	Ordinary Pam entries and extane]l,

procedure cells do not have to be monitored since they lead outside

the restructuring area and control *tat rethrn maid, the earns chink •

The code for these is therefore unchanged. 	Figs. B-].b, B-2b ahew

the M-format code corresponding to B-la, etc. 	The details of the

monitoring entries are as follows.

(i) A branch to the address in rttatle(i) would appear as i

IA 104(0,0) 	(Load Address)
set i in register 10

BC o,2576(O,9) 	lh'axzch (on condition) to
appropriate Pam entry.

As before this is two four-byte instructions - an amople is the

fir1 statement of line 1iX. 	The index i can only be loaded in a

single instruction if it is less than 4096. 	This would not be a

problem with any but V927 large modules (probably greater than 30

code pease) j rttahle bad less than 2000 entries with the largest

program tested. 	The remedy is to replace i by 1-4096 and branch

to a different entry in Pam, but this trivial extension has not

been implemented.

(it) An intirz*l proosdure call is exactly ei4iar (Wiii 103).

The Pam entry address in seen to be 1640.

(iii) The (relative) code addresses in the switch vector are

replaced by the indices of their rttable entries. 	Also, following

the switch jump, the address of the switch vector itself is

B.?

replaced-coin by the rttable iix1c. 	The !rwple of the latter at

1iYA 96 shewa tlmt the address of the switch monitoring entry to the

special Pm is the as= as the switch entry address in the ordinary

Pca'ra.

(iv) At a iwooee return, the pointer to the stack area

where registers were preserved at cell tine is loaded into register

14, and a branch into Pera perforned. 	As can be seen from the

a'1e at line 89, the total code-length is unaltered.

The branches inpi-de evaluation of oondi1.ona rrin unaltered;

these need not be monitored as they cannot lead outside the

containing th•n'iIe •

Phase 2 determines chunk boundaries as described in V.4. 	The

chinks are azea'ed from 1. upwards, and at this stage tbr.e arrays

preserve all the necessary information about each chink. 	These

arrays are;

alLnklength - contains length in bytes of each thn*,

nhukrn - indcee the rttable entry which contains the

address of the beginning of each rnk,

t,ranohto - if a &qn3c ends in a branch to an mcpliait

target address (i.e. not a procedure return), this contains the

rttable iMi of the target.

A non-conditional, Jusp is generated at the and of any chink

which does not already terminate in one; for ==Wle at the end of

line 99 (chunk 25) • 	These are also generated in the N-format,

code, m&dng this very slightly longer (normally less than 1%) than

In the origin1 oorçiler. 	Apart from this, and the three arrays

above, the output from phase 2 is the sene as it was before the

B.8

restructuring dave1opirite.

Note that by the rules for the determination of chunk

M 	 .c!r7"I

branch. 	The oases

thimk
L

N:

is obvious. 	More common is the case of branches which occur over

procedures or switch vectors. 	The forasr, 	i1 'ii jy!, occurs

frequently; the procedures in 11W are rrl1y placed together at

the beginning ng or and of the oont1ninC block. 	Between each

procedure, this compiler generates a branch to skip over it, giving

a trivial c}c.

Such &*u*a are ignored in the chunking arrays and the rttable

entry is changed to ellTrinRte the thsink from the dynamic flow, i.e.

the entry for L in the above ompple mould be changed to the ad&esa

Of M. As an scale from the ii test program s we we (fig.5.4)

that thmik 12 begins at relative address 2768 and thwik 13 at 292,

but the length of dunk 12 (fig.5.6) as ajeara in '__]nktengtht in

only 352 bytes. The odd vri}iinc will diseppear entirely after the

first restructuring.

As p1*.. 3 encounters coda units which uould generate branches

of the types W-(iv) discussed, previouely, the monitoring versions

are output if an 1 4-forTiat' flag has been set. 	These being the

sace length as the instructions they have replaced, nothing else

need be altered in the production of the aadLACM of the object

L9

file.

Phase 3 naist also output the positions of all the unitoriag

instructions; this is so they may be eventually overm'it ten after a

fina l[restructuring is performed. 	The positions are output as

dileoements from the containing o}u* bouiry, each being

characterised by one of the tour types.

One further array is oonatruoted, bzai as ''1nkno' to 	This

its the seas length as rttabl, and gives the r*zther of the chunk-

èiioh contains the adth'eec in each rttable entry. 	The tin'se arrays

e}iinkno, chnkrn, and x'tteble are output in the data area of the

compiled program. 	All other tables are not as.d.d during the

program run and are written to the chunk inZrmation file. 	ibese

consist of 'ohmklength', 'inanobto', and the tables indicating

positions and types of moinitoring instructions viUd.n the code.

We have goon hew certain features of the ooniler could be used

to provide the awabolic cod, addressing convenient for restructuring;

but the question may arise as to VIq the phase 2 output we not

itself taken as the lavol of restructuring, a policr to which the

brief discussion at the and of IV-5 may have pointed. 	Altlx,ugh

possible, there were two disadvantages ag 4n't using this

intermediat, code.

It WRO very aoe-consuming (about three time the length

of the final object file); this together with the very large

quantity of global data required would. have iesnt that a vast

quantity of information had to be kept throug)ut the restructuring

of a large program.

In eoi areas otni4erable redeaii would have been

necessary to make the code units relocateabie within the intermediate

B.1O

code file.

It was felt that these overcame the (undoubted) disadvantages

of working at 55th1n code level.

2. IIOULTOIWG REMO= BEH&VIJR

In general three arrays collect run-time climk reference

The 1ni.rjty array 0. 	Je refer to the (i,j)th.

element as a(i,J).

The ehink reference vector. 	This indicates which

chink, have been roferenoed during the current working-net interval.

The translate table., tr. 	This in only present if the

number of thanku is greater than 'aeleotno', the allowed mine of the

8ii1l1'ity array. 	For each diunk i there is an entry tr(i). 	If

tr(i) is negative or zero, it contains the negated frequency of use

(i.e. the tinther of similarity intervals in which referenos has

occurred) of chink i so far. 	If positive, duwk i is in the

&rri{iarity subset, and tr(i) gives the roWooluen of this chunk in

the &i*1 1 i.ty array. 	The frequency of use will then of oouree be

contained in the diMgomel element of that array.

To xsnitcr the behaviour in OLMLIsrity intervals, it is

obviously necessary to know the program processing tine as it WMM

be it it were not being =xdtored (its time), i.e. all the ti me

)ent inside nonitoring routines must be aibtraoted from the

processing time as obtained from supervisor. 	The current value of

this extra time is maintained (see below) in a variable 'tiiea'ror',

OW the N-time can thus be obtained. 	At each 'iitoring entry to

B.0

Per2n, if the current RiMilArity intorval ha a not expired, the c}iink

reference vector is irked with the currant thnk. 	For each of

the four types of IKinitoriag entriee, a standard path with a

8tRTlfht'd amount of processing is followed, and this awiwit is

added to 'time-error' • 	Ibwu,v.,r if the H-tim shows that a

similarity interval is over, the inlarity array u*aat be updated

(described below), involving an unspecified awiimt of computation;

to maintain the value of 'timeejTor 1 correctly, the prrJceaing timej

in obtained beibre and after the updating procedure, and the

difference added in.

If a full 5iriiiriity array is being used, one is added to every

element (i, j) if f}ivks i and j are both marked in the interval

reference vector.

1b,ever the situation is more ooLex if a partial array is

being used. The translate table is first updated. For each

thIU* i marked in the nhrn* reference vector

if tr(i) > 0, no action,

if tr(i) < 0, not tr(i)tr(i)-1 (feiencr of use),

(o) if tr(i) Oi if the al-nllarity subset is as large as allowed,

perform (b); otherwise set tr(i) to the next unassigriAd row/colIlmt

of the iinii1in'ity array (i enters the 1riil'ity subset).

Then for all i,J marked in the ok*ink reference vector much that

tr(i) and tr(J) are positive, add one to a(tr(i),tr(j)).

Although the translation process involves a good deal of

ooiutation, note that it is only perforir*ed at the end of similarity

intervals; most of the ritoring entries into Perm sinly involve

updating the ohenk reference vector.

B.12

Ajr entry to a new chunk will be trapped by one of the four

types of icnitoring instructions (i) to (iv) (aee section I);

updating the reference information an described above will be termed

'metering' the chunk.n

Entries (i) and (ii): the rttable index of the target address

enables the latter and the containing chunk number (from 'chumInvi')

to be found. The chunk in metered and exit medo to the target

address. 	In the cane of entry (ii), the standard procedure can

mechanism has preserved the values of the registers on the stack, to

be restored at procedure return. 	One of these locations, whose

contents are not required at return, is replaced with the current

(calling) ckazi* raither.

Entry (iii): the address and chunk-runther of the switch vector

is evaluated from the rttable index supplied; this chunk is than

metered. 	The appropriate entry in the switch vector is then

accessed., this gives the rttable index of the target address, whose

011211k is metered. 	Control is BAaIJy transferred to the target

address.

itry (iv): at a procedure return, Porn is entered with a

pointer to the work area in the stack where the values of registers

at cal]. time were preserved - these give the return address and the

chunk number (entry (ii)). 	£ chunk nnwt and with a procedure

call instruction, so the chunk after return will be the name an that

at osU..tioe, the chunk can thss'efore be metered before returning to

the target address. 	Note that to find the containing niqnk j].y

from the return address would have required a search through all the

chunk addresses.

B.a3

If 'page monitoring' La \JitChed on, target addressee are

passed, together with the -ti, to an acternal routine whUh

records paging behaviour (processing time readings are made befC'e

and after each entry, to maintain the correct value of timsearor).

This routine can 	bchaviouz' in the saw my as the '4j11lat.

r'nn4"g • prowas in the KIZ9 study (appendix A), reraathering that
only code references are being trapped hero. 	Mean vorkingget

sizes wwQ ca1lated for the multiples *,+,1,2 and 4 of the

eln.fluity interval. 	This uVald of 004fl'Se hay, been considerably

more complex if the size of the M-format code were not the eame as

that of N--format; a mapping onto 11-format addresses 'miuld have been

necessary to ammine the correct paging behaviour of the origirl

program.

A very s].i,ht error z*y be introduced; if a chunk lies over a

page boundary ('which cannot occur after the final reathota'ing) and

is entered in the first page, a drop-t1'oui into the second page

may not be recorded if the naet branch obeyed ecitø from it • 	This

could make paging behaviour initially appear slightly better than it

really is, and the effect of restructuring slightly less good, but

the effect is probably inaigntfiaant.

1ferenoe info vt1oi is written to the chunk infbrmation file

at the entry to Penn arising from atoD or endoproam. 	If this

is the first run of this pertioular, structuring of the module, the

similarity array and the translate table (if present) are simply

copied on to the file. 	If translate tables are not present, the

iailarity arrays from aubaeaant runs are simply added eletnerrt by

BJ4

oloment to that on the file. 	If partial arrays are present

hewever there is the problea that the similarity subset of a run

y net be the acne as that already on the file; a new __

array baa to be øonatruotod from tw others which contain

information on two different subsets of the abadw.k

The first task is the oonatruction of the new a1mi1s'ity

subset for the new array. 	Any thiink with a nogetive entry in

&Ubu tren&-ete table is debarred as some inftiraction on its

admi la"Ity with other h'nk is net available, 	Also there is no

point in including any chenk net referenced so far at all (a zero

in both translate table a). 	The rzther of &iir&ka eligible may be

eater then the siTn{1ity array allowa, in which case oozes will

have to be discarded; it may be lees - as was the case with the

bridge-hand program (chapter V) after two rims. 	Given the new

e(t(larity subset, all the information is available to produce a

new translate table and gimI1ity Tay; the process is straight..

for'ird, if Long.

Those ooz1itiea could be avoided by using a standard

similarity enbost - this could either be ahesen at oozile-tine or

jj+A 1ieed at rull-tims from that on the ohm L information file.

The former course miit be vauteful (so. IV.4), the latter muld

mean that the pro"aza nW was net independent of the chimk

information file; it was thus decided to i1amerit the process as

described above. 	However it is net clear that it was worthwhile;

with large programs, little clustering 000nre during the first

restructuring, and after this, translate tables are written back

into the GIAP in any case.

13.1.5

3. GUi'NG

The c1z.wting routine, the first pse of the rost'ucturing

contains the n1wrIthm briefly described in 111.8. U4ng

the 1ii larity array end tthwk leiigtha on the inforuation tile, it

forms groWs of ch3nks, either proceeding to co1etion or stepping

then the amtest lialaw between cLusters falls below a specirled

iantity.

Aippase there are a nhun-, and the airiflrity subset (N) is of

size n. 	Thea a translate table exists only if ii is less than a.

Ini+il ly, the a obunk xzibera are etc*'ed as a aingl.cleruit

1-tate 1thich will be linked together appropriately as the çmkp

oon,bine into clusters. 	A table p is sot up oonaieting of a

pointers to these Lists; as clusters torn, each non.-zero e1ent of

p points to the head of the list of csm1e in a cluster (the order

of cinka at this stage is arbitrary). 	3.aite of p not pointing

to liota are set to zero. 	Initially p(1) to p(n) correspond to

the lm41.'ity array rows; thee if a translate table is present,

list i Is induced by p(tr(i)), otherwise by p(i). 	In the former

case, the remaining p(n+l) to p(m) point arUtrax'i3y to the rest of

the lists corresponding to oimke not in N.

Tw further aiaya have, in a n(l _ senner, entries

corresponding initially to each o1iink and later to each cluster.

These are

am(i): contains the number of chunks in each cluster
(initialised to 1)

size(i) : contains the size of each cluster in bytes (initially
the size of each *n)

The variable Ilimit' is sot to the naxinwa frequency of use of all

o}mke outside the similarity iba.t, or to sero if a f1iit1

rtrtacturing is taking place. 	The diagonal elements of the

,{ii1arity array are set to zero. 	Remembering its qpnetry,,

a(i,j) is regarded as the same element as 8(J,i) in the following

sketch of the clustering alg(ritha.

Find the greatest e1er4rit of array, my e(k,l). 	Mdt
if this is not greater than 'limit'.

Link list p(l) on the and of list p (k). 	$.t p(l) to
some

For each ik or 1, such that p(i)Os

I 	 riia(kLs(i k) + zm(l).s(i.l) ai,k, 	 + x*im(l)

s(i,l) : 0

mum(k) := mum(k) +
size(k) 3= size(k) + ___

For each i*k such that p(i)O and size (i)+eizo(k)>psgeaise,
set ø(k,i)0.

Goto step l.

The fortaila in step 3 for the average aiNil.nrity between the

ori ginal constituent cv*s of two clusters is easily verified to be

correct at any stage of the clustering prooere. To aid the

search for the mamirmim element in step 1, a vector is iintined to

contain the mexinim element of each row of the array; merging of

clusters normally affects few of the maxlme # and the total time of

searching In reduced.

If a JIMI restructuring is being performed, it remains to pack

all the chmko as tightly as possible (inoi!IRtng these originally

not in H) within page-size groupings.

At termination, the non-zero elements of p point to the list-

heads of the now clz groupings; these of course contain actual

cimnic x*3era, the complication of translation having been removed

at the start. 	This set of pointers and the lists of chunks are

B.17

passed to the aeoorxd phase of the restructuring program.

4. a1ki(&TIW OF NEW PURS

The code area of the restructured object file is generated a

chunk at a ti. 	If a final restructuring is being performed,

each cluster of chxnks (thith forms a 'new chunk I) begins on a page

bouztary, otherwise the groups are output imeediately following each

other. 	Mmos all earplicit code-.addreae references are made

through rttable, the chunks can be reordered without any change to

them being necessary. 	The only difficulty in generation of the

code area is the determination of the order of the thiinIe within

each group (or page, in a final restructuring). 	This is affected

by two considerations.

Alignments in certain circumstances (e.g. a jump to a switch

label), full-rd constants appear in the code and these mast be

aligned on a full-rd boundary. 	After restructuring, then, the

containing chunk zi*aat be aligned in the same way as before.

A1thougk it can cause slight inefficiency, it is convenient not to

make special canes, and to align SU chunks on the came type of

boundary (with respect to full-word) as previously.

A chunk ending in a branch to the beginning of another chink

in the same cluster can be placed immediately before it, and the

branch removed.

Normally as each output in made there is a search for a

suitably aligned thmk (otherwise a IalArd of &uW instructions

is necessary). 	Thin will be overridden by cane (2) ithich eaves

two words of the branch instruction.

An cmwle of iermal of the final branch is chunk 15 (figs.

5-40-6). At ooni1ation, this effectively had to have a

'to I' added at the end, the total length then being 30 bytes.

Fig 5-8 ahewe a}'*s 35 and 16 are in the sane cluster in the first

restructuring. 	The tI*'ee ooliums below, show the new crde address,

Iimk rgirber and length of each o]4 chunk as it is generated; it In

seen that 0}ink 35 is before 16, and its length is now only 22.

.g 5-9*, the f9n1 restructuring dme an 'ere1e of e3iit;

the eI*flkø U and 17 (za*aberi.ngs after first restructuring) being

neither full.-rd alied have caused the second cluster to begin

at address 4098, instead of the page adth'oaa 4096.

Ot' abom

A new GLAP has to be written; not only the rttable entries are

changed, but #*u*rn and thmk razet refer to the new 'chinks'.

Also, if n000seer7, a translate table is written back into the

GL&P to select the sli1 '-erity enbaet for the next series of urns.

This will consist of the most frequently used nhinka (regarding the

frequency of a cluster as being that of its mat used constituent

clunk) of the last series of rune. 	Aleo changed are the addressee

of the entry points to the module; a new linkage data area of the

object file is therefore necessary.

Obviously,, a new, cu* information file has also to be written.

At the and of this process, the information and object files hay.

aicaot]y the format as might have been produced by the oovi1er,

except that a similarity enbaet may he written into the MAP of the

object file, and the number of restructurings so far is recorded in

the information file.

The final restructuring produces files In the seme format; the

new otimko are now of oczroe *gen. 	To convert the M..forint file

to N-format, the tnitoring instructions, whose locations are

obtainable from the tables in the information file, are overwritten

with the original branching instructions (using addresses obtained

from rtt4btt). 	The on3.y other alteration is the reduction of the

length of tho GIP by reving the various chunking arrays.

B.20

Ai'iULX C. 	 01., Ti 	O1GG BI

We give hare proofs of the mean rki.ng-aet properties stated

in 1.5 (this is an alternative approach to that of Dm'ing, ref.16).

We take I as a large pr cessig interval (o,i), perhaps

ctMIiiYg over rimny zina of the program. 	The lower end-point is

taken as zero for ooxrvenioe; we ranks no aaaintion that pages are

not referenced outside the period I, i.e. befOre time zero or after

time i. 	The imirk1ig set W(t,T) and its size ø(t,T) refer to

pages referenced in the process time-interval (t-, t) mh1ch we ____

define as half-open, i.e. include the lower end-point, but not the

Upper.

Thant
11

31(T) 	= 	s(t,tt jI
Jo

Where I is understood,, we dall cite this as S(T).

1) 	áL(T) is continuous and right and left differentiable;

and its elope is the mean rate at uhich pages outside J(t,T) are

referenced.

liJben a reference is weds to a page not in %J(t,T), the page is

Said to enter the working IMA 	For a given T, denote the times

of all enah entries by Ot0,t1, ... ti. 	(This not is of course

a function of T. 	For convenience we have taken 	ti; in

fact it is not neosasery for the end-points to be themselves

working-set entry points). 	Denote the lengths of the intervals

between entry points by i + = t 1 - t,. 	Each t nerks a page

fault if the contents of the mein memory were 1-ntaInsd strictly

C.1

at the working set of T.

Take e> 0 but 1003 than the store tc1e ti, i.e. locia than

the interval between azy tun successive page references. 	This is

ctain].y awMLer than any in*

zppoae t is in the interval (t,t,.1) (see fig. c-.l).

Cona11t, the function t(t) = a(t+e,T.o)—ø(t,T). 	This

represents the number of distinct pages referenced in the interval

B(t, t+e) which were not referenced in £(t—T, t).

Pb? 	t K 	•, f(t)). 	PCI' othOI'145S there is a first

extra page refei'enoed at some 4 K t1 and not referenced in (t,d)

or in A. 	It thus enters the '.n.'king not I(d,T) which would make

d an additional entry point between t.

For t+]..0 (t 	t(t)=i. 	The entry page at t,+1 is the

extra page. 	Since a is 3.oaa than all inj, t 1.2 as be reached

and a L3Imfln, argument to that above shows that f(t) is no greater

than 1.

(Note that the above does not involve pages leaving working

sets, since the two intervals concerned in £ have a common starting

point.)

!Ibent 	J f(t)dt :

	

. t) + 3. (t,i ti1.1 + a)

Summing all such integrals gLveus

J a(t+e,T+e)dt 	J e(t,T)dt = Me
€0

Tranafc2lning t+e to t in the first lfltSgI'a and substituting S for

its definition gives eventually:

__________ = • i,.., r a(t,T+e)dt - a'-. fa(t,T+e)dt ie ie
C

042

For sufficiently riii1l a, both integz'.nda take a constant value

(Consider for inatanoe the first. 	The integraM represents the

pages refireiced in
	

Pages are accessed at discrete

intervals: if the first access before time .-T is at -T-.e1, and the

first after time 0 is at e2, take e less than e1 and e2 	Then

for 0 <t < at s(t,T+e)e(O,T)+l, zero being a wrking-aet entry

point.) 	We time have:

= J1 •
• 	i i 	where E = s(0,T)-e(i,T)

(T) is therefore right-differentiable (mid is sLatlw4 ahoim to

be left differentiable, but the tz) slopes are not necessarily

equal. 	The S *.rve is contizaicue but consists of very amell

straight line segments). 	For large i, the tin E/i is negligible,

and the slope of SM is time N/i. 	N is the total zazahar of

page-faults and i is the total time: the result follows by

definition.

S(0)=O and 3(T) is a non-decreasing function of T.

These properties are obvious.

If for T> t, a(t,T) = a(t,t) for a range of values of T,

thin i(T) is linear or concave doinwarcts at all points in the range.

The condition niaat be made since ws have not disallowed the

possibility of page references before t), which would appear in the

*rking—sets of instants within I. 	'Without the condition s, the

theorem is not neo.asarily true.

Consider instants t,t+e, where 0 eK T (eec fig.C-2).

= 	e(t'e,T+e)-e(t,T) represents the aui,er of distinct

C.,

pages referenced in the interval A(t,t+e) uhich ire =I referenced

in the interval B(t-T, t).

(t+e,T+2e) -'a(t,T+e) rresents the auer of

distinot pages referaoed in A and MI in c(t-T-e, t).

ftzt C oonta.tna B, so the pages referenoed in B are a wheat of these

in C. 	It foUows tt:

81) 82

Int.gratixg over t in I, we have

jo(t+e,,T*e)dt - j s(t j T)dt >/ J0(t+e*T+29)dt - J' s(t,Ti.)dt

Dividing)r i, tranafca'zing the te to t in two of the integrals,

and wbetituting 3 for its definition gives:

23(T+e)-8(T)..$(T+2e) 	>7
1f (+e 	 e

e(t,T+2)-n(t, T+e))dt + 	a(t,T+e)-a(t,T+2e))dt

On the miS: 	First integral in greeter than zero, since so in the
integraixl; ceoorxl integral is zero, since by the
initial aoition, a(t,T+e)=a(t,T+2o)+a(t,t) for
Ote.

Tkws

3(T+2a) - $('i+e) (3(T.e) - 3(T)

Thin is a aLffj.cnt coMition for concavity, and the reaalt is

proved.

04

t-T
	

tn, 1

A

I'i 	(-1

t-J-e 	t-T 	 t 	t+e

B 	 A)

C

Fig 0-2

