
Studies in the Design and Implementation of

Programming Languages for Symbol Manipulation

D.J.Rees

Ph.D.

University of Edinburgh

August 1969

index

chapter 1

chapter 2

chapter 3

chapter 4

chapter 5

chapter 6

chapter 7

chapter 8

introduction

features of symbol manipulation languages

existing symbol manipulation languages

the astra language

internal representation of astra strings

implementation of astra string facilities

compiling techniques

compiling algorithms for the astra compiler

appendix a

appendix b

appendix c

appendix d

appendix e

Some examples of ASTRA programs

Examples of ASTRA list structures

Basic operations

Permanent routines

KDF9 Machine Code

1. INTRODUCTION

Compared with the development of computing hardware, the

development of programming languages has followed a different course.

Hardware innovations such as the use of transistors and integrated

circuitry have resulted in machines with very substantially improved

capabilities, making older machines and even comparatively modern

machines obsolescent. The programming languages currently in most

widespread use, however, remain those which were already in use as many

as ten years ago, namely HJRTRAN, ALGOL 60, and COBOL. Nevertheless,
considerable improvements can be made to these languages. The reasons

why no improvements were made appear to be primarily twofold. Firstly,

they are regarded as 'standard' languages, which in order to facilitate

transferability of programs, has made them virtually immutable.

Secondly, they can be employed in almost all programming situations

without the need for change.

Instead, very many other languages have been designed and

implemented with particular objectives in view, but which almost

invariably limit their application to a narrow field. Only recently have

attempts been made to unify some of the developments under the cloak of

a single language (PL/1 and ALGOL 68). Data structures are a

particular example of what features have been incorporated. There are

still considerable omissions however. For instance, neither language has

incorporated list processing or symbol manipulation facilities within
its basic framework.

The latter seems to be most surprising. With the increased

capabilities of modern computers and the consequent broadening of their

range of application, techniques involving symbol manipulation are

becoming increasingly important. Natural language processing such as the

analysis of texts for authorship and mechanical translation, and formal

manipulations, such as those involved in mechanical theorem-proving and

algebraic formula manipulation are some obvious applications. The last

mentioned, that of algebraic manipulation of formulae, is one of the

most important applications. Several systems, notably R3RMAC, have been

developed for this purpose. With the advent of multi-access computing

systems a much greater interaction between man and machine is becoming

1.1

possible, where the advantages of algebraic manipulation and

mathematical assistance packages are felt the greatest. This, further,

demonstrates the need for symbol manipulation facilities to be available

together with normal arithmetic facilities in a programming language,

for not only must the formulae be manipulated but also they must be
evaluated in normal arithmetic terns.

This combination has not completely satisfactorily been acheived in

any languages developed in the past. The present investigation is an

attempt to overcome this deficiency. A language called ASTRA has been
the result. Before discussing the design and implementation of ASTRA,

several existing languages are examined in order to discern the
desirable properties of a language for symbol manipulation. It is the
belief of the present author that the features of ASTRA described herein

represent an advance on previous languages. The methods used in the

ASTRA compiler are also described.

1.2

2. FEATURES OF SYMBOL MANIPULATION LANGUAGES

A fundamental consideration in the design of a programming language

must always be the type of data which it is intended to manipulate. Thus

numerically orientated languages have the means for handling integer

quantities, real quantities and frequently also complex quantities, both
for their storage and for operations on them such as addition,

multiplication and so on. They also cater for scalar quantities on the

one hand and arrays of scalar quantities on the other. These are highly

suitable for a large proportion of numerical calculations, but may not

necessarily be so for any other type of calculation. It is perhaps
unfortunate that almost all languages are sufficiently general-purpose

that they can be used for manipulations on any type of data. This has

meant that there has been a tendency to 'make do' with the existing

facilities rather than to design and implement languages with more

suitable facilities. It has been particularly true in the case of

problems which can be formulated and solved by methods involving the

manipulation of symbols. Any language with facilities for manipulating

integer quantities can be used for this purpose by regarding the set of

symbols concerned as a mapping onto the integers, or a subset of them.

It is most likely, however, that the manipulations thus made available

will not be suitable for operations on symbols - the ability to add the

symbol 'a' to the symbol 'b', for instance, is of doubtful benefit. The

operations which are usually required tend to concern a number of

symbols considered together as a unit and not as single items. This

being the case, probably the main reason why other languages have been
used is because of their array type of data structures which can be

organised in fairly simple ways to hold these groups of symbols. The

further consideration that most languages have some means, however

rudimentary, of inputting and outputting symbolic data, for alphanumeric

headings in the case of output for instance, has also obscured the need

for better and more suitable languages.

A simple view of the requirements of a language intended to be used
for symbol manipulatilon is that it should have as a basic unit of data,

upon which operations are performed, an ordered set of symbols. It is

intuitively clear that it is a set of symbols rather than a single

2.1

symbol which is required because the information content of a single

symbol is relatively small when selecting from those conventionally

used, say letters, digits, punctuation marks and a few others perhaps -

a choice of around a hundred at most. This is as opposed to a single

integer, for instance, when the information content may be considerably

greater. The range available might be say -2**47 to +2*»47 . Thus an

integer is by itself a useful entity whereas a symbol is most probably
much less useful. The further fact that integers are often grouped

together in arrays for many problems makes it clear that a group of

symbols (which could of course consist of one symbol if required) is
likely to be the most useful basic entity. The ordering of the group is

a further obvious asset in most applications. To be general purpose the

entity should at least be capable of being used in an ordered form even

if that facility is not used in particular cases.

By noting that a large class of problems can be approached by means

of manipulations on symbols, it should not be forgotton that an even

larger class deals with numbers and arrays of numbers. It would
therefore seem extremely probable that a combination of symbolic and

numeric working would be of great value. There seems no superficial

reason therefore why the data entity should not also be capable of

holding numerical data i.e. an ordered set of symbols or numbers. It

could be regarded as a means of increasing the set of symbols available
or alternatively as a grouping together of essentially different types

of components. To compare these two possible views take the example of a

polynomial expression. It could be treated as a collection of symbols
some of which may be digits, namely the coefficients, whereas it is
almost certain to be more useful to consider the coefficients as

complete entities i.e. numbers, rather than collections of digits and to

group these together with the symbols for the variables and operators.

Taking the first view would create difficulties in this case as the

numerical value of a coefficient might well be confused with the

numerical equivalent used for internal storage of symbols. It would

appear, therefore, that if numerical values are to be grouped with

symbols, and this could certainly be useful, the second view ought to be

taken, namely that the two types should be distinguishable.

The other single most important property that the data entities

being considered can usefully have is a measure of internal structure -

in addition to the simple ordering property. One of these groups of

2.2

items i.e. symbols and/or numbers, may well be considered to have a

subgroup of items which form an entity within the larger entity. Taking
the example of algebraic formulae, the subgroup might consist of a

bracketed sub-expression within the expression. Clearly, a group might

have a number of sub-groups and sub-groups might equally well also have

sub-groups within them. This form of structure can be superimposed, by

means of programming conventions if necessary, onto unstructured groups

of items but some built-in structuring mechanism is to be preferred if

only to remove the onus of conventions. Furthermore, built-in

structuring may remove restrictions of use caused by the conventions.
For example the sub-groups might be delimited by using the left and

right bracket symbols. Such a convention would imply a restriction on

the use of those symbols as elements of a group.

While considering the form of data to be represented within the

language, it is also necessary to consider the method of internal

representation that is to be used. The most commonly favoured methods

involve some form of list, in other words, an arrangement whereby each

element of the group comprising the list is linked to other members of

the group by means of addresses or pointers of some sort associated with

each element. Sub-groups are easily represented in this kind of
structure by having extra links as part of the main list, linking to

other lists i.e. sub-lists, to give a tree structure. The variations

possible on this sort of theme are legion, some of which will be

discussed in succeeding chapters. The particular variation chosen

clearly depends on the form of data and manipulations on it which the

language is designed to cater for. For this reason also, lists may not

be necessary at all - ordinary arrays of contiguous locations may be

sufficient.

It is therefore necessary to consider what manipulations are

commonly required on these units of data. The first essential is the

ability to construct units. One method is to input from an external

source a complete unit using conventions of some sort to delimit the

constituents of the unit. More simply, a single constituent could be the
form of input. Instead of input, literals, that is, the equivalent of

sequences of digits etc. used to represent values of numerical

quantities, can be provided in the language to form units having that

value. In the case of symbols it will be necessary to delimit them in
some way in order to avoid confusion and ambiguities. The form of

2.3

literal will be most useful if it can represent the whole range of forms
of data structure catered for by the system. For the inclusion of values
of numerical constituents, a method of distinguishing between these and

sequences of symbols which happen to be digits would be necessary.

Similarly, the method of representing sub-groups of constituents must

not conflict with the constituents themselves, for instance, surrounding
them with brackets.

New data units will also be required having the value of those

already in existence as well as from literals. As an example, a data

unit might be required consisting of constituents having the value of an

existing unit followed by that of a literal possibly followed by those

of further units. Another capability should be the ability to form new

units with sub-groups having the value of other units or literals or

combinations of them.

An additional facility could be the ability to include in new units
the value of just part of existing units, say one of its sub-groups or

perhaps the first few of its constituents.

Almost all languages have a facility for defining functions
whether the values produced are numerical or otherwise. If the language

provides functions which have as their values these data units, these

should be available as operands just as existing units are.

Having the ability to form new units is only the first stage. In

certain types of problem, it is necessary to be able to alter the value

of an existing unit. For example, in the case of dictionaries; when new

entries are made it should be possible to make the neccessary additions
without creating a completely new dictionary on each occasion. This is

one of the reasons why list proscessing techniques are popular since the
insertion of extra items or deletion of items can be performed at very

low cost simply by altering the linking information between items. When

arrays of consecutive locations are used, insertion and deletion can be

time-consuming and wasteful of space unless great care is taken. This

method is only likely to be used therefore where such processes are

infrequently occurring.

The remaining facility is that of the examination and testing of
the values of data units. Having formed a unit or altered a unit in some

way, it will be necessary to compare either all of it or parts of it
with other units to control the future course of action of the program.

Just as it is convenient in the formation of units to be able to select

2.4

parts of existing units, the first constituent for example, for

inclusion in the new unit, the course of the program is very likely to

be determined by the value of just part of a unit, the first constituent

again for example, and not necessarily by the value of the whole unit.
In effect, the requirements of operands in expressions for the formation
of new units are precisely the same as those required for testing

purposes.

The way in which the manipulations are represented and the
structure of the language in general must next be considered.

When a functional approach is used, as in LISP, discussed in the
next chapter, the data units manipulated are the values of functions
which are defined in terms of a basic set of operations and other

functions themselves defined in the same way. This can be set against
the kind of approach typified by SLIP, also discussed in the next

chapter, where in addition to functional values, data units may have an

independent existence of their own, the values of which can be

manipulated and examined by a sequence of operations each of which are

essentially independent. It is usual to assign names to such data units,

although in certain systems the idea of an unnamed 'workspace' is

introduced e.g. COMIT, into which units are loaded for operations to be

performed on them and removed when the operations are complete. However,

even in these systems, the backing-area from which units are loaded and

to which they are returned, consists of named locations. In either case,

it is very useful to be able to give some mnemonic significance to the

names in order to aid the program writing and to this end the use of
fixed names or a choice from a fixed set of names is less useful,

although not prohibitively so. In particular, the ability to choose

names with some mnemonic significance helps greatly in the process of

getting an overall view of the problem without having to remember such

details as the fact that this location contains what I am using for that

and so on.

Two methods of storage of data units have been mentioned - lists

and arrays. There remain, however, many alternative schemes for

controlling the total storage of all units. Some languages, such as

ALGOL, have a block structure which offers a convenient method of

storage control using a stack for holding both scalars and arrays. Data

units containing symbols can be of variable length depending on the
number of constituents they contain. This is one of the main

2.5

difficulties in systems using arrays rather than lists to hold the data

units. If sufficient space is allocated for the maximum size of each

unit, either by the language system or by the programmer stating the
size explicitly, most of the space is likely to be wasted most of the
time. Alternatively, amounts less than the maximum required can be

allocated with the consequence that the storage may have to be

rearranged every so often. When list processing techniques are used, a

bank of unused storage, itself a list, called an Available Space List or

Free List, can be used, from which cells may be taken to form part of
data units. As regards returning cells to this list when they become

free, they can either be returned immediately they become free or

alternatively left until the free list becomes exhausted - if ever - and

then all collected up into a new Free List - a process known as 'garbage
collection'.

Recursive facilities are likely to prove extremely useful in view
of the inherently recursive nature of many of the problems which

recommend themselves to solution by symbol manipulation techniques.
Methods of acheiving this are often combined with a stack for storage

control as in ALGOL for instance. Programs for certain systems are

allowed to modify not only the data units but also the program itself.

Indeed the program may be a data unit of the same form and in these

types of system the facility is easily included. Whether this is

altogether desirable is a matter for comment. It may be that the

capabilities of the system are substantially improved with this

facility. On the other hand, it may seriously detract from the

comprehensibility of the program with the consequent difficulties of

debugging and modification of the program.

However great the capabilities of a language, it must always be

possible to use it easily and conveniently so that the overall picture
of the problem is not lost. This usually implies the use of concise

notations, but not to the point of destroying clarity. The greatest

degree of latitude consistent with unambiguity is desirable rather than

any fixed framework. Although the semantic content of the program is the
most important, which the expressiveness of the language is designed to

cater for, the syntactic details are not trivial in practice and

relaxation of strict rules can pay dividends if only in the lesser

degree of frustration in the programmer. Errors and blunders in programs

are the inevitable consequence of human fallibility and the more the

2.6

language aystem takes note of this fact by way of providing useful error

messages and diagnostic facilities, the happier the problem solver is

likely to be - with the attendant beneficial effects on his project. For

instance, when a program fails, the position of failure relative to the

original source text and as much information as possible relevant to the

existing situation should be given. Fortunately the days of core-dumps

are numbered - they are singularly difficult to abstract useful
information from when list processing is involved, since this

necessitates continual references to widely separated locations in the
store.

Other contributing factors to the ease of using any system are the

subsidiary facilities available. The usefulness of arithmetic facilities
has already been mentioned, the provision of which extends the range of

problems that can be solved to beyond those of a purely symbolic nature.

For problems which are large in relation to the storage space available
some form of backing store and facilities for using it conveniently are

clearly valuable. Therefore the language and its structure should be

designed bearing this in mind.

A remaining consideration is the efficiency of the system. However

fast and powerful the machine being used, the more efficiently it is

used the more problems and longer problems it will be available for.

Inevitably, fast compilation and fast running are virtually mutually

exclusive, so that a choice usually has to be made between the two.

Which is concentrated on will depend on the use to which the system is
to be put and the mix of programs presented to it. In an experimental
and research environment, in which symbol manipulation systems are

mostly used at present, such as a University, there is likely to be a

large amount of program development and testing and less running of

production programs over a long period, although problems involving

large-scale search procedures such as theorem-proving might tend to

contradict this. At the one extreme are the minimal compile-time but

usually slow running interpretive systems while at the other are the

multi-pass and time-consuming compilers which aim to produce optimum
code. Production of code with an optimum performance in a symbol

manipulation system may well be more difficult than in, say, a language
for numerical calculations in view of the variability in type and size

of the data units and the many types of problem to be solved. One

particular problem may be amenable to array storage techniques while

2.7

another may only be suitable for list processing. To cater for such

widely different mechanisms would be beyond all but the most highly

sophisticated systems. A midway course is likely to satisfy the largest

proportion of users.

2.8

3. EXISTING SYMBOL MANIPULATION LANGUAGES

The discussion of the previous chapter can be divided into a number

of areas which also form a useful basis for consideration of some

existing languages designed for symbol manipulation work. These areas

can be summed up under the general headings:

1. Form of data representation

2. Manipulations available

3. Program structure

4. Ease of use and debugging

5. Subsidiary facilities

6. Efficiency

The languages or systems which may be considered the most

significant either historically or in terms of common availability of
use or features present are discussed below. These are IPL-5, SLIP, LISP

1.5, COMIT, and SNOBOL.

IPL-5

IPL-5 is the fifth, but only significant, member of a series of
Information Processing Languages, developed by Newell and Tonge of the
RAND Corporation around 1960, as a result of their desire to apply

computers to heuristics and the simulation of cognitive processes.

1.

The language is designed to manipulate lists and list structures of

which the constituents are 'iPL symbols'. These latter can be chosen by

the programmer, subject to certain rules. For example, the 'regional
symbols' take the general form of a letter or punctuation mark followed

by a positive decimal number. These are the equivalent of 'identifiers'
of languages such as ALGOL, FORTRAN etc. They can either be used as data
elements in their own right, as names of sub-lists, or as names for
locations which may hold data in the various permissible forms -

alphabetic, integer, floating point or octal.

3.1

For instance,

NAME SYMB LINK

XI 0

X2

X3 0

represents a list named XI having the constituents X2 and X3. Structured

data elements are available and are represented by the use of sub-lists,

e.g.

NAME SYMB LINK

XI 0

SI

X2 0

SI 0

X3 0

in which the list XI consists of a sub-list named SI, which contains the

single constituent X3, and X2. Locations are set aside for data terms

i.e. specific values, by making use of two more fields in the

programmers representation - the *P* and fields of the list:

NAME P Q SYMB LINK

NO 0 1 5 integer value 5

T2 2 1 XYZ alphabetic value 'xyz'
This is the only way in which literals can be introduced info a program.

2.

The manipulations which can be carried out on these lists fall into

two groups. Firstly, primitive operations of a simple nature such as

duplicating the first item in a list or removing the first item. The

list to be operated on can be specified either directly or with levels
of indirectness i.e. either taking the list to be the one named or

taking the list to be a sub-list of the one named, or a sub-list of
that. The remaining and much larger class of operations, known as J-

processes, enable more complicated manipulations to be carried out.

These include list processing operations such as the insertion of items

at specified points of a list e.g. either before or after a particular

symbol, or at the end of a list; deletion of symbols; replacement of
items in a list; erasure of lists and list structures; and copying of
lists. Arithmetic J-processes also exist for performing addition,
subtraction etc. on constituents of lists.

3.2

3.

A program is written as a list in exactly the same form as those

used for data. Each constituent of a list is a single instruction,

specified by the P, Q and SYMB fields. The LINK field is used to

indicate the next instruction to be executed. For control to pass on to

the next instruction in the list, the field can be left blank and an

implicit name of the next constituent inserted automatically by the

system. A branch out of the normal sequence is indicated by the name of
the instruction to be jumped to. Subroutines are represented by

sub-lists, the name of which appears in the SYMB field as normal.

Control branches to the sub-list named by the SYMB field when the P and

Q fields are both zero, and returns to the instruction following when

the end of the sublist is reached. The primitive instructions are

represented by the contents of the P and Q fields, which are numerical

and in the range to 7, thus giving a theoretical 64 possible

operations, operating on an operand given in the SYMB field. The

J-processes are indicated in the same way as subroutines i.e. can be

regarded as built-in subroutines. In addition to the data lists used by
the program, the system provides a number of standard names, HO, HI, ..

WO, Wl, .. which are used for special purposes. For example, H5 is a

list cell which can have either the value + or -, and is set by certain
of the J-processes when conditions arise in relation to those processes.

There is then a primitive instruction, that having the P field equal to

7, which branches control to the position indicated in the SYMB field
instead of the normal continuation indicated in the LINK field taken

when the value of H5 is Similarly, HO is a cell which is used to

communicate with the J-processes i.e. parameters are placed in this list

before calling the J-process. The J-process also leaves its results

there, for the program to examine.

4.

IPL-5 is a fairly low level language, sometimes called a

pseudo-code, and thereby suffers from some inherent disadvantages.

Notably, there is difficulty in being able to picture the method of
solution of the problem without grovelling in the minutiae of the

program. The subroutine structure can only be useful to a limited extent

in this direction. The form of notation for the program, that of lists

of instructions which are indicated, at least in the P and Q fields,

3.3

numerically* is not particularly conducive to the ease of understanding
the program, unless the programmer is very familiar with the language.

For this reason, both program writing and debugging tend to be

difficult, although tracing facilities are available to help with

debugging.

5.

Arithmetic has already been mentioned as available through

J-processes, but this can only be regarded as providing minimal

facilities. There is no facility for evaluating expressions, as might be

found in ALGOL. Input-output and backing store operations are also

available via J-processes.

6.

IPL-5 invariably runs under the control of an interpreter rather

than a compiling system and this has the effect of slowing the running

speed considerably.

SLIP

A Symmetric List Processor system can be built into most existing

high-level languages, as it consists of a set of subroutines which are

called using the normal mechanism of that language. The original version

was written to be embedded in SURTRAN, by J. Weizenbaum of M.I.T., and
it has since been embedded in others such as MAD.

1.

The SLIP system defines a particular type of list and list

structure. These lists are made up of constituents in a form in which

one field of every constituent is a datum field. What this datum may

consist of will depend on the language within which the system is

embedded. Typically, it can be an integer or real number or a symbol or
small group of symbols if the size of the field permits it. Sub-lists

provide a structure for the data object.
The type of list used is one in which there is no preferred

orientation (hence Symmetric), in other words, the location of both a

constituent's predecessor and it's successor are stored with the datum

(known as LNKL and LNKR). In addition, there is with each constituent an

3.4

identification field < known as ID), which indicates the type of
constituent:

LNKL ID LNKR

DATUM

Each list has a header cell (ID=2) which does not hold any datum but

instead a count of the number of lists of which this list is a sub-list,

and possibly a reference to a 'description list' for this list. A
sub-list is indicated by setting ID to 1 and the datum to a reference to

the header cell of the sub-list. An ordinary datum cell has ID equal to

0, and the remaining ID type, 3, indicates a 'reader' cell, which is
used when scanning down a list and its sub-lists. The lists are circular
in that the last cell is linked up to the header (and also the header

linked to the last cell, for symmetry).

2.

A comprehensive set of routines are available for manipulating the

SLIP lists. Lists are created either by copying an existing list or by

calling a routine which sets up an empty list and then inserting items
into it using other routines provided. For instance, items can be

inserted at the top or bottom of a list, or to the right or left of an

item in the list. To create list structures, the list intended to be a

sub-list can be treated just as an ordinary datum and the name of the
list inserted in the required position. An equivalent set of routines

provide for removing items from a list. Substitution routines are also

available as are facilities for examining and testing the contents of a

list. Other routines test, for example, whether two lists are identical,

whether a list is empty, or whether an item is a list or a datum. The

testing facilities of the embedding language would be used for
individual items after they had been extracted. Items of a list can be

examined, either directly, if their exact position in the list is known,

or by using a 'reader' mechanism. A 'reader' is a special cell which is
used to traverse a list either to the left or to the right until a

particular condition arises. This may be just to move one cell along, or

to move to the next datum other than a sub-list, for example, and to

retrieve the value held in the cell where it terminates. Two types of

traverse are available, either straight along the list in sequence,

passing over sub-lists without traversing them, or to traverse the list

3.5

and all its sub-lists as they are encountered, known as 'linear' and

'structural' advances respectively.

3.

Program structure naturally follows that of the embedding language.

It is the type of language such as FORTRAN or ALGOL for which SLIP was

designed, depending as it does on routine calls and the ability to

manipulate data arrays which provide the list storage space. In common

with other languages, an Available Space List is used to maintain a

stock of free cells to be called up whenever a new item in a list is

created. The system is organised in such a way that the programmer is
relieved of most of the burden of controlling his available space. When

all references to a list are removed - this is the purpose of the count

held in the header cell of each list - the list is automatically

returned to the Available Space List. It is still the job, however, of
the programmer to erase any list he has finished with, rather than to

leave the reference in existence, if the program is liable to run out of

space.

4.

SLIP is as easy to use as the language in which it is embedded and
the extra list processing facilities are sufficiently straight forward

as to be able to be grasped by a programmer already familiar with the
basic language fairly quickly. Similarly, the effort of debugging a SLIP

program can be eased by whatever facilities are available in the

embedding language system. Although embedded in a high level language,
the SLIP list manipulations tend to be of a low-level nature and there

remains the danger that in constructing the list of precisely the right

format by means of numerous routine calls, the overall structure of the
solution may be lost in details of a non-significant nature.

5.

One of the very great benefits from embedding a system within an

existing language framework is that all the features of that language

remain and can be used when required. Thus, if the solution of a problem
lends itself partly to the use of list processing techniques and

partly to arithmetic techniques, then both these can be used without

paying the heavy penalty that might be imposed when a language primarily

3.6

intended for non-numerical work is used. A not insignificant gain from

the technique of embedding is that the computing installation has to

make no special provisions for incorporating yet another language into

its operating system with the consequent gains to all concerned.

6.

This type of system is one where a compiler is normally used, and

therefore the efficiency of running programs may be very good, depending
on the degree of optimisation included in the compiler. The general

housekeeping of list processing systems implies a certain reduction in

speed from a purely numerical type of program, but this is unavoidable.

LISP 1.5

The LISP language was designed principally by J.McCarthy, at

M.I.T., to be used for symbolic data processing in the field of
artificial intelligence. It was first described in Comm. A.C.M. April

1960: 'Recursive Functions of Symbolic Expressions and their Computation

by Machine'.

1.

All data takes the form of 'symbolic expressions' or

's-expressions', which are defined either as an 'atomic symbol',
consisting of up to 30 letters and digits and starting with a letter, or

a sequence (S-expr . S-expr) . In other words, the data can be

regarded as a binary tree with atomic symbols at the terminal points. A

simple list of elements is therefore one in which the first item in an

S-expression is an atomic symbol and the other a similar S-expression,

except for the last item. Such a simple list with the last element

'NIL', the null atomic symbol, for example :

(A . (B . (C . NIL)))
can also be written

(ABC)

It is also possible to have numbers in fixed, floating point or octal

form, in place of atomic symbols.

Internally, a compound S-expression (i.e. not an atomic symbol)
is represented by a cell divided into two parts, the first part

associated with the first component of the S-expression and the other

3.7

with the remaining component. In both cases, if the component of the

S-expression is an atomic symbol, then that part contains a reference to

a property-list which is recognisable as such and holds information
about the atomic symbol. If the component is a compound S-expression
then it contains a reference to the cell representing that compound

S-expression. E.g.

(A . B)

<<A.B>.(B.C)>

For numerical components the property-list contains a cell holding the
value.

2.

Lists to represent an S-expression are created in a way suggested

by the manner in which S-expressions are defined, that is, by making a

copy of the list representing the first S-expression and also for the

second, if they are not atomic, and placing the references either to the

copy or to the property-list of the atomic symbol in a new cell. This is
acheived by use of a function named 'cons* (for CONStruct) which has

as its two arguments the two components of the S-expression being

formed. This is the only function which creates lists. Modification of
lists is usually performed by making a new copy containing the desired

changes, but an existing list can be modified using one of two other

functions, 'rplaca* and' rplacd', which replace the first and second

reference components, respectively, of a list cell with a reference to a

now list. These latter are, however, only recommended for use with
caution as they can affect definitions and other basic information with

possible undesirable consequences.

3.8

The first component of an S-expression is called the 'car' part and

the second the 'cdr' part. Functions having these names enable lists to

be examined, their values being the 'car' and 'cdr' of the list which is

the argument. If the structure of the list is known, any component of it
can be examined by a succession of 'car' and 'cdr's. Their value is

undefined if that component does not exist, in other words, if the

argument is an atomic symbol. E.g.

car [(A.B)] = A

car[car[(A . B)]] is undefined.

The only form of testing of the structure of a list is by the use

of two functions - 'atom' and 'null'. 'atom' has the value true if its

argument is an S- expression consisting only of an atomic symbol and
false otherwise. Since all lists are binary trees, this is sufficient to

determine the whole structure, by repeated application of the function,
'null' is true if its argument has the value NIL and false otherwise.

There is a further predicate, 'eq', which tests the equality of two

atomic symbols and is undefined for non-atomic arguments. Similarly, the

equality of two non-atomic lists can be tested by testing their atomic

components, extracted using car, cdr and atom.

These few elementary functions form the basic tools for

manipulations on lists in LISP. In general, when a non-elementary

operation is required, the programmer combines existing functions to

define a new one. Several functions of this character which are widely

used are invariably built into any LISP system, such as 'list' which
creates a list containing all the arguments in the function call in

sequence.

3.

A LISP program consists of a series of definitions of functions,
followed by calls to evaluate functions with given sets of arguments.
The emphasis is on an entirely functional approach to programming,
unlike most languages which require a sequence of independent statements
which are executed in this sequence until a transfer of control to some

other statement takes place. In the LISP functional approach this is

acheived by the heavy use of recursive techniques.
The method of Church's lambda-calculus is used to define new

functions. E.g.

f = >k[[x;y];cons[car[x];cdr[y]]]

3.9

which defines a function named f with arguments x and y, having the

value cons[car[x];cdr[y]]. Predicate functions have already been

mentioned. These can be used as arguments to the built-in function

'cond' which is the LISP equivalent of a conditional statement in other

languages. Its use takes the form :

cond[[pl;el];[p2;e2];]

i.e. a series of pairs, [predicate;expression]. Working from the left,
the value of 'cond' is that of the expression paired with the first

predicate having the value true.

Unfortunately, the notation used above is only a 'meta-language'
and is not that used when presenting programs to be run. Instead, this
form must be transliterated (if used at all) into a form which is a

LISP list itself. As an example,

cons[car[x];cdr[y]]
would become

(CONS(CAR X)(CDR Y))

Where an atomic symbol is used as a literal, rather than a variable, say

X, it has to be written (QUOTE X) to avoid ambiguity.
The reason for this notation lies in the fact that the interpreter

that accepts LISP programs is also a LISP program (for the most part)
and therefore can only act on data in the form of lists. This has the
effect of producing a consistent structure in which the program may, if
it wishes, modify itself and parts of the interpreter.

4.

Although producing a consistent structure, it also introduces

practical difficulties such as the task of correctly controlling the

proliferation of brackets, (and), in the program. Once syntactic
difficulties have been ironed out, the question of ease of use reduces
to whether the programmer finds it easy to think of his problem in

functional and recursive terms. In many cases this is so and LISP will
be a convenient language to use. Debugging in a recursive context is

liable to be difficult and the heavily recursive methods which are

necessary in LISP programs accentuate this. Error messages are provided,
but the exact situation within the recursion is more difficult to

locate. Trace facilities are available to help in this respect, but at

the usual risk of not being sufficiently selective and producing large

amounts of output. Individual functions can be traced in such a way that

3.10

print-out occurs whenever the function is entered, giving its name and

the values of its arguments.

5.

Arithmetic functions are provided but are very low level and

inefficient. There are also facilities for using magnetic tape as

backing store in seme implementations.

6.

LISP is usually run as interpretive system and runs slowly as a

consequence. Arithmetic in particular comes out very poorly. However, it

is possible to compile particular functions which then run very much

more efficiently, but at the cost of making them immutable. A program

being interpreted is closely bound to the interpreter and a knowledge of
how the interpreter works can have a profound effect on efficiency. It

is normally preferable, however, from the programmers point of view, not
to have to have an intimate knowlegdge of the system in order to be able
to write efficient programs.

COMIT

The COMIT system was developed by the Mechanical Translation group

and the Computation Center at M.I.T.

1.

A data element consists of an ordered set of 'constituents'. A

'constituent' can either be a 'symbol' alone or a 'symbol' with

subscripts, where by a 'symbol' is meant a string of one or more

characters, as convenient for the program. Since certain characters have

special significance the character set is augmented by 'double
characters', the first of which is an asterisk. When the symbol has

subscripts these can consist of one numerical subscript and any number

of 'logical' subscripts, which have the same form of name as a 'symbol'.
Logical subscripts may, further, have one or more values associated with
them and consisting of the same form of name again, but not numerical.
Numerical values can only be represented as the subscript of a

'constituent'.
The three effective levels of structure - 'symbol', subscript

3.11

names, and subscript values - are the only structuring of the data

possible. Constituents are represented in the program with '+' as
separator :

JOH + SEB + BACH

Subscripts are separated from the symbol by '/' :

BACH / .1685, OCCUPATION ORGANIST COMPOSER
'ORGANIST' and 'COMPOSER' are the values of the subscript 'OCCUPATION'.
There is no ordering significance in subscripts and subscript values.

Internally, the constituents are represented by linked pairs of
store locations the first of each pair containing some or all of the

characters of the 'symbol' and the second flags indicating the type of
data in the first, for example, whether the characters start, are

within, or terminate the 'symbol', together with a link to the next pair
of locations.

2.

The equivalent in COMIT of 'variables' of other languages are

'shelves'. There are a fixed number of them, 127, identified by number

rather than names chosen by the programmer himself. Manipulations do not

take place upon the data while they are in a shelf, but in an unnamed

'workspace', which can be filled from a shelf and emptied back onto a

shelf. The shelves can be used as a pushdown store i.e. when data are

transferred from the workspace, the previous contents of the shelf
remain intact and can be accessed again when the more recently entered

data are removed. An operation on the data in the workspace consists of

matching a given pattern of data with some part of the workspace and

then transforming it in some way. The pattern may consist of a

constituent or a number of constituents in a given order. Suppose the

workspace contains

JOH + SEB + BACH

then

* SEB = SEBASTION *

will find the constituent SEB and replace it with SEBASTION.

Constituents matched on the left hand side before the '=' are identified

by numbers 1, 2, 3, etc. for reference on the right hand side :
* JOH + SEB + BACH = 3 + 1 + 2 *

reorders the constituents into ;

BACH + JOH + SEB

3.12

When the constituent is unknown or immaterial a dollar sign is used :

* $ + BACH = 1 *

deletes BACH from the workspace. If the number of constituents is known,

however, then a number can be written after the $:

♦ $1 + BACH « 2 *

will delete the single constituent 'seb'. Subscripts of a constituent

can be inserted, deleted and 'merged'.
* BACH = 1 / .1685 *

inserts the numerical subscript value 1685. Similarly,
♦ BACH = 1 / OCCUPATION ORGANIST ♦

inserts the subscript 'OCCUPATION' with the value 'ORGANIST'.
* BACH = 1 / -OCCUPATION *

deletes that subscript. If the constituent already has a subscript with
that name, then 'merging' of the values takes place. If there are no

values in common with those already there, the new values are

substituted, otherwise just those which are in common. For example, if
the workspace contained :

BACH / FORENAMES JGHANN SEBASTIAN

then the rule

• BACH = 1 / FORENAMES JGHANN CHRISTIAN *

would result in the common subscript JOHANN being retained and the

others discarded :

BACH / FORENAMES JOHANN

The rule :

* BACH = 1 / FORENAMES CARL PHILIPP EMANUEL *

has the effect of replacing the subscript values since there are none in

common :

BACH / FORENAMES CARL PHILIPP EMANUEL

It is also possible to carry subscripts over from one constituent to
another.

The pattern matched in the workspace can consist of subscript

values. E.g.
* $1 / OCCUPATION COMPOSER =

which will only match a constituent having a subscript with that name

and at least that value. When it is required to roatch any one from a

number of patterns, instead of attempting to match each one in

succession, a device known as a 'list-rule' is available which orders

the patterns lexicographically so that matching can be performed more

3.13

efficiently.

3.

A CQMIT program consists of a sequence of 'rules*, simple examples
of which have been used above to illustate how the workspace can be

manipulated. The same 'rule' may be repeated until the left hand side

fails to find a match by replacing the surrounding asterisks with an

arbitrary name. In general, the left hand name acts as a label for the

rule and a name on the right acts as a jump instruction if the rule
succeeds. If the pattern fails to match the workspace, the next rule is

executed. Looping can also be controlled by using the numerical

subscript of a constituent. E.g.
♦ BACH / .LI5 ■ 1 / .11 L

The rule finds a match if the numerical subscript of *BACH* is less than

15. It then increments it by 1 and goes to rule L. If the name on the

right hand side is $ then control passes to the rule having the

subscript name of the first constituent as its name. Most other features

of the language are included by means of more or less mnemonic code
letters and numbers, following a double oblique slash // in the rule,

called the 'routing section'. E.g.
* $ + BACH = 1 + 2 // *S6 1 ♦

means store the workspace before BACH in shelf 6.

Different letters are used for refilling the workspace and so on.

The shelf number can be taken from a subscript. Input-output is acheived

using the same mechanism with other letters.

A rule can have a number of 'sub-rules'. E.g.
THERE . .

WHERE LEFT . . THERE

RIGHT . . THERE

UP . . THERE

DOWN . . THERE

Only one of these sub-rules is executed, the choice depending on the

setting of the 'dispatcher'. If unset, a random choice is made. It can

be set by using the routing section : e.g.

* . . // WHERE UP *

will set the dispatcher to execute the sub-rule 'UP* when rule 'WHERE*
is reached. In other words, this corresponds to the switch of ALGOL.

Subroutines can be defined, but there is a certain amount of

3.14

difficulty in handling return addresses. It is up to the programmer to
use a shelf as as pushdown store for this purpose and then to use the $

go-to. Essentially, there is no formal mechanism for subroutines and

certainly not for parameters.

Storage allocation is handled automatically. An available space

list is used to which spare cells are returned by the system whenever

they become unused.

4.

The idea of pattern-matching with the contents of the workspace is

a technique easily assimilated by the programmer and is very likely to

prove a conceptually easier way of viewing his problem. Referencing the
matched constituents by number is also an easy and quite convenient

solution. Where the language tends to fall down is from that point

onwards - in the structure of control. It is clear that there are

sufficient facilities for most purposes, but at a lower level than might

be expected from its quite high level pattern-matching capabilities.
There are numerous error comments both during compilation and

dynamically to aid debugging. Trace facilities during execution can be

obtained by slightly altering appropriate rules.

5.

Backing store facilities in the form of writing to and reading from

magnetic tape can be used by having various routing section

instructions. Arithmetic is restricted to manipulating numerical

subscripts in rather inconvenient ways.

6.

The COMIT system uses a partial compilation and interpretation of
the intermediate code produced. The speed would therefore be expected to

be intermediate also - beteween full compilation such as SLIP and

complete interpretation such as LISP. In practice, speed is lower than

this in view of the process of pattern- matching, which can be slow if
care is not taken in programming. Such a reduction of speed may well be

acceptable if fewer debugging runs are required.

3.15

snobol

SNOBOL is a string manipulation language implemented on the IBM

7090 and is the work of Farber, Griswold and Polonsky of the Bell

Telephone laboratories.

1.

The strings which SNOBGL uses consist of sequences of symbols. Any

symbol letters and digits etc. can be used. Thus, a string might have

the value 'THE FIRST RAY of LIGHT'. There is no provision for

structuring the string at the system level i.e. the lists used to

represent a string cannot have sub-lists. However, the bracket symbols,

(and), when items of a string, can have a special significance which

imparts a structure to the string when certain manipulations are carried

out. Numerical data can only be included by breaking down the number
into some symbolic equivalent. For instance, the number twelve would be

represented by the symbol 'l' followed by the symbol '2'.

2.

The concept of named variables familiar in ALGOL-typo languages is
used in SNOBOL, except that the values of the variables are strings of

symbols. The names themselves can be invented and used without special

declaration and consist of a string of characters (letters, digits,

periods and record marks) of arbitrary length. The literal form of a

string consists of the characters enclosed in quotation marks e.g.

'LIGHT'. Assignment is the familiar type :

pp1 o 'the first'

which forms a string named PP1 containing the value 'THE FIRST'. The

same effect is produced by :

pp1 = 'the' 'first'

which concatenates 'the' and 'first'. Concatenation is denoted by the

space between the literals. Variables can be introduced similarly :

PP2 = PP1 'ray of light'

creates a string named pp2 containing 'the first ray of LIGHT'.
The three main operations considered essential by the creators of

SNOBOL were the creation of strings, mentioned above; the examination of

contents of strings; and the alteration of strings depending on their
contents. The last two are acheived by a pattern-matching system not

unlike that in COMIT. The name of the string to be scanned is followed

3.16

by the pattern :

pp2 'ray' *x* 'light'

If the literals 'RAY' are found followed later by the literals 'LIGHT',
then a new string named X is formed containing what appeared between the

two literals within PP2. The use of bracket symbols imparts structure to
a string when a 'balanced variable' is indicated in the pattern. E.g.

ex sr 'x#<Y+Z/(A-B))+y'
ex 'x' *(ey)* 'y'

The *(and)* around the name ey indicate that only a balanced string

should be deemed to match i.e. one with a) balancing every (, and no)
ocurring before its corresponding (. A further useful attribute is that

it should be non-null. Thus ey will contain '*(y+z/(A-b))+' and not

just '*('.
A fixed numbers of characters in a pattern can also be indicated.

E.g.
pp2 'f' *z/3* 't'

would form a match only if there existed an 'f' separated from a 't' by
three characters somewhere in the string. String z would then take the
value of these three characters. The values of existing strings can also

be used to indicate the pattern* e.g.

pp2 pp1 *y* 'of'

Similarly, when a partial match is found and a value assigned to a

string, such as Y above, this string can be used to indicate the future

pattern to be matched. E.g.

PP2 pp1 *y* 'of' *z* y

succeeds only if the characters found after an occurrence of the value
of PP1 and before an 'of' occur again later in the string.

Strings are modified by a replacement indicated after a pattern has
been matched. e.g.

pp2 'ray' *x# 'light' = 'light'
deletes 'ray' and everything up to 'light' from pp2. Only that part of
the string which was matched is replaced.

If the pattern has to match from the first character of the string,

'anchored' mode must be used. The mode can be set anchored or unanchored

for all pattern matches, but the mode can be changed for just one match

by writing the appropriate mode as the first element of the pattern.

3.17

3.

A program consists of a sequence of statements, each of which is a

rule of the type indicated above optionally preceded by a label and

followed by a 'go-to'. A 'go-to' takes the form of labels to which

control is to be passed, either unconditionally or conditionally on the

success or failure of the pattern-matching in the rule. E.g.

/ (PAPERS)
indicates an unconditional transfer to the statement labelled PAPERS,and

/ S(PICK) F(WICK)
for which control goes to PICK on success and to WICK on failure of the

pattern match. An indirect form of control is available, e.g.
LABEL = 'L' I / ($LABEL)

Instead of using a label named $LABEL, the system takes the contents of
LABEL to be the name. Thus control will pass to Ll,L2,L3,etc. depending
on the contents of I, 'l', '2', '3', eto.

There is a subroutine facility included in the system which allows

both string valued functions and predicates to be defined e.g.

DEFINE('SIN(X)' 'L3' 'Y')
defines a function named SIN with a parameter X, which Btarts at label
L3 and has a local variable Y. The return from the function is handled

automatically when the label RETURN is used. This can be used

conditionally, when the function acts as a predicate, or

unconditionally, as required. E.g.
L3 X « ...

Y a ...

/ (RETURN)
A number of functions are predefined into the system, such as

certain input-output functions and predicates such as EQUALS and UNEQL

which compare two strings. Storage and manipulation of free lists is

handled automatically.

4.

The pattern-matching design of SNDBOL, as in CQMIT, may prove a

very useful tool in designing the solution for a problem and it is

sufficiently high-level for convenient use. Debugging in such
circumstances is likely to be easier than expected in comparison with
the KJRTRAN/ALGOL type of language. Trace facilities are provided by

3.18

built-in functions.

5.

Arithmetic is available by use of strings containing the symbolic

values of numbers. Thus if X contains *12' and Y '-3*, then (X+Y) will
have the value *9*. Magnetic tape is available as a backing store.

6.

The relative slowness of execution of pattern-matching systems

should be compared with the gain in programming and debugging time for a

given problem. This applies to SNOBQL just as it does to COMIT.

3.19

4. THE ASTRA LANGUAGE

It has been noted in the previous chapter that the search for

better and more convenient techniques of symbol manipulation has led to

the development of a number of systems over recent years. Each has

features which can be particularly useful in certain circumstances and

which may also make another system more useful in other circumstances.
The lines of development from early low level systems can be traced and
the kind of facilities that are required can be discerned with more

certainty. It seems reasonable at this stage, therefore, to contemplate

an attempt to make further steps forward. Those features of other

systems which have proved useful should, if possible, be retained in

some form whilst also exploring other possibilities which may or may not

prove to be so useful. It is doubtful if a completely new approach not

making use of at least some existing techniques would be of value if the

result is to be used for problems of a similar nature.

It is worth noting also the developments which have been made in

general purpose languages, FORTRAN, ALGOL and lately PL/1. Only one

system, SLIP, has taken advantage of these, the remainder being highly

specialised systems set completely apart. The result of this is that

SLIP is widely available - to any installation capable of running
FORTRAN or similar languages, whilst the others have only been

implemented on a small number of machines with the consequent lack of

availability. Although SLIP is embedded in high level language systems,

its symbol manipulation facilities are of a lower level, since it is

primarily a system for handling lists, albeit in quite comprehensive

ways. The use of subroutines does not confer the degree of

expressiveness which might be desired, but has this considerable

advantage of transferability of the system.

Another approach can, however, be made which, whilst not retaining

quite the transferability of SLIP, allows as high a level of

expressiveness as any of the other languages. This is the technique of

using an existing language system as a basis and extending it in the

required direction. It will be shown below that satisfactory extensions

can be made for the specific task of symbol manipulation. As to

transferability, it cannot be acheived simply by transferring a deck of

4.1

subroutines, but it is likely to be significantly easier than creating a

complete system of an equivalent order of comprehensiveness. Almost all
installations are equiped with high level language systems such as

FORTRAN, ALGOL, MAD etc. The ease of extensibility of a particular

system will vary considerably, depending on the design of the language

itself, but perhaps mostly on the methods of implementation used in the

compilers for the languages and also the type of operating system in use
- for instance, list processing techniques involving random access to

memory may be frowned upon in a 'paged' environment. On the other hand,
certain language systems, of which MAD is an example, have built-in
facilities for extending the language in a number of ways. For

installations using in-house produced compilers the required knowledge
of the implementation techniques and advice will usually be easily

available and extensions quite quickly incorporated. When depending on

outside documentation, the task may not be quite so easy but still quite

conceivable.

Although it has not been the case to date with symbol manipulation

systems, it is possible to design systems with transferability in mind.
For instance, a compiler written in the language it compiles can be

transferred from machine to machine, within bounds such as core space

and backing store facilities, by providing a machine code generation

phase for the new machine and recompiling itself. This could have been

done (and still can be) for the existing special purpose systems and
to this extent there must also be other reasons for extending a basic

language to provide symbol manipulation facilities other than

transferability alone.

A much more important reason is that the technique allows all the

features of the basic system to remain available and to be used where

these are more suitable than symbol manipulation. The obvious example
here is that of arithmetic. This may well have been secondary in the

minds of some designers with particular problems in mind who therefore

preferred to develop their systems without giving it a large proportion
of their time and consideration. In LISP and SNOBQL, for example, the
arithmetic is extremely slow and cumbersome. Clearly, the design

objectives required nothing else; but should these have been the design

objectives, thereby unduly constricting that proportion of the

problem-solvers who find arithmetic necessary ? Some users will have

pressed on, accepting the penalty, whilst others will have turned to

4.2

systems similar to SLIP. Extending a language with already good

facilities overcomes these difficulties completely. It should be

regarded as a mistake to assume that problem-solvers will find all the

tools they need in one line of development of languages. The development

of symbol manipulation languages and fURTRAN / ALGOL-type languages

should not therefore be separate as they have been in the past - each
has much to offer the other. With the amount of effort being absorbed

with the development of general purpose languages, this cannot be

ignored by workers in the symbol manipulation field. By having an

extension towards symbol manipulation in one direction, all other

extensions will be added bonuses to the symbol manipulation workers, at

no cost.

The ASTRA language is such an extension. It is based upon Atlas
Autocode and has extensive string manipulation facilities as an

addition. Atlas Autocode is a language developed by R.A.Brooker at

Manchester University originally for the Atlas computer. In extending a

language, its basic philosophy should be borne in mind. In other words,
the extensions should be designed to fit in as far as possible so as to

avoid conflict. This approach is not necessarily restrictive, as is
demonstrated in ASTRA, and it results in a cohesion of the extended

language which will be of great value. Before examining the extensions

which constitute ASTRA it is necessary to consider Atlas Autocode for a

moment.

It is similar to ALGOL 60 in many ways, notably in its block and

fully recursive routine structure and most types of source statement. In

a few respects it is simpler than ALGOL, without serious detriment to
the language and on occasion with considerable gains in the efficiency

possible without undue optimisation effort. A program consists of a

sequence of 'source statements' where a source statement is taken to be

a sequence of characters terminating with a 'separator', which may be

either a newline character or a semi-colon. (The newline can be

overridden with a continuation marker for long statements). All spaces

are ignored and therefore may be inserted to improve layout. This
illustrates the point of avoiding conflict, syntactically in this case.

The method of SNUBOL and other systems of using spaces as significant

separators would clearly not fit in with Atlas Autocode well. Phrase

structure notation is used as a convenient way of representing the

syntax of Atlas Autocode and it is also used for ASTRA. Consider some of

4.3

the alternatives from the class of source statements 'ss'.

1. [TYPE][NAME LIST]

[TYPE] stands for integer or real. For example :

integer i, j, k

real x, y

Declarations of variable names prior to use is obligatory as in ALGOL

60. Names may consist of a string of letters optionally followed by a

string of digits and a string of primes and may contain any number of

characters.

Arrays of scalar quantities are declared similarly. For example :

integerarray A, B(ljlO), C(0?2#n-l,1:2)
Arrays may be of any dimension and the bounds for each dimension may be

any integer expression, i.e. expressions involving only integer-type

operands, evaluated dynamically at run-time.

2. [NAME][APP] = [EXPR]

[APP] is the Actual Parameter Part, for instance array subscripts.

The assignment statement may be exemplified by :

i = j+k/(l+2*m>
Expressions may be of any complexity involving the operators +, -, *, /,

♦*. Only integer expressions may be assigned to integer variables (no

rounding or truncation is defined in this context), but both integer

and real expressions may be assigned to real variables. Integer and real

operands may be mixed in real expressions; however, only an integer

operand may follow the exponentiate operator **.

3. -> [N] and [N] ;

Numerical labels are used for transfers of control, the jump

instruction being the label number prefixed by the symbols . For

example :

3:

-> 3

4.4

Switches are also incorporated. For example :

switch sw(l;3)
-> sw(i)

sw(l): . . .

sw(2): . . .

sw(3): . . .

4. [ill][CONDITION] then [UI]

[iu] stands for if or unless, and [UI] may be an assignment, jump,
or any of a number of other types of statement. The [CONDITION] clause
allows general conditions to be specified. The basic Simple Condition or

SC is defined as :

[EXPR][COMP][EXPR],

[EXPR][COMP][EXPR][COMP][EXPR],

([CONDITION]);
where [COMP] is any one of the comparators -=, >, >=, <, <=. The full
Condition is built up from Simple Conditions :

[SC]

[SC] and [SC] and [SC]

[SC] or [SC] or [SC]

For example :

if x>y then x=y

if (a=b and c~=d) or e=l then ->1
No precedence is defined between ands and ors, so that bracketing has to

be used to avoid ambiguity.

5. cycle [NAME][APP]=[EXPR],[EXPR],[EXPR] and repeat

Loop statements are cycle etc. and repeat. The [NAME] must be an

integer variable and the three expressions must be integer expressions

which represent the initial, increment, and final values of the variable

respectively. The values are evaluated once only, when the cycle is
first entered, unlike ALGOL 60 where completely dynamic evaluation takes

place. The group of statements to be looped around are closed by the

repeat statement, cycles and repeats may be nested to any depth.

6. [RT][NAME][FPP J

[RT] stands for routine, [TYPEjfn, or [TYPE]map and [FPP] is the

Formal Parameter Part, either a list of parameters or null. Block and

4.5

routine (procedure) structure is similar to ALGOL 60 in terras of scope

of identifiers but with differences in the types of parameters to

routines. Value types remain the same but name types have a different
effect. Instead of the full substitution demanded in ALGOL 60, there is

a call by reference or 'simple' name in which the reference to the
actual parameter involved is evaluated only once - on entry - and which
remains fixed throughout the lifetime of that invokation of the routine.

Whilst making 'Jensen's Device' impossible, this has extremely

beneficial effects on efficiency, since 'thunks' are not necessary. For

example :

routine CARL(integer i, j, realname x)
• see#

return

s • • s •

end

The dynamic exit from a routine is denoted by return. From

functions (fn) and maps (map) this is denoted by result = :

realfn xyz(integerarravname A, routine R)
• • • • •

result = x

end

A map in Atlas Autocode results in the calculation of an address,

rather than a numerical value and is used mainly for storage

compression. For example, a map would allow access to a symmetric matrix
as if all the elements were present while only storing one triangular
section of it :

realmap M(integer i, j)
if i>=j then result = addr(A(i*(i-l)/2+j))
result = addr(A(j*(j-l)/2+i))
end

return and result statements may also be made conditional.
Routines and functions may be recursive to any depth. For example :

integerfn fact(integer i)
if i>l then result = i*fact(i-l)

result » 1

end

4.6

Atlas Autocode already has some facilities for symbol manipulation,

making use of integer variables. A single symbol between quotes is a

valid operand and it may be used in integer expressions since it takes

the integer value of the numerical character code of that symbol.

Input-output routines are available for reading and printing single

symbols. These two features make possible worthwhile symbol manipulation

processes and can be used with list processing facilities in terms of

integer locations, as in SLIP, to provide reasonable basic capabilities.

E.g.
T '**I SB *

if J='x' then K='y'
We now discuss the ways in which Atlas Autocode has been extended

to provide symbol manipulation facilities. The first decision was

whether to extend the limited facilities which already existed, making

use of integer-type variables, or to branch out in a completely new

direction. Clearly, an integer location can hold more information than

one single symbol; on Atlas and KDF9 six symbols can be stored in one of
their 48-bit words. For longer symbol strings integer arrays can be

used. While this may be useful on occasion, it confers no great

advantage over storing single symbols, apart from that of space

minimisation. The problems of defining operations on these data elements

remain as before. Another approach is to use the integer location to

contain a 'reference' or 'pointer' to a data area set aside to contain

symbols. The essential difficulty inherent in both schemes is that of

distinguishing between the different uses to which the integer location

is put. On the one hand they contain ordinary numerical data and on the

other they may contain symbols or pointers. Operations defined for one

form will not necessarily be valid for the other. It can be left to the

user to program carefully knowing that if the uses are confused chaos is
liable to ensue with little diagnostic help available. The alternative

is to pass around tags with the integer to indicate its current form of

usage. This, though, would lead to unacceptable burdens on efficiency of

ordinary integer arithmetic by having to test on every access. Where and
how to store the tags is a further problem. The approach of using

integer locations as pointers to a string value has been investigated by

De Morgan and Rutovitz, who produced a modified Atlas Autocode compiler

with string facilities at Manchester University. Their manipulations are

by use of integer functions and routines with integer parameters. The

4.7

keeping of distinctions between addresses and normal values is left to

the programmer. This meant that only minimal changes had to be made to

the compiler.

A more attractive approach, but one which necessarily means more

modifications to the compiler, is that used in ASTRA - that of having a

completely separate type of data object - string. This overcomes the

ambiguities of using integer variables noted above and has a certain

precedent in that there are already the types real and complex for data
of non-integral form. This does not imply that different types of
variables cannot be used in the same expression, for example, implicit

type conversion can be done. It does, however, in Atlas Autocode, impart

a useful degree of checking, in that a fault can be registered if a real

value is assigned to an integer variable, say. The same applies to

string variables. String operands can be mixed, in expressions, with
other types and conversions defined where useful and checking on

assignment can be made.

In common with the other forms of declaration, we have now proposed
that of string. E.g.

string r,s,t

which declares the variables r, s, and t such as to take string values.
Further justification for the incorporation of a new type can be found.

Not only should variables containing specific data forms be available

for any new type, but also the other situations in which a data type can

be involved, such as functions producing results of the new form and the

use of the type in parameters, should be possible, so as to retain the
cohesion of the extended language and not to leave the impression of
bits tacked on here and there. This is possible in the case of a string

type. String-value-producing functions are quite consistent. E.g.

stringfnspec fn (integer i)

string parameters are also consistent with the existing Atlas Autocode

language. Value-type parameters can be regarded as declarations at the

level of the routine or function with their values preassigned by the
value of the corresponding actual parameter. E.g.

routine AB (string S)
Name type parameters as defined in Atlas Autocode also create no

difficulties, being a pure reference to a variable of the specified

type, ^riiich is given as the actual parameter. E.g.

routine CD (stringnarae T)

4.8

Arrays of numerical values are an essential feature of Atlas
Autocode and similar languages, whether the values are integer or real.

Although string values cannot be represented in general by a single

location, this does not render string arrays impossible. All it means is

that they will have an extra 'invisible' dimension to hold the values of

the strings in each position in the array :

Btringarray ST (1:100)

Whether it is, in practice, an extra dimension of locations depends
on the method of representing the string values - whether arrays of
locations are used or list processing techniques. Virtually all symbol

manipulation systems use list processing for the basic data

representation, but arrays should not lightly be discarded. They have

the great advantage that the components of the string can be accessed

simply by incrementing a pointer, thereby facilitating their examination

and such operations as copying and concatenation. One of their main

disadvantages is that efficient store management is difficult. This

makes itself felt in various ways. Firstly, how big is the array set

aside to hold the string value to be ? If too little is set aside then

when a value too long occurs, a new set of locations big enough must be

found or some shuffling around of other string values must occur. Then,

of course, the string value contracts and the space is wasted. Systems
of this sort have been tried, with some success, such as the 'rolls' of
the Digitek Corporation's 'POPS' system, but in a somewhat different

context, where the number of variable data areas may be quite small,

e.g. 20 to 3o. A program using string manipulations is likely to have

many more string variables or elements of string arrays than this, when

their systems become less efficient. In this situation, the gain in

efficiency over list processing is nullified.

An alternative is for the programmer to specify the maximum size of
each string and if he exceeds his limits to wind up the program,

indicating a fault. This use of arrays of a programmer specified size
has been used in IMP, another extension of Atlas Autocode, in this case

with the special purpose of providing the software implementation

language for a large multi-access system and several compilers. For the
kind of character string manipulations envisaged - that of handling

input-output and providing alphanumeric titles of files in a file

handling package, arrays were thought to be superior to lists,

especially in view of a very useful set of machine instructions for the

4.9

particular machine involved - the ICL 4-75 - those manipulating byte

arrays in Store to Store operations. For these purposes, string

variables are regarded as declarations of arrays of byte-long (8 bits)
locations :

string U(10>,V,W(20>
In essence, these IMP facilities form a subset of those to be found in

ASTRA and therefore will not be discussed at length here.
Store management of arrays is also difficult in the situation when

part of the value of a string is to be changed. For instance, if a group

of components in the middle of the string are to be replaced by a

different value, the new value may take more space. Finally, structuring
of strings is difficult when using arrays. A degree similar to that of
SNOBOL can be introduced by having the manipulations take account of the

symbols in the string, e.g. brackets to indicate the extent of

sub-strings. Scanning down the string cannot omit examining substrings,

however, unlike a sub-list which can be passed over without inspecting

its value.

A list processing system was chosen for ASTRA to avoid these

limitations and is described in detail in the next chapter.

What should be the data form of this new string type ? The concept

of an ordered set of symbols is quite general and can be regarded as

sufficiently basic to symbol manipulation processes to be made use of

formally. This is the conclusion reached by the authors of CQMIT,

SNOBOL, and LISP, although in the last case it is slightly disguised by
their use of binary tree forms. A LISP list with each car branch atomic
is of precisely this ordered set form. The primary data form for ASTRA
was chosen to be of this kind - a sequence of characters e.g.

NEW1011

a*b+c*d

Slight variations are possible at this point - in essence, the answer to

the question : what is the 'atom* of the form ('atom' in the LISP sense

of the most basic component of the string)? Each character of a string

may contribute equally in the manipulation of the string or it may be

that groups of characters form a more natural basis, for example,

complete words rather than letters. COMIT, in particular, was written by
a group of workers in the field of natural language processing and for

their needs a word or syllable could be regarded as indivisible. This
led them to the system described above in which the atom is a group of

4.10

characters, thereby enabling them to pack the characters more closely

into word locations. They still, however, incorporated a facility for

'splitting the atom' and recombining them in different groups when

occasion demanded. This approach may be able to save space, but it was

felt that for a general purpose system such as ASTRA is intended to be,
a retention of the most basic system, that of treating single characters

as the atoms, would be preferable. It would avoid the inelegancies of

splitting and recombining atoms as in COMIT. The advantages of being
able to group characters together are well recognised, but this need not

be at the atomic level.

The facility for being able to group characters together or to

impose a structure on the string has quite far-reaching effects in

simplifying algorithms for many problems. In this respect, ASTRA goes

much further than COMIT or SNQBOL. It makes use of the 'list structures'
in list processing i.e. lists with sub-lists also with sub-lists to any

depth, where the sub-list is eqviated with the substring or group of
characters that are associated. Thus substrings may have substrings and
so on to any depth. This generality is much to be preferred and is akin
to that of LISP. If we use brackets temporarily to delimit substrings,
this allows us as possible ASTRA strings :

NEW (ington > 1011

(x+y) ♦ < z/ (u-v > >
The desirability of incorporating numerical values in strings has

been mentioned. ASTRA, as currently implemented, only has minimal
facilities in this direction, but the language has been designed and

implemented in such a way that it would be possible to incorporate more

facilities in future versions of the system. This is discussed further
below.

LITERALS

Atlas Autocode has the means of representing a single character by

enclosing it in quotes, e.g. 'x' . The quotes are necessary to avoid
conflict with identifiers. For the format-effectors, space and newline,

special actions have to be taken since spaces are discarded everywhere

on input and a newline terminates a source statement. Instead, the

symbols 'underline' (_) and 'tilda' (-) are used. This mechanism can

clearly be generalised to include a number of characters between quotes,

4.11

without at all departing from the spirit of the language. This is

therefore the form of literal used to represent strings of characters in

ASTRA. E.g.

'NEWlOll'
*

^ *
x+y*z

This creates the difficulty of representing quotes as part of the
literal characters. ASTRA solves this by representing a quote by two

adjacent quotes and terminates the literal by a quote not followed by a

further quote. There seems to be no convenient form of literal with

which to represent strings containing substrings. It was felt

undesirable to use any characters with a 'raeta'-significance to delimit

substrings since these characters are then effectively removed from the

character set. Brackets, the obvious choice, are sufficiently often used

in their own right as to make their removal a serious loss. The desired

effect is in any case available using operations detailed below, and so

the absence of substrings in literals is no material restriction.

Indeed, the resultant form is probably clearer than any use of meta¬

characters in a literal would be.

STRING EXPRESSIONS

The method of assigning a value to a variable (apart from input

from external sources) in Atlas Autocode is by a statement of the
form :

[variable] = [expression]
The rules concerning what may constitute the expression for different

types of variable are fairly strict. Unlike PL/1, say, where almost any

type of value can be assigned to any type of variable with the necessary

type conversions carried out implicitly, the only conversion involved
with integer and real types is from the former to the latter. In

particular, an expression which must have an integer value, such as when

assigning to integer variables, must involve only integer types, either
variables or constants, and not even produce intermediate non-integral

values. Any expression involving real variables, constants or

intermediate values, can only be assigned to a real variable.

With this precedent, it is sufficient to treat expressions which

produce a string value i.e. string expressions, separately from other

types. Certainly, no conversion from string to real or integer need be

4.12

defined, except in restricted cases such as a single character string to

an integer value, which is occasionally useful.
The simplest form of expression is one consisting of a single

operand, which could either be a single variable, array element, or

function, or a literal of the required type. E.g.

string r,s

r = 'NEWlOll'
s = r

the result of which is to set the string variables r and s both to the

value 'NEWlOll'. For more complex expressions, operators are involved.
The arithmetic operators +, -, *, etc. play no useful part in string

expressions, although they could be defined as in SNOBOL, on strings of
a restricted form i.e. only containing digit symbols. Where the normal
arithmetic variables are available this seems superfluous. The only

operator which has a useful part to play in the formation of string
values is that of concatenation. The character chosen for this operator

was the full stop, It is unambiguous in this context and gives a

neat appearance to string expressions. E.g.

string r,s,t

r » 'NEW' . 'loll'
s — r • 'Ext.6298'

after which r takes the same value as before - 'NEWlQll' (purely as an

illustration, since there is no advantage in splitting the literal in

this way) and s the value 'NEWlollExt.6298'. Note that the full stop in

'Ext.6298' causes no conflict since it is part of a literal. In

arithmetic expressions of Atlas Autocode, the number of operands is not

restricted, and the same is true of string expressions. E.g.

t = 'Telephone' . s . 'Edinburgh' . t

This example illustrates a further point. The variable t appears on the

right hand side as well as the left hand side and therefore, as in the

arithmetic assignment, :

i = i + 1

the value used in the expression should be the value before any

assignment has taken place. This need not so obviously be the case with

strings as it is for integers, since the first part of the expression

'Telephone' etc. could be assigned to t before the operand t was

discovered, thus changing the value of t to be concatenated. This

possibility arises because string values are not scalar. In ASTRA,

4.13

however, it is treated in the desired fashion, comparable to the

arithmetic case. Hence, in the example above, the effect i6 to prefix a

string to the value already held in t.

We now consider substrings. With only one string operator -

concatenation - there is no question of precedence between operators and

therefore no need to bracket expressions to indicate the order of

evaluation, as in arithmetic expressions, to circumvent the defined

precedence rules. Brackets can therefore be used to surround those parts

of a string expression which are to be substrings. E.g.

string r,s,t

r = *NEW* . ('ington') . *lQll*
s = (x+y) . * . (z/ . (u-v >)

r would then take the value *NEW* followed by a substring with the value

'ington' and terminated with 'loll*. Similarly, s will contain two

substrings and a sub-sub-string.

Expressions also occur in other contexts, for example as the actual

parameter corresponding to value-type parameters of routines and
functions. This carries through to string expressions quite naturally :

e.g.

routinespec RT (string s)

RT('VALUE*)

Effectively this is a declaration of s when the routine is entered and
an immediate assignment of the value of the actual parameter. The other

main instance of expressions is in conditional statements when string
values are compared. This usually takes the form of testing the value of
a variable, e.g.

if s = *NEW* then ->1

if s = 'NEW*.('ington*).*1011* then line = 'university'
The type of comparison required, string or arithmetic, is easily found

by considering the types of the operands in the expressions being

compared, with one very minor exception, which is :

if 'x* = (*x') then . . .

Although this would not sensibly be written, the operands could be taken
as either of type integer, as in existing Atlas Autocode usage, or as

type string. Regarding them as integer values, the test succeeds since

bracketing does not affect the value, but as strings the bracketing

causes ('x*) to be regarded as a substring and hence a different value

from 'x*. There would be no ambiguity, of course, if any operator or

4.14

variable appeared. This has been overcome by regarding single characters

within quotes first and foremost as of type string - as seems most

natural. The test, if ever written, would therefore be false in ASTRA.

The forms of condition allowed in Atlas Autocode and kept in ASTRA are

quite general. The "Simple Condition' Phrase [SC] takes either the

form :

[EXPR][COMP][EXPR]

or

[EXPR][COMP][EXPR][CQMP][EXPR]

where [COMP] can be any of the comparators =, -=, >, >=, <, <=. For

instance :

a < x <= b

is an example of the second form. These Simple Conditions can be grouped

to form more general conditions : e.g.

< [SC] and [SC]) or [SC] or ([SC] and [SC])
For string expressions the effect of the comparators = and -- is clear.

The test of equality should include the values and the positions of all

substrings. The effect for the others >, >=, <, <= is not so clear. When

the string consists of purely alphabetic components, then ordinary

dictionary ordering can be used i.e. 'a'<'b'<"bc' etc. For other

symbols, including digits, the ordering relationship implicit in the

character set codes, can be used to generalise the dictionary ordering.

Thus :

'Al' < "B2' < 'B234'

As any ordering of symbols such as +,-»;» > is in any case rather

arbitrary, there seems no drawback in using the ordering provided by the
character codes. This incidentally has the effect, in the ISO code used
in ASTRA, of putting digits before letters. The question of substrings
is not solved by reference to codes. Clearly,

'A' . ('BC' > . 'D'
should precede

but should

a # (cd) . d

A . (B) . C

precede

'ABC'

or follow it ? The sensible choices to avoid confusion are that

substrings should either rate higher than all symbols or lower than all

4.15

symbols. ASTRA has arbitrarily chosen the latter. Thus :

(A)< A < A .(B) < AB

One further use of expressions is to assign the result of a

function. For a string function, the result would be a string

expression, e.g.

stringfn SF

• • • •

result = r . 'and' . s

end

Only two string operands have been used so far - literals and

names. Variations and extensions of these are possible and indeed

essential. Firstly, there is the representation of a literal having a

null value, used, for example, to initialise a string variable onto

which values are to be concatenated. The symbol _ has been chosen for
this purpose being clearer than "• E.g.

string s,t

s =
_

S = 8 . t

if s =
_ then stop

By having names as operands, the values of string variables can be
examined and tested. But this is not adequate. Since strings can be

regarded as vector quantities it is highly desirable to be able to

examine just part of a string and not the whole of it. For instance, the

first character of a string may control a process without depending on

the remainder. One solution is to split the string into other strings

and then examine these. This process of splitting constitutes a very

important feature of ASTRA and is discussed in a moment. A simpler,

though less complete solution, as will be seen, is to be able to index
the components of the string in a similar fashion to array indexing.

This does have the advantage, though, of making possible immediate
examination rather than performing a preliminary splitting operation.

Thus, the nth component of a string can be obtained by indexing with the
value n. On a notational point here, the ordinary round brackets ought

not, if possible, to be used to enclose the index to avoid confusion
with arrays :

stringarray A(lslO)
. . . A(n)

Since A is an array, A(n) is still a complete string value.

4.16

string B

. . . B(n)
to pick off the nth component of B would be confusing. If the programmer

had intended B to be an array and used it accordingly, as shown, it
would not be faulted as it would if it were an integer or real variable;

the program would be treated as valid incorrectly and this would

presumably cause trouble. There are two obvious alternatives to solve

the difficulty. One is to have a special function whose value was the

required component. E.g.

item(n,B)
The other is to use a different form of bracket. Since square brackets
are available and are not used anywhere else to cause ambiguities, they
are the obvious choice. The use of square brackets to enclose the index
is more convenient and appears more legible than the functional

notation. This is the form adopted :

string B,C
if B[l] = *k* then -> 1
C = C . B[n]

For strings without substrings, the index accesses the appropriate

character, i.e. B[n] is the nth character of B. In common with ordinary

array access, the indexes can be any integer expression and also in
common with arrays, any attempt to index a non-existent element is

invalid. I.e. if the value of the index is less than or equal to zero or

greater than the number of components in the string, then a fault is
monitored. When substrings are present in the string, the question

arises of how many components, for the purpose of indexing, a substring
consists of. The two most obvious possibilties are to count every

character of each substring, sub-substrings etc. as a component or

alternatively to count a substring possibly containing further

substrings as a single component no matter how large. The second

alternative was chosen for the following reasons. It is frequently the

case that the structure of a string, that is, the number and position of

substrings is either known or known to follow a definite pattern,

whereas the actual contents or value of any particular substring, in

particular its size, tends to be unknown. This being so, it is much more

convenient, as examples will show, to be able to index over a substring

by counting it as one unit than to have to find the size of substrings
before being able to index. This is not to deny that to be able to index

4.17

irrespective of structure might be useful in certain circumstances.

However, it was felt unnecessary to incorporate both systems, thereby

complicating the syntax to the programmer somewhat, as long as the means

was available to examine the values of substrings in some other way.

This is the 'splitting' process described below. This reasoning also

renders unnecessary the possibility of further depths of indexing such
as :

8[3[2]]
i.e. the second component (character or substring) of the 3rd

component (presumed to be a substring) of string s.

Having established the principle of indexing the components of a

string it is possible to extend the notation not only to give a single

component but also groups of components by specifying two indexes. E.g.

s[3;5]
which would have the value s[3].s[4].s[5] . The use of the colon in this

way is quite consistent bearing in mind the form of array declarations,
where the lower and upper bounds for each dimension are separated by a

colon. Again, the indexes can be integer expressions and if any of the
indexed components do not exist, as before, a monitor is caused. An
extra frill which is sometimes useful is to be able to specify the value
of the string from a certain index right to the end, without having to

compute the length of the string. This is done by replacing the second

index by an asterisk, which is syntactically unambiguous in that

position. E.g.

s[4j»]

which is the string consisting of s without its first three components.

It should be pointed out that consistency is maintained when substrings
are indexed. Consider

s » 'NEW' . ('ington') . 'loll'
Then s[4] has the value ('ington') i.e. still one component, rather

than 'ington' with six components. The brackets can be stripped off and

the value examined by the 'splitting' process.
It was decided not to incorporate a possible extension of the use

of indexing as typified by :

s[3j = 'old'
s[4;6] = 'HAM'

The intention is to change only that part of the string which is
referred to by the indexing, the remainder being unchanged. The effect

4.18

of this type of statement can instead be achieved by the techniques of
'resolution* and 'replacement', which are described below.

RESOLUTION

The process of 'splitting' or separating a string into components

is called 'resolution' after Brooker et al. in the Compiler Compiler.
The process of indexing over groups of components can be regarded

as splitting the string. E.g.

s[l;4] s[5:7] s[8:#]
The string is only effectively split for the duration of the expression

in which the operand specifying the part appears. If the division is

conceptually of a more permanent nature, then to avoid recalculating the

indexes and separating the group of components each time it is used, it

ought to be assigned to a variable :

x ■ s[l:4]

y = s[5:#]
This can be condensed and incidentally made more efficient by the

simplest form of resolution statement. The salient point is the index of

the break point, here between components 4 and 5. In other words, the

first four components of s are to be assigned to x and the remainder to

y. This is written as :

s -> x[4] . y

In fact, the statements are not precisely equivalent, but the
differences are discussed later.

This class of statement in which multiple assignments take place

has no equivalent in Atlas Autocode. It was therefore felt unnecessary

to place the names of the variables being assigned values on the

left-hand-side of the statement as is conventional when a single

variable is assigned to. It is consistent from the syntactic viewpoint,

having a single name on the left hand side as in assignment statements.

Semantically it is also preferable, since the process starts with the
variable containing the string and then resolves it into its parts in a

start to end scan, which is consistent with the order of writing the

variables in the statement from left to right. The same reasoning could

also apply to assignments of course. In order to distinguish the

statement from an assignment something other than '=* must b© used. The

choice of '->' is somewhat arbitrary but has the convenience of being

4.19

short, neat and easy to assimilate. The full stop is used, not to

indicate concatenation, but to indicate separation in this case. Some

operator is needed as is the case in string expressions and the full

stop causes no ambiguity, so it is used again.

This use of indexes to resolve the string is available in a general

form. Further examples are :

s -> x[4] . y[3] . z

which assigns the first four components of s to x, the next three to y

and the remainder to z.

s -> x . y[4]

assigns all but the last four components of s to x and those to y. As in

all situations where indexing is used, if a non-existent component is

indexed, a fault 'failure to resolve' is monitored, 'failure to resolve'
can also occur with a statement such as :

» -> x[3] . yC4]
if the number of components of s does not happen to be seven. It could

be argued that if the string happened to be longer than seven, the

remainder could be ignored. The view is taken in ASTRA that the terminal

checking that nothing is left over may well be of use in debugging if a

string takes on a value longer than expected. This corresponds to the

'anchored' mode of SNGBOL. If the programmer is not concerned whether

there is a remainder, he can always append a variable for the rest to be

assigned to :

s -> x[3] . y[4] . z

There remains the slight argument that some time is bound to be wasted

in making the final unwanted assignment. To overcome this, a dummy is

introduced - the symbol - . This symbol can be used in place of any

variable name in a resolution statement, when that group of characters

which would otherwise be assigned to the variable does not need to be

referred to again. E.g.

s -> *[3] . y[4] . -

There is no ambiguity with the symbol - used to denote a newlino since
that always appears between quotes. Another example might be :

s -> -[3] . yr4] . z

i.e. ignore the first three components of s and resolve the remainder

into y and z.

The real importance of resolution is not the abbreviation of a

number of statements to split a string into parts, as have been the only

4.20

examples so far, but the ability to provide 'pattern-matching"
facilities. We regard this pattern-matching, exemplified in OOMIT and

SNOBOL, as of prime importance in the language. The gain in clarity over

systems without it such as LISP and indeed over the facilities so far
described of ASTRA is considerable. It also has the effect, very often,
of compressing the program, which may explain the clarity, by replacing
a number of primitive comparisons with one comprehensive comparison. In

the context of ASTRA, what we mean by the pattern includes the structure
of the string, its substrings and sub-substrings etc., in addition to

the symbols it contains. In other words, the presence of a substring
constitutes a pattern just as much as the presence of a particular
character or sequence of characters does.

To take first the case of matching a character. Suppose it is

required to find out if the character is contained in the string and if
so where, i.e. what comes before it and what after it. Consider :

e -> a . * . b

This resolves the string e into two parts. a assumes the value of the

components occurring before '*' and b the value of those after it. A
number of comments are needed. As with indexing, this form of resolution
takes no account of the contents of substrings. It only attempts to

match with an asterisk any symbols not in substrings. Substrings, even

containing asterisks, would be passed over. (They can be found by a

different form of resolution statement). For instance, if e had the

value :

< x*y) . * . (a+b >
then a would assume the value ('x*y') and b the value < 'a+b') . If e

had contained no asterisk apart from those in substrings, the

instruction would fail and cause the monitor 'failure to resolve' to

occur. The pattern-matching, in this case scanning the string for an

asterisk, takes place from left to right i.e. from beginning to end of
the string. Clearly the process is ambiguous, since the string may

contain a number of asterisks, unless some rule of this sort is

introduced. A left to right scan seems the most natural rule. One could

incorporate a number of rules for different methods of scanning but for

the sake of simplicity, ASTRA keeps to one rule. The effect of the

opposite order, that of scanning from right to left, can be acheived by

reversing the order of the components of the string (a simple operation)
and using the left to right scan.

4.21

It follows that if the first component of e was an asterisk, then a

would assume a null value and similarly, if the only asterisk was the
last component, then b would assume a null value. Alternatively, the

resolution could specify these cases. Take the former :

e -> * . b

This resolution will only succeed if e starts with an asterisk. The

remainder will be the value of b.

e -> a . *

only succeeds if the asterisk in e is the last component.

The literal that specifies the pattern to be found in the string

being resolved is of quite general form i.e. any number of characters
between quotes. E.g.

r -> s . #THE' . t

Suppose r was 'THITHER THEY WENT' , then s would become 'THl' and t
'R THEY WENT'.

A number of literals may be included to specify the pattern more

completely and to split the string into any number of parts, in the
obvious generalisation. E.g.

r -> s . 't' . t . 'th' . u . 'the' . v

With the same value of r, s becomes null, t becomes 'Hi', u becomes

'er', and v becomes 'y went'. Here again, as in all forms of resolution,

any string variable which is to be assigned a value by the resolution
can be replaced by the - sign, where the value is not required :

r -> - . T . t . TH . u . THE . -

As mentioned above, the pattern of a string includes substrings. To
match the first substring in a string we can write :

y -> a . (b) . c

a then takes the value of all the components appearing before the first

substring, b takes the value of the contents of the substring, including

sub-substrings etc., and c the remainder of the components of y. For

example, suppose y has the value
'new' . ('ington') . 'loll'

then a becomes 'new', b becomes 'ington', and c 'loll'. The same rules
of 'anchoring' apply when the pattern is formed of substrings :

y -> (b) . c

only succeeds if y starts with a substring. Similarly,

y -> (b)
only succeeds if y consists of just one component which is a substring.

4.22

This would have the effect of stripping the brackets from around y and

assigning the value to b.

This form of pattern can be generalised, e.g.

y->a.(b).c.(d.(e) .f).g
The resolution starts as before matching the first substring; it

continues by matching a further substring, the contents of which must

also include a substring. E.g.
' ,0 0.0 ,0 .0 ,0 .2* .(U+V). * .(u-v). * .(w/ .(u*v))

. 0 _^0 „0 0X * . * .* » ^ »
a then becomes 2* , b u+v , c * .(u-v >. * , d w/ , e u*v , f and

g null.

There remains a further requirement in the specification of a

pattern; when the pattern is held in a string variable. In other words,

instead of specifying a literal such as *+* or ' in the resolution, we

wish to specify a variable which may contain either '+' or depending
on the circumstances and attempt to match the current value. In order to

distinguish this use of a variable from the form already used, it is
surrounded by two pairs of quotes. E.g.

e -> a . s . b

Suppose e was 'x y-z*, then if s was *+*, a would become 'x* and b

y-z, or if s was a would become 'x+y' and b *z#. This form of

pattern specification can go further than individual literals since the

variable may contain substrings which would also be matched. The quotes

could have been put around the variable being resolved into and omitted

from this last type of pattern specification in order to become perhaps
more consistent with string expressions, but the gain would be doubtful
since variables taking resolved values are much more frequent and extra

quotes scattered about would destroy some of the clarity.
The names inside the double quotes can be any which have a string

value. In other words, they may be string array elements, string
functions and string maps in addition to single string variables. Parts

of the value can also be selected. E.g.

A(l) A(l)[2;*] f<x)
A point which arises when the value of a variable is used for

pattern-matching, is illustrated by :
. 00 00

r -> s . * .t. s .u

Which value of s should be used as the pattern - the value before the

statement was encountered or the value of the first components of r up

to the first asterisk ? The latter course is useful in many

4.23

circumstances and is perhaps the more general. It can, however, be

something of a double-edged weapon; in at all complex resolutions it is
not always obvious to the programmer how the resolution will proceed

even knowing the value being resolved. This method also seems to

conflict to a degree with the philosophy of the language being built on

- Atlas Autocode - in that the precedents are to perform any evaluations
once only and then to proceed using the fixed value. This is the case

with cycle statements, where the initial, increment and final values are

computed before entry to the loop and also with the name-type parameters

where the address is calculated once only before entry to the body of
the routine - unlike ALGOL 60. In view of this and for the sake of

simplicity, ASTRA uses the former method. In the example therefore, the

original value of s would be used for matching, but the value of s will

(or may) be different after executing the statement.

A more general form of pattern specification has also been

incorporated, where the pattern is to be the result of a string

expression. Consider the expression :
' * ■» *
* . s . *

Two approaches to resolution for this pattern are already available.

Firstly :

r -> t . * . s . * . u

and secondly a preevaluation :

SS = * . 8 . *

v . * * "
r -> t . ss . u

The second would be slightly more efficient, since in the resolution
there is now effectively only one pattern to be matched, ss, instead of

three, s, and '*'.
In order to avoid the extra preevaluation statement, an expression

can be directly specified in a resolution by a statement of the form :

r -> t . ss[* . s . *] . u

The pattern to be scanned for is that contained within the square

brackets and as such is a natural extension of the use of indexes within

square brackets. In this context too, the value of the expression, in

other words the pattern which was matched, is available after the

resolution, as the value of ss, in the example. This 'naming' of the
matched pattern has important consequences in respect of 'replacement'
which is discussed below. In particular, the expression can consist of a

4.24

single operand, for example :

r -> s . t ['NEW *] . u

t would then have the value 'NEW* after the resolution, if successful.

If a dummy name had been used :

r -> s . -['NEW*] . u

this would have been exactly equivalent to the normal resolution :

r -> s . 'NEW* , u

Similarly :

r -> s . -[ss] . u

is exactly equivalent to :

r -> s . ss . u

The remaining form of resolution further broadens the patterns

which can be matched. It is frequently necessary to be able to resolve a

string scanning for not one string value but for any from a set of

string values. For instance, in processing an arithmetic expression, it

might be required to locate the first operator whether it is a plus,

minus, multiply or divide sign. With the facilities so far described
this sort of operation is rather inconvenient. The obvious solution was

to extend the form of resolution just described so as to provide for a

statement of the form :

r -> s . t[*+*,. u

where the expressions between commas < only single literal operands in
this case) are the alternative patterns to be scanned for. The naming

of the string matched is also important here, since it then allows

inspection of its value after the resolution in order to determine which

pattern from the alternatives was matched.

This obvious solution was not adopted for the reason that the

number of alternative patterns is fixed by the statement. It might well
be the case that on some occasions only plus or minus are to be scanned

for, or just the multiply and divide on others, in addition to scanning
for all four. In order to overcome this difficulty and to be more

flexible, the following method was chosen. All the alternative patterns

to be scanned for form parts of the value of a single expression. When

evaluated dynamically therefore, any number of alternatives can be
included. The individual alternatives are delimited simply by forming
them as the values of substrings. In other words, the format of a string

to be used for this form of resolution is ;

(pattern 1) . (pattern 2) (pattern n)

4.25

For situations in which no variability of numbers of alternatives

is required, the expression would be of the form :

(+ >.(-).<*).(/)
The task of distinguishing between expressions intended to be

matched as a single unit and those of this special format used as

alternatives is overcome, arbitrarily, by prefixing the
multi-alternative form expression with the symbols . For example :

r -> s . t[-: ('+') . . ('*') . <'/')] . u

/.gain, the string actually matched is the value of the specified

variable, in this example t. Use of this form of resolution with varying

numbers of alternatives could be illustrated by :

ops = _

if i=l then ops = ('+') .

if j=l then ops = ops . ('*') . ('/')
r -> s . t[-s ops] . u

Although the various forms resolution can take have been described

separately and the examples used have only shown the particular form
under discussion, any of the forms may be combined in one statement. For

instance, the indexing and contextual forms might be combined in order
to ignore the first n components of a string and then to match the

remainder with a literal :

r -> -[n] . s . '*' . t

Further examples might be :

r->-.(s. t . u) . -

a->b.(c).d[3].-
a . b[l] . -

In the last example, the resolution proceeds by scanning past the first

substring with a sub-substring and up to the next asterisk, taking the
next component as the value of b.

Resolution as so far described has taken the form of imperative

statements with a fault monitor and termination of the program occurring

if the resolution is impossible. Clearly, there must be a way of testing
whether a resolution is possible without causing termination if it is

not. In ASTRA, this is easily accomplished by adding resolutions to the
forms of 'Simple Condition' which may be inserted in conditional
statements. E.g.

if r -> a . . b then ->1

Sine© Atlas Autocode allows quite complex conditions built from

4.26

conjunctions and disjunctions of simple conditions, it follows that

multiple resolutions or resolutions and arithmetic comparisons may

appear in the same way. E.g.

stop unless i=l or r ->

if (a->'*'.b or r->s.'*') and j=k then return

When a resolution forms part of a condition, there arises the

question of whether any resolution should take place when the resolution
is possible or whether it should remain purely a test. There is no

question in arithmetic conditions of there being anything more than a

test. No assignment of new values to variables can be implied, apart

from side-effects of functions evaluated in the course of comparison.

This is not the case with a resolution condition, however, where the

resolution and assignment of values could be implied. We could take the

view that it should remain a pure test and make an imperative resolution

later if required. The crucial point is that last. It turns out in

practice that the resolution is virtually always required if it is

possible. This choice is also much the more efficient (in the absence

of optimisation) since duplication of pattern-matching is avoided. The

final argument in favour of this view is that the programmer can always

insert dummy names in his resolutions to avoid assigning new values to

variables. ASTRA makes this choice.

When the resolution fails, the values of the variables on the

right-hand-side remain unaffected. In multiple conditions, the testing

is carried out from left to right as far as necessary to determine the
value of the condition (not necessarily all of it, as in ALGOL 60).
Any resolutions which succeed are carried out, even though a later part
of the condition may fail. Perhaps it would be more desirable for
resolution not to take place if the whole condition is false, but the

difference is only marginal and this has not been incorporated as a

matter of practical convenience in the implementation.

In the discussion of string expressions and resolutions up to this

point nothing other than the values involved - the values of the string

expressions or the values of variables after resolutions - has been

mentioned. The fact that these values will have a physical

representation introduces a number of alternative interpretations of

these values, irrespective of the method of representation. The

existence of possible variations can be made clear by considering even

4.27

arithmetic scalar variables. E.g.

x = y + z

Apart from the familiar meaning, this could mean, for instance,
'■wherever the value of x is required, take it to be the sum of the
current values of y and z'. ALGOL 60 name type variables can be used in

a very similar way to this. With string variables :

r = s . t

could be given the same sort of interpretation. However, we feel this

would be departing from the principles of Atlas Autocode too far, sine©

the equivalent arithmetic statement is not interpreted in this way.

other possible interpretations cannot arise with scalar variables. The

representations of s and t could be physically linked by the same

mechanism that links individual components of s and t to create the

representation for the value of r. If we assume that we do not wish the

values of s and t to be destroyed (a possibility however) then either

copies must be made of the representations of s and t or r, s and t must

use all or part of the linked representation as their values. This
latter is discussed further in relation to resolutions. For string

expressions, however, the straightforward uncomplicated approach of

making copies of the representations of the operands and linking them

together in the way required by the format of the expression is most

attractive. The disadvantages of creating and holding duplicate copies,

namely speed and space, are balanced by the simplicity, both in

implementation and understanding by the programmer. The programmer's
understanding will be greatly helped by the directly comparable approach
to arithmetic expressions of Atlas Autocode with no further

considerations to cloud the issue. He is also freed from the

responsibility of coping with representations unnecessarily and can

concentrate his attention on the values of his variables and

expressions.

Since resolutions have no real equivalent with arithmetic

operations, we feel more free to incorporate alternative interpretations
such as have been described above, where there are advantages to do so.

The potential advantages of using a single representation for a number
of variables are those of speed and space. When a variable has the same

value as another variable, space is minimised if they both use the same

representation. The case in resolution is that variables on the

right-hand-side take values which are parts of the value of the variable

4.28

being reolved. Those parts of the representation could therefore be used

to represent the values of the right-hand-side variables. The

alternative is to copy the relevant parts of the representation and

assign those to represent the values of the right-hand-side variables,

thereby incurring the speed penalty of copying. The speed penalty may

not in practice be quite so severe as indicated, since using one

representation for a number of variables will involve extra

complications to maintain the identity of variables' values. To

reiterate these two alternatives of resolution, consider a variable r

with the value 'V0LTS*AMPS', then

r -> s . . t

will give s the value 'VOLTS' and t the value 'AMPS'. In terms of

representations, starting with r :

^ VOLTS*AMPS ^
r

we could either make further copies for s and t

^ VOLTS»AMPS
"Y '

volts) amps
< ^

s t

or use the original representation for all :

VOLTS *AMPS

8 t
'

„ S

r

together with a means of distinguishing the individual values of s and
t.

We now recall the requirements of string processing in general. An
important ability to have is to be able to modify a string. We can

already do this with the facilities of astra already described, namely

4.29

creating the new value by means of ©valuationg a string expression. The

more components the value has however the less efficient this method of

modification is liable to become because of the copying implied. The

greatest advantage of using the same representation for a number of

variables now becomes apparent - it provides a facility in high level

language terms of modifying values. In effect, it makes use of the fact

that if one representation is used, variables have a 'position' in the

representation as well as a value. Hence, the name of such a variable

can be used to change the value of that part of the representation,

without affecting the remainder or causing the remainder to be copied.

E.g.

r -> - . (s) . -

Using one representation, s now effectively 'names' the contents of the
first substring of r. Some form of assignment to s could then be taken
to signify a change in the value of that substring within r. A statement

such as :

s = 'watts'
would normally be understood to create a representation of 'WATTS' and
assign it as the value of s, without thereby changing the value of other
variables. It is still necessary to have this facility to create 'clean'
values, free of interaction with other variables. Therefore, another

form of assignment is required. A different assignment operator is
sufficient to make the distinction clear and to avoid inadvertent

misuse.

Unfortunately, the ability to modify part of a string in this way

brings with it other complications. For example, we can carry out the
resolution :

r -> s[4] . t[4]
followed by a further resolution of the same string :

r -> -[3] . u[2] . -[3]

Using the same representation for r, s, t and u, the result will be that

u overlaps s and t. If now we replace the part of r named by u,

something must happen to s and t. We do not wish to restrict the value

forming the replacement. Restricting the replacement to the same number
of components as the replaced value, it would be possible to modify the
values of overlapped variables so that they kept the same number of

components. Such a restriction is extremely inconvenient in many cases

and should be avoided if at all possible. Some other method of

4.30

circumventing the difficulty has therefore to be found. a different form

of restriction could be not to allow as valid resolutions those which

produce overlapping variables or to allow replacement of a variable

which overlaps others. This again is not really satisfactory being

inconvenient for the programmer. The best compromise seems to be to

allow the replacement with unrestricted values, but to clear any value

from overlapped variables and leave them unspecified in value and

position. This appears to be the only difficulty with this form of
resolution. There are no problems, for instance, in the use of the

variables having resolved values at later stages. They can be further
resolved as and when required and the parts thus delimited replaced.

This system of using one representation for a number of variables
after a resolution was chosen for ASTRA. The methods of representation

and means of overcoming the implicit problems are described in the

following chapter. No modifications in the foregoing description of
resolution are required and the extra assignment operator for

replacement was chosen to be '<-' . To illustrate its use; with r having

the value :

x* . (y+y+y)
after :

r < s > . -

s will have the value :

* #

y+y+y

and a position as the substring of r .

8 <- '3*y'
will then produce a value of :

X* . < 3*y)
for r. s, incidentally, retains the same position and also assumes the
new value. After :

8 = 'something else'
r would still retain the samo value, but would no longer share its

representation with s, which would have a 'clean' representation no

longer associated with r.

Using the replacement operation, assignments of the form :

s[3] = 'OLD'
S[4;6] a 'HAM'

4.31

can be achieved by :

a -> -[2] . t[l] . -

t <- 'old'
8 -> -[3] . t[3] . -

t <- 'ham'
The resolution :

r -> 8 . 'NEY/' . u

does not allow the 'new' part of r to be replaced since there is no

reference by a string variable to it. Using the resolution :

r -> s . t['new'] . u

however, 'new' may now be replaced :

t <- 'haven'

Similarly in resolutions with multi-alternatives :

0
«« 0

8 <- .op.

There is one class of situations where a restriction of full

generality was felt to be worthwhile. This is those resolutions which
use the same name on both left-hand and right-hand sides. For example :

r -> s . * . r

If r had originally been formed as a result of a resolution, say :

t -> - . (r) . -

no problems will arise. If, however, r had originally been formed by a

normal assignment, say :

r = 'a*b'
there will be certain consequences. After a resolution, the names on the

right-hand side refer to parts of the original string which is the value

of the string which is resolved. When the same name is used on both

right- and left-hand sides, the original string will not be the value of

any string variable and parts of it, the '*' after :

r -> s . * . r

for example, will be in 'limbo'. a solution would be to treat this as a

normal assignment to s, splitting the representation in two and

returning the '*' cell to the Free list. This was felt to be

sufficiently inconsistent as to be worthwhile 'outlawing' this type of
resolution.

Most inconveniences this restriction might cause are eliminated by

making a preliminary resolution :

r -> t

t -> s . '*' . t

4.32

after which there are no problems since the string r still exists.

The check on whether the name on the left-hand side is the same as

that of any of the names on the right-hand side must be performed

dynamically at run-time, as evidenced by the following examples :

A(i) -> s . . A(j)
where A is a string array and i and j may or may not have the same

values at run-time. Similarly :

• • • • •

RT(r)

• • • • •

routine RT(stringname s)

• # • • •

r ♦ .6

• • • • •

end

To assist ASTRA programmers, there are several routines and

functions built-in to the system which may be freely used in programs

without the need for declaration or specification. These are :

routinespec read item (stringname s)
'Take the next symbol from the input data stream and assign it as

the value of s'.

stringfnspec next item

'inspect the next symbol in the input data stream and assign it
as the value of the function without removing it from the stream'.

routinespec skip item

'Pass over the next symbol in the input data stream'.
routinespec read string (stringname s)

'Pass over symbols in the input data stream up to the first
left bracket and take the following symbols up to the corresponding

right bracket as the value to be assigned to s, regarding any inner

brackets as denoting substrings'.
routinespec print string (string s)

'Print out the value of s, with brackets to denote substrings'.
stringfnspec length (string s)

'Assign as the function value the number of components of s,

counting substrings as l'.
stringfnspec itos (integer i)

'Create a string with one component having the integer value i'.

4.33

integorfnspec stoi (string s)

'Supply the integer value of the one-component string s'.
The functions itos and stoi provide the only method of inserting

and extracting numerical information from a string. This is because

there is no implicit type conversion defined in integer and string

expressions. It could, however, be incorporated. For example, numerical

values could be incorporated in string expressions :

integer i,j,k

string r,s,t

r = s . i . t

when a single component having the integer value of i would be

concatenated with s and t. Similarly :

i = j + r + k

when the numerical value of string r could be defined either as the

value of the single component of string r or as a conversion of a string

of digit symbols.
A meaning could also be defined for mixed-type resolutions. For

example :

r -> i . r

which would be equivalent to :

r -> s[l] . r

i = stoi(s)
There is no reason why real quantities should not be treated in the same

way as integer quantities in these respects.

Routines providing a magnetic tape backing-store facility are also

available.

The foregoing pages describe the ASTRA language as implemented for

the KDF9. Examples of programs appear in Appendix A.

4.34

I

_

p—>••50"pC*TPyrrpArpTf-M Tip A rrnrj «-•»—> -
4^0 ' ui'Mi.*J •«*! O-. A 1 lul w^iv«..Vw.'J

It v;o,s decided to base tho design of the ASTRA string facilities on

the use of list processing techniques to r .present string values. Tho

justificats for this as u general a;- each v/an described in tho

previous chapter. at this point, having describ— the string facilities

of ASTRA, it is possible to detail tho particular features for which a

list processing seht.no is most natural. The arguments which led to the

particular form of list chosen to represent ASTRA strings are then

discussed followed by a description of the manipulations of the lists

which implement the ASTRA facilities.
The structuring, which provides one of the most valuable features

of ASTRA strings, is naturally associated -with structuring in a list. In

other words, substrings correspond to sublines, sub-substrings with

sub-sublists and so on. This correspondence automatically brings with it
the further requirement of ASTRA that substrings should count as one

component when indexing down a string. Tho indexing process itself is

undoubtedly more suited to array representations, but is complrentes

when substrings are present and counted as one component in length. If

arrays wore used, this useful feature would probably have to be foregone
in favour of taxing the total number of components of tho substring and

all its substrings as the value of tho count. A halfway stage between
lists and arrays could bo used, using separate arrays for substrings
instead of tho same array, in order to retain tho indexing convenience :

Tho problems of officiant stem management become quite severe,

however, and tho ability to replace parts of a string remains difficult.
This :-ttor is another situation where list processing is clearly

superior, since replacements only involve changing links to lists. Since

indexing is relatively u ••'•tat in ASTRA when compared vita

resolution, the less convenient scanning necessary with lists is not

considered too severe a disadvantage. It was also felt that list

processing provides a : ore flexible approach bearing possible

developments of the language in mind.
The ASTRA programmer is provided with high level facilities to

manipulate his strings. Tat precise fort. _f the representation of these

strings is therefore of no concern to him. (This statement might have
to be modified slightly for a programmer wishing to optimise the

efficiency of his programs, when he would have to know the relative

efficiency of various operations, but in principle no knowledge of the
form of representation is necessary) . There was, therefore, complete
freedom in the choice of tho typo of list to be used for the

representation, tho only consideration being tho requirements of tho

language, caso of manipulation from tho point of view of tho implomontor

and tolerable efficiency in use. Tho last two considerations conflict to

a certain extent in that it is very desirable to implement aa much as

possible in high level language terms for the same reasons of easo and

convenience trait apply in the general use of high level languages. The

ASTRA compiler calls heavily on tho philosophy and is, in fact, written
in ASTRA itself. In order to attain a reasonable degree of efficiency in

list processing operations, however, a lower level view, which allows

tho use of facilities peculiar to a particular machine, will almost

always give radical improvements over high level methods. Before the

choice can be made, the likely degree of improvement must bo

ascertained. - This consideration is therefore postponed until the

requirements of ASTRA string representations have been examined.

The simplest form of list, that of pairs of cells, one of which
contains a link to the next pair of cells in the list (or zero for the

last pair of tho list), the other containing either the piece of

information or a link to a sublist, can bo considered initially. Such a

form of list can bo shown diagraoatically in tho following way :

» a
i

->j b
j 1
i «•"} Qi 1

!

c !

5.2

This could represent the ASTRA string :

a . (b . (c > . d) . ef

The tree structure of this form of list is quite consistent with the

requirements for ASTRA strings. There is no need, for example, for
common sxiblists of the SLIP type. The other important feature of SLIP,
that of the lists being symmetric, in other words having links forwards
and backwards, is also not required since all scanning of strings is
defined to be from left to right in ASTRA. This is the case both in

indexing and in resolution of strings and it is never necessary to

proceed from right to left. The occasions when, even so, it might be

more efficient to scan from right to left, such as :

r -> s . *

r -> - . s[2]

occur sufficiently infrequently as to imply that the extra cost of a

symmetric system would be uneconomic. Note that resolutions such as :

r -> - . * . s . *

must still take place from left to right in order to locate the first

in r, in spite of having to match the final component.

A list of the form shown above can be identified solely by the

location of the first cell. It would therefore be possible to store this

address in precisely the same way that values of scalar variables are

stored, using just one location on the run- time storage stack. Apart
from the provision of an area of free cells, this would enable string

variables to be treated by the compiler just as integer and real types
as far as addressing is concerned. This capability is quite valuable in
that the additions and changes to the compiler are on a relatively small

scale and do not necessitate its redesign in any major way.

The factor which renders this type of representation insufficient

is the way in which resolution is defined. After a resolution, a number

of variables will share the representation of the variable which has

been resolved, using parts of it to represent their values. Suppose

string r has the value :

a.(b.(c).d). ef

After :

r -> s[2] . t

it is clear that the location of the first cell is insufficient to

determine the value of s, although it would be sufficient for t. The

final cell must also be defined in some way, so that the value of s is

5.3

not taken as that of the whole of r, but only the first two cells and

any sublists of those cells. The two obvious solutions are either to

hold the locations of both first and last cells of the representation or

to hold the location of the first cell and the number of components

which represent the value. In the latter case it is only necessary to

count the components at the highest level of the string, in other words,

with substrings counting as one component, since the values resulting

from a resolution always include all the value of any substrings. A
value such as a number of constituents at one level and part but not all

of the constituents of a substring cannot be acheived using ASTRA

operations. Neither of these two methods conflict with the ability to

store the locating information for the representation of the value in

the same fashion as integers and reals. Either the two pieces of

information can be packed into one location or a constant two locations

can be used.

The first method suggested was, in fact, chosen for reasons

connected with the effects of replacing parts of strings using the '<-'
operator. It was argued in the previous chapter that the best way to

overcome the difficulty of defining the values of variables, parts of
whose representations had been replaced - the situation when there was

an overlap such as that produced by :

r -> s[3] . t

r -> -[2] . u[2] . -

u <~ 'NEW*
- was to clear the value from the affected variables, which would be s

and t here. This implies that it must be possible to determine which

variables are using the part of the list which is being replaced as part

of the representation of their values. A number of solutions are

available all tending to reduce the efficiency of processing, but some

much less than others. ASTRA has chosen what is believed to be the most

efficient of these.

The first possible method is to maintain a record < which will

change dynamically as processing proceeds) of the cells of the

representation of all string variables currently assigned a value. The
first and last cells are sufficient. Whenever part of a representation

is discarded, which will occur when it is being replaced, the cells can

be inspected. If any such cells correspond with either the first or last
cells of a string's representation, found by scanning the record of

5.4

first cad last cells, then that string's value is boing interfered with

and, as vc suggest, any value ca . he cleared fron that string. V/o talc©

the view that where total overlap occurs, such as s

where s totally overlaps t, the value of s in this case should he

modified as required by the replacement, rather than cleared of any

value. In the reverse situation i

s <- 'LACS*
t would lose its value, since this is no more than a compounding of the

two other situations both front and end overlap.

This method can clearly bo improved by subdividing the record of
first and last cells into groups associated with a single

representation. This also requires, however, that the correct group must

be identifiable when replacement is taking place from the variable

involved. The scanning fox* matching colls is thereby much reduced.
A more elegant solution to the problem than either of those two

methods will now be described, but this is dependent fox* its efficiency
on the way in which each cell of a representation can be constructed.

The object is to remove the scanning implicit in the other methods. This

implies that each cell being discarded should itself be able to supply
tho information concerning its multiple use. Again, only the colls which
either start ox* terminate a variables representation need supply the
information. Tho information needs simply to bo a record of the identity

of the variables which either start or terminate at that coll. This is

best ncheived by having what may be termed an 'association list'
attached to the coll :

association list

This association list must bo made independent of other colls in the

representation. In this system, there ax*o now three distinct pieces of

information associated with one coll; the information symbol; the link

5.5

to tho next cell in the representation; the o »-»-h* 0 J* --v

list, if any. The question postponed from above now becomes relevant -

that of using facilities of the basic design of a particular machine not

available within tho data structure types of a high love- language. If

three piccos of information are associated to form a coll of tho

representation, it becomes r ro compelling to minimise tho spaco

occupied by a representation by moans of packing tho information as

closely as possible in store.

The machine upon which AimRA was to bo implemented was tho Engish

Electric KDF9. In this caso, tho basic 43-bit word is split into three

16-bit fields for many basic machine operations including addressing and

indexing. In particular, list processing using such three field cells is

very convenient and can be very efficient when the basic operations of
KDF9 are used; more efficient in fact than if separate words were used

for information and links, in terms of speed as well as space. The

strength of these considerations left hardly any other practical course

open for a SDF9 implementation.

The last suggested method of overcoming the overlap problem is

therefore very feasible, taking a 16-bit field for each of the throe

pieces of information :

V . .

xnro. link to A.L. link

The kind of situation envisaged can be illustrated with an example, for

further clarification :

r = ASTRA

-» -s r-> r-
Jm l~> 4 4. O f

r -> u[3] . -

The successive modifications to r"s representation would bo t

, s T

5.6

->i s

u 4

■iiLi R

_h£.

1_1

-CU

This system of lists with three-field cells was chosen as the basis

of tho lists used in ASTRA.

Sorr.o refinements and additions are necessary to cops with unusual

situations and for programming convenience. A case such as :

x* — Ac ;.u;
•> J>

r -> s . A . -

is slightly awkward. s will have a null value, but still a position
before the first constituent of r. If s were to bo replaced with a

value, this value should prefix that of r. There are, however, no cells

before that containing the first "a" to give a "position" for s. Tho

same also applies with :
: <?rnr> •*

i i. -wTi.

r -> AS . s . TRA

The method of solution adopted introduces tho concept of a dummy cell.

That is, one linked in with the list in the normal way, but containing
no information - a null cell. In the first example above, the resolution

would cause such a coll to be prefixed to the representation s

s can now be given a postion ahead of the symbols ASTRA in r. In tho

5.7

second example, a dummy coll would bo inserted

All operations cn this list, such as indexing and scanning for a

pattern, must allow dor th© presence of dummy colls and pass over them
when encountered.

The use of a location for a string variable on the normal run-tine

stack was discussed above and it was decided to store the first and last

cells of its representation, packed together :

1 F
| 1

i

From the programming point of view, it is extremely convenient to be

able to treat substrings in the sane way as highest level strings. For

the sake of consistency, then, the first and last addresses of

substrings ought to bo stored in those cells which act as substring

pointers :

4 J | 4 1 I
4
' "L_ 1 i I

I A s i
j

aj * L -it R S A
V- **

With three-field cells, however, this can only be done by

displacing tho lisle to tho association list from tho cell. The dummy

cell enables this to be done. When an association list is needed for a

substring pointers cell, which may be relatively infrequent, for it only

occurs in situations such as :

r = A .(STR)« A

r -> -[13.s
a dummy cell can bo inserted before the substring pointers cell to which

5.8

(.ho association 11st can bo linned

The third field of the location in the run-tin© stach for each string

variable, not needed for a link, is used as a narker to record the form

of assignment - by operator or by resolution. It is necessary to

distinguish between the two in certain circumstances, discussed below.

One difference between variables assigned in the two ways is that the
variable assigned by the '=' operator can never be overlapped by other

variables, since other variables ray only be a sub-part of the original.
In particular, association lists are not required to refer back to this

original variable from the first and last cells of the total

representation, since these are only used to guard against the overlap

and replacement condition.

Some confusion could arise between substring pointer colls ar.d

colls containing information and a link to an association list. In the

practical implementation, the two are differentiated between by negating

tho links to association lists.

Thoro is a further modification to tho list representations as so

far described which takes advantage of tho oxistonco of dummy colls,

purely to ease manipulation of tho lists. It was found to be convenient

to havo the locations of the first and last colls of a representation

distinct. This would not bo tho case for strings with only a single

constituent or null valuo using a dismay cell. It was decided, therefore,
to take the location of the first coll exactly as so far described, but

in place of the location of tho last coll, to take tho location of tho

coll following the last significant coll and store those two locations
to identify the string. This arrangement is particularly of valuo in tho

implementation of resolution. It implies that a dummy coll should bo

appended to every string ox- substring. The situation after :

5.9

r — -- «\ ~ ..» y . ..

r -> -[l].s
in. tho actual implementation vould therefore bo ;

Other examples of list structures for typical string values are given in

Appendix B.

5.10

6. IMPLEMENTATION OF ASTRA STRING FACILITIES

This chapter is concerned with the operations involved in string

manipulation from the run-time point of view. Compile-time aspects are

dealt with in subsequent chapters.

Evaluation of expressions and resolution can be broken down into a

number of basic types of operation, such as concatenating two strings or

scanning down n components of a string. Since the representations of

strings are list structures of a fairly complex nature, even these basic

operations may require relatively substantial pieces of program to

perform them. This is quite different from the basic operations of

evaluating an arithmetic expression, say, which are almost always
built-in hardware functions, such as 'add a number into an accumulator',
and so on. In order to control the size of compiled programs, the basic

string operations, in other words, basic list manipulating operations,

must be in the form of subroutines, which are called upon with

parameters varying to meet the particular circumstances at the point of

call. This fortunately is no departure in principle since certain
functions such as run-time stack control are already performed by such a

mechanism. The remainder of this chapter is a description of the basic

list manipulating operations required for the ASTRA string facilities
and how the general forms of expression evaluation and resolution are

broken down into these basic operations. Expression evaluation is

described first.

The types of operand allowed in string expressions are :

1. the name of a string variable, string function, or element

of a string array, possibly with selection of part only of its value by

means of indexes,

2. literal string constants,

3. substring expressions.

The definition of string evaluation requires that the resulting

string has a new representation, independent of those of the operands.

In other words, the representation must consist of concatenated copies
of the representations of the operands. For string function operands,

however, no representation is in existence until the function is

6.1

evaluated, so that no copying is necessary. In this case, the one

representation of the value can be used directly for concatenation. The

same is also true for literal string constants in this particular

implementation. The symbols of a literal are stored as closely packed as

possible on a fixed stack in a similar way to that in which numerical

constants are stored. At the time of evaluation of a string expression

with a literal, a list of the correct form for the literal is produced

and this again can be concatenated directly without further copying, to
form part of the complete representation. The alternative of storing the

literal in the form of a list, to be copied whenever the expression

involving that literal is evaluated is quite unnecessarily wasteful of

space.

Three basic operations are apparent from the description up to this

point :

1. Produce a copy of the representation of a string

variable's, or element of a string array's, value.

2. Produce a representation for the value of a literal

constant.

3. Concatenate two representations to produce one single

representation.

These would be the operations involved in evaluating the string

expression :

s . 'astra'
A further basic operation is very similar to 2., namely :

4. Produce a representation for a null string.

This would be required before an assignment such as :

r =
_

The selection of parts of string values by means of indexes

introduces other basic operations. In the case of variable names, the

part of the value required in the expression must be selected before a

copy is made. In the case of functions, those parts of the

representation not selected must be discarded. Although three types of

selection by index are defined in ASTRA, those exemplified by :

r[3 j

r[3j4j

r[3j*]

the first can be regarded as a shorthand form of :

r[3j3]

6.2

resulting in two basic types cf selection. The distinction between

variables, which already hold a value which must bo preserved, and

functions therefore results in a further four basic operations.

The regaining typo cf operand, a substring expression, only

requires one additional basic operation. After evaluation of tho

expression, all that is required is an operation to transform tho

representation produced into that of a string consisting of one

constituent which is a substring pointer coil :

representation for expression

This can then bo concatenated in tho ordinary v;ay.

These nine basic operations are all that is required for the

evaluation of any expression. Some examples of the break-down of

expressions are presented here to illustrate the process.

Example 1

s . 'ASTRA'

Copy rep. of s

Form rep. for 'ASTRA"
Concatenate-two reps.

Example 2
r* * A * -s

Copy rep. of s

Form rep. for "ASTRA"
Concatenate two reps.

Copy rep. of t

Concatenate two reps.

6,3

Example 3

s[3;6]

Select 3:6 part of s

Copy rep. selected

Example 4

fn[5:*] . A(l)

Discard 1:4 part of value of fn

Copy rep. of A(l)
Concatenate two reps.

Example 5

< _)
Form null string

Form substring from rep.

Example 6

s . (t[l] . 'sub' >

Copy rep. of s

Select 1;1 part of t

Copy selected part

Form rep. for 'sub'
Concatenate last two reps.

Form substring from rep.

Concatenate two reps.

These examples are intended to illustrate the principles involved

in the break-down of expressions. Other operations are also involved in

some. The function must be called and evaluated as another basic step of

the fourth example. The location of the copy of s must be preserved

whilst the subexpression is evaluated in the last example. In all cases,

the parameters for the subroutines which implement these basic

operations must be set up. Complete details of the parameters and

operations are given in Appendix C.

Resolutions may now be considered. Clearly, many of the basic

operations already described in connection with expression evaluation

will be needed again. Resolution statements are considerably more

6.4

complex than expressions. Although the process is defined to be from
left to right, the possibility of partial backtracking exists. Consider

for instance :

r -> s . (t . 'lit' . u) . v

The first step is to scan string r for a substring; upon finding such
the whole process goes down a level, so to speak, to scan for 'lit' in

the substring. If this value is not located within the substring, it

does not necessarily imply that the resolution is impossible. Some

backtracking must take place so that the scan at the main level can

continue in order to locate the next substring, which may then contain

'lit'. It is also convenient to have backtracking available in another

situation. Take :

r -> s . 'STR' . 'iNG' . t

This is a somewhat artificial example to illustrate the point. The

straightforward approach is to scan for 'otr'. The components which

follow may or may not be 'ing'. If not, then it is necessary to
backtrack to locate the next 'str'. In this case the need is easily

removed by forming the single value 'string' to scan for, but it is more

efficient not to produce a single value in cases such as :

r -> s . t . STRING . u

where a copy of t would first have to be made instead of utilising the

existing representation for t. Another example where backtracking is

unavoidable is :

r . 'sub' . -) . 'string' . s

The other main consideration in the design of the methods of

resolution is the requirement that the values of variables intended for
the resolved parts should not be affected if the resolution is

unsuccessful.

These two considerations, backtracking and unchanged variables,
lead inevitably to the process of resolution being a three stage one :

1. preliminary evaluations

2. the scanning process

3. assignment of resolved parts and garbage collection.

1.

Functions can be called within a resolution. For example :

r -> s . "fnl" . t

r -> A(fn2) . 'iNG' . -

6.5

where A is a string array indexed by the value of a function. If a

function appears once in a statement it must only be called once. Where

there may be backtracking over a function call it must not be

re-evaluated in case of possible side-effects. It is of course much more

efficient to perform such evaluations only once and the same applies to

many of the other types of operand in a resolution statement. Parts of

strings should only be selected once, as in :

Indexes should only be evaluated once :

r -> s[n*ra 3j . -

Representations for literals should only be produced once, from the
close packed form :

All this implies a preliminary evaluation stage prior to the actual

scanning process. Duplication is thereby avoided. The parameters to the
basio operations of resolution are evaluated prior to the scanning,

unlike expressions where the parameters can be evaluated as evaluation

of the expression proceeds. The result of this first stage is therefore

an array containing the parameters which are then used by the basic

operations of the second stage. As will be described in the next

section, the resolution is broken down into a basic operation per

operand, so that each location in the array refers to one operand.
At this stage we introduce terminology for the identifying

information of a string. We write :

to represent the address of the variable r on the run-time stack.

Clearly, the information at @r is A(r).
Some examples of the information stored in the first stage array

for various resolutions are now given :

r -> s . t[3:6] u

r -> s . 'RES' . t

A(r)
to mean the three-field value :

address of first

in rep. of r

which identifies the representation of r. We write

@r

6.6

Example 1
r -> s . 'scan' . t

for which the information is :

@s

A('SCAN')
@t

Example 2

r -> s[2].t.u['scAN'].v. "w[6:*]".'CANS'.x
2 / as

@t

A('SCAN') / ©u

@v

A(W[6:*])

A('CANS')
@x

Where an index follows a variable indicating a scan down the

specified number of components the value of the index is stored

alongside the address of the variable, i.e. packed into the same word as

the address. Similarly, when a value to be scanned for is 'named',
A(value) is packed with ©variable into the same word. Where a substring

is to be scanned for, no evaluation of parameters is involved, but a

location in the array is taken and left empty for the sake of

consistency. It is also convenient for the second stage for a location

to be taken and left empty for the end of a substring :

Example 3

r -> s . (t . 'sub' . u) . v

@8

0

@t

A('sub')
'Tu

0

@v

6.7

Example 4

r -> ('JOHN' . (s [n].'JAMES')>.'JERRY'
0

A('john')
0

n / @s

A('JAMES')
0

0

A('JERRY')
Zero is stored in the array for dummy names - in place of the address.

Example 5

r -> - . sO:('+').('-')] . -

0

1 / A(('+').('-')) / us

0

A tag bit is set with A(expression) when a multi-alternative form is

present.

2.

Since assignment of resolved parts cannot be made during the course

of scanning, for the reason that it may fail at a later stage in which

case all variables including those which had a possible value to be

assigned must be left unchanged, the obvious solution is to build up a

second array containing the information necessary to make the correct

assignments when the resolution has been found to be successful i.e. at

stage 3. This is also satisfactory for cases of backtracking. When

backtracking causes a change in the value of the part to be assigned,

all that is necessary is to overwrite the information stored in the

array with the modified value. The reason for the extra locations

allowed for in the stage 1 array is so that the positions can correspond

one for one with the postions of this array produced in stage 2.
In practice, the arrays of stages one and two are interlaced, one

location for parameters from stage 1, one location for information

produced by stage 2, and so on, as this arrangement is more convenient

to handle. Since the space for these arrays is only required during the
execution of the resolution statement, no permanent area has to be set

6.8

aside for each resolution and the normal temporary working area of

store, beyond that taken by declared variables on the run-time stack,
can be used. (This is also used during evaluation of arithmetic

expressions for storage of partial results for instance.)
Resolution can be regarded as a process of matching the operands on

the right- hand-side with contiguous parts of the string being resolved.

This holds for all types of operand - names, literals, and substrings.

The result of the second stage in the resolution process is this

matching. The method of identifying a string, namely the pair - location
of first cell and location of cell following last cell - provides a

simplification of the information which has to be stored to identify the

matching. The significant feature is that the second location in the

pair identifying one operand is the same as the first location in the

pair identifying the following operand. The only information which has
to bo stored by stage 2 therefore is the location of the first cell for
each matched operand. The second location in the pair identifying the

operand can be found from the next position in the array, when all

matching has been completed, i.e. at stage 3. Two examples should

clarify this :

Example 1

r -> s[2] . t

stage 1 array stage 2 array

2 / @s

@r[l J

@t

@r[3J

0

@r[*j i.e. address of last cell of r.

The required pairs for s and t are :

(@r[l] , <§r[3]) and (@r[3] , @r[*])

6.9

* -> s . (t . "CUB" . u) .v

stags 1 array stags 2 array

@3

©t

A('SUB')

@u

@v

a

where a-h night bo locations on a representation for r such as

K L - 0>' ' '

M vfT | ! J - | \
!

v.-

r _l 'LU 'H '1° j

The required pairs for s, t, u, and v are respectively :

Cs,b;> , (e,d/ , j (g^n,1

The basic operations for which permanent subroutines are to be

provided fall easily into place. By and large, there will be one for
each operand in stage 2. These are now described s

a. Assign location of current coll to the array. (By current

cell is meant the coll in the representation of the string being

resolved.up to which matching has so far progressed.)

6.10

In the resolution :

r -> s . *NEW* . t

this operation is all that is required for operands s and t. It is, in

fact, so simple as not to require being made into a subroutine, but to

be effected by in-line code.

b. Assign the location of the current cell to the array, then

scan along n components of the representation.

This type of operation would be required for string s in :

r -> s[n] . -

The parameters to this and subsequent operations are the current

position on the representation of the string being resolved from which

matching is to take place, the last cell in that string or substring

< used to check when the end is reached) and some of the information in

the array produced by stage 1. The addresses of string variables in the

stage 1 array are not needed in stage 2, but only in stage 3 when

assignments are being made. The scanning operations assign to the array

and exit with values of the parameters set for the next operation. In

the example :

r -> s[n] . -

n is taken from the stage 1 array, and the other two parameters for the

scanning operation are @r[l] and @r[»] . This operation would assign the

location of the current cell i.e. @r[lj to the array and exit with the

parameters modified to @r[n] and @r[*] , for the next operation.

c. Scan along from the current position for a literal value

and assign the location of the first cell matched to the array.

For example :

r -> s . 'OLD* . t

This operation is also used for operands of the type "name" :

r -> s . "fn(m,n)" . t

and both variations :

r -> s . t[*NEW'] . u

r . s[-:('+').('-')] . -

d. Compare a literal with the current position in the string

without scanning and assign the location of the first cell to the array

if successful.

6.11

For example, the 'iNG' operand in :

r -> s . 'str' . 'iNG' . t

or much more likely - 'lit' in :

r -> s . "fn(m,n)" . 'lit' . t

and also 'REST' in :

r -> s . (t) . 'REST* . u

In each case, no scanning is involved, since the literal must appear

immediately following the final position of the previous operand if the

resolution is to succeed.

This is also used for the forms exemplified by :

r -> s . (t > . u['REST'] . v

r . 'th' . s[~:('a').('e').('i').<'o').('u')] . u

e. Scan along from the current position for a substring and

assign the location of the substring pointer cell to the array.

For example :

r->s.(t).u

f. Check that the current position is a substring pointer cell

without scanning and assign the location to the array.

This operation is in the same relation to e. as d. is to c., and

would b© used in resolutions such as :

r -> s[3] . (t) . u

r -> - . 'pre' . (s) . -

r->-.(s).(t).-

The remaining operations, with one exception, are concerned with
the terminations of strings and substrings. In situations such as :

r -> - . < s . 'WOW' . t) . *

when 'wow' has been located, there is no more scanning or checking to be

done, the location of the last cell of the substring must simply be

stored in the array, so that the complete pair for t can be ascertained
in stage 3. For situations such as :

r . 'WOW') . -

after 'wow' has been found, a check must be made that those cells

matched actually terminated th© substring. If not, then some

backtracking must take place in order to scan for a further 'wow', which

may terminate the substring.

6.12

As mentioned above, the scheme of resolution described uses input

parameters for the basic operations consisting of current and last

locations of the representation, which are modified by one operation in

preparation for the next. When a substring is involved in the resolution

and is located in the main string level, these parameters must be

preserved whilst the resolution process for the substring is in progress

and reinstated after it. Operations e. and f. can conveniently be used
for preserving the main level parameters and setting up parameters for

the substring resolution i.e. the first and last cells of the substring,

and in fact are arranged to do so. The vacant location on the stage 1

array at the start of each substring is used for this purpose. Restoring

the parameters for the higher level resolution to proceed can be made a

function of the operations called at termination of substrings.

The particular division of functions of the terminating operations

is to a large extent arbitrary. They are, in the implementation, as

follows :

g. Check for end of substring and exit from substring (i.e.

restore parameters) if successful.

h. Exit from substring after failure to resolve.
i. Exit from substring after success (no checking needed).
For example :

r -> - . (s) . -

j. Check for end of string (highest level, not substring).
For example :

r -> s . 'WOW'
k. Assign last cell of representation to stage 2 array

(highest level string).
For example :

r -> s

k., like a., is simple enough not to be a subroutine and is purely

in-line code.

The remaining operation which requires a subroutine is that

concerned with backtracking. There is a certain amount of clearing up to

be done when backtracking becomes necessary. The following are some more

examples of situations in which backtracking must be catered for :

r -> s . (t) . 'POST' . -

r -> s . 'PRE' . (t . 'SUB') . -

r -> s . t[l]

6.13

The code involved~is-collected into a subroutine purely in order to

minimise the length of compiled coda. Hence the further operation :

1. Backtrack.

To clarify the use of these basic operations, some examples are now

given. Although it has not been emphasised in the preceding discussion,

these basic operations will shew up any failure to resolve as well as

proceeding in an orderly fashion when successful. The operations

illustrated in the following examples, therefore, show two exit routes,

one for success and tho other for failure, where applicable. In fact,

there are really three classes of exit. Success, complete failure at tho

current substring, necessitating return to the higher level, or at the

main string level, and partial failure at the current level, i.e. where

backtracking for a further attempt is possible. Those three cases are

denoted by s,f and b in tho diagrams.

Hxample 1

r -> s

stage 1 array

LIT . t

stage 2 operations

©s

A("LIT")

©t

When a resolution is successful, there is just one exit point from
the sequence of basic operations. There may be a number of possible

failure exits, since several basic operations may possibly fail. They
are all, however, for economy, directed to a common point for further
action. This action will depend on whether the resolution is part of a

condition or an unconditional instruction or a substring and so on. The

particular actions needed are discussed in connection with stage 3.

6..14

Example 2
r -> s[2].t/VAL'.u."w[2:4]"/GIN'.x
stags x array stags 2 operations

2 / m

@t

a<'val')

@u

A(w[2;4])

a('gin')

V 1 b !
. b 1X

Js
j i a !

^
,lc. c 1; V

f

Js\ f

I
a 1

>

c |<i-e
JL

G -I

©X

—j> success

-> failure

There are all three possible exit routes from operations of type d,

i.e. matching 'gin' without scanning. Route s is taken if 'gin' is

found; route b if if is not found and the end of the string has not been
reached i.e. the pattern may occur further down the string; route f is
taken if 'gin' is not found and the end of the string has been reached

when, clearly, no match is then possible. In fact, the failure exit from

type c operations is also caused by the end of the string being reached
before the pattern was found.

6.15

Example £

r -> s . (t . 'WINE'
stags 1 array stags 2 operations

@£

A('wiNE')

©u

©v

Tho operations enclosed in the dotted box are those involved with

the substring. The loss than optimum flow of control shown in this

diagram results from the attempt to produce a consistent scheme for all,

including highly complex, resolutions. One or two redundant transfers of

control in a resolution hardly affect the overall performance however.

6.16

Example 4

stage 1

r -> s . X . < -[2] > . t

array stage 2 operations

@s

A('x')

2/0

@t

£ L

4

a

b 1

b
f

, .

k

J
"\ -i

■> nuccoco

_> fuiluro

Tho oxit from tho substring resolution on failuro, oporation h
leads to a backtrack operation 1, but this is outside tho dotted linos

since the fact that backtracking is possible can only bo determined a

tho higher level.

6.17

Example 5

r -> (*X* . (s . 'Y')) . "z*
stag© 1 array stag© 2 operations

A('X')

@s

A('Y')

0

A('Z')

In this caso, there ar© possible backtrack exit routes iron the d

and f typos of operation, but context demands that they both be treated
as complete failure exits. In other words, the exit routes aro defined

completely by the particular basic operation. Rather the exit 'point* is
defined and the route from this point defined by the context. This

fixing of routes is discussed further in connection with the compilation

of resolutions.

6.18

3.

Tho final stage of resolution, assignment of rosolved parts and

garbage collection, talces slightly different forms in tho two contexts

of resolution - unconditional and conditional statements. The

straightforward ease is that of an unconditional resolution statement.

The result of the first two stages is to pass control either to tho

success point or to tho failure point, as indicated in the diagrams

above. Upon failure, in the unconditional ease, the whole program has to

be wound up, so the action at the failure point has to be to jump off to
the controlling monitor indicating the fault. Upon success, the

assignments of tho resolved parts must take place and the literals and

string values used for matching during tho resolution, or rather their

representations, must bo cleared where appropriate. In certain cases,

there is no garbage to bo cleared, for example i

r —^ . s . ™*

Tho representation used for matching is that of s itself and so must not

be destroyed. In cases such as :
00

„

r -> - . fn . -

*

r -> - . huB . -

where fn is a string function, the garbage must be dealt with. This

distinction will be noted again when the compiling algorithms are

discussed.

When the resolution is part of a condition in a conditional

statement, different action has to be taken. At the failure point, the

program is not to be wound up, but merely to indicate the falsity of the

condition, allowing the program to proceed. No assignments of resolved

parts are required, but there will still be the garbage involved in the

matching to bo cleared. for this reason, the two forms of action are

separated. In torms of block diagrams, the arrangement is :

Unconditional :

-> failure > monitor for winding up

SUCCCotj

6.19

Conditional :

-> failure

sot false marker

->» success

Assign resolved parts

-*

set true marker

V *

Garbage collect

\

further action on marker

sU

Both the actions are broken down into basic operations, either for

each variable to bo assigned a resolved part, or for each representation

used in matching to be cleared. The array produced by stage 1 containing
addresses of variables esc., used by stage 2, is also used for this
third s<*age. n.g.

j? —> s

stage 1 array

@s

'
Crn~> ^
UiU . C • ll'iU

acdri

a a v i *.)

addrB

@t

addrS

A("INC')
addr-i

0

addrS

A r» /*•
*

reso-ivec

part
I

Garbage

collect

The value to oe placed in the location set aside for variablo s is,

in tho throe fields :

addrl / addx-2 / 1

Tho addrl,...addr5, wore placed in the array by tho stage 2 operations.
The 1 in tho right-most field indicatos that the string is a resolved

6.20

part; whereas the value in the location for variable r is :

addrl / addrS / 0

For all assignment operations, 'm', the address of the variable to be

assigned to is taken from the stage 1 array, and the value to be

assigned is the conjunction of the contents of the two positions, one on

and three on from the address. In addition to the assignment, the back
references (to the location of the variable) must be pushed down from

the first and last cells as described previously. Slight complications

may arise in doing this and more dummy cells are sometimes necessary as

mentioned in the previous chapter. For instance :

r->s.(-).-
A dummy cell has to be inserted before the substring pointer cell and

the back reference pushed down from that, since all the fields of such a

substring cell are already occupied. In practice, the new cell has to be

inserted after the substring cell and the substring links copied into

it, since the lists are only linked from front to end, implying that the

penultimate cell cannot be accessed directly without scanning from the
front.

It is also necessary to insert dummy cells where the string has a

null value in order not to violate the convention adopted of having the

locations of first and final cells distinct. For example :

r = 'ASTRA'

r -> 'ASTRA' . s

This use of dummy cells is somewhat inelegant but is a simple way out of
the various difficulties.

Operations of type n highlight the general questions of garbage
collection and storage management. With any list processing scheme,
there has to be a pool of "free* cells of some sort to be drawn upon as

required, the usual method is to set aside an area of store and link the

locations together as cells of an 'Available Space List'. Such an area

of store can hardly be accommodated on a dynamic stack which programs

with block and routine structure require, and which expands and

contracts as blocks and routines are entered and left. The method

adopted in ASTRA is to set aside a static amount of storage from which

all string representations take their cells. In fact this area is set

aside after the fixed constants required by the program and before the

dynamic stack. Its size can be set by the programmer by a statement such

6.21

as :

asl = 10000

If no such statement appears,

asl = 5000

is assumed. Garbage collection can be dealt with in basically two ways.

The method adopted by most LISP implementations illustrates one of
these. When a list is no longer in use, its cells are not immediately

reclaimed, but left unchanged in store until the Available Space List

can no longer supply the demands of the program. Only at this stage are

all the free cells collected together into an Available Space List for
the program to proceed. The free cells are identified by scanning down

all existing lists which are in use and marking their cells, so that a

simple scan of the area set aside can pick up those that are not marked

and hence not in current use.

The alternative approach is to reclaim any cells which are released
as soon as they are released and attach them to the Available Space List
for immediate re-use. Whether this is possible or convenient, depends to

a large extent on the language involved. In the SLIP system, a halfway

stage is used, under programmers control, in which the sublists are not

detached when a list is returned to the Available Space List. Only when
cells are taken from the Available Space List are they inspected for a

link to a sublist. If such a sublist is found and not in use as a common

sublist of another list it is detached from the cell and attached to the

end of the Available Space List itself.
The design of ASTRA is such that it is very convenient to do all

garbage collection as processing proceeds, and this method was therefore

adopted. The slight advantage of the SLIP and LISP systems for programs

where the turnover of cells is small and a LISP type garbage-collect may

not ever be necessary, was felt to be relatively unimportant. Cells are

available to be reclaimed and returned to the Available Space List

whenever an assignment is made to a string variable :

r = 'STRING'

This statement indicates that a new value and representation is to be

assigned to r. The old value is to be discarded and therefore its

representation can be reclaimed. The marker in the third field of each

string variable's location on the stack indicates whether the variable

was assigned by resolution or not. If it was assigned by resolution,

only the cells containing the back references attached to the

6.22

representation of the main string's value, which have to be removed, can

be returned to the Available Space List and not the cells of the

representation of its value since these are still required as part of

the main string's representation. E.g.

r = 'aster'
r -> 'as' . s

s = 'stare'

If the variable was assigned by an ordinary assignment statement, the
whole representaion can be returned to the Available Space List.

r <- 'REPLACEMENT'
In this instance, that part of the representation which is being

replaced has to be returned to the Available Space List. The remaining

instance is that of leaving the block or routine in which string

variables are declared. E.g.

begin

string r, s, t

stringarray A(l;lo)

e e • •

end

Since the strings r, s, t, A(l), . . A(10) can no longer be accessed

i.e. have been 'undeclared', their representations can be dispensed with

(there are no own variables in KDF9 Atlas Autocode or ASTRA).

In returning a string representation to the Available Space List,

all cells must be inspected for the back references, in order to clear

the variables with resolved values which overlap. It is therefore

convenient to unlink all the sublists at this point, rather than to

postpone the process as in SLIP. When a cell with a sublist containing

back references is encountered, the reference indicates the location

assigned to the variable on the stack. Whether the cell with the back

reference is that of the first cell or the last cell of the resolved

variable's representation, the corresponding last cell or first cell can

be found from the information stored in the variables location on the

stack. The back reference in the sublist linked from this cell then must

also be removed. This is necessary when dealing with a 'replaced'
string, when overlaps can occur. Finally, the resolved variables
location is set to zero i.e. unassigned.

6.23

7. COMPILING TECHNIQUES

The string facilities which have been added to Atlas Autocode to

produce ASTRA are a built-in feature of the new language. In other

words, the compiler for Atlas Autocode had to be modified, rather than,

say, using a prepass over the source program text to convert string

statements into some equivalent Atlas Autocode form and then using the

standard Atlas Autocode compiler. Before the particular compiling

algorithms for the string facilities can be described, however, the

techniques used in the Atlas Autocode compiler, adhered to in making the

modifications, must be presented.

The compiler is 'syntax-directed*. That is, tables containing a

syntactic description of the language are used and the comparison of the

souce text with this description 'directs' the semantic processing and

generation of machine code. The processing proceeds source statement by

source statement and for each source statement is separated into the two

stages, syntactic analysis or recognition, and semantic processing,

which can be discussed separately.

The present author was a member of the team which wrote the

original Atlas Autocode compiler for KDF9 and in particular was charged

with the development of the analysis stage, but was also concerned with

the semantic stage together with the other members of the team : Paul

Bratley, Harry Whitfield and Peter Schofield.

The scheme of operation of the compiler can be shown best in a

diagram :

7.1

V

'

.

J ~~
■ Input ci pre-edit a lino of source text j

Y .1; ■ ■ : "h:ch

Analyse next piece of text-

y

< Valid recognition ?
■KG

! Yes

Process statement & generate code

k-
No<Cind of lino of text Z>

«•-'

^5 End of program ?

Load & run object code :j

v

i'h.© pro-edit ox the source text consists of removing redundant space

characters and partially identifying the language's key-words e.g.

integer, string, begin, etc. In program preparation, the forms %INTSGER,

%STRING, etc. are used, the per cent sign acting as a kind of visible
shift character. The pre-edit modifies the codes of the characters { all
letters) in the shift mode, for convenience of subsequent analysis. Tito
shift sign is used to avoid ambiguity with program identifiers. Any
non-letter character cancels the shift mode.

The inner loop of the diagram illustrates that more than one

statement may appeal' on one line when the separator semi-colon is used*

7.2

ANALYSIS

The method of syntactic description of the language is that of

phrase structure. Phrases may be defined by statements such as :

P [DIGIT] =

Phrase names are enclosed in square brackets and literals, which

refer to the actual characters appearing in the source text, are

enclosed in quotes. The general form of definition of a phrase is :

P[phrase name] = (alternative 1) , (alternative 2) ;

The phrase thereby defined may take any of the alternative forms.
The alternatives themselves may contain any number of literals and

phrase names. For example :

P[Nj = [DIGIT][N] , [DIGIT] ;

This illustrates the possibility of a recursive defintion of a

phrase N to consist of one or more digits. The final alternative in any

phrase may be a 'null', written 0, when 'nothing' may constitute a valid

occurrence of the phrase. There are some restrictions on the order in

which alternatives may appear and phrases and literals within

alternatives, which are a result of the particular comparison algorithm

used, discussed below.

The compiler operates upon one source statement at a time. The

phrase definitions are therefore based upon the source statement as the

basic unit. One phrase, SS, is defined which has as its alternatives the

various forms of source statement which are permissible. All other

phrases are subsidiary to this. Complete Phrase Structure definitions of
ASTRA are given in the next chapter. For the moment, as an illustration,
a very much abbreviated set is given here :

7.3

P[SS] - [UI][S],

"if'CCDNDj'-rhsr/EUIJCS],

P[UI]

EN] : ,

[TYPE] [KALIS LIST] [S] ,
'be in'[S],

endofpreran [S j;

[NAILS] '='[EXPE]}
'caption'[TEXT],
*
->];
+ «» +

PCS] = ; , - ;

P[TYPE] = " integer'," real' , 'string"
PfNAIIE LIST] = [NAILS]', '[NAME LIST],[KALE];

GCC»

Per- comparison of source text with the phrase structure description

i.e. phrase SS, a right-linear recognition algorithm is used. The

algorithm is given in the following diagram i

i

•J Is there another alternative vt alternative ? V—
/ No

-> failure

J Is there another item in this alternative ?/ >success ——>\ _ /No !

a phrase or liters

gonraso

D
a-.

sue

s

ro) Los literal match source t

lfr.il"
text ?y

J, No

Tno ciottoa cox incscutc. recursive ro: icarnation of the

algorithm for the subsidiary phrase which is the next item in some

alternative of some- phrase.

and anotnor item used in the diagram is

i?ho word another in another alternative

intended to moan the next

component to the right in the written phrase structure description -

7.4

hence right-linear recogniser. This restricts the phrase structure to

being right-linear also, though this is hardly a restriction in

practice. It means that a phrase such as N must be defined in the

order :

P[N] = [DIGIT J[N] , [DIGIT] ;

and not :

P[NJ = [N][DIGIT] , [DIGIT] ;

or :

P[N] = [DIGIT] , [DIGIT][N] ;

In the first incorrect case, a recursive loop in the comparison
routine would occur, and in the second, a single digit would be

recognised as a valid occurrence of N, instead of all the digits there

may be. These two factors can inhibit a valid recognition of source

text, but there is also a third factor which, while not inhibiting valid

recognition, has a profound effect on the efficiency of the operation of
the algorithm. The factor referred to is that of backtracking. The

example, phrase N, illustrates this. The last digit of each N will be
matched twice ; firstly as the first item in the first alternative and

again as the second and valid alternative when the second item of the

first alternative [N] has failed to match i.e. not found another digit.

Although in this case, relatively little time will be wasted, if larger

sequences of text are involved with perhaps many phrases matched, the

waste can become prohibitive. Fortunately it is very easy to avoid

backtracking by redefining the phrase in a different way, so long as the

necessity is recognised. For phrase N, the following definitions would
suffice :

P[N] ■ [DIGITj[DIGITS];

P[DIGITSJ = [DIGIT][DIGITS] , 0;

Each digit is thereby only ever recognised once. As an illustration

of the saving in a practical case, phrase structure for conditions may

be examined. At an early stage of the development of the compiler,
before the importance of avoiding backtracking was fully recognised, the

following definitions were in use :

7.5

P[COND] = [SC]'a^'[COND],[SC]'or'[COND],[SC];
P[SC1 = [EXPR][COMP][EXPR][CQMP][EXPR],

[EXPRj[COMP][EXPR],'('[COND]')';

Phrase [EXPR] indicates an arithmetic expression and phrase [COMP]

represents the comparators =, -=, <, . . etc. Take as an example of a

condition :

x=Q or y=Q

The SC x=0 is matched twice and the SC y=o three times before a match is

found. To recognise x=0 as an SC requires x, =, and 0 to be matched
twice so as to allow for the possibility x= =y say. The same is true for

y=0 . In other words, x, =, and 0 would be matched four times and y, =,

and 0 six times. With bracketed sub-conditions, the amount of repetition

rises steeply. One particularly long and complex condition used as a

test case took 76 seconds to be recognised. The same condition analysed

using the same program but more efficient phrase structure then took

0.35 seconds to be recognised - a factor of over 200 I The better phrase

structure in use was :

P[COND] = [SCI[REST OF COND];

P[REST OF COND]='and'[REST OF COND],'or'[REST OF COND],0;

P[SC] = [EXPR][COMP][EXPR][REST OF SC], '('[COND]')';
P[REST OF SC] = [COMP][EXPR], 0;

Efficiency was also found by a judicious choice of order of
alternatives within phrases, where there was no problem of an invalid

recognition resulting. In particular, the basic phrase, SS, was ordered

so that the most commonly occurring types of source statement appeared

as the first alternatives. For example, assignment statements occur much
more often than endofprogram and so appear earlier in the alternatives

for SS. In order to determine the best possible order, a number of

programs, both long and short, from different programmers (to overcome

varying styles of programming) and intended for different purposes so

as to be a fairly representative batch, were examined and an overall

frequency of the types of statement found.
When a statement has been found to be a valid member of the class

of statements SS, the analysis tree or 'analysis record' relating to it

is passed on to the semantic phase. If the statement is invalid, no

7.6

further processing of it is attempted and the analysis proceeds, after a

suitable fault message with the next statement. This class of faults

corresponds fairly closely with those caused by faulty preparation of
the program input medium - cards or paper tape. As such the errors are

usually very easy to locate, it was not felt necessary to attempt to

pinpoint the precise position of error in the statement sinco this would

degrade the performance of the analysis routine. It is not at all

obvious, in fact, how to locate the error, since the algorithm

automatically backtracks over the text when no match is found and it is

necessary to try another alternative in any phrase definition. However,

when the phrase structure is designed to obviate as much backtracking as

possible, a good indication of the position of error can be found by

maintaining a continuous record of the furthest position attained along

the line of text during analysis. As stated above though, this was felt
to bo unnecessary and was not incorporated.

The ''analysis record'' produced by a valid recognition is a precise

specification of the particular statement in terms of the given phrase

structure. Basically, it consists of a single az-ray containing the

numbers of the.successful alternatives in the phrases involved in the

valid recognition. For example, using the definitions of S3 above, and

the backtrack-eliminating definition of cond, the statement :

if x-y then x=0

Y/ouid produce an analysis record :

2 1 i
i

s3

CCID

* o e 1 2

ec

EXFR(x)

;(-}

EXPR(O)
" " * - *TT f Y \

Ui

rest of cond

r? c rn tt* c >"»
a van o V-»a. aw

co:,ip

EXPR(y)

It is clear from this example, that ho record of the tree structure

of the analysis is retained. Effectively, all the nodes of such a tree

have boon compressed into a linear format which keeps the ordering

relationship, however. Another feature of the record is the absence of

any information relating the alternative numbers to the phrases
concerned. This was found to be unnecessary for the purposes of the

7.7

semantic phase since the record always starts with an alternative of SS
and the thread can be followed onwards throughout the record, simply by

referring to the tables of phrase structure in use. The final notable

absence is any information relating to the literals which would form the

terminal points of an analysis tree. The reason for this is the same as

that concerned with the omission of phrase identifiers from the record,

namely, that no extra information results.

There are certain classes of object which it is necessary to make
into exceptional cases. These are objects such as NAME, CONSTANT etc.

There are two reasons for treating these exceptionally. Firstly, the

efficiency i.e. speed of recognition, can be markedly improved in

certain cases by using special purpose procedures rather than the

general purpose syntactic analysis procedure. Secondly, it is convenient

to build up tables of various kinds which are used by the semantic phase
in addition to the analysis record.

An example of the first kind is given by phrase DIGIT above. To

recognise that a character, say that contained in 'text(i)' i.e.

position i of an array 'text' , is a digit requires that it be tested

successively against 'o', 'l', . . and so on. If a special purpose

procedure could be invoked, the valid recognition of a digit could be

reduced to the success of a condition such as :

'o' <= text(i) <= '9'
This is so because it is known that the internal character codes have

consecutive equivalent integer values for the digits (even though they
are not ,1,2, . .). The gain would clearly be even more spectacular
for a phrase 'LETTER'.

The second form of exceptional case is exemplified by names. For

efficiency, these must have a special purpose procedure for their

recognition. This being so, it is very convenient also at the same point

to enter the name into a table of names encountered in the program so

far and assign an identifying number to it instead of passing the

alphanumeric characters forward any further.

The exceptional cases are called 'built-in' phrases, that is,

phrases which are built-into the compiler in the form of program

statements and not into the phrase structure tables.

7.8

The built-in phrases in use are the following ;

■>—-rr*m a yjrp

4.

4.

5.

6.

WO.s i »~Lx\ 1

r-^yrp

r*A ly ■* rnv Ti*","\rrrkv^rkir i 1U;\

C'TT-71 '•''AT? -?

Tj"'"'? MAT? T»rT'?'P O
Wj-J 1 i»if"ikTWIV JmI

1. NAME

The function of built-in phrase NAME is to rocognise names in all

the contexts in which they appear in source text and to enter then into
a table of names. A unique identifying number is attached to each name

as it is recognised and it is this number which is placed in the

analysis record array in place of an alternative number. Repetitions of

any name already in the table cause the existing identification number

for that name to be supplied. This is irrespective of any redeclaration

of the same name in inner blocks or routines of the program. This

discrimination is the function of tho semantic phase of the compiler.

The dictionary system for storing the names has to bo two-way. In

other words, from a name an identifying number must be produced and from
an identifying number the alphanumeric characters of that name must be

available - this latter for the purpose of producing legible program

maps and diagnostics. The system employed uses two arrays therefore :

wore

lett

0 1 O 3 4 5 6 © «

1 1

1
1 3 i.i * o 31 * 1

The larger array lett contains the characters of the names, each

prefaced by the number of its characters. The identifying number for the
a ..me is given by the index of the location in the array 'word* which

contains the pointer to the position of tho actual characters in lett .

Thus in the diagram name number C is XY , number 2 is I and number 4 is
JIM o The array lott can be used as a stack, filling in names from the

bottom an:' progressing up the array. (There is no need ever to remove

names from the dictionary. Although the range of activation of some

7.9

names may be small, it is the common practice to declare the vast

majority of names at the outermost level of block structure which

implies that they are active throughout the program. The extra

complication involved in removing names from the dictionary and dealing

with the consequent holes was not felt to be warranted). It is most

efficient not to use the array word as a stack however. If this is done,

when a name is encountered and an attempt is made to match it with one

of the names already in the dictionary (in order to get the unique

identifying number) a linear scan through the existing names has to be

made, with the consequent inefficiencies of that process. Instead, a

'hash' system is better. In this system, an 'approximate' identifying
number is calculated in some fairly arbitrary maimer from the characters
of the name. The only criterion in the choice of method of calculation

is that the numbers produced from a collection of names should span the

indexes of the array word in an even a way as possible - trying to avoid

grouping. Since the choice of names is a particularly personal

characteristic of programmers, no algorithm can be expected to give

perfect results for all programs. The approximate number is used as a

starting position in word , from which a cyclic scan can begin. Before

compiling begins, all the locations of word are given a recognisable tag

to indicate 'not yet in use'. Upon scanning from the starting position,
if a position 'not yet in use' is encountered this implies that the new

name is not yet in the dictionary and can therefore be inserted at this

point. If a position is in use, the name there can be compared with the
new one for equality. If it matches there is no insertion to be done and

the identifying number is that of the existing name. If there is no

match, the next (cyclic) position in the array is considered. Whenever
the complete cycle is performed without finding either a match for the

new name or a 'not yet in use' tag, the dictionary is already full.

2. CONSTANT

This coding recognises all forms of constant, integer types and

string types. E.g. lo, 2^3, 'ASTRA'. A table of the values so recognised
is also built up and this table later forms the first part of the

running programs data area. (Switch vectors and caption texts are also

stored in the same table). Such is the design of KDF9, that small

integer constants (less than 2**15) can be incorporated as 'immediate
operands' within the object code. Constants are therefore divided into

7.10

three classes :

1. Small integers

2. String constants

3. Larger integers

Two positions in the analysis record are used to identify
constants. the first gives the type of constant, 1, 2, or 3 as above,
the second depending on the value of the first. For small integers,

class 1, the number itself is put in the second position. For string

constants and large integers, the position in the table of constants is

given. In the table, large integers occupy a single location but string
constants may be of any length. The layout is :

n a b c D E

F . .

Z

where six characters are packed per word with the number of characters

in the first position. As mentioned above, it might be quicker for
statements such as :

if a = 'ASTRA' then ->1

if the string constant were stored in the list form required for

comparison with s, but since there are other situations such as :

s = 'astra'

whan a new copy of the value 'astra* has to be made for the assignment,

it was considered better policy to minimise the space occupied by

packing in a consistent way.

3. TEXT

The only practical way to ignore the text of a comment statement

without modifying the recognition algorithm is to have special coding

i.e. a built-in phrase which skips along the text until a separator (;

or -) is found.

7.11

4. CAPTION TEXT

As with built-in phrase TEXT, this also skips along the text until
a separator is found. It also has the function, however, of storing the

characters in the table which also contains constants so that the

captions are available for output during the running of the object

program. The format of storage is the same as that for string constants,

and the position in the table is placed in the analysis record.

5. & 6. SET MARKERS 1 & 2

These two built-in phrases are exceptional in that they perform no

recognising function and do not leave anything in the analysis record.

They are purely to ease the semantic processing in two situations. For

example, the first alternative of SS is :

[UI][SET MARKER 1j[REST OF SS]

This is designed to cater for the situations exemplified by :

x = 0

x = 0 if x = y

The [UI] should only be recognised once i.e. backtracking should be
avoided and to this end the REST OF SS is defined as :

[if or unless][COND][S] , 0 ;

If the statement is conditional, code to evaluate the condition must be

planted before that for the UI . The position of that part of the

analysis record relating to the COND must therefore be located first and
indeed the fact that the statement is conditional must be determined.

This could be done by scanning the analysis record since the phrase

structure for UI is known, but it is much quicker to have the position

directly marked in some way. This is the function of SET MARKER 1. When
this phrase is executed, the current position in the analysis record

i.e. after that part relating to UI, is set into a global variable

< markerl) which can be inspected by the coding for the semantic phase.
SET MARKER 2 is used in a very similar situation, the first alternative
of UI being

[NAME][APP][SET MARKER 2][REST OF UI]

where

P[REST OF UI] = "='[EXPR],0;
APP stands for "Actual Parameter Part*. In other words, the

distinction is made between routine calls and assignment statements.

These were the only two situations in which this exceptional method

7.12

was folt to bo useful.

An obvious way in which to store the tables of phrase structure is

in tne fore or a xrst structure. Taxe a oerineron or sXPaC as an

example :

P[EXPR] = [NAME][A??] , [CONSTANT] , '("[EXPR]')' ;

2XPR

' 1 i1 1 ■

1 XT?
i

j [
—b NA

I L

4

-> CONSTANT

-> APP

The complete tables would be just one list structure, that for

phrase SS with ail subsidiary phrases such as 2XPR sublists of the main

list for S3. This method of representation was experimented with but a

form of representation using a linear array was found to give faster

operation and was therefore adopted. The equivalent linear

representation to that illustrated above would be :

1 I
/N

'U_

CONSTANT

->APP

I I
-h-Alt 2

i i
i i

-> NAM

•axe o

or

By

The locations from which pointers emerge contain indexes

positions in the same array indicating where that phrase is defined,

judicious choice of bounds for the array, literals and built-in phrases

can be distinguished from true phrases by the range in which the value

lies.

7.13

The analysis algorithm is hardly affectod by the addition o

built-in phrases.

Compare

J

The compilers, both Atlas Autocode and ASTRA, are written in tho
same language that they compile. By this means, all tho advantages of

high level languages were available in writing the compilers and in
almost all respects they can be treated as ordinary programs. Y/hcn a new

version of tho compiler is required, the suitably modified_program which
is the now compiler is compiled by the existing compiler to produce the

object code for the new compiler.

After a statement has been recognised as valid syntactically, the

resulting analysis record is passed on for semantic processing and code

7.14

generation. The layout of this second phase (which is a routine named

cSS for 'compile Source Statement') consists of sections of coding each

of which deals with one of the alternative forms of source statement,

together with a number of routines which process commonly occurring

objects such as expressions.
The first number in the analysis record indicates the type of

source statement to be dealt with i.e. which alternative of phrase SS

was matched. This is used immediately to switch to the appropriate

section of coding :

routine cSS

-> sw(A(l))

sw(l): comment [UI][SET MARKER 1"|[REST OF UI]

• ess

return

sw(2): comment cycle . . .

esse

return

esse

end

The array named A contains the analysis record. The most important

subsidiary routines supporting cSS are named cSEXP, cNAME, cUI, cCOND
which deal with those objects which are defined by the phrases EXPR,

NAME, UI, COND. A global variable named p is used as a pointer to the

analysis record array A and, by convention, whenever a routine such as

one of these four is called the value in p should indicate the position

relating to that phrase. When the routine is left the value in p should

indicate the position immediately following the entries relating to that

phrase. A global variable is used in preference to a parameter purely
for the sake of efficiency.

Two examples to demonstrate the scheme of processing are now

presented. They are slightly simplified from actual compiler versions.

Example 1

Consider a declarative statement :

string r, s, t

We may suppose that the alternative of SS relating to this type of

7.15

statement is :

[TYPE][NAMEj[REST OF NAME LIST]

where

P[TYPE] = "integer" , "string* ;

P[REST OF NAME LIST]=','[NAME][REST OF NAME LIST],0;
NAME is the built-in phrase which leaves an identifying number in

the analysis record for each name. If this alternative is the sixth of

SS, say, the analysis record corresponding to the statement above would

be :

6 2 id(r) 1 id(s) 1 id(t) 2

where 'id' stands for 'identification number of'.
The purpose of the section which deals with this type of statement

is to store information relating to the name i.e. its 'tags' for future
reference and to assign a unique 'stack relative address' to each. The

appropriate section of coding would be :

sw(6): comment scalar declarations

type = A(2)

p = 2

comment n = value of next stack relative

comment address to be assigned

61: test name set twice(A(p))
store tags(type,n,A(p))
n = n+1

p = p+2

if A(p) = 1 then ->61

return

The conditional statement tests the alternative number of each

manifestation of REST OF NAME LIST until the list of names is exhausted

and the tags have been stored for each of them. The two subroutines

'test name set twice' and 'store tags' are made such since the same

action is required when dealing with other types of statement e.g.

arrays, routines etc. in other sections of coding.

7.16

Example 2

Conditional statements i.e. those corresponding to the fifth

alternative of SS :

[iu][COND]'then*[UI]
where

P[iu] = 'it' , 'unless^* ;

The format of the object code required is :

An analysis record for this type of statement is of the form :

5 fl if \zc unless/ relating to COND relating to UI

The section of coding to deal with this illustrates the way in

which routines are used to perform major functions :

sw(5): comment Conditional statements

p = 3
cCQND ;l i.e. dump code to test condition

plant jump(A(2))
cUI ;I i.e. dump code to perform UI

set jump label

return

By observing the conventions concerning the global pointer p,

having set p correctly for entry to cCOND, cCUND itself should leave p

correctly positioned for entry to cUI (since the literal then takes no

space in the analysis record).

7.17

cSEXP, cNAME, cCOND

Full use is made of the recursive structure of the language in

which the compiler is being written. Since the phrase structure makes

extensive use of recursive definitions, it is natural to make the

processing routines recursive in the same way. This is not slavishly

followed, however, as the processing of the recursive phrase REST OF

NAME LIST above shows. It greatly simplifies a large number of
situations however. Take phrase CUND as an example. COND is defined in

terms of Simple Conditions, SC, which is itself defined in terms of

expressions and COND. cCOND therefore has a subroutine cSC which is

called upon as the main coding separates off the simple conditions of

the total condition. cSC calls on cSEXP to compile expressions for it as

they are encountered in TEXPRj[CQMP][EXFR] etc., and calls on cCOND when

the simple condition is the third alternative '('[COND]')*.
Expressions provide another illustration of this technique of

gradually breaking down the complex object and dealing with each simple

part one at a time. Consider the expression :

A(pt-l) - B(p*q,r)
cSEXP will be called to deal with this whole expression. At this level

it is broken down into operands. Since both operands here happen to

benames, two calls on cNAME will be made. cNAME deals with the whole

operand incuding actual parameter part and so for A(p+1) will call on

cSEXP back again to compile p+1 and for B(p*q,r) will call on cSEXP
twice more for p*q and for r. Again, since these expressions involve
names cSEXP will call upon cNAME several more times. Eventually the most

basic constituents will have been located and dealt with.

This method of processing implies that care must be taken when

designing the routines in respect of overwriting contents of variables

by recursive calls. In other words, local variables must be used rather

than global variables for sensitive information. This amount of care

never became troublesome during the writing of the compilers.

The function of the routines cSEXP and cOQND is quite clear, but
that of cNAME justifies some amplification. The only use of it so far

implied is in the compiling of names which appear in expressions. This

is far from the case however. It was found in dealing with names, that

even such apparently diverse contexts such as routine calls and

assignment statements called for very similar processing of the name.

For this reason, cNAME was given a wide variety of functions, controlled

7.18

by a parameter on call.

cNAME(o) : treat name as a routine call

cNAME(l) : assign a value to name

cNAME(2) : pick up a value from name

cNAME(3) : get machine address of name

By this means, every appearance of a name in the program results in
a call on cNAME, with the parameter varying with contexts.

The identifying numbers of names assigned by built-in phrase NAME
lie in the range to 255 (256 different allowed names has been found

to be sufficient). Since names play such a predominant part in the

language in their various guises, the most widely used storage array in

the compiler is that which stores the information concerning the names.

This array is called TAGS and ranges from 0 to 255, so that the
information concerning a particular name is stored in the position of
TAGS indexed by its identification number. When the same name is

redeclared at an inner level of the block structure, the information in

the TAGS position relating to the original declaration must be preserved

somewhere else, since the same identifying number will be supplied

regardless of the name's redeclaration. The preserved information need

not be immediately accessible because all use of the name now refers to

the new declaration - a basic feature of block-structured languages. The

preserved information has to be restored to TAGS when the block in which

the name was redeclared is left, as the original declaration then

becomes valid again. This preserving of information is accomplished by a

list processing scheme which uses each position in the TAGS array as the
head cell of a pushdown list :

TAGS

information on

current incarnation

information on

previous incarnation

7.19

When a name is redecl&red, a cell is taken from an Available Space List
and the old TAGS information copied into it. The information relating to

the new declaration is placed in the TAGS array together with a link to

the pushed-down cell. The same type of cell and list processing scheme

is used in a number of contexts throughout the compiler, some of which
will be mentioned later.

The information which defines the current usage of a name consists

of four items which are packed together for storage in TAGS. They are :

1. type

2. level (of declaration)

3. dimension

4. address

8 bits 4 bits 4 bits 16 bits 16 bits

type level dim. address link

1. type

Each type of use of a name is assigned a 'type number' to

distinguish it. These are :

0 : name not set

1 : string

2 : integer

3 ; string array (name)
4 : integer array (name)
5 : switch

6 ; routine

7 : stringfn
8 : integer fn

9 : string map

10 : integer map

11 : string name

12 : integer name

13 :

14 : addr

7.20

The array and array nam© types are assigned the sane type number
since the way they are dealt with is identical.

2. level

This field holds the textual level at which the name was declared.

This is quits distinct from the recursive level at which the running

object program nay declare the nana. Fifteen levels are therefore quite
sufficient as provided for by the 4-bit field.

«-» • Dimension

When the name is an array, this field holds the dimensionality. For
scalar variables it holds G.

4. address

Each scalar variable and array is assigned a location of storage on

the run-time stack. These are addressed relative to a position on the

stack which represents the start of the locations for variables declared

in that block. This relative address for each variable is stored in the

address field.

In the eases of routines, functions and maps, which are not

assigned locations on the run-time stack, the address field is used as a

further list link. The sublist of ceils contains the information on the

parameters for the routine, function or map. The format is :

*

typo level 0
i

parameter typo i 0

7.21

A list processing scheme which packs the information closely, as

this doss, leads to slightly reduced speed of operation because of the

amount of unpacking to bo ecus, but has the essential advantage of

minimising the total amount of storage usee, which was at a premium on

KDF9.

The same list proces' V. j scheme was u.u.i for other purposes such as

dealing with labels, jumps, and cycle statements. The headeolls on these

occasions relate to the textual lovol in the program and aro thorofore

arrays declared from 1 to 15. Whenever a label is encountered,

information relating to it is pushed down onto the list corresponding to

the current textual levol. A similar action is taken for jump

instructions. The two corresponding lists are matched, in order to

relate the references and the lists pepped up when the end statement of

the current level is encountered. cycle and repeat statements are also

local to the same textual level as are labels and jumps. In this case,

however, a cell is pushed down whenever a cycle is found and the top

cell popped up when a repeat is found. This deals with the nesting of

cycles and repeats. As a matter of convenience, there is also a pushdown

list for the names declared at any textual level. The appropriate list

is popped up at the end statement in order to undeclare the names i.e.

pep up the TAGS lists. This is more efficient than scanning the TAGS

array for variables declared at the current level. For example, the
lacol xist ^

lab

j.

o

-o

1

1

I -

I addr of label label number
j

Stack Management System
For a block-structured language such as Atlas Autocode or ASTRA,

the scheme proposed by Dijkstra for addressing variables on the run-time
stack is very convenient. As has been mentioned, each variable is

assigned a relative position to a stack pointer for that textual levol

7.22

of the program. The array c:: those eta jpoxn w o«.*•-< j oho for each textual

level, was called a "Display" :

Display

Stack

In the XDF9 implementations of Atlas Autocode and ASTRA, the

display is stored in the modifier parts of the Q-storos. This enables

all the variables on the stack to be addressed directly by using the

relative address assigned to the variable modified by the contents of

the Q-store (modifier part) corresponding to the textual level at which

the variable was declared. This holds true even in situations where the

■variable becomes global i.e. declared at an outer level from the textual

level at which the program is currently running. In XDF9 machine code
terms :

E(relative address)M(textual level)
For example, the third variable declared at textual level two, could be

accessed by 2

E3M2

(to be strictly accurate E4M2 as is now explained).
At the start of the storage on the stack for each textual level,

two locations are set aside for special purposes which are explained

subsequently. The relative addresses therefore start at 2 for the first

variable declared. The declaration :

string r, s, t

would set aside storage :

stack pointer

1 1 !
.. .. J-. .J 1

j r ! s i
l i ! 1 !| I

1 !

For arrays, one location is assigned and given a relative address. Since

the bounds of the array can only be determined dynamically, storage for

7.23

the array car.not be sot aside at compile time. This is therefore done at

run-tine using positions ca the stack beyond those assigned at

compile-tine and the single location is then set to the address of the

array storago position. :
• -ring-array A(l;n)

stack pointer

1
A k

In the case of string variables, these locations contain the pointers to

the list structure which represents the value of the string :

| 1 !
0 or 1

1 1
For integers, the value itself is of course stored.

The two basic types of parameter in Atlas Autocode and ASTRA are

the value type and the name type. Value type parameters are dealt with

just as ordinary local variables to the routine or function, the only

difference being that they are preassigned with the value of the actual

parameter before entry. name type parameters have to be treated as

indirect references. Fortunately, the indirect references are defined to

remain fined after entry, unlike ALGOL €0 where the references can

change dynamically :

routine XT (::tr-: - • • -.no u, v, stringnrravnane A)

,

;

T V t

sto.cl\ pointer

j,
1 1

J i
i i

< s

As can be seen, there is no difference between the storage accessing

mechanism for arrays and arraynames. Hence there being no distinction in

the type numbers given above.

The two locations set aside at the start of each textual level

7.24

storage area are used during block and routine entry and exit. The first

(arbitrarily) is used to hold the previous value of the display

pointer for that textual level. It is filled on entry to a block or

routine and restored to the display on exit. By this means, the display
is maintained in a permanently valid state. The second location is used

only for routines, functions and maps and stores the return address. In

a stylised form, these entry and exit operations can be described by the

following sequences where *STP* is the pointer to the current top of

STACK.

comment block entry

STACK(STP) = DISPLAY(textual level of new block)

DISPLAY(textual level of new block) = STP

STP = STP + (fixed storage allocation for new block)

comment block exit

STP = DISPLAY(textual level of current block)
DISPLAY(textual level of current block) = STACK(STP)

comment routine entry

STACK(STP) = DISPLAY(textual level of new routine)
DISPLAY(textual level of new routine) = STP

STACK(STP+1) = (return address)
STP = STP + (fixed storage allocation for new routine)

comment routine exit

STP = DISPLAY(textual level of current routine)

DISPLAY(textual level of current routine) = STACK(STP)
return to STACK(STP+1)

7.25

8. compiling algorithms for the astra compiler

The phrase structure for the ASTRA compiler is :

», * * * * „

p[+]= + , - ,0;

p[operand]= [name1[app][part j,[const],'('[+'][operand]
[restqfexprl')'[operand][restofexpr]'i',
#"*[name j [app][part]""/-'[part];

P[RESTQFEXPR]=[op3[OPERAND][RESTOFEXPRj ,0;

p[app]= '('[+*3[operand 3[restofexpr][restofexpr-list3'>',0;
p[restofexpr-list3=', '[+'3[operand3 [restofexpr3[restqfexpr-list j,0 ;

p[°p3=

P[.#3- ',',0;
p[%iu3= '%if'/%unless';
p[type3— '%integer*,'%string#;
p[rt3= '^routine','%stringfn','%integeren',

'%STRINGMAp','%integermap';
p[fp-delim3= [rt3,'%integerarrayname'/%integername','%integer',

"%stringarrayname#,'%stringname','%string*,'%addr';
p[fpp]= '('[fp-delim3 [name 3[restofnamelist 3[restoffp-list 3')*,0 ;

p[restoffp-list]=[,'3[fp-delim3[name3[restofnamelist3[restoffp-list3,0 j

p[restofnamelist'[name][restgfnamelist 3,0;
p[sc]= [+ *3[operand3[restofexpr][comp][+' 3[operand][restofexpr3

[restofsc 3»'< ' csc 3 [restqfcondj;
p [restofsc 3= [comp 3 [+' 3 [operand 3 [restofexpr 3 ,0 ;

p[restofcond]='%and'[sc][restofand-c3, '%or'[sc][restofor-c3,0;
p[restofand-c]='%and'[sc] [restofand-c 3 ,0 ;

p[restofor-c]='%or*[sc 3[restofor-c 3 ,0 ;

p[restofui3= [assop3[+'3[operand3[restofexpr3,0\
p[%spec']= '%spec',o;
p[restofbp-list]=', '[+'3[operand j[restofexpr]*;'[+* 3[operand3

[restofexpr3[restofbp-list3,0 j

p[restofarraylist]=','[name j[restofnamelist]'<'[+'3[operand3
[restofexpr] '!' [+' 3[operand][restofexpr3[restofbp-list]')'
[restofarraylist 3,0;

8.1

pfrestofswitchlist]»','[name][restofnamelist]'('[+'][const]':'
[+ '][const]')'[restofswitchlist] ,0 ;

p[compj= — | 9 9^9 22 99 9 *= i

p[restofss1]=[s],[%iu][sc][restofcond] [s1;

p[part]= '['[+'][operand] [restofexpr][restofpart]']*,0;
p[restofpart]=':'[+'][operand][restofexpr],':*',0 j
p [assop]=

p[ui]= [name1[app][part][setmarkerl][restofui],

'->'[»],
'%caption'[captiontext],
'%return',
'%result='[+'][operand][restofexpr],
'%stop',

[name]'('[+'][operand][restofexpr]')*;
p[ss]= [uij[setmarker2][restofss1],

'%cycle'[name][app]'='[+'][operand][restofexpr]','[+']
[operand] [restofexpr]','[+'] [operand] [restofexpr] [s] ,

'%repeat'[s],
[n]':\
[%iu][sc][restofcond]'%then'[ui][s],
'{'[text],
[type][name][restofnamelist][s],

'%end'[s],
[rt] [%spec '] [name] [fpp] [s] ,
'%spec'[name][fpp][s],
'%comment'[text],
[type]'%array'[name j[restofnamel1st]'('[+'][operand]

[restofexpr]':'[+'][operand][restofexpr]
[restofbp-list]')'[restofarraylist][s],

'***a'[s],
'%begin'[s],
'%endofprogram',
'%asl='[n][s],
[name]'('[+'][const]')s',
'%switch'[namej[restofnamelist]'('[+'][const]':'

[+'][const]')'[restofswitchlist][s],
'%list'[s],
'%ENDQFLISt'[s];

8.2

It will be noted that where the avoidance of backtracking
necessitates the use of [REST OF . .] phrases, instead of defining a

phrase such as :

P[EXPR] = [OPD][REST OF EXPR] ;

with only one alternative, the components of that alternative are

inserted at all the points where the phrase is required. This has the

effect of slightly increasing the size of the syntax tables but makes

analysis quicker and avoids an effectively redundant entry in the

analysis record. An example of this can be found in the second

alternative of SS j

"cycle*[NAME][APP]*=*['][OPERAND][REST OF EXPR] etc.

The phrase [+*] allows expressions to be prefaced with a sign.

The main changes from the syntax of Atlas Autocode can be briefly
summarised.

1. The addition of a [PART] clause after occurrences of

[NAME][APP]. Phrase [PART] defines the string indexing facilities e.g.

r[l] , A<2)[3:5] , S[2;*]
2. Three further alternatives to phrase OPERAND :

""[NAME][APP][PART]"" ,

'-'[PART] ,

which are used in resolution statements, and
*
~

9

which is the null symbol used in string expressions.
In a number of instances throughout the phrase structure, the

syntax as defined allows invalid components to pass through without

causing a syntax fault to be monitored. For example :

r = -[1]

would be passed through as valid. This policy was quite deliberate and
allows the total phrase structure to be uniform with a minimum of

exceptional cases which might increase the time of recognition. Such

invalid statements as do pass through are easily detected and monitored

by the semantic phase, routine cSS, of the compiler. In fact, the

boundary between syntax and semantics is considerably blurred; more or

less could be incorporated in the syntax tables to reduce or to increase
the amount to be done by the semantic phase. The actual boundary chosen

is the one which is most convenient, where there is no easily measurable
or distinguishable effect on efficiency.

8.3

3. An extra operator, .' , used in both string expressions

and resolutions.

4. Replacement of 'real* by "string* in all occurrences.
It was unfortunately a matter of practical necessity to remove some

Atlas Autocode facilities in order to reduce the size of the compiler so

that room could be found for the new string facilities. The KDF9 in

question had only 16384 words of storage, almost all of which was used

by the existing Atlas Autocode compiler, leaving little room for further

expansion. Short of revising the whole compiling system, say using a

two-pass system instead of the one-pass system in use, some major
feature or features had to be omitted. The choice fell on real variables

and real arithmetic facilities. This had the convenient side-effect of

enabling string types to replace real types quite consistently

throughout the compiler, thereby minimising the changes to it. There is,
of course, no incompatibility between real and string variables

coexisting, and future ASTRA implementations should contain integer,

real and string types, and perhaps others also such as complex, storage

space permitting.

5. The introduction of phrase ASSOP i.e. Assignment Operator,

to allow *->', and '<-* any of which can appear where the

assignment of Atlas Autocode was allowed.

6. The addition of *->* to the comparators in order to allow

resolutions as parts of conditions.

7. A new alternative to SS to allow the length of available

space to be set :

'asl' [N] [S] ,

STRING EXPRESSIONS

As was described in a previous chapter, the code to be planted for
a string expression takes the following general form :

Form representation of operand

Form representation of operand

Concatenate two operands

Form representation of operand
Concatenate two operands

etc.

String expressions are processed by a routine named cSTREXP which works
on that part of the analysis record corresponding to an expression. On

8.4

entry, global variable p points to a phrase [+'] which always precedes

[OPERAND][REST OP EXPR] (but which is only used for arithmetic

expressions). Just as routine cSS consists of sections of coding,
branched to on a switch, for each alternative of SS, so routine cSTREXP
consists of sections of coding for each type of operand. The major

section is that which deals with [NAME][APP][PART], as might be

expected. For those forms of operand which are invalid in string

expressions but which the syntax allows through the section just
consists of a fault monitor. For the type of operand which represents a

substring, the section consists of a recursive call on routine cSTREXP.
In the following coding, labels such as 14P refer to Private labels

i.e. labels within the 'permanent material' available at run-time with
all compiled programs. This contains such things as Input-output

routines, basic processes for string expressions and resolutions, and

run-time fault mnitors.

8.5

cSTHEXP

A /\

Va- Y»e~ v.

faulty ©xpr. |

N

[KAME] simple name ?

.63

/ Y
^ pica up J

/ >
^ unassignad check y

/ /

([PART] present ?YY'
h° v

1 j

'.^O'NTCn
W«Jji A]

""^vpp s

J.}

[EXPR 1 ?

[KAMj2]

-[PART]

preserve
I I

A(partial onpr.) y
sV

A \
copy

v

v.|y

V concatenate 3

->—^ [REST Ci? EXP?.] present > roturn ->

L -*>T ———{ next operator ? /Yes \ !

\ k"o
c!/

8.6

'reserve A(pnrtic . oxgr.) j

f * S
' evaluate nc .

J

V£

y nano a stringfn ? una3signed chock J
;os

^ [PART] present ? y
iz.

PART] present ?)
?Y©s! No
! i
T t

ov*wi JL v 0 ili. j?ZJ C 0 > ..pr •

of [PART]
I

(^^ copy j
->'

evaluate secondid~\ second ©xpr. os

P ^ expr. of [PART] /Yos \ [PART] -present ?
; No

duplicate value of;i; .-v ' x,.,. •- >5»
[REST CP PART]

P y first cxpr. of [PART] j '

soloct [PART])

/ "
£ restore A(partial expr.)\ I A

.

>
^ concatenate j-

8.7

[CONST] >-
r
_ trins literal ry?Q

~\ f
? vi faulty expr.

i Yea

; — \
^ prcc.ucc- raproconta'c ion

v1'/

^ eoacatonatQ y- C i

([EXPR]) i (preserve A(aartial expr«)V
, /
<

ft

1
^ eoapile srb-oxpr. j

/ v

^ create substring coll j

/ \

^ restoro A(pai-tial oxpr.) j

/\
concatenate j-K

i [LAi'il j J —

[iihJCa j -

-[PART] "

-v- jcauity ©xpr.

-J / first ooerand ? —X " / N o

f * s
^ creato null string J —

8.8

routine cOTREXP

integer typep, n, m

switch S(l;7) ;I for the 7 alternative forms of OPERAND
n=J ;I operand count

fault(lOO) unless A(p)=3 •! invalid expression if + or - present

12: n=n+l

pssp+2

->S(A(p-l))

;1 count next operand

;I p on position of OPERAND+1 in anal.rec.

;I switch on type of operand

s(5):i "name"
fault(100) ;I "NAME" invalid in string exprs.

S(l):! NAME

->1 if A(p+l)=l ;l jump if actual parameter part present

copytag(A(p)) •1 get tags of this name

->1 unless type=l or type»ll ;i jump unless simply string
I or stringname type

;1 plant code for pick-up from location
1 for this variable

;I jump if string type

;! indirect pick-up for stringname type

plant(EkMi)

if type=l then ->2

plant(=Mlo)

plant(M0M10)
2; plant(DUP)

plant(J14P=Z)

pssp+2

->3 if A(p)=l

plant(JS103P)

pssp+2

I fault monitor if variable unassigned

I p on PART

I jump if PART present

I basic process to copy string

I p on REST OF EXPR+1
->4

if n>l then plant(=M0M12Q) ;l preserve A(partial string expr)
cNAME(2) ;I pick-up for complex name

fault(lOO) unless type=l or type=7 ;! fault monitor if name

1 not string type

->13 1^ type=7 ;1 jump for stringfn

plant(DUP)

plant(J14P=Z) ;I fault monitor if variable unassigned

8.9

13:

3:
i

5:

14:

6:

7:

8:

9:

->5 if A(p)=l ;| jump if PART present

if type=l then plant(JSl03P) ;l basic process 'copy' - not
1 for functions

p on REST OF EXPR+1P=P+2

->9

->5 unless n>l

plant(REV)

plant(=M0Ml2Q)

p=p+l

typep=type

cSEXP

m=0

->6 J^f A(p)=l
->14 if A(p)=2

plant(DUP)

p=p+2

->7

m=2

p=p+2

->7

p«p+l
CSEXP

p=p+l

->8 ^f typep=7
plant(JS (llo +ra)P)

plant(JSl03P)
->9

plant(JS(109+m)P)
->4 unless n>l

plant(M-I12)

plant(M0M12)

plant(REV)
->4

jump if first operand

preserve A(partial expr)
p on +' of expr.
preserve type

evaluate first bound of PART

mark final bound of PART not * type

jump if final bound present

jump if final bound type *

final bound same as first

p on REST OF EXPR+1

mark as * type

p on REST OF EXPR+1

p on +* of expr. for final bound
evaluate final bound

p on REST OF EXPR+1

jump if finding PART of a fn value
basic process for selecting

PART of string

copy selected PART

select part of fn value

jump if first operand

;l restore A(partial expr)

8.10

S(2): | CONST

fault(100) unloss A(p)=2 ;l must be string literal

plant(SET(A(p+1)))

plant(JSl06P) ;l produce list rep. for literal

p=p+3 j| p on REST OF EXPR+1

4: if n>l then plant(JS107P) ;l concatenate unless first operand
->10

S(3>:I < EXPR)
if n>l then plant(=MQMl2Q) ;1 preserve A(partial oxpr)
cSTREXP

pssp+1

plant(JSl08P)
->&

I evaluate substring expr.

I p on REST OF EXPR+1

I create substring cell from expr.

S(4):t I EXPR I

fault(loo) ; I

skip exp ; I

p=p+l ; I

->10

invalid operand

skip past expr. in anal. rec.

p on REST OF EXPR+1

S(6):I -PART

fault(100)

skip exp

p=*p+l
->10

;I invalid operand

;l skip expr in anal. rec.

;l p on REXT OF EXPR+1

S(7):l _

if n=l then plant(JS105P) ;I create null string if
1 first operand

p=p+l ;1 p on REST OF EXPR+1

10: ->11 i£ A(p-1)=2 ; I jump if REST OF EXPR not present
fault(lOl) unless A(p)=l ;I fault unless operator

->12 ;I continue for next operand

11: type=l ;! string expr. just compiled
end

8.11

The code planted snakes use of the 'nesting store' on KDF9, but

since this is only 16 cells deep, in situations where deep use of it may

occur, cells are preserved on the main store run-time stack and restored

when the critical operations are complete. These are the machine code

groups :

=M0M12Q

and

M-I12

MOMl2

REV

< Ml2 contains the current top of run-time stack pointer)•
Some examples of the code produced are now presented :

Example 1

r

for which the Analysis record would be :

3 1 id(r) 222
and the code planted would be :

E2M3 (pick up r)
DUP

J 14P *Z (check r unassigned)
JS 103P < make copy of r)

supposing that r was the first string variable declared at textual level

3. If r wore a string name type parameter the code would be :

E2M3

-Mlo (pick up r indirectly)
MQ1U0

DUP

J 14P =Z

JS 103P

r[10] . 'RIO'

id(r) 21321 10 23112

2 p('Rlo') 2

Example 2

Analysis record :

3 1

8.12

Code produced :

E2M3

DUP

J 14P =Z

SET 10

DUP

JS HOP

JS 103P

SET (p('Rlo'))
JS 106P

JS 107P

(say)

< check r unassigned)

(produced by cSEXP)

(evaluate r[l0])

(make copy of r[l0])
(position in fixed stack)
(produce literal value)
(concatenate 'Rio' to r[l0])

Example 3

Analysis record :

3 1

Code produced :

r . (s) . t

id(r) 2 2 1 1 3 3 1

111 id(t) 222

E2M3

DUP

J 14P =Z

JS 103P

=M0M12Q

E3M3

DUP

J 14P =Z

J103P

JS 108P

M-I12

M0M12

REV

JS 107P

E4M3

DUP

J 14P =Z

JS 103P

JS 107P

id(s) 222

(copy)
(preserve)

< compiled by recursive

call of cSTREXP)

(create substring cell)

(restore)

(concatenate)

< copy)
(concatenate)

8.13

RESOLUTIONS

Both conditional and unconditional resolutions are compiled by
calls of the routine cRES. Since resolution is a three stage process it

was found to be convenient to have three subroutines of cRES named

cRESl, cRES2, cRES3 to compile the code for each of these stages. Only

cRESl uses the analysis record. The others process a reduced form of

record produced as a by-product of cRESl. This simply contains an array

of type numbers of the operands. The array ST in the compiler, in which
literals and captions are stored is convenient for the purpose. The

types formulated are the following :

1. String variable to take a resolved part, no fixed number of
elements. E.g. s in :

r -> s . 'JIM' . -

2. String variable to take a resolved part, fixed number of

elements, previous entry in array not type 1. E.g. s in :

r -> s[3] . -

3. String variable to take a resolved part, fixed number of

elements, previous entry type 1. E.g. s in :

r -> t . s[2j

4. String literal to be scanned for and finally garbage

collected. E.g. *JIM# in :

r -> s . 'JIM' . t

3. String value to be scanned for and not garbage collected.

E.g. s in :

r -> t . s . u

6. String to be matched without scanning and finally garbage

collected. E.g. *JIM# in j

r -> 'JIM' . s

7. String to be matched without scanning and not garbage

collected. E.g. s in :

r -> s . t

8. Substring to be scanned for. E.g. :

r -> - . < s) . -

9. Substring to be matched without scanning. E.g. :

r -> (s) . -

10. End of substring, previous entry not type 1. E.g. :

r -> - . (s[2]) . -

8.14

11. End of substring, previous entry type 1. E.g. :

r->-.(s).~
12. End of string, previous entry not type 1. E.g. :

r -> s . #JIM*

13. End of string, previous entry type 1. E.g. :

r -> s

Other formulations could be used. The above was found to fit the

requirements of cRES2 conveniently.
There now follows a description of what is intended to be compiled

at each stage for each of these types.

Type 1

cRESl: Assign address of variable to stage 1 array :

(calculate ^variable)

=M0M12Q

M+I12

CRES2: Assign address of current cell in string being resolved to

stage 2 array :

DUP

=MQMl0QN

cRES3: Assign value to string s

JS 125P

As described earlier, the stage 1 and stage 2 arrays are

interlaced. These are run-time arrays and space for them is allocated at

the current end of the run-time stack. M12 indexes this current end and

is therefore used by cRESl operations to advance the pointer and assign

space for the array. The original value is, however, preserved in 14

by :

Ml2

=14

before cRESl is called. Before cRES2, this is transferred to M10 which
is used thereafter to index up the array, leaving M12 as a valid end of
stack pointer.

8.15

Type 2
cRESl: Assign number of elements and address of variable :

(calculate ©variable)

(calculate number of elements)
SHL+16

OR

=M0M12Q

M+I12

cRES2: Call basic process to count down components :

JS 114P

J (failure)
cRES3: Assign value to string :

JS 125P

*

failure indicates the position of the failure exit for the current

substring level of resolution. Since the basic process which counts down

components can indicate a failure condition, the failure route is also

compiled.

Type 3
As type 2, except that since the previous type is 1, it is

potentially possible to return to the cRES2 point in a backtrack for a

further attempt at matching. A backtrack label is therefore set up :

(backtrack): JS 114P

J (failure)

Type 4
cRESl: Assign A(literal or "name")

< calculate A(literal or "name"))

=M0M12Q

M+I12

cRES2; Call process to scan string for the literal or "name"
with a backtrack label since backtracking to this point is potentially

possible :

(backtrack) : JS 115P

J (failure)
cRES3: Garbage collect literal or "name" value :

JS 102P

8.16

I

Type 5
As type 4, except no garbage collection in cRES3 is required.

Type 6

cRESl; Assign A(literal or "name") :

< calculate A(literal or "name"))
=M0M12Q

M+I12

cRES2; Call basic process which matches literal or "name"
without scanning.

JS 116P

J (failure)
J (success)

partial failure

(success):

where 'partial failure' is s

If backtracking possible :

SET <-2n)
JS 117P

J (backtrack)

n gives the number of locations in the dynamic control stage 1 and stage
2 array to the correct position for the backtrack. 117P resets such

registers as necessary for the backtrack to proceed.

If no possibility of backtracking :

ERASE

J (failure)

cRES3: Garbage collect literal or "name"
JS 102P

Type 7
As type 6, but without any garbage collection in cRES3.

8.17

Type 8
cRESi:

M+I12

M+I12

i.e. nothing assigned.

cRES2: Call basic process to scan for a substring :

(backtrack): JS 118P

J (failure)

Resolution of substring

cRES3;

(success):

No action.

ZERO

JS 117P

J (backtrack)

'success' indicates the route after successful resolution of the

substring, the proceeding three instructions forming the failure route

leading to the backtrack label and further scanning for a substring. The

code for the resolution of the substring is produced by a recursive call
on cRES2.

Type 9

cRESl:

M+I12

M+I12

i.e. no assignments.

8.18

CRES2: Call basic process to match a substring without scanning.

JS 119P

J (failure)
J (success 1)

(success 1):

partial failure

resolution of substring

partial failure

(success 2):

CRBS3: No action.

The 'partial failure' blocks are the same as those of type 6 and
the 'resolution of substring' is again produced by a recursive call of
cRES2. In this case, no backtrack route is automatically available after
the substring resolution.

Type 10
cRESl;

M+I12

M+I12

cRES2: Call basic process to check end of substring and exit from

substring :

JS 120P

J (success)

partial failure

(failure): JS 121P

cRES3: No action.

8.19

Type 11
GRKSI!

M+I12

M+I12

cRES2: Exit from substring :

JS 122P

J (sueeess)
(failure): J 121P

eRES3: No action.

Type 12

cRESl:

M+I12

M+I12

cRES2: Call basic process to check end of string :

JS 123P

J (success)

partial failure

(failure):

cRES3: No action.

Type 13
CKESI:

11+112

H+I12

CRES2: Clear up at end of string :

14

=M13

M0M13N

■MOlflLO

sMOMlOQN

J (success)

(failure):

cRES3: No action.

8.20

cRES

r~
VJl

A
'©serve stack pointer j

ESI j

^ second comparator in [SC] ^
AO

N
^

^ C3.lsulr-.t3 g(LHS name) y<~

Jro for stage 2 of resolution

^ CRES2 J

resolution part of [SC] ?

YOS

set falsa marker

(jumjump to garbage collect j; . fur;ump to monitor
A
J

i
i set up resolution success label

V

f \
v cR3£S ;

V /

f restore stack poininter

v

8.21

routine cRES (integer z,q)
integer nOp,qq,pp,suc
routinespec cRESl

routinespec cRES2

routinespec cRES3

nDp=nO

ST(nO)=©

nflasnO+1

plant(M12)

plant(=14)
cRESl

->1 unless z=l

;1 preserve nO in nOp

;I set up dummy type 0

;I preserve run-time stack pointer in 14

;I jump for unconditional case

;l p on REST QF SC

;i 'double-sided' resolution
I conditions invalid

;I preserve p in qq

p=p+l
->1 unless A(p-l)=l

fault(109)

skip exp

1: qq-P

P=q

cNAME(3) ;I calculate @<LHS name)
fault(110) unless type=l and A(p)=2 and (z=0 or A(p+1)=2)

1 resolution invalid unless string

1 variable with no PART and res.

I unconditional or REST OF EXPR null.

;t prepare for stage 2

;I set pp to start of compile-time

1 type array

plant(JS 124P)

pp=nOp

CRES2

pp=@(15P)
if z=Q then ->2

plant(ERASE)

plant(ZERO)

plant(NOT)

plabel=plabel-l

k=plabel

store jump

pp=<)

;I failure to resolve monitor address

;I jump if unconditional

;I set false marker

;t set up jump to garbage
I collection section

8.22

2j plant(J (pp)) ;l jump to monitor or garbage

i collection section

pushdown2(label(level),ca,sue) ;I set up resolution
t success address

nOenOp ;i set base of type array

cRES3

plant(14)

plant(=M12) ; I restore run-time stack pointer

p=qq

return

routine cRESl

switch r(l:7),sw(0:2)

integer l,m

integerfnspec get type

1=0 ;1 substring depth counter

1; fault(l07) unless A(p)=3 ;| +' not null
2j p=p+2 ;1 p on OPERAND+1

->r(A(p-l)) ;1 switch on type of operand

r(l):I NAME

cNAME(3) ;I calculate ©name

fault(107) unless type=l ;l fault unless name a string
14: p=p+l ;I p on PART+1

if^ A(p-l)=2 then ->11 ;! jump if no PART
->sw(get type)

sw(2):cSEXP ;| calculate number of components

plant(SHL+16)

plant(OR)

p=prl
if A(p-1)=3 then ->12

fault(l07)

if A(p-1)-1 then skip exp

12s ST(nO)=2

if ST(nO-l)=l then ST(nO)=3 ;I set type in array

->3

11: m=n0

;l p on REST OF PART+1

;I jump if no second index to PART

;i second index invalid in resolutions

8.23

13 j m=m-l

if ST(m)=l or ST(ra)=3 then fault<107)
if ST(m)=2 then ->13

ST<nO)=l
->3

sw(1):cSTREXP

plant(OR)

p=p+l

if A(p-1)=3 then ->21

feult(l07)

if A(p-1)=1 then skip exp

->21

sw(0):p=p i-5

cSTREXP

plant(OR)

plant(SET 1)

plant(SHC-l)

plant(OR)
->21

r(2);i CONST

fault(107) unless A(p)=2 ;I must be string constant

psp+2

plant(SET(A(p-l))) ;I set address of chars in stack

plant(JS 106P)

21; ST(nQ)=6

if ST(nO-l)=l then ST(nO)~4 set type entry
->3

r(3):l (EXPR)

ST(n0)=9
if ST(nO-l)=l then ST(nO)=8
n0=n0+l

plant(M+I12)

plant(U+112)
1=1+1 ;1 increment substring depth counter

->1

8.24

r(4):I IEXPR!

fault(107) ;I no modulus signed exprs. allowed

skip exp

->4

r(5):l "NAME"
cNAME(2) ;I pick up value of name

fault(107) unless type=l or type=7 ;| must be string
t or stringfn

->51 unless type=l

plant(DUP)

plant(J 14P =Z)

;I jump for string fn

;1 check name assigned unless

I a function

51 j

;I m=l for garbage collection

BP®

if type=7 then m=l

ST(nD)=7-m

if ST(nO-l)=l then ffT(nO)=5-m

nOenO+1

p=p+l ;I p on PART+1

if A(p-l)=2 then ->7 ;| jump if no PART
cSEXP ;I calculate first index

if A(p)=3 then plant(DUP)
m=m+2 unless A(p)=2
P=P+1

if A(p-1)=1 then cSEXP

plant(JS (112-m)P)
->7

;I DUP if no second index

;l unless second index
•I p on +' of EXPR or REST OF EXPR+1

;I calculate second index

;! call on appropriate basic process

r(6):I -PART

plant(ZERO)
->14

;I treat as [NAME][PART] with @name=0

r(7):l _

if A(p)»l then ->6 ;t ignore if not end of expr.

if ST(nO-l)=J then fault(l07) ;l fault if e.g. r->_
->5

8.25

3: nO=nO+l

7: plant(=M0M12Q)

plant(M+!12)

4: if A(p)=2 then ->5

6: p=p-rl

1 end of expr.

I p on OPERATOR

fault(l08) unless A(p)=l ;l fault unless operator

ST(nO)=lO

if ST(nO-l)=l then ST(nO)=ll
nO=nQ+l

plant(M+I12)

plant<M+I12>
1=1-1 ;I decrement substring depth counter

->4 ijf 1>=0 ; I not end of whole expression

ST(nO-l)=ST(nO-l)+2
return

integerfn get type

switch sw(l:7)

integer q

if A(p)=3 and A(p+1)=6 and A(p+2)=0=A(p+3) and c

q=p

sw(3):if A(q)<3 then result=2

q=q+2

->sw(A(q-l))

sw(l):copy tag(A(q)>
if parity(type)=l or type=5 then result=2

sw(5):sw(6):sw(7):result=l

sw(2):if A(q)s2 then result=l

sw(4):result=2

->2

5: p=p+l

;i go for next operand

;1 p on REST OF EXPR+1

A(p,-4)=1 then result=0

end

end

8.26

l:

routine cHES2

integer fail,back,backpp,i

routineapec failj

routinespec faill

;t to set up and plant a jump

;1 or label for failure

I route from a basic process

;1 to set up and plant a jump

;I or label for success

I route from a basic process

routinespec pfail(integer m,n) ;i to set up a backtrack route

switch s(l:13)

routinespec sucj

routinespec sucl

fail=0

back=0

pp=pp+l

->s(ST(pp))

;1 no failure or backtrack routes

i yet possible

;I index to type array set up by cftESl

;I switch on operand type

s(l):plant(DUP) unless ST(pp+l)>=ll ;! DUP unless end of expr.

plant(=MQM10QN)
->1

s(2);i=114

->3

8(3):i=114

->2

s(4):s(5):i-115

2: plabel=plabel-1

back=plabel

backpp-pp

pushdown2(label(level),ca,back)

;I set up backtrack label

3; plant(JS (i)P)

failj
->1 unless OT(pp)=8
CRES2

pfail(0,0)
sucl

->1

I jump to basic process i

I set up failure exit route

I next operand unless subexpr.

t perform substring resolution

1 substring resolution failure route

I substring resolution success route

8.27

s(6):s(7):plant(JS 116P)

failj

sucj

pfail(2*(backpp-pp),0)
sucl

->1

s(8):i-118
->2

s(9):plant(JS 119P)

failj

aucj

i=2*(backpp-pp)
pfail(i,0)
sucl

CRES2

pfail(i,0)
sucl

->1

s(10):plant(JS 120P)

sucj

pfail(2*(backpp-pp),l)
faill ;l set up failure to resolve exit

I route from substring resolution

plant(JS 121P)

return

s(ll):plant(JS 122P)

sucj

faill

plant(JS 121P)
return

s(12):plant(JS 123P)

sucj

pfail(2#(backpp-pp),l)
faill

return

;l partial failure route

;I success route entry point

; 1 perforin substring resolution

8.28

s(13):plant(14)

plant(=M13)

plant(MOM13N)

plant(=M0M10)

plant(=MOMlOQN)

SUCj

faill

l:

routine failj
->1 unless fail=^)

plabel=plabel-l

fail=plabel

k=fail

store jump

plant(JO)
end

;I jump if failure label already set

;1 set up private label

;l jump address filled in later

routine faill

pushdown2(label(level),ca,fail) unless fail=0
end

routine sucj

plabel=plabel-l

suc=plabel ;i set up success label

k=suc

store jump

plant(J 0)
end

routine sucl

pushdovn2(label(level),ca,sue)
end

routine pfail(integer a,n)
->1 unless back=0 ;I jump if backtracking possible

plant(ERASE)

failj if n=0
->2

8.29

1: plant(SET(m))

plant(JS 117P)
k=foack

store jump

plant(J 0) ;! set up backtrack jump
2; end

end ;t of cRES2

routine cRES3

plant(14)

plant(=MlO) ;I set up base of run-time array

pp=n0

lj nopsspp+l
2 j ppspp+1 ;I first pass over type array

->3 JLf ST(pp)>=12
->2 unless ST(pp)<as4 or ST(pp)=6 ;l no assignments to be made

plant(SET(2*(pp-nQp)))
plant(JS 125P)
->1

3: plant(ERASE)
->4 if zsso ; t unconditional

plant(ZERO)

pushdown2(label(level),ca,plabel)
4: pp=n0

n0p=pp+l

6j pp=pp+l ;1 second pass over type array

return if ST(pp)>=l2 ;1 end of expr.
->6 unless ST(pp)=4 or ST(pp)=6 ;l loop unless garbage

! collection types

plant(SET(2*(pp-nGp)))

plant(14)

plant(+)

plant(JS 102P) ; I jump to return string basic process

->6

end

end ;I of cRES

8.30

To illustrate the code generation of cRES , a few examples are

given :

Example 1

Analysis record :

id(r)

r -> s

2 2 3

P

1 id(s) 222

Compile-time type array

0 1 13

Code generated t

M12

(preserve run-time stack pointer)

(prepare for stage 2)

=14

(calculate @s)

=410M12Q

M+I12 >(cRESl)

M+I12

M+I12

(calculate @r)
JS 124P

=M0M10QN

14

=M13

M0M13N ^(cRES2)
=M0M10

=M0MlOQN

J (success)
J 15P

(success): 14

=4410

SET 2

JS 125P

ERASE

14

=M12

The quantity of code generated is substantial for this the simplest case

of resolution. It effectively represents the overhead on a resolution,

becoming very much less significant for more realistic resolutions.

(failure monitor - redundant)

>(cRES3)

(make assignment to s)

8.31

Simple cases such as this are not in general treated specially for the
sake of consistency.

Example 2

r -> s . 'lit' . t

Analysis record :

id(r) 22. .31 id(s) 2 2

q p

Compile-time type array :

0 1 4 1 13

Code generated :

Ml2

=14

(calculate @s)

=M0M12Q

M+I12

SET p('LIT')
JS 106P

=M0M12Q

M+I12

(calculate @t)

=M0M12Q

M+I12

M+I12

M+I12

(calculate @r)
JS 124P

DUP

=M0M10QN

(back): JS 115P

J (fail)

=M0M10QN

14

=M13

M0M13N

=M0M10

=M0M10QN

J (success)

1122 p('LIT') 111 id(t) 222

(cRESl)

(scan for 'lit')

(cres2)

8.32

(fail);

(success):

J 15P

14

=M1Q

SET 0

JS 125P

SET 2

JS 125P

ERASE

SET 2

14

+

JS 102P

14

=M12

(assign to s)

(assign to t)

(cRES3)

(garbage collect 'LIT*)

Example 3

r -> s[2].t.'VAl/.u."w[2:4]".'Wx'.x
Analysis record :

id(r) 2 2 . . 3 1 id(s) 21321223111 id(t) 2 2
1122 p('VAL') 111 id(u) 22115 id(w) 21321
221321421122 p(*Wx') 111 id(x) 222

Compile-time type array ;

02141561 13

Code generated :

Ml2

=14

(calculate @s)

SET 2

SHL+16

OR

=M0M12Q

M+I12

(calculate

=M0M12Q

M+I12

(form 2/@s)

8.33

(backl):

SET p('VAL')
JS 106P

=M0M12Q

M+I12

(calculate @u)

=M0M12Q

M+I12

(pick up «)
DUP

J 14P =Z

SET 2

SET 4

JS HOP

=M)M12Q

11+112

SET P('WX')
JS 106P

=M0M01Q

M+I12

(calculate @x)

=M0M12Q

M+I12

M+I12

M+I12

(calculate @r)
JS 124P

JS 114P

J (fail)

DUP

=M0MlOQN

JS 115P

J (fail)
DUP

=M0M10QN

(cRESl)

(select w[2:4])

(match 2 components)

(scan for *VAL*)

8.34

(back2): JS 115P

J (fail)
JS 116P

J (fail)
J (success 1)

SET 2

JS 117P

J (back 2)

(success 1): sMOMlOQN

14

=M13

M0M13N

sMOMlO

=M0M10QN

J (success 2)
(fail): J 15P

(success 2): 14

=M10

SET 0

JS 125P

SET 0

JS 125P

SET 2

JS 125P

SET 4

JS 125P

ERASE

SET 4

14

+

JS 102P

SET 10

14

+

JS 102P

14

sM12

(scan for w[2j4])

(match 'Wx')
(cRES2)

(backtrack)

(assign to s)

(assign to t)

(assign to u)

(assign to x)
(cRES3)

(garbage collect *VAL*)

(garbage collect 'wx')

8.35

Example 4
p -> s . (t . *Tu' . u) . v

Analysis record :

id(r) 22. .31 id<s) 2211331 id(t) 22112

2 p('TU') 111 id(u) 2 2 2 1 1 1 id(t) 2 2 2

Compile-time array :

018161 11 1 13

Code generated :

Ml2

=14

(calculate @s)

=M0M12Q

M+112

M+I12

M+112

(calculate @t)
=M0M12Q

M+112

SET p(*TU#)
JS 106P

=M0M12Q

M+112 > (cRESl)

(calculate @u)

=MGM12Q

M+112

M+112

M+112

(calculate @v)

=M0M12Q

M+112

M+112

M+112

(calculate @r)
JS 124P

DUP

=MOMlOQN

(back): JS 118P

J (fail 1)

(scan for substring)

8.36

DUP

=M0M10QN

JS 116P

J (£ail2)
J (success 2)
ERASE

J (fail 2)

(success 2): =M3Ml0QN

JS 122P

J (success 1)
(fail 2): JS 121P

SET 0

JS 117P

J (back)
(success 1): =MQM10QN

14

=M13

M0M13N

rtiOMlO

=MDM10QN

J (success 3)

(fail 1): J 15P

(success 3): 14

aMIO

SET 0

JS 125P

SET 2

JS 125P

SET 2

JS 125P

SET 2

JS 125P

ERASE

SET 6

14

+

JS 102P

14

=M12

(scan for *TU*)

((cRES2)>

(no backtracking possible)

(exit from substring)
(cRES2)

(exit from substring)

(backtrack)

(assign to s)

(assign to t)

(cRES3)

(assign to u)

(assign to v)

(garbage collect *TU')

8.37

REFERENCES

1. Bobrow, D.G. and Raphael, B. A Comparison of List

Processing Computer Languages. Comm. ACM 7,4(April 1964).
2. Brooker, R.A. and Rohl, J.S. Atlas Autocode Reference

Manual. University of Manchester Computer Science Department.

3. COMIT Programmers Reference Manual. The M.l.T. Press.

4. De Morgan, R.M. and Rutovitz, D. A String Facility for

Atlas Autocode. University of Manchester Computer Science Department.

5. Farber, D.J. et al. SNDBOL, A String Manipulation Language.

J.ACM 11,2(January 1964).
6. LISP 1.5 Programmer's Manual. The M.l.T. Press.

7. Newell, A. et al. Information Processing Language-V Manual.

Prentice-Hall, Englewood Cliffs, N.J.

3. Weizenbaum, J. Symmetric List Processor. Comm. ACM

6,9(September 1963).

APPENDIX A

Some example* of ASTRA program.

♦**a

job

csc004/0000u000/ b.s.read went to mow a meadow
output 0 eight-hole punch 10 blocks

compiler as

%begin

%integer i,j

%string z

%stringarray x(l:6)

%stringfnspec y(%integer k)
x(l)='one'
x(2)=»*two*
x(3)='three'
x(4)=*four *
x(5)='five'
x(6)»'six#
z='went_to_mow_a_meadow '
%cycle 1=1,1,6
write string('.x<l).y(i). '_went_to_mow .z)
%cycle j-1,-1,1
write string('-'.x(j).y(j))

%repeat

write string(' and_his_dog-'.z)
%repeat

%stringfn y(%integer k)
%if k=1 %then %result='_man'
%result='_men'
%end

%endofprogram

a.l

29/04/69 09.49.14

ASTRA 10/06/68

CSC004/00000000/ B.S.READ WENT TO MOW A MEADOW

0 BEGIN

19 STRING JN Y

22 END OF STRING FN

23 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2243 WORDS

PROGRAM DUMPED

COMPILING TIME 12 SEC / 3 SEC

ONE MAN WENT TO MOW, WENT TO MOW A MEADOW
ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

TWO MEN WENT TO MOW, WENT TO MOW A MEADOW
TWO MEN

ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

THREE MEN WENT TO MOW, WENT TO MOW A MEADOW
THREE MEN

TWO MEN

ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

FOUR MEN WENT TO MOW, WENT TO MOW A MEADOW
FOUR MEN

THREE MEN

TWO MEN

ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

FIVE MEN WENT TO MOW, WENT TO MOW A MEADOW
FIVE MEN

FOUR MEN

THREE MEN

TWO MEN

ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

SIX MEN WENT TO MOW, WENT TO MOW A MEADOW
SIX MEN

FIVE MEN

FOUR MEN

THREE MEN

TWO MEN

ONE MAN AND HIS DOG

WENT TO MOW A MEADOW

STOPPED AT LINE

CSC004/00000000/

RUNNING TIME 7

23

B.S.READ WENT TO MOW A MEADOW

SEC / 1 SEC

***a

JOB

CSC004/00000000/ COUNT WORDS

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%begin

%STRINGARRAY WORD(1{500)

%INTEGERARRAY NUMBER(1:500)

%STRING S

%INTEGER I,J

%STRINGENSPEC NEXT WORD

WORD(1)=NEXT WORD

1=1

NUMBER(1)=1
3 ; S=NEXT WORD

%if s='finis' %then ->1

%CYCLE J=1,1,1

%IF S=WORD(J) %THEN ->2

%REPEAT

1=1+1

WORD(I)=S

NUMBER(I)=1
->3

2': NUMBER(J)=NUMBER (J) +1
->3

1:%CYCLE J=1,1,I

WRITE(NUMBER(J),2)
WRITE STRINQ(' ' ,WORD(J) .'-')
%REPEAT

%STRINGFN NEXT WORD

%STRING LETTER,WORD

WORD=_

ljREAD ITEM(LETTER)
->1 %UNLESS 'A'<sLETTER<='z'
2 jWORDssWORD. LETTER

READ ITEM(LETTER)
->2 %IF #A'<=LETTER<='Z'
%RESULT=WORD

%END

%ENDOFPROGRAM

FRIENDS, ROMANS, COUNTRYMEN, LEND ME YOUR EARS. I COME TO BURY

CAESAR, NOT TO PRAISE HIM. THE EVIL THAT MEN DO LIVES AFTER THEM.
THE GOOD IS OFT INTERRED WITH THEIR BONES. SO LET IT BE WITH CAESAR.

THE NOBLE BRUTUS HATH TOLD YOU CAESAR WAS AMBITIOUS. IF IT WERE SO

IT WAS A GRIEVOUS FAULT. AND GRIEVOUSLY HATH CAESAR ANSWERD IT.

FINIS

29/04/69 09.49.38

ASTRA 10/06/68

CSC004/00000000/ COUNT WORDS

0 BEGIN

24 STRING FN NEXTWDRD

33 END OF STRING FN

34 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2269 WORDS

PROGRAM DUMPED

COMPILING TIME 4 SEC / 2 SEC

1 FRIENDS

1 ROMANS

1 COUNTRYMEN

1 LEND

1 ME

1 YOUR

1 EARS

1 I

1 COME

2 TO

1 BURY

4 CAESAR

1 NOT

1 PRAISE

1 HIM

3 THE

1 EVIL

1 THAT

1 MEN

1 DO

1 LIVES

1 AFTER

1 THEM

1 GOOD

A.6

i

IS

OFT

INTERRED

WITH

THEIR

BONES

SO

LET

IT

BE

NOBLE

BRUTUS

HATH

TOLD

YOU

WAS

AMBITIOUS

IF

WERE

A

GRIEVOUS

FAULT

AND

GRIEVOUSLY

ANSWERD

STOPPED AT LINE 34

CSC004/00000000/ COUNT WORDS

RUNNING TIME 19 SEC / 14 SEC

A.7

***A

JOB

CSC004/00J0Q000/ SORT WORDS

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

flBEGIN

%STRINCARRAY X(lj20>

%INTEGER I

%STRING D

%ROUTINESPEC STRING QUICKSORT(%INTEGER A,B)
%CYCLE 1=1,1,20
READ STRING(X(I))

%IF X(I)='END' %THEN ->1

%REPEAT

1:STRING QUICKSORT(1,1-1)
%CYCLE 1=1,1,1-1
WRITE STRING('-'.X(I>)
%REPEAT

%RDUTINE STRING QUICKSORT(%INTEGER A,B)

%INTEGER L,U

%RETURN %IF A>=B

L=A

U=B

D=X(U)
->2

1:L=L+1

->4 %IF L=U

2:->l %UNLESS X(L)>D

X(U)=X(L)
3:u=u-l

->4 %IF L=U

->3 %UNLESS X(U)<D
X(L)=X(U)
->1

4:X(U)=D

A.8

STRING QUICKSORTS,L-l)
STRING QUICKSORT(U+l,B)
%END

%ENDQFPRGGRAM

(ABA)

(A)

(AARDWOLF)

(ABACOT)

(AARDVARK)

(AARONIC)

(ASTRA)

(ABACK)

(AASVOGEL)

(AB)

(END)

29/04/69 09.50.06
ASTRA 10/06/68

CSC004/00000000/ SORT WORDS

0 BEGIN

13 ROUTINE STRINGQUICKSORT

32 END OF ROUTINE

33 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2238 WORDS
PROGRAM DUMPED

COMPILING TIME 4 SEC / 3 SEC

A

AARDVARK

AARDWOLF

AARONIC

AASVOGEL

AB

ABA

ABACK

ABACOT

ASTRA

STOPPED AT LINE 33

CSC004/00000000/ SORT WORDS

RUNNING TIME 1 SEC / 0 SEC

A.10

***a

job

csc004/00000j00/ tutorial groups

output 0 eight-hole punch 10 blocks

compiler as

flbegin

%string r,s,ss,t,tt

tt=_

4:read string(r)
%if rb'end' %then ->1

R->t.'s'.SS
3:->2 %unless ss->s.','.ss
tt=tt.s.'('.t.")-'
->3

2:tt=tt.ss.'('.t.*)-'
->4

1:write string(tt)
5sread string(r)

%if r='end# %then %stop

write string('-the_tutor_of_*.r.'_is_')
t='ndt_known' %unless tt->-."r".'(#.t.')#.-
write string(t)
->5

%endofprogram

(rees:fielding,paulsen,young)

(whitfield:cotton,fraser,mcintosh)
(foster jyuille,stevenson)

(end)

(fraser)

(BLOGOS)

(young)

(end)

a.11

29/04/69 09.50.16

ASTRA 10/06/68

CSCO04/00000000/ TUTORIAL GROUPS

0 BEGIN

18 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2281 WORDS

PROGRAM DUMPED

COMPILING TIME 4 SEC / 2 SEC

FIELDING(REES)

PAULSEN(REES)

YOUNG(REES)
COTTON (WHITFIELD)

FRASER(WHITFIELD)

MCINTOSH(WHITFIELD)

YUILLS(FOSTER)

STEVENSON(FOSTER)

THE TUTOR OF FRASER IS WHITFIELD

THE TUTOR OF BLOGGS IS NOT KNOWN

THE TUTOR OF YOUNG IS REES

STOPPED AT LINE 13

CSC004/00000000/ TUTORIAL GROUPS

RUNNING TIME 3 SEC / 1 SEC

A.12

***A

JOB

CSC0Q4/00000000/ DICTIONARY

OUTPUT 0 EI (HIT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%RDUT INESPEC INSERT(%STRINGNAME DICT,WORD)
%STRINGFNSPEC LOOKUP(%STRINGNAME DICT.WORD)
%ROUTINESPEC LIST(%STRINGNAME DICT,%STRING WORD)
%STRING R,D

Dts_

2 jREADSTRING(R)

%IF Re'END' %THEN ->1

WRITE STRING('-'.R)
INSERT(D,R)
WRITE STRING <'-'.D)
->2

ljNEWLINES(2)

LIST(D,_)
NEWLINES(J)

3;READ STRING(R)

%IF R='END' %THEN %STOP

WRITE STRING('~WORD_'.R. '_'.LOOKUP(D,R>. '_J>ICTIQNARY')
->3

^ROUTINE INSERT(%STRINGNAME DICT,WORD)
%STRING W,X,Y,Z
DICT->X

WORD->W

3:%IF X»_ %THEN ->1

%IF X[l>'.' %THEN ->2

X->Y.(Z).X

%IF W=_ %0R W[1]#Y %THEN ->3
Z->X

W->-[l].W

->3

2:%IF Wa_ %THEN %RETURN

A.13

X->-[l].X

->3

i:X<- .

4:%IF W=_ %THEN %RETURN

X<-W[l].<V>
X->-.(X)

W->-[l].W

->4

%END

%STRINGFN LOOKUP(%STRINGNAME DICT,WORD)

%STRING W,X,Y,Z
DICT->X

WORD->W

3:%IF X=_ %THEN %RESULT='NOT_IN'
%IF X[1]=*.* %THEN ->2

X->Y.(Z).X

%IF W=_ %OR Wrl]#Y %TOEN ->3
Z->X

w->-[X].w
->3

2:%IF W=_ %THEN %RESULT='IN'
X->-[l].X

->3

%END

%ROUTINE LIST(%STRINGNAME DICT,%STRING WORD)
%STRING X,Y#Z

DICT->X

2:%IF X=_ %THEN %RETURN

%IF X[l]='.' %THEN ->1

X->Y.(Z).X

LIST(Z,WORD.Y)
->2

1JWRITE STRING(' .WORD)

X->-[l].X
->2

%END

%ENDOFPROGRAM

A.14

(HEBE)

(HECATE)

(HECTOR)

(HELEN)

(HELIOS)

(HERA)

(HERCULES)

(HERMES)

(END)

(FRED)

(HELEN)

(JIM)

(HECTOR)

(HARRY)

(HERA)

(HE)

(END)

29/04/69 09.50.28

ASTRA 10/06/68

CSC0J4/Q00000J0/ DICTIONARY

0 BEGIN

19 ROUTINE INSERT

39 END OF ROUTINE

40 STRING FN LOOKUP

54 END OF STRING FN

55 ROUTINE LIST

66 END OF ROUTINE

67 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2623 WORDS

PROGRAM DUMPED

COMPILING TIME 7 SEC / 5 SEC

HEBE

H(E(B(E(.))))
HECATE

H(E(B(E(.))C(A(T(E(.))))))
HECTOR

H<E(B(E(.))C<A(T(E(.)))T(0(R(.))))))
HELEN

H(E(B(E(.))C(A(T(E(.)))T(0(R(,))))L(E(N(.)))))
HELIOS

H(E(B<E(.))C(A(T(E(.)))T(0(R(.))))L(K(N(.)>I(0<S(.))>)))
HERA

H(E(B(E(.))C(A(T(E(.)))T(0(R(.))))L(E(N(.))I(0(S(.))))R(A(.»))
HERCULES

H(E(B(E(.))C<A(T(E(.)))T(0(R(.))))L(E(N(.))l(0<S(.))))R(A(.)C(U
<L(E(S(.))))»))
HERMES

H(E(B(E(.))C(ACT(E(.)))T(0(R(.>)))L(E(N(.))I(0(S(.)»)R(A(.)C(U
(L(E(S(.)))))M(E(S(.))))))

A.16

HEBE

HECATE

HECTOR

HELEN

HELIOS

HERA

HERCULES

HERMES

WORD FRED NOT IN DICTIONARY

WORD HELEN IN DICTIONARY

WORD JIM NOT IN DICTIONARY

WORD HECTOR IN DICTIONARY

WORD HARRY NOT IN DICTIONARY

WORD HERA IN DICTIONARY

WORD HE NOT IN DICTIONARY

STOPPED AT LINE 16

CSC004/00000000/ DICTIONARY

RUNNING TIME 8 SEC / 6 SEC

A.17

#**A

JOB

CSC004/00000000/ CUP AND CAP

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%STRINGFNSPEC CUP (%STRING R,S)

%STRINGFNSPEC CAP (%STRING R,S)
%STRING R,S

1;READ STRING(R)
%IF R='END' %THEN %STOP

READ STRING(S)

WRITE STRING(*~'.R.' '.5.' '.CUP(R,S).' '.CAP(R,S)>
->1

%STRINGFN CUP(%STRING R,S)

%STRING T,U,V
T=S

R->U

1:%IF U=_ %THEN %RESULT=T

U->V[1].U

T=T.V %UNLESS S->-."v".-
->1

%END

%STRINGFN CAP(%STRING R,S)

%STRING T,U,V

T=__
R->U

1:%IF U=_ %THEN %RESULT=T

U->V[1].U

T=T.V %IF S->-."v".-
->1

%END

%ENDOFPROGRAM

A.18

<ab) (bc)

(abcd) (cdef)

(abcdekfr) (wxyz)

(a(bc)d(efg)h) (d(epgh)h(bc))
(end)

a.19

29/04/69 09.50.49

ASTRA 10/06/68

CSC004/00000000/ CUP AND CAP

0 BEGIN

9 STRING FN CUP

17 END OF STRING FN

18 STRING FN CAP

26 END OF STRING FN

27 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2315 WORDS

PROGRAM DUMPED

COMPILING TIME 5 SEC / 2 SEC

AB BC BCA B

ABCD CDEF CDEFAB CD

ABCDEFG WXYZ WXYZABCDEFG

A(BC)D(EFG)H D(EFGH)H(BC) D(EFGH)H(BC)A(EFG) (BC)DH

STOPPED AT LINE 5

CSC004/00000000/ CUP AND CAP

RUNNING TIME 4 SEC / 1 SEC

A. 20

***A

JOB

CSC004/0J000000/ INTO POLISH

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%STRINGFNSPEC INTO(%STRING R)

%STRING S

ljREAD STRING(S)

%IF S='END' %THEN %STOP

WRITE STRING('-~PULISH_FORM_GF~'.S.'~IS-'.INTO(S))
->1

%STRINGFN INTO(%STRING R>

%STRING S

%IF R->(S) %THEN %RESULT= INTO(S[l]).INTO(S[3]>.S[2]
%RESULT=R

%END

%ENDOFPROGRAM

(X)

((X+Y))

((X+(Y*Z)))

(((X*Y)+(A*(B-C))))

<(X+((A-B)*Z)»
<<<X-Y)+Z>)

<<X+<Y+<Z+W))»

(END)

A.21

29/04/69 09.51.01

ASTRA 10/06/68

CSC004/00000000/ INTO POLISH

0 BEGIN

7 STRING FN INTO

11 END OF STRING FN

12 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2183 WORDS

PROGRAM DUMPED

COMPILING TIME 4 SEC / 1 SEC

POLISH FORM OF

X

IS

X

POLISH FORM OF

(X+Y)

IS

XY+

POLISH FORM OF

<X+<Y«-Z))

IS

XYZ* +

POLISH FORM OF

<(X"*Y)+(A*<B-C>»
IS

XY*ABC-*f

A.22

POLISH FORM OF

(X+<<A-B)#Z»
IS

XAB-Z*+

POLISH FORM OF

((X-Y)+Z)

IS

XY-Z+

POLISH FORM OF

(X+(Y+(Z+W)))
IS

XYZW+++

STOPPED AT LINE 4

CSC004/QGOOOOOO/ INTO POLISH

RUNNING TIME 4 SEC / 0 SEC

A.

***A

JOB

CSC004/00000000/ DIFFERENTIATE

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%STRINGFNSPEC DIFF(%STRING S)

%STRINGFNSPEC EDIT(%STRING S)

%STRING S

ljREAD STRING(S)

%IF S»'END' %THEN %STOP

WRITE STRING('--DIFFERENTIAL_GF-*.S.'-WITH_RESPECT_TO_X_IS-')
SbDIFF(S)

write string(s.'-i.e.-'.edit(s))
->1

%STRINGFN DIFF(%STRING S)

%STRING t

%IF S->(T) %then ->1

%IF S=s'x" %THEN %RESULT='l"
%RESULT='o'
lj%IF T[2]='+' %THEN %RESULT= (DIFF(T[1]).' '.DIFF(T[3])>
%IF T[2]='-* %THEN %RESULT= (DIFF(T[1]).*-*.DIFF<T[3])>
%IF T[2]«'*' %THEN %RESULT=((DIFF(T[1]).'*' .T[3 j).. %C

(T[1].'#'.DIFF(T[3J)))
%IF T[2]='/' %THEN %RESULT= (<(DIFF(T[1]).'*'.T[3]).%C

(T[lj.'#'.DIFF(Tt3]))>.'/*. %C

(T[3].'*'.T[3])>
%result='fault'
%END

A. 24

%STRINGFN EDIT(%STRXNG S)

%STRING T,U,V

%RESULT=S %UNLESS S->(T)

U=EDIT(T[1J).T[2],EDIT(T[3])
%IF U->V.'-to' UPR U->*0+'.V %THEN %RESULT=V

%IF U->V.'-o' %THEN %RESULT=V

%IF U->-. **C)' 7<OR %THEN %RESULT=' /
%IF U->V.'*l' %DR U->'l*'.V %THEN %RESULT=V

%IF U->'0/'.- %THEN %RESULT='o"
%IF U->V.'/l' %THEN %RESULT=V

%RESULT=(U)

%END

%ENDOFPROGRAM

(C)

(X)

«X+Y>)

((X*Y))

<<X/Y)>

<<X+<Y*Z))>

<<<X*X)-(Y/<X+Z»>)

(END)

A.25

29/04/69 09.51.12
ASTRA 10/06/68

CSC004/0J000000/ DIFFERENTIATE

0 BEGIN

10 STRING FN DIFF

20 END OF STRING FN

21 STRING FN EDIT

32 END OF STRING FN

33 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2599 WORDS

PROGRAM DUMPED

COMPILING TIME 8 SEC / 4 SEC

DIFFERENTIAL OF

C

WITH RESPECT TO X IS

0

I.E.

0

DIFFERENTIAL OF

X

WITH RESPECT TO X IS

1

I.E.

1

DIFFERENTIAL OF

(X+Y)

WITH RESPECT TO X IS

<!-*)>

I.E.

1

A.26

DIFFERENTIAL OF

(X+Y)

WITH RESPECT TO X IS

((1*Y)+(X*0>)
I.E.

Y

DIFFERENTIAL OF

(X/Y)

WITH RESPECT TO X IS

C((1«Y)-<X*Q))/<Y«Y))
I.E.

<Y/(Y*Y))

DIFFERENTIAL OF

(X+(Y#Z»
WITH RESPECT TO X IS

<1+<<0*Z)+<Y*0»>

I.E.

1

DIFFERENTIAL OF

<<X*X)-(Y/(X+Z)»
WITH RESPECT TO X IS

(((l*X)+(X*l))-(((0*(X+Z»-(Y^(l-K)»)/((X+Z)*(X+Z)))>
I.E.

(<X+X)-((0-Y)/((X+Z)»(X+Z))))

STOPPED AT LINE 5

CSC004/OJOOOOOO/ DIFFERENTIATE

RUNNING TIME 6 SEC / 1 SEC

A.27

***A

job

csc004/oojooojo/ wang algorithm (ref. lisp 1.5 programmers manual)
output 0 eight-hole punch 10 blocks

compiler as

%begin

%stringfnspec theorem(%string s)

%string s

ljread string(s)

%if Sb'eNd' %then %stop

write string('--proposition_is-*.s.*-value_is_/ .theorem(s))
->1

%stringfn theorem(%string s)
%string a1,a2#c1,c2,a,b,c

%stringfnspec th(%string a1,a2,c1,c2)
al=_

a2=_

s->'->'.(a).(c)
3: %if a=_ %then ->1

a->b[1].a

%if c->-."b".- %then %result='t'
%if b->(~) %then ->2

a1=b.a1 %unless A1->-."b".-
->3

2: a2=b.a2 %unless a2->-. "b". -
->3

l: ci=_

c2»_

5: %if c=_ %then %result= th(a1,a2,c1,c2)
c->b[1j.c

%if b->(-) %then ->4

clab.cl %unless c1->-."b".-
->5

4: c2=b.c2 %unless c2->-."b".-
->5

;i set a1 & a2 to null

;i asantecedent, c=consequent

;1 b first formula of a

;i true if b member of c

;1 jump if B not atomic

;i add b to a1 unless b in a1

;1 add b to a2 unless b in a2

a.28

%STRINGFN TH(%STRING A1,A2,C1,C2)
%STRING U,V,A2P,C2P
%STRINGFNSPEC THL1(%STRING V,A1,A2,C1,C2)
%STRINGFNSPEC THR1(%STRING V,A1,A2,C1fC2)
%STRINGFNSPEC THL2(%STRING V,A1,A2,C1,C2)
%STRINGFNSPEC THR2(%STRING V,A1,A2,C1,C2>
%STRINGFNSPEC TH11(%STRING V1,V2#A1,A2,C1,C2)
%STRINGFNSPEC AND(%STRING S,T)

%IF A2=_ %THEN ->1

A2->(U).A2P

%IF U->'NOT'.V %THEN %RESULT=> THR1(V#A1,A2P,C1,C2)
%IF U->'AND'.V %THEN %RESULT= THL2(V,A1,A2P,C1,C2)
%IF U->'OR'.V %THEN %RESULT= AND(THL1(V[1],A1,A2P,C1,C2),%C

THLl(V[2],AltA2P,Cl,C2))
%IF U->'IMPLIES'.V %THEN %RESULT= AND(THR1(V[1],A1,A2P,C1,C2),%C

THL1(V[2 j fAl,A2P,C1,C2))
%IF U->'BQUIV'.V %THEN %RESULT= AND(THL2(V,A1,A2P,C1,C2),%C

THR2<V,A1,A2P,CI,C2))
%CAPTION — FAULT _ 1 --

%STOP

1: %IF C2=_ %THEN %RESULT= 'F'
C2->(U).C2P

%IF U->'NOT'.V %THEN %RESULT= THL1(V,A1,A2,C1,C2P)
%IF U->'AND'.V %THEN %RESULT= AND(THR1(V[1],A1,A2,C1,C2P),%C

THR1<V[2],A1,A2,C1,C2P))
%IF U->'UR'.V %TKEK %RESULT- niR2(V,Al,A2fCl,C2P)
%IF U-> 'IMPLIES*.V %THEN %RESULT» 1H11(V[1]#V[2],A1,A2,Cl,C2P)
%IF U->'EQUIV'.V %THEN %RESULT= AND(TH11(V[1],V[2],A1,A2,C1,C2P),%C

TH11(V[21,V[1],A1,A2,CI,C2P))
%CAPTION -- FAULT _ 2 —

%STOP

A.29

%STRINGFN THL1(%STRING V,A1,A2tCl,C2)
%IF V-><-) %THEN ->1

%IF Cl->-."v".- %THEN %RESULT= 't'
%RESULT= TH(V.A1,A2,C1#C2)

l! %IF C2->-."v".- %THEN %RESULT= 't'
%RESULT= TH(A1,V.A2,C1,C2)

%END

%STRINGFN THR1(%STRING V,A1,A2,C1,C2)
%IF V->(-) %THEN ->1

%IF Al->-."v".- %THEN %RESULT= #T'
%RESULT= TO(A1,A2,V.C1,C2)

1: %IF A2->-."v".- %THEN %RESULT=

%RESULT= TH(A1,A2,C1,V.C2)
%END

%STRINGFN THL2(%STRING V,A1,A2,C1,C2)
%IF V->(-).- %TOEN ->1

%IF Cl->-."V[3]".- %THEN %RESULT= 'T
%RESULT= THL1(V[2],V[1].A1,A2,C1,C2)

1: %IF C2->-."'V[l]".- %THEN %RESULT« *T
%RESULT= THL1(V[2],A1,V[1].A2fCl,C2)

%END

%STRINGFN THR2(%STRING V,A1,A2,C1,C2)
%IF V->(-).• %THEN ->1

%IF Al->-."V[l]".- %THEN %RESULT= #T
%RESULT= THR1(V[2],A1,A2,V[1 j.Cl,C2)

1: %IF A2-> "V[l j". - %THEN %RESULT= 'T
2ftESULT« THR1(V[2 j#Al,A2,Cl,V[l].C2)

%END

A.30

%STRINGJN TH11(%STRING V1,V2,A1,A2,C1,C2)
%IF Vl->(-) %THEN ->1

%IF Cl->-."vi".- %THEN %HESULT= 'l'
%RESULT= THR1(V2,V1,A1,A2,C1,C2)

lS %IF C2->-."Vl".- %THEN %RESULT= *t'
%RESULT= THR1(V2,A1,V1.A2,C1,C2)

%END

%STRINGFN AND(%STRING S,T)
%if s=s't* %and t='t' %THEN %result= 't'
%RESULT= *1*

%END

%END

%END

%ENDOFPROGRAM

<->(P)((ORFQ)))

(->((ORA(NOTB)))<(IMPLIES(ANDPQ)(BQUIVPQ))))

(END)

A.31

29/04/69 09.51.31

ASTRA 10/06/68

CSC004/00000000/ WANG ALGORITHM (REP. LISP 1.5 PROGRAMMERS MANUAL)

0 BEGIN

7 STRING FN THEOREM

30 STRING EN TH

56 STRING FN THLl

62 END OF STRING FN

63 STRING FN THRl

69 END OF STRING EN

70 STRING FN THL2

76 END OF STRING EN

77 STRING EN THR2

83 END OF STRING EN

84 STRING EN TH11

90 END OF STRING EN

91 STRING EN AND

94 END OF STRING FN

95 END OF STRING EN

96 END OF STRING EN

97 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 3467 WORDS

PROGRAM DUMPED

COMPILING TIME 19 SEC / 14 SEC

PROPOSITION IS

-><P)((ORPQ))
VALUE IS T

PROPOSITION IS

->((ORA(NDTB)))((IMPLIES(ANDPQ)(EQU1VPQ)))
VALUE IS T

STOPPED AT LINE 4

CSC004/00000000/ WANG ALGORITHM (REF. LISP 1.5 PROGRAMMERS MANUAL)
RUNNING TIME 2 SEC / 1 SEC

A.32

APPENDIX B

Examples of ASTRA list structures

The list structures shown below are presented in the form produced

from a routine built-into the ASTRA permanent material for diagnostic

purposes. They are preceded by the programs which generated the strings

being displayed. The routine in question is called 'show'.
Four quantities are printed out for each cell in the representation

of the string value. They are :

machine address of cell

information field

association list link

list link

A typical cell might be :

2221 A 0 2222

where the machine address of the cell is 2221, the information is the

symbol A, there is no association list attached to the cell, and the
machine address of the next cell in the representation is 2222.

A typical substring pointer cell might be :

2243 2242 2236 2234

where the machine addresses 2242 and 2236 are the first and last cells

of the substring being pointed to.

A dummy cell has the information field zero. Links to association

lists are negative. The association list itself appears to the right of
the cell to which it is attached. For example :

2256 C -2234 2258 2234 7226 -2231 0 2231 7225 0 0

The addresses 7226 and 7225 are the addresses of the variables on the

run-tirae stack which have been made to refer to this cell in the

representation by means of resolution statements.

Cells which form part of substrings are indented.

B.l

***A

JOB

CSC004/00000000/ SHOW LISTS

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%STRING R,S,T,U
R='ASTRA'

SHOW(R,'R')
S='NEW'.('INGTON').'1011'
SH0W(S,'S')
S->-.(T).-

SHQW(T, 'T')
R=('A*B').'+'.('C^'.(#I>-E'))
R->(S).-.(T)

T->U[2].-

SHDW(R.'R')
%ENDOFPROGRAM

B.2

29/04/69 09.51.58

ASTRA 10/06/68

CSC004/00000000/ SHOW LISTS

0 BEGIN

12 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2243 WORDS

PROGRAM DUMPED

COMPILING TIME 3 SEC / 1 SEC

R ASTRA

7223 2221 2226 0

2221 A 0 2222

2222 S 0 2223

2223 T 0 2224

2224 R 0 2225

2225 A 0 2226

2226 0 0 0

S NEW(INGTON)lOll

7224 2228 2229 0

2228 N 0 2227

2227 E 0 2244

2244 W 0 2243

2243 2242 2236 2234

2242 I 0 2241

2241 N 0 2240

2240 G 0 2239

2239 T 0 2238

2238 O 0 2237

B.3

2237 N 0 2236

2236 0 0 0

2234 1 0 2233

2233 0 0 2231

2231 1 0 2230

2230 1 0 2229

2229 0 0 0

T INGTON

7225 2242 2236 1

R (A«B)+(Cf(D-E))

7223 2254 2267 0

2269 2253 2255

i A -2229 2270 2229 7224 0 0

» 0 2252

B 0 2253

0 -2230 0 2230 7224 0 0

2254

2269

2270

2252

2253

2255 + 0 2257

2257 2256 2266 2267

2256 C -2234 2258 2234 7226 -2231 0 2231 7225 0 0

2258 * 0 2259

2259 0 -2237 2236 2237 7226 0 0

2236 2260 2263 2266

2260 D 0 2261

2261 - 0 2262

2262 E 0 2263

2263 000

2266 0 -2233 0 2233 7225 0 0

2267 0 0 0

STOPPED AT LINE 12

CSC004/00000000/ SHOW LISTS

RUNNING TIME 12 SEC / 1 SEC

B.4

♦**A

job

CSC004/OJGOOOOO/ DIFFERENTIATE

OUTPUT 0 EIGHT-HOLE PUNCH 10 BLOCKS

COMPILER AS

%BEGIN

%STRINGFNSPEC DIFF(%STRING S)

%STRINGFNSPEC EDIT(%STRING S)

%STRING S

1sREAD STRING(S)

%if s='end' %then %stop

WRITE STRING('—DIFFERENTIAL_OF-'.S.'-WITH_RESPECT_TO_X_IS)
SsDIFF(S)
WRITE STRING(S.'-I.E.-#.EDIT<S))
->1

%STRINGFN DIFF(%STRING S)
%STRING T

%IF S->(T) %THEN ->1

%IF S='x' %THEN %RESULT='l'
%RESULT='o'
1:Show(s,'s')
NEWLINES(2)
%IF T[2]='+# %THEN %RESULT= (DIFF(T[1J>.'+'.DIFF<T[3]))
%IF T[2]='-' %THEN %RESULT= (DIFF<T[1])/-'.DIFF(T[3])>
%IF t[2]=*♦' %THEN %RESULT=((DIFF(T[1j).T[3]).'+'. %C

(T[1].'*'.DIFF(T[3]>»
%IF T[2]='/' %THEN %RESULT= ((<DIFF(T[1]).'*',T[3]).%C

(T[1].'*'.DIFF(T[3]))).'/'. %C

(T[3].'*'.T[3]>)
%RESULT=*FAULT'
%end

B.5

%STRINGEN EDIT(%STRING S)
%STRING T,UtV

%RESULT=5 %UNLESS S->(T>

U=EDIT(T[1]).T[2].EDIT(T[3])
%IF U->V.'+0' %0R U->'o+*.V %THEN %RESULT=V

%IF U->V.'-o' %THEN %RESULT=V

%IF ' %0R U->- %THEN %RESULT="V
%IF U->V.'*l' %DR U->'l*'.V %THEN %RESULT=V

%IF U->'0/'.~ %THEN $RESULT>'o'
%IF U->V.'/l' %THEN %RESULT=V

%RESULT=(U)

%END

%ENDOFPROGRAM

(C)

(X)

<<X+Y»

<<X*Y)>

<<X/Y)>

((X+(Y*Z)))

(((X*X)-(Y/(X+Z))))

(END)

B.6

30/04/69 23.56.07

ASTRA 10/06/68

CSC004/00000000/ DIFFERENTIATE

0 BEGIN

10 STRING FN DIFF

21 END OF STRING FN

22 STRING FN EDIT

33 END OF STRING FN

34 END OF PROGRAM

PROGRAM (+PERM) OCCUPIES 2607 WORDS

PROGRAM DUMPED

COMPILING TIME 7 SEC / 4 SEC

DIFFERENTIAL OF

C

WITH RESPECT TO X IS

0

I.E.

0

DIFFERENTIAL OF

X

WITH RESPECT TO X IS

1

I.E.

1

DIFFERENTIAL OF

(X+Y)

WITH RESPECT TO X IS

B. 7

S (X+Y)

7577 2624 2619 0

2624 2623 2620 2619

2623 X -2618 2622 2618 7578 0

2622 + 0 2621

2621 Y 0 2620

2620 0 -2617 0 2617 7578 0

2619 000

(1+0)

I.E.

1

DIFFERENTIAL OF

<XKY)

WITH RESPECT TO X IS

S (X*Y)

7577 2598 2575 0

2598 2586 2582 2575

2586 X -2576 2585

2585 * 2579

2579 Y 0 2582

2582 0 -2581 0

2575 000

2576 7578 0 0

2581 7578 0 0

<(1#Y)+(X»0))
I.E.

Y

DIFFERENTIAL OF

(X/Y)
WITH RESPECT TO X IS

B. 8

s (X/Y)

7577 2602 2597 0

2602 2603 2601 2597

2603 X -260 6 2590 2606 7578 0 0

2590 / 0 2604

2604 Y 0 2601

2601 0 -2612 0 2612 7578 0 0

2597 0 0 0

<<<1*Y>-<X*0)>/(Y*Y))
I.E.

(Y/(Y*Y>)

DIFFERENTIAL OF

(X+(Y*Z))

WITH RESPECT TO X IS

S (X+(Y*Z))

7577 2643 2601 0

2643 2654 2597 2601

2654 X -2604 2598 2604 7578 0 0

2598 + 0 2581

2581 2576 2607 2597

2576 Y 0 2591

2591 ♦ 0 2578

2578 Z 0 2607

260 7 0 0 0

2597 0 -2590 0 2590 7578 0 0

2601 0 0 0

B. 9

S <Y*Z)

7582 2615 2575 0

2615 2602 2582 2575

2602 Y -260 8 2603 2608 7583 0 0

2603 * J 2584

2584 Z 0 2582

2582 0 -2614 0 2614 7583 0 0

2575 0 0 0

<1+«0*Z)+(Y*J»)
I.E.

1

DIFFERENTIAL OF

((X*X)-(Y/(X+Z)))
WITH RESPECT TO X IS

S <(X*X)-(Y/(X+Z»)

7577 2630 2615 0

2630 2629 2602 2615

2629 0 -2608 2614 2608 7578 0 0

2614 2627 2626 2646

2627 X 0 2639

2639 * a 2625

2625 X 0 2626

2626 000

2646 - 0 2636

2636 2633 2654 2602

2633 Y 0 2635

2635 / 0 2634

2634 2641 2642 2654

B.10

2641 X

2618 +

2577 Z

2642 0

2654 0 0

2602 0 -2599

2615 000

S (XfX)

7581 2622 2576 0

2622 0 0 2610

2610 2603 2581 2576

2603 X -2591 2643

2643 * 0 2598

2598 X 0 2581

2581 0 -2578 0

2576 0 0 0

S (Y/(X+Z»

7582 2576 2592 0

2576 2598 2595 2592

2598 Y -2647 2643

2643 / 0 2603

2603 2610 2591 2595

2610 X 0 2622

2622 + 0 2578

2578 z 0 2591

2591 0 0 0

2595 0 -2655 0

2592 0 0 0

0 2618

0 2577

O 2642

0 0

0

0 2599 7578 0 0

2591 7582 0 0

2578 7582 0 0

2647 7583 0 0

2655 7583 0 0

B.ll

S (X+Z)

7588 2582 2620 0

2582 2612 2575 2620

2612 X -2574 2580 2574 7589 0 0

2580 + 0 2606

2606 Z 0 2575

2575 0 -2616 0 2616 7589 0 0

2620 0 0 0

(((l*X)+(X*l))-(((0*(X+Z))-(Y*(l+Q)))/((X+Z)*(X+Z)))>
I.E.

((X+X)-((0-Y)/((X+Z)*(X+Z))))

STOPPED AT LINE 5

CSCO04/00000000/ DIFFERENTIATE

RUNNING TIME 32 SEC / 5 SEC

B.12

APPENDIX C

Basic operations

1C0P -< ASL ©;:.pty ? 5—>-
v : : Yesi zq3

; No
•/

•

, move ASL pointer on ;
i * 1

j
i

J
set nov/cell to sero

ib.'Ww.i.L

101?

12SP

102?
string unnssisned 1>

.'.O

r_i

—v_f: :o_vca str:uir-S ? y

any more co. • ~ ?±L_/1^
: lot
|
J,

return cell i

-y] remove back pointers -> ki ->

C.l
I

Ioop: INEWCELL

♦Ml3

*13

♦dup
*J lOOOOaZ
*DUP

*=M13
♦M0M13
♦=I3
♦ZERO
*=M0M13
♦REV
•=*113
♦EXIT 1

;!PRESERVE
;IASL POINTER

;IASL EMPTY

;INEXT CELL OP ASL

;ISET NEW CELL TO ZERO

;IRESTORE
; lNl=POINTER TO NEWCELL

10000; %CAPTION --ASLJEMPTY
%STOP

101P: IRETURN CELL
INlsPOINTER TO CELL BEING RETURNED

♦M13
•REV

♦DUP
*=4113
*13

*=MOM13
*=13
*=4113

♦EXIT 1

;1PRESERVE

;ICURRENT ASL POINTER
;IPUSHDOWN
;INEW ASL POINTER
;IRESTORE

126P: 1 RETURN STRING FROM COND
1 N1=A(STRING)
*=410Ml2
♦Id2

C.2

102P:
10200:

10203:

10202!

I RETURN STRING TO ASL

INlss*9(A (STRING))
♦=M13

10201;

♦M3M13
♦DUP
*J 10201=Z
♦SHL+1
♦SHL-1
♦DUP
♦SHL+32
♦SHL-32
♦NEG
♦NOT
♦J 10202=Z
♦SHL-32
*=M14

♦Ml4

♦DUP
♦J 10201=Z
♦MOMl4
♦=Q14
♦JS 15100
->10203

♦ZERO
♦SHLD+16
♦M13
♦JS 15200
♦SHL-32
♦M13
♦JS 15200
♦ZERO
♦=M0M13
♦EXIT 1

;I A(STRING)

I STRING UNASSIGNED

;1 RESOLVED STRING

;t ADDR(CURRENT S CELL)

; 1 LAST LINK »0

;I NEXT CELL
;1 RETURN CELL (COMPLEX)

;I REMOVE BACK POINTERS

;I REMOVE FIRST

;I REMOVE SECOND

;1 SET STRING UNASSIGNED

C.3

1G3P —*—; r ict first II rn

preserve this v<-

i®ve±.

-yy end of string J Yos
NO

! /
P^TV du^y coll ?

I No

--—v substring cell ? r
i x ~>~-A 1

No

copy into new coll

i J
v;form A(substring copy)!

i * 1

,

top level of string ? /
No | Yes

restore previous level •
;

i

C.4

103P: ICOPY STRING

IN1=A(STRING TO BE COPIED)

*C0 TO Q12
10306: *ZERG

♦SHLD+16
*=M14
♦MQM14

*=Q14
*==4l3
*JS 100P
*DUP
*=113
*=M13
->10301

10303: *M14
*C13
*-

*J 10302=Z
♦M0M14
*=Q14
*J 10303 C14 Z

10301: *114
*J 10304>Z
*C14 TO Q15
♦ZERO
*=115

10305: *JS 100P
*DUP
*=M15
*Q15
*=M0M13
*=M13

->10303
10304; *Q13

*=§40M12Q
*M14

*=M0M12Q
*Q14
->10306

10302; *ZERO
*=M0M13
*Q13
*SHL+16
*J 10307 C12Z
*=Q15
♦M-I12
♦M0M12
*=M14
*M-I12
*MQM12

*=Q13
♦SET 2

*=+Cl2
->10305

; IDEPTH OF SUBSTRING COUNTER

;IBEG. OF STRING

;!FIRST CELL TO BE COPIED
;(END OF STRING IN C13

;1PRESERVE START OF COPY
;ICURRENT END OF COPY
;JALWAYS COPY FIRST CELL

;1 END OF STRING

;I NEXT CELL TO BE COPIED
;! IGNORE DUMMIES

;I SUBSTRING
;1 COPY INFO.

; I POINTER TO NEXT CELL

; 1 DUMP COPIED CELL
;I CURRENT END OF COPY

;I STACK INFO. FOR COPYING SUBSTRING

;I GO TO COPY SUBSTRING

;I LAST CELL OF COPY=0

;1 A(COPY OR SUBSTRING)
; I TOP LEVEL OF SUBSTRINGS
;I A(SUBSTRING)
;i UNSTACK INFO.

;I SET DEPTH COUNTER BACK

10307: *EXIT 1 ;I Nl=A(COPY)

C.5

lU'sr

ontr'.ct first cells/>

'i Tf.l" CI•->i tier 7 t. 'i
/ i GS 1

02 iirs'c string

No

^ substring in first ? /—5-iT
No

_ds.

end of second string ?

no

±

^substring in second ?j-

lf~

No

Ye
colls esteh ?y

t No

Yes

Yea

^ first < second —I—z-^first < second ->

4

(Zid of second ?

i Yes No

top level of string ?)
I
\'

n first > second

fer,.d of second ?

|
I
V/

No
L/<_

■ first - secono■

!03

d'UEiny ceil in second ?.'OJv
? No

preserve tnis

level

x
Yes V :uJ3tnng m seco:=ifk

C. 6

104P; 1COMPARE 2 STRINGS
IN1=A(FIRST STRING)
IN2=A(SECOND STRING)

♦CO TO Q12

10408: ♦ZERO
♦SHLD+16
♦=M14

♦SHL-32
♦REV

♦ZERO

♦SHLD+16
♦=4115
♦SHL-32

10409: *REV

10402: *M14
♦J 10401=
♦M0M14

*=Q14
♦J 10402 C14Z
♦REV
♦ 114
♦J 10403>Z

10405: *M15
♦J 10404=
♦MOMl5

♦=Ql5
♦J 10405 C15Z
♦ 115
♦J 10404>Z
♦C14

♦C15
*-

♦J 10409=Z
♦C14
♦CI5
*-

♦J 10412<Z
10404: ♦ERASE

♦ERASE
♦C12

♦=+M12
♦ZERO

♦NOT
♦EXIT 1

10412: ♦ERASE
10410; ♦ERASE

♦C12

*=+M12

*112
♦EXIT 1

;I SUBSTRING DEPTH COUNTER

CURRENT POSN. IN FIRST

;I LAST CELL IN FIRST

;1 CURRENT POSN. IN SECOND
;I LAST CELL IN SECOND

;I END OF FIRST

;1 NEXT CELL IN FIRST
;I DUMMY

;1 SUBSTRING IN FIRST

;i END OF SECOND

}I NEXT CELL IN SECOND
;I DUMMY

;I SUBSTRING IN SECOND

;I INTO. MATCHES

;I FIRST<SECOND

;! RESTORE WORKSPACE PTR

;I SECOND<FIRST, Nl=-1

;1 SECOND>FIRST, Nl=l

C. 7

10401: *ERASE

10407; *M15
♦J 10406=
*MOMl5
♦=<}15
* J 10407 C15Z
->10410

10406: *ERASE
♦J 10411 C12 NZ
♦ZERO
♦EXIT 1

10411: #M-I12
♦MOMl 2
♦DUP
♦=M15
♦SHL-16
♦M-I12
♦M0M12
♦DUP
*=M14

♦SHL-16
♦SET 2
*=+C12
->10402

10403: *M15
♦J 10404=
♦M3M15
»=Q15
♦J 10403 C15 Z
#115
*J 10412<=Z
*REV

♦SHL+16
#M14
♦OR

*=M0M12Q
♦SHL+16
♦Ml5
♦OR

*=MJM12Q

*Q15
♦Q14
->10408

;1 END OF SECOND

;1 DUMMY

;I SUBSTRING MATCHED

;I SECOND=FIRST, N1=0

;1 RESTORE INFO.

;1 SHOULD BE SUBSTRING
;1 END OF SECOND

;I NEXT CELL IN SECOND
;I DUMMY

; I NOT SUBSTRING

;1 STORE RETURN INFO.

;I STORE RETURN INFO.

;| A'<SECOND SUBSTRING)
•I A'(FIRST SUBSTRING)
;I COMPARE

C. 8

105P -5- get two new colls

1Q6P ->

\!f

/ V

I

/TT
LGS

literal null 7\

V

ola

-

, form asset cell j

/

■v end of literal ?

Yes

f

form new string)

L07P
copy first coll of second

into last coll cf first

J

vL
return rxrst cell ox second

form A{ concatenated string)

C. 9

105P: I form null string

♦JS loop
*DUP
♦JS 100P
♦DUP
♦=M13
♦REV

*=M0M13
♦SHL+16
♦OR
♦SHL+16
♦EXIT 1 ;I N1=A(NULL STRING)

106P: I FORM STRING FROM LITERALS
INlsPOSN. IN STACK

♦111 ; 1 (faST(O)
♦+

*=RM14
♦M0M14
*=C14 JI NO. OF WORDS
♦J 105P C14Z
♦JS 100P
♦DUP
♦=115
♦=M15

10603: ♦M0M14QN

10602: ♦ZERO
♦SHOD+8
♦DUP
♦J 10601=Z
♦SHL+32
♦JS 100P
♦DUP
♦PERM

♦OR

*=M0M15
*=M15
->10602

10601: ♦ERASE
♦ERASE
♦J 10603 C14 NZ;t MORE WORDS
♦Q15
♦SHL+16
♦EXIT 1 ;I N1=A(STRING)

;IPRESERVE FIRST CELL

; I NEXT WORD

; I NEXT SYMBOL

; I END OF WORD

; I DUMP CELL
; I NEXT CELL

C.10

1 1
get two now cells II

j

vl

1

c.ll

107P: ICONCATENATE 2 STRINGS
1N1=A(SECOND STRING)
!N2=A(FIRST STRING)
INEW STRINGS - Id POINTER SUBCHAINS

♦ZERO

♦shld+16
*=M15
♦REV

♦SHL-16
♦DUP
*=M14

♦SHL-16
♦OR

♦SHC-16
♦M0M15
♦=M0M14
♦Ml5
♦JS 101P
♦EXIT 1

J FIRST OF SECOND

I LAST OF FIRST
I FIRST OF FIRST

I A(CONC. STRINGS)

I COPY FIRST OF 2ND INTO LAST OF 1ST

I RETURN FIRST OF 2ND
I NlssA(CONCATENATED STRINGS)

108P: 1 H3RM SUBSTRING LIST
I N1=A<SUBSTRING)
I NEW STRING

♦JS 100P
♦-M13
♦JS 100P
♦DUP
♦PERM
♦OR

*=M0M13
♦Ml3
♦SHL+16
♦OR

♦SHL+16
♦EXIT 1 ;I N1=A<SUBSTRING LIST)

C.12

set return cells flag

110?

sot second index large .and * typo -Hag

4,
-»oc return coirs ->

I12P -> set second index iars© and type II

LUL

first index < 1 ?/ -—•>! part do, , . A _)3 not GXI3 L }y©S i_: j

—

\
second index < first index ? r~r> L

I / Yes
so

jtvH5 index = 1 ?D
! Xo

->y end of string ?g ?/■

<-

(return cells fins sot ?

so

• V-
l

Yos (_ dummy cell ?
No

return, cc

roacnea x irst index coll yet ?}
Yos

/X

-Ss save ©(first index cell)

V

C.13

typo flag sot ?J yqs SCtVO @(end coll) j
' l\o

j,

< end of string ? Ye;
No

Yes \ duaay co11 ?

k< r|——y reached second index cell yet

iiO

77)
Yes

s ✓

save ©(second index coll)

(
-Of

end of string ?

j~No
J/

Ye.

(return cells flag set ? No

Ye;

v* return cell

—\ end of string ? j
Ye;

aa

! form A(oxtract)

/\

C.14

lo9P:

HOP:

lllP:

112P:

IEXTRACT PART OF STRING-[P;Q]
IN1=C
1N2=P

!N3=A(STRING)
INEW STRING- NO POINTER SUBCHAINS

*Q0 TO Q15
*DC15
♦REV

->11000

IGET A(EXTRACT)
|N1,N2,N3, AS 109P

♦QO TO Q15
♦REV

->nouo

I EXTRACT - [P:«]
I N1=P
I N2sA<STRING)
I NEW STRING

♦ZERO
*=RC15
♦DC15
♦SET 32767
♦REV

->11000

1 GET A(EXTRACT)
1 N1,N2 AS 111P:

♦ZERO
♦s=RC15
♦SET 32767
♦REV

11000: ♦NEG
♦NOT
♦CUP

I P-l

♦J 11002<Z
♦DUP
*=C14

I P<1

;! Q-P+l
♦DUP
♦J 11002<=Z Q<P
♦REV
♦ZERO
♦SHLD+16
♦=M13
♦SHL-32
♦J 11003 C14Z

I CURRENT CELL
1 END OF STRING
I Pel

C.15

liool:

11004:

11003:

11005:

11007:

11006:

11002:

♦M13
♦J 11002«
♦M0M13
♦J 11004 C15Z
♦M13
♦JS 10IP

*=Q13
♦J 11001 C13Z
♦DC14
*J 11001 C14NZ
♦REV
♦=C14
♦115
♦M13
♦=115
♦J 11005=Z
*=4415
->11006

*M13
♦J 11002=
♦M0M13
♦=Q13
*J 11005 C13Z
♦DC14
♦J 11005 C14 NZ
*M13 TO Q15
♦M13
*-

♦J 11006=Z
♦J 11006 C15Z
♦M0H13
♦ZERO

*=M0M13

;I END OF STRING

;I RETURN CELLS

;! DUMMY

;1 MOT YET REACHED PTH CELL

;i Q-P+l

;I SAVE FIRST OF PART

;I END OF STRING

;I DUMMY

;1 NOT YET REACHED QTH CELL
;I SAVE LAST OF PART

; I END OF STRING ANYY/AY

;» DUMP CORRECT LAST CELL

♦=<313
♦MOMl3
♦M13
♦JS 10IP
♦DUP
♦J 11007 # Z ;I NOT END OF CLEAN STRING
♦ERASE

*Q15
♦SHL+16
♦EXIT 1 ;I N1=A(EXTRACT)

%CAPTION --PARTJPAULT
%STOP

C.16

113P

finci penultimate coll of

expr. to bo inserted

return last coll (dummy)

ai/.

sot penultimate coll to point to

next coll in main list

s /

first cell of expr. being inserted a substring ?

cos No

-SL-

SGt first coll at insert

position to dummy and to

point to first of inserted

expr. (to preserve a

possible back-pointer list)

copy contents of first coll of

inserted oxpr. into first at

insert position, leaving possible

back-pointer list unchanged.

f£

return first cell of inserted expr

return replaced cells

C.17

113P:

11306:

I INSERT ASSIGN (<-)
1 N1=A(STRING)
1 N2=A(EXPRESSION)

11302:

11301:

11303:

11304:

11305:

♦ZERO
♦SHLD+16
♦REV
♦SHL-32
♦CAB
♦ZERO

♦SHLD+16
♦=*113
♦Ml3 TO Q15
♦SHL-32

♦M0M13

*=Q14
♦M14
♦J 11301=
♦Ml4 TO Q13
->11302

♦JS 10IP
♦DUP
*=*114

♦Q14
*=M0M13
♦MOMl5
*=Q13
♦ 113
♦J 11303=2
♦Ml5

*=Q13
->11304

♦Ml5
♦JS 101P

♦REV

*=M14

♦M3M14
*=Q15
*115 TO Q13
♦Q13
*=M0M14

♦Ml5
♦J 11305=
♦M0M15
♦Ml5
♦JS 15100
*=M15
->11306

♦ERASE
♦EXIT 1

;I FIRST OF STR.

;I LAST OF STR.

;I FIRST OF EXPR

;1 LAST OF EXPR

;1 NEXT CELL OF EXPR

: I END OF EXPR

1 RETURN LAST OF EXPR
I LAST OF STR.

I LAST OF EXPR POINTS TO LAST OF STR
I FIRST OF EXPR

;1 NOT SUBSTRING

;I SET UP DUMMY TO COPY INTO FIRST OF STR
;1 SINCE BACK POINTER CHAIN MIGHT BE ERASED

;I RETURN FIRST OF EXPR

;i FIRST OF STR

;I RETURN BACK CHAIN

;I COPY FIRST OF EXPR INTO STR

;I LAST OF STR

;1 RETURN CELL OF STR

C.18

114P number of components < 0 ? } ->-/ Yes
No

store ©(current cell) in stage 2 array

monitor —>

-A end of string ? , „\ / Yes
No

Yes C dummy coll ?l)
No

t» (Yes V
more components to scan past ? / No

failure

success —>

C.19

114P: I COUNT DOWN N ITEMS
I Nl=^i< CURRENT)
I N2=^(LAST)

♦M0M10
♦SHL+16
♦SHA-32
♦DUP
♦J 1140KZ
*=C15
♦DUP

*=M0M1QQN
♦J 11402 C15 Z
*=M14

11403J+M14
♦J 11404=
♦MoMl4

♦=Q14
♦J 11403 C14 Z

♦DC15
♦J 11403 CI5 NZ
♦Ml4

11402:*EXIT 2

11404:♦ERASE
♦EXIT 1

11401:%CAPTIQN -- -VE
%STOP

I /N/a(VARIABLE)

I N

1 NONSENSE

; I DUMP (*<CURRENT)
; t N=0

; I END REACHED
; I NEXT ITEM

;I DUMMY

;I MORE ITEMS YET
;I NEW NEXT
;I SUCCESS, Nla^(NEXT), N2=3(LAST)

;I FAILURE, NEST EMPTY

NO. OF ITEMS

C.20

C.21

115P: 1 SEARCH FDR STRING
I Nl=fi><CURRENT ITEM)
1 N2—T)(LAST ITEM)

*=M15 ;1 CURRENT
♦ZERO

*=M0M12
♦M0M10 ;I A(STRING)
♦DUP
♦J 11513>=Z
♦QIO
*=M0M12
♦SHL+1
♦SHL-1

11513:*ZERO
♦SHLD+16
*=M13 ;1 FIRST OF STRING
♦SHL-32

11502:*M13
♦J 11501= ;I SEARCH FOR _

♦MOMl3

♦=<313 ; I FIRST ITEM
♦J 11502 C13 Z ;I IGNORE INITIAL DUMMIES
♦REV

♦MOMl2
♦J 11512=2

♦Q13 TO QIO
♦REV

♦ERASE

11512;♦ZERO
11519:*Q13 TO Q14 ;! PRESERVE FIRST ITEM

♦MOM12
♦J 11505=Z
♦ 114
♦J 11611<=Z
*114
♦PERM
♦C14

*=M14
♦M0M14
*=Q14
♦J 11521 C14 Z

11505:♦ERASE
♦M15
♦DUP
♦PERM
♦J 11503= ;1 FAILUREy END OF MAIN STRING
♦REV

♦MOMl5 ;I NEXT ITEM OF MAIN CHAIN
♦=Q15

11518:+I14
♦J 11504>Z ;l SUBSTRING
♦ 115
♦J 11516>Z ;1 SUBSTRING
♦C14

C. 22

♦C15

♦J 11516#Z
11511:*CAB
11507:*M14

*J 11506=
♦M0M14

*=Q14
♦J 11507 C14 Z
♦PERM
♦REV

115Q8:*M15
♦J 11510 =
♦M3M15
*=Q15
♦J 11508 CI5 Z
♦REV

♦114
♦J 11509 > Z
*115
♦J 11510>Z
♦C14

♦C15
*-

♦J 115ll=Z
11510:*DUP

*=M15
♦M0M15

♦=Q15
♦M0M12
♦J 11520#Z
->11519

11504:*115
♦J 11516<=Z
♦Q13
♦014

*Q15
♦DUPD
♦M+I12
*JS 104P
♦M-I12
♦PERM

*=Q15
*=^14
♦REV

*=Q13
♦J 11516#Z
->11511

11516:♦M0M12
♦J 11505=Z

11520:*M0M13
*=Q13
♦CAB
♦ERASE
♦J 11517 C13 Z

;I NO MATCH FDR FIRST ITEM YET

;I SUCCESS, END OF STRING

;1 NEXT ITEM OF STRING
; I DUMMY

;1 END OF MAIN STRING

;I DUMMY

;I SUBSTRING

;I SUBSTRING

;I MATCH FURTHER ITEM

;1 ADDR OF FIRST ITEM MATCHED

;I MOVE ON ONE ITEM

;I TRY AGAIN

; I NO SUBSTRING YET

;I PRESERVE

;I COMPARE SUBSTRINGS

;i 0:MATCH, -1;ND MATCH

; I NO MATCH
;I MATCH

C.23

*113
*J11611<=Z
*113
♦PERM
*C13
*=4114
♦M0M14

*=Q14
*J 11521 C14 Z

->11518
11517:*Q10 TO Q13

->11519

115Q9;*I15
*J 11510<=Z

*Q13
*Q14
*Q15
*DUPD
♦M+I12
*JS 104P
♦M-I12
♦PERM

*=Q15
*=Q14
*REV

*=Cil3
*J 11510#Z
->11511

;1 NO SUBSTRING

;I COMPARE SUBSTRINGS

NO MATCH
MATCH

11521;*DUP
*=4115
*CAB
->11506

11501S*M15
♦REV

11506: *ERASE
♦M3M12
*J 11514=Z
♦M0M12
*=Q10

11514:*=M0M10QN
♦Ml5
♦EXIT 2

;t ADDR FIRST ITEM MATCHED
;1 NEXT ITEM
;t SUCCESS, NlsNEXT, N2=LAST

11503j*ERASE
♦ERASE
♦ERASE
♦M0M12
♦J 11515=7
♦M0M12

*=Q10
11515:*EXIT 1 ;I FAILURE, NEST EMPTY

C.24

11SP

<oad of string: to bo matched against ~* success

(

}Yo:
No

rfirst colls match rost of string matches

No

V/

s7)
NO Ye;

more alternatives to be matched against ?

YS£es

v.

)
No

-> failure

next axtemativ©

C.25

116PJ I MATCH STRING
I Nlss-'XCURRENT ITEM)
I N2=^(LAST ITEM)

♦DUP
♦PERM

*=M15
♦ZERO
♦NOT

*=Q14
♦M0M10
♦DUP
♦J 11607>=Z
♦SHL+1
♦SHL-33
♦=M14

♦MOMl4

11608:*Mleos C14 Z
♦114
♦J 11611<=Z
♦Q14

11607:♦ZERO
♦SHLD+16
♦=«13
♦SHL-32

11602:*M13
♦J 11601=
♦MOMl3

♦=Q13
♦J 11602 C13 Z
♦REV

11604:*M15
♦J 11606=
♦MOMl 5
*=Q15
♦J 11604 C15 Z
♦REV
*113
♦J 11605>Z
*115
♦J 11606>Z
♦C13

♦C15
*-

♦J 11602=Z

; 1 A(STRING)

;I FIRST OF STRING

;I LAST OF STRING

;I SUCCESS, END OF STRING

;I DUMMY

;I ABSOLUTE FAILURE, END OF MAIN STRING

;I DUMMY

;I SUBSTRING

;I SUBSTRING, PARTIAL FAILURE

;I MATCH

C.26

11606:*ERASE
*Q14
♦J 11609<Z

11610:*M0M14
*=Q14
♦REV

♦DUP
*=4115
♦REV

->11608
11609s♦REV

♦ERASE
♦EXIT 3 ; 1 PARTIAL FAILURE, N1=*?<LAST)

1 M10 MOVED ON

11605:*I15
♦J 11606<=Z ;1 NO SUBSTRING
♦Q14
♦Q15
♦Q13
♦DUPD
*JS 104P ;I COMPARE SUBSTRINGS
♦PERM

*==Q13
*=Q15
♦REV

*=Q14
♦J 11602=Z ;1 MATCH
->11606 ;! NO MATCH

1160Is♦ERASE
♦REV

*=M0M10QN ; t DUMP FIRST ITEM)
♦Ml5
♦EXIT 2 ;1 SUCCESS, N1=NEXT,N2=LAST

11603s*REV
♦ERASE

*Q14
♦J 11610>=Z
♦ERASE
♦ERASE
♦EXIT 1 ;1 FAILURE, NEST EMPTY

11611s%CAPTION -~STRING_INVALID_IN_MULTIPLE_RESOLUTION
%STOP

C. 27

117P >" resot to situation at backtrack point

move on to next coll

LISP end of string ? Ye£
failure

No

NoGubstring coll ? }
YO£

sot up for rosolution of substring "> SUCCOSS

C.28

117P: l BACKTRACK
I Nl= AMOUNT TO GO BACK
I N2=@(LAST ITEM)

*=+MlQ
♦M0M10N ;1 PREVIOUS POINTER
*=M13
*MOMl3 ;| MOVE ON ONE ITEM
♦SHL+32
♦SHL-32
♦EXIT 1
1 Nl=a(ITEM TO START FROM AGAIN)
I N2=f?(LAST ITEM)

118P: I SEARCH FOR SUBSTRING
I Nl=^)(CURRENT ITEM)
I N2=tf?(LAST ITEM)

♦=4115
♦ZERO

11801:♦ERASE
♦Ml5
♦DUP
♦PERM
♦J 11802=
♦REV

♦MOMl 5
♦=Q15
*115
♦J 1180l<=Z
*=MOM10N
*14
♦SHL+16
♦OR

♦MlO
*=14

♦=M0M10Q
♦115
♦C15
♦EXIT 2

;I END OF STRING

;1 NEXT ITEM

;I NOT SUBSTRING
;1 DUMP ADDR(SUBSTRING ITEM)
;I ADDR(CURRENT SUBSTRING ON RUNST)

;1 NEW ADDR(CURRENT SUBSTRING)

;1 SUCCESS, N1=FIRST, N2= LAST OF SUBSTRING

11802:*ERASE
♦ERASE
♦EXIT 1 ;I FAILURE, NEST EMPTY

C.29

119? < end of string ? failure

No

dusuny call ? ")
No

substring cell ?
Yes

-> partial failure

sot up for resolution of substring -> success

C.30

119P: 1 MATCH SUBSTRING
I N1=T<CURRENT ITEM)
t N2=ttf8(LAST ITEM)

*=M15
♦ZERO

11901:♦ERASE
♦M15
♦J 11902= ;I END OF STRING
♦Ml5
*MOMl5 ;I NEXT ITEM
*=Q15
♦J 11901 C15 Z ;I DUMMY
♦115
♦J 11903 <=Z ;I MOT SUBSTRING
*=M0M10N
*14
♦M10
*=14
♦SHL+16
♦OR

*=MDM10Q
♦115
♦C15
♦EXIT 2 ;I SUCCESS, N1=FIRST, N2=LAST OF SUBSTRING

11902:*ERASE
♦EXIT 1 ;I FAILURE, NEST EMPTY

11903:*ERASE
♦EXIT 3 ; I PARTIAL FAILURE, Nl=a(LAST)

C.31

I23P 7\ end of strinrj ? /-y,f
No

Yes V duirutiy coll ? /nNo

success

failure >

C .32

120P: ! CHECK FDR END OF SUBSTRING AND EXIT ON SUCCESS
I Nls=fi>< CURRENT ITEM)
I N2=^(LAST ITEM)

*=4il5
12002:*M15

•J 12001= ;1 END OF SUBSTRING, SAME AS 122P
♦MOMl5

*=Q15
♦J 12002 CI5 Z ;I DUMMY
♦EXIT 2 ;1 FAILURE, N1=^(LAST ITEM)

121P: I EXIT FROM SUBSTRING AFTER FAILURE
I NEST EMPTY

♦ 14
♦=M10
♦MDM10
*=Q13
*113 TO Q4
♦M13
♦EXIT 1

I START OF CURRENT SUBSTRING

I O/OLD I4/DLD «>(LAST)

I RESET 14

1 Nla^LAST OF MAIN STRING)

122P: I EXIT FROM SUBSTRING AFTER SUCCESS
I N1=D(LAST ITEM)

12001: *=M0M10N
♦14
«=RM13

♦M0M13Q
*=Q14
*114 TO Q4
♦M14

♦M0M13Q
*=M14

♦M0M14
♦SHL+32
♦SHL-32
♦M3M13N

*=MOM10Q
♦EXIT 1

;I START OF SUBSTRING

;I O/OLD 14/ OLD END OF STRING

;i RESET 14

;I SUBSTRING ITEM

;I SUCCESS, N1=NEXT, N2=LAST OF STRING

C.33

C.34

123P: I CHECK FDR END OF STRING
I N1s'XCURRENT ITEM)
1 N2=0><LAST ITEM)

*=M15
12301:*M15

*J 12302=
*M0M15
*=Q15
*J 12301 CI5 Z
♦EXIT 2

12302:*=M0M10QN
♦EXIT 1

;1 END OF STRING

;I DUMMY
; I FAILURE, N1=^LAST ITEM)

;I SUCCESS, NEST EMPTY

124P: I PREPARE FOR CRES 2
I Nl=Ti(RESOLVE VARIABLE)

♦DUP
*=M13

♦MOMl3
♦DUP
♦J 14P=Z ;I UNASSIGNED STRING
*=Q14
♦M14
*J 12401=Z ;| NOT RESOLVED VARIABLE
♦ERASE
♦ZERO

12401:*114
♦CL4
*14

*=RM10
*I10=+2
♦EXIT 1
I Nl=ff?(FIRST ITEM)
1 N2=^(LAST ITEM)
1 N3= 0:RESOLVED VARIABLE
I ADDRtOTHERYUSE

C.35

L25P 1 dummy variable ?

Ho

V
j YO£

j @(LHS variable) = @(RKS variable)
and not already assigned ? /Yes

fault

monitor

rio

ik

YosY RHS variable unassignod ?

No

RHS variable resolved ? }-—H rem/ Yes j
amove baas-pointers

return serin?

X
/
\ first coll = last ceil . , ,

\ / No
pushdown back-pointersj >

V

Yes

p

(onG of 3trin2 ?) No ' insert dummy cell after1-*

v

Yes

find penultiraato coll and

insert dummy

C.36

125P: I ASSIGN RESOLVED STRING, SAY Y->X
I Nl= M10 INCREMENT
I N2=**(Y)

*=+MlO
♦M0M10 ; I i/0 OR N/ <3>(X)
*=M13
*M13

*DUP
*J 12501#Z ;I -[PART] OPERAND
♦ERASE

*11+110
♦EXIT 1

12501:*J 16P=
*MOMl3
*DUP

*=Q14
*J 12502-Z
♦Ml4
♦J 12503=Z
*C14
*M13
*JS 15200
*114
*M13
*JS 15200
->12502

JI ^(Y) =T)(X) AND NOT RESOLVED

;I X UNASSIGNED

1 X NOT RESOLVED
I ^ FIRST OF X)
1 <*(X)
1 REMOVE SACK POINTER
I ft(END OF X)

12503j*M13
*DUP ;I PRESERVE
*JS 102P ;I RETURN STRING
*=4113

12502:*M13
♦M0M10QN
*DUP
*=RC13
♦M3M10N
*DUP
*=113
*J 12504=
*JS 12510
*113
*JS 12510
*=M14

*Q13
♦NOT
*NEG

*=M0M14
♦EXIT 1

; I m
;I FIRST

;I LAST

;1 FIRST=1AST
;1 PUSHDOWN BACK LINK

; I Nl=fl)(Y)

C.37

12510:#=M14
♦M0M14
*=Q15
*115
#J 12511<=Z
*JS 100P
*DUP

*=M15
♦M0M14
*=410Ml 5
*=4dOM14

12511:*DUP
♦SHL+32
♦M0M14

*=Q15
*115
♦SHL+32
♦SHL-16
*OR

*JS 100P
*DUP
*NEG
*=115
*Q15
*=410Ml4

*=4115
*=4rtOM15
♦EXIT 1

12504:*=M14
♦M0M14

*=Q15
♦Ml5
*J 12512=Z
*115
*J 12505<=Z
*JS 100P
*DUP

*=M15
*M0M14
*=M0M15
*=410M14

;I FIRST OR LAST

;I NOT SUBSTRING ITEM

;1 COPY SUBSTRING ITEM

; I W

; I <WLINK/0

;1 PUSHDOWN NEW CELL

;1 STORE BACK POINTER

;I END OF STRING

;1 NOT SUBSTRING ITEM

;I COPY SUBSTRING ITEM

C.38

12505 :*JS loop
*=M15
♦M0M14

*=Q13
♦113

♦JS 100P
♦DUP
♦NEG

*=113

♦Q13
*=M0M15
*=M13

♦REV ;1
♦DUP
♦SHL+32
*=M0M13
♦JS 100P
*=M13

♦DUP
♦SHL+32
♦CAB
♦SHL+32
♦SHL-16
•OR

*=M3M13
♦Ml3
♦NEG
♦SHL+32
♦SHL-16
♦Ml 5
♦OR

*=M0M14
*=M13 ;I m
♦Ml4
♦SHL+16
♦Ml5
♦OR
♦SHL+16
♦NOT
♦NEG
*=M0M13
♦Ml 5
*=M0M10N
♦EXIT 1

C.39

12512:♦MOM10
12513:*=M13

♦MOMl3
♦SHL+32
♦SHL-32
♦M14
•J 12513# ;I SKIP DOWN TO END
*ERASE
♦M0M13
♦SHL-16
♦SHL+16
•JS 100P
♦OR

♦DUP
♦=M0M13
♦JS 10OP
♦=M13
♦REV

♦DUP
•SHL+32
*=M0M13
♦M13
♦NEG
♦SHL+32
♦SHL-16
♦M14
♦OR
♦CAB
♦=M13

*=M0M13
•DUP
♦SHL+32
♦Q15
♦OR

•JS 100P
♦=M15
♦=410Ml5
♦Ml5
•NEG
♦SHL+32
♦SHL-16
♦=M0M14
*=M15
♦M13

•SHL+16
♦M14
♦OR

♦SHL+16
♦NOT
•NEG
♦=410Ml5
♦EXIT 1

C.40

151 roturn cell

substring

back'

ins cell or cell voithY——X within a substring ? / >) AO \ , / No
ck-pointer chain ? / Yes

substring; cell ?,

v

YO£
No

enter sub¬

string level

4

_\i
1 popup back-pointer chain coll

find and remove corresponding

back-pointer coll

r
No V end of chain ?V-

/ YO£

——(end
No \

of substring ?

Yes

restore previous string level

C.41

15100:1 RETURN CELL (COMPLEX)
i N1=ADDR(CELL)

♦CO TO Q12

15101S*Q13
♦REV

♦DUP
*=M13

*110Ml3
*=Q13
♦DUP
*JS 10IP
•113
♦DUP
♦J 15102#Z
♦ERASE
♦ERASE

*=<J13
♦J 15103 C12 NZ
♦EXIT 1

15102:*DUP
♦J 15104>Z
♦NEG
*=M13

♦Q15
*Q14
♦REVD

;I DEPTH COUNTER

;1 PRESERVE

;1 CELL

;1 RETURN CELL

;I NOT SIMPLE

jl RESTORE
;I BACK TO SUBSTRING

;I SUBSTRING

;I ADDR(FIRST BACK)

;I PRESERVE

15109:*M0M13
♦M13

♦JS 10IP
♦ZERO

♦SHLD+16
*=M14 ;»
♦SHA-32
♦REV a
♦MOMl4
♦=Q15
♦CI5
♦J 15105=
♦115
♦J 15106#
♦C15
->15107

BACK POINTER

-ADDR(NEXT BACK)
ADDR(MAIN CHAIN CELL)
A(RESOLVED STRING)

C.42

15105:»I15
15107:*M14

*JS 15200
♦ZERO

»=M0M14
♦REV

♦DUP
♦J 15108=Z
♦NEG

*=M13

->15109

15108:♦ERASE
♦ERASE

*=<313
*=Q14
♦=Q15
♦J 15103 C12 NZ
♦EXIT 1

;1 REMOVE OTHER LINK

;t SET RESOLVED STRING UNASSIGNED

; I END OF CHAIN

; I RESTORE
; I BACK TO SUBSTRING

15106:%CAPTION
%STOP

15104:*ERASE
♦ERASE

*=M0M12Q
♦C13
*=4113

-- NO BPC MATCH

PRESERVE Q13

15103:*M13
♦DUP
♦J 15110=2
♦MOMl3
*=Q13
->15101

15110:*ERASE
♦M-I12
♦MOMl2

*=Q13
*112
♦=+C12
♦J 15103 C12 NZ
♦EXIT 1

;I END OF SUBSTRING

; I RETURN CELL

; I BACK TO SUBSTRING

C .43

152 end of chain ? y*Yqz system fault

no

/
addr. matches back-pointer ?)

Yes

popup and return back¬

pointer cell

C.44

15200:i REMOVE BACK POINTER
I Nl= ADDR TO BE SEARCHED FDR
I N2= ADDR OF MAIN CHAIN CELL

♦Q13
♦PERM
♦REV

*=M13

♦Q15
♦Q14
♦REVD

♦MOMl3
♦SHL+16
♦SHA-32

15202{♦DOP
♦J 15201=Z
♦NEG
♦=M14
♦MOMl4

♦=<}15
♦C15
♦J 15203=»
♦Ml4 TO Q13
*115
->15202

;I PRESERVE

; 1 CURRENT FIRST

; i PRESERVE

;I - CHAIN POINTER

; 1 FAULT

;1 CURRENT SECOND

;1 FOUND BACK POINTER

;I - CHAIN POINTER

15203:*ERASE
♦M14 ;1 POPUP
*JS 10IP
♦M3M13
*=Q14
*115 TO Q14
♦Q14
*=M0M13
*=Q13 ;J RESTORE
*=Q14
*=Q15
♦EXIT 1

15201 :%CAPTION — NO
_ BACK _ POINTER

%STOP

C ,45

appendix d

Permanent routines

%ROUTINE READ ITEM(%STRINGNAME S)
%INTEGER I
READ SYMBOL(I)
*JS 100P
*DUP
♦♦I

♦SHL+32
♦OR

*JS 100P
*=M13

*=M0M13
♦M13
♦SHL+16
♦OR
•SHL+16
**US

♦DUP
♦JS 102P
♦=M13
♦=M0M13
%END

%STRINGFN NEXT ITEM
%INTEGER I
I=NEXT SYMBOL
♦JS 100P
♦DUP
♦*I
•SHL+32
♦OR

♦JS 100P
•=M13

*=MQM13
♦M13

♦SHL+16
♦OR

♦SHL+16
%RETURN
%END

%ROUTINE SKIP ITEM
SKIP SYMBOL
%END

D.l

%INTEGERFN STOI(%STRING S)
♦♦S

♦SHL-32

*=M15
2:*M0M15
♦DUP

*=Q15
♦J1=Z
*J2 C15 Z

*C15
♦DUP
♦J1<Z

4;*M0M15
♦DUP
♦=Q15
♦J3=Z

♦J4C15Z
1:%CAPTION -- INVALID _ STDI
%STOP
3:%RETURN
%END

%STRINGFN ITOS(%INTEGER N)
%IF N<=0 %THEN ->1
*JS 100P
*=M13

♦JSIOOP
♦DUP
♦♦N
♦SHL+32
•OR

♦=M0M13
♦M13

♦SHL+16
♦OR

♦SHL+16

%RETURN
l:%CAPTION — INVALID

_ ITOS
%STOP
%END

P.2

%ROUTINE READ STRING <%STRINGNAME S)
%INTEGER I,J,K
%STRING R

1: READ SYMBOL(I)
->1 %IF I#40 ;I IGNORE

♦JS 100P
♦DUP

2: IsNEXT SYMBOL

%IF 1=40 %THEN ->3 ;1 '('
SKIP SYMBOL

%IF 1=41 %THEN ->5 ;l ')'
->2 %IF 1=32 %OR 1=10 ;I OR
♦=M13
♦♦I

♦SHL+32
->4

3: ♦♦aj
♦♦=K

READ STRING (R)
♦♦K
♦♦R

♦JS 103P
**J
»=M13

4: *JS 100P
♦DUP

♦PERM
♦OR

*=M0M13
->2

5: ♦DUPD

♦J6#Z
»=M13
♦JS 100P
♦DUP
♦=M0M13

6 s ♦REV
♦SHL+16
♦OR

♦SHL+16

♦DUP
♦JS 102P
*=M13
*=140Ml3

%END

SPACES & NEWLINES ETC.

*

C

D.3

%ROUTINE WRITE STRING (%STRING S)
%INTEGER I
♦E228

*=Q15
*00 TO Q12
**S

4: *ZERO
♦SHLD+16
*=M13
♦SHL-32

2: *M13
*J1=

*M0Ml3
*=Q13
*J2 C13 Z
*113
*J3>Z
*C13
*♦=1

♦Ml3
*#I

♦SET 10
*J6#
♦SET 13
*JS 13P

6 j *JS 13P
*=M13
->2

3: *SHL+16
♦M13
♦OR

*=MQM12Q
♦Q13
♦SET 40
*JS 13P
->4

1: *ERASE
*J5 C12 Z
♦SET 41
*JS 13P
♦M-I12
♦M0M12
♦DUP
*=M13
♦SHL-16
♦ 112
♦=+Cl2
->2

5: *Q15
♦=E228

%END

D.4

%ROUTINE SHOW(%STRINGNAME S,%STRING T)
%INTEGERARRAY ST(ljlOO)
%INTEOER I,J,K,LfP
WRITE STRINO('--'.T.'_ '.S.'--')
♦♦as
♦♦=1

WRITE(1,1)
♦♦S

*=Q13
♦C13
♦♦si

*113
♦♦=J
*M13
♦ *=K

WRITE(I,6)
WRITE(J,5)
WRITE(K,2)
%RETURN %IF K-l
NEWLINE
P=0

K=I

7:NEWLINE
SPACES(3*P)
WRITE(K,1)
->10 %UNLESS 2000<=K<»15000
♦♦K

*=M13
♦M0H13
*=Q13
*C13
♦♦=1
*113
♦♦=J
*M13
**sK

%IF J>0 %;HEN ->1
%IF 1=0 %THEN ->2
%IF 1=10 %THEN ->3
%IF 1=32 %THEN ->4
SPACES(3)
PRINT SYMBOL(I)
->5

10:%CAPTION _PRANG
->6

2:WRITE(0,2)
->5
3 :%CAPTION NL
->5
4 :%CAPTION SP

5:WRITE(J,5)
WRITE(K,5)
%IF J=0=K %THEN ->6
%IF J=0 %THEN ->7

D.5

8 sJ="J
WRITE(J,8)
->9 %UNLESS 2000<=J<=15000
♦♦J
*=M13
*H0M13
*=Q13
*C13
♦*cl

*113
**=J
♦Ml3
•*=L

WRITE(I,6)
WRITE(J,5)
WRITE(L,2)
->8 %UNLESS J=o
->7 %UNLESS K=0
6;%RETURN %IF P=0
K=ST(P>
P=P-1
->7 %UNLESS K=0
->6
9 :%CAPTIQN _CLANG
->7 %UNLESS K=0
->6

1:WR1TE(I,6)
WRITE(J,5)
WRITE(K,5)
P=P+1

ST(P)=K
K=I
->7

%END

%INTEGERFN LENGTH(%STRING S)
♦ZERO
♦*S

♦SHL-32
*=M13
1: *MOMl3
*=Q13
*1(13
*J2=Z
♦J1C13Z
♦NOT
*NEG
*J1

2;%END

D.6

APPENDIX E

KDF9 Machine Code

The main compnonents of the KDF9 from the programming point of view
can be shown diagrammatically :

Subroutine jump

nesting store

Main store

Main store

ASTRA was implemented for a KDF9 with 16384 words each of 48 bits.

Word and half-word addressing is available. The Director program

occupies the lowest area of main store and is commonly 1216 words in

length. The program base is relocated to the end of Director, allowing

an effective store from addresses 0 to 15168.

Q-store

There are 16 Q-stores, the name given to the XDF9 index registers,

QO to Q15. QO always contains zero. Each is 48 bits long, but for some

purposes can be regarded as three separate 16-bit long fields, named

Counter, Increment, and Modifier fields :

48 bits

Counter Increment Modifier

16 bits 16 bits 16 bits

E.l

Subroutine Jump Nesting Store
The SJNS acts as a pushdown stack with a maximum capacity of 15

cells. Each cell is 16 bits long. It is used to stack subroutine return

addresses.

Nesting store

The Nest also acts as a pushdown stack, but with a maximum capacity

of 16 cells each of which is 48 bits long. All Q-store, Main store and

arithmetic activities make use of the Nest.

Summary of basic instructions

1. En where n is a store word address.

Pushdown the contents of Main store location n into the Nest. E.g.

E382

2. =En

Store top cell of Nest in Main store location n and popup Nest one

cell.

The = symbol is consistently used to indicate removal from the Nest
and popup one cell and the absence of the = symbol implies the reverse

i.e. pushdown a new value into the Nest.

3. EnMm and =EnMm

As 1. and 2. but with the store address n modified by the contents

of Modifier cell m. E.g.

E2M4 =El0M12

No half-word addressing is used by the ASTRA system and so it is

not discussed here.

4. Qq and =Qq
Fetch (store) the contents of Q-store q to(from) the Nest. E.g.

Q14 =sQ10

5. Cq -Cq Iq =Iq Mq =&iq
As 4. on the Counter, Increment and Modifier parts of Q-store q.

The 16th-bit of each field is treated as a sign bit and is extended to

E.2

full word length on fetching to the Nest. E.g.
14 =M10

6. MpMq and =MpMq
So-called Indirect Addressing takes the sum of the Modifier parts

of Q-stores p and q as the Main store address from which to fetch into

or store from the Nest. E.g.

M12M13 M0M14

M0M14 would be used in preference to EQM14, which has the same effect,
since the instruction is shorter.

7. MpMqQ and =MpMqQ
After performing the actions of 6. the contents of Q-store q are

changed as follows : the Counter is decremented by 1, the Increment is

unchanged, and the Modifier is incremented by the value of the

Increment. E.g.

M13M14Q =M0M12Q

A terminating Q symbol may also be applied to type 3. instructions, with
the same effect.

8. MpMqN and =MpMqN

The effective Main store address is taken to be Mp + Mq + 1.
Otherwise as 6. QN may be appended in which case the actions of both 7.
and 8. are carried out.

9. Qp TO Qq Cp TO Qq Ip TO Qq Mp TO Qq
Transfer either all or the relevant field of Q-store p to the

equivalent field of >4-store q.

10. M+Iq and M-Iq
Increment or decrement the contents of Modifier q by the value of

Increment q.

11. + - * /

Perform the relevant arithmetic operation on the top two cells of

the Nest and leave the result in their place i.e. a popup of one cell :

(N2 op Nl), N3, . . .

E.3

12. ERASE

Erase the top cell of the Nest and popup the remainder.

14. DUP DUPD

Duplicate the top cell (top two cells) of the Nest.

15. REV REVD

Reverse the order of the top two cells (top two pairs of cells) of
the Nest i.e. N1,N2 to N2,N1 (N1,N2,N3,N4 to N3,N4,N1,N2).

16. PERM

Reorder the top three cells of the Nest from N1,N2,N3 to N2,N3,N1.

17. CAB

Reorder the top three cells of the Nest from N1,N2,N3 to N3,N1,N2.

18. J a

Jump to address a.

19. J a (comp) Z where (comp) is =, #, >, >=, <, <=>.

Jump if N1 compares with zero and popup one cell.

20. J a= J a#

Jump to address if N1=N2 (N1#N2) and in any case popup the Nest by

one.

21. JS a

Jump to address a, pushing down the address of the instruction in

the SJNS, i.e. the subroutine jump.

22. EXIT n

The subroutine return instruction. Jump to the address given by the

contents of the top cell of the SJNS plus n half-words and popup one

cell of the SJNS. Since the JS instruction is one half-word in length,

the common subroutine exit is :

EXIT 1

E.4

23. SHL n SHLCq
Shift the top cell of the Nest logically n places or Cq places,

positive n to the left and negative n to the right.

24. SHA n SHA Cq
Shift as 23. but arithmetically i.e. preserving the sign bit.

25. SHC n SHC Cq
Shift as 23. but cyclically.

26. SHLD n SHLD Cq

Shift logically the double length word formed from the top cells of

the Nest, N1 being the more significant half.

These machine instructions and the remaining few not described can

be written into any ASTRA program when required, possibly for

optimisation, by prefixing them with an asterisk. E.g.

♦ZERO

♦SHLD+16

♦=M14

Symbolic store locations of ASTRA e.g. i and j declared by :

integer i, j

can be fetched and stored to and from the Nest by pseudo machine code

instructions :

**i

**=j

Ordinary ASTRA labels (and private compiler labels) can also be

incorporated :

♦J 1 = Z

♦JS 106P

f •

E.5

