
PHD.

COMPUTER MODELLING

OF ENGLISH GRAMMAR

GRAEME D6NALD RITCHIE

UNIVERSITY OF EDINBURGH 1977

Acknowledgements

The work reported in this thesis was carried l)lut between October

1973 and September 1974 iri the Theoretical Psychology Unit, Schobl of

Artificial Intelligence, University of Edinburgh, and between October

1974 and October 1976 in the Department of Computer Sc.ience, Sc.hool

of: Arrifi,~ial Intelligence and ·computer Science, University of

Edinburgh .. The work was supported by a Science Research Council

Research Studentship .. I should like to thank my supervisors,

Christopher Longuet-Higgins and Hamish Dewar, for the assistance

which they provided during these periodsc

Thanks are also due to Robert Rae for his long suffering

guidance on programming matters, and to }like Gordon and }hrtha Stone

for their comment::> on an earlier draft of this thesis. I

particularly wish to thank Stephen Isard for many extremely valuable

discussions. The ideas presented in Sections V.1.3, V.4.2 and V~7

owe much to his suggestions. Two papers have been submitted to

conferences in the course of the project, and these art~ listed ln the

bibliography as Ritchie(l 976) and Ri tehie(l 977).

I declare that this thr'.sis has been c.onposed by myself, and that

the work reported in it is my own ..

G~D~ RITCHIE

ABSTRACT

Recent work in artificial intelligence has devt;loped a number of

techniques which are . particularly appropriate for construl-: t· i.;1::; .-1

no,121 of the process of understanding English sentences .. These

methods are used here in the definition of a framework for linguistic

description, called "computational grammar".. This framework is

employed to explore the - details of the operations involved in

transforming an

representation ..

English sentence into a general semantic

Computational grammar includes both "syntactic" and

"semantic" constructs, in order to clarify the interactions between

all the various kinds of information, and treats the

sentence-analysis process as having a semantic goal which may require

syntactic means to achieve iL The sentenc~-analyser is based on the

concept of an "augmented transition network grammar", modified to

minimise unwanted top-down processing and unnecessary era bedding.. The

analyser does n_ot build a purely syntactic ,structure for a sentence,

but the semantic rules operate hierarchically in a way which reflects

the traditional tree structure. The processing operations are

simplified by using temporary storage to postpone premature decisions

or to conflate different options .. The computational grammar

framework has been applied to a few areas of English, including

relative clauses, referring expressions, verb phrases and tense. A

cor:iputer program ("MCHINE") has been written which implements the

constructs of computational grammar and some of the linguistic

descriptions of English .. A number of sentences have been

successfully processed by the program, which can carry on a simple.

dialogue as well as builcling semantic representations for isolated

sentences ..

CONTENTS

INTRODUCTION

, Chapter I HETATHEORY AND METHODOLOGY

Section L 1 Theories, Paradigms and Frameworks

Section L 2 : Some Assumptions

I.2 .. 1 Semantic Structure

I.. 2. 2 Syntax

I .. 2.3 Recognition Rules

Section I.. 3 Terminology and Grammaticality

Section L4 Computer Modelling

Section I.5 Detailed Analysis

Section I..6. : Psychology, Linguistics and Art·ificial
Intelligence

Chapter II OTHER FRAHEWORKS

Section II. O Preamble

Section II. 1 The Aspects ~·1odel (Cho:nsky)

Section II.2 Deep Interpretive Semantics (Katz)

Section 11.3 Surface· Interpretive Semantics (Jackendoff)

Section IL 4 Generative Semantics (Lakoff, Mccawley, Postal)

Section II .. 5 Montague Grammar (Hontrtguc.)

Section II.6 Preference Semantics (Wilks)

Section II. 7 Conceptual Dependency (Schank, Riesbeck)

Section IL 8 Transition Network Grammars (Woods)

Section 11~9 The SHRDLU system(Winograd)

Section Il .. 10 Wait-and-See Strategies (Marcus)

Section 111.11 Semantic Networks (Simmons)

Chapter III IMPROVING THE EXISTING CONSTRUCTS

Section IIL 0 Preamble

Section IIL 1 Structural Cornbini.ng Rules·

Section III.2 Syntax and Semantics

Section III.. 3 ImAcdiate Semantic Processing

Section III.. 4 Sense and Reference

Section IIL 5 Registers

Section IIL6 Control Structure

Section III.. 7 Processing Levels

Section Ill.8 Decisions, ~listakes and Predictions

Section III. 9 Bo ttor:l-up D::.w ices

Section III .. 10 Semantic Representation

Section IIL 11 Levels of Description

Section IlL 12 Conversational Structure

Chapter IV COJ.V1PUTATIONAL GRAMMAR

Section IV.O Preamble

Section IV .. 1 Structural Combining Rules

Section IV .. 2 Recognition Rules

Section IV .. 3 Semantic Representation

Section IV .. 4 Syntactic Properties and Features

Section IV .. 5 Analysis Procedure

Section IV. 6 Registers

Section IV .. 7 Conversation Routines

Section IV .. 8 : Guide'iines for Analyses

Chapter V SOME AREAS OF JENGLISH GRAHMAR

Section V .. O Preamble

Section V .. 1 : The Internal Structure of Noun Phrases

V .. 1.1 Possessives and Determiners

V .. L 2 Restrictive and Non~-Restrictive Adjectives

V.1.3 Adjectives and Classifiers

Section V .. 2: Auxi1Ln:y Verbs

V .. 2 .. 1 Avoiding Branching

V. 2 .. 2 Th·~ Information Conveyed

V.2 .. 3 Negation

V.2 .. 4 "Do"

Section V .. 3 : Number Agreement

V.3 .. 1 Subject-Verb Agreement

V.3.2 Determiner-Head Agreement

Section Vc4 : Wh - Clauses

V .. 4.1 The Surface Structure of Wh-Clauses

V .. 442 The Complex Noun Phrase Constraint

V .. 4.3 Semantics of in~clauses

V .. L•~ 4 Non-Restrictive Relative Clauses

Section V.5 : Limits on Embedding

V .. 5.1 The Idea of Complex Embedding

V.5 .. 2 Right-Embedding

V.5 .. 3 Left-Embedding

-
V.5.4 Relative Clauses

Section V.6 : The Semantics of Noun Phrases

V .. 6.1 Definiteness

V .. 6.2 Specificity

V.6 .. 3 Predication

Section V.7 : Tense and Time

V. 7 .1 The Previous Descriptions

V .. 7.2 Nested Tense Settings

V.7~3 The Function of Time-binders

V .. 7 .. 4 Disembodied Time References

V .. 7.5 Tense Clash

V.7q6 A Summary of the Tense-Slot System

V .. 7 .. 7 Time Semantic Structures and Relationships

V .. 7.8 Perfect P~pect

V.7 .. 9 Some Rules and Structures

V .. 7 .. 10 "When" Clauses

V.7.11 Summary of Rules

Section V .. 8 Verbs and Cases

Chapter VI THE MCHINE PROGRAM

Section VL 1 Implementation Details

Section VI~2 : Data-base and Data-structure system

VI.2~1 Property lists

VI.2.2 Pseudo-Records

VI.. 2 .. 3 Contexts

VI. 2. 4 Hatching

VI.2~5 Data Base

Section Vl~3 : Representing Linguistic Information

VL 3 .. 1 Lexicon

VI.3.2 Recognition Rules

VI..343 Structural Combining Rules

VI..3.4 Registers

VL3.5 The ATN Interpreter

VI~3.6 Surf~ce Structure

VI.. :L 7 Semantic Networks

VI.. 3~ 8 Output Translation

VI.3.9 Conversation Games

VI.3.10 World ~bdel

VI.3.11 Semantic Hierachy

Section VI .. 4 Implemented Grammar

Vi .. 4.1 Noun Phrases

VL 4 .. 2 Verb Phrases, Auxiliaries and Predicates

VI.4.3 Prepositions

VL 4. 4 Imperatives

VI.4.5 Embedded Clauses

VI.446 Wh-ClauSes

VI.4 .. 7 TiMe Adjuncts

Section VI.5 : Comparison with Other Programs

VI.5.1 Technical Details

VI.5.2 Grammatical Coverage

Chapter VII CONCLUSIONS, PRORLEHS AND SPECULATIONS

Section VILO Preamble

Section VII.l : Structural Combining Rules

VII.i.l Present Version

VII.. 1.. 2 Bidirectional Rules

VII.1.,3 Left-Right Ordering

VII .. 1.4 Focus and Topic

Section VIL 2 The Analysis Procedure

VII.2.1 Present Version

VIL 2. 2 Top-dovm and Bottom~~up

VII4243 Predictions and Procedures

VII42.4 Demons and Packets

Section VII.. 3 : Semantic Representation

VII.3.1 Present Version

VIL 3. 2 Semantic Well-formedness

VII.3.3 Contexts and Referring Expressions·

Section VIL 4 : Syntactic Markings

VII.4.1 Present Version

Section VII.5 : Guidelines for Descriptions

VII.5.1 Present Version

VIL 5. 2 Dynamic and Static Elegance

Section VII.6 : Registers

Vll,6.1 Present Version

VII.6~2 Constraints on registers

Section VII.7 : Conversational Rules

VII~7~1 Present Version

VII~7.2 Greater Interaction

Section VII.8 : Points of English Grammar

VII.8.1 Present Version

APPENDIX A

APPENDIX B

APPENDIX C

REFERENCES

VII.8~2 Prepositions

VII.8.3 Conjunction

Details ofvlraplemcntcd Grammar

Sample Dialo~uas

Performance Table

Page 1

INTRODUCTION

The work reu1 orted in this thesis tries to achi" eve two clo ,el . s_ y

related goals. Firstly, to combine some of the id,~as and techniques

of recent work. in artificial intelligence to form a model (or partial

model) of language which allmvs 1 inguistic description of English in

processing terms.. Secondly, to investigate in more detail some of

the processing mechanisms that must be present in such a model in

order to describe the conversion of a string of English words to a

representation of the corresponding "meaning".

The second, more specific, goal was the main aim, but it was

found necessary to spend some time establishing a frame of reference,

since there is currently no accepted processing model of language~

The framework used here (called "computational gram1:1ar" for ease of

reference) is not a totally new model, since it relies heavily on the

work of Chomsky, Fillmore, .Montague, Hoods, Winograd a:id others (as

will be seen from 01ap~ers II and Ill). In order to clarify some of

the ideas involved in computational grammar, a computer progrnn (the

"HCHINE" system) has been written, which can convert a small ra;1.ge of

English sentences to a semantic representation or carry on a very

simple dialogue.

There are; thus several facets to the investigation .. There is

the general framework of. computational grammar (St:~t out in Chapter

IV), which is based on certain assumption;.; (outlined in ChapU~r I)

and ,on some reactions to/existing models (discussed in Chapter Ill)~

Next, there is the application of computat·ional gra111uar to various

fragments of English, and the consequenees which thc~se analyses have

Page 2

for the processing mechanisms that must be postulated (see Chapter

V). Finally, there is -the MCHINE program, which implements some of

the English descriptions and acts as a crude test of the devices of

computational grammar; the program i.s described in Chapter VI.

Computational grammar is neither wholly adequate nor even

complete (as indicated in Chapter VII), but it has provided a basis

from which some useful poi1:its have e.me.rged 4

Various "bot ton-up" principles have been included, which reduce the

range of options that have to be specified explicitly in a grammar.

There is a general, partially-hierarchical system of infonnation

storage which has, as an automatic consequence, the phenomenon

previously described in transformational grammar by the "Complex Noun

Phrase Constraint" .. Although the h-ierarchical surface structure of

English ·may be fairly complex, the processins can be sirnpl i[ied by .:i

techn Lque 1.v~1 ich makes .a - special provision for right-branching

structures, thereby avoiding unneces~ary ecbedding of processes.

The rules used for combining meanings are dlso important, sinc~e

they lie on the traditional boundary between syntax and semantics, A

single set of rules simultaneously defines the possible surface

structures and states what semantic combinations these structures

represent.

Within the area of semantic representation, a particular kind of

structure has been devised which is particularly suitable for the

representation of the meaning of a w.tcie variety of surface

)

structures, and which therefore allows various semantic. proces:3C:!3 tu

Page 3

be simplified'.

Several areas of English grammar have been explored using the

cooputational framework, and these are described in Chapter V.

Sect~ons V.l, V.2, V .. 3 and V.5 illustrate how the various devices in

computational grammar operate, and their appropriateness for certain

phenomena. The analysis of "wh"-clauses, in Section V. ~l, shows how

an otherwise arbitrary linguistic constraint can be re-expressed

naturally in comput8:tional terms. Section V. 6 combines concepts from

logic and computation to develop a way -of describing referring

expressions. A detailed investigation of tense and time is set out

in Section V.7, and the description of verb phrases in Section V.S

shows how careful use of lexical entries can sir.iplify the grammar.

CHAPTER I

HETHODOLOGY AND METATHEORY

Page 5

Section hl ..:_Theories, Paradigms and Frameworks -- __ .,_ .. ____.,,...,. !~---..--

The phrases "theory of langua8e" or "U.nt;lli:-:ti.e th .. ~ory" are

often used in discussing .research into natural language., The aim of

this section is to question whether .we always have "theories", and to

suggest that something weaker is guiding current research.

One widely-accepted version of how scientific investigation

proceeds is characterised by Hempel (1966)., In such an approach, a

thedry is a coherent, structured body of ideas concerning some

subject, which makes predic.tions that may be verlfied, ·and which can

be used to "explain", in some sense, observations made about the

subject matter .. Hempel pre~ents a very ne~t picture of a highly

organised objective scientist using A. C<H" .. ~[ully COil.~t1:ucut.;:,l t~t:::ory

in an unprejudiced fashion .A somewhat different analysis is

presented by Kuhn (1970), who has less fai.th in the objectivity of

the scientist.. Kuhn sees science working within a series of

"paradigmsu .. A paradigm is an accepted theory which not only guldes

research, but positively straitjackets it, by defining problems, and

possible solutions, in such a way as to narrow the scie'ntist' s view

greatly.. A paradigm is not just a theory, but has an attachc~d set of

ways of working and a whole terminology of its own.. Hence it imposes

a very definite structure on the. way research proceeds. Whereas

Hempel discusses the notion of choosing between competing theories by

gathering evidence, Kuhn asserts that these rational choices are not

possible between paradigms) since each paradigm defines differently

the criteria for such choices.

Page 6

A case could be made for regarding lin3uistic research as

proceeding in Kuhnian paradigms. A paradigm in this sense

contributes to research at two revels - it provides a theory, which

can be regarded as 11 true" or "explanatory"; it also provides

guidelines for the everyday investigations of the subject matter. It

is this latter as pee t that is more relevant in artificial

intelligence and computational linguistics, since both lack an

overall "theory" to provide a received body of "facts" or

"explanations" .. In the period before the development of a paradigm,

there is, according to Kuhn, an atheoretical stage in which A body of

techniques and concepts are built up, which serve to guide

investigation and description of a topic. Let us call such a

collection of devices a 11 frar:lework".. A framework is weaker than

either a theory, in Hempel's sense, or a paradigm, in Kuhn's sense~

It makes no really precise predictions, since it ts not suff lclently

elaborated. It cannot, therefor~~ claim to provide any explanation,

since it does not relate all observed phenomena to so~ne syster:rntic

generality., It has no use for "critical experiments" or "crucial

counter-examples", since it is not g.n integrated edifice that can be

_demolished by removing one brick.. It contains no "truths" which can

be taken as unquestionable by the community using the framework.

However, it is of great ttse to what Fillr:iore (1972) calls the

"ordinary working grafi11Ll.arian" .. It provides tools for investigating

and describing the subject-·i:wt:t~r., It provides a terminology which

workers in the fiel<l can use to communtcate with each other~ ·It

sug8ests problems that must he attacl::.cd, and, often, ways of

at t ack.ing them~ It pr:ovide.s some r.wans of a sse ssmen t of put ut i ve

solutions (usually using some gene.ral classification of "elegant"

Page 7

against "ad hoe") .. !.t is a cluster of related ideas, rather than a

tightly structured whole, so that different workers may disagree over

the acceptance of certain aspects of the framework, and yet sti.11 be

able to share the rdst of it.

Current artificial in_telligence work definitely has a. frar:ll~work;

but Lt is doubtful if it has a paradigm, since it lacks any real

theory. To demonstrate that there exists a common cluster of idt~as

and techniques, it is necessary only to list some of the tenninology

currently used in artificial intelligence: top-down; bot tom-up,

depth-£ irst, breadth-first, goal-directed, procedural-embedding,

distributed knowledge, flow of control,

subroutine call, pattern-invocation,

access

demons,

environment,

middle-out,

backtracking, plan formation, interacting goals,, updating a world

model, etc.

It might be thought that, without the concept nE a crltLcal

experiment, there could be no notion of "refutation" or

"incorrec tness" within a framework. That this is not so can be

demonstrated by considering the form of argumentati\1n conducted in

transformational linguistics during the 1960s. Although the results

of Peters and Ritchie (1971, 1973) showed that the mechanism of

transformational grammar was so general as to be virtually

irrefutable, linguists continued to produce "counter-examples" to

each other's claims. Despite the fact that the formally defined

transformational grammar could, s tr ic tly speaking, perform any

operations whatsoever, there was an additional notion of "simple"

against "ad hoe" This could be used to eliminate many of the

technically possible manipulations a "counter-example" was an

Page 8

"example which coulci not be handled _::._eat] y__" ..

This has to be borne in mind when ~iscussing computational

linguistics .. In order to cope with the· detailed complexity of

grammatical phenomena, computational descriptions generally contain

mechanisms which are formally as powerful as a Turing machine ..

However, what makes such models distinct from each other is the

different structuring that is imposed on the mechanis1:rn.. Cc..•u.:=1l2d

wi.th the notion of "simplicity" or "elegance11
, the different models

(or rather, the different sub-frameworks) may well r:iake different

claims ..

Page 9

Part of a framework. consists of the assumptions it makes in

order to provide an initial basis for investigation. This section

outlines the assumptions for later chapters, wi U1out provi.diing any

real justifications for any of the positions adopted~

I.2.1 Semantic Structure -------------

It is logically possible that a language-miderstanding system

might be constructed in which all tasks (such as inference, detection

of ambiguity, etc.) can be performed using the word string as the

sole representation of the input ·sentence~ That is, no independent

level of "meaning" is required to show, for example, the sirnilarites

between the· pairs of sentences below, or to detect the aiabiguity of

(3).

(1)

(a) John bought an alligator from the zoo manager~

(b) The man who adr:1inisters t·hc. zoo.lo~ i.c.;.l ;:ja.rd\~!<'3 sold .I.-!\;•. n

alligator ..

(2)

(a) The alligator attacked .John~

(b) John was attacked by the alligator~

Page 10

(3) Attacking alligators can be dangerous.

If such an approach is viable, the onus of proof rests with

those advocating it, since years of l inguistie and phil.osophic A.l

research have demonstrated the unsuitability of word strings for

manipulations such as inference. -

This does not necessarily lnvo lve claiming that the surface

string contains "less information" than some other "senwntic "

structure for the sentence; if the latter is computed from just the

surface string, this cannot be true, although the infolJUation may be

in a more useable form in the computed structure~ However, the

computation might use information from outside the word string itself

(contextual clues), which will make a contribution to the semantic

structure. Not perfonning the conversion might 'entail storing these

contextual clues (if they could be isolat('.d) along with the surface

form, so that the information they con taine<l coul J bt! us.:~J whc'.~12v2r

th8 "111"~<111iJ.g 11 of the sentence was required ..

Some balance must be struck, ne.vertheless, between the

simplicity of semantic operations (for inferencing, etc~ and the

-complexity of the way of corrverting surface form to semantic

structure ..

semantics) ..

(CL comments in Section 11~2 on interpretive

The assumption used, therefore, in this project, is that there

is some level of representati.~rn which can be called "semantic

structure" which is logically dist:Lncr from the surface fori:1, and

which_ is computed from , the srn:L1c·~ f01:m together with other

(contextual) J11format ion.

Page 11

It might be argued that to produce a "structure" is misguided,

as the best way to analyse an .English utterance, in context, is to

consider the effect that was intended by the speaker (on any hearers)

and/or the effect that the utterance had on the hearer(s) .. Thlnking

in terms of conversational effects is extremely valuable, and may be

the most general way to describe an utterance - but this does not

contrast with the "structure" approach outlined here, except in

terminology .. Suppose we have a linguistic 1:10del in which sentences

are described in terms of their effect on the speaker and/or hearer,.

This ~.1n:lel (unless it is to be totally unilhF.1i.nati:lg). will have to

provide a precise representation, in some formal terms, of t·hese

·"effects"; hopefully, this representation may even allow some

comp·arison of "similar effects", so that similarities like those in

(1) and (2..) are shown.. Such a set-up wi.ll not differ fundamentally

from the vague outline presented already - "semantic structure" is

being used in ·such a broad sense that it does not contrast with

"r.epresentation of conversational effect".

L2 .. 2..:_~

In certain logical languages like the predicate calculus) syntax

has a clearly-de£ ined purpose and is distinct from (though

systematically related to) semantics.. Syntactic rules specify which

strings in the language are to be classed as "well-formed", and only

well-formed· strings need be c9nsidered for :i.nf en:::nce O ·r .. oi.:her

semantic manipulation~ This is similar to the notion that Chomsky

adopted in his theory of natural language (1957, 1965), although it

has now been widely questioned (see Section II.l for- further

discussion) .. It is logically possible that a. natural)..:-rn;.::;ua.gt~ r:L1.y not

Page 12

have a comparable concept of "well-formed/ill-formed" characterised

by a set of syntactic rules, although some sentences may express an

·odd idea, and some sentences may be more complex to process~ ...
ll.1.80,

some sentences may sound odd because they are uttered in an

inappropriate context ..

The investigation in later chapters assumes that we need not

search for rules of syntactic we.11-f ormedness, and that it is

sufficient to search for rules of semantic mnnipulatlon, together

with rules for converting between surface form and semantic

structure.. Nany of the phenomena attributed to ·syntax (rarticularly

Chomskyan "grammatica_!-ity") may be more accurately describable in

terms of semantic or conversion rul-es(see also Section L 3 below) ..

This may sound as iE syntax is merely being banished to lurk under

another heading, since syntax has traditionally been a EundAnental

part of the proces::; of conv?.rsi.on b>~tween surface form and meaning~

This is true, since any conversion rules which are postulated wlll

almost certainly have -to make extensive use of traditional syntactic

notions such as "verb", upreposition", possibly "transitive" and

perhaps even "subject"; the change that is being highlighted here is

more a change of emphasis.. In this project, the primary aim of

writing these grammatical rules is not to specify any

"well-formednessu for sentences; the goal is to show how surface

strings relate to semantic struc t.ure ~ Having made that point, tlH~

terms "syntax" and· "syntactic" will be used in the later chapters for

rules or structures whose sole task is to guide the conversion

process~ and which cannot reasonably be said to be describing

patterns of meiming.. For example, the cl:rns of verbs which appe,ar at

the front of the sentence in English questions (auxiliary verbs) is a

Page 13

useful syntactic class, since it aida in the detectioh of the

question construction; it is not obvious that auxiliary verbs are a

·semantic class (al though some more sophist lcated analysis mi8ht show

this to be so).,

This does not mean that no notion of "well-forill:edness/

ill-forrnedness" will result from such rules. If there are conversion

rules and semantic rules, then c~rtain items may fail to be processed

by one or the other~ Ah accurate model would be one whose

rule-failures, or complexities of processing, correspond to

utterances or strings ·which sound bad to the tradiU.onal native

speaker.. However, it is the model as a whole whi.ch will characterise

such ill-formedness, not just one component.. In fact, the existence

of these native judgements of "good/bad" provide much of the evide.nct~

for rules of any kind, and the Chomskyan style of argwnent can be

adopted in discussing such data. (See Iv3 and III.8 for further

remarks on this topic) •

So far, the (deliberately vague) term "conversion" has been n.s 1~.J

for the relationship between surface form and semantic: structure.

This concept can now.be examined in grea~er detail.

A complete model of a langua.ge user will have to specify, among

other things, how semantic structure can be converted effectively to

strings of words (production) and how strings of words can be

effectively

O~)viou:3 way of making such spcc.ifi.catj_ons would be to present two

(probably enorm.ous) atgor:ltlm1s, one for produe tiun and OH'.:! for

rec.ognition. To allow for alterations_t9 the language (or idiolect).

if modelling a specific user), it might be preferable to separate out

\

·some items called rrrules" which the algorithm uses to perform its

task; language-expansion ·coul<l consist then of alteration to the

rule-sys tern, or to the algorithm; or to both.. The two algorithms are

distinct, since the form of input used for one is the form of output·

for the other (and vice-versa). It might be possible, nevertheless,

to find common as pee ts of the two processes. Ideally, it would be

neat if all such points of similarity could be separated out and

b~ilt into the rules; then there might be two totally distinct

_interpreters (in the computational sr~nse) working on one common set

of data (the rules) .. This could of course be done triviallyJ just by

taking the union of the tw0 disj o1nt sets of 11 rules" to be the common

set, but that is not 111lat is meant~ (See Kay (1975) for some

comments on this topic)4

Some linguists claim to be building a model of language which is

not biased tow.:;rds either productLon or recog11ltion (this was one of

the claims of Chomksy (1965)) .. In a sense ~this is true, but it is

reminiscent of the joke about a blind horse seeing equally well at

both ends~ Chomskyan linguists usually ignore the need for effective

production and recognition procedures, and so in a sense the models

are equally incomplete answers. to both problei·ns .. Such an approach

also has to assume that alL t:i::>pects of langu:::ige can be described in

such a netitral, non~dlrectional way"' Hence, if there are any

phenomena which are direction-specific (i .. e .. are consequences of the

algorithmic. parts) either tlw;3c phenomena will not be describable or

else the neutral formulation will have to be distorted to accommo<laie

them ..

Page 15

Computational approaches to language have generally trea~ed the

two processes separately. This is largely because computer models

must include eff ect::ive algorithms for whichever of the two processes

they simulate; hence the task of investigating both problems at once

is inconveniently large~ Also, there is probably a greater

conviction among computational linguists that the two processes have

substantial differences, than there is among theoretical linguists ..

The justification for this ap~roach is that similarites between the

two processes are a further topic for exploratio'n .. Common

sub-processes are to be found empirically, and we do not start from

the assumption that the whole processes differ only trivially ...

Chomsky has often stated that any human la.nzuagi:~ must bt:. subject

to constraints on what it is possible for the human mind to "know",

in some sense.. It should not be forgotten that whatever "know" is

taken to mean here, it must cover· th(: constraint that language must

be able to be produced and to be recognised .. The assuraption in

Chomsky (1%5) seems to be that the. latter constraints are both

obvious and trivial (e .. g ~ the limits on. multi.ply centre-embedded

structures), but this is not necessarily true .. Hence some

characterisation of the production and ~ecognition processes is just

as fundamental to .the study of linguistic universals as the

investigation of 11 deep stn.ic tures" ~

The focus of the research rc•pn1~tt:~d in this thesis has been on

the recognition process, but soLle attempt has been made to s~parate

out generalisations in the form of · rules, so. that

frequently-occurring mechanisms d. cc::· exp l Lcitly ernphasised,, However,

there has not been tinH.: to fon:11.1late any b'i·-directional rules,

Page 16

although there are some parts of the description which obviously

ought to be shareable with a production-oriented model.. The detailed

·specifications of many of the rules are (ultimately) in programming

code - very much a one-directional, algorithmic form ..

In later chaptc:'.rs,. expressions such as "noun , phrase" and

"subject" will be used frequently :ln discussint:; exarnp12s of .Bn.~lish

grammar, but this does not mean t·hat these teri:1s are construe ts in

computational grammar. "Noun phrase" is a tenn whic.h Ls (~Xt re.!:w 1.y

usr~ful for describing English informally, but which is very difficult

to . define rigorously4 Some traditional concepts (e .. g., "verb") are

used directly in computational grammar; others (e.g.. "subject")

could be defined if necessary, although thEy a re not used at present;

some (e .. g .. "person" and "number0 markings) are not used in the

standard way ... ' Nevertheless, these traditional expressions are so

well-known that they provide the best expository vocabulary for

describing Eng~ish informally, and they are employed for that reason.

Chomsky (1957) used the word "grammatical" to refer to ft string

of words which a native spt~akc:r: acc:c"!pts ::is hr:!longing· to his language;

strings which are not in the .L:mguage were "ungrammatical"~ In 1965,

he introduced a further classification - a sentence could also be

classed as 11 acceptablr=/ unacceptable", depending on whether or. not it

was easily processed (under ~'perfornrance conditions"); also, a

sentence could be classified as "seman,tically normal/ semantically

anomalous" s depending. on the well-form
1

edness ·of the meaning

expressed. Chomksy made the assuraption that these three dimensions

of classification were .relatively independent (apart from the fact

that grammaticality was a prc·-requisite for the other classifications

to be made)., He also <Jssumed that :Lt was easy enough for the linguist

to say which native-'.sp~aker jt_1d.ge.rnents pertained to which dimension.

Page 18

Later papers in semantically-based , grammar (see Fillmore and

Langendoen (1971)) use the asterisk (the tr~ditional Chomskyan sign

for an ungrammatical string) to condemn sentences ~or s~rin0s) for a

wide variety of reasons .. Mc Cawley (1971) uses [~'t] to mark

"presuppositional oddity", and the device of inserting one or more

question marks to mark degret:;s of "oddity" is very common in

linguistic literature4

\.rna t emerges from these po st-195 7 develomen ts is that the

"oddity" of a putative sentence (as judged by a native speak.er) .is

graded not just along one dimension, but along several. Also,

despite Chomksy' s original assumption, neither the native speaker nor

the linguist may have clear intuitions about which dimension(s) he is

using to classify a string as "odd" .. ·It is the ·task of the H.nt;uist

to construct a theory in which "odd" strings are classeJ as

ill-formed in some respect (if the theory is to model human

behaviour), but the judgements have not been rigidly pre-sorted into

boxes labelled "perceptually dif f ic ul t", "seman t icaJ.ly anomalous",

etc~

This is a suitable point to introduce sorae infcn:nal terminology ..

The terin grammat~:..~_al will be used not in the Chorns~:yan sense, but in

the sense of "pertaining to grammar"; i·ts contrary will therefore be

non-grammatical, rather than uungn1mr;1aticaJ_u.. An· utterance which

sounds, in some way, strang2 to a native speakc~r, will be elasc;r:d as

contrary Both "odd" and

uacceptable" are classifications of th0 data 7 w.Lth no assumptions

about the type of strangeness involved; both may be context

dependent, since the judgement may bo ,,-:if 1:1e form "sentence S would

Page 19

sound strange in context C" .. An utterance which would sound· strange

in virtually any context may be ref erred to as ill-formed (this is

·the nearest equivalent to Chomsky' s "ungrammatical'~ that wlll be

used) .. An utterance whose strangeness results entirely from

contextual effects (rather than from its internal properties alone)

will be termed inapproyriate., A string which is deemed, for some

theoretical or linguistic reason, to be abnormal in some way will be

called anomalous~ That is, "inappropriate" and "anomalous" refer t:o

the way that the linguistic theory or grammar classes the item, not

to the judgements about the original data .. ·

These do not constitute precise definitions of the way that these

words will be used, but they should clarify the infonnal usage in

later chapters ..

The aim of a grammar (including both semantic rule3 and

recognition rules) is to specify how a sentence or phrase can be

converted to semantic representationc Since there may be several

possible ways of performing the c.onversion, we must introduce more

detailed evidence concerning the way that it is done. The assumption

will he oade here (following Chomskyan linguistics) that "odd"

sentenc~s result from rule-failures of some kind, or from abnormal

structuring .. That is, there should, be a direct correspondence

between anomaly (something going ~rang in processing or in the final

s true ture) and oddity (sentences sounding bad). Adding this criterion

to the grammar-writing methodology enriches the information available

concerning the details of English grammar (see Section L6) .and has

non-trivial consequences for producing linguistic analyses (see also

Section III. 9) ~

Page 20

Nost of the time spent on the project reported here was spent

construe ting and debugging the program described in Chapter IV.. It

is therefore necessary to state why the program was written.. None of

the justifications are novel, but it is worth pointin0 nut wld.ch of

i.-hs f=H1S~3ible arguments were thm~ght valid and which are regarded as

irrelevant .. Nost of trie reasons <ire of a practical nature, rather
¥~c

than being strong ·theoretical justification~

In addition, one practical dis?dvantage of writing a full

program, in a project like this should be mentioned. Program-writing

and debugging is time-consuming, and usualiy introduces many

implementation problems which have no theoretical content- This

means that there is a "law of diminishing returns" concerning what

should and should not be programmed, in that a section of program is

worthwhile only if it will demonstrate some useful point, or will in

some way enlighten the programmer himself .. Unfortunately, often this

can be determined only after the programming has been done.

One advantage of expressing idea..s ln progt'am form is that one

can ,build on an existing descriptive language.. In trying to describe

some complex subject matter where there is not an established theory,

problems of notation quickly arise~ It is di.f.f-Lc.ult to nake

statements which are detailed and· yet comprehensible to the reader,

if the desctiptive system is completely new and ad hoe. To some

extent the widely-used transition network notation (see Section IL 8)

has helped the situation in computational linguistics, hut there are

·still uncharted areas. If the model-builder uses a programming

Page 21

language, he can at least express his ~onstructs in primitlve terms

which will be understood. _by those who know that lai1guage .. If, for

example, the way that some "mapping" operates is slightly obscure,

the corresponding code can be examined to provide an alternative

description ..

A computer also acts as a st.ern (if somewhat undi.scrimlnat·i.:t1[j)

critic.. To have a machine take all of one's half-formulated ideas to

their logical (if absurd) conclusion is an edifying (if somewhat

humbling) experience; to see the intermedi.ate stages of this

development (by tracing the steps of the program's execution) is

positively enlightening .. In this way, internc tive d ebugg·ing of a

computationally-expressed grammar develops a strong intuition for the

.
details of a language .. It also forces the grammar-writer to be

rigorous and precise in the expression of his rules - the dc~vi.r:e tMs

yet to ~a jesigned that takes hand-waving as its input.

However, perhaps the biggest advantage of m; lng a computer to

test one's ideas is th~ complexity of model which can be handled. It

is very difficult to keep track, on paper or in one's head, of how

various rules and different sub-components interact, so that

non-coiaputational models must remain either fairly simple or wholly

unchecked.

One of the biggest contri.but:Lons that computer modelling has

made to the ideas expressed in this t.hes.i.s is in the :ranee of

~oncepts it has provided~ As noted in L 2, one obvious way to

express language comprehension i.s in the torn of steps that must be

performed on an input sentence~ Computer programming is bas~d on

algorithmic description, and hence provides a natural way· of

Page 22

expressing a series of ins true t ions wli Le. h 1nus t be performed. There

are also certain computational concepts (subroutines, registers,

assignment, etc) associated wit!1 this form of descriptio_n, which are

useful notions to use in describing a process. The augmented

transition network notation," for example, is really just a form of

progi;:,amming language, with primitives which are particularly us1..~ful

for de~cribing the task of processing English. and many of its

aspects are just re-formulations of ordinary programming devices~

(see Winograd (1972, pp .. L~4-46) ~ and Ritchie (1977)) ..

It is also worth mentioning some ~possible aims or assumptions

that are not .relevant to this project, although they might apply to

other computational approaches to English.. A possible aim of using

computers in linguistics might be to allow the use of English as ~

high-level programming language. This is not only not. the aim of

this project, it is a somewhat- misguided aim.. The reason English

works so well as a vehicle of communication is that people are

extremely clever at using it. Partial utterances, ohliqHe allusions,

etc., are frequently used in everyday speech in a way, which would be

hopelessly inefficient if one was not talking to a Vf~ry sophisticated

understanding device. In situations where efficient comm11nication is

required between humans (for example, between aircraft) styl ise~d

forms are often used~ If we had a machine which was as intelligent

and subtle as the human hearer, English might be a feasible means of

communi~ation but it would still not. be the best. (See

Longuet-Higgins and Isard (1970) for discussion of some of the

dif flcul ties) ..

Pa,ge 23

structure of English and that of a progamming laneuage, ·although

inspection of certain program texts in COBOL, POP-2, etc .. , (full of

"IF THE"r'r ELSE" ""·IAKE.", etc.) . l t s t t ' d • ~ • , J,,' - • mig 1 · ,_'u8ges - :o a na tve rea er

that there is no essential d_iffen~nce between the two.. This is not

very helpful, as the differences between 21glish and a programming

language are greater than the simiJ.arities.. Hany of the similari.tit!S

art~ superficial, and often result from the attempts of the. lan~uA.ge

desi3ner to make the text understandable to humans ..

"IF THEN,. ... ELSE" is more transparent than (say)

"TEST OPTION DEFAULTu, but it should not delude the reader into

thinking he is reading English. Ambiguity, use of pronouns, lack of

a clear notion of syntactic \•Je.11-formedness, ·the ability to be

self-referential, are all features of English which are generally

absent from (and perhaps even undesirable in) pror;ramming languages.

This is not to say that it is fr1possible to build a language which

has some, or all, of these features - but this would be narrowing the

gap by construe ting an unusual "pi:-ogramming language", rather than

showing the gap to be small already.

For some time, artificial intelligence was a field in which the

main research activity was \vr:Lting pro8r.'ltl1s.. Sor1etimes no separate

statement of theories or suggestions was forthcoming along with the

program .. If. challenged, a writer might reply that his program was

his theory - that the very code embodied clear hypotheses about

intelligent behaviour) which could be assessed by running the

program.. Such a claim cannot be taken literally·, unless the LT?.P

programnH:!r Lntended to assert that intelligence is formulated in

CARs, CDRs and CONSs, or r·he FORTRAN programmer meant that

Page 24

non-recursive sub routines were fundamental parts of his model ..

Clearly there are some parts or aspects of a programmed model tha.t

can be taken to constitute the substantive proposals, and some which

are merely implementation details. Fortunately, this deficiency is

being gradually remedied, wit'h A.,L workers betng more expltcH :ihout

what they are suggesting, rather than dumping a mass of tode and

output_ in the lap of the. reader. Al though the implemented version of

a model ·is the only one that can actually be regarded as "tt~ste.J" Ln

the ftillest sense, it is still necessary to be~ clear about which

aspects of it _are to be taken seriously,. (See the exchange betw,~2n

S t:n:::ions and Giuliano, f o.llowing Simmons (1965)) ~

Allied to the approach just mt~ntioned is the attitude that any

program which actually works and produces impressive output must he

of value,. and that any ideas which cannot be directly expressed in a

working program are 1;waningless hand-waving.. Probably no one holds

this view in such an extrem(~ forrnt hut it ls a detectable thread in

some discussions in artificial intelllgencl~< This yardstick would

make ELIZA (Heizenbaun (1966)) the most inportant langtkl6e rioclel so

far produced, and di~;n1iss as worthless all of theoretical linguistics

(including many of the ideas of Schank (1969, 1970) prior to their

being prograramed) .. Although the first part of: thi.o atttt·•1d<! ls

sl-Lghtly absurd, it cannot be denied that much of the impact of

Wino0rad, (1972) thesis came from t-hc sample dialogue ..

Nevertheless,· even peoplG ~10 hold very strongly that ideas must

be peogrammable, tend nevertheless to criticise or praise ideas on

grounds (e .. g. gene~·al:Lty,, elegance, intuitive appeal, etCJ other than

whether they have been (or can be) programmed.,

Page 25

Ultimately~ ideas c.an be assessed in varlous terms, and the

existence of an implemented program is just one (:important) criterion

among several ..

An even stronger version ·of the "working program" attitude just

de~cribed further stipulates ~lat kind of performance the working

program should have.. Since one of the essential uses of language is

to carry out conversations, it is a vr~ry rigorous test of a

linguistic model if it can describe precisely the process of hwnan
'

In fact, Schank (at the NATO Advanced Stwfy Institute,

Santa Cruz, 1975) commented that i~odelling conversation w:is perhaps

the hardest task facing researchers in language processing. It is

somewhat unreasonable,· in the current state of the field, to demand

of any computati· onal linguistic hypothesis that it be demonstrated

within a fully conversational system. Hany interesting theorif.:'.S and

programs have been produced which would not i:1eet this criterion~

(Ag<lin, ELIZA would score disproportionately well on this count).

Page 26

Another justification for wrH:.i.n~ tlw acaI;{E pcn01>u~1 (described

in Chapter VI) is a general argument which applies to linguistic

description whether done with pencil and paper or implemented on a

computer.. It is important not to lose touch with the real details of

grammatical phenomena, since any hypo thesis should derive from

natural language observations, and must fit future observations.. It

i~ easy to become intoxicated with strong hypotheses and seduced by

loose con~lusions, and not devote enough ti~e to seeing if the claims

are even half-true. This is not to say that strong, false hypotheses

are worthless the Popperian. idea of learning by refutation is

relevant - but we must first find that they are false, . not assume

thera to be true.

This is not to suggest that linguistic investigation proceeds in

the fashion outlined by a textbook on scientific 1:iethod - hypothesis

construction, experiment design, exp~riment execution, confirmation

or refutation~ The whole process is much less tidy than this, with

pa~tially-for~ed ideas being tried out on small collections of data,

only to be modified in the light of what is found, and then applied

again to moxe items~ There is a constant iteration between

hypothesis-formation and testing, with concepts growing organically

(and often quite patchily) as a result. Neatness can of ten be

achieved by working apart from the data for a wliiJ.e, hut orh:'- a.J 1,i)''3

h.:~s to return to the exampJ es eventually, whether at the computer

terminal or the desk~

Page 27

Certain ideas which were held at the start of this project have

been found, on examination of English data, to be incorrect~ For

example, the idea of semantic rules wh:i.ch operate increr~1enta l ly as a

sentence is processed (see Section III~3), the definition of a

"constituent type" as a state and a list of registers (see Section

III. 7), and the idea of selecting semantic rules by examining the

semantic items so far found (see Section III. 9) all proved to be more

complicated (or less adequate} than was first thoughtc Similarly,

the hypothesis that a sentence-analyser used only semantic

information (cf. Riesbeck (1974)) and that much of the processing

could he performed locally (cf. ~~rcus (1975)) were explored at an

early stage, without success. This represents a gain in knowledge

which might not have been achieved without an attempt (not

necessarily in program form) to follow up the full implications of

these notions ..

Page 28

Linguistic theories f,requently occupy . an ambivalent position

with respect to psychology. One one hand, language is an essentially
_

human activity, and the only evidence for the linguist is the way

humans use language, (where "use" is t~:i.ken in a very broad sense, to

include, for example, the intuitions and j udg~ments employed as data

by transformational grammarians) .. On the other hand, linguists do not

generally claim to be carrying out psychological experiments, and

their notion of "empirical" differs radically from that of an

experimentalist.. This dual position was highli:::;hted by Chomsky' s

controversial attempt to <list inguish between "competencet1 and

"performance". (Chomsky (1964, 1965)). Gen.er ally, linguistic

descriptions have been · what Chomsky would regard ns "competencen

theories, since linguists have usually aimed at describing patterns

in linguistic structure, without specifying processes for producing

or interpreting sentences. Hence the methodological stance of

linguists has been fairly consistent they merely attempt to

describe, in a theoretical fashicrn') the na.t-1.n:e of

·s true tu re; how this. would actually be used by a human Si)eaker or:

hearee in.a real situation is another matter, to be investigated by

psychologists .. Unfortunately, anyone attempting to design a

"performance" model is in a more difficult position, and it is

desirable to clarify here. some of· the aims of the fram,~work. d<::scribed

in this thesis ..

Page 29

The partial model presented in later chapters is pr irn,qr Uy a

l i.nguis tic model of .performance, with an obvious but wholly

speculative relationship to a psychological model.. This approach was

adopted largely because it. seemed intuitively to he more prnd1.1ctive,

but it can be 'justified in g~eater detail (see Section 1.2). The main

point is that it is observable that people do interpret and produee

sentences (subject to philosophiCal provisos which are too coniplex: to

discuss here); hence it is reasonahlc.~ to Lnveytigate language i.n

terns of two analogous processes. There is no guarantee that any

regularities or constructs wi'il be formed in language out.with these

processes (e.g. Chomskyan "competence") , so to search for such

non-processing patterns may well be fruitless.

The evidence used in construe ting the model has been wholly

linguistic ·in nature, since it consists of considering intuitive

judgements about the use of language (oddity of utterances,

difficulty in understanding of sentences, notions of s~nilarity or

dHft~r1~11ce in cneaning, etc.).. The main advantage of using such

"evidence" is its potential richness .. If we al low judgements of

synonymy, oddity, etc .. , as data for our model-building, we will be

able to fill in many details which are not easily amenable to

"' treatment by experiment.al technique. The linguistic style of

argument (largely developed within transformational grammar) yields a

mass of "information" of debatable reliability, whereas the

experimental method gives strongly-supported re~ults i.n minute areas ..

This raises anoth·~r p-J int - the need for a fairly full model ..

Psycholinguistic evidence does not yet constrain the set of possible

theories far enough to tell us much about it; stipulating that the

Page 30

theory should be detailed; coherent and fairly consistent does,

however, provide a fairly stringent set of constraints Q In fact they

are probably enough to rule out all current linguistic theories or

frameworks, including the one outlined .later in this thesis, but

these properties can be regarded as goals that the i<leal theory

should aim at. They have the advantage that they can be appl U~d at

every stage in theory construe tion without recourse to experiment ..

If we ever get near to having a full model, its viability as a

psychological theory becomes relevant~ This does not imply that even

a detailed· ;nodel is easily tested within the experiment·al paradigm,

since it is not a trivial matter to state how constraints in the

lltodel should reveal themselves in measurabie psychological

parameters .. For example, certain experiments (see Carey et ..

aL(1970), Garrett(l970)) suggest that when people are faced \litlt a

potential structural ambiguity while listening to a sentence, they

consider all possibilities. This seems, at first glance, to support

a "breadth-first" interpretation model rather than a "depth-first"

on~ (see Section III.6). However, further consideration shows that

this is an over-interpretation of the results4 The results really

show that when a hearer is faced with a multiple choice, he requires

more processing time - it shows nothing about how he uses this extra

time, and so does not distinguish between two models in which :-:11 l

options are attempted in some ·way; it is also compatible with a

strategy in which a careful selection of one option is made nf t.er

some estimating process.

Page 31

Having stated these· <lis~laimers, some ·questions remain

concerning what the model in this thc~sis is a model of., It is not a

model of some abstract "competence", but it .cannot be claimed to be a

psychological model of a human. This dilemma is not unique to

linguistic performance models, but is a common aspect of much of

artificial intelligence. The main justification that can be offered

for artificial intelligence models, from a psychologist~ viewpoint,

is that, while not directly· psychological, they may furnish

suggestions and concepts for an eventual psychological ~escription.

(This is also true of _linguistic models which, like Chofl'.sky' s, aim to

form part of an eventual performance 1~1ot..12l) ~ Tile di3•:! i.pl iaes ,')f

cognitive psychology and artifical intelligence now overlap 1 as some

psychologists .recognise the need to work out full models of a fairly

speculative ~ature before attempting to seek experimental support.

The framework in later chapters forms a partial linguistic model

of the English language. It is phrased in terms of "processing"

pr.imarily because this seems - to be an obvious way to look: for

patterns in language.. It includes the concept of a "model hearer",

which is a device capable of performing certain operations on

.linguistic structures .. The model hearer includes certain subparts

(e~g .. an "anaJ..yser") which deal with specialised tasks in these

operations. Occasionally the notion of ,a "program" will be referred

to.. A computer program is intended to be an implementation of the

model hearer, which - may serve ro·clarify certain points of detail,

but it is not the central descriptive device (see Section 1 .. 4). The

data to be used in sketching the model hearer include various

intuitive judgements about English sentences, their meanings and

about English dialogues.. This follows the principle that all we know

Page 32

about the workings of language is what the lani;uage-users can tell us

about it; this princ ip~e is as old as field-work in linguistics, if

not· older .. A fairly agnostic approach will be taken towards

judgements of "oddity" (see L 3), in that as few assumptions as

possible will be made about the cause of the oddity (see also Section

CHAPTER II

OTHER FRAHEWORKS

Page 34

Section II.O : Preamble ------- \

Work in artificial intelligence tends to impinge on the fields

of linguistics, psychology and philosophy, so there are relationships

(of varying strength) between the work'reported in Chapters III, IV,

V and VI and a wid~ variety ·of other investigations of the English

language.. No attempt will be made here to give a complete guid'e to

these other fraoeworks, but the aspects niost pertinent to_ later

investigations will be discussed. The more detailed argwnents of

Chapter III will also incorporate commen t:S on the other fr2·1h'!vF11·ks.

particularly those most relevant to computational grammar.

It is noticeable that most of the schools oi thought that will

be examined here arc "frameworks" in the sense of Section L 1, rather

than theories. Generally, linguistic research opera.te.s wi.th a

cluster of ideas and guidelines (which often are not related by any

necessity), rather than some monolithic theory with clear boundaries~

~ For example, it is h_ard to say what are the defini.n.;::; prln·~1-?lt~S oc

tiw '''conceptual dependency" of Schank (197 2). It is fundamental to

conceptual dependency that meaning can be described by a small set of

primitive elements which are . not language-specific .. However,

Schank' s work has associated ideas and, methods which are not logical

conclusions from this assumption - e.g .. _ the use of a particular set

of primitives, the avoidance of traditional syntax, etc. Someone

could therefore adhere to the central tenet (meaning description in

non-linguistic elements), but still not be working on conceptual

dependency as it is normally recognised.. Some frn.meworks are even

harder to define precisely, although all are clearly r~cognisable to

Page 35

their users.. Katz e.xplicitly states (1972, Chapter 8) the defining

principle of deep interpretive semantics, and discards as peripheral

certain notions often attributed to him .. · H1s mini1:1al definitive
1

" statement might surprise so'me linguists, since it contains so little

of the framework that has come to be assoclated with interpretive

semantics ..

The discussions in this chapter will therefore deal with t·hr~

loosely linked packages. of ideas that are normally taken to

characterise the various viewpoints,· rather. than attempting to

isolate and examine defining properties.. 'A framework exists in the

minds of the users, rather than in explicit definitions, unfortunate

though this often is~

Sections IL 1 to IL 5 describe the franework· that provided the

background in linguis ties and logic for computational gra:n;nar,

Sections 11~6 to 11~9 outline the artificial inteliigence influences

on the framework, and Sections II..10 and II. 11 summarise work which

was carried out independently of this project but which has certain

similarities to it.,

Page 36

One of the most infl~~ntial linguistic theorlc~G of 'rc~e1~nt years

has been transformational grammar _as <level oped by Chomsky.. (Chomsky

(1955, 1956, 1957,)958, 1959, 1961, 1964, · 1965, 1966)) .. The remarks

here will be addressed to the more complex 1965 version, rather than

the 1957 prototype.

Chomsky proposed a model of grammar in which there \~ere sep;uate

(but closely related) syntactic, semantic and phonologic~l

components.. (The phonological component . (see Chomsky and Halle

(1968)) is not of interest here). Al though some work was done. on th·~

semantic component by others (see See tion II.. 2), Chomsky' s own

suggestions were primarily concerned with the syntact le component ..

There were to be two main kinds of syntrlctic rules phrase

structure and transformational .. The former characterised a set of

labelled trees, and the latter defined a set of tree-manipulating

operations.. Each sentence was analysed as having a surface structure

(a labelled tree whose terminal nodes represt?nted the words of the

sentence), a deep structure (a labelled tree describable by the

phrase structure rules) and a derivation (an ordered subset of the

transformational rules, which defined the relation between the~ dee.p

structure and the surface structure) 4 The deep structure was supposed

to be the level at which certain linguistic gencn-alis;lti.ons (2 .. g~

categorisation of verbs) were represented, and forned the interface

with the semantic component (in that the semantic rules were ,J,~fl.ned

on phrase-structure-generated deep structures)~ Ambiguous sentences,

therefore, might have more than one associated deep structure, thus

Page 37

providing more than one~ possible i.nput to the se11iant·ic component ..

One-major asset of th.i.s model was that it. was a fairly detailed

and complex system, which attempted to systematise a ~wide range of

phenomena .. Certain problems and linguistic patterns were

simultaneously drawn to the 'attention of linguists, and described in

an elegant fashion.. This stimulated a great amount of work which

uncovered a vast number of regularities in natural language

(especially English). The resulting literature provides a vast store

of linguistic patterning which subsequent theories can look on as

partially-digested data.

Over recent years, raany criticisms have been aimed .at Chomsky's

work, but only the three most relevant to ·this project will be

mentioned here .. Firstly, the model was not one of

language-processing (despite a tentatiye sug'gestion at the end of

Katz and Postal (1964)), but was a static description of patterns.

(See Section L 2. 3 for a discussion of this issue). Chomsky (1965,

pp .. 30-31) seeras to i.i:1ply that the mode of employing transformational

rules to comprehend language would be some kind of general

rule-interpreter, but no details are given of how such a mechanism

mi.gilt uork ..

Secondly, the model was dominated 'by syntactic generalisations.

L'.1:'. ~3(~mantic component, the critet·ta for postulating particular deep

structures and transformati.ona1 cL.•-d_vntions we.re almost always base.cl

on syntactic patterns.. The as'.:;urnp~ton seemed to be that if the

synti1ctic generalisations were captured, the semantic rules would

work correctly (see Section II.2 for further ~emarks)~ Thirdly, (as a

Page 38

c,onsequence of the two preceding points), the model was

disproportionately· depcntj.ent on the sep.8. cat ton between ill-formed ancl

well-formed sentences.. Instead of this providing just one criterion

to apply, it formed the central task of the grammar, with tlH= lat.tl~r

being wholly syntactic.. (See Sections L.2, L3 for more discussion) ..

Page 39

Katz and Fodor (1963) sketched a semantic theo~y which was

intended to provide a semantic component suitable for the linguistic

model being developed by Chomsky (see Section II .. l, above). They

provided some simple examples of how their model was to operate, but

not all the details were explicitly stated. Katz and Postal (1964)

elaborated on this theory, and suggested how_the semantic component

might interface with a syntactic component in the s~yle of the

"Aspects" model .. This semantic theory \va.s gradually developed in a

series of articles (Katz (1967, 1970, 1971) and the, fullest

description so far is contained in Katz (197~). It is this latest

version which will be discussed here ..

Katz matntains the position that the relationship between syntax

and semantics is as follows. For each sentence, there is an

associated deep structure, in the form of a labelled tree, related to

the surface structure by a sequence of syntactic transformational

rules .. (See Section II.I). There are semantic interpretive rules

which relate each deep s true ture. to A. s1:::nan tic rc:J? .. ~-~~en t~t...i.<2!.l • The

semantic representation for an item consists of a set of semantic

markers. Other forms of information in Katz's model are held in

redundacv rules, which impose a hierarchical organisation on the

markers, and ~.l!E.. set~, which cluster mutually exclusive markers.

These latter two devices seem intuitively to capture generalisations,

and are a useful tontribution to the problem of defining and

describing "semantic anomaly".

Page 40

A semantic marker is not (as it appeared from the original Katz

and Fodor formulatJgn) an unanalyseable unit (like a syntactic

feature), but can have internal structuring~

marker" is roughly equivalent to "piece of semantic structure", with

no itomic connotationsc Hence the 1972 version allows a wider range

of operations to be defined on markers, where.as the 1963 theory

permitted little other than ordinary set operations (union,-

intersection, etc~ on the sets of markers .. This can be regarded as

an improvement or a retrog~adt.~ step, clt:p1.~nding on the me ta theoretical

standpoint, but from the point of view of building working models, it
t '

is a useful enrichment for exploring the complexities of natural

language semanticse Unfortunately, Katz uses a semi-formal notation

for his markers, so it is hard to determine all the details~ For

example, it is not clear exactly how the internal structuring of a

marker like

(EVAL seat for O'ne)

can be operated upon, or what elements are atomic in his system.

Also, it may be that Katz has not taken advantage of thi.s pot«:mtial

enrichment, for the following reasons. In the 1963 and 1964 versions

of the theory, there were proj ec ti_£!.!_ rules which showed how the

meanings of the immediate constituents o{ a syntactic item were

combined to form the meaning of the whole. There were different

projection rules for differeht" syntactic constructions, and so

different rules could combine meanings in different ways (subjeet to

the proviso that the items they were acting on were unordered sets of

atomic elements).. Katz suggests that such rules can be removed from

his theory and their function performed hy syntactic. annotations on

Page 41

each semantic lexical item, showing how other items may be attached

to or combined with it ... He illustrates this }?y describing how the

lexical meaning of a verb can have annotated "slots" showing which

syntactic constituents will ~rovide the meanings to be inserted in

the meaning of the main verb".., It is not clear how this approach will

work in general; presumably the lexfcal meaning for a noun will

require annotations . showing where all possible mc~difiers can be

attached.. Possibly only nouns and verbs will need these markings,·

and ~ther items can be dependent on them (cf. dependency grammar,

Robinson (1970))~ This seems a iittle cumbersome having semantic

items carrying details of all possible combinations that t.lv~y can

undergo, including syntactic details of the way that their a.s.:-;;·Jcia.ted

items will be expressed (cf. comments in Section IV. 8 on where to

represent information). Also, it restricts the modes of combination,

unless the marking sys tern is to be expanded in some way to allow th(;

mark.in0s t-o be lists of different ways of combining .. In Katz's verb

example, there is one mode of combination (roughly equivalent to

filling in a case-frame, in the model of Fillmore (1968)), so no more

needs to be specified.. This seems to be inherent in the mechanis111,

whereas the 1963 version allowed the projection rules to describe

different semantic patterns in terms of different inter-constituent

relationships .. Abolishing projection rules seeras to tie. the

linguist's hands, and eliminate one of the more useful parts of the

theory (cL Hontague's rules (Section IL5)).

The annotations on semanti~ items can only specify on~ syntactic

form that related items may have, so this innovation is, like most, of

Katz' s theory, heavily dependent on having a canoni.cal syntactic fonn

(deep .structure) for the semantic rules to operate . on. This

Page 1+2

/

dependence means that any simpliclty or elegance that Katz' s ruli~s

achieve is conditional upon the syntactic component being able to

define the requisite deep structure. Whereas Chomsky made the

assumption that a grammar which captured syntactic generalisations

would define the appropriate deep structures for ' the semantic

component, Katz makes the assumption that the syntactic component

will provide whatever structures are needed for the semantic rules ..

Such assumptions are unavoidable' in a modular model (this is how LWme

complex computer systems are written, for example) but , great care

needs to be taken to ensure that the interfaces are c6mpatible~ and·

that simplification on one side of the lLne does not cause

complic~tion on the other.

Page !i3

One development of the "As pee ts" model was the introduction of

semantic rules which operated on syntactic structures qther that). deep

structures, as proposed by Jackendoff and others~ (Jacken<loff (1968,

1973), Dougherty (1969), Bresnan (1970)) .. There are certain aspects

of this approach which bring it slightly closer to computational -

grammar than the original Katz s'enantic theory.. Unfortunately, there

are many unexplained details in Jackendoff's proposals (as has been

observed by opponents of surface lnterpr~ti~e rules) so it is hard to

deliver an overall verdict~

Jackendoff suggests the use of a · wider variety of semantic

representations rather than just sets of semantic markers (ecg.

"corefererice tables", a "thematic hierarchy", etc c).. This is an

important step, since it frees the 1 inguist from the straitjacket of

ha:ving to capture every aspec.t. of the meaning of a s·entence in a set

of r.1arkers.. It seems plausible that coreference can be incorporated

more easily in a model of language use if it is explicitly handled as

~art of referential semantics rather than being squashed into

syntactic rules.. It is not quite so easy to see how benefit$ will

ace.rue from Jackendoff's notation for opaque contexts, since rio

mechanisms are outlined (e cg q i.q.ference) which use the notation ..

As observed in Section II.. 2, ·deep interpretive semantics depends

\
on a fairly sophisticated syntactic component to connect deep and

surface structure, and so presents problems for a model of language

understanding .. Surface :lnterpre t i ve semantics replaces many

previously-fotmulatcd · syntactic transformations with semantic

Page 44

interpretation rules, and so makes a start on the problem of

determining semantic representation £ri.1m surface form., However, it

is only ·a partial step, since very few of Jackend~ff's rules operate

directly on the surface structure~ The rules usually operate on some

structure intermediate between deep and surface, and so it would be

more appropriate to call them "derived structure interpretation

rules", .. From the poini of view of trying to model language

understanding as a process, this. introduces as many problems as U

eli:ninates (if not more), since the analyser- would have to perform

semantic processing at arbitrarily interleaved parts of the syntactic

processing .. That would not be imi:JOssibie, but. it requires a more

complex processing model than the term

semantics11 might suggest.

"surface interpretive

One issue which becomes rather confused in the c0urst.~ of

Jack<.-'.ndoff' s arguments is the question of "syntactic well-formedness"

(or "grammaticality" in the Chomskyan sense) .. Although he adheres to

the position that there is a notion of syntactic well-formedness

which is independent of semantics, his proposals regarding

undeveloped nodes lead to rather bizarre strings being classed as

_syntactically well-formed.. Jackc.ndoff admits that his notion of

well-formedness has change.cl from the original Chomskyan idea in

certain respects, but docs not regar~ this as a problem. His

position is quite corrni::}tent, (and it emphasises the point :nad.e in

Secti0n 143 that the kind of .~ell-formedness (or ill-formedness) that

a· string has is defined by the thec:.E .. L.!r rather than being given in the

data), but it raises anew (without fresh debate) the question of what

role syntactic \·Jc•ll-·forme.Jness is to play in the theory ..

Page 45

Another development stimulated by Chomsky' s work in the

mid-1960s was that of "generative semantics" (Lakoff and Ross (1967),

HcCawley (1968, 197la), Bach (1968), Postal (1972)).. This framework

retained certain parts of Chomsky's model (in particular, the notion

of a transformational derivation of tree-structures) but discarded

the idea of a separate syntactic component •. A generative semantic

derivation related the semantic representation (a tree of pre11Lcates,

arguments ·and propositions) to surface form by a uniform sequence of

transformational rules, with no intermediate level of syntactic deep

structure .. A later development (see Lakoff (1971)) was the

incorporation of _g_]_.obal deriva!I~!l~!. -~-<2.r! .. S.!~r~~~.D .. ~~?~'. which were general

rules with the power to influence the operation of tnrnsformational

rules in any way.

The initial tenet· of generative semantics. (that it is

undesirable to posit separate syntact·ic. rules ;lnd stru.:.:t:.ires) is

shared by computational grmnmAr, but ther2 a r:e f e\l o Uter.

similarities. The main difficulty in assessing the advantages of the

theory (as opposed to the attractiveness of its assurapt Lons) is that

it is very hard to assess whether a given solution falls withtn the

predictions of generative semant1cs, since globe;1l derivational

constr.aints alfow any manipulation whatsoever, and the conc(!pt of

"transformation" has changed so much.. As observed in Section L 1,

most theories include theoretically powerful devices, restrained only

by the idea of "ad-hoc-ness", but this theory seems to allow any

"rule" to be inserted without the linguist's conscience cornpLd.ning~

Page 46

Also, since there is no good independent def:Lnttton of. "syntax" or

"semantics" (a frequent problem), it is difficult to see whether the

hypothesis of there being no wholly syntactic rules has been

'!

verified .. (These issues have beeen covered very fully elsewhere -

Partee (1970, 1971), Lakoff (1970), Chomsky (1971, '1972), Postal

(1972), Katz (1970)) ..

The methodology adopted in Chapters III, IV and V is that

independent syntactic constructs should - not be postulated

unnecessarily, but that the linguistic description (or the notion of

"semantic") should not be distorted to protect- this guideline.

Page 4 7

At present, one of the few formally defined frameworks for

describing l_anguage. is that of Montague. (1968, 1970a, cl970b, 1972),

which is unparallelled in its rigour and precision ..

Montague' s system contains many traditional notions in a --

mathematically formalised form. The syntactic rules are very like

phrase-structure rules (see : Chomsky (1957))' in that they

characterise a tree-like structure with words as ter.1:li,l~A.l elem(~nts~

:.{)':it- rJf the -Sj1-tact:ic terminology is merely a tidying-up of notions

l'ike "lexical entry" and "phrase"~ Syntax and semantics are defined

separately, but there is a well-d_efined interface in that each

syntactic rule has an associated semantic combining rule. This is

closely related to the Tarski semantics for predicate logic, and is

also very similar to the Katz-Fodor system of "projection rules" (see

Section IL 2 above). The semantic concepts are re-lated to formal

logic, and provide a very comprehensive generalisation of notions

like "sense and reference" (Frege(1892)) and "indexical expression"

(Bar-Hillel (1954)).

The main advantages of Montague' s work are its precision and

generality,, Also, it has provided a start to illuminating such

difficult and confused areas as the diitinction between categories of

meanings and categories of objects referred to, and the way that

_meanLngs can vary' systematically wU-h chail;:!;t~::: L;-t t1tf'.'. context of use4

Page 48

The main disadvantages of Montague' s work are that it iS' not a

process model, and leaves no pl ac.e in the theory for any form of

production or recognition rules.

There seems to be a fe'eling within artific. ial intel l i.gt~nl;e that

Montague' s semantic system is based too strongly on traditional,

Tarski-style truth-values. For example, Wilks (public lecture at

Edinburgh University, 1976) stated~ that one deficiency of H:mtague' s

ideas was that it assigned the same "meaning" to "Snow is white" and~

"Two is prime", namely uTRUE" .. This misrepresents l·bntague' s theory,

which provides two distinct i:nt2nsi.onnl meanings for. these two

sentences, with the same extensional meaning in some WC?rlds. Also,

it is currently fashtonable to talk in terms of describing sentences

in terms of their use in a dialoguec It is important to notice that

the latter does not necessarily contras't with a truth-valued system

of meaning, unless a model of conversation can be developed which

genuinely uses a different method· of <lescrtblnb con-~1 2rsal Lo:i;ll

efL~ct. For example, the SHRDLU, LSNLIS and HCHINE programs (see

Sections IL 8, II.. 9 and Chapter VI) all treat a yes-no question as

requiring a pattern (the "meaning" of the sentence) to be tested

against the "hearer's" model to see if that state holds (or he.ld at

so:1e time) • Th:Ls is very much a truth-value system, al though improved

by making "truth" relative to each hearer, or speaker.

The HCHI.NE system uses many traditional syrd·actic and Sf~1rnt1t.ic

ideas, and Montague" s writings have been particularly useful in

clarifying certain distinctions'(particularly in semantics) which are

oft en not considered elsewhe.re ..

Page 49

Section 11~6 : Preference Semantics (Wilks)
--- - • I:...--- --,..-...-."11'-· --- , •• _,

One of the most distinctive approaches to language-processing in

recent years has been that of Wilks (1972, 1973, 1975) .. Although the

implemented versions have generally been aimed at machine

translation, it is worth considering whether any gane'ral principles

of language-processing can be extracted from the ideas he uses. The --

form of "interlingual representation" useJ is i.nfluenc~ed by the

translation task, so it is not very relevant to try to assess its

adequacy fol' general purpose meanin_s repres<_,,ntatioa. , How·~ver the

processing_ strategies are interesting, since Wilks claims that th<::-y

are predominantly semantic, rather than syntactic, and are capable of

processing metaphors and other non-standard construe tions ..

A preference semantics grammar can be thought of as being in two

sections structures and procedures. There are three principle

kinds of structures - primitive elements (like Katz-Fodor "semantic

markers"), formulae (corresponding to lexical entries) and bare

templates (corresponding to structural rules or patterns) 4 Each word

has an associated fonnula, which consists of a binary tree of

primitive semantic elements, with one element designated the "hf~ad" ..

A bare template is a triple of primitive semantic elements

representing three formulae-heads to be sought in the input words.

The procedures are many and varied.. The i.nput striug is Elrst

put through a "fragmenter", which clumps the words into small phrar;es L

("fragments")., There is a matching routine, which tries to find a

bare template to match each fragment, inserting "dtlinmy" e11~ments

where necessary to complete the match~ The bare template together

Page SO

with the elements that matched it are called a "full template" .. Then

various routines (in the 1973 paper, referred to as EXTEND and TIE)

·attempt to find links between the. filled templates so far built; in

later versions of Wilks' system, further structures called

"paraplates" help to perform these connections .. ,The notion of

''pr'eference" is introduced because the routines which fill out.

connections between structures will not discard a structure s~np1y

because its internal semantic specifications are not met - however, a

structure where all the specifications are met wJ .11 bt.~ pr1~f<~ n:,!d to a

deficient one, thereby resolving possible ambiguities on semantic

grounds ..

The main advantage that this system has is that it has been

implemented, and has translated passages of English and French .. Th.e

main difficulty in trying to assess the details of the rncchansi.ns is

that Wilks tends to highlight certain areas at thf~ expense of others ..

His papers generally concentrate on the notions of "template",

"formula" and . "preference", and imply that r:i.ost of the linguistic

information is contained in the structures plus the simple notion of

counting St~111<rntLc connections.. In fact, much of the work is done by

the routines for matching templates and tying to3ether struet 1.lr.es,

and inforoation is encoded in ~ wide variety of fonns.. Although the

centrai aspect of the system i$ supposed to be that it is based on

semantic matching, and not syntactic structure~building, much of the

processing (e~g .. the "fragmenttng" 3.nd "extending") is traditionally

syntactic4 c· ,JJ_nce the preferential semantic accounting occurs onli

once the building rout:i.m::s have P1ade ties, the overall c.h~marcation is

not vastly different from that in the programs of Woods, Winograd, or

r-hrcus (cf ~ Sec.tions r'r.. B, IL 9, IL 10), where semantic checking is

Page 51

applied to t·ht~ re~rnlts nf ::>ynta.et:ic. building-i The main diffei·ences

are that the initial template-mate hing is at least partly semantic,

and that Wilks' semantic checking does not discard possibilities, but

merely gives them a preference ordering~

As d iscussc:d in Section III.. 6 and VI.. 5 7 a form of "preference"

facility has been implemented in the MCHINE program· (al though it has

not been fully exercised) ~

Page 52

- One of the more influential artificial intelligenc~ approaches

to natural language in recent years_ has been "conceptual dependency"

as developed by Schank and others (Schank (1969, 1970, 1972a, 1972b),

Riesbeck (1974, 1975), Goldman (1973), Rieger (1974)). The main aim

of conceptual dependency is to. provide a sys tern of "conceptual

representation" which can be used to describe the m(=.aning of natural

language in terms which are unanalyseably ·primitive and which are

independent of the natural language involved.· By construe ting a

vocabulary of primitive constructs, and rules for using them, Schank

hopes to develop a single representation system which will serve for

ail language-processing and inferential tasks, e.g. machine

translation, question-answering, etc. This seems a worthwhile aim,

and the desire for generality is a great improvement over earlier

artificial intelligence app1=oaches to meaning-representation. As

argued in Chapter I, some of the most interesting questions in

language research concern the processing that i:1u.st lH~ l_lone either to

convert a string of words to the meaning representation, or vice

versa .. Al though it is clear that Schank regards language

comprehension as fundamental, his articles have tended to concentrate

on issues regarding semantic representation, rather than processingQ

Nevertheles~, papers by Riesbeck (1973, 1974, 1975) have given

some indication of how a conceptual dependency sentence-analyser is

intended to operate, and this outline will be examined h1..::re, as it ·is

the aspect of conceptual dependency most relevant to the HCHINE

project.. There are two slightly different proposals concerni.ng

Page 53

analysis strategies; the first is cl<.~scribed in Riesbeck (1973, 197L~:

part I) and the second in Riesbeck (1974: part II, 1975).

Roughly the system is as follows. The central device is a

"request", which is a "demon" i.e. a test + action pair (cf.

Charniak (1972)). Each word has an associated list of requests, and

the analyser maintains a list of currently active requests. As each

word is taken in, its requests are added to the li~t4 .The list i.s

then scanned·, and if the test part of .:u1y request yields TRUE, the

action part of that request is carried out, and the request remnved
...

from ·the ·list.. The second version of Ric~sbeck' s system attempts to

fill in more details of this process,. "Expectations" (an alternative

term for requests) are now annotated with information about what they

do, in terms of which variable value is relevant to the TEST (or

"FOCUS"), and which slot will be filled if the action is executed

(the "NEED"). This seems to help in indexing the expectations, since

the FOCUS device will make the ,implementation mon~ efficient, but it

does not impose any structure on how the expectations operate.

The main problen with Riesbeck's suggestions are that they say

virtually nothing about the the details of languc::.ge processing. All

that he says about the form of the processing strate.gy, or the shape

of grammatical rules, is that the grammar is :in the form of Hdemons'~.

This can be contrasted, for example, wlth the more subtle proposals

of Marcus (1974, 1975) (se.c Section II.. 10), where the notion of

"demon" is taken as a building block for making further . detailed

suggestions (ra·ther than being left as th~~ entire tl12.ory). Ric.sbeck

asserts that his program treats syntax and sEi;wnt'i.e:s 1-n z1 ~'rniform

manner and allows concepts of both types to communicate freely. This

·rage 54

is true, in as much as all information Js programmed into

expectations, ·but it could equA:lly well be said that any program

writ ten wholly in LISP achieves the same uniformity the whole

problem is in elucidating ~different information interacts, not

merely expressing it in some common computing language .. Demons (or

expectations) are a wholly general computational device, and this

kind of mechanism is a common implementation detair of language

processing systems - what are needed are some rules about how these·

demons can or cannot be used~

Despite Riesbeck' s claims, it is not the case that synt.ac t Jc

information is not use.cl in his program.. He merely puts it into

expectation form and re-labels it.. For example, -the worked example

in Riesbeck (1975) starts with the expectation "Is INPUT an NP ?n - a

very appropriate (but syntactic) prediction~ In the same example,

the word n a" causes the action to be. performed :

"save the current set of expectations and eeplac.e it with '6

does INPUT end an NP ?"" "

This seems to recognise the surface integrity of the traditional noun

phrase, and the saving of expectations .seems to be analogous to the.

nesting dev1c.es in syntactic systems (e4g. th~~ "PUSHn in Woods'

transition networks (see Section IL8), or PROGRAHrlAR's nPARSE" (see

Section IL 9)) 4

This saving of expectations raises doubts .::.thout

Riesbeck's other examples4

one of

Pag,e 55

(4) John was mad at Mary. He gave her a socl·-4

He suggests that. in (!~), the word "sock" would be disambiguated

as soon as the word "sock" was read (not when the,whole NP was

processed) using the expectations set up at the higher level., If "an

has caused the higher level expectation list to be temporarily

shelved, it is not clear how this can happen~

Even Riesbeck' s attempt to enrich his theory by annotating each

expectation with a "NEED" and a "FOCUS" does not he~p much. He

suggests that if expectations E2 and E3 are both active, and both

would have to fill the NEED of El, and if E2 "cannot produce a

structure that will satisfy the predicate of the first expectation"

(Le. El), then E3 is tested first.. This is strange for two reasons ..

Firstly, if E2 "cannot produce a structure" that is suitable, why

test it at all ? It could just be d,iscarded. Secondly, where does

this useful information come from ? Neither NEED nor FOCUS indicates

what kind of structure an expectation-action will produce ..

The NEED/FOCUS system can apply only to some of the

manipulations performed by the analyser since, as Riesbeck adraits,

"Unfortunately, there are no constraints on what sets of functions

can appear as predicates and programs", and arbitrary sidc-(~f f2cts

are all.owed. In an attempt to broaden the not~on of a NEED to cover

a particular operation that he' needed, Riesbeck (1974) distorts the

original idea to the extent of making it vacuous.. He- argues that

certain construe tions can be handled by the "need 11 for all Wi)rds in

the sentence to be used up; t.:his is hardly the name of a conceptual

slot being filled~

Page 56

Fundamental to . t:he approach of Schank and Riesbeck is the idea

that conceptual (not syntactic) predictions will provide the

mechanism for analysing a sentence., They seEra to over-estimate the

extent to which predictions of conceptual meaning will constrain the

possible input forms (which is what the analyser ultimatE:dy has to

deal with).. Suppose that the conversational situation facing the

analyser (and accompanying semantic r.10<lel) is as follows. The

context (to talk in the terms of Rh~sbeck (1973)) is that of being in

a bar, drinking.,· The input utterance starts as in (5) ..

(5) I like

,This utterance might continue in any one of several ways; for example

those in . (6). The analyser would have to process vastly different

(6)

(a) ~this pub ..

(b) peanuts ..

(c) ~ ... HcEwan' s Export c

(d) that girl we met last night ..

Even if the ircontext" \vere Much narrower, say, the consumption of

pemrnts, the analyser would be given no help in working its way

through the surface strings in (7), even though some of them have

very similar meanings~

Page 5 7

(7)

(a)'•• .. eating peanuts ..

(b) to eat peanuts.

(c) these peanuts ..

(d) crisps as well as peanuts ..

Schank and Riesbeck suggest that, while it is necessary for a

theory of language to specify sorae way of converting surface strings

to meaning·representation, it is not importa~t to specify that

process in any theoretically interesting way.. If a program can be

written which produces the desired output from particular tnputs,

that is all that is required at· presi~nt .. A.s can be judged from

Chapter I, this is a fundamental difference in attitude between

computational grammar and conceptual dependency.

Page 58

Section IL 8 : Transition Network Grammars (Woods) --- -- ---~---_....- ----~ -----'r.- __ , ______ _

The LSNLIS program (Woods eLal. (1972)) a major

implementation of various ideas which contribu_te to the basis of

computational grammarq In particular, the recognition grammar is

written using a formalism lvhich has become widely used in language

processing, and which has been the basis of the mechanisms used in

the HCHINE program, so it is WlHth digressing to give the background

to this formalism (see also Bobrow and Fraser (1969), Woods et., al..

(1969), \Jood3 (1970, 1973)) ..

network _grar.mars, or "ATN grammars" for shortc (The abbreviations

"RATN" and 11 AFSTNcr are also used sometimes).. The grammar is a

standardised description of a sequence of tests and operations that

have to be performed when a sentence is being processed.. This can be

represcqted graphically by a directed graph, where arcs represent

test-action pairs and- states (or -nodes) indicate common points

joi.ning arcs, e .. g'* (8) (cf .. Conway(l963)) ..

(8)

The tests are generally (hut not necessarily) conditions on an

input word and the network represents the~ possible ways of analysing

a sentence., _A complete <.maly~:;is is produced J)y a path through th1~

Page 59

network on which all the tests are satisfied by the input words

(which are scanned gradually as the path, is traced through the

network) and all the actions are carried out in order. The

"augmented" in the title refers to tlH~ fact that any arbitrary tests

' or actions can be includ·ed, making the ATN a totally general

computational formalism.

I

One of the most important srnrH.J.Cl-s of i"hP .t\TN f11-i-c:ialism is the

mechanism for handling embedded constituents. -Where a test on an arc

simply checks the grammatical category of the next word, processing

is simple, but if the network is to check for the presence of a

particular kind of Ehrase, things become more complicated. There is

a special kind of arc (called a "PUSH" arc by .Woods) for including

phrase7 tests ..

(9).

USH NP

In a network like (9), the PUSH NP indicates that the category

being Ehecked (i .. e. NP) may be made up of more than one word, and

independe'nt processing space is needed for it. The destination state

(S2 above) is saved (as .is the "NP-c;iction", in some versions) and

some other part of the network (indicated by the label "NP") is used

to process the incoming ~hrase. If the phrase is processed

successfully, another special arc (a "POP" arc) will be encountered

in the NP network .. Traversing a POP a~c causes processing to be

resumed in the saved part of the network (S2 :ln example (9)), with

the whole phrase that has been found acting as the input item for the

Page 6()

action on the original PUSH arc (in (9), "NP-action") .. This jump and

return mechanism (analogous to a subroutine call in a proeramraing

·language) can be invoked again while processing a phrase, so that

constituents can be nested inside each other, to an extent limited

only by the space for storing information about the return point.,

The LSNLIS program contains a large bank of geological data

(concerning moon-rock samples) and the syntactic-semantic components

are designed to allqw a scientist to interrog~te this store of facts ..

Hence there is a slight bias in the type of sentence tackled, since

questions and certain imperatives were the main types needed~ There

is a general semantic representation, (related to predicate logic),

which provides the necessary devices for searching the d,ata-base for

specific details (see also Hoods (1968)) .. The system has a syntactic

recognition grar:imar (writ ten in ATN form) which converts input

sentences . to (approximately) a deep-structure representation in the

sense·of Chomksy (1965). This syntactic structure is processed by a

set of interp~etive rules into the semantic form necessary for

examining the data-base .. All conversion of syntactic fonn to

semantic representation is performed at the end of a sentence, with no

interaction between the two components other than this .. The semantic.

interpretive rules are hierarchically organised, so that they arc

applied ~o the syntax tree as a Jhole and each rule can call other
J.,

rules on the branch of the tree.

There are few s igni f ic ant d Jf fe rences between the overall

organisation of the LSNLIS and the HCllINE systems., The main

difference is that LSNLIS includes a full, separate syntactic

component, which the semantic interpretive rules are geared to

Page 61

llalldll·ng, whe.reas t.he st~uc.ture bui."lt i tl 'lCHihlE · 1.. n . ie l' . _p,, program is

directly part of the setting up of the semantic rule hierarchy - the

·surface structure, in computat'ional gramrnar is the interpretive rule

sequence ..

One other main difference is in the aims of the two · pro~1-.1ms ..

LSi·H,T.3 is a practieal hJ'.)rking system, using generalisations and

patterns only to improve the effici~ncy of the overall service to the

user .. The HCHINE program, on the other hand, has been written only

as a testing device for linguistic ideas, and the general aim is to

experiment with linguistic descriptions and. devices', in order to

illuminate the structure of language .. Woods (at the workshop on

Theoretical Is sues in Natural Language Processing, Cambridge, Nass.,

June, 1975) claimed that working with the goal of achiev:i.ng practical

efficiency will achieve the goal of linguistic discovery as a

by-product, but this remains to be seen •

. I

Page 62

Section II.. 9 : The SHRDLU Svstem (Winograd)
-~ - -~ "'----- -~J-.-- -..----.,~. -

The SHRDLU program -(Winograd (1972)) is one of the best known

English dialogue programs of recent years4 It is interesting here

since it includes some of the devices to be developed and used in

computational grammar. Winograd did not use the ATN notation, but

instead designed a programming language PROGRML\1AR, which provides

more or less .the same facilHies (he COF\Bents (pp .. 44-lt6) on the

similarities of these two mechanisms) .. The overall organisation of

the SHRDLU syntactic and semantic components -is similar. to that of

the LSNLIS system, and the two programs are very clos,e in the:Lr

linguistic analyses (although Woods gives credit to Chomsky for the

structures, and Winograd discusses Halliday's systemic gr~mmar) ..

Syntactic cla9sification is entirely in terms of features, where

a feature is an unanalyseable marking. The written description of

SHRDLU (Winograd (1972)) emphasises that these features are

interdependent in ways that can be perspicuously represented by ~

particular form of graph (a "systems network").. Since Halliday

(1967a, b, 1968) uses this notation, this has been taken to mean that

Yinograd is using Hallidayan grammarc This is slightly misleading,

as the program itself does not use the systems networks - they are

merely a good expository device .for describing the relationships

bet\~een the features.. The MCHINE program also uses features, but at

no stage have these been organised into systems netwot'ks;

nevertheless, a close examination of the .MCHINE program would. al.low a

reader to draw up his own system network of how the features are

distributed throughout the grammar4 This would be true of any

Page 63

grammar that employed features.. There is more to Halliday'·s ·ideas

than this part of the notation.

The lexical entry for a word consists of a list of ,features, and

a semantic entry, the latter being a data structure which will act as

the "meaning" of the word .. The parser, written in PROGRAMMAR, builds

a surface syntactic tree.. Each node in the tree has a category label

(indicating that it is a Noun Group, Clause, etc ..),, a list of

features, and an associated s~nantic structure. The features are

attached to the nodes directly by the parser, on the b~sis of the

words it finds in the sentence (and other tests) .. The semantic

structure is constructed by a "semantic specialist", which will be

. described below.

The PUSH/POP facility of the augmented transition network is

replaced in PROGRM1MAR by the "PARSE11 command, which takes a

constituent label (e .. g .. NG) as an argument. Hence

(PARSE NG)

is a command to try to parse a Noun Group (the other arguments ",.,"

indicate what to do on completicn or fA.ilure, using various standard

options). Successful execution of this command should produce a

sub tree; vhich is then attached to· the part of the syntactic tree

currently being constructed~ D~ring t11e execution of this command,

the line

(PARSE DET ~ ~ ~ ,,)

might be encoun t~el'e.<J .. This is similarly a command to parse a

Page 6!~

particular category (this time one word) and attach it to t.he tree ..

In this way~ the tree-structure results from the hierarchical

processing; parsing commarids may be nested within each other to

produce a correspondingly branching tree structure.

One exception to this left-to-right, top-to-bottom flow of

processing i.s the use of "demons"~ Winograd sugge.sts that the best

way to handle a ·conjunction (a difficult construction for any parsing

system) is to define a special type of lexical entry for "and" ..

Instead of 11 and 11 having a small "semantic structure" which is handed

statically· to a semantic specialist, t-he entry for "and" contains a

special program, which mll:st be run on encountering the word in the.

input, causing an interruption of the ordinary flow of instructions ..

The "and" program makes the PROGRAHHAR systelil suspend its current

parsing taskt and start tryirig to parse another constituent oE the

s:rne type as the one it is currently parsing.

The SHRLDU progran converses about a small world of toy blocks

sitting on a table · ("the BLOCl.~S world 11
).. It. has an internal

l·epresentation of these items in the form of a relational structure ..

That is~ there is a data-base of items where each item represents a

relationship between entities~ Each entity is represented by a LISP

atom.. Thus the data-base item

(SUPPORT B 1 B2)

records the fact that· l·hGre is a l'clation of "SUPPORT" between the

two "b.focks 11 Bl and B2 .. The. ~.1hole state of the BLOCKS world can be

recorded in statements like this.. The "meaaiJ10" of a sentence for

SHRDLU is therefore expressfal 1n terms of :i. tems and operations in the

Page 65

BLOCKS world data-base.. For example, the meaning of "a red cube" is

a small program to find an equidimensional block whi.ch is 1:1~rked. as

· re"·J... The m·~aning \;f "pick up a red cube" is a program to find such a

block and pick it up ..

The conversion from input words to BLOCKS world actions is in

several stages (not necessarily consecutive, but logically separate) ..

Firstly, the syntactic tree is built .. Secondly, each major

constituent
'·°\"'

node (NG, CLAUSE, etc ..) is converted to semantic

representation, by the "semantic specialists" .. Thirdly, the semantic

representation is used to examine or <:ll f-t~r tht::. RLOCi~S data-base.. In

fact -the syntax to semantics conversion 1.1ay be carried out at stages

during the syntactic tree-building, since, when a major category node

is coillpleted, the seraantic specialists w1y be~ use.cl to transform the

node to a BLOCKS world item. (Unfortunately, Winograd' s exposition

is not too clear about certain aspccrs of the interleaving see

Ritchie (1976)) ..

The SHRLDU program is related in various ways to the UCHINE

program, but there arc. major clicfE:!r,;nc1~s, as in the case of the

LSNLIS system, in the meL-1todologi.ca1 approach., Winograd was not

constructing a practi~al program for non-linguists to use for

information ret,rieval, but the goal of implementing a working progr0m

with impressive performance was f~t.irly central. This may have led to

some blurring of the distinction between implementation details and

proposed principles, and to the u:.:;e of slightly ad hoe measures.. It

is possible to look on computationBl grammar (and the MCHINE .project

in particular) as an atteiapt t·o clc:;:in up some of the ideas in SHRDLU,

LSNLIS and related systems in nrde.r to perform linguistic

Page 66

~escription ..

Page 6 7

_s_e_c_t_i_o_n_. _I_I_. !Sl ..:_ _Wc_~t!._~:-~:i_d_-_s_~ _s_t_r_a_t~g-~!?:.~- .Q!~EE:.usJ_

It is worth examining in detail the suggestions made by Marcus

(1974, 1975), since he adopts goals and techniques whlch ar2 c.los;;;!l.y

related to those of the HCHINE project.. The emphasis ln Harcus' work

is on deterministic _proc.e~~~r.11, and he wishes to design a parser·

which contains enough grammatical knowleJge to avoid making mistakes

or having to follow up sever.al analyses simultaneously.. This is a

worthwhile aim, and work done· with this goal should help to elucidate

the sentence-understandiDg p1·ocess .. ~~rcus observes that many

language-understanding programs in artificial intelligence rely on

exhaustive, mistake-driven strategies, instead 9f incorporating more

specialised decision-making devices (see Section IIL8 for further

comments on this). He then proposes a system which, he claims, will

perform more efficiently without such mistake-based control.

Harcus' grammar is or.ganisL~<l as follows. The smallest units are

modul~-~, which are struc ture-buil-ding procedures, j_nvoke<l by the

presence of certain features in the input (each module has its own

feature ?a.ttern), and modules are grouped into packets.. A module can

be invoked only if it is acU.v;;_, and a module i.s a.c.tlvc~ U an:l only

if some packet which contains it has been made active. Certain

packets are active at the start of the analysis, and others become

active as a result of modules explicitly act_ivati.ng them.. Hodules

have a priority number and those. with higher priority numbers wLll bt~

imrokcd in preference to those w.l th lowe.r: priorities. Processing

occurs at two levels - (rrouu and claus(~ - with each level having an
~-.L~ __ , __

input buffer of items waiting to be tested by the modules, and an

·Page 68

output huff er of structures produced.. At the group level the input

buffer contains the words of the sentence, and the output buffer

contains ·the groups (small phrases) formed by clustering the words ..

At the clause level, the input buffer is the output buffer of the

group level - Le.. 5. i- contains groups and the ?utput buffer

contains clauses .. The feature-pattern on a module is compared with

the first few items in the input ,buffer, and if the features match,

the module is invoked .. If the feature-patterns of several active

modules match the input, the analyser may use a "differential

diagnostic"' to narrow down the range of possible hypo t11eses ..
\

Dlff1.~rential diagnostics art: a "series of easily computed tests that

decides between the competing hypotheses" (1975", p .. 7) .. Clause

structures are built by ''a case-frame interpreter that is intended to

serve as an i.nterfaee betw(~1:.n it [the parser] and deep world

modelling'' (1975, p .. 8).. Also, "the parser can ask pre-compiled

fill-in-the-blank questions of the world model itself (the world

model in question being the author" (1975, p.8).

This overall out-line is sim:llar enough to other current

frameworks and programs not to be too controversial .. The interesting

aspects of Harcus' suggestions are the constraints within which he

wants the mechanism to operate, and the perfonnance which he clairas

is possible within these bounds,. H:ircus rn.s.k.es variou3 sp8citl2.ti· .. ·1~

c:.1 <lims regarding processing tim~, use of world knowledge, and ways of

processing semi-grammatical 01:· elliptical sentences, but these are

more peripheral aspects .. The main strong claims regard syntactic

processJng.,

Page 69

Harcus claims that, at any point in the analysis, the

feature-patterns of active modules are to he matched against only the

first few items in the. input buffer no extended look-ahead is

required. This initial testing should narrow the possibilities down

to what he terms two or three "hypo-theses" .. If several ~hypotheses are

possible, the parser executes a differential diagnostic to determine·

which single "hypothesis is correct, befoi:e attempting any of them If

(1975 7 p~6) .. It is crucial to l'hrcus' claims that this test uses very

limited lot1kahead, is simple, and yields a definite result .. It is

u.!lclear from the two papers ctted whether recursive levels are

allowed, or whether just one clause level and one group level can

exist simultaneously. If recursive levels . are involved (e •. g .. a

clause ~el outputting items into the input buffer for a group level)

then look-ahead of three constit~~ is not very restrictive, since

one con$tituent may contain an arbitrarily large nested structure;

if recursive levels are not incorporated, presumably short look-ahead

tests will fail in any example where some embedded structure occurs

in the group that is being built (e .. g .. a relative clause. within a

noun phrase).

The simplicity of the tests is also open to question. The

example he gives (1974, pp~l5-16) includes a test to see if the next

item will be an advf:rb or a time adjunct; this does not seem to be a

simple test, and would proba,bly require the item in question to be

parsed.. Harcus' grammar i.s fairly narrow in scope, and it is fairly

easy to construe t simple rules if only a few examples are to 1>e

covei:-:d; it is another step to claim that grar:unars oE this fonn will

never need cornpl6x rules. Tt is not clear whether "hypothesis"

corresponds to "success£u11.y natched module" on a one-to-one basis;

Page 70

if they do not, it is not clear how "hypotheses" are to be counted ..

It may be that the co~nting of hypotheses, and resorting to a

differential diagnostic if the total exceeds one, occurs in the

grammar-writers mind, rather than in the execution of the program,

since .Marcus talks of a differen-tial c1L-13nostic being a particular

kind of module, constructed so that. it i.s invoke<l only w:t~'.11 th1~,

-:nodules it has to choose between will also have been invoked. H-3.ybe

this describes the way that the' modules are constructed, rather than

an algorithm which they actually obey.

There are several aspeets of H3.reus' work which are similar to

the work in this thesis. For example, both projects accept the

principles that structure, once built, must not be re-built or

dismantled during an analysis, and that look-ahead should be avoided

if possible. However, the :11ore central claims of the "wait-and-see"

approach remain unproven so far.

(For further comr:1ents, see Sections III.6 and III..8, and Section

VII.. 2 .. 4) ~

Page 71

Section II.11 : Semantic Networks (Si~mons) ---- --- - ___ ..,.. ___ ------- --.. ---~---.._ . .--...-

Simr:10ns (197 3, 197 5) has out.lined an English language

understanding system which has many similarities to the framework

used here.. Simmons uses a form of augmented transi.tion network

grammar to process input sentences directly into a "semantic network"

representation.

A "semantic network" is a fonn of representation closely related

to the standard semantics for predicate logic (cf ~ Shoenfield

(1967)). There are a set of "relations" which can occur between

items, and the items can be virtually anything .. The word "network"

is used because such relational structures are often represented as

graphs ·with labelled edges, an<l "semantic" r:lerely refers to the use

of th.is representation for language meanings. For example, Simmons

giv~s the representation of "Napoleon suffered defeat at Waterloo"

as:

Hood: Declarative

Essence:Positive

MODAL
I

Hood:NP

THEME . I
Napoleo.n

LOC

I
Waterloo

Manner: final of at

def

(For other semantic net\vork systems, see Quilli;rn (1969) and

Rumelhart and Norman (1973)),,

Page 72

This method has been used to build a program which accepts

declarative statements (e .. g .. "A clown holding a pole balances on his

head in a boat") and displays corresponding pictures on a graphics

screen ..

The grammar used does not· alter the surface order or relation of

the input string greatly, but each verb has an associated set of

"paradigmatic ordering rules", which express permutations of. the

surface subject, object and indirect object- int_o a 1.h~ep case fra::tt-~
\

fo_r tne ver~). Thi::; is very similar to the computational grammar way

of handling verbs, as will be seen in Section V.8. However, this

action is performed in Simmons program by a particular operation

ARGEVAL, rather than by having anything corresponding to structural

combining rules (see Sections III.1 and IV.l). The semantic network

is built directly by the actions on the ATN arcs. As argued in

Ritchie (1977), this approach is difficult, since the suitable

construe ts for a surface ATN are dHfc..~rerit from those for a semantic

representation, if there are no intermediate rules.. Simmons can use

one-stage processing largely because his semantic nc~twork is very

close to a traditional surface syntactic structure, apart from the

permuting of the verb arguments, and any deept!l" se:~:-:L.:n-,t-L·,~ v-3-t-t..::rn::;

~l2ve to be covered by inference rules. It is not very clear how the

verb-permuting operation (ARGEVAL) chooses which "paradigmatic

ordering rule" to use in a'rranginc; the verb arguments, since Simmons

says that this is done using the seman-J:i.c_ cha.racteristics of the

items.. Since much of the case information in English i.s conveyed by

surface syntactic aspects (order,prepostions, inflections, etc~

alloting items to verb places usin8 solely semantic information will

not in general be possible~

Page 73

The main difference bet\11,c:en co~aplll>lU.c>nal grammar and Simmons'

modt~l ·is that the latter has no constructs corresponding to

"structural combining rules" .. Hence Simmons' grammars have to try to ·

capture all syntactic and ·semantic regularities at a single levt.d of

semantic representation, a·nd this semantic structure is built

dlrectly on the ATN arcs.

)

CHAPTER III

IMPROVING TUE EXISTING CONSTRUCTS

Page 75

Section III .. 0 _:_ .!~.E-~amb~e

As' a prelim{nary to presenting the computational grammar

framework in Chapter· IV, this chapter discusses in more d~tail some

of the questions which arise when constructing a computational model

of English language understanding~ The arguments are not directly

based on any one of the theories or systems in Chapter II, although

many of the ~oints are expressed as criticisms of the LSNLIS or

SHRDLU systems, since these two models are closely related to the

MGHINE program.

Although many _of the ideas used in computational grammar are not

totally new concepts, most of them have. been modified, to some

extent, to overcome various problems. Chapter III describes. these

basic concepts and the rea-sons for the revisions, so that Chapter IV ·

can simply summarise the framework without digressing to discuss the

background justification. In some cases, the modifications are

minirnal, and the corresponding part of Chapter III merely summarises

the reasons for adopting a particular device.

Page 7 6

Syntagmatic relationships_ between units are decoded in two ways

in Winograd's program~ Firstly,- the parser buildd the syntactic

tree .. This gives a grouping into constituents, together. with a

labelling (using features) of each constituent. Secondly, these

labelled sub trees act as inputs to the semantic specialist programs,

which produce semantic forms. The semantic specialists are treated

nore or less as "black boxes" constrained only to produce a

particular output from a given input. The lack of constraints on

these two stages (other than the need to interface with each other)

has two slightly unfortunate consequences.. The inscrutability of the

semantic specialists means that they contribute little· to the

important question of how syntax is related to semantics. The second

consequence is directly linked to this lack of a systematic method of

I

semantic interpretation. The syntactic component lacks criteria for

what is "good" or "bad r_r grouping or labelling of a surface s true ture,

other than the fact that it should "work" when handed to the

appropriate semantic specialist~ Ad. hoe feature markings (of the

sort discussed in Section III.11) are successful solely because they

serve as the input to the equally unconstr2:ined semantic interpreter.

If we wish to illumina.te the. process of extracting ·meaning from

surface strings, we must diss2ct the se~antic specialists, and try to

organise the inner mechan:Lr:::a as systematically as possible. Consider

the noun group semantic. r;pcc:inlists. Hinograd used what he called

the "slot-~and-fillcr" approti.c:h to the. structure of tl~e. noun group

there are various slots for modi.fcrs, e.tc~~ on the group node, which

',

Page 77

may or may not have entries. This meant that "null" entries had to

be made,on many noun groups (giving rise t~ features like NDET - see

Section III. 11) .. The semantic specialist had to examine ,all the slots

and make its decisions on the basis of the various entries. This

obscured any internal semantic regularities between subunits. For

example, the ' relationship between determiner and head noun is not

separable from the relationship between adjective and 'head noun

both are buried somewhere in the deliberations of the semantic

specialisL Winograd s_uggests that his "flatter" trees are more

semanticRlly useful than more deeply-branching trees of

transforrnationalists (pp.16-17), but this overlooks two points.

Firstly, he uses elaborate feature markings, some of which convey

further structural information (which is inherently present in the

transformationalists' tree already). Secondly, the deep branching was

an attempt to reflect semantic groupings; with Winograd's method,

one has to deny these groupings, or hide them in the viscera of a

sp.ecialist, or encode them in further '~features" .. If we were to take

Winograd' s method to an absurd extreme, we might end up with trees

like_(lO), a single semantic specialist (for "Sentence"), and a vast

collection of features.

(10)

Sentence

~ Word Word Word Hord Word Wora Word

I l I l I 1·1
the black belt sat on the mat

Page 78

The whole point of further grouping, as Winograd himsel,f states,

is to find generalities that can be dealt with at a local level, and

make use of all semantic regularities. If we can find syntagmatic

regularities within the noun group, then ther~ is a case for

separati~g these out into individual semantic specialists. During

the analysis of a sentence, the program would need to invoke only

those semantic specialists for which non-null arguments existed. The

tree might look like (11), where each node is marked with the

semantic specialist used.

(11)

Subject-Complement Rule

Determiner Rule

Rule Verb-Object Rule

the black belt

- sat
Rule

on /\
the mat

It may appear that this produces a proliferation of specialists,

but this is misleading. The rules which we are ref erring to as

semantic specialists here are much smaller than those in Winograd's

program, and have been obtained by dismantling his rules. One could

keep a small number of large specialists by building more and more
I

alternatives into the body of each rule, but that would not really 12e

simpler.

Page 79

In Winograd' s system, the semantic· specialist was selected

according to the major category label on the node (e.g. NG). If we do

not have specialists indexed to major categories, the question arises

of how to select the rule. This question is not trivial, and will be

considered next (Section III.2).

Page 80

Section 111.·2 : Syntax and semantics ----- ----- - ~--~ --- ~--·----

Winograd' s parser acted as a pre-processor for the semantic

specialists, by grouping and labelling constituents. As commented in

I. 2. 2, the only justification for syntactic rules is that they

contribute to the language-decoding (or encoding) process. The

question is whether this two-stage process has any advantage over a

one- stage conversion- There is a sense in which Winograd's parser

makes all the semantic decisions, since the grouping ?nd labelling

defines how the semantic specialists will act; on the other hand,

these decisions are re-encoded (in arbitrary features)' instead of

being used directly to build a semantic structure. The feature-laden

tree is then dissected by the semantic specialists so that these

earlier decisions can have semantic effect. Winograd states

(pp.16-17) that the sole justification for his features is that they

convey meaning, so presumably all the features (even bizarre ones

like DPRT) perform this function of passing decisions between the

syntactic and semantic components~
(

One obvious modification to investigate is the abolition of the

arbitrarily-labelled syn tac~tic tree as a mail-box between the

components. If we could integrate the semantic specialists and the

parser more closely, we could perhaps allow the parser's decisions to

be more directly ielated to the meaning-manipulatios that they cause.

Consider the original form of the semantic specialists

(ignorin8, for the moment, die breaking down of the specialists in to

several rules, . as outlined in Section lIL 1). The noun group

specialist c.onstructed a semant:Lc structure on the basis of the items

Page 81

in the seven II slots" nu_nograd' p. 56) on the NG sub tree' together

with the feature-labelling of the subtree. In a sense the seven

slot-fillers were acting as arguments for the specialist, since they

provided the variable information that distinguished one noun group

from another.. Suppose, therefore, that we re-formulate the semantic

specialist to be a procedure which takes seven arguments (some of

which may be dummies); Instead of establishing a syntac'tic NG rule,

and attaching labelled daughters, the parser could establish a -

semantic NG node (containing a copy of this new specialist) and fill

in the· appropriate arguments. Not only would this avoid some

tree-building, it might simplify the internal code of th~ specialist

(since it would not have to "read" the syntactic tree). Also,

features whichare intended solely to provide structural information

(such as NDET) would be elininated. This does not mean that no

features are needed (nur.iber-markings would probably still be

require.d) but it would eliminate any redundant syntax, and show more

clearly what information was being used where.

If we also adopt the suggestion of Section III.. 1, and have

separate specialists for.each syntagmatic combination, the need for

dummy arguments should be eliminated. The parser builds a tree, each

node having an associated semantic specialist, all of whose· arguments

have to be filled. (There may be. only .2 arguments ·for some rules, if

deeply-branching trees are used) • The tree would look something like

(11) above .. ·

1bis proposal is not pa.rticularly radical. All that we have

done is suggest that, since the parser's decisions determine

(ultimately) wh{ch semantic specialists are to be invoked, and what

Page 82

arguments are to be passed to them, these facts should be directly

represented. The operation of the semantic specialists was already

hierarchically-organised (as observed in Section III.I) so using them

as the cement which holds the tree together is not an ~xtension of

their use; it merely makes ~xplicit the fact that the hierarchical

syntactic organisation was· ultimately aimed at channelling the

semantic processing. The semantic specialists themselves (both in

their original form and in the revised version) have fundamentally

the same purpose as the semantic interpretive rules. of Katz and Fodor

(1963) and Jackendoff (1973), or the rules of Hontague (J 970a). The

revised n6tation for the semantic/syntactic ttee ~s similar to the

analysis tree of Mon tag ue (1910h) • These rules could be referred to as

"structural combining rules" (SCRs), to avoid having to categorise

them as "syntactic" or "semantic.",, as they fulfil a dual role.

The rules as described so far do not fulfil all the functions

traditionally covered by _"syntax". There is other information to be

used in the sentence-understanding process a~d we need further

constructs to handle it.

Firstly, there are certain properties of words and phrases which

help to indicate how the various items are to be grouped in building

the surface tree, and which se.en1 to have no other purpose. That is,

they do not contribute directly to the final semantic structure, but

they help the routines which plug the combining rules together. One

good example of this is "number agreement" which (as Katz (1972)

argues convincingly) is not just a semantic property. "Agreement"

between subject and verb is a rather arbitrary, language-specific

device which helps 'to signal to the analyser how (or whether) the

Page 83

item~ .are to be paired, and can be represented by some suitably neat

symbolic markings (see Section V.3) .. The "object-information"

described in Sections III.. 9 and V .. 8 is another example. Such

information can be recorded by associating a set of "syntactic

properties" with each word .or phrase; that is, a list of attributes

wl~ich can have a range of values ..

Secondly, there is a need for some way of describing~

paradigmatic classes. In writing a recogniti.on grammar, there is

often ·a need to include a test for some class of words whose only

unifying characteristic seems to be that they can occur at certain

points of a sentence. . For example, English auxiliary verbs generally

occur at the front of a "yes-no" question, rather than after the

subject.. A recognition grammar needs to be able to check the first

word of the sentence to see if it is an "auxiliary", as this suggests·

that the sentence may be a question. It is hard to define

semantically what an "auxiliary" is, and it seems to be a purely

syntactic category - "one of those little verbs that precede the main

verb and are at the front in questions" (see Section V. 2). Other

examples are the various constituents within a noun phrase

deter1niner s, possessives, articles,·· adjectives, etc. These

constitute optio~s which occur · at various stages throughout the

processing of the phrase, and. the ordering of them (and the

occasional parallel options) can only be described by idiosyncrati_c

markings on the words, since their semantic characteristics provide

no clue to what order the options should occur in. · This

distributional information could also be covered by "syntactic

propcrtiesrr as above, but there are. further generalisations about the

information .. Firstly, a syntactic property may have a range of

.Page 84

values, whereas the paradigmatic infor1Uation usually gives simple

class membership (e.g.. "is this word an auxiliary or not?").

Secondly, syntactic properties (e-g. subject-verb agreeme?t) may need

to be marked on phrases as well as words, whereas the paradigmatic

classes are to guide the analyser when it is inspecting words. In

computational grammar, two separate constructs have been incorp9rated

to cover these two kinds of information :

Synta~ti~ E~~P~!:.~~~~' which are attributes capable of taking a

range of values, and which can be marked on phrases.

Syntactic ~~~~-' which can simply be present or absent

(presence denoting me1nbership of a particular paradigmatic class) and

which are marked only on lexical items, not on larger constituents.

Notice that syntactic features are not like syntactic categories, in

that items may . be cross-classified by giving each item several

syntactic features, instead of just one. (See Chomksy (1965) and

Halle (1962) for argur;;ents in favour of. this form of classification).

One further construct is needed to integrate these concepts. If

syntactic properties are to be marked on phrases, how are the

markings to appear on the phrases as they are built ? There are a

number of logical possibilities, ranging from having a phra~e inherit

all the syntactic properties of all the words in it, to allowing the

properties of the phrase to be computed in any way whatsoever from

the properties of its words. Writing the HCHINE grammar threw very

little light on this, as only one syntactic property was included

which had to appear on.phrases; namely, the "verb-agreement" class

of a noun phrase~ The method used in the program was to allow each

structurJl combining rule to have, optionally, a "property

.Page 85

inheritance rule" which specified which properties of the argument

nodes were to be attached to the result-node. (Since these

properties are not deemed to be part of the meaning, but merely

transient annotations to aid the surface-structure routines, they are

marked on the nodes, not on the semantic items contained therein). It

is impossible to claim empirical support for this method, since only

the one example,has been tried out.

Page 86

Section fIL 3 _:_ ~!mmediate Semantic PrC?._.c_t;,.ssii;_[

The LSNLIS system postpones all semantic processing until the

end of the sentence, and s·HRDLU performs semantic processing at the

end of major constitu~nts~ Rieger (1974) criticises Wi~ograd's

approach for having too great an emphasis on syntax, . and Riesbeck

(1974) claims that his analyser can build up a non-syntactic

"conceptual structure" as it progresses ,from left-to-right through a

sentence. Let us exaraine bow the SHRDLU mechanism might be modified

so that semantic processing may be carried out as early in the

analysis process as possible.

If we adopt the modifications presented in Section III.I and

Section III.2, then a first step has been taken_ The parser (or

"analyser") is building a tree composed of semantic rules with their

arguments inserted. To produce the semantic structures, these

semantic rules have to be applied. The question is - how early in

the analysis can this rule-application be done ? The disr.rnntling of

large semantic rules into separate autonomous rules, each having

perhaps only two or three arguments) should facilitate early semantic

processing, since the semantic rule does not have to wait for the

accumulation of several constituents as its ?rguments. It might be

possible to apply each sernantic rule as soon -as all its arguments

have been found. Then semantic processing would occur every time a

subtree (no oatter how small) was corJpleted_

Page 87

A further extension is possible. Instead of each rule waiting

for all ·its arguments to be inserted before operating, a rule could

operate incrementally. That is, rules could be subdivided into parts

(call them "rule-components")·, one for each argument-place in the

rule. The

computation

nth rule-component

could be perfonned

would

when

represent whatever semantic ·

the

Hence each rule-component ~ould be applied

nth argument was found.

when th~ corresponding

argument was inserted, causing a gradual building up of a semantic

structure. (It might also be useful to include a "zeroth"

rule-component in each rule; to set up an initial blank structure for

the other rule-components to work on) •

One experimental version of the HCHINE program implemented such

a system, and the grammatical rules were re-written accordingly. The

system was soon discontinued, since it was very cw:.1bersome in

practice, but . the short trial was enough to illustrate the

lfrtitations of such a scheme. Using rule-components is not

impossible, but it is more difficult- for the grammar-writer to design

rules in the incremental form, and there seem to be few advantages.

Two mai~ problems arise.

Firstly, many of the combining rules are such that the first

argument conveys little infonnation about the final result. This is

particularly true where the arguments are themselves being

represented as an operator applied to an operand - both are needed to

produce the final result. This problem also arises where the second

(or later) argument supplies the main structure for the result, and

the first argument t'its into some slot or property-value on it. In a

numbet_ o'f rules the rule had to be written so that the zeroth rule

rage 88

component set up a structure of type X, the first component of the

rule merely stored the first argtm1ent in some arbitrary slot on the X

(as a temporary store) and the secorid (final) rule-component took the

first component out of its intermediate storage position so that all

the computation could be done. These bizarre manipulations

demonstrated how rarely.any useful processing can be done without all

the arguments.

Secondly, even if such partial buildin~ were possible, the

semantic processing could not go very far unless the next rule up the

tree could accept a partially-formed argument.. That is, even if rule

Rl (in (12), below) gradually built a semantic item X, the semantic

consequences would stop there unless Rule R2 could accept the.

partially formed X as its arg~aent.

(12)

R2 ---------.
[X J •

' Rl

Possibly the only places where it was possible to segment the

rules without losing anything were in the role-placement rules for

verbs (see Section V. 8),. If there is a rule which arranges the object

(and indirect object) into slots around the verb, then each

rule-component can slot its argument in separately, and any

restrictions on the slots (induced by the verb) can be checked

immed1atelyq The slight advantage of early checking of

verb-restr·ictions has to be offset against the other difficulties

created by having to write incremental rules.

Page 89

Section IIL 4 : Sense and Reference -- _ .. _ ... _. - - ---~-~__._ -.--... -·--·---

Winograd' s program keeps a single data-base which describes the

state of the BLOCKS world·. No distinction is made bet.ween how the

blocks are actually arranged and how the program "thinks" they are

arranged - since one data-base serves for both, no discrepancies are

possible. Hence there can be no real distinction made between "Is

there a red block on the table" and "Do you think that there is a red

block on the table?" .. There are two ways of regarding this singl.e

world model :

(13)

(a) It represents the "real" state of the BLOCKS world, as a

simulation. of a physical system.

(b) It represents the 11 mental" model of the BLOCKS system that

the program (regarded as a simulated speaker) has.

The consequence of interpretation (13) (a) is that the program

performs all its operations, including linguistic ones, by examining

the "real" world. That is, to work out exactly what the phrase "the

red block11 refers to, the program must scan the world (not its memory

of the 'ldorld) to find such a block. Hence no provision is made in

this model for talking about·items which the hearer cannot currently

perceive~ which Js rather a limited approach to language.

The consequence of interpretation (13)(b) is that any operations

which the program is to perform on actual objects (e .. g. "pick up")

must be carried out on mental constructs. In this approach, actions

Page 90

are performed by fiat, analogous to a person playing chess without a

board. This makes no allowance for the case . where a "real-world"

interface is needed (e.g .. playing chess with a board) ..

There seems to be a confusion in the Winograd model between two

logically distinct processes, which might be called "reference

evaluation" and "referent recognition" .. When someone attempts to

understand a phrase such as "the President of the United States",

there is no need for him physically to search the White House to

·"find a referent" for the phrase. If the hearer has· sufficient

world-knowledge, he will be able to work out that a particular person

(probably not currently perceptible by sight or touch) is being

described. To do this, some manipulation of the hearer's memory may

be involved but he can do this sitting down with his eyes shut.

Let us call this mapping of a description to a particular object

"reference evaluation".. (It will be discussed in greater detail in

Section. V .. 6). On the other hand, if someone has to obey the command

"Shoot the President of the United States", some further proces,ses

are necessary. The person will have to get himself into a physical

position where he can perceive the President, and muit be able to

recognise the President (probably visually). The latter stage
out

(perception and recognition) could be carried,\by a deaf-mute to whom

the assassination command had been conveyed by pictures, and is not

essentially linguistic. Let uw call this "referent recognition".

A brief digression here will show that this confusion is not

confined to Winograd's program, and will suggest some possible

consequences of this di~tin~tion. Some writers .i~ply that a phrase

will "have a referent" if and only if it describes some real world

Page 91

object(s) .. For example :-

"There are also clear. advantages to a language that can employ

expressions which have no referent or which have not been secured a

referent We surely want our language to. leave open for '~its users
I

the possibility of construe ting theories which hypothesize the

existence of such things as phlogiston, ether and animal spirits "

(Katz (1972, p .. 142))

"The reference of a proper name is the object ' itself"

{Fr cg e (l 8 9 2 , p · .. 6 0))

Brown (1958) uses "referent" in a language-learning context to

describe concrete objects.. Russell (1905) uses the word "denote" to

meag__ "standing for real world objects", and says that the phrase "The

present King of France" does not denote, since there is no such

existing object. However, for well-formed, successful conversation,

it is the reference evaluation step that is imp~rtant, not the

referent recognition.. As Russell(ibid.) comrn·ents:

"It often happens that we know that a certain phrase denotes

unambiguously, although we have no acquaintance with what it

denotes" .. (p.479) ..

Certain noun phrases in English are a clear ·exmnple of a

linguistic device for automatica~ly providing referents for the

hearer, although he may have no perceptual data from the associated

real-world object (see Section V.6 for further discussion)

Page 92

(14) My oldest brother lives in Glasgow

(15) His father gave him a cheque.

Here the term "referent" will always be taken to _refer to the

construct that is determined by reference-evaluation in some model of

the world. The corresponding object in one part~cular. model (known

. as the "real world") will be referred to as the "concrete referent".

One advantage of making this distinction is that we can

distingui.sh between the concrete referen't of a phrase and different

people's referents for that phrase. In the classic example, the

phrases "the morning star" and "the evening star" have the same

con~rete referent; ~ut someone who does not know any astronomy may

regard the phrases as referring to different objects • Such a person

can be said to have two different referents for the phrase (in his

notion of the world).

When describing the semantics of phrases which refer to

something (e.g. noun phrases) it is important to make a distinctio~

between the "meaning" of the phrase (usually described in some formal

representation) and the set of things the phrase refers to (as

observed above, these things are not usually in some absolute "real"

world). This is (roughly) the traditional distinction between "sense"

and "reference" (Frege(1892))~

Montague (1968, 1970, 1972) formalises this distinction in a

rigorous way. His model uses the notion of a "point of reference",

-which is used as a parameter in deciding what an expression refers

to. These points of reference (corresponding to "contexts" or

"states of the world") are sometimes represented as ordered pairs (a·

Page 93

possible world paired with a situation of use), but they could be

. decomposed further, depending on how many factors we wished to

separate in a state of the world. The point of reference has a

direct influence on how an expression refers, because Montague

defines the meaning of a term to be a function from points of

reference to functions which define sets of objects .. A single

meaning (Le. the same function) may refer to different objects, if

it is evaluated at different points of reference.

There is an obvious analogy here with program-evaluation. A

piece of program must be evaluated in some context (i.e. some state

of the machine). The influence of the context is particularly __)

relevant for languages which determine all the variable values at

run-tir:ie (cf. Hoses (1970)), and some recent developr.1ents in

artificial intelligence languages have allowed ppogram-contexts to be

manipulated as items, so that a piece of program may be executed in

different contexts on different occasions (~~Dermott and Sussman

(1972), Stansfield (1975), Davies (1973)). Even a simple piece of

program such as (A+B) will refer to different numbers depending on

the values of A and B.

Expressions like "I" and 'Jhe", whose reference is entirely
~

dependent on the context of u·se, a re some times classed as "indexical

expressions". Bar-Hillel (1954)' gives an elegant treatment of such

expressions, in which he points out that, to discuss reference, we

must always include the context of use in the calculationsc

Indexical expressions are merely those where the influence of context

is very obvious - in principle, the context must always be taken into

account. Sentences which are non-indexical (such as "ice floats on

Page 94

water") are those whose reference is unaltered by changing the

context .. · (Compare this with the program :r sin(O);" , which should

yield 0 no matter what program context it is evaluated in).

If we let the "meanj_ng" of a noun phrase be a piece of program,

which, when run, will produce the set of objects referred to by the

phrase, then the sense/ reference distinction is automatically

incorporated .. Winograd uses pieces of program to represent the

meaning of noun phrases, although it is not clear that they are used

as systematically as .t-bntague' s in tension functions (see Ritchie

(1976)) .. There are certain difficulties involved in using pure

programs for noun phrase meanings (see Section V .. 6), but it is worth

noting the analogy between program-evaluation in. a program-context

and determining the set of referents of a meaning. It seems

desirable to retain this aspect of the Winograd representation in any ~

modification.

Page 95

As observed above, computational grammars of ten store

partially-built structures in registers- In fact, most of the

operations performed during sentencB-analysis use the contents of

registers in some way, and if we are to investigate how

sentence-processing operates, it is desirable to investigate how

registers are, and can be, used. In writing the MCHINE grammar, an

attempt was made to keep track of the various uses of r~gisters, as

these operations form ·a major part of the work done by the analyser.

The following classifications proved useful for describing this area.

The first useful distinction is between f}-~g~, stru_~_t;..:-ir~-!!_~1l.[

~gisters, and 2oi~ter-bold~~&,,~J:?isters_ A flag is generally used

_as a location to test for some simple condition, and holds one of a

small, fixed set of values (e.g~ "TRUE", uFALSE"). The idea is that

when some condition occurs during an analysis, this fact is recorded

for later use by setting the value of a flag; at some later

stage(s), when the analyser needs to test this conditi6n, it need not

dQJ any re-computing, but r.wre.ly examines the current value of the

flag. Some recognition grammars usf.::. a two-valued flag to record

whether a passive or ac.tive ver1.>·configuration has been formed; the

analyser, on encountering 2 11 hyn-·phr3se, can react differently

acccording to the value of the fl.'-"<~.

A structure-holding register provides temporary storage for a

piece of structure v1hich l_ias been built but not allocated to a

position in some larger Btruct.ure. For examp.le, a register HEADNOUN

might be useful for holding the head of a noun group while checking

Page 96

if any adjuncts follow the group. A pointer-holding register is used

for keeping track of where, within some larger structure, a

particular i tern is.. For .example, a register CURRENT-NODE might be

useful for ke~ping track of the node currently being processed.. If

this distinction seems slightly vague,. consider the following.~

Failing to assign an item to a pointer register makes that item

difficult (but probably not impossible) to find, and do~s not alter

the relationship of that item to any containing structures. Failing

to assign an item to a structure-holding register loses it

completely~ since it is not yet attached to any other structure. (In

languages like LISP and POP-2, such unassigned structures would be

garbage-collected) -

Another distinction (independent of the 3-way classification

above) is between interpreter ref3. is teE_~ and gramma tic;,_~!:_ rc:_g__~::..S.c:.!.~.. In

the course of analysing a sentence, it is necessary for the program

which scans the input and the network to keep track of where it is in

the network, and where-it is building structure. For exa~ple, the

CURRENT-NODE register mentioned above might be needed, and a register

CONTINUATION for holding states still to be processed. These

interpreter registers are more or less independent of the transition
.___)

network grammar being interpreted, although the linguistic theory

within which the grammar was written will affect the choice of such

registers~ On the other hand~ certain specific grammatical registers

will be needed, according to how the grac.uaar is written~ For

example, the HEADNOUN register instanced above might be useful in one

grammar, but irrelevant in another.

Page 97

Generally, registers are used just like variables in a

programming language, with each register having a distinct name to

identify it. The analyser can examine specific registe~s by name,

and have sep~rate regist~rs· for as many items or pointers as it

needs. One possible variation on this is to have just one or two

general purpose registers, which are used for different purposes at

different stages in the parsing. Call these work teg~ster~. Such

r~gisters are trickier to use, since the parser has to keep track of

what has been most recently placed in a. work register, ai:1d make sure

that the ·stored values for one process do not interfere with those

· for another. The· only advantage to be gained is the general

methodological one of restricting the mechanism as much as possible.

It would be ·interesting to construct a parser which requires only a

very limited amount of storage space; using work registers instead

of named registers is one way of investigating this.. (It would also

avoid the covert decision-making described in Section IIL 8,

(28)(£)) ..

As described in Section III. 7, constituents are processed by

nested subunits. In the course of such processing, working spa.et~ for

the different constituents must be kept separate, so that stored
-..___)

values do not corrupt each other. Suppose there is a grarnrnatica_l

structure-holding register HEADNOUN which is used to process a noun

group .. If several noun groups are nested within each other, each

different noun group may need a separate copy of HEADNOUN. Since the

processing is hierarchically arranged, one way ·to achieve the

integrity of working space is to allow certain registers to act like

local variables in block-structured programming languages (e.g.

ALGOL, POP-2). That is, a fresh incarnation of a lo~al variable is

Page 98

availabie to each hierarchical unit that requires that variable;

these incarnations exist only temporarily, as long as the

hierarchical subunit is processing,. and then they vanish. One way to

look on such a system is to regard the registers in question as

push-down stores; the current value is kept on top· of the store, and

the store can be pushed down on commencing a nested unit, providing a

fresh value slot while storing the previous value tempor?-rily _ If we

call such registers stack register~ (or simply ~stacks), this gives

another possible classification, independent of the' previously

described distinctions.

Thus we can class· a register as being:

pointer-holding, structure-holding, or a flag

grammatical or interpreter

work register or named register

stack or non-stack.

Notice that this section has not suggested any concepts that are

not already in use in existing programs; it has merely dravm

attention to certain possible classifications that are possible, so

that later sections can be described ,in a more precise terminology.

Thjs is necessary if we are to examine fully the linguistic

formalisms being proposed. Hitherto, this level of detail has not

been discussed, but it is essential to the development of more

complex (or more restricted) devices. since most. (if not all) of the

operations carried out during sentence analysis use registers (and

the transition network conf i.guration merely expresses the list of

Page 99

options) elucidating the uses of registers is the major part of

elucidating the processing operations-

Page 100

Section III.6 : Control. struc.ture ___ ..__ .,_,_ ~--....... --

Owing to the ambiguity of natural language, an analyser is

frequently faced, during ·sentence analysis, with having to explore

several possibiliticis. There are two standard strategies that a

parser can use to follow up multiple options~ A program is said to

use a deE.sJ2:::.fir~ strategy if, at each choice point, it chooses one

of the options and follows it up fully, to the exclusion of others.

If a choice proves to be wrong, the program "backtracks"

returns to the most recent choice point, undoing all or most of the

processing performed since that point, and tries another option.

When all the options at a choice point have been tried

unsuccessfully, the program backtracks to the previous choice point.

This has the advantage that there is only one partial analysis being

maintained at once (with choice poi~ts recorded in some way), and (if

the program makes the right choices) the correct analysis is found

very quickly- One. disadvantage is that if the program makes the

wrong choices, it has to do a great deal ~f backtracking, and this

raay involve undoing processing which will have to be repeated when

other options are taken. A drawback to having only one partial

analysis in existence is that there is no way of comparing several

possibilities, so tha_t the "best", in some sense, may be chosen.

several analyses c.:in be cor1pared only by producing complete analyses_

Inste<:1d of the an~~lyser stopping when it has found one successful

patll, it continues to explore systematically all the other choices

that Jt has not yet tried (:Ln the same way that it would if it were

back.tr<lcking) ..

Page 101

A program is said to use a breadth-first strategy if, at each

choice point, all the options are developed _simultaneously.. This has

the advantage of finding all fhe analyses in one pass, if there are a

few, and it allows (in principle) the program to compare several

different partial analyses, selecting the better ones for

consideration. In a pure breadth-first system, such a selection

facility would not be used, since all analyses are developed,

regardless of merit, but a natural development would be some form of

"pruning" of the set of analyses (if some principled method could be

found) • The main disadvantage is that several analyses must be

maintained simultaneously, even although many of them will prove to

be transient.

The augmented transition network formalism is neutral between

depth- and breadth~first exploration. A particular network provides

the arrangement of the choice points, but these may be explored in

either fashion.. The program of Thorne, Bratley and -Dewar (1968) used

a pure breadth-first approach, and the LSNLIS system (according to

}mrcus (1975)) uses the depth-first approach.

If we wish to exar:iine the details of how decisions are made in

sentence-analysis (with an eventual aim of constructing a pLausible

model of human processing) , then pure depth- or breadth-first systems

are not very helpful. The reason for this is that both methods have

inherent inefficiencies which are· overcome by brute force. These are

exhaustive strategies, in which the grammar does not have to be

particularly clever, elegant, or carefully constructed in order to

succeed If parsers are justified solely on the grounds that they

"work" with sufficient computation, then we are left with no means of

Page 102

comparing rival recognition grammars. With a suitably large

computer, one could write a parser which would produce any desired

analyses for sentences, just by putting suitable (ad hoe) markings in

the dictionary, and by making the parsing strategy exhaustive. The

whole point is that we want to be able to say something about how the

parser operates, and whether one program is neater than another - the

fact that it eventually produces the analyses is not a sufficient

condition for adequacy. We need to refine our notions of parsing

strategies, simply because, as commented in Chapter I.i, our ultiaate

criterion in a scientific i.1westigation is that we should try to find

the neatest solution.

This is not to say that all parsers that use .exhaustive

strategics are alike. The parser for the IBM REQUEST system (Plath

(1973), Petric:k (1.973)) used a reverse transformational derivation,

which resulted in a large combinatorial explosion. Quite short

sentences had so many possible surface groupings that even with

several 1001~ of machine space the parsing was difficult (or

irapnssib1e). On the other harid, the program of Thorne, Bratley and

Dewni: (1968), usi.ng a breadth-first exploration of an ATN grammar,

was able to parse comparable sentences quite quickly, using ~nly 16K.

It is implausible to suggest that this cliffere.nce could be due solely

to irnple.mentation details. The radically different analysis

procedures mu.;t account for some of this discrepancy - but that is a

dire~.: t. adrJis~don that we can appraise a program in terms of how it

worLs, Once tld.:.:; criterion is allowed,. the obvious step is to try to

re[in~'. t!ie bruu~ force exhaustive strategies into neater, more

Page 103

A more specific objection to exhaustive processing strategies is

raised by Marcus (1974). He points out that .there exist "garden-path"
I

sentences (like (16) and (17)), where people (usually) make a mistake

in perceiving the structure of the sentence on first assessment, and

hence need more than one attempt to "understand" them~

(16) I told the boy the dog bit Sue would help him.

(17) In the book the girl took the basket had magical powers.

In such situations people are conscious of making a mistake and

having to re-assess the sentence~ Marcus argues that if the normal

processing method is depth-first (where automatic backtrcking is pnrt

of the process) , then people must be making ·continual "mistakes"

while processing ordinary sentences, without any disruptive effect.

If that is the case, why should the "garden-path" sentences not be

handled smoothly by this automatic, unconscious, bac_kup method ? This

argument can also be applied to exhaustive breadth-first systems. If

people normally consider all partial analyses simultaneously (and

throw away those that go wrong without being aware of any oddity),

why should they see only one analysis for "garden-path" sentences ?

Harcus concludes that people do in fact process just one of the

possible analyses (and hence can be "wrong" in a garden-path

sentence), but that they choose this analysis very carefully, rather

than relying on automatic backtra~king to allow an arbitrary blind

choice. Be suggests that a recognition grammar should proceed

deterministically, building structure only if it will not have to

alter it later, and holding partial structures in registers until

they can ha attached in their final position~ This matter will be

Page 10'~

discussed in greater detail in Section III.8.

Both Woods (1970) and Winograd (1972) suggest the use of a

numerical "weight" which can be associated with different analyses in

a parse, indicating which of the analyses is the "best". As observed

above, partial analyses cannot be compared in a depth-first system,

so if Winograd' s parser were to make use of the weighting (the. SHRDLU

parser does not), it would have to compare alternative complete

analyses. Woods says that the weight allows one "to suspend unlikely

looking paths in favour of more likely ones" (ibid. ,p.605), which

suggests that partial analyses are being compared. Wilks (197 5)

suggests a totally different frar.iework \/nich uses a nore

sophisticated upreference" system (see Section II. 6), and presents

good semantie arguments for using such a device. (His metric is not

used in a gradual left-to-right analysis, so many of the comments

here do not apply directly to it).

The question of how to use "weighting" or "preference" is not

simple. There are two main issues relative versus absolute

failure, and local versus global assess~ent. A facile approach to

the idea of preference might abolish the notion of "discarding" a

partial analys_is, in favour of some mechanism of "reducing

preference". Al though superficially plausible, that would be

unworkable for the following reasons. At any given stage in an

analysis, there are certain options available, and 11 failure11 occurs

when ·the input word does not meet the conditions for any of these.

If we no longer discard failed annlyses, we would have to follow up

every option~ regardless of the input. Leaving aside the problem

that the strueturc-buildi.ng might: b<:~ unmanageable if, for example, a

Page 105

preposition has to act as a surrogate for a verb, we have created a

severe combinatorial problem, since the. input would not be

cons training or guiding the analyser at all.. In ATN terms, the ATN

interpreter would have to pass through the entire network, keeping

different preference c.ounts, with no search paths being tenninated by

"failure" •

Another suggestion might be to assign each option at any stage

(each arc, in ATN terr.iinology) a value, depending on how well the

input word matches the corresponding condition~ 1ne arc with the

"best" value would be the only one to be explored. There are two

main problems with such an approach. Firstly, it is a form of

11 depth-£irst" searching, and hence does not allow the comparison of

more than one partial analysis (thus losing one of the aims of a

preference system). Secondly, the initial choices in the analysis

process will be made on the. basis of the "best" options at that early

s tagc, thus d Jscarding any analyse~ which might prove "better" later.

These u,:o hypothetlc:al set-ups illustrate an important point

regcircling 11 \Jeighting'' the weighting system must discriminate

sufficiently to ignore so~e possibilites, otherwise the search space

is absurdly large; on the other hand, it must not discard, for local

reasons, possibilities which might later prove viable, and it should

not ah1ays concenti:a t.e on just one analysis.

A workinf; system se01:18 to need the notions both of "discarding"

nnd of "reduced preference", with different kinds of "failure"

invoking the two reactions. The }~HINE system operates with the

fallowing dl. 11.ir;ion. o.f: meclianisms. Each analysis path has a weight

(!!TENSION") Hhich can, in principle, be incremented by any part of

Page 106

the program (TENSION is initialised to zero, and the lower the

TENSION, the "better" the analysis). Failure in arc tests and surface

structure building causes the analysis to be discarded, but failure

in applying any of the semantic rules (or in "reference evaluation" -

see Section III. Li) merely causes the TENSION to be increased. (This

demarcation seems to be similar to that which is ~mplicit in the

programs of Wilks (see Section II.6)).

The above discussion has been aimed at establishing two points

concerning search strategics in parsers. Firstly, exhaustive

strategies, in which arbitrarily many erroneous paths may be followed

are both theoretically uninteresting and intuitively implausible.

When a recognition grammar is written, the linguist should attempt to

make it as deterministic as possible, in the interests of economy.

Secondly, where multiple analyses have to be considered, some notion

of "preference" would be useful, so that the "best" of several

alternative analyses Qay be chosen. This entails simultaneous

dcvelopmc~nt of a few- paths, with some part of the program having

access to all the partial analyses.

Another way of classifying parsing strategies depends on whether

the parser searches for some specific configuration in the input

("top-dm·m") or whethc~r the input is examined first and then arranged

into succe~rnively laq~er struc turcs ("bottom-up").

The hren<lth/<lcpth classification is logically independent of the

top-dmm/h 1)ttora-up distinction, but the combination of top-down with

depth-f ir:::3t is quite common (what Harcus calls the "Guess-and-Backup

Principle"). Purely bottom--up parsers for natural language are rare

in the artificial i11telligence literature, and many of the devices

Pogc 107

currently in use are hard to classify firmly as either top-down or

bottom-up ..

For example, the notion of a "demon" (as described by Charniak

(1972)) has been used as a sentence-analysing device by Marcus (1975)

and by Riesbeck (1974) (under the names "module" and "expectation"

respectively). A demon consists of a Eattern and a bodr. At any

given point in the execution of a demon-based prograr:.1, certain demons

are deemed to be active. If a demon is active, and some item(s) in

the input match its pattern, then the body (a piece of program) is

executed. In a sense this is a bottom-up device, since the body of

the demon will be pexfonned only if the input triggers the demon, via

the pattern; however, the demon-based program as a whole is somewhat

top-down, in that only the active demons are available for

triggering. To some extent the list of active demons defines what

the program is "looking for" in the input, but it will react only to

those items which are actually present. The options specified by the

arcs in an ATN state ar;e similar in this respect to a sm;:ill list of

demons which may be activated together (like a "packet11 in Harcus'

terminology). The state suggests what few options to look for

(top-dmvn), but only those arcs whose tests are satisfied will he

explored (bottom-up). (This does not apply exactly to (PUSH ••) a.rcs,

which will be discussed later (Section 111.7, Section 111.8)~

ATNs are often regarded as purely top-down, and demons as

bottom-up, but this is slightly inaccurate. It is also not very

illuminatinl~ to try to put every mechanism wholly into one of these

categories, particularly as the most appropriate metliod for certain

tasks may well be some mixture of the two. Various aspects of these

Page 108

strategies will be discussed further in Sections III. 7, IIL 8 and

111..9, but no at·tempt will be made to say whether a system "should"

be top-dmm or bottom-up.

Page 109

One of the main features of computational grammars is the way in

which autonomous subunits can be used to process constituents, so

that a constituent made up of several ~ords can be treated in the

same way as a one-word constituent of the same grammatical type. The

basic actions and operations for performing these nested processes

are defined in both the ATN and PROGRAM.HAR notations. This

subsection attempts to redefine these crn:uaands in such a way that l:'he

independent decisions in processing constituents may be described

separately in the formalism. Some of the ch::ingl~~ are simply the

introduction of notational conventions, but othe~s represent slightly

different ways of controlling the processing subunits. Host of what

is said here applies to both the An~ .1nd PROG£U\~-1~·1AR systems, but the

ATN notation will be used as it lends itself to displaying the

various facets of the co~mands~ The device provided in the ATN

system for a6tivating a subunit is the (PUSH X) arc, where X is a

category name (e.g. NP), represented graphically by a section of

·network like (18).

(18)

Page 110

Assuming the usual interpretation of the (PUSH) device, the

parsing program should carry out various op~rations on encountering a

(PUSH X) arc during an analysis:

(19)

(a) The continuation s_ta te (S2 in the abovf~ example) is saved on

an interpreter stack register.

(b) Some other interpreter stack registers r.iay be pushed down,

to keep track of interpreter infonnation at the separate level ..

(c) Any grammatical stack registers associated with category X

are pushed down.

(d) The start-state as~ociated with category X (i.e. the

beginning of the appropriate subnetwork) is used as the next state to

be processed.

The operations summarised in (19) define, effectively, the

situations where a (PUSH X) arc is appropriate in an ATN grammar

(20)

(a) Where fresh working space is needed to process a constituent

separately, without destroying infonnation about higher constituents.

(This is the reason for (19)(a)and (b)).

(b) Where a particular category of constituent is predicted by

the grammar (this is necessary to provide the information X :for

(1 9) (c) and (d)) •

Page 111

(c) Hhere the grammar: predicts what state will be appropriate

after the constituent has been completed (This is necessary to

provide the information for (19)(a)).

(d) Where the grammar predicts that one of several categories is

ir.nninent, the (PUSH X) device is the only way to represent these

parallel options in one state (e_g. by a state like (21))_

(21)

This displays several a.spcc t s of the (PUSH X) notation:

(22)

(a) It links jnto one decision several points which are

logically distinct ((20)(a), (b) and (c))_

(b) It forces gr<lr;:;;~ars to be \~Titten in a top-down style, since

continuation states mu::~t be spec~ified, and the grammatical registers

are pushed do:.·.:rr on the ha:3is· of an advance prediction of what

category of constituent . .
:Ls com-ing.

(c) The only way Lhat <liffe~ent states can be merged is to

see:•.rch, top·-dcnm, f(n· :_-~1.e variou:-:; options ((20) (d)). Since this will

involve, for each optiJ'n, the wlwle register pushing process, it is

vc-;ry messy.

Page 112

We can deal with (22) (c) first, since it is trivial and largely

notational. If there is some combination of options which occurs

frequently in a grammar, then ~here is a good case for constructing a

particular state to represent that combination, containing all the

component arcs for the various separate netwo'rks .. This would be

slightly redundant, since it would not make use of the fact that

these arcs fall into natural groupings according to the various

options. \.Jhat is really needed is a way to handle arcs in small

sets, and to produce various states (whose sets of arcs may overlap)

by farming uni.ons of these minimal sets of arcs (much a."3 the system

of Marcus (1975) uses independent activation of packets). If we

introduce pseudo-arcs of: the form (INCLUDE X) (where X is a

state-nar.:c), this will provide this union facility .. A state (or

rather R pseudo-state) like S3 in (23) can be treated as having all

the arcs for states NPO and THATSO.

(23)

The sta tL:!-n<:FJC. S3 can then be used i.n a (PUSH S3) arc, where the

pushing dm.'!:1 is don0 once for the whole pseudo-state.

If \,1c· c:~a;i1ine tlie decisions and operations initiated by a (PUSH

X) arc th<,:~_·e ::>c.ems to he a natural division into what might be termed

"global p1·c,J:Lction::i11 ~1nd If local. findings" .. The former are based on,

and an~ 1-<:rgely nbout, what is happening at the current level of

processi:<; (e~g •. i11h:1t continuation state will be relevant after the

incomint-:-~ cons!:.ittw.r;t:); the lai:ter are based on what input comes in

Page 113

after the PUSH arc, and concern details of the constituent (cvg~ what

granmatical registers to push down). The global predictions arc those

aspects of the situation defined by the environment (in particular,

the relationship of the incoming item to the existing structure),

which are not inherently aspects of the category of item (e.gq NP)

involved. The local findings are specific to the processing of the

item itself, and ignore how the finished item must be related to its

environment.

He can therefore redefine the PUSH cor.1!Jand, so that it specifies

just those aspects of the situation which will be predictable.in

advance (start state for constituent, what to do with constituent

when found, continuation state if any) and use a different-command

for specifying those aspects which are better decided within the

subQetwork (what structure to start building within the constituent,

what grammatical registers to push down) • Let us call the ~odified

construe t "NEWLEVEL", to distinguish it from the original "PUSH".

On encountering a (NEWLEVEL S3) arc, the interpreter will do the

following:

(24)

(a) If a continuation state S2 (not NIL) is specified, this is

pushed on to the continuation stack, all interpreter registers are

pushed down, and S3 is set as the next state. (This creates a new

working level, saving all the information for the current level).

Page 114

(b) If the continuation state is NIL, the continuation stack is

unaltered, the interpreter stack registers are cleared of their

current values, and S3 is set as the next state. (This creates a new

working level by deleting the information about the current level).

(c) One of the interpreter stacks (call it GRAHREGS) holds a

list of the grammatical registers currently in use at the present

level; this is pushed down or cleared along with the other

interpreter stacks.

That is, the NEHLEV.!:L arc has no direct effect on the

grammatical registers, since what registers are needed can be decided

only after the actual input is examined. This means that some

construct is needed for explic~tly controlling the activation of

grammatical registers. Two different devices were tried out at

different stages of the development of the MCHINE program. The first

one was as follows.

There are in the grammar items called constituent

consisting of a pair (<list of grammatical registers>, <state-name>).

These items are used to describe certain crnamon decisions at the

start of processing certain constituents using a command "CALL". This

command appears in the action part of an arc, with a constituent type

as argument. If there is a constituent type CTNPl, with CTNPl

([HEADNOUN], NP3), then it may appear on an arc like (25).

Page 115

(25)

(CAT DET) ((DO NPACT3) (CALL CTNPl)) _r-----
8

On encountering the command (CALL X), where X= ((Rl •••. Rn), S), the

interpreter should do two things :

(26)

(a) The grammatical registers lU Rn arc~ activated; this

means that for each Ri the following proceclur~ is carried out. If

there is a version of Ri at the current level, it is cleared. If

there is none, but there is a version at a higher level, Ri is pushed

down. If none exists at any level a new version is created at the

current leveL

(b) S is set as the next state •.

It may seem strange to specify the next state in the action part

of an arc, since there is a ready n~tation for providing the next

state (which would not be used on an <..::.re vhic.h had a CALL in the

actions). The reason for this is that the action of activating

certain registers and moving to a p;·: rt:Lcul ar· E.>tate seemed to occur

together in recurre.,nt p~.l i1: s, so it s 02eraed u~;::.,. f ul. to group these in to

units. An arc like (25) is useful c~t the !)1~):;inning of processing a

constituent, uhere a spcc ific test (suc,h a<:: (CAT. DET)) c~m be made on

the input word, and· the parsing conU .. nues nr~ the basis of that test.

Page 116

The reason this device was discontinued was that there did not

seem to be enough "constituent types" in the grammar to justify using

the concepL The occurrences of state and register list were not as

closely related as had been thought, and many of the "constituent

types" turned out to have null entries for the register list_

"Constituent types" were therefore replaced, in later versions

of the program, by a more direct device, which operates as follows.

Two operations PINITREGS ("initialise pointer-holding registers") and

SINITREGS ("initialise structure-holding registers") are provided,

which take a .list of register names as an .arguraent and cause these

registers to be activated at the current level (much in the way

described in (26)(a) above) - This requires the grammar-writer to bear

in mind what local registers he needs, and there is no automatic

indexing of register-lists to any other it1:-ms (such as states or

rules) - There might be a case for a cor;1promise bctw2en ·these two

approaches, where a "constituent type" is simply a commonly-occurring

list of registers. -Then the grammar-writer could keep track of

registers more easily by having them in standard clumps, c _g ~ a list

for clauses- Alternatively, it could be made part of the ATN

interpreter algorithm to check each state it goes through, to se0 if

there are any associated registers to be activat~d- Neither of these

last two suggestions have been investigated at all.

Levels are terminated in the following way. When a (POP) arc is

encountered:

Page 117

(2 7)

(a) The grammatical registers active at the current level are

deactivated. That is, if prcvi.ously pushed down, they are popped up;

otherwise they are deleted. ·

(b) All the interpreter stack registers are popped up.

(c) Processing continues from the state stored on the top of the

continuation stack.

So far, very few arguments have been presented for the

NEWLEVEL. •• NIL primitive. In fact, it allows more than just the

avoidance of specifying a continuation state, as will be seen in

Chapter V.

Page 118

Section .f.!.I.8 : Decisions, Histakes and Predictions -- - ·------...- ~--~---- --- -----

. If we are to examine sentence-processing in detail, one notion

that needs some clarification is that of a "decision". An analysing

(or parsing) program cakes, as it processes a sentence, various

choices and perfonns various operations attaching pieces of

structure, developing one analysis path but not another, pushing do\<.'Il

stack registers~ etc. m1en we talk of a parser making a "mistake" or

"wrong decsion", which of these actions are relevant ? The argulilent

put forward by Ihrcus (see Section III.6) regards backtracking as a

form of revoking of "decisions" on discovery of a mistake, and he

suggests that people are conscious of these alterations. If this is

so, what actions can the hearer revoke without sensing a "mistake",

and uhat re-processing causes a feeling of "oddity" ? If we are to

use "garden-path" sentences as clues to what parsing strategies are

operating, then our formal model must be explicit about what

constitutes a raistake,-or we cannot relate anomaly (mistakes defined

by the model) to oddity (mi8takes detected by the hearer). It conveys

very little information to say that a parser makes very few mistakes

during parsing, if there is no clear notion of what constitutes a

mistake; simn.nrly) it :ls uot a restriction to specify that a parser

1

should not make c:a1y wrong decisions, if we do not specify what counts

as a decision ..

We can tackl0 this by i:cviewing some of the kinds of operations

th<l t nn ATN interpreter p.:~;: forms 1,.1l1iJ.e j_ t is processing a sentence.

Page 119

(28)

(a) Testing an arc, using the current word.

As pointed out in Section III.6, there is a sense in which the

arcs of the current state predict, since they define the relevant

options at the current stage of the analysis. In a normal, unadorned

ATN there is no notion of "prediction" or a "decision" in making the

individual tests' since the tests a re just a way of getting the input

word to guide the next step in the analysis.. No speci.al structure is

built for each arc, and the state of the analysis is not altered

until after an arc test has succeeded. f,,s observed in Section III. 6,

the tests could be regarded as demon patterns which the input may

tr.igger. Hence choosing to test a particular arc will not be

regarded as a "decision".

(b) Jur:1ping to a new state without taking in a new word.

This generally me.ans that some further testing is being

perforned on the cul:"rent word • It is therefore part of carrying out

one of the arc-te~;U:; in the original state and hence does not yet

constitute a decinion to follow that option. Such jumps occur as

part of the processing of a (PUSH~ ••) or (NEWLEVE~ •••) arc (see

Section Ill. 7), whGre tht~ state jumped to is the start state. of the

subnetwork given ..

(c) Taking in a n:.:!w \-:unl and jumping to a new state.

Th.Ls r:d.ght sc~erJs to reprc:~:ent a decision, and the jump to the

new state mighl: prove to he 11 wrong 11 (Le. none of its arcs match).

However, this is hound up 1:-Jith the. hazy question of limited

Page 120

lookahead.

Sometimes it is the case in a recognition grammar that a

particular decision will be resolved completely once the next input

word has been processed. A look-abead of one word would thus avoid

making an unnecessary branch point in the analysis. (The TESSA

parser (Soul (1975)) includes a one-symbol lookahead). If the

information to be extracted from the next word can be simply

expressed (e.g. "is it the word 'not'?"), then the necessary

look-ahead can be easily programmed in as an extra condition on an

arc. However, in many cases, the information required is exactly a

complete pnrsing of the next word in context (e.g. "can this word

start a suitable noun phrase ?"). This could also be directly

programmed in, but it ~rould require applying a full set of a~c-tests,

for some state in the grammarJ to tlH:! word.. This would be slightly

redundant, since, if the test succeeded, the parser would then

proceed to exactly that state, nnd carry out all the processing

again. Also, to be certain tiwt the look-nhead proce·ssing was valid

(in terms of the contE:::t lt uas performed in), all the modifications

(e.g. mover;wnt of tbQ sentence pointer) would have to he made that

are part of j ui:lping to the stri!:c in question any~.ray. It might be

better just to allow the parser (in these more complicated cases) to

continue p1:ocessing, b11t not to re.ga.rd this as non-determinism.. That

is) branches which lru::t for only one word are not to be looked on as

"mistakes".

(d) Pushir.1g dmv11 the intc·cpt·,:;::cr stack registers.

Page 121 "'

As commented already, one of the actions taken on encountering a

(NEWLEVEL •••) arc (namely, using the start state of the subnetwork as

a further set of tests) is not really a "decision". If the analyser

does this by jumping into the subnetwork, and using the start-state

as the expanded test, then the enviroTh~ent must be adjusted

acc_ordingly. The interpreter stack registers (or some of them) have

to be pushed dmm, so that there are new pointers for certain

data-structures (the node being currently processed, for example).

Such stack alterations are a preparation for a sub-constituent which

may need independent work space, but they do not constitute a

prediction about what is to come next (since they are not specific to

the subnetwork involved). It seems reasonabie not to regard the

alteration of interpreter stacks as a "decision" (Woods (1970) states

that (non-augmented) transition network grammars can be optimised so

that the only non-determinism is in the push-down mechanism, which

suggests that there is a qualitative difference between the two kinds

of operation).

(e) Pushing down a set of grammatical registers.

Grammatical registers are ,slightly different. The registers

need~d for a noun phrase are different from those for a clause, and

there is no need . to push dovm all the registers for each new

constituent. Choosing to push down a certain set of grammatical

registers constitutes a decision to process a particular kind of

constituent. As pointed out in Section IIL 7, this part of the

(NEWLEVEL) operation can be postponed until the first word of the

input has been tested, and this word can influence the choice of

registers ..

Page 122

(£) Storing a structure in a register.

This might seem not to be a decision, since one of the

advantages of using structure-holding registers is supposed to be

that structure-building decisions can be postponed. However, this

depends on how the registers are used. Woods (1970) states that

using registers enables the postponement of decisions until the

relevant information is available, instead of guessing and then

altering the situation later (p .. 601). In fact, in the examples he

desaibes, the decisions are made at an early stage and then changed

if wrong. The grammar he gives makes quite specific initial

hypotheses, by placing structures into particular registers, then

alters these decisions if necessary by moving the structures to other

registers. There are several labelled registers, one for each aspect

of the syntactic analysis being produced, and the contents of these

registers at the end of the parse deflne the analysis constructed.

That is, the. assignment to structure holdi.ng registers is effectively

structure-building, sinte no separate tree needs to be built out of

the contents of these registers later. Hence the sample grammar does

make preQaturc gues~cs about the sentence structure and revise them

later using labelled t'egj_sters instead of an explicit

tree-structure does not alter tliis fact.· Registers could be used to

postpone dee is ions by havinr; tlw.rn fulfil genuinely temporary roles,

but regarding them ns labelled slots in the final analysis does not

do this.

(g) Attaching a stcuc tm·e to the main surface structure~

Page 123

Structure-building of this sort is a definite decision, since it

directly determines the final form of ·the analysis, without any

further manipulation by the parser of that particular relationship.

If we are to have any notion of "irrevocable decision" it seems

plausible that structure-building should fall into this category.

Winograd makes no attempt to restrict the re-structuring that may go

on within a parse, and uses a modified form of depth-first top-down

exploration, which allows arbitrary revoking of decisions.

Although it is probably easier to write a parser without

constraints on decision-altering, it is not helpful if we wish to

develop a detailed r.10<lel of the decision-making process. The MCHINE

program (Ch3pter VI) included an attempt to write a parser which made

as few "mistakes" as possible, and this severely slowed dovm the

programming. The actions which were regarded as "decisions" were

structure-·building, flag-setting (although the HCHINE grammar does

nat resort to using fla8s- at any stage), altering the state of

grammatical registers) nnd assi~~rn:ient to specinlly-named grammatical

registers. Since the; program uses a modified breadth-first approach,

-mistakes show up not as backtracking but as analysis paths which

terminate prematurely~ In view of the comments above about

one-symbol look-ahe<td, branches \·:hich are terminated after existing

for only one word c:;.re not regarded a~-l "mistakes".. Any other

processing which do2s net invol'N:::.. taking in a new word (ewg., jumping

to a new state) is not regar.ded as .::: "decision".

Page 124

One complaint sometimes made about language analysers such as

those in the LSNLIS and SHRLDU systems is that they are "too

top-down'' (c.f. Harcus (1975)). That is) the actions taken by the

analyser are determined to too great an extent by the type of input

that it is searching for, rather than by what input it has actually

received. This section illustrates that certain modifications to the

basic ATN/ PROGRAMHAR type of system can iritroduce a greater degree

of influence by the input.

Pre-tests in PUSH or NEPLEl/EL arcs

Hare Eisenstadt (personal communication) has made the follouing

observation regarding ATN grari1mars describing embedded constituents.

Suppose a grammar defines one of the possibilities for "sentence" to

be a "question"; one of the po s~>ib iU. ties for a 11 ques tion11 is a

"wh-question"; a 11 wh·-quc:.~:tion 11 starts \·rlth a "wh-phrase"; a

"wh-phrase" starts \Iith a 11 \1b-·\V'ord 11
• In analysing the first word of a

sentence, such a grar:unar might go throu~~h the following sequence of

arc-conditions

PUSH <Question>
PUSH <WH-·q w: s t:Lon>

PUSH <Hi.l--group>
PUSH <WH-phrDs2>

FEATUR!~ \·.iii

Page 125

At this stage, the input word is tested; if it turns out to be

"does" (in keeping with the hypothesis of a question), this analysis

path fails - but it has to nest several levels just to achieve this.

The recognition rules have decomposed the initial task very

straightforwardly into simpler subtasks, so all the subtasks have to

be initiated, even although the input word is unsuitable. This extra

work could be avoided if the grammar-writer was able to include

pre-tests in some of the PUSH arcs. Instead of a simple (PUSH

WHQUESTION) indication, ordered conjoined tests could be included,

e .. g. ((FEATURE WH) (PUSH \.JH-QUESTION)). Thus, the full search would

be made only if the initial word is suitable.

Notice that this is slightly different from the device used in

the program of Thorne, Bratley and Dewar (1968), where the ATN

interpret~~ automatically carried out a forr.i of pre-testing for any

subnetwork, as a form of optimisation. Here, the grammar-writer can

include an explicit pre-test in the ATN zrammar, in cases ~1ere he

requires some very specific check. It is wcrth noting that simply by

allowing conjoined tests, a pre-test can be incorporated anywhere in

a grammar.

Some difficulties still remain. It will not necessarily be easy

to find a simple pre-test whid1 is appropriate for a particular kind

of constituent, although (FEATURE WH) and (FEATURE VB) are obvious

examples for UH-clauses and verb phrases~ Ordinary noun phrases, for

example, seem to have no natural class of initial words, since; for

example, "any", "black", "bananas" and "Harry" can all start a noun

phrase. .(In the HCHINE grammar, the rather dubious feature "STARTNPn

has been included for this purpose, but that is not very

Page 126

satisfactory. Dewar(personal communication) has stated that the

automatic pre-testing in the Thorne-Bratley-Dewar program relied on

the presence of suitable category marl~ings, and this also lead to

some otherwise unmotivated c.atcgory assignments).

It r.rny occur that a part of the recognition rules of a grammar

shows some internal pattern with certain clearly-defined variations.

What is needed is some way for such generalisations to be extracted,

thus simplifying the specification of the grammar. One example of

this occurred while designing the MCHINE grammar· for verb phrases,
t:he.

and). solution adopted has the consequence that the analyser is

strongly guided, whun analysi:ng verb phrases, by the properties of

the input. The situation is as follows.

Verbs in English may ha\Te two, oue or no object(s), where

"object" is used loosely to uean, roughly~ "any post-verb constituent

whose meaning is to b2 considered as an argument for the main

verb~ relation". (See Section V~B for a fuller discussion of English

verbs). This could be described by allowing three options in the

grammar, and anJ.lysis paths could branch depending on whether the

verb required two, one or zero objects~ However, the situation is

slightly more co~plicated. The surface forms that the objects may

take can vary greatly and w_L1l usua.U.y depend to some extent on the

particular verb involv·~d. If th:Ls information were to be

incorporated directly into the grami~tar, Lne number of options (arcs)

woul<l expand excessively. On the other hnnd, the information

concerning the qu~1nti.ty anr) ~J:·u:face ton:1 of the objects can be stored

?:ige 127

in the lexicon for each verb, and the grammar need only contain

actions which extract this information and us~ it to build, in the

course of the analysis, a section of transition network which sets

out the relevant objects.

For example, in the l~HlNE program, the lexical entry for a verb

includes a list of object-information lists. An object~information

lj_st gives the name of the structural combining rule and the names of

certain ATN states one state for each object involved. The

analyser, on encountering the verb, consults this part of the lexical

entry; a surface subtree is established using the combining rule,

and the states are used to construct the ATN which is then used for

the next part of the analysis.

In this w;_iy, the pattern:. (that the verb idiosyncratically

determines the ntEnber and fona of the objects) has been extracted and

built in to the actions Hldcb pe rf o 11n the g rar.rnwr-building. As a

consequence, the verb can guide the analyser more strongly than if

all possible object configurations had to be tried (see Section V.8

for further detaiJs).

Winograd su.sz.ests t>1r!l: certain words could be regarded as

"der:10ns11
• That is, inE-~te;td of the recognition grammar having rules

stating \.;hat to do with a v::.rticultir word, the lexical entry for the

word ·should specify an ;~1c_:t:i.on to he pe~formed on encountering that

word (see ~~ection II. 9). T~i the cxnmples he gives (conjunctions), the
,.-

actions involved nre qt!i1.e swecpin2,, an _they radically alter the flow

Page 128

of the analysis process. Winograd observes that such a mechanism i.s

not allowed in the ordinar:¥ ATN formalism, hut that is slightly

misleading. The PROGRAM.MAR system in which SHRDLU's parser is

written allows two varieties of input analysis (PARSE X.~ ..)

statements and demon words - and the PROGRAHMAR interpreter must be

written to handle both. In the same way, an ATN int~rpreter could

easily be written which would examine each input word to see if it

was a "demon11 before passing it on to the arc-testing routines. Such

an interpreter would increase the similarities between the· ATN and

PROGRAHHAR methods.

Many English construe tions have the consequence that an initial

substring 'of a sentence will itself resemble a complete English

sentence, e.g. (29) and (30).

(30) l ~ the ~ful~ ~~12. when I was in the garden~

One way to allow for this in the grammar is for such constructions to

be sought explicitly in a two-stage top-down r.wnner - find a clause,

then find the second constituent. This has the slightly inelegant

consequence that every sentence is ambiguous right to its clause end.

That is, when analysing (30), the-analyser has to consider several

possibilities (one for each possible optional constituent at the

end), including the case of the full sentence being (31).

(31) I saw the full moon.

Intuitively, what is needed is some way for the analyser to process

fage 129

the initial clause. on a single path, and then consider the second

clause only if it in fact is present - One way to do this would be to

make the grammar contain a form of loop - the sentence-final state

could be linked back to the sentence-initial state (or clause-initial

state)_ This possibility has not been explored here.

A more interesting approach is to let the opening word of the

second clause directly influence the way that the analyser restarts

its processing_ One way to do this is as follows- Syntactic

features appear in various word-tests in the recognition rules, and

hence any set of syntactic features implicitly defines a subset of

rules (of arcs, in an ATN), namely, the set of rules such that some

feature from the set appears in the condition. Hence we can define a

"restart" r.1Cchanisr.i for the ATN interpreter on reaching the

sentence-final point in the grnmmar, if there are still input words

to be proces_sed, the interpreter should use the feature-list of the

next word to construct a set of appropriate rules (the set of arcs

associated with the _ fenture-list,· in the way described here) and

continue processing using these rules-

Notice that this is different from Winograd' s ndemons", and is

aimed at covering a different set of phenomena. A demon word takes

over the analysis process wherever it occurs, and supplies all the

necessary c-;.c tions. Tb e "re star t 11 f ncility is used only when there. is

no currently active set of rules.(i.e. no non-trivial arcs in the

current s tn tc~) and there a re more words to be processed; under any

other circrnastances the :lmplici.t mapping from words to rules is

ignored,

Page 130

It might be interesting to try to generalise the "restart"

mechanism so that words can select rules in situations other than

clause-endings, (e.g. at the start of the sentence), but this has not

been explored here .. A simplified "restart" system has been

incorporated successfully in the MCHINE program.

If a recognition grammar searches directly for two related

constituents, the recognition rules can specify directly what

building rule should be used to corabine the meanings of the two ite1:1s

once found. However, if the constituents ar_e found by some less

top-dmvn, explicit method (e.e. analysing a clause, doing a restart

(as described above), then analysing a time-adjunct clause), there

may be nowhere in the recognition g:r:amar to specify which combining

rule to use. This deficiency can be overcome partially by having a

technique which can select a combining rule on the basis of what

-
potential argunents have been found so far. (The crudest way to

implement this would be to have the analyser search the whole set of

combining rules for one for which the found items would be suitable

inputs).

This still leaves so;ne difficulties~ Firstly, if the combining

rules have an input specification in terms of a list of simple

predicates, a list of potential arguments may satisfy the i.nput

conditions of sevcr3l diffe1:cnt rules, particularly if some rules

have very broad· inp:1 t c ond j ti.o n s ~ Th.is could lead to rnul tiple

ambiguity at the stage of rule-selection. This problem can be

reduced by ~~t:::fining the class:Lfi.c;_1.t:ion of semantic structures so that

Page 131

/

each rule specifies as narrowly as possible what its inputs should

be. However, in any non-trivial grammar, several combining rules

wi.11 have overlapping input specifications to an inconvenient extent.

Section VL4.5 gives a more detailed description of the problems

which arose when debugging the HCHINE grammar as a result of these

difficulties. The whole question of determining inter-constituent

relationships on the basis of the semantic structures of the

constitw~nts needs much more investigation.

Page 132

The focus of this project is on the way that processing occurs

during sentence-analysis, rather than on the kind of structure

eventually produced.. However, it is imposs1ble to study processing

in isolation, particularly if a computer program is to be 'rritterr.

This section discusses some of the possible ways of representing

"facts", as a prelir:linary to defining· (in Chapter IV) a semantic

system ~lich is at least adequate enough not to vitiate any of the

rest of the framework. Let us consider some of the criteria that a

semantic fon!1alism should meet ..

It will lrnve to be general, in two respects. Firstly, it r.:mst

not be specific to the subject matter involved; secondly, it must

not be specific to tlte language involved. It should allow the

representation of any meaning that can be expressed on any subject in

any langua:_:,e.

It should interface closely with other parts of the language

model. That is, there should be ways of relating the semantic

structure syste~atically to the more structural aspects of language.

This may seem an irrelevant comment, but it could be argued (see

Sec ti.on IL 7) that cne def ici.e.ncy ·of Schank' s work is the lack of a

clear theory of the relation.~.:hip between surface f6rm and conceptual

meaning. Scr:iantic st;:uc.tm:e .<31YH1ld not exist in isolation, however

splendid.

It should provide some way of comparing or relating semantic

structures, for example by rules of inference, so that "meanings" of

different sentences can interact in some way (although not

necessarily in traditional syllogisms, for exampl~).

Other desirable attributes of a representatio~ system might be

simplicity, perspicuity and having self-evident atomic constructs,

but these are less important.

There seems to be a consensus fo iming within artificial

intelligence and linguistics over semantic representation. The

syster.is proposed by Wilks (1973), Schank (1972.a), and Rur.1elhart and

Norman (1973) have many similarities. All are proposing systeras

which purport to be independent of subject matter, and Schank and

Rumelhart and Norman claif'.1 that their representations are

language-independent. (The latter claim is largely unproven, since

the systems are mainly illustrated with examples from English or

related languages) •

Two kinds of devices are used in these systew.s to express

relationships between different neanings. Firstly, there are cules

of inference (which are generally discussed informally, so that it ls

not obvious what canonical form(s) are being proposed, if any).

Secondly, meanings (of particular_words, etc~,) can be decomposed

into smaller units ("primitives") so that similar:Lties in rw::::rnings

can be displayed in the configuration of primitive elemenL>. Both

inference rules and primitive-decomposition are very d ·if f:Lcul t

issues, for which no one has found any good solutiori s (sc:r:: tl.F~. paµers

in Schank and Nash-Webber (1975)). The main proble1:1s :Ln both at:e ulicn

to operate the mechanism, and \vhen to tcr:-:d.nate i.t. l1m·:' l~t any

·_Page 134

inferences should be followed up at any give_n point, or how much

breaking down into primitives should occur?

There is another problem for a system which operates entirely in

terms of primitive elements .. Some information about particular

meanings or concepts will have to be associated with the larger

-semantic items, rather than with the component pri1.1itive elei:'1ents.

To take an example suggested by Wilks (lecture at Edinburgh (1976)),

there is information about "smoking" which cannot properly be tied to

its representation in terms of "drawing smoke into the lungs through

burning tobacco"; also, Charniak has suggested that some aspects of

the meaning of "sweat" cannot be indexed under the component items

like "water" and "skin". A primitive-based system might associate

such information with sub-structures made up of prfo1itive elements,

but this would be to acknowledge the validity of these J arger

"chunks" for so1.1e descriptive purposes.

There is an added pt:.oblem for any system which describes all

meanings by associating a static structure with each sentence. Some

words or sentences may be better expressed in terms of somc'.tf-dng
,.

other than a simple relationship between the few :t t.ems involved. For

example, if we are to use the meaning of (32) to nwke any

(32) John believes that Mary likes Bert.

(33) Does John think that }~ry likes Bert ?

deductions concerning John, it \!Ould be u:::>eful to ha.ve :Lt n.• . .:unied

(somehow) that a particular proposition (namely, that .Mary l:i.kes

Bert) has a particular truth-value in John's model of tlv:.~ worlcL

Page 135

,Then (32) could be related to (33), for example, without a specific

inference rule relating "thinks" and "believes". A ~irnple semantic

network like (34) being designated as the "meaning" of (32) would not

be very helpful.

(34)

Rumelhart ~nd Norman allow each relation in their semantic

system to have an associated piece of program, .which can be executed

under particular circumstances. This general f,acility allows the

person defining the relations to include arbitrary special effects;

in particular, the procedure could be used to re-express the relation

in terms of some other conditions on the semantic network.

The semantic system adopted in this project is very similar to

that of Rumelhart and Norf.lan. There are "relations", which c0n be·

used to form a general relational structure (a ser:wntic net) • Each

relation has a fixed number of "roles" which can be fil.lc~d with other ,.
semantic items, each role having an associated "restr.i.C'tion" whi.c.h

limits the kind of item which can fill that role~ Facilities are

provided for both primitive and procedural re-expression, as follovs~

Each relation can (optionally) have an "expanded form" aiu.l sn

"elaborated form". The expanded forn1, if preEH~nt, :Ls a pi.et.'e of

semantic network which expresses the rel<ltion in prin:i.tivc i:ocn.

Some notational device is necesary to keep track of ho\v the arg11;;1c;1LB

of the main relation fit into the pr!~mitivc ll<~ti:ork- Ti1c:: systc::1 thus

Page 136

includes both non-primitive and primitive relations, and the former

may be re-expressed in terms of the latter.

The elaborated form (if present) can be .. thought of as a set of

J

three procedures - a procedure for testing if the relation holds, one

for making the relation "truen in the main network, and one for

making the relation "false" in the network- (In the implemented

version, these three functions are fulfilled by a single structure,

interpretable in three different ways - see Section VL 3. 7). When

matching two pieces of relational n~t\.:ork, for similarity, or testing

to see if a relation is "true" in the the network, the expanded

version can be tried as well. When testing or setting the

"truth-value" of a relation, the elaborated version can· be used as

well as the main relation itself. In this way, the meaning of some

relation (e.g. "believe") can have alternative expression in terms of

conditions on configurations of o thcr parts of the network.

The interface with other w:~pccts of the linguistic model is

achieved by hav lng the SCRs build up semantic net\.mrks gradually, so

that each subpart of a sc~v.tence has its m·m associated semantic

structure. The semantic part of lexical entries for words are always

pieces of semantic network.. In particular, each main verb has an

associated relation. This me.ans that any idiosyncratic parts of the

meaning of a verb can be associated with that relation, and its

connc:c. tion w:L th o t:her me;i1Li ng s ean ~ if necessary, be included via the

expanded or ela:Jot'at:.ed forms~ The. Sl.?.t of roles for a relation thus

provides the 11 case-fr arnc" (se.8 Sc~ c tion V _ 8) for the verb, and the

SCRs which would be regard(::d as "ro.lc-placement" ruJes, (since they

fi.t meanings into the case frDrnc) nrc simply building a semantic

Page 13 7

network around the relation of the main verb.

There is om: kind of semantic structure which has been extremely

useful in finding representations for the meanings of several
)

categories of item .. If we t·ake a piece of semantic network and

select one of the roles (whether filled or not) as a "focus of

attention", t'lie resulting structure can be used in various ways .. (In

the implemented version, these structures are represented as a pair

consisting of a semantic network and the name of the selected role) •

These structures can be created during processing, if a semantic rule

selects some role in a piece of network, or they can be entered

directly in lexical entries, with the role already selected.

Let us call such a structure a "definer''. It can function as a

predicate, which is "true" of all iteos X for which there us a "true"

network matching this one, with X in the selected role. It can be

used to find a particular spot in the overall semantic network by

finding a piece of network to match, and then si.ngling out the

selected role; thus found, any item located at that spot can be

examined, or another itera can be placed there~

Not all the roles in the piece ol network in a def l.w~:r need be

filled for it to operate successfully. SuppoGe we have a reJ.ation

FATHER, with rol,~s "SON" and "DAD 11
, which can h·; 1d be t\,J;_~~::n sets of

items (classed in the semantic: model a~> "PEOFLE 11
). He could

construct a semantic item for the ,.;ord "father" by a definer like

(35)

Page 138

(35)

where == is a "blank" entry and -J: marks the selected role in the

definer. This will act as a predicate which is true of any item X

for which there is a network like (36) recorded as "true"-, where Y

can be~ item.

(36)

This allows for the use of "father" without mention of tl..,c offsprings

e • g • "Harry is a fa the r" • If the o the r r o l<:; b cc a::-, e ft 11 ed (e • g • in

the structure for the phrase "Jobn' s father"), the sci;wntic item

would then~ look something like (37), where angle braekets enclose an
,.

item whose internal details are not important hen'~.,

(3 7)

<JOHN>

Page 139

In this case, the definer can still operate as before, except that

the range of semantic networks that it will match is much narrower

(since one of its roles now must match a specified value <JOHN>). It

could, for example, act as a predicate whicli is true of any item X

for which there is a "true" network like (38) ..

(38)

<JOHN> x

The same definer (i.e. (37)) could also be used.to find a position in

the network, and the item there (e.g. X in (3U)) could trwn be

accessed or replaced. That is, one representation for the meaning of

"John's father" can act as a predicate, a way of finding an ite;ns or

a path to some spot in the network where some item can be placed.

(The latter might be useful for interpreting a sentence like "Dave is

John's father", for example).

The other versatile aspect of the "definer" is the wide variety

of grammatical categories for which it can be used to represent the

meaning. As well as using a definer as the semantic item for a noun

(as above), the fact that a simple regular adjective can be regarded

as a predicate means that a dcf iner can represent the meaning of an

adjective, e.g. for "blue" we could have (39), or even (40).

Page 11.+0

(3 9)

(40)

Since verbs are represented by relations, and case frames by the

roles of a relation, role-placement can occur in what is

tradition~lly called a verb phrase. The meaning of a verb phrase can

be represented by a definer, \._'here the semantic network part has the

selected role unfilled, so that thL~ "subject" of the sentence can be

fitted in there. A phrase such as "likes Johnu ·would then have a

definer like (41) as i.Ls meaning (see Section V.8 for more details of

verbs and case structures).

(Ld)

<.JOHN>

This simplifies the subject~complement rules. Although

(42)(a)-(d) have diverse surface structures, the underlined parts can

all be represented by sorlle kind of definer.,

Page 141

(42)

(a) .John is Harry's .£a thc:..r:.

I

(b) John is a doctor.

(c) John is stu_pid.

(d) John likes bananas.

The subject-complement rule can be designed to insert the semantic

structure for the subject into the selected role in the definer from

the complement, thus producing a semantic network.

(Bach (1968) discusses certain semantic patterns which cross

traditional syntactic boundaries and which seem similar to the

generalisations that are attempted here) •

Several details have been omitted or glossed over here, since

they have not been worked out fully. The notion of a 11 define1·"

proved very useful in writing the HCHINE program, and its

characteristics seem interesting enough to suggest its general

applicability. Some more points are discussed in Chapters V and VI,

but not every detail has been perfected yet. ~

Semantic representations can be classified in many different

ways, and it is advisable (to avoid confusion in later chapters) to

explain here some of the kinds of semantic categories used in

computational grammar. (See Section III.11 below for some comments

on classification). The system of semantic representation described

here gives rise to three different kinds of semantic classification,

as follows :

Page 142

Referential Classes

The items in the subject matter of the discourse or dialogue can

be classified according, to their characteristics in the external

world.. This area was much d·ebated within transformational grammar in

the 1960s (under the heading sir.1ply of -"semantics"), and some of the

more intransigent problems are summarised by Bolinger (1965). (See

also Katz and Fodor (1963), Heinreich (1966), Katz (1967)). In the

MCHINE program, each referential class is represented by a predicate

which tests for membership of that category (the predicates are

represented as ''definers" - see above). The referential classes are

structured into a hierarchy of sub- and super-classes, and grouped

into antonym classes (as proposed by Katz (1972)) for the purposes of

describing "semantic anonaly" (see Section VI.3.J 1).

Sense Classes

The linguistic representations of meanings (that is~ the

ser:rnntic structures, not the refe·rents) can also be described in

terms of their serriantic network structure. Different kinds of

structures (e.g. urelations", "definers", etc.) have different

capabilities for conbintng with c~ach other, so it could be said that

the sense classes describe the "abstract syntci '<" of the linguistic

items.

As well as the gross nct\,'ork :3tructrn:c of a se1:wntic item, the

grammar may need rr,iscellaneous informcit:Lon about how to process the

item. For example, "definer" is a sense class, but definers can be

used de. sc r Lb r~d above and in Ci:n.pter V), to represent

miscellaneous linguistic items, and they may need different

annotations to indicate how they are to be processed. Properties

like "definite", "specific", are the clearest examples, giving

I

details of what matching and instantiating should be carried out on

the semantic items they are marked on (see Section V.6). The meaning

of a relative clause is also representable as a definer, but with

different sense properties to rec6rd the fact that it must be used in

slightly different ways in the semantic routines~

Page l4q

There are several ways in which a linguistic constituent could

be classified: what its internal structure is, how it is related to

other constituents, ~lat steps are necessary to parse it, where it

can occur in a sentence, what kiud of Qeaning it has. These six

criteria for classifying are logically distinct, and might be

described as morphology, syntagmatic relationships, parsing method,

distributional (or paradl[;uatic) behaviour, semantics. Traditional

syntactic categories usually try to sur:1marise some or all of these

under one label (e¥g. "Noun Phrase"), which makes an implicit claim

about how these different factors are related. There are some

interesting relationships between these classifications (e.g. the

internal structuring of an item dc:~tc~rrnines how it must be parsed) but

it will lead to confusion if v:e assuuc i.1~1rnediately that all 6 give

the sm.ile classification,

For example, consider articles and possessives in English.

Articles ("a" and 11 the11
) D.te parndig1natically related to possessive

ad j e c t iv e s ("m y 11 ~ 11 Fred' s") et c) , :1- n [.:.J1 at they a 11 occur a t the

beginning of a noun phrase, and thure cannot be both an article and a

possessive at th:Ls r:;tage in a irnun phni.3c. This suggests we might

simplify the grarnmar by creatLtg n. category or feature (say, DET)

which includes both, and not dist.i_;:E,11J.~::h the two. However, this

ignores the i>Ji3sihility tLat the.:: ~;yntagmatic relationship lH~tween

article and hc:J.:~ noun may be diff<': 1.,cn L fi:om the relationship between

posr;essive and hc;-:cl noun. If u' . .n· gra111r:10.r is to represent such

re LJ ti. ons hips c x p l i c it l y (as Wi1 s !:; : ; " '~~ t ~2 cl in Sc c t i. on I I L 1) , J t may

be necessary to distinguish the two subclasses in the syntagmatic

representations even although they are treated similarly during

parsing. Winograd(p.93) has his parser attach possessives under a

"DET" label on the syntax tree~ and has a class of "determiners"

which includes both articles and possessives. This is largely

because syntagmatic relationships are not represented in his

syntactic tree, but are worked out.later by the semantic specialists.

Hence his syntactic labelling need not be too fine. It might be

asked what the criteria are for assigning different syntagf'.latic

relationships to different combinations. The answer to this is that

if different semantic operations r.mst be performed on the

combination, then a different relationship is required~ This begs

the question until we have some clear idea of "different semantic

operation", but, as· will be argued in Section V. 1. 1, there is a case

for regarding possessives as semantically different from the other

"determiners".

Related to this is Winograd's all-embracing use of "features" to

classify every as pee t of a syntactic unit, which is as confusing as

the traditional packing of all characteristics into syntactic

categories. Some features are distributional/ paradigmatic, and

guide the purser - e.g. DET in the lexical entry for "the". Some

features are morphological, and describe the internal form of the

unit they are attached to - e.g. NDET on a noun group node means that

there is no determiner attached beneath that node. Some features are

syntagr.iatic - e.g. AGENT, when attached to a Prep Grour? node,

describes the relationship of that node to the main verb; when

attached to a Cl_uuse node, it describes the internal relationships

between the items of the clause. Some features arc both syntngmatic

Page 146

and semantic - e.g. NPL marked on a noun group node indicates its

number. Some features appear to be whoLly semantic - e .. g. DEF or

INDEF marked on a noun group. The major categories like NG (noun

group) contain similar conflations NG is the name of a parsing

method (as in a command (PARSE NG •••)); NG is a feature marked on a
I

node; there are a particular set of semantic specialists associ~ted

with the category NG.

Marcus (197/d suggests that a feature is any aspect of a

constituent that the parser may need to find out by a quick

inspection. This sums up one important aspect of features in a

recognition grammar (they are there to guide the parser) but it is

not very perspicuous to use the same device for describing disparate

aspects of structure without indicating the distinctions. This

confusion is also present in other nreas of g ramraa t ical

classification, pDrticularly around the boundary between syntax and

s era an t i c s •

Consider the underlined phrase in (43)

There are several statements that might be made about this

phrase and/or its meaning. It is a noun phrase. It is made up of a

noun group and a relative clause~ It is ma<le up of a nominal and a

mod if icr ~ It is a refen~ing expression, and is definite and

specific. It is the subject of the vc:::b in the sentence. It refers

to a human, anir:1<1te thin~~ (or shuitld do, if used appropriately).

These make seven different cl2s::df.:ica:::'Lons, and cannot be covered

simply by providing one set of 11 synLH:l:J.c 11 categories and one set of

Page 147

"semantic" categories. Strangely enough, the hardest classification

to make firm is the traditional "noun phrase". All of (44) (a)-(f)

could be classed as noun phrases, and they differ in many respects.

(44)

(a) The. do& attacked him.

(b) Flying_ kit~~ can be tricky.

(c) To h~ been]-_~ye~ is better than to have been lost.

(d) I don't like what you i._~~·

(e) It amazed me that yo~ ~E_:!:_ved ~·

(£) I will ignore .9:..12.IE.~g you r.iax_ ~-

It is very hard to lay down levels of classification in

isolation from an overall model, since different descriptive

frameworks mny make different distinctions (e.g. the "deep structure"

of Chomsky (1965) is a disputed level). Computational grammar

includes various concepts and rules 'which can be used to induce

class if icat_:lons of 1 inguis tic struc turcs at various levels. Some of

these categories fit easily under the headings of syntax and

semantics, but others are less easy to allocate. The kinds of

categories and rules available are the following, grouped under

headings that may help to indicate the level at ~lich they operate.

(a) Concrete Syntax

(see Section 111.2)

Page 148

syntactic properties, syntactic features

(b) Abstract SyntaO(or Intensional Semantics structural

combining rules· (see Sections III-I, III.2t III.3), s~nse classes,

sense properties (see Section III.10).

(c) Refere~tial Serna~tics referential classes (see Section

III. 10).

Notice that the only categories which ·nay vary with a change of

subject matter are those at level (c) - all other classifications

should be general linguistic statements. It is not the case that all

semantics is dependent on the domain of discourse - the level of

intcnsional semantics ("sense" as opposed to "reference") should be

domain-independent.

These ways of describing items take on meaning only once the

full frameuork. has b2en described in Chapter IV. Drawing attention

to these distinction!.:> should clarify the exposition, and avoid the

ne.cd to class every concept as either "syntactic" or "semantic".

Traditional concepts (e.g. "noun phrase", "subject") could be defined

in this framework by fit ting them into this system. For example,

computational graci.mar does not· use the concept "subject" as such, but

certain SC~~«:l could be classed as "subject-complement" rules, and an

item could be said to be a subject if it is the first argument of a

si.1bject-~cc,m.plenent l'lLL2.

Page 149

Section I._II.12 .:_ _Conversatio~c.::_l s!:_r.uctuE.£

Winograd's program tjid not include any systematic treatment of

how one utterance relates to others in a conversation. A question

from the person talking to SHRDLU was translated directly into a

program for producing an answer, and the reply was given immediately.

The only example in the sample dialogue where one conversational

exchange (question + answer) seems to be inserted inside another is

example 22 (pp.12-13), where an ambiguous phrase is queried before

the original question is given a reply. In this case, a stereotyped

form is used, and the human' s reply must be not another English

sentence, but an integer. Hence this is hardly a "conversational

exch~mge". Pronoun reference in the program uses preceding

utterances, apparently consul t:lng a 1 is t of the most recent
__,

sentences. Presumably the program has the equivalent of a LISP

(READ-EVAL-PRINT) loop, where each sentence is processed on its own,

before the program goes into a "wait" situation for the next

sentence. This has certain disadvau~ages.

Fi rstl-y, a humnn he2rer can generally choose to a.nswe r a

question or not. Although this is difficult to simulate in a program

without including a set 0£ "beliefs" or "goals" 11hich P.Ii[;ht influence

this choice, it is reasonable to have thi.s decision made at an

appropriate level in the model. Winograd's approach hui.lds the

choice into the semantic interpretation of the sentence, so that

"understanding" a sentence includes d'..:'.Ciding to rinsuer it~ It seems

more plausible to have some level of dc:.script:ion of convet·sational

behaviour, at \,1hich such decisions (relc-1t:1.ng to the tllocutionary and

Page 150

perlticutionary force of the utterance (cf. h1stin (1962)) can be

handled ..

Secondly, we need to make a distinction between the

sentence-type of an utterance (declarative, interrogative, or

imperative) and its illocutionary force (a statement, a question, or

a command). For a simple conversation, there is a simple one-to-one

relationship between the two, and the distinction may be overlooked.

Ho1-1ever, these are logically separate categories - interrogatives can

serve as (polite) commands, and statements can be orders:

(L~ 6)

(a) Can you pass me the fingerbowl ?

(b) You ~re not going to the party,

It might be argued that requests (e.g.(46)(a)) are idioms, but

that would not alter the fact that the intended response by the

hc:1:rer is· not the supply of infon:w.tion, despite the fact that the

surf.::.<ce form of the utterance is interrogative.. This suggests the

need for separate levels of description, which separate the hearer's

reaction to the utte-r;-.!.nce from the semantic/ syntactic form of the

sentence. (Dinograd's carnple dialogue includes one command starting

"Will you p1 ease::·,.", but it is not clear how it is handled by the

program) •

1£ uttera~c2s ar~ processed on a one-off basis, then there is no

w:J.y in whLc.h diffc:.rent exchanges between the interlocutors can be

nested insJ.d.-: C'.ach other. To generalise Winograd' s ad hoe mechanism

for rcsoJ.v:Lc;:, ainld_guity~ we need some way that the hearer can suspend

J_>age 151

his reaction to a question while he seeks further information from

the questioner. This ·may not be a simple clarification of the

question, but may be, for example, -infonnat.,ion about what would

constitute an adequate answer for this particular questioner, e.g.

(47)

A Where is the Bionics Re~earch Laboratory ?

B Do you know Sandy Bell's pub?

A Yes.

B The Bionics Lab is behind that.

Another related improvement that is desirable is some way of

relating utterances to higher goals. If a sentence is treated as an

isolated string of words, there is no way of describing how it

fulfils a function in a dialogue. If a person wants to find out

information, he has to ask a question and know how to use the answer.

He must also have some idea of what constitutes a suitable answer)

and how to react if this is not given.

To sum up, an adequate descripti'on of the conversational use of

language will not treat a dialogue as a disconnected series of

self-contained utterances.

CHAPTER IV

COMPUTATIONAL GRMi~1AR

Page 153

Section IV.O : Preamble ---- --- - -----

Chapters I, II and III have provided the background to the work

which is described in Chapters V and VI. Here is a summary of the

model (or partial model) which has been adopted.
;1

It is based on the

work of Hoods and Winograd, but inspiration has also come from much

of the other work discussed in Chapter II, to varying extents~

It is worth giving a brief outline of the assumptions and

decisions so far . discussed. (The numbers in brackets l.·cfer to the

relevant sections in Chapters I and III).

This project is an attenpt to exai~Jine the structure of the

English language and the way that the structure could be used by a

hypothetical hearer. The research strategy is to write a recognition

grammar for a subset of English (or a series of fragments of grammar)

(I.5). Sentence processing proceeds in a strict left-to-right order

and as much semantic processing is carried out at each stagi as seems

feasible .. (III.3). 1be analyser attempts to make only those

decisions which are justified at any given point at the input, rather

than using exhaustive, mistake-driven techniques (III.6, III..8). To

achieve this, registers are used to avoid premature structure

decisions (II.5, III.8). In describing grammatical phenomena, a clear

distinction is made between syntagmatic, paradigmatic and other types

of description (III.11), so that these dimensions may be treated

independently if necessary. No separate syntactic strueture is

built, but a tree structure based on hierarchically organised

structural combining rules is use<l instead (III.I, 111.2, III-3).

There are many different structural rules, as they have to make all

Page 154

the distinctions previously made by syntactic rules and semantic

rules (III.I). Where the analyser encounters possible ambiguity, it

develops both paths in parallel, but tries to order the paths

relative to each other (III.6). Constituen~s are processed at

separate levels, with independent local register space, in a way that

avoids the creation of too many different levels (III. 7). The

semantic system includes Sor.le form of sense-reference distinction,

and allows expressions to: refer to non-existent objects (III.4).

Syntactic classification is in terms of binary features aimed at

gui<ling th~ analyser explicitly, and syntactic properties to guid~

the structure building routines (III.2). A system of conversational

rules is used to describe certain aspects of sentence usage which are

properly not included in the sentence-grammar (III.12).

The frar:iework will be described in e.igilt sections, as follows

IV.l Structural Combining Rules

These co1:ibine sc.r;1<3ntic items to forn other semantic items.

IV.2 Recognition Rules

These direct the flow of input-procc~;sing.

IV.3 Semantic Representation

This defines the constructs available for building meanings~

IV- 4 Syntactic Properties and Feature;~

Pav.! 155

These markings allow arbitrary processing infonnation to be

marked on structures.

IV.5 Analysis Procedure

This sets out how the sentence interpretation proceeds.

IV.6 Registers

These are the facilities for storing

sentence-analysis.

IV.7 Conversational Routines

information during

These have not been greatly developed, but are included to

provide a level of "parali.ngui.stic" description.

IV. 8 Guidelines for Analyses

SOi:ie inform<11 rules ?..re provided for applying the apparatus of

Sections IV.l -·rv~ 7.

No formal definitions arc presented here, and all the concepts

are described in an infon:!al v.1ay~ The outline is brief, but Chapters

III and V present the arguments in favour of the various methods, and

Chapter VI offers a poss:Lblc elaboration of the details.

Page 156

These rules are on the conceptual boundary between "syntax" and

"semantics", and so are hard to allocate in either category.. They

are very similar to the "projection rules" of Katz and Fodor (1963),

or the "semantic specialists" of Winograd (1972), since they combine.

semantic items to form other semantic items.. On the other hand, the

gradual setting up of rules and arguments while processing a sentence

(see Section IV.5 below) results in a tree-building process like a

traditional synactic parse. One way to look at a structural

combining rule is to regard it as the pairing of a Montague syntactic

rule with its corresponding semantic rule (Montague (l 97r.2J).

A structural combini]1g .E._ule (SCR) consists of

(48)

{a) Rule body : the operations to be performed on the inputs.

At present, these can be any manipulation, and there is no basic set

of "primitive sei11antic operations".

(b) Input specification : A list of semantic predicatc,_s, one for

each argument-place, which states what kind of items are allowable a.s

arguments (like type restrictions in some programming languages) v. TI1e

semantic predicates will be cpmposed from sense cla!::~sc~s and sense

properties.

(c) Output specification : This allows the result produced

the rule to be explicitly labelled with some s~mantic classification~

The output specification will be either a referential class or a

Page 157

function which produces a referential class by combining information

about the inputs to the rule in some way. (See Ritchie (1976) for

some of the reasons for this).

(d) Property inheritance rule (optional) for each argument

place, a list of syntactic property names. This is used for handling

temporary structural information, during the sentence analysis

process (see Section IV.5) and does not directly affect the semantic

structure produced by the structural combining rule.

The -v.rc..y that structural co;;ibining ruless are used will be

explained in more detail in Section IV.5.

Page 158

Section IV=..1. .!.. Recognition _Ru~

The linguistic model will use the concepts of an ATN/PROGRAHMAR

system subjett to the modifications in Chapter III • The exact

notation is not important here (the representation used in the

implementation vill be given in Chapter VI), but the ATN terminology

is adopted for eas~ of exposition. This is not a formal mathematical

definition, but it is int~nded to be clear rather than rigorous.

A recogi..:..ition grammar is defined to be an unorde.:..:ed set of

states. A state is an unordered set of arcs. Notice that "state"

has a very specific use here (meaning "set of arcs") and is not

exactly synonyr.10us with the general notion of "machine-state" or

"computational context", although a "state" does represent the

computational state of the ATN portion of the program. Since an

aug1:1ented transition net\,:ork is based on a directed graph, the term

"node" could have been used, but this would be excessively confusing,

since "nodes" are used elsewhere in the model. Notice also that the

notion of "subnetwork" does not need to be defined, since the notion

of "jumping to" or "activating" a subnetwork uses just the first

.state of the subnetwork. The interconnected aspect of states in a

subnetwork is never used directly by the interpreter when making the

jump to its initial state. The reason that a state is not defined as

an ordered set of arcs is that no principled way of ordering the arcs

has been found; if some use could be made of a "priority" rating for

each arc, that would have been included.

Page 159

an arc-action and a

state-specification.. An arc-head can be any truth-valued .function of

one argument, and Section VL 3 .. 2 lists the kinds of tests which were

found to be suitable, most of which represent tests on the current

word.. An arc-action is any operation whi.ch returns no result. A

state-specification consists of either a special null marker, or a

pair comprising a state and a tag .. A tag can be one of two

indicators, signalling one o.f two possible options to the interpreter

of these rules (see Section IV.5) ..

The way that these rules are used are described in Section IV .. 5 ..

Page 160

Section IV.3 : Semantic Representation
~-- - --·--- .,, ---~-~-· -

The semantic system is discussed at greater length in Sections

III.10 and VI.3.7, and just an outline is presented here.

There is a set of relatio~~.. Each relation has associated with

it

(49)

(a) A set of roles
~·--

(b) A set of role-- restrict ions
-----~"---- -~-.,_---

{c) An expan~_c:_9_ ,lc~.E~

(d) An elabor;Jtccl form ___ ..,,---"'"_ ,....__,,,,_- _.....,

Semantic structures are constructed from relations in the

following way. A relation-instance consists of:

(50)

(a) A relation

(c) A truth-v.:=ilne

A role-restrict.i.on is a truth-valued function of one argument.

An expanded form is a rel.:1tion-instance, with . certain special

role-va] ue s; these are nee.d ed to indicate how the en tries in the

expanded form co n:sspond to the entries in the main relation (see

Sections III.10 and VL3.7). /m elaborated form is a triple of

procedures one bas side-·effects but no result, and the other two

return trut:h-valuc.s.

Page 161

A semantic ~twor~ consists of a set of relation-instances with

truth-values either "TRUE" or "FALSE .

A definer consists of a pair comprising a relation-instance and

a role, where the role is one of the roles associated with the

relation in the relation-instance.

There are a set of sens~ properties, each with a set of possible

values (the "range" of that property) and a sense property name. A

sense-property list is a set of pairs, each pair corapri~ing the name

of a sense property and a value from the range of that sense

property. While being processed or constructed, a semantic structure

raay have associated with it a sense property.list, which indicates

how the structure is to be processed.

There are certain operations which can be carried out on,

semantic structures. These include matching one piece of semantic

network against another, setting the truth-value of a

relation-instance to "TRUE" or "FALSE", using a definer to produce an

item from a network, and inserting an item in a network at a point

-indicated by a definer. As in the case of structural combining rules

(Section IV_. 1) no particular primitive set of operations has been

found.

Page 162

Each grammar contains a set of syntac~ic ~~~~~~·

Every lexical entry has an unordered set (possibly empty) of

features, uhich is a subset of the full set of syntactic features.

An arc-test (see Section IV.2) may stipulate presence or absence

of any set of syntactic features.

The associated arc-set of any feature is the set of arcs which

include that feature in their arc-tests. The associated arc-set of a

list of features is the union of the a[:>sociated arc-sets of the

members of the list of features.

The associated st~te of a list of features is the state composed

of the arcs in the associated arc-set of the list of features.

Syntactic features do not appear anywhere else in the

recognition gramnar, and are not used at all by any of the structural

combining rules or the semantic network system.

Each syntactic property has an assi)ciated set of ~lue::, known

as the .E.<;..I2[e of the property t and a ~1l~ac ~i.c Eror:..~~E.!:.~: ~~~·

Each lexical entry has a _syntactf.s_ J2.:C,C?,Pe!:!:.i ~~:~~~~' which either

is empty or is an unordered set of pairs of the fotm (<syilt:1ct:Lc

property name>, <value>), where the <value> comes from the rn~i.g2 of

the syntactic property associated with tlw syn tac ti.c. pr.oper ty name~

Page 163

Each node (see Section IV-5) may have a syntactic property list,

which is defined in the same way ..

Syntactic properties may be included in arc-tests, arc-actions

or any of the node-manipulating routines. They are not used by the

structural combining rules (except via the property inheritance

rules, where these exist), or by the semantic net\•mrk system.

Page 16/f

The main aim of the HCHINE project has been to investigate how

the constructs outlined in the rest of Chapter IV interact in the

course of analysing a sentence. Hence this sections- which amplifies

the basic outlines to 13how how the devices are used, is more detailed

than the others.

There is a device called an ana~)'.!3~..E. which takes as input a

string of words, a context, and an -~1itlal Et:..<f,S_c:. (Le-. one of tht:!.

"states" of the recognition rules)~ (There "is a slight redundancy

here, in that the context could be taken to include the other two

inputs, since the context represents a global computational

environment. However, it is clearer to phro.sc~ it this way, so as to

emphasise that these two inputs are essential for the analyser)

whereas extraction of information from the context may not always

occur). The definition of "word" is not relevant here we will

assume an adequate clef inition can be given Cl L some stage ~- but each

word has an associated lexic;;:al !:.~~-1?].· A lexical entry consists of a

triple a semantic item~ a syntactic: property list and a syntactic

feature list (see Section IV.4). Any one of these parts of the triple

may have a null en try, but no lexical en try may have Hl l three nul L

The analyser _associates with each initial segment of a string a

set (possibly - empty) of .Eartia~.:. .~:.12.0-..bX~~ (sometimes cal.lcd "partial

paths"). If the segment is not a proper initial s1~gment (thA.t ·Js, it

comprises thE! whole string), the set is rcferi:cd tc a~; the set of

The last word in the initial

segment concerned is refer~cd to a~; t b (~ cur re.1; t: 1,;o rd of

Page 165·

An analysis (partial or complete) consists of a state, a.context, and

a weight- (Again, this is a redundant description, in that both the

state and the weight could be subsumed by the context, but the

presentation here seems clearer) • The weight is a non-negative

integer. The context includes the value of all registers

(interpreter and grammatical) and the state of the main semantic

ne_twork, and so can represent any structuring or side-·effects. The

state is referred to as the current:_ state, and is originally set to

be the initial state. That is, the list of partial analyses

associated with the enpty initial segment is set to be the input

context, the initial state, and the weight zero.

The analyser makes one scan through the input string, keeping a

list of partial analyses which is altered as the analyser processes

gradually larger initial segments. For each initial segment (i.e.

for each current word) , the analyser performs the following procedure

on each partial analysis on the list. It finds all the arcs in the

current state for which the arc-test yields true if applied to the

current word- For each of these arcs, a new partial analysis is

created (from the one being processed at the moment), the arc-action

is executed in that analysis, and the state-specification is used to

select a new current state for the new analysis (except in the case

of NfilJLEVEL arcs - see below - where the state is selected in a

different manner). The new list of partial analyses is made up of all

partial analyses produced in that way.

There is one special type of arc, the NEWLEVEL arc., and one

special action, POPUP, which must be described in detail- Processing

occurs in the analyser at various levels, only one of which is

Page 166

current (in any given partial analysis) at one time. Different

levels have their own workspace, both in . terms of interpreter

registers and grammatical registers, and therefore the analysis can

use a new level to process a constituent independently, using

information distinct from that at a previous level. Levels are

created when the analyser encounters a NEWLEVEL arc, in the following

way. The arc-test in a NEWLEVEL arc is not really a test, but

indicates some state in the recognition rules, and the

state-specification may be riull.. \,Then a NE\JLEVEL arc is processed,

the state given in the (pseudo) arc-test is set as the new current

state, and the registers are modified in the following way. If the

state-specification is null, then the structure·for the old level is

attached to its appropriate destination in the sutface structure, and

all the interpreter registers (apart from the one which keeps track

of the grammatical registers) are cleared. If the

state-specification is not null, it is pushed on to the continuation

stack (see Section IV.6), the arc-action is pushed on to the action

stack and all the interpreter registers are pushed down.. Thus there

are two ways of creating new levels destructively, with all

processing information from the old level being discarded~ and by

embedding, with all processing information from the old being stored

on stacks.

The POPUP action is, in a seose, the reverse of a NEWLEVEL arc.

It causes the current level to be left, and processing to return to

the last level which ha~ been saved; if none has been saved, special

action is taken (see below). POPUP causes the structure built at the

current level to be attaclu:..d to its destination, the grammatical

strncture-storing registers currently active are tidied up (sec

Page 167

Section IV.8) and the interpreter registers are popped up.

Processing continues from the state given by the state-specification

popped off the continuation stack.

If no previous level ha·s been saved on stacks, and there arc

still words to be processed, the analyser performs a restart;_ (see
I i

Section III.9). That is, it sets up new structures to build on, and

computes a new state to process from, using the associated state of

the syntactic feature list of the next word (see Section IV.4). If no

such state can be found, the analysis is terminated (i.e. removed

from the partial analysis list). On the other hand, if no words are

left, the analyser winds up the analysis by checking that all the

structural combining rules so far used have been applied (see below).

The semantic structure produced by the analyser is the rr~sul t of

using structural combining rules to combine the semantic entries for

the lexical entries of the input words, and applying further

combining rules to combine the semantic items thus formed, and so on

in a hierarchical fashion. The analysis process consists of workj_ng

out which lexical items to use as inputs to which combining rules,

and which combining rules to use thereafter. The input-output

relationshi~s operate hierarchically (see Section III.1, III.2), and

the lexical entries are examined in a left-to-right order) so the

whole process can be looked on as building a tree from left to right~

The analyser keeps track of this gradual buildi.ng up of rules c-ind

arguments by creating struetttrt.~s called node:::-).,
-~ ... ,,.,._,,...._

A node contains an

structural corr,bining rule, a list of the nodes \vhich will contain :its

arguments, and the result produced by applying that rule to tho~1c.

arguments. Each -node can have syntactic properties (see Section

Page 168

IV.4) associated with it, to help the analyser connect nodes

correctly. When a node containing a rule is created, nodes are built

below it to carry the argument values that will subsequently be

inserted. These nodes are cons true ted using information in the rule

(e.g .. how many arguments it needs) and are called dur.m!L_ node~.

A dumny node contains restrictions for some or all of its

entries, delimiting what items can later be filled in on them.. These

restrictions will come from various sources during the analysis,

including the sernaatic rule on the node dominating the dummy node.

(In some ways, dummy nodes are like the complex symbols of Chomsky

(1965)). Evaluati1:i_g_ a rule-node consists of applying the semantic

rule at that node to the seCTantic iteCTs on the daughter nodes.. A

lexical entry is allocated to an input slot in an SCR (structural

combininB rule) by creating a rule node for the SCR, creating a node

which contains the semantic part of the lt?.:{ical entry (and has the

syntactic properties of the lezical entry), and inserting the latter

as one of the " a r g urn en t nod e s" o f the f o rra er • The syntactic

properties of lexical entries can be passed up the nodes if the SCR

has a property inheritance rule (see Section IV. l). A property

inheritance rule for an n-argumcnt SCR will be of the form (Ll, ,

Ln), where each Li is a list of syntactic property names.. For i= 1

to n, the property values of the ith node will be entered on the

syntactic property list of the SCR node (and should not then be

altered). Evaluating a SCR-no<le consists of applying the SCR to the

semantie items ccmtaincd in the nrguraent (daughter) nodes-· If the

claughti:~t' is also a rulc·-nod<::.~ a cheek is made first to see that it

has been evalmlted ~ and the property inheritance rules (for the

Page 169

At the end·of the sentence, the topmost node in the SCR tree is

evaluated, and hence the whole tree of rules is evaluated (by the

recursive system just outlined) .. The analyser associates with each

complete path a list of _result-pa~E..~· A result·-pair consists of the

semantic item from the root of the rule tree, and the corresponding

context. (The latter can then encode, for some higher level process,

any : . alterations to the ."world" which have resulted from the

process of analysing the sentence) _ The list of result-pairs is

chosen by scanning the complete analyses for the sentence, and

selecting those which have the louest weight.. ·(There should be only

one result-pair in this list unless the sentence is "ambiguous") ..

This description does not describe every detail of the analysis

process, but it should be sufficient to explain the descriptions in

Chapter V (which may ther.1sclves elucidate the mechanisms), and covers

most of the important points.. Chapter VI describes one particular

ir'.lple.r:ientation of this kind of analyser, and may give some indication

of how soce of the vaguer aspects of the outline here could be

realised ..

Pag~ 170

There are certain which are used in the

sentence-analysis process. The in~~t~E.. .E..~i~!:_~r_~ (Le. those

which are part of the framework - see Section III .. 5) are as follows :

Continu~tion stack : holds the state to be used on terminating

the current level (see Section 111~7 and IV.5).

Action stack : holds the action to be taken (if any) on leaving

the current level.

Register stack

at current level.

holds the list of grammatical registers in use

Holding register : holds the structure being built at a lower

level, prior to attachment to the main surface structure.

Temporary register a single slot for temporary workspace.

Shelf : a slot \'7hich can hold input words temporarily, on a

last-in-first-out basis.

Current node

worked on.

pointer to surface structure currently being

Top node pointer to to1xaost node of subtree being worked on at

this level.

Top nodes 1 is t o f sub t ::-. c: ':: .s so £a r built at this 1 eve L

Page 171 _;

Treetop the overall result of the analysis~

In addition, the grammar-writer can define any register he

wishes, designating them as either "structure-holding" (Le~ to be

included in the "tidying-up" process see Section IV.8) or

"pointer-holding". There are constructs available for activating

registers at the current level, and for performing

manipulations on them.

arbitrary

The three stack registers above (continuation, action and

register) al\,'ays stack or unstack together, ·when level-chr:inges oecur~

so it would be possible to replace them with a single register (a

"control stack") whj_ch contains i. terns recording all the j_nformation

("stack frames"). This ·would not be a significant change.

Page 172

Section IV.7 : Conversatton Routines

Conversational structure is not the main focus of the MCHINE

project, but it was necessary to implement sbrne dialogue system to

test out the MCHINE grammar (Chapter VI) .. The implemented version is

based on Power (1974), but does not follow his notation closely. The

main points of the system are as follows.

Dialogues are. structured .into instances of conversation ~~~~·

A game is simply a procedure, with various properties~ that performs

certain tasks.

The special properties are all in terms of control structure,

and are very simple. When any game is in progress, another game. can

be initiated in any of three ways a "nested" call, . where the

current game may be continued when the new game is finished; an

"exitu call, where the current gnme is immediately tenninated before

commencing the new g.:u:ie; an "exit-all" call, where all games

currently in progress are immediately terminated before commencing

the new game ..

The tasks performed by the games are not restricted, but they

should include the following·. A game initiates sentence-processing

by providing the avpropriate arguments (string, context and state) to

the sentence analyser (see Section IV.5), when an input utterance is

requiredv A game also uses the result-pair from the analyser to

modify the world 111odel of lhe bearer, in a way de.fined by the details

of the particuLH' game. Th<:. operations carried out by various games

will depend on the illocutionary analyses made by the linguist ..

·Page 173.

As observed in L 1, linguistic theories generally have a

collection of techniques and concepts which are employed in applying

the theory. Nany of these are not explicitly stated, and linguists

may sometimes not be

methodological assumptions.

nware that they are making implicit

This section outlines those aspects

pertaining more to the application of the devices outlined in earlier

sections of Chapter IV, rather than to the formal properties of those

devices. To some extent t the rules-of-thumb here characterise. the

notion of "ad hoe solution" for a computational grammar.

One 1:iaj or question that has to be considered is where, in the

oodel, to describe particular patterns. In a description which uses

several syntactic. and semantic 1:1echanisms, it may not be obvious

where a given generalisation should be allocated.

Generally, the role of° the SCRs (structural combining rules) is

to factor out any syntagmatic regularities. If there are several

examples XlYl, X2Y2, ••••• XnYn, where the relationship between

constituent Xi and constituent Yi is the same in each case, this

relationship can be most economically represented by putting it in

the SCR used to co~bine the Xi Yi pairss rather than trying to build

this syntagmatic pattern eitlu:r into the Xis or the Yis. On the

other hand, if W2 have examples XlZi, ••• ~XlZn, where there seems to

be some semantic sLmi.larity between the pairs, and no examplas YlZi

with this semantic property, it is neater to try to capture this

pattern in the reprc~s(~ntation of Xl. Some kind of balance must be

struck between t11c'.se two approacl1es - :in SCR which only ever occurs

Page 174

with one particular value for its first argument is slightly ad hoe;

conversely, a whole battery of semantic items with some common

property directed towards syntagmatic combination suggests that a

generali~ation is being missed. (This principle underlies the

arguments in Section V. L.3 concerning modifier-head relationships),

Related to this is a need to avoid multiplying lexical items.

We do not want to describe different usages of a particular surface

word by producing a different lexical item for each use. As far a~

possible, we should account for different nuances of meaning by

having the s&11e item interact in different ways with the context

(both linguistic and situational). This last point is an example of a

fairly general principle, which might be termed semantic

The idea is that, for ease of semantic computation in

the surface structure tree, all decisions are carried out at an

independent, local level as far as possible. If we can arrange our

ser.wntlc description so that each noun phrase, for example,

constructs its own semantic representation without much reference to

its surroundings, then rules can be written in a more modular

Different uses of a noun phrase would then have to be

deHcribed by appropriate differences in the SCRs that combine them

uith oth2r structures, or in the way that they react with other

strurtures, bnce combined.

If some 3Spect of a constituent cannot be processed within that

con~;:.::L::ucnt, hut has to be held until some more global information

(ei.Lh".1:: highe·;:- up the SCH. tree, or in the conversational context) is

a.vaJ.lable~ t111::n t.lH~ way of representing this aspect may change. When

the 1)rr.i(:(cssin['; lr.:'1pµe.ns locnlly, it may be possible to describe this

Page· 175

property as a function acting on an argument,. for example. If the

property is uninterpretable locally, its contribution cannot be

expressed in a function-application occurring at the local level, and

it nust be held in some static form which a higher senantic item can

react with later, or which can be manipulated by a higher SCR.

Section V.l gives some examples of situations where a

generalisation can be extracted into an SCR. The assumption of

localised semantic description underlies several of the analyses in

Chapter v ' particularly Section V.6. Sections V.2 and V.7 include

examples of information which cannot be integrated at a local level,

but must be interpreted by a higher rule.

As stated earlier (I.3 and I.6), computational grammar assumes

that sentences or dialogues which sound "odd" must contain (or result

from) some anomalous structure or process. This criterion has not

generally been used in artificial intelligence language programs.

Recognition rules are sor.ietiraes given which will accept an el1dless

stream of auxiliary verbs uncritically, for example. The

justification is that these rules will work correctly on correct

input, and their behaviour on ill-formed strings is completely

irrelevant. However, if we adhere to the principle of relating

oddity and- anomaly (subject at least to a partial specification of

what constitutes anomaly), then grammars must be more carefully

constructed.

Since the focus of this investigation is on t.he

sentence-analysis process, the guidelines for writing the recognition

rules are important. As discussed in Section III.. 8, grammars should

not be allowed unl:lmited pow2r to revoke all decitdons once made.

Page· 176

Unl.im.i ted look-ahead should be avoided, for the following reasons ..

The computational grammar model uses strict left-to-right processing,

taking in one word at every stage.. If the analyser requires to test

a word somewhere "ahead" in the input, it should explicitly store the

intervening items somewhere, and process them later. If this can be

managed, then the look-ahead is permissible the analyser is

"remembering" the string of words before starting to process them.

However, if the look-ahead is a hidden ·way of .. parsing a later item

before the current word, it is obscuring the true flow.of decisions,

and should be avoided. Ohr.tin Kay (at the Workshop on Theoretical

Issues in Natural Language Processing, Cambridge, l·fa.ss., June 1975)

commented that look-ahead could often be backtracking in disguise;

look-ahead, he suggested, moved the sentence-po'in ter forward, but

left the label "YOU ARE HERE" behind). The exception to this is the

"one-word look-ahead" discussed in Section III. 8; this is not so much

look-ahead as delaying, until the next word is _taken in, all the

actions that might have to be performed at the current point. Since

the actions will be performed (or abandone.d) immediately, there is no

need to store anything.

As commented in Section III..5, it may be possible to use

unnamed, general purpose registers for stOrage during

sentence-analysis ("work registers"). There is no clear criterion for

when these can or should be used, although it seems appropriate to

. use them when the item in question has not been analysed, . and so

cannot be allocated to a very specifically named register (e.g. if

indulging in explicit look-abead in the \vay described above). In the

interests of seeing how far this concept can be taken, two work

registers have been includ~d among the interpreter registers

Page 177

TEHPORARY and SHELF-

It seems plausible to suggest that a structure stored in a

grammatical register must eventually be used (either by being

incorporated into a larger structure, or by being discarded after

some information has been extracted from it). Let us assume that the

interpreter can distinguish pointer-holding registers from

structure-holding register?• An intuitively attractive principle is

that all structures built at a particular level should be explicitly

used before leaving that leveL That is, all structur'es which have

been temporarily stored in structure-holding registers should be

removed from these registers and either attached to some larger

structure, or else explicitly discarded (perhaps because all their

information has been recorded in some way, as with an auxiliary

verb). This is not to say that structures cannot be left lying in a

register while a lower constituent is processed; it is just that

sueb items ~>l10uld not be lost when the interpreter exits to a higher

le'1cl and restores all the stacks. The grammar-writer should

discipline himself so that any operations which use items from

.registers to build structure (as opposed to merely examining them)

simultaneously remove those items, leaving the registers empty. Then

the interpreter, before leaving a given level,. can check that all the

structure-holding stacks that it is about to pop are empty. If any

are not, it should try to use up the left-over items before leaving

that level.. This "using-up" process will have to be fairly general

and based on formal properties of the current surface structure,

since it will have to be programmed into the interpreter, not the

A first approximation might be to ittempt to attach the

spare structure on the bottommost empty node (c.f. Kimb~ll (1974)).

Page 178

Uses of this· tidy=!:!~Jl .~E. .J?..rinc~:.EL~ will be discussed in Chapter V).

As defined in Section IIL5, a "flag" is a register with a small

fixed range of values, used for recording the presence or absence of

some condition • These can be very useful devices, allowing the same

analysis network to be used for two similar phenomena, with minor

differences recorded in flags (Bobrow and Fraser (1969)). However,

they should not be allowed to obscure the real relationships between

various conditions and operations in sentence-analysis. For example,

the fact that a clause has a passive verb fonn conveys information

about the way that deep semantic roles (or "cases" - see Section V.8

) will be arranged in that clause. Using a two-valued flag at

various stages during structure-building is one w_ay of handling this,

but it may not be the most transparent. If possible, the

consequences of a p~rticular construction occurring in a sentence

should be recorded or carried out as directly as possible. This

complaint about arbitrary flags is analogous to the criticism of

using arbitrary syntactic features to record (temporarily) a

particular fact ~~ich is later decoraposed

·consequences (Section III.11)~

into heterogeneous

As discussed in Sect:Lon III. 6, an analyser which handles

decisions by exhaustive exploration is less interesting than one

which manages to postpone decir..;ions until sufficient information is

available to resolve them. Ideally, an analyser which only ever

maintained one (c.orrec t) analysis throughout the parsing process

would be extrerr!~:ly eleg8nL It therefore seems desirable to write

gramrnnrs in such .c::. wo.y that the analyser has to "branch" as rarely as

possible.

Page 179

So far, all the points mentioned in this subsection have been

fairly peripheral to ·computational grammar. Most of them are not

hard rules, but rough guidelines. Some of them suggest ways of

"keeping the grammar clean", otlH?.rs are suggestions for ideas to try

out. The points 0hich follow may be slightly more important, since

they serve to clarify the notion of a "structural combining rule".

In transformational grammar (at least in the "Aspects" model),

nost phenomena were handled by one mechanism - the transformation

(see Section II.l for a discussion of that approach) • In

computational grammar there are various ways one could handle these

constructions. Deseriptions previously formulated in terms of

transfon;iations can largely be replaced by descri_ptions employing two

kinds of device - using struc ture-holcl ing registers, and defining

several different SCRs.

For example, there were good syntactic arguments for the

transformation of "Subject-Verb Inversion" (Chomsky (1957), Burt

(1972)), wherehy the auxiliary verb at the start of a "yes-no"

que:-.;t.i_on ·was described as part of the main verb phrase of the

sent:T~c;:,, When ivriting a recognition grammar, this notion again

It is rather clwnsy to have to specify all the possible

au~illdcies at t\~ points in the grammar and . use elaborate

ir;t.:-::.:on;wctions to relate the auxiliary at the start of a question

to tf-: 1~' f•)llowing verb phrase~ It is much simpler to store the

i.n a register (without recording all the

inf:· ;~1·,,:1L Lua from it, hut noting that the sentence is interrogative),

anr~ -'>~Lr~r1ct it .lat.:,~r when commencing the verb phrase. This seems to

be. y;:.ry d5_r 1.::ct expression of the Chomskyan transfonnation

Page 180

Although the phenomena which supported this strategy are the same as

those used in a transformational argument, the justification comes

from the simplificatio~ of no allied

On the other hand, the different surface configurations of deep

semantic roles (Section V. 8) are not amenable to such obvious
"

re-ordering manipulations. Transformations such as "Dative Movement"

and "Passive" were intended to shuffle subjects, objects and indirect

objects into a canonical structure, resulting in a simpler statement

of cooccurrence relations. Ho\Jever, cooccurrence relations are based

on ser.lantic properties (Lakoff and Ross (1967), NcCawley (1968))

rather than on surface syntactic form. Hence such re-ordering would

not simplify the recognition rules, since these handle the structural

options available at surface level; this is not where the

generalisation is. It might be, however, that the set of SCRs could

be simplified using re-ordering operations; for example, we ntitjht

need only one two-object rule instead of two separate rules if we

replace Dative tbver.ient by a register manipulation at the surface.

As will be discussed in Section V-8, there are reasons for including

separate semantic rules anyway. Given this, there is no moti.vation

for attempting to include a re-ordering operation.

Generally, it is the overall simplicity of the ~rammnr that

decides whether to multiply ihe set of SCRs or to re-order

constituents directly. Re-ordering ·is usually approprint~e \rJh(:.rc the

generalisation is describable in surface ~:;yntac.tic tenis, SJ.ilCC th0•n

(and only then) it should simplify the recognition n;J cu. Uher•:'. the

pattern is semantic, the decisJon wil.l depend on whether re-ordr:!ci.ng

would greatly complicate the recognition rules and whether the SCRs

can be significantly reduced or simplified.·

This brings up another point concerning the ordering of

arguments in SCRs. The SCRs are functions whose arguments must be

ordered so as to distinguish them, as with any matheQatical function •.

Complications can arise when the same notational device (namely,

left-to-right order) is used to represent this arbitrary ordering as

is used to represent ter.J.poral ordering in the words of a sentence

(see, for example, the chaotic argwnents of He Cawley (1970)) _ The

crucial point seems to be as follows. Since the SCRs are used to

process a temporally-ordered sequence, there is an ordering imposed

on the SCR argument-slots, other than just the arbitrary order used

to distinguish them - namely, the ordering determined by the order of

processing of the individual arguments. "First argument" in an SCR

effectively means· the "first to be allocated to a slot in the SCR" ..

(Ihis temporal ordering can then be used to distinguish the argument

places, since any ordering achieves that). A definition like thi.s

restricts SCR surface trees to being built in a particular order

. (notationally, left-to-right), with no "gaps" being left to be filled

later. (In fact, the HCHINE program does use strict left-to-·riglit

building, as it makes it much easier to keep track of the structure

being built). So far no examples have been found which are difficult

to handle in this way. Therefore. we can adopt the principle that the

ordering of SCR argument-places is significantly· reLH.ed to srn: L?,C(~

ordering, and that arguments must be inserted in left-to-right nrd<"~r.

(See lsRrd (1974) for some related comments on trees and procC's.sins

order) •

CHAPTER V

SOHE A1lEAS OF ENG LIS li GRAMMAR

Page 183

Section V.O : Prerunble
-~-~ ~- -- -------~

This section uses the framework of Chapter IV to describe

certain aspects of English grammar. The descriptions are phrased

informally, with references to the concepts and devices of Chapter

IV, .since this seems the clearest expository device. Some of the

analyses have been implemented, or partially implemented, in the

HCHINE program (Chapter VI), but others have to be assessed wholly on

whatever merits of generality, logic, elegance and plausibility that

they may have. Ideally, a computational model of language should

suggest both how to describe language and how to program the

description. Chapter VI illustrates an implemented version of the

framework, but Chapter V demonstrates how the ideas can be used away

from the machine room.

The areas of English examined may seem slightly mundane, nnd it

might be thought that a new framework should test itself on tougher

ground. Unfortunately, if the gramrn~r, or a major part of it, is to

be implemented on a computer, then there are certa:Ln basic areas

(e.g. noun phrases, verb phrases, auxiliary verbs) that have to he

covered if the program is to function at all. If working with a new

framework, there are no existing analyses to be relied upon, since it

is not clear (starting from scratch) how even these prosaic regions

will look from the new vantage point. Section V.2, for example,

supplies the background to the implemented grammar, but does nor:

reach any dramatic conclusions.

Page 184

The linguistic descriptions are necessarily rather

over-simplified, and this is also a consequence of having to develop

a new model and implement it at the same time.

Section V .. l shows how structural combining rules (SCRs) provide

an appropriate way of describing certain regularities which cannot be

properly described simply by allotting words to syntactic categories ..

Section V .. 2 outlines the justification for the way

auxiliary verbs are handled in the MCHINE grammar ..

that

Section V .. 3 illustrates the need for syntactic properties (in

the sense of Chapter IV) and property inheritance rules-

Section V.4 gives a description of relative clauses which

demonstrates several facets of computational grammar, particularly

the use of registers ..

Section V .. 5 examines how the processing devices of computational

grar.imar can be used to describe "perceptually complex" sentences.

Section V.6 uses "definers" and "sense properties" to describe

the processing of referring expressions.

Section V.7 gives an ex~remely detailed examination of the

English tense system, showing how semantic networks and structural

combining rules can capture various regularities.

Section V. 8 outlines a description of verbs and "cases" ...

which is simple and useful.

Page 185

Section V-1 : The Internal Structure of Noun Phrases
~4-·----~ -- - -~-- ----·---·~ -~-~---- --:..- -- --·~'"'·----

As observed in Section III.. 11, determiners ("the", "that, etc.)

are distributionally related to possessives ("my", "Fred's", etc.).

If we could arrange our semantic representations for referring

expressions so that the combining process for <determiner> + <head

noun> was the sDme as the combining process for <possessive> + < head

noun>, then one SCR will do for both. This is probably not possible,

for the following reasons. Detcr:r.iiners form a cloced class,

containing what are traditionally known as "grammatical" formatives

(see Lyons (1968)). Their function is to provide more detailed

infornation about the semantic processing of the nominal provided by

the head noun, regarding its definiteness, specificity, etc; they do

not provide substantive semantic structure. Possessives, on the

other hand, are an open class, and arbitrarily complex possessives

can be built ·from noun phrases. These possessives contribute a

substantial pD.rt of the J:1e.aning of the referring expressions, and

supply a whole se~antic structure which is to be combined in some way

wlth the head nor:.1inal.. The posse:c,sive construction is recursive (as

will be discussed in Section V.1.2 below) and structures can be built

up within struc tG.res, -.:11:-;n:as the determiner construe tion is not

itself recursive. TtJO tLifferent SCRs are needed, say

Nc.verthe:lc~~:·;;, the :·l] ::;tr:ibudJ'nal generalisation can still be

captured in tl"l(-:! rc.co~~:i.:~tion gn1:;irn<'1.1", where the two categories (with

features POSS .<rnd DE~i.') ;-'P'.''::.:ir a.:-:; pc:1 t:allel options at the appropriate

point of the i\TH, A ?.:.-, :i1:-~;~:c whici1 p11ts both clnsses of item into one

Page 186

category for all purposes would force the two levels of processing to

be tied together: Here, we have managed to separate the level of

SCRs from the level· of ATNs.

Nany adjectives have two uses as modifiers in a noun phrase,

usually referred to as "restrictive" and "non-resttic tive" (or

"definingtr and "non-defining" Fowler and Fowler (1906)).

Informally, the restrictive use is where the meaning of an adjective

(usually denoting some property) is used to delimit thq class of

items denoted by a head noun, so that the conbination of (adjective+

noun) denotes some narrower class of objects, as in (Sl)(a) and (b).

(51)

(a) Pick up the blue ~ock

(b) The male ~loyees should read this copy of the Sex

Discrimination Act, and the female ~1ryl~e£_~ should read that one.

The non-restrictive use is where the class denoted by the noun

phrase is not narrowed down by the meaning of the adjective, but the

adjective conveys some property that the speaker wishes to attribute

to that class. These are hard to illustrate, since most adjective +

noun combinations can be understood 'restrictively, and there are few

examples where only the non-restrictive interpretation is possible.

(5 2)

Page 187

(a) These stupi.cl arguments do not concern me.

(b) Your fickle friends have deserted you.

(c) His weal~_hy parents have bought him a golf club.

Since a wide range of adjectives can have either use, it seems

better to describe these as two separate constructions, rather than

having separate lexical entries for the two uses. (The latter could

he done bv
J

having a feature [ATTRIBUTIVE] and a lexical redundacy

rule stating that an adjective with that feature had two forms

[RESTRICTIVE] and (NONRESTRICTIVE]. Possible, but inelegant). SCRs

provide an obvious mechanism for this, since there can be two SCRs

for cor:ibi.ning adjectives and nouns. One of these performs some kind

of property-intersection on the sense to yield a new class, and the

other constructs an assertion which is to form part of the· message

conveyed by the speaker.

The non-restrictive SCR (call it SCR-NRAdj) has some interesting

consequences for building surface structure.

Let us assume thnt the head noun generally provides some kind of

predicate, denoting a class of items, and that a restrictive modifier

can be combined with it to form a new, narrower class-predicate.

This procerrn can be applied repeatedly, so that the restrictive rule

(call it SCR·-RAdj) ecm t:tke part in a right-branching structure like

(53).

-'.

Page 188

(53)

SCR-Determiner

~
the SCR-RAdj

~
old SCR-RAdj

bl~
car

In this structure there are no discontinuous constituents - all the

surface items which form a subtree are adjacent, and the restrictive

adjective is always to the left of the item(s) it has to combine

with .. The non-restrictive case is not so s iraple .. The

non-restrictive adjectives acts not on a class-predicate to form a

narrower class predicate, but on the final result of the

SCR-De terminer ~ to form an assertion. In (5 2) (b) "f ick le11 makes an

assertion about "your friends", and in (52) (c), "wealthy" makes an

assertion about "his parents" .. This seems to call for surface-tree of

the form (54).

(54)

SCR-NRA<lj

~----~-----a
wealthy SCR-Possessive

~
his parents

(Remember, as outlined in Section III.l, III.2, that the surface tree

directly represents how the SCRs act on their arguments. There is no

question of temporarily pasting together sor.1C "syntactic structur~" l>-

with different dominance relations, and letting the SCRs l?Ort out...,

their arguments later) •

Page 189

Here there is a discontinuous constituent ("his parents") .. The

non-restrictive adjective seems to act on the meaning of the

(possessive + noun) and the subtree to the right of the adjective may

be arbitrarily large.. There are at least two ways of handling this ..

. Firstly, the analyser could hold the possessive (oi determiner -

see V.1.1) in a register until it had ascertained what adjectives

were present in the noun phrase .. Once all the non-restrictive

adjectives had been built into a right-branching structure (there may

be several adjectives, e.g. "His kind, loving, wealthy parents ... "),

the possessive could be attached and the rest of the phrase analysed.

Alternatively, the analyser could build the-possessive (plus a

node with SCR-Possessive) on to the surface tree at once~ On

encountering non-restrictive adjectives, it could build branches on

to the top of the subtree for the noun phrase.. The stages would be

as in (55) ..

(55)

(a)

SCR-P o ssess iv e

~-"
his

(b)

SCR-NRAdj

weal~
SCR-Possessive
~~,

his parents

Page 190

The latter approach requires the subtree for the noun phrase to

be built as a. separate item, before being attached to higher nodes

(so that nodes can be interposed above the root of the sub tree). It

is quite feasible to assume that each processing level (see Section

111.7) has a separate register, an interpreter stack called TOPNODE,

which holds the root of the subtree being built at that.level. (Both

the MCHINE and SHRDLU programs do that). The former approach seems

equally viable, but has not been tested here.

This structural aspect of SCR-NRAdj is related to the recursive

aspect of SCR-Possessive, mentioned in V.1.1. Possessives may be

arbitrarily large phrases (e.g. "the tired old man's hat"), attached

as constituents of other noun phrases. Let us assume that such

phrasal possessives are processed initially as noun phrases, then (on

encountering the "'s" at the end) attached under a SCR-Possessive

node, with processir1g continuing on the main noun phrase without

initiating a new level (see Section V .. 5 below for further details of

the processing level~ involved) • While processing the phrasal

possessive, the analyser may have no indication that this is not the

main noun phrase, and so will be building it as the subtree for the

current level .. On creating the SCR-Possessive node, some

re-organisation is required) since the SCR-Possessive node becomes

the new root of the inain noun phrase, with the structure that fonn2d

the previous subtree as left cL1u3hter_ Here is another situation

where it is useful to bave the TOPNODE register for storing the root

of the current subtree~ Notice that these two manipulations of

TOPNODE would not interfere with each other, although phrasal

possessives and non-restrictive adjectives may occur in the. same noun

phrase. During the processing of the phrasal possessive, TOPNODE

J!age 191

contains the root of the possessive, and so any non-restrictive

adjectives encountered (e .. g .. " [that careles~ man]' s motorbike") are

inserted correctly above the poss~ssive.. Once the ph~asal possessive

has been completed, and the subtree restructured to allow the rest of

the noun phrase to be processed, TOPNODE contains the root of the

main noun phrase, and any non-restrictive adjectives will be attached

correctly.above this phrase, since they always follow the possessive.

Even if a recursive left-branching structure occurs (as in the

examples in Section V.5 below), this re-structuring will occur in the

same way at each embedding. The two potentially recursive

constructions (possessive and adjective) will not interfere with each

other, despite the fact that both re-allocate the contents of

TOPNODE ..

It was obsE~rved above that several non-restrictive adjectives

may occur in a single noun phrase.. Careful examination of the two

approaches outlined above (holding the possessive in a register, or

building a tree which is then re-rooted) will show that they will

result in slightly different trees for such sentences. Holding the

possessive in a register will retain the surface or~er of the

adjectives (see (56) (a)), whereas ~e-rooting re-orders the adjectives

(see(b)).

}?age 192

(5 6)

(a)

SCR-NRAdj

~
kind SCR-NRAdj

~~~-
loving SCR-N RAdj 

~-
wealthy SCR-Possessive 

~ 
his parents 

(b) 

SCR-NRAdj 

wea~~ 
SCR-NRAdj 

~' loving ' 
SCR·-l'~RA<lj 

_...,...,...-~, 

kind " 

SCR-Possessive 

~ 
his parents 

This does not give a wny of choosing between the two methods, 

since both structures are suitable semantically, for the following 

reason. The inputs to SCR-NRAdj should be an adjective-meaning (say, 

a property P) and a noun-phrase meaning (say, a set S). The important 

question is - wlrnt is the output of SCR-NRAdj? The effect of the. 

rule is; informally, to create an assertion that the set S described 

by the noun-phrase meaning has property P- However, this cannot be 

the ~p_u~ of the rule, since that would provide the wrong input for 

the SCRs higher up the tree. The noun phrase sub tree as a whole 

should produce a set desr.:: ription ~,. . 
u ~ since the constituent which 

includes the NP will use that se t-dct::c.ription in some way; the 

containing constitu2nt does not require an assertion to operate on. 



i?nge 193 

The best way round this is to have SCR-NRA<lj 'pass up its second 

argument S unaltered as its output in the rule-tree, and do its work 

solely by placing the assertion (Le .. that P is true of S) somewhere 

suitable (e.g. in the "world model" of the speaker). This allows 

SCR-NRAdj to apply to its own output, as is necessary in (56), since 

its second argument is a set-description and its · output is a 

set-description. Since the same set S is being passed up trees like 

(56)(a) and (b) unaltered, with various assertions being made about 

it on the way, the order of application of the different invocations 

of SCR-NRAdj is immaterial .. 

One advantage of separating out the non-restrictive semantic 

relationship into an SCR (instead of trying to build it into lexical 

entries), is that certain modifiers other than traditional adjectives 

sor:1etimes occur uith a non-restrictive type of relationship to the 

noun, e.g. (57). 

(57) The mar:.x. admirers of Shostakovitch will be saddened by this 

per for::1ance. 

The word "many" occurs here after the determiner, and seems to 

express an assertion that there are many admirers of Shostakovitch 

(it is certainly not restrictively distinguishing the "many admirers" 

from the "few ·admirers"). Such usage might be describable by ~sing 

SCR-NRAdj to combine the. meaning of "many" with the meaning of the 

rest of the phras~~ 



!.'Age 19/+ 

This discussion has ignored the major question of how the 

analyser is to decide," while processing ·a sentence, whether a 

particular adjective is being used restrictively or 

non-restrictively.. The decision seems to depend on factors which are 

impossible to formalise within the limited grammatical framework here 

intonation, cohtext of utterance, hearer's view of speaker's 

beliefs, etc., may all contribute. To test that the two surface 

structures described are practicable, the MCHINE program has been 

designed to allow either, but the choice of which to bt1ild is fudged 

by having adjectives categorised into two disjoint subsets, with 

features NRA. and RA to distinguish them. 

So far tlie traditional term "adjective" has been used quite 

freely, and the adjectives discussed in V.1. 2 have been regarded as 

expressing "properties" that may be predicated of sets .. These 

over-sir.iplifications aided the exposition (without affecting the 

relevant arguments), b~t they will now be examined in greater detail-

Bolinger (1967) discusses the wide variety of English 

adjectives, showing that it is not reasonable to describe all 

adjectives as denoting 11 properties 0
- Examples like (58) are relevant. 

(58) 

(a) chief ~roblem 

(b) alleged thief 



Page 195 

(c) former president 

(d) possible problem 

}bntague (1970b) points out that describing the adjective-noun 

relationship as the intersection of properties (cf. Winograd (1972)) 

is valid only for a certain subclass of adjectives, and there is no 

reason to regard_ this as the adjective-noun relationship. He 

suggests that there should be several adjective-noun combining 

functions, and this proposal is easily re-phrased in terms of 

computational grammar as the need for different SCRs. If we could 

make the operations of the SCRs sophisticated enough, that might ev·en 

allow for constructions like those in (59), where the way that the 

adjective modifies the noun depends in quite subtle ways on both the 

adjective and the noun. 

(5 9) 

(a) big flea 

(b) small elephant 

(c) good cook 

(d) bad athlete 

Further investigation shows that it is not very plausible to 

regard "adjective." as a clear semantic category (although its 

pre-nominal usage gives grounds for a syntactic feature [ADJ]). 

Consider. a phrase like (60). 



Page 196 

(60) brass candlestick 

Traditional grammar has two ways of describing this combination of 

words. Either it is an adjective-fioun pair, like the rather 

heterogeneous examples in (58) and (59), or it is a noun-noun pair 

(sometimes known as a classifier-noun pair), like the examples in 

(61) • 

(61) 

(a) donkey jacket 

(b) soup spoon 

(c) boiler suit 

(d) monkey wrench 

(e) gas stove 

It is hard to define what criteria are used for sorting an example 

like (60) into either list. The main criterion seems to be that 

adjectives can be used to modify a wide class of nouns, whereas 

classifiers nouns used as pre-nominal modifiers) are 

idiosyncratic. This generalisation is not strong enough to provide 

any real two-way classification, since some of the classifiers in the 

phrases in (61) can modify various nouns: 

(62) 



Page 197 

(a) soup plate 

(b) gas fire 

(c) soup kitchen 

(d) gas mask 

There does, nevertheless, appear to be a distinction between 

systematic modifier-noun pairs and idiosyncratic modifier-noun pairs, 

but it does not correspond to traditional adjectiye/classifier 

boundaries .. 

The relationship between the meanings of words in (62)(a) is 

(intuitively) very similar to the relationship between the meanings 

of the words in (6l)(b). The same relationship seems also to occur in 

pairs like "fish knife", "dessert spoon", where the name of a kind of 

food is used to classify an eating imple~ent .. (62)(c), on the other 

ha.nd, is different. Similarly, the relationship between the 

\·mrd-meanings in (62) (b) is like the relationship between the 

word-meanings in (6l)(e), and this relationship also appears in 

·phrases like "coal fire", "oil heater", etc .. , where a fuel is used to 

classify a fuel-using device .. (62)(d) seems to be different. We 

could perhaps say that there are certain systematic modifier-noun 

relationships, which manifest themselves in phrases consisting of 

pairs "X+Y" where both X and Y may vary over more than one item. 

There are also certain idiosyncratic modifier-noun relationships, 

which nanifest themselves in phrases consisting of pairs "X+Y", · uhc:re 

X and Y do not vary (Le .. these are "one-off" items) .. (61) (a), (e), 

(d) and (62) (c), (<l) seem to be examples of these~ Thus it appears 

that, while the traditional distinction between "systematic" and 



Page 198 

"idiosyncratic" modifier noun pairs may well exist, it certainly does 

not correspond to the usual classification of "adjective" versus 

"classifier". 

It is worth digressing here to point out a simple ~inguistic 

test which distinguishes these two kinds of combination. In 

contrasting noun phrases with different modifiers, the head noun nay 

be replaced by "one" under certain circumstances, as in (63) .. 

(63) This is a red ball and that is a blue one. 

In (63) the modifier-noun pairs are traditional property-denoting 

adjectives, which are highly systematic in the wa,y they modify nouns. 

If the modifier-noun pairs are totally idiosyncratic, then the 

"one"-pronominalisation results in oddity. 

(64) ??? This is a monkey wrench and that is a pipe one. 

This may be becaus2 thC! contrast which is being expressed includes 

the particular modifier-noun relationship involved, and if the two 

phrases have different internal relationships, the contrast is 

difficult: 

(65) 

(a) This is a wine bottle and that is a whisky bottle. 

(b) This is a re<l bottle and that is a blue one. 



Page 199 

(c-) ?? This is a wine bottle and that is a red one. 

Intuitively, the contrast is being made between different values for 

a particular property of the items, and so the same property must be 

referred to in both phrases. Systematic modifier-head relationships 

may be those where the modifier specifies some value for a particular 

aspect of the head, whereas idiosyncratic items are more like 

arbitrary labels. (There are borderline examples like "ulterior 

motive", where, intuitively, the modifier expresses some aspect of 

the head, but where there are no related phrases r:ulterior xn showing 

the same 1:10dification - ??"This is a worthy motive and that is an 

ultc~rior one .. 11
) 

This discussion has been somewhat vague, with frequent appeals 

to the reader's intuition. Hopefully it has been sufficient to make 

two points .. 

Firstly, although there may be ~yntactic distributional grounds 

for grouping pre-nominal modifiers into adjectives and nouns, there 

is no useful semantic distinction to be made, since there are 

systematic uses of a wide variety of modifiers. Secondly, the aspect 

of rnodLfie-c.·-head combinations which is. semantically relevant is the 

way that the modifier modifies the meaning of the head; it may be 

possible to describe this by having many different SCRs for the vast 

number of possible relationships .. 

The l::Et(:.r proposal has grave repercussions. Leaving aside the 

pd_ckly q:H::stion of whether we want to have a multitude of 

:relationship£:: like 11 uses as fuel", "is used to eat", etc., built into 

l.lDi>,_1'.~~~.1:..i:S .. rules, there Js still the problem of how an analyser is to 



Page 200 

choose the right SCR for a particular pair. It is somewhat 

implausible to have the analyser treat a pre-nominal modifier as 

n-ways ambiguous (where there are n SCRs which could take it as first 

argument), so the analyser will have to wait until the head of the 

phrase is found, and then select a modifier-head SCR which will 

accept as inputs this modifier and head. 

This may sound similnr to the process described by Quillian 

(1969)t where a semantic program examines the semantic structures of 

the modifier and head to work out the relationship between the two, 

but there is a slight difference. Here we are assuming that certain 

commonly-occurring semantic relationships are stored in standard 

modifier-head SCRs (instead of having to be computed each time). 

Thus, under normal circumstances, only the list of SCRs is 

considered, rather than all possible relationships. The Quillian 

process (which starts from scratch, with no standard set of 

rc.lationships) would be useful for computing possible meanings of a 

hitherto unencountered pair, but even then it might be wrong if the 

newly encountered example is in fact idiosyncratic; consider what a 

.productive process like that would have done with "pyramid salesman" 

or "battery hen" on a first attemptw While a heuristic process like 

Quillian' s would generate guesses for unknm:.vn phrases, the suggestion. 

here is to keep a set of standard relationshi~s for systematic 

purposes, and enter idiosyncratic_ phrases directly in the lexicon as 

corapound nouns .. This also produces a problem for a analyser, since 

a5; well as searching the SCR list, it will have to check whether the 

lexicon has a compound entry for the two items it is examining .. 



Page 201 

The process of searching a list of SCRs for one which "matches" 

a·pair of argum~nts is in fact required elsewhere in the grammar (see 

Sections IIL9, V .. 4) so it is not necessarily a weak point of this 

description that it needs such a search process, but the search 

routine is not a well developed concept at present, and cannot be 

relied upon .. 

None of the suggestions in V .. L 3 have been implernen ted in the 

MCHINE . grammar, so this discussion can be regarded only as 

speculation on the possible uses of SCRs. 



Page 202 

Y. 2. 1 Avoiding_ _Branch:!-_12£ · 

The part of the ATN in the MCHINE grammar that processes the 

auxiliary verbs is deterministic, subject to the "one-word-lookahead" 

provision of Section III.8. That is, no wrong analysis is ever 

pursued for more than one word, and no markers or structures are 

altered once they have been set. The network appears to be slightly 

more complicated than other networks for English auxiliaries that 

have appeared in the literature, but this is a consequence of three 

constraints within which the rules were written. 

Firstly, the network should not backtrack or follow up several 

wrong paths. Secondly, detailed information regarding the various 

auxiliaries should be extracted (see below). Thirdly, the grammar 

should accept exactly the sequences of auxiliaries that occur in 

English, and no others (~ce Sections I.2 and I.3 foi justification of 

this). 

The general word-storing register SHELF is used on several 

occasions to postpone decisions for one word. Th is may seem 

unnecessary, if one-word branches are being allowed anyway, but these 

were cases where it was possible to predict that the information 

would be forthcoming immediately, and where the options were a small 

fixed number (here, usually two options). The SHELF register is also 

used to hold the auxiliary verb which occurs at · the start of a 

question while the subject noun phrase is analysed. This allows the 

same part of the auxiliary network to proces·s the first auxiliary 

verb, whether the verb occurs before· or after the subject (cf. 



Page 203 

Chomsky ( 1965)) .. 

V. 2. 2 The _In_£c:..E!1ia tion Conv ey~d 

The information contain.ed in the auxiliary verbs is recorded in 

various ways. Much of the information cannot be interpreted within 

the sentence grammar, but must merely be marked on to the semantic 

representation for the clause, so that some higher interpreter can 

act on it. The tense, modality, and aspect of a sentence are 

interpretable only within some context (e.g. a conversation) and so 

their meanings must be defined outside the sentence (see Section V.7 

below).. Some of these properties (e.g. progressive, perfective) seem 

to belong to the verb .phrase (since there are perfective and/or 

progressive verb phrases which do not fo1m surface clauses (see (66) 

below)), and some are associated with the clause (e.g .. tense, 

modality). The information extracted from the auxiliary sequence is 

as follows: 

Perfect aspect : a two-valued marker is set on the semantic item 

for the verb phrase. 

Progressive aspect : a two-valued marker is set on the seoantic 

item for the verb phrase. 

Verb-negation (see V.2 .. 3) : a two-valued marker is set on the 

semantic item for the verb phrase. 

Clause-negation (see V.2.3) A two-valued marker is set on the 

semantic item for the clause. 



Page 204 

Tense 

clause. 

a two-valued marker is set on the semantic item for the 

Illocution 

for the clause. 

SAY, ASK or ORDER is marked on the representation 

Modality : the corresponding modal (CAN, \.JILL, etc) is marked on 

the semantic item for the clause. 

Voice a restriction is set on the surface node for the verb 

phrase, so that the SCR used must be of the correct variety (active 

or passive). See Section V~B for more details. 

The distinction between verb-negation and clause-negation may 

seem unusual. This is intended to capture the following patterns. 

Firstly, verb phrases (in the infinitival or gerundive form) 

often contain a negative element separate from the negation (or 

otherwise) of the containing clause. 

(66) 

(a) Not to go to the party would be impolite~ 

(b) Not having been there, he did not want to comment. 

Secondly, a negative· element in a sentence can some times be 

interpreted in two different ways - compare (6 7) (a) and (b). 



Page 205 

(6 7) 

(a) 

A How can I find time to write this essay ? 

B: You can not go to the party tonight,, or you can not go skiing 

at the weekend. 

(b) 

A: I broke my ankle on Saturrlay. 

B: You cannot go to the party tonight, and you cannot go skiing 

at the weekend. 

In (a) , the "not" seems to state that a negative course of action is 

possible; in (b), the "not" seems to state that a particular course 

of action is not possible, (This distinction is more easily 

expressed in the notation of modal logic) • One possible way to 

express this is to associate the negation with the verb phrase in (a) 

and with the clause as a whole in (b). (The modal "ea.nu is also 

associated with the clause) • 

Thirdly, sc-;ntences c.an, under cc:rtain circumstances, contain two 

negative elements, (corresponding to the two usages just described). 

(68) ? You can't not go to the party - they will he expecting 

you. 

Such sentences sound more acceptable if the first negative element is 

conflated with the first au>:Lliary vc1:b to producr:-~ an "n' t" form, and 



Page 206 

even then a slightly unusual intonation is necessary if the sentence 

is not to sound odd. 

The same patterns r,cgarding double negation hold with other 

auxiliary verbs, but not all of them provide clearly distinct 

semantic interpretations for the two types of negation in the way 

that "can" does. This may be due to the fact that, for other modals, 

there is no imaginable situation in which one interpretation is true 

but ihe other is not. If we follow the patterns of (67), the 

sentences in (69) should be approximately paraphrased by those in 

(70) - but what situation would distinguish these cases ? 

(6 9) 

(a) He mustn't go to the party. 

(b) He must not go to the party. 

(7 0) 

(a) It must not be the case that he goes to the party. 

(b) It must be the case that he does not go to the party. 

Unfortunately, this phenomenon has not been analysed in depth 

here, as it w~rnld noed a full deE~:cription of the semantics .of modal 

verbs. (See I.sard (1971~) for a partial treatment of II\odal verbs in a 

computational franework), .l:-1.ckendo:ff (1973) discusses the use of "VP" 

and' 11 st1 negation in connc:.eLlon with certain quantifiers, but hip 

der;cription is phrased in transf-::iri:wtional terms. 



Page 207 

The network in the MCHINE grammar operates as follows. An "n' t" 

form indicates clause-negation; a "not" following an "n' t" form 

indicates verb-negation; a single "not" is tak1~n as either 

clause-negation or verb-negation depending on a variable which the 

user can set (this is because, in a full model, these decisions would 

not use the kind of grammatical infonnation represented in the 

current model, but would be based on intonational or contextual 

information); two "not" elements in succession cause a failure .. 

V.2.4 "Do" 

It has been suggested for some time that the verb "do" in 

sentences like (71) is an unusual item-

(71) 

(a) Do you want a cup of tea ? 

(b) You do not like asparagus. 

(c) Do not enter that room. 

It can be regarded as a verb, since it carries an inflection for 

tense and "number" agreement .. It can be regarded as an auxiliary 

verb, because (like the aspect and mo<lnl verbs) it appears before the 

subject in questions, and precedes the negative marker if there is 

one. However, it has the oddity of appearing on.ly when there arc no 

other auxiliary verbs, and not appearing even then in un1_::r;1phasised, 

non-negative declarative sentences~ This prompted the i.ntcoduction 

of the transformation often known as "clo"-Support (Cbonf.:;ky (1957), 

Burt ( 1972)) • Trying to class this "do" as either a moda ;_ or 8.n. 



Page 208 

aspect verb leads to difficulties, so it seems better to r~gard it as 

a separate kind of auxiliary altogether. From the point of view of 

sentence-processing, the information that can be extracted from the 

auxiliary "do"· is considerably different from that extracted from the· 

other auxiliaries, and is largely based on what its paradigmatic (or 

distributional) behaviour tells the analyser about the absence of 

other auxiliaries_ 

Talking of "aspect" verbs is misleading, since, for all 

practical purposes, this is a pseudo-class containing only two 

members ("have" and "be"), both of which may occur in a sentencet and 

which convey totally different information .. "Have", "be" and "do" 

are separate, one-off auxiliaries which can be distinguished by any 

consistent feature-marking that the analyser may need. The MCHINE 

grammar has them marked (redundantly) with the features [ASPECT), 

[COP] and [DOl] respectively .. 



Page 209 

Section V~3 : Number Agreement 
---~·- ~- -- -----.~ ........ --.............. ..,.,. 

In Section I. 2, it \vas stated that, since language comprehension 

was a primarily semantic goal, syntactic mechanisms should be 

introduced only where necessary to achieve this goal; if some aspect 

of English could be fully described in semantic terms, then there was 

no rieed to postulate any additional syntactic structure. This may 

seem a clear aim initially, but there are areas of English where it 

is impossible to give wholly semantic descriptions, and additional 

devices have to be introduced, despite the methodology of avoiding 

separate syntax.. Sometfr1es the syntax and semantics are related in 

such a way that redundacy occurs, but neither can be completely 

eliminated.. A good example of this occurs in the English system of 

number agreement. (Katz (1972, pp.378££) gives a good discussion, 

within a different frame~ork, of this area of grammar, and the 

arguraents here overlap with his to some extent). 

Subject-verb is often ref erred to as 

"nur:Jber-agreemen.t11
, and is described i.n terms of "singular" and 

"plural". This is misleading, since it gives the impression that the 

agre~nent system is based on plurality of the set of things denoted 

by the subject (Le. tbal..:. it is a semantic phenomenon).. The two-way 

classification into "perso~:1" and "number" for verb forms (e.g. "3rd 

person singular11
) may be: he1pful for relating English to other 

languages, but it doc!:; ··wt reflect the agreement patterns which 

actually occur in English. 



Page 210 

Consider regular verbs. Host of these have two present-tense 

forms (e.g."run", "runs") which we can refer to as PRESP (mnemonic 

for traditional Present Plural) and ES (mnemonic from the 

inflectional ending) forms. The PRESP form is compatible with 

subjects "I", "you", "we", "they", or any "plural" noun phrase. That 

is, it covers what were traditionally known as lst and 2nd person 

singular, plus all plural forms. The ES form is compatible with what 

are traditionally called 3rd person singular subjects - "he", "she", 

etc. Regular past tense forms (or "remote" tense forms, to use the 

terminology of Section V.7), are generally compatible with any 

subject at all, as are the present and past· fonns of modal verbs 

(which are "defective" in traditional terminology) • 

An exception to these agreement patterns is the verb "be" .. There 

are four classes of subject for agreement with inflected forms of 

"be", as follows .. 

Compatible with "am" "I" 

Compatible with "was" "I" , "he", "she", etc. 

Compatible with "were", "are11 "you", "we", "they", etc. 

Compatible with "is" "he", "she", etc .. 

Although "be" is a solitary case, and so can be treated 

exceptionally, we still need~greement-classes that are capable of 

describing this pattern as well as the regular one. The most 

economical set seens to be : 



Page 211 

Agreement Class 1 "I" 

Agreement Class 2 "you", "we", "they", etc .. 

Agreement Class 3 "he", "she", etc .. 

Other classes can then be formed by taki.ng the union of these minimal 

classes.. Thus the four classes for "be" outlined a.bove are l, 1+3, 2 

and 3 respectively. Regular verbs will generally require 1+2 and 3 

to describe the present tense, and 1+2+3 to describe the remote 

tense. Using unions is of practical use for the way that agreement 

information can be used during sentence-analysis, as will be 

described belmv. 

The difference between Class 2 and Class 3 might seem to 

correspond to a semantic difference in the subjects involved, as in 

(72), but that is not always the case. 

(7 2) 

(a) The dogs run round the garden~ 

(b) The dog runs round the garrlen~ 

There are phrases where the rr ar, reernent-number" differs from the 

"semantic nur11be1_·", (e~g. 
''--

(7 3)), so the.sc notions are logically 

dis tine t. 

( 7 3) 



Page 212 

(a) These scissors are blunt, and your trousers have to be 

trimmed. 

(b) Heasles are not hard to cure, but cancer is.. (Katz, p .. 379). 

Also "mass" nouns (like "snow"~ "rice", "mist") cannot be· given a 

semantic number, since they do not denote a set of discrete objects, 

but have a very definite agreement class (namely~ Class 3). 

(74) 

(a) Snow falls softly .. 

(b) * Snow fall softly .. 

To emphasise the distinction between agreement classes and semantic 

plurality, notice that "you" is unmarked for semantic plurality (or 

else has two lexical entries, one for each plural~ty), but has a 

definite agreement class, Class 2. 

(7 5) 

(a) You run very fast. 

(b) * You runs very fast¥ 

The picture is further con£used when we consider that verb 

agreement classes can (occasioiially) have semantic effects in the 

understanding of sentences. Some subject noun phrases are unmarked 

for both semantic number and agreement class. Jn such cases, the 

verb form used may provide the missing sem<Jntic number information: 



Page 213 

(7 6) 

(a) The sheep runs very fast. 

(b) The sheep. run very fast. 

Also, agreement classes cannot be marked statically in the lexicon, 

since they are a property of whole noun phrases. The assignment of 

phrases to agreement classes is productive (Le. new examples can be 

allocated systematically) and seems to be based on semantic number. 

If someone tells you that a "sib" is a tool for cutting cloth, and 

that "latt" is a confetti-like substance, then you will probably 

regard (77)(a) and (b) as acceptable, but (78)(a) and (b) as somewhat 

odd. 

(77) 

(a) Twelve sibs are lying on the shelf. 

(b) Some latt is pouring out of the bag .. 

(7 8) 

(a) ???Twelve sibs is lying on the shelf. 

(b) ??? Some latt are pouring out of the bag • 

. ( 
Brovm ( 1958, pp .. 250-253) reports that children sometimes work in the 

reverse direction; that is, they make systematic guesses about the 

meaning of a new word on the basis of its verb agreement class in 

examples like (77). 



Page 214 

These phenomena can be described in the following way .. Each 

noun phrase has a syntactic agreement ·class (1, 2 or 3) and a 

sernanti_c number (SINGULAR, PLURAL or HASS) .. Each inflected verb . is 

marked with a· list of the agreement classes which are compatible with 

it.. (Listing them takes advantage of the fact that some classes are 

formed by taking the union of the basic three classes) .. Nouns like 

"sheep" (which are unmarked for agreement class or number) have two 

separate entries, with different agreement and syntactic number for 

each.. (Hence the semantic information provided in cases like (76) is 

conveyed by elimination of ambiguity using syntactic agreement). 

Agreement compatibility can be tested in the following way. On 

finding a "subject" in a clause, a restriction is set on the 

syntactic property list of the node that the "'complement" of the 

clause will be built on. This restriction states that the verb's 

agreement class list must contain the agreement class of the subject. 

The way in which number is treated uithin noun phrases will be dealt 

ui th below. 

As raentioned above, a·5reement classes cannot just be marked on 

all noun pln·asc-!s in the~ lexicon, since most noun phrases are 

constructed out of oth0r lexical entries- Sometimes. the determiner 

decides the agreement class, is in (79) (a) and (b); sometimes the 

he<1<l noun contributes tl-ie information, as in (79) (c) and (d); and 

sorr:EU.mes both are mci.r:b:cl fo:c a0re2inent class, as in (79)(e) .. 



Page 215 

(79) 

(a) A sheeR is sinking in the mud. 

(b) Manx_ she~e_ are swimming in the loch. 

( c) The dog__s cavort in the tree-tops. 

(d) Your r.children are spreading marmalade on our cat. 

(e) Those .~.E.P.Le:.~ are very sour. 

(£) * These man is selling pornography. 

\lhen both constituents provide an agreement class, it must be the 

same one, or oddity results, as in (79)(f). 

This is one place where the mechanism for combining properties 

of constituents (see Section IV.l) is useful. The SCR for combining 

determiners and head nouns can have an associate property inheritance 

rule, which passes up to the noun phrase node the agreement classes 

of both the deterrainer and the noun (if present). Examples like 

·(79) (f) will cause the analyser to attempt to make two different 

entries for the sarae property, which is not allowed. Since 

determiners are often combined wipl1 more than a single head noun (for 

example, if there are adjectives or other modifiers before the head 

noun), any SCRs for constructing-intermediate parts of a noun phrase 

(e.g. the adjective-noun combining rule) will also have to have a 

property inheritance rule ~1ich passes up the head noun's ~greement 

class. 



Page 216 

Section V.4 : Wh-Clauses -- - -----·--·---

V.4.1 The Surface Structure of Wh-clauses 
~·- .... . _.. _______ -~ -·----

English relative clauses, and c~rtain question-forms, share a 

common surface structure, consLsting of a sentence (or partial 

sentence) with a "wh-word" ("uho", "·what", etc.) at the beginning. 

(80) 

( c) The man who 15?.~ ~~<?L~ ~~)~r:':. -~~.~ok . . ~9- wants his money back. 

(d) When did he leave the huuse ? 

This formal similarity suggests that these clauses 

("wh-clauses") may be describable in similar terms.· This subse~tion 

examines how a recognition graomar can handle the surface form of 

wh-clauscs, and later subsections will examine the sema.n tic 

regularities involved. 

The way that wh-clauses have been described in transfonnational 

analysis is as follows. The cJ.ausl~ is regarded as a complete 

sentence, where one constituent \rsually rer;arded as a noun phrase) 

has been converted to a 11 wh-phr2.se 11 (either a wh-word or a phrase 

starting with "which", 11 what 11
, or 11 how11

) and moved to the begi.nning 

of the clause fron1 some position Hitbin the clause. This way of 

looking at the structure ha.s certain advantages, since the 

relationships betwcErn the wh~phn1r;c~ .:rnJ the rest of the clause are 

generally ·the same as those \Jh:Lch would t;o:ld between an NP in the 



Page 217 

"original" position and the rest of the clause. Semantically, the 

wh-phrases in (80) can be regarded as displaced versions of the 

subject, object, indirect object, and time-adjunct, respectively. 

Syntactically, subject-verb agreement seems to occur between the 

wh-phrase and the main verb of the wh-clause, if the "original" 

position is that of subject (cf.(80)(b)). Fuller arguments for this 

way of describing wh-clauses can be found in Kuroda (1966), Burt 

(1972), Chomsky (1964) and Ross (1967). 

In the framework being used here) there :ire two ways to describe 

wh-clauses. One way would be to accept the spirit of the 

transformational analysis, and write a recognition grammar which 

attempts to locate the wh-phrase in its 11 original 11 place in the 

clause. Alternatively, -we could postulate a wh-clause SCR which 

takes the meaning of a wh-phrase as its first argur:1ent, and the 

meaning of a sentence (or partial sentence) as second argurnen t, and 

produces a suitable semantic form. The former·approach has been 

adopted here, because of the following difficulties with the latter 

method. 

Firstly, the wh-clause SCR would have to duplicate all the 

semantic intra-senteritial relationships (e¥g. subjcct-to--verb, 

time-adjunct-to-main clause, etc~) since these can all be used 

between wh-phrases and their associated clauses. 

Secondly, the wh-clause SCR would have to include subject···vcrh 

agreement as a special c1ase, since it would be treatin8 an "ohjcctn 

wh-phrase and a "subject" wh-phr_asc as merely two possible options :Ln 

a list of relationships. 



Page 218 

Thirdly, the criteria for deciding which intra-sentential 

relationships to use are not primarily sem~ntic (i.e. they are not 

based on the semantic structure of the two arguments for the putative 

SCR), but are surface.syntactic. If the wh-clause sentence lacks a 

surf~ subject, then the wh-phrase can be used regardless of what 

deep roles (in the terms of Section V.8) are filled. 

Fourthly, if the sentence-part of the wh-clause is a 
L 

sentence-fragment (i.e. lacking a subject or object), then this 

cannot be analysed correctly by the simple sentence recognition 

procedure. For example, if we assume that "say0 must have a surface 

object, then (8l)(a) is an acceptable sentence, but the sentence 

fragments (b) and (c) are not. 

(81) 

(a) What did you say ? 

(b) * Did you say ? 

(c) * You say ? 

Hence some recognition procedure is needed for the second part of a 

wh-clause which is different (albeit in some minor f~shion) from the 

simple sentence grammar, and which takes into account the fact that a 

wh-clause is being processed. 

Both SHRDLU and LSNLIS parsers (see Sections IL 9, II. 1) adopt 

this approach, using structure-holding registers to perform the task. 

On encountering a wh-clause, the opening wh-phrase is processed and 

stored temporarily in a register. The rest of the clause is then 



Page 219 

processed by a procedure which is similar to the sentence procedure, 

except that it may use the item stored in that register as part of 

the surface structure. This general strategy has b~en incorporated 

in the NCHINE grammar, but some interesting questions still remain .. 

In particular, how do we ensure that the analyser processes the 

sentence successfully, and uses the stored wh-item in a suitable 

place ? 

Consider a sentence like (80)(d) above. The sentence part of 

the wh-clause ("did he leave the house") constitutes a complete 

clause, and so the analyser should find the right surface structure 

for it without failing. On attempting to leave the level at which 

the wh-clause has been processed, the tidying up procedure (see 

Section IV.8) will cause the wh-phrase left in HHSLOT (the register 

allocated to this purpose) to be found. Suppose we incorporate into 

the tidying-up procedure the option of performing rule-selection (see \ 

Section III.9) to combine the left-over item with the current 

sub tree. If this works, the Time-Adjunct SCR (see Section V .. 7) 

should be selected, and the wh-phrase attached as a time-adjunct to 

the sentence part of the wh-clause. A similar analysis might work 

for place adjuncts, e.g. 11 Hhere did he see you?". However, 

wh-clauses in which the wh-phrase has to be treated as an obligatory 

surface structure constituent (such as subject, object or indirect) 

object) cannot be handled in this way. Consider (80) (a). If the 

grammar requires "buy" to hc.:ve a surface object, and the analyser 

does not find one after the verb, it may discontinue the analysis 

(since we are assuming thnt the analyser will not treat strings like 

"Did you buy?" as acccptabli:~ sentences) - The tidying-up process is 

invoked only on .., . 
J. eaving level (at a "POPUP", in the ATN 



Page 220 

terminology), so it would not help here, unless we introduced the 

additional principle that, before abandoning an analysis, the 

analyser should first try to leave the current level.. Even if this 

could be .made to work, it would be suitable only for situations where 

the wh-phrase has to be located at the end of the sentence fragment. 

If the wh-phrase has to be put in subject position (as in (80)(b)), 

the lack of a consituent will show up long before it is feasible to 

leave the level of the wh-clause.. One solution might be to have 

another general principle that, if a failure is about to occur, the 

analyser should try to use any structures in the current set of 

grammatical registers to fill tlw current structural requirement, 

and, if successful, continue. This is unattractive, for two reasons. 

Firstly, it seems to be introduced simply to patch up this ~roblem, 

with no other justification. Secondly, it needs a clear definition 

of what would be regarded as the "current structural requirement" and 

where (in the recogn~tion rules) to re-commence if the 

structure-filling process succeeds. 

It .turns out that there is one quite neat way to ensure that the 

stored item is available exactly as needed. Notice that the 

wh-phrase can be regarded as a form of "noun phrase" ( c £. the 

transformational version of this phenomenon) and wh-phrases \·Jill 

always be allocated to a position that a "noun phrase" could have 

filled. We can therefore write the noun phrase grammar (i.e. 2n ATN 

subnetwork) so that .one of the options is to look in \JHSLOT for a 

stored structure. Then, a·t any point where the analyser is looking 

for a noun phrase, it can fulfil this expectation by using the stored 

UH-item, if one is present. Using this trick has certain advn.nl.:ages. 

Firstly, it means that the sentence fragment in a wh-clause can be. 



Page 221 

processed using exactly the same network as is needed for an ordinary 

sentence - the insertion of the stored wh-item will h<;lppen if and 

only if it has been stored. Secondly, it allow~ the wh-itera to 

occupy any position that a noun phrase could have occupied, without 

separate rules f6r each case. in particular, since a prepositional 

phrase includes a noun phrase, dangling prepositions (e.g. (82)(a) 

and (b)) will be automatically covered. 

(82) 

(a) Who did you speak to ? 

(b) The man who I was addressed by is here. 

This will not interfere with the method already outlined abo~e 

for optional adjuncts. By virtue of being optional, the adjunct 

wh-phrase will not be sought by the sentence grammar (via the NP 

network) and so should still be in the WHSLOT at the end of the 

level. 

V. 4. 2 The Comp~e~ Noun Phrase Constraint 

If we adopt the description in V.4.1 of how to analyse 

wh-clauses, there are some interesting consequences. Since WHSLOT is 

a grammatical register associated with the level processing the 

wh-clause, it behaves like a "local variable" in a programming 

language (see Section III.5). That is, each time the analyser 

initiates a wh-clause, a new version of WHSLOT is set up at the 

current level, only one incarnation of WHSLOT can exist at each 

level, and so only the contents of the ~~!::..~ WHSLOT are accessible. 

If one wh-clause is processed inside another (e.g. in (83)), the 



Page 222 

inner wh-clause will not be able to use the contents of the WHSLOT 

register for the outer clause, since that register is at a higher 

level, for which the processing and register contents are temporarily 

suspended. 

(83) Hhat did the man who you saw say ? 

Consequently, the analyser will become confused if two wh-phrases are 

associated with one wh-clause, both at different levels, as in (84). 

(84) ~ What did the man who bought arrive ? 

('iniere the intended interpretation is that "what" represents the 

object of ttbought") ~ This is not to say that two wh-phrases cannot be l 
associated with one relative clause - cf. (85). 

(85) What di<l you say to whom ? 

He.re, both wh-phraf.;es are located at the one level, and can both be 

processed by the one use of lrrlSLOT. The two wh-phrases will occupy 

tlt(~ single incarnation of WHSLOT at. different times (if in fact the 

second one ever has to be stored). Also, there is nothing to prevent 

the wh-phrase app2aring in a containing clause being used in a lower 

clause, provided it does not) as in (84), become entangled in another 

-. .. 1h-clause, 

(86) i.JlJat: did LL-i:ry think Fred liked? 

In (86), the "what" i~:; intended as the object of "liked", but appears 

at the cµening of the ~lause "did Miry think ..... ". this creates no 



Page_223 

problems, since no other use of WHSLOT occurs, and so the one version 

of WHSLOT established at the st~rt of the sentence will still be 

untouched when needed at the end .. · Several wh-clauses may appear in 

the same sentence, provided the wh-phrases are kept adjacent to their 

associated sentence parts, allowing the WHSLOT register to be used 

(87) Where did the man who you mentioned bury the treasure which 

he stole ? 

This pattern (i.e. the acceptability of sentences like (83), 

( 8 5 ) , and ( 8 6 ) , b u t the odd i t y o f sentences 1 i ke ( 8 4 ) ) has b e c n 

documented in the transformational literature .. The best known 

description of the phenomenon is due to Ross (1-967), who formulated 

it as a constraint on alterations to deep structures : 

No element contained in a sentence dominated by a noun phrase 

with a lexical head noun may be moved out of that noun phrase by a 

transformation. 

The procedure outlined in V.4.1 was based on providing a si.nple 

and effective way of locating wh-phrases in wh-clauses. The notion 

of a register being local to a level was not constructed solely for 

this analysis, being an obvious computational technique for 

processing constituents as embedded units. Nevertheless, this 

procedure (based on surface analysing procedures) appears to embody 

Ross' s constraint insofar as it applies to wh-clauses. 



Page 224 

The Ross rule (88) also covered complex noun phrases 

(hereinafter CNPs) other than wh-clauses, so it is natural to examine 

these other cases to see how the procedure here relates to them. The 

other form of CNP was that where an ordinary noun phrase (NP) and a 

clause (S) were in apposition : 

(89) 

(a) You believed the s_laim that l~- ::~~ ~ ag_it:_~tOI_ -~OE.~ -~(~shing_ 

machine firm. 

(b) The fac!:_ !l~a,._!:_ i~ .~~ Tuesd~z was overlooked. 

Let us investigate what similarites there are, in surface 

structure, between relative clauses and appositional CNPs. A 

sequence of the form "NP + that" may be the start of either of 

these : 

(90) 

{a) I didn't believe the claim that he made. 

(b) I didn't believe the claim that he made. a mess of things., 

A possible way for the analyser to handle this potential ambiguity is 

to consider both possibilites in parallel~ TI1is has no particular 

drawbacks apart from the general unattractiveness of exhaustive 

searching 51 as discussed in Section III.6- l.lowever, let us consider 

one way in which the decision could be postponed by using a register_ 

Let us assume that, after getting the intial ''NP + that" sequence (or 

perhaps the relevant sequence is NP + that + tH\. since criteria for 

recognising the beginnings of relative cla1L'~es are di . .fficult to 



Page 225 

state), the analyser decides that a CNP (of some type) is to be 

processed but it does not know what the relationship between the head 

NP an~ the sentence-part will be, since it is either apposition, or 

one of the relative-clause possibilities~ The analyser therefore 

does not build the head NP into the surface SCR tree, but holds it in 

a register, and goes on to process the sentence part of the CNP. 

This shows the similarity be~\.Jeen the appositional CNPs and relative 

clauses they consist of a head phrase and a sentence-part, where 

the semantic relationship between the two points is unknown at the 

start of the clause; the head phrase can be stored temporarily until 

the end of the clause .. The appositional relationshiP[ is not 

intra-sentential, like subject or object, bu~ i.s extra-sentential, 

like the optional time and place adjuncts. If we assume that there 

is an SCR for apposition, the relationship will be found at the same 

stage as on,c of the adjunct relationships would be found in a 

relative clause - namely, during tidying·up. The wh-clause strategy 

will then serve for both types of CNP, and the limits on registers 

discussed above will apply equally to both. Hence Ross's constraint 

(88), in its full form, wil~·be incorporated into a single method of 

·dealing ·with appositional and wh-clauses, and one more case of 

breadth-first searching has been avoided using registers~ 

Unfortunately, there are certain problems with· this approach. 

In some sentences, the CNP constraint appears to be inapplicable : 

(91) Hhat did you make the claim that you liked ? 

(If (91) is unacceptable in scme 1.diolects, then presumably what 

follows here does not apply to the grammars of those idiolects) ~ 



Page 226 

In (.91), a wh-phrase, the object of "liked", has been placed, in 

surface structure, outside the CNP which contains it- By Ross' s 

constraint, and by the analysing strategy given here, this should 

result in an odd sentence. Intuitively what seems to be happening is 

that the sequence "make the claim" is being treated as a single verb 

(roughly synonymous with "claim"), and the "that + S" sequence is 

treated as the object of this "verb".. ( Cf. "What did you claim that 

you liked ?").. It is not at all clear how this could be handled in 
/ 

either a transformational or a computational account, and it is 

slightly obscure even how to treat it as an exception. Perhaps the 

neatest solution would be to enter "make the claim" as an idiom or 

compound verb in the lexicon. The analyser would then be faced with 

two possible analyses for sentences beginning like (91). There would 

be one analysis where "the claim" is part of the verb, and one where 

it is the head of a CNP. The latter analysis would eventually fail, 

since the displaced wh-phrase would cause problems; that would leave 

only the analysis where- "made the claim" is a compound verb. Since 

computational grammar has, at present, no way of treating idioms or 

compound lexical entries' this suggestion is not very enlightening. 

David Kilby (personal communication) has observed that in some 

examples, the ambiguity between relative clause and appositional CNP 

is not resolved even at the end of the sentence : 

(92) Did you consider "the claim that he made · an 

over-simplification ? 



Page 227 

The two interpretations of (92) are describable as follows. The 

relative clause interpretation results from the head NP "the claim" 

being taken from the WHSLOT and inserted as the object of "made", 

with the NP "an over-simplification" being processed as the second 

object of "consider". The appositional CNP interpretation results 

from "an over-simplification" being inserted as the object of "made", 

with "the claim" being left in the WHSLOT register until the end of 

the clause. 

Uhether a particular grammar would find both these analyses or 

not would depend on the finer details of the mechanism for getting an 

item out of the WHSLOT. If we introduce some form of ordering 

between options (i.e. between ATN arcs in each state), then the 

analyser will get only one of the analyses. That is, if the grammrnar 

specifies that stored wh-items are to be used in preference to 

looking for an input noun phrase (where both are available), then 

only the first interpretation of (92) will be found. This would be a 

rather awkward ordering, as it would empty the HHSLOT into the 

subject position of every wh-clause. On the other hand, if input 

phrases have priority (Le. WHSLOT is searched only if a gap is 

found), then only the second interpretation will found. In fact, it 

seems better not to order these two options, since either ordering 

will cut out possibilities that we need to include in the grammar. 

Sentence (92) is a special case of the fact that certain wh-clauses 

may present the analyser with a choice of using a stored wh-item or 

analysing the next part of the input string 



Page 228 

(93) 

(a) Uhat did you give your father ? 

(b) What did you give to your father ? 

For exa~ple, assuming that the SCRs used within wh-clauses are 

exactly those ·used in ordinary clauses for combining verbs and 

objects, (93) (a) and (b) differ in the order that "what" and "your 

fat her" are to be placed in the SCR tree. 

The NCHINE grammar places no ordering on the two options (using 

a wh-phrase and using an incoming NP), and so will find both analyses 

in cases like (93) .. 

V~4.3 Semantics of Wh-Clauses 

It was suggested in V.4.2 above that the best surface structure 

for a wh-clause was one similar to that of a sentence, but with a 

wh-phrase as one of the constituents.. This assumes that the SCRs for 

combining the constituents of a sentence will function equally well 

~ith either a wh-phrase or some other item (such as an ordinary NP). 

Such a situation is desirable, since otherwise we would need a 

duplicate set of SCRs, for all the cases where one of the arguments 

was a wh-phrase. Now it is necessary to consider what the semantic 

represent.ation of a wh-clause _ should be, and whether the 

representation will allow such assumptions about the surface 

structure. 



Page 229 

Consider the various uses of a wh-clause (exemplified in (94)). 

In a question, it acts as a pattern to single out some set of items 
. \ 

\ 

about which the questioner wishes further information .. In a relative 

clause, it acts as a predicate to convey more information about the 

antecedent noun phrase (apart from the separate construe tion 

described in V.4.4 below). In a relative clause without an 

antecedent, it acts as a descriptive term to refer to some item .. 

(94) 

(a) Uhat did you buy ? 

(b) The book which you stolt= is boring. 

(c) What you did was wrong. 

If we simply let a wh-clause meaning be a clause-meaning (Le-'!. a 

relation-instance) with one component marked as the "wh" part, all 

the semantic rules for handling semantic structures would have to 

check every relation-instance to see if it had a "wh" component, 

since the behaviour of an ordinary relation-instance is completely 

different from this multi-purpose structure. On the other hand, one 

semantic structure which is ideally suited to this multiple role (as 

a pattern, a predicate or a term) is the "definer" (see Sections 

III.10, IV.3). If we can arrange our rules so that wh-clauses are a 

form of definer, we may be able to capture all these uses in one 

structure. This will require some extra SCRs to construct these 

\vh-clause definers, since at present we· have assumed that only the 

ordinary clause SCRs are necessary. It may seem that what we need i.s 

a unary SCR which acts on a wh-clause (represented as a 

relation-instance) to produce a definer, e.g. 



Pag.e 230 

(95) 

<definer> 

T 
SCR Wh-Clause 

T 
<relation-instance> 

T 
SCR Subject-Complement 

.~. 
"you buy what" 

However, if we make the rule binary, with the wh-phrase forming 

the first arg~~ent (e.g.(96)), certain advantages accrue. 

(96) 

<definer> 

T 
SCR Wh-Clause 

~ 
<wh-i tern> <relation-ins ta nee> 

I 
"what" T 

sc~~omplement 

"you buy what" 

In particular, it allows for the fact that, in ordinary relative 

clauses, the semantic content of the wh-itern is spread between the 

antecedent nominal and the relative pronoun. For example, the 

information that the underlined phrase in (94)(b) refers to a book 

derives from the antecedent "book". Therefore we might want to have 

some way of incorporating the semantic content of the antecedent into 

the overall meaning of the wh-clause. The phrase in. (93)(b) might 

have a tree like (97). 



t>ctge 231 

(97) 

<term> 
~\ 

<determiner> <definer> 

I 
T II the" 

SCR Wh-Clause 

~ 
<definer> <relation-instance> 

T 
SCR Subject-Complemen~ 

''book'' ~ 
L~-

"you buy which" 

If we have organised the representation of referring expressions 

,c.;o that_· tLr~y ar·e normally represented as definers (see Section V.6), 

then the tv.:o descriptions will connect quite well, since relative 

clauses (both with an<l without antecedents) will produce the same 

sort of structures (definers) as ordinary noun phrases. The only 

other interface to be arranged is for the question wh-clauses. The 

conversational routines will have· to be able to manipulate a definer 

(suitably marked) at any stage where a question might occur. (See 

Chapter vr for a possible way of achieving this) .. 

The-: \.;,:~:/ o[ converting a relation-ins.tance with one component 

l10.lding n. vh·-iter:i into a definer is straightforward for simple 

~ 

ex:m1pl.:-~~>. The wh-clause SCR has to find the component with the 

h:li-·item, ::iack it as "lilank", and select it as the selected role when 



Page 232 

constructing the definer. That is, a relation-instance like (98) (a) 

would become a definer like (98)(b). 

(98) 

(a) 

<;I< 
Agent Patient 

~ w 
<hearer> <wh-item> 

(b) 

~ 
r~ 

Agent *Patient 

"' ~ <hearer> 

--\ 

Harking the selected component as blank has oneu:ndesirable consequence 

the information in the wh-item is lost. This info rm at ion 

constrains the class of items that the definer refers to, and may be 

quite rich, as in (99). 

(99) Which large green furry object did you buy ? 

The information can be retained, in quite a natural way, by 

transferring it to the restrii:tio_1.l for that component in the definer. 

Then the definer will denote only items ~1ich match the description 

originally specified in the wh-ph!ase. 

V. 4. 4 Non-restrictive Relative Clauses 



Page 233 

There is yet another way in which wh-clauses \an be used. 

Corresponding to the distinction between res tr ic tiv e and 

non-restrictive adjectives (see Section. V.l above) there is a 

distinction between restrictive and non-restrictive relative clauses. 

(100) 

(a) The girl who you met last night rang up .. 

(b) Alice, who I cannot stand, rang up .. 

Some relative clauses (e.g. (lOO)(a) ) act as modifiers to 

restrict the scope of the antecedent phrase, thereby constructing a 

more narrowly referring expression. Other relative clauses 

(e.g.(lOO)(b)) do not restrict the range of ite~s specified, but add 

incidental information about the item(s) that the speaker wishes to 

convey. (See Smith (1964), Thompson (1971), and Ross (1971) for some 

comments on these clauses from a transformational standpoint). 

The other main difference between the two types of relative 

clause is that, while the restrictive relative clause combin-es with 

-the head nominal of the antecedent to create a more complex nominal 

(which other items such as determiners can interact with), the 

non-restrictive relative clause makes an assertion about the semantic 

item produced by the entire antecedent phrase_ Hence restrictive 

relative clauses cannot be appended to proper names unless the name 

is treated as the head nominal of the noun phrase, e .. g. : 

.( l 01) 



rdge 234 

(a) Alice, who you like, has arrived.. (Non-restrictive) 

(b) The Alice who you like has arrived. (Restrictive) 

The only problem in incorporating these clauses into the 

wh-clause grammar outlined above is . finding some way that the 

analyser can distinguish between the two ( cf. comments in Section 

V.L2 on adjectives) .. As Smith (1964) comments, non-restrictive 

relative clauses often have "comma intonation" surrounding them, and 

co;;-ir.ias are the usual device for indicating the usage in written. 

English. The HCHINE gra;:imar can analyse relative clauses as 

non-restrictive if and only if they are surrounded by commas, since 

its ATN includes an explicit test for an opening. comma at the start 

of the network for non-n~stric tive relatives. 

The rest of the grammar is fairly straightforward. There is an 

SCI\ "NRel-Clause" which takes any item and a wh-clause meaning as. its 

ar~ur:wntst makes an assertion about the item, using the wh-clause, 

and then returns the item unaltered· as its result. The latter stage 

may seem redundant, since the main purpose of the SCR is merely to 

make the assertion, but the analysis process has been designed on the 

assumption that the SCRs will fo:nn a tree (with results from lower 

rules forming arguments for higher rules). Hence every rule must 

return one result. (See similar comments in Section V.l). The trees 

for non-restrictive relative clauses will be as in (102). 



Page 235 

(102) 

<relation-instance> 

T 
SCR Subject Complement 

~--,.._____. 
/ . -· 

<Alice> <definer> 

T ~ 
NRel Clause "has arrived" ,.......--.. _____ _ 

<Alice> <definer> 

I T 
"Alice" SCR Fh-Clause r .... __ ~ ...... ~---

<wh-i te;;1> <relation-instance> 
I . ...;:-~/~-.. __ . 
"~Jho" "you like who" 

., 



i)age 236 

Section V • .5 Limits ~ .Em12_eddi1_!£ 

It has often beei1 noted ~e.g. Yngve (1960, 1961), Miller and 

Isard (1964), Chomsky (1965)) that certain kinds of English sentence 

are hard to understand, although their grammati~al structure seems to 

follow the snme pattern as other, easily understood, sentences. 

Examples include centre-embedded clauses ( e .g • (103)(a)) an~ 

verb-particle constructions containing "heavy" noun phrases (e.g. 

(lOJ)(b)). 

(103) 

(a) ? The rat the cat the dog chased bit died. 

(b) ? He called almost all the thirty Philipinos he met on his 

Globtik holiday in France up. 

Investigations of these phenor:1ena sometimes seem to assume that 

such complexity will be accounted for by some single principle, and 

that the actual structure of the whole sentence will be the relevant 

factor in determining complexity. Neither of these assumptions is 

necessarily true - there may be several principles which contribute 

to "complexity", and tbe most difficult examples may fall under more 

than one of these principles. Also, the relevant parameters for 

determining complexity r.1ay" be within the processes of perceiving or 

producing the sentences) and may not be directly measurable in the 

final structure of the sentence~ 



Page 237 

One measure of complexity which is possible is the depth of the 

surface structure tree, in terms of the longe~t path from the root to 

a tip. This does not account very a~equately for the data, as 

certain constructions appear to be easily comprehended despite great 

depth; left-branching or right-branching structures, such as 

(104) (a) and (b) , are the usual examples (Yngve (1960) , Chomsky 

(1965)). 

(a) The emperor's wife's servant's room. 

(b) The room of the servant of the wife of the emperor. 

Yngve (ibid.) put forward a production model, with a more subtle 

definition of "depth". His "depth" was measured in terms of 

partially-processed surface structure nodes.. This measure was more 

satisfactory, in that it did not rate right-branching structures as 

being complex (i.e. (104)(b)) would not be classed as complex), but 

it did rate ·1e.£t-branching structures as complex, which is 

counter-intuitive. This resulted from Yngve's model being for 

production of sentences, rather than for analysis; the producing 

mechanism therefore started from the root of a subtree like (105) and 

began producing nodes down the left of the tree) dc~pth-first. The 

left-branching construction caused the nodes to be initiated in the 

order indicated in (105) (1-2-3-4), and completed in reverse order 

(4-3--2-~1) 1 



Page 238 

(105) 

2~om 
3 ~rvant's 

;x0fo's 
the emperor's 

Such constructions therefore resulted in a large number of partially 

completed nodes, and hence had a large "depth" .. 

Let us consider how a recognition mechanism night deal with some 

of these examples, to see whether the complexity might r:esult from 

difficulties in the sentence analysis process. We will first examine 

right-e1i1bedding and centre-embedding construe tions, before returning 

to the question of left-embedding constructicins. Intuitively, most 

(or all) of the 11 di ff icul t" sentences are cases where a large 

constituent (in some sense) has been inserted in a central position 

in the sentence. If a small consituent is inserted, or if the large 

constituent is at the right-hand end of the sentence, oddity does not 

occur. 

(106) 

(a) I told my story to the police. 

(b) ?? I told the story that I had heard from a crowd of Arabian 

horse-thieves ,,.1ho W<:'.re planninr; to set up a Citizens Advice Bureau in 

F1·j_ocl,bcir:1 to tbc police~ 



Page 239 

(c) ? He said that he had an appoinbnent to the secretary. 

(d) ?? He said that almost all of his friends were founder 

members of the First International League of Bad Linguists to the 

secretary~ 

(e) He said that almost all of his friends were founder members 

of the First International League of Bad Linguists. 

(f) I said that Bill knew that Harry thought that Fred was a 

crook .. 

while 

~ 

Informally, what seems to be happening is that the analyser, 

processing the embedded item "forgets" some information 

relevant to the containing clause, and so has difficulties ~1en it 

attempts to recommence processing at the higher level.. As Miller and 

Isard suggest: 

"Let us imagine that anyone who knows English has something 

corresponding to a relative clause subroutine that can be called to 

process sentences containing such structures. When this subroutine 

is called, the main sentence-analysing routine is interrupted and the 

point at which it must be resumed is stored temporarily until the 

subroutine has been executed~ ..... suppose that, while the subroutine 

is being executed, a second such construction is encountered, so the 

subroutine is required to call itself. If this recursive feature 

were not available, confusion would result; the temporary memory for 

the point· of re-entry into the main routine might be erased, for 

example, so that when it is resumed, the main routine would have to 

treat. subsequent words as if they began a neu constituent of the 

sentence." 



·::>age 21+0 

(Notice that this was written some years before the augmented 

transition network model was suggested for· English)_ This would be 

compatible with the fact that larger constituents (which presumably 

require greater processing r~sources) cause greater difficulty, and 

with the fact that no ~ifficulties occur in right-branching 

structures where no segment of the higher clause is left after the 

embedded item (e_g_ (106)(f)). Notice that it is not plausible to 

suggest that it is the initial storing of information about the 

containing clause that goes wrong, since phrases like (106) (d) an<l. 

(e) show that the trouble derives not from embarking upon an 

arbitrarily long constituent, but from trying to re- commence tHe 
containing clause aften.rards.. If we examine this in greater detail, ' 

it turns out that 1the subroutine analogy can be described precise.ly 

using the computational grammar devices outlined in Section 111-7. 

V.5.2 R~~ht-Embedd~~~ 

In the standa·rd ATN- ·or PROGRAHMAR mechanisms, each er.ibedded 

constituent is processed at a different "level", and these levels are 

organised in a strict hierarchical fashion, corresponding (usoally) 

to the structure of the surface tree. For example, :ln PROGRAJ1L-1AR, 

\;hen a parsing subroutine exits normally, it attaches its result to 

the current node of the syntax tree- Normally a tree with n embeddc~d 

structures will have been processed at n different levels. Each 

level is initiated by a "PUSH" arc and terminated by a "POP" arc (in 

ATN notation), with interpreter information about higher levels being 

kept on stacks while lower levels are processed. The kind of 

information that the interpreter needs to retain may depend on the 

exact detn ils of the theory of surface struc tun~ being used, but t:he 



Page 241 

NCHINE program has to maintain separate values in several registers 

for each level (see Sections IV.6 and VI.3.4). 

The information about a particular level has to be retained 

until it is finished, and the only way of finishing it is to 

"pop-up"; this, in turn, can happen only when all lower levels have 

been completed and "popped". Hence information builds up on the 

interpreter stacks as levels grow downwards. It is quite plausible' 

to suggest that this building-up is what contributes to complexi~~. 

However, embedded constituents are all treated similarly, whether 

embedded in the centre or at the extreme right of a clause. In 

either case, all the infonnation bu'\l.ds up for each level. Hence it 

is not simply that overloading stacks causes trouble, for then both 

centre- and right- embedding would be perceptually difficult. It is 

more that overloading causes sorae kind of "forgetting", and this lost 

information is not needed in right-embedded structures since no 

further processing occurs at the higher level .. 

If we were not interested in modelling linguistic behaviour in 

detail, we could continue with the traditional approach of allowing 

the parser unlimited space. on stacks, to process arbitrarily complex 

constituents (which might be incomprehensible to humans). However, 

since the aim is to restrict our model wherever possible and to 

reflect human lingutstic ability as much as possible, it seems 

reasonable to investigate how the embedding facilities can be 

lirni ted. The exact bound on storage and/or processing is possibly 

very subtle, but a crude approximation could be achieved by putting a 

U1nit on the interpreter· stac.ks, in such a way that bottommost items 

are lost if ovecloadinr; oc.cll1·s. This still leaves various 



Page 242 

possibHities for using such stacks in the ATN interpreter. 

We could continue the traditional method of storing infonnation 

on the stacks even for right-embedded structures, but organise the 

structure-building mechanism so that the surface structure tree would 

not be incomplete or ill-forraed if certain levels were never 

re-activated by the parser. Alternatively, we could have two 

different processes, centre-embedding and right-embedding, where 

performing the latter does not increment the interpreter stacks and 

leaves the structure at the current level in good order before 
\ 

"forgetting" its details.. The main difference between these two is 

that the traditional method 11 forgets" levels only when forced . to, and 

"remembers" information at every embedding; in 
/ 

the second method, 

the analyser decides at the start of a constituent that it is not 

going to return to the current level again, and abandons the 

information immediately. 

The latter approach has been incorporated into the MCHINE 

program~ Al though there is little to choose between the 

n.l tern:1t ivcs" the second method was preferred for the following 

rea.:.;ons. Firstly, it fitted in well with the idea (Section III. 7) of 

not ne2cLLng to specify continuation states on every PUSH arc. 

~~econcUy, it. sel~ned easier to organise a structure-building mechanism 

where levels were abandoned deliberately, rather than being left to 

after being "forgotten"~ Thirdly, there were certain 

cons~ructions (sec below) where this decision method seemed very 

~rnu-a~J;,;.. FourthJ.y, it seemed an interesting idea, whose feasibility 

shcu~~d Le. invest.I.gated to see what happened. 



Page 243 

The right-embedding device has already been described in 

Chapters III and IV, as it is the modified PUSH construct referred to 

as "NEHLEVEL ..... NIL" - The interpreter should, on executing such an 

arc, create a new processing level without storing the details of the 

current level, as outlined in Chapters III and IV .. 
I 

(In the MCHINE 

program, this consists of attaching the current TOPNODE to the 

current SUBROOT, .thereby ensuring that no loose ends are left in the 

tree, setting the node currently being worked on - CURRNODE·- as the 

new SUBROOT, and setting up a new blank TOPNODE. The continuat':ion 

stack, the action stack, and the register stack are untouched.) 

This device can be used quite neatly in analysing right 

branching noun phrases like (104)(b) .. Suppose that the analyser has 

completed the phrase "the roor:i", and reads the word "or'.. (The 

traditionally intransigent problem of attaching prepositional 

adjuncts is ignored here, on the assur.iption that the argument offered 

here applies to at least one of the options facing the analyser) .. If 

it decides that a right-branching prepositional adjunct is about to 

be processed, the action it must take is exactly that of a 

.(NEWLEVEL .... NIL) arc. It needs a new level to process the next NP, 

but it has no new information about ·what will follow, since this 

second NP forms a structural subpart of the first NP. It has to 

assume that whatever was predicted to follow the original NP will nm1 

follow the total NP iricluding the. adjunct. It would j us.t be an 

embarrass'ment to have to specify another continuation state, when no 

further predictions can be made about the. grammatical environment 

surrounding the NP. Since the first NP can be regarded as fi.nished 

apart from the adjunct now being st~rte<l, no interpreter information 

need be kept concerning it. Instead of the st<lcks building up four 



Page 2M 

nested levels to process (104) (b), only one level is used at a time. 

Hence ·no "complexity" or unintended "forgetting" is caused by 

processing a multiply-branching phrase like (104)(b) inside a clause. 

Using the more traditional methods, some continuation state (say, 

STOPNP) would have to be specified each time, and the continuation 

stack would pile up three copies of it. 

V.5.3 Left-Embeddin& 

~ 
Let us now consider left-branching structures like (lOL}) (a). As 

observed before,. Yngve' s model predicted a large 0 depth" for this 

construction, since his method was based on starting with the base of 

the complete subtree. The situation is different if we examine the 

structure in recognition terms. The analyser cannot know in advance 

that such a deep tree will be part of the input, and so it does not 

start by building a series of partially processed nodes. After 

processing the phrase "the emperor's", a whole node (like (107)) will 

have been comple~ed (see Section V~l above for more details). 

( 107) 

SCR Determiner 
..... ~~ ..... -~ .... C> 

11 the" 11 er:1p cror" 

The 11
' s" signals that this whole node :Ls to be subordinated to a new 

node that must now be commencc<l-. So :1t any given time~ only one of 

the phrase nodes is incomplete and being process2d. 

Consider how this procc~3s1.ng t>~n be decribcd using the 

constructs defined in computatlona1 g:-;E1.1·v1r. A.s d.i.scussed in Section 

V. l, possessive noun phrases fulfil tli•' :;:1.r:12 role (L1 the containing 

·structure) as lexieal possessives, :~rHi ;;.re p:n:ndi_~_;.n1i1tically related 



to articles_ Hence, after the analyser has built a possessive node, 

it should process the containing phrase from the appropriate point; 

that is, as if an article or lexical possessive had been found- It 

should not try to process a whole noun phrase, since another article 

or_ possessive should not be present. 

(108) * The emperor's a wife lives here_ 

Since the phrase forming the possessive has been completed, 

information held in registers for it need not be retained, and ~ 
some 

of thes~ registers will be needed for the incoming phrase. The 

appropriate command to insert in the grammar at this point (as 

observed by Winograd (1972, p.93)) is a jump to the state following a 

"determiner" or "possessive", and a re-initialisation of any 

registers. Notice that the grammatical registers need not be pushed 

down, since the old values a re being discarded. We do not ne.ed to 

save values of the interpreter register for the completed possessive 

phrase, so these can also be re-allocated without pushing down. 

Hence no new levels are created, whether by nesting or by overwriting 

the old one. 

Left-branching structures create difficulties for any simple 

top-down recognition grammar, since there is a danger of infinite 

recursion. Some special modification is usually needed in a 

context-free parser which uses recursive left-branching rules~ It 

should be emphasised that the above approach to the problem· is just 

such a special-purpose modification, and there is no claim that the 

ATN interEE.,eter in the NCHINE program can handle .<:..!!):, left~br:-.J.nc.hing 

structure, as currently written. In order to analyse left-branching 



Page 246 

phrases, specific instructions had to be inserted in the ATN Jl.E_~ 

in. the program- A similar method might be employed for 

left-branching structures (for example, in another language) but it 

would have to be included in the recognition _gram.!.!.!E_E. of that 

·language. 

V.5~4 Relative Clauses --- -------- .... ______ _ 

Another classic case of embedded structure which is difficult to 

perceive is that of relative clauses within relative clausess as in 

~­
(l03)(a) above .. It is intei4 esting to assess what the computational 

analysis of relative clauses given in Section V.4 suggests regarding 

the possible processing difficulties presented· by sentences like 

th:i.s. 

There are several aspects of this construction which lead to a 

great deal of storage space (in interpreter and grammatical 

registers) being used 

(109) 

(a) The yelative clauses are all attached to the subject of the 

containing clausL~~ In writing the HCHINE grammar, it became apparent 

that the subj cct position is one of the few places in English grammar 

where a NEh'LEVCL •• NIL arc is not an adequate fonn of embedding,. 

since some continuation state raust be specified (for the start of the 

compleriient of the~ clRusc), and the new processing level must be 

nested. Henc2, the register values for the containing clause are 

bcin~ ~aved while the subject phrase is being analysed-



Page 247 

(b) The relative elements are all to be located as object~ of 

their clauses, so that they must be stnred from the start of the 

clause until the end. 

(c) The wh-clause uses all the registers of the clause network, 

plus a structure-holding register (WHSLOT). This is more than any 

other class of- constituent. 

Also, a great deal of processing must be carried out at the end 

of the clauses, since three wh-clauses all tenninate within a few 
~ 

words. At the end of each wh-clause, the analyser has to tidy up 

registers at that level, fit the contents of WHSLOT into surface 

structure, and pop up stacks to resume the higher level. 

Due to the points made in (109), the interpreter and grammatical 

stacks are more deeply piled with entries during the centre-embedded 

relative clause construction than in most others. Thus-, if there 

ware a limit to how many entries can be nade on a stack, with earlier 

entries being lost, this could also create difficulties_ 

There are several factors which might be thought to contribute 

to complexity, e.g. : 

(110) 

(a) Total storage space required 

(b) Total processing required (if this could be quantified) 

(c) Depth of stacked inf~rmation 



Page 248 

(d) Loss of 'information about a higher level (owing to (a), (b) 

or (c), or some other factor) 

It can be seen from the points made here that the description of 

Section V. L} will predict that multiply-embedded relative clauses are 

"complex", whichever metric is selected from ( 110). This is not very 

interesting, since the same is 1 ikely to be true of almost any 

serious description of English relative clauses.. However, there is 

one point worth noting about the NCHINE grammar version, if our 
~ 

complexity metric is based on (110) or related factors~ 

A more standard ATN 
, . 

ana.Lysis of relative clauses will also 

predict that any multiply-embedded structure is complex, since 

information builds up on stacks for every constituent processed, as 

outlined in V .. 5.2 above. In the MCHINE grammar, this is not the 

case, since the NEWLEVEL ••• NIL construct allows some constituents to 

be nested without loading up the stacks. Hence the discrepancy in 

complexity between a right-branching- and a centre-embedding structure 

is much clearer in the HCHINE grammar than it would be in a standard 

ATN description.. The self-embedded relative clause is one of the few 

cases where genuine nesting (as opposed to NEULEVEL ..... NIL processing) 

has to occur to several layers~ (One of the other examples is the 

embedding of a clam;e within the first of two objects in a clause, as 

in (106) (c) and (d)). 

After the MCHINE program had been debugged on its target 

sentences and had carried out several simple dialogues (see Chapter 
c::-

VI), a test was card.e<l out .to see how the NEtvLEVEL ••• NIL construct 

interacted with n1ul tiply-~inbcdded relative clauses. There is a 



Fage 249 

variable DEPTH in the .MCHINE program which records the maximum nwnber 

of entries allowed on stack registers, and the program had been 

debugged with ·DEPTH set to 8. This allO\~pd at least four 

self-embedded relative clauses· to be processed successfully. With 

DEPTH altered to 3, the program could still successfully process 

non-centre-embedding sentences, but failed on triply-embedded 

relative clauses. 

To summarise, the analysis of relative clauses presented in 

Section V. 4 indicated that multiply embedded relative clauses will be 
'--\ 

complex, if any of the factors in (110) are taken to determine 

complexity. The vacuity of this observation is mitigated by the 

point that a grammar with the NEWLEVEL .... NIL device distinguishes 

more sharply the complexity of centre-embedded relative clauses from 

that of other embedding constructions. The idea of using a 

subroutine-like mechanism for embedded constituents is not new, but 

the NEWLEVEL. - .NIL construct introduces a modified form of subroutine 

which seens particularly useful. 



Page 250 

Section V.6 : The-Semantics of Noun Phrases ------ -- - --- - - -- -----

The term "noun· phrase" can be taken to cover a wide range of 

forms, including nominalised clauses_ For the purposes of this 

discussion, we will focus primarily on the simpler fonns proper 

nouns, pronouns, and common nouns with optional modifiers before and 

after. Various classifications ( e .g • "definite/ indefinite", 

"specific/ non-specific") can be made of such phrases, and these 

categories are generally treated as syntactic, rather than semantic. 
~ 

The object of this section is to show that these traditional 

distinctions are better looked on as semantic regularities, and to 

suggest how the patterns might be incorporated into a computational 

model. 

The SHRDLU program (Section II.9) translated English noun 

phrases into procedures which, when executed, found the referent ( s) 

of the phrase. As observed in Section III..4, this incorporates some 

aspects of the "sense/reference" distinction, provided that we take 

"referent" to mean some internal construct, rather than a concrete 

object .. We will try to refine that approach, to see exactly what 

kinds of "meaning-procedures" there are, and what kind of operations 

can be performed on them. 

V.6.1 Definiteness 

Certain kinds of "definite" noun phrase (using the usual 

classification) seem to have a fairly straightfonmr:d behaviour .. 

They can be regarded as providing descriptions which, in a particular 

context, will identify a unique set of objects that the hearer knows 

about. 



Page 251 

(111) 

(a) The red block 

(b) This man 

(c) The farmer's wife 

Even if we could formalise this way of describing the meaning of 

NPs, it would be neither a necessary nor a sufficient criterion for 

~ 
traditional "definiteness" .. It is not clear whether proper names and 

personal pronouns are traditionally "definite", bu~- they are 

certainly used to identify a unique set of objects that the hearer 

knows about. Winograd (1972) points out that it is odd to use a 

phrase like "the pyramid" if the context does not make it clear to 

the hearer which pyramid is referred to. Compare this with the 

comment by Mccawley (197lb) that (112) sounds odd if the context does 

not make it clear who "he" is. 

( 112) He resembles Hike. 

The further observation should be made that ( 112) also sounds odd if 

the context does not make it clear who "Hike" is. This alleged 

similarity between proper names and descriptive phrases may seem 

dubious at first, but in fact proper names, as used in English 

conversation, are not "pure names" ·in· the philosophical sense; that 

is, there is not a one-to-one correspondence between names and 

objects. Names may be in.tended as an approximation to pure· names, 

hut. the way that they are used is analogous to the use of identifiers 

in programming, where the value of an identifier depends on the 

context. The. expression 11 Hi.ke" in (112) may have diffe.rent referents 



Page 252 

in different contexts, since different people have different mutual 

acquaintances. 

As Winograd points out· (ibid., p .156), rrdefinite" cannot be 

identified with "knovm to the hearer". There are various kinds of 

"definite" noun phrase which can be used to refer to objects not 

previously mentioned. 

(113) 

(a) My brother who lives in Chicagoc 

(b) The title of his new book. 

(c) The tallest elephant in IndiAna. 

(examples from Winograd). 

Winograd observes that (113) (b) apparently is allowable because the 

noun "title" denotes, in some way, a function defined on the set of 

books. Similarly, (113)(c), by providing a full description, allows 

the hearer to assume that such an object exists. Sentences like 

( 113) (a) are more interesting "brother" does not denote a 

functional relation (since a person can have several brothers), nor 

is there any guarantee that 0 who lives in Chicago" provides a unique 

description in the way that "tallest" does .. If a speaker uses 

(llJ)(a) in acld:cessing someone who knows nothing of his brother, the 

assunption is that this description provides all the relevant 

information (for this particular conversational exchange). If the 

heo.rer does know all the details of the speaker's family, the phrase 

is once again like ·those in (ll'i), and the sentence may be 



Page 253 

inappropriate if it does not sufficiently define a referent. 

This raises a further aspect of "definite" noun phrases the 

adequacy (and relevance) of the information involved. There seems to 

be a general principle in using definite noun phrases, that 

distinctions need not be made if irrelevant in the particular 

context. When the program of Davey (1974) is constructing referring 

expressions, it takes into account which distinctions are relevant to 

the context, using various equivalence classes within the domain of 

discourse .. Oddity can result from not being_consistent about what 
~ 

distinct ions are relevant .. (114)(a) sounds acceptable, on the 

assumption that which "end" is involved is irrelevant, but (l ll~) (b) 

sounds odd, with the second clause suddenly introducing a contrast as 

being pertinent .. 

(114) 

(a) I sat down on the end of a nearby log. 

(b) ?? I sat down on the end of a nearby log, and Harry sat on 

the thin end. 

Let us try to cover these aspects of "definiteness" by the 

following generalisation 

(115) A definite noun phrase is used by the speaker to provide 

the hearer with all the relevant infonnation to produce a set of 

refetents; the information may be inherent in the description, as in 

the case~ of "functional" words, superlatives, etc. 



Page 254 

The main inadequacy of (115) is that it says almost nothing, as 

becomes apparent on considering the idea "produce a set of referents" 

in more detail. In the case of some referring expressions (e.g. 

proper names, pronouns, certain phrases with "the"), the. referents 

are to be found in the hearer's "world model", since they are things 

which he should know about already. However, in the case of phrases 

lil~ those in (113), there seems to be a process of generating a 

referent on the spot, given a description which it must meet.. Hence 

"produce" in (115) means "find ~generate". At this point in '--l~1e 

argument, (115) becomes so general as to cover many other kinds of 

referring expression.. "Indefinite" noun phrases can be used to 

provide a description of an object the hearer is not acquainted with, 

and the speaker provides only the information he feels is relevant-

(116) 

(a) A woman with a collecting can accosted me. 

(b) Sol.le vandal has wrecked this phone box. 

The difference seems to be that "indefinite" noun phrases can be used 

onl2_ to generate a set of objects - there is no possibility of 

11 finding 11 one automatically in the hearer's world model .. (That is 

not to say that he could not infer, at some stage, who the subjects 

of (116) (a) and (b) refer to, but that would not be part of the 

information that the speaker is imparting in the noun phrase). 

This contrasts with certain other noun phrases which we have 

been cL1ssing as "definite", where referents must be "found", but 

cannot be "generp.ted 11 if the search fails. In particular, proper 



Page 255 

names, personal pronouns, and demonstratives all seem to require that 

the hearer can actually identify what objects are referred to the 

meaning of the phrases allows no construction on the spot of a 

referent(s) to match the description. If we class these phrases as 

"deictic", then the classifications so far are as follows. 

DEFINITE and DEICTIC find a referent. 

DEFINITE and NON-DEICTIC : ·find a referent; if none, generate 

one. 

INDEFINITE generate a referent 

(Rumelhart and Norman (1973) give a similar gloss for 

"definite", but they attribute this behaviour to the article "the", 

rather than to soDe more general property of definiteness which is 

possessed by various kinds of phrase). 

So far all the noun phrases have been regarded as referring to 

some set of referents in a given context. 111ere are certain 

expressions for which this is not a very satisfactory way of 

describing the rncaning~ In particular, generic statements often do 

not have particular referents as ~their subjects or objects : 

(117') 

(a) Wolves eat meat. 



Page 256 

(b) The wolf is a carnivore. 

(c). A wolf is a carnivore .. 

(d) The monarch is the head of the Church of England¥ 

The subject phrase sometimes does have a referent in a particular 

context, as in (117)(d), and there may be an interpretation of the· 

sentence i.n which that is the best way to describe the contribution 

of that phrase. Nevertheless, in the cases being considered hei-e, 

there is al so a "generic" reading of the sentence, in which the 

statement conveyed is not about one particular referent in one 

particular context. Let us refer to the generic interpretation of 

the noun phrase as "non-specific" and the other interpretation as 

"specific" .. 

Noun phrases like "the monarch" or "a wolf" can have either a 

specific or a non-specific reading, depending on the context of use, 

but certain other kinds of expression are less versatile. For 

example, it is very difficult to find a generic (non-specific) use of 

a proper name or personal pronoun. The subject of (119) (a) cannot be 

interpreted as neaning "anyone named Ed" 

(119) 

(a) Ed drinks Newcastle Brown. 

(b) Anyone who protested uas thrown into prison. 

Also, se;me phrases (e.g. the subject of (119)(b)) are wholly 

non-specific. It might be thought that. the set of wholly specific 



Page 257 

phrases and the· set of de le tic phrases might be related, since they 

clearly overlap .. However, some wholly specific phrases are not 

deictic, e .. g .. "Someone who protested was thrown in prison" .. 

Intuitively,. the non-specific phrases are being used as 

patterns, to make statements about any object(s) that match the 

pattern, whereas the specific phrases are being used to produce 

instances, in a particular context, which do ewtch.. It would be 
'-\ 

useful if we could find some single representation for the meaning of 

a n9un phrase which could function in both-these ways .. 

V_6 .. 3 .. Predication 

Noun phrases can be combined with the verb "be" to produce a 

verb phrase which can form the complement of a sentence. It would be 

preferable if whatever ;Je:nantic representation we can devise for 

referring expressions will also describe their behaviour when they 

combine to form predicates, as in (120). 

(120) 

(a) Bill is the oi,,:n.er of that i:1ercedes .. 

(b) Your landlord is a i:~rxist. 

The two previous suhsections have indicated that a suitable 

representation might be some kind of -"pattern" which can be either 

used directly (non-specific), or used to find a set of referents 

(definite), or used to gener~tc a referent set (indefinite). This 

sup;gests that we considet· either using the referent set to form the 

predication (effectively) treating the phrase in the complement as 

specific), or using the pattern Ltse.l:E to convey the predication 



Page 258 

(effectively, treating the phrase as non-specific). If the phrase 

inside the complement is either wholly specific or wholly 

non-specific, there will be no choice, but it remains to be seen 

which is better for those phrases which can take either 

interpretation., 

1£ we are making the assumption (as suggested in Section IV. 8) 

that semantic processing is carried out locally as far as possible, 
~ 

then the difference between using the specific and non-specific forms1 

would be as follows. The specific form would produce a referent SGt 

for its semantic structure, whereas the non-specific form would 

produce a pattern. In the former case, the subject-complement SCR 

would have to perform some kind of object identification process 

between the set of objects referred to by the subject and those 

produced by the complement. ·In the non-specific case, the 

subject-complement SCR would have to assert that the pattern was true 

of the subject set. There seems no way to choose between these, 

other than seeing which integrates best with other rules and 

opeTations required. It would be extremely useful, for example, if 

the structure chosen for such complements was similar to that chosen 

for ordinary verb-phrases, since then there would need to be only one 

subject-complement rule to cover both cases .. 

This can be achieved (as indicated in Section III .. 10) by using a 

"definer" for the semantic structure for referring expressions. As 

described in Section III.10, the definer is a piece of semantic 

network with one role "selected", and can be se1aantically processed 

in various ways. Referring expressions seem to need at least 3 

semantic operations defined on th<s-m 



Page 259 

(121) 

(a) Find-referent : use the semantic item as a pattern to get a 

set of refernts from the world model. 

(b) Generate-referent construct a new semantic item which fits 

this pattern. 

(c) Construct-assertion : combine another item with the pattern 

to create a relation-instance. 

In addition, they need to remain as patterns on some occasions, so 

that they can indicate a range of items. If we adopt the "definer" 

as the kind of structure for a referring expre~sion, these operations 

can be defined in a fairly straightforward way. (121) (a) corresponds 

to fetching an item. from the semantic network to fill the selected 

role. (121) (b) corresponds to construe ting an item to fill the 

selected role (the role-restriction can provide· information for 

this). (12l)(c) corresponds to putting a semantic item into the 

selected role on a definer. 

The phrases underlined in (122) could then provide a definer 

directly to combine with the subject item to form a 

relation-instance .. 

(122) 

(a) Fred is 2-~cher 



Page 260 

(b) John is M-:ny' s fathe_E.. 

' This assumes that the "be" would not af feet the overall semantic 

structure of the phrase, but that is not implausible. (Some 

transformational treatments of "be" regard it as absent in deep 

structure, being inserted by a transformation). Since verb SCRs 

("role-placement rules" - see Section V. 8) produce definers:. the 

modularity of subject-complement SCRs is' achieved. 



Page 261 

Section V .. 7 ..!... Tense and Time 

This section discusses and attempts to develop two previous 

computational descriptions of the English tense system (Isard and 

Longuet-Higgins (1973), which is based on Reichenbach (1966), and 

Isard (1974)) .. 

In· conversation, we frequently indicate when (approximately) an 

event occurred by relating it to another event, as in (123)u 

(123) When I arrived, he had already left .. 

The "when"-clause can be regarded as set ting up a "reference 

time11
, with respect to which the main clause is interpreted. We can 

talk of-earlier events either by using past tense or perfect aspect, 

or both. Isard and Longuet-Higgins distinguish : 

(124) 

(a) the time at which the sentence is uttered 

(b) the time of reference 

(c) the times at which the events in the sentence occurred 

Thus, in (123) "I arrived" gives the time of reference, which is 

before the time of utterance and after the time that "he left" .. That 

is, there are two ·event times in this example, one of which supplies 

the time of reference.. Isard and Longuet-Higgi.ns offer the following 

"rule of thumb" 



Page 262 

(125) 

(a) past tense will be used when and only when the time of 

reference precedes the moment of speech 

(b) present tense indicates that the two coincide 

(c) the presence of "have" (perfect aspect) signifies that the 

time of the event in that clause precedes the reference time 

~ 
(d) the absence of "have" indicates the coincidence of reference 

time and event time 

The idea of distinguishing event time, reference time and 

utterance time seems intuitively useful for describing tense, but the 

"rule of thumb" is slightly misleading on points (b) and (d). Present 

tense can be used (as Isard (1974) points out) to refer to events in 

the future, and so reference times which succeed the utterance time 

can be set up using presen~ tense; as in (126). 

(126) When he arrives in London, he will have spent four hours 

on the train .. 

Regarding ( 125) (d) , the exact relationship between reference 

time and event time (in the absence of "have") is unclear : 

( 12 7) 

(a) When they built the fifth bridge, they took several tenders 

(b) " " " " " ", they used the best materials. 



Page 263 

(c) " " " If II II , there was a gala opening. 

"Approximately coincide" seems the best summary of examples like 

these. \Jhen the data include clauses referring to intervals of time 

(which Isard and Longuet-Higgins were specifically excluding) even 

"approximate coincidence" is not a very good description. 

Nevertheless, (125) (a) and (c) seem to be generalisations which are 

worth retaining. 

Isard and Longuet-Higgins also observe that it is not necess'<1ry 

for the reference time to be established within the same utterance as 

it is required - it may be a previously mentioned reference time : 

(128) 

\.las he there when you arrived ? 

No~ he had already left. 

The reference time -for the answer is that set up by the "when"­

clause in the question. 

Mccawley (197U) suggests that a past tense sentence (such as 

"the. farmer killed the duckling") is ill-formed unless the context 

provides a time-reference point for it. This is true only as long as 

"context" is taken to mean the entire knowledge of the hearer of the 

sentence. Certain historical statements do not need such explicit 

ref ere nee times, as the events themselves are well-known. Similarly, 

a sentence like "Angus went to school in Edinburgh" does not sound 

odd if the hearer knows that Angus is educated, and hence probably 

went to school at some time .. This is relevant to the use of 

"wllen"-clauses, since it would be very difficult to carry on a 



Page 264 

conversation if some events or states were not already 

self-supporting; the whole point of a "when"-clause is to use such 

an event or state to set up a reference time. 

Isard (1974) develops these ideas further. He proposes two 

slots, PRESENT and REMOTE, into which reference times can be put. 

These slots maintain their values between utterances (to account for 

dialogues like (128)) unless either they are obliterated by some new 

value being put in the slot or the conversation switches to usTug 

some other slot. That is, (128) establishes the reference time 

referred to by "when you arrived" in the REMOTE slot; later 

utterances which use remote tense will automatically refer to that 

reference time unless some new remote reference time has been· 

specified, or some utterance in the pr~sent tense has been 

interposed. Isard suggests that it is the task of the "time-binder" 

"when" to get the reference time from the subordinate clause and put 

it in to the appropria tc slot.. The main clause then uses the slot 

which corresponds to its own tense - the "when"-clause should have 

filled this.. The problem of "approximate coincidence" of events is 

simplified for the Isard program by interpreting "when el, e2" as 

either "el is coincident with e2" or "e2 immediately follows el", 

both of which are clearly defined in the domain he is using - events 

are moves in a noughts-~and-crosses game. 

The rules sugge:-.;ted by Isard and Longuet·9 Higgins for maintaining 

reference times between utterances seem to cover many cases. 

However, there are examples which seem to escape these constraints. 



Page 265 

As commented above, an utterance may contain two event-times, 

one of which forms the reference time for. the utterance. Sometimes 

this gives the next utterance in the dialogue a choice of two 

possible reference points the already-used reference time or the 

. event-time of the other (main) clause : 

(129) 

A iJhen I was at university, the· Duke of Friockheim visited us. 

B Was there a big reception ? 

(130) 

A When I was at university, the Duke of Friockheirn visited us~ 

B What other exciting events occurred ? 

This seems to suggest that the conversational reference points 

are set up retrospectively, or else that s_ome notion of "potential 

reference time" is needed, or some combination of these two 

modif icati.ons .. In such cases, selecting one of the two candidates 

for reference time sometimes eliminates the other candidate from 

later use, and sometimes does not- Consider a dialogue consisting of 

(129) followed by (131). The other reference point ("I was at 

university") seems to be still available for use in the last 

question. 

(131) 



Page 266 

A Yes .. 

B What other exciting events occurred ? 

However, if we append (132) to (130), the resulting dialogue 

does not flow smoothly. 

(132) 

A Nothing much. 

B Was there a big reception ? 

The ducal visit seems to have been lost as a possible reference 

point in this case. This may be describable~. like' the previous set 

of cxa~ples, in terms of conversational structure divided into 

subsections. It may he th~t in the well-formed dialogue (129)+(131), 

the centre question and answer constitute a nesteµ subsection of 

conversation using a different reference time; the 

previously-established reference time is saved for use at the outer 

level of conversation. The slightly odd dialogue ((130)+(132)) may 

result from there being no er.lbedded section where a different 

·reference time can be usede These comments are lamentably vague. 

One possible way to formalise this description might be to have a 

more precise notion of a subsection of conversation (e.g. as in 

Sections IIL 12, IV. 7 above), with the slots PRESENT and REMOTE being 

local to each subsection. 

Alternatively, it may be that the tense slots are not single 

slots, but are more like. push-down stores, where items can be heaped 

up in a "last-in-first-out" basis. Finding the relevant reference 

time for nn utterance may consist of searching back down the stack 



Page 267 

for an appropriate reference time, removing all potential reference 

points above it. That is, every tensed clause in the dialogue causes 

a potential reference point to be placed on the appropriate tense 

stack, but once a reference time is adopted, it causes later entries 

on the stack to be lost. 

These two "solutions" are not just alternative re-wordings of 

the problem, but differ in their effects. If we segment 

conversations into nested subsections (e.g. as described in Sections 
~ 

III.12, 1V- 7), then 't·;re may wish to associate various characteristics 

with each section. For example, each subsection might achieve some 

particular purpose in the dialogue, or there might, be a whole range 

of "local" information (other ·than just tense settings) which is 

specific to each subsection. To say that the tense settings are 

determined by the successive sections (nested or sequential) is to 

say that the patterns which occur in these other characteristics 

follow the same behaviour as the tense patterns. On the other hand, 

if ue just say that the tense values are stacked and unstacked, it 

says nothing ·about the way that such storing will relate to other 

.aspects of the dialogue. 

There seems to be a very low 1 imit on how many reference times 

can remain accessible, whether the "stack" or the "subsection" 

approach is used, It is quite difficult to construct a fluent 

dialogue where the speakers use a succession of reference times, and 

then re-use previously mentioned reference times. The following 

exchange has used five different reference times, at the point marked 

-> . The subsequent utterances attempt to re-use all of these (in a 

last-in, first·-out basis)~ The last utterance· (*) seems to be 



Page 268_ 

slightly odd - a puzzled comment such as (134) seems as appropriate. 

(133) 

A While I was a student, I lived for some time in France. 

B Did you visit Paris ? 

A Yes. 

B Did you go to the Eiffel Tower ? 

A Yes, we had a picnic at the top. 

-> 

B What other towns did you visit ? 

A Bordeaux. 

B Where else did you live ? 

A Italy, for a few ~onths. 

(134) 

A What, when I was a stude11t, you mean ? 

Al though the above discussion has been based on past tense 

examples, most of these patterns appear in present tense sentences as 

\.Jell. For exm,lple, the following· dialogue uses two present tense 

time references, ·with the "storingH effect described above. 



Page 269 

(135) 

A When he is staying in London, his relatives will visit him. 

B Will they annoy him ? 

A No .. 

B Will he be working during the day ? 

if a retrospective selection of time-references is used, then 

this provides another analogy between the behaviour of ·tense markers 

and that of pronouns (cf.. NcCawley (197lb)). 

V.7.3 The Function of Time-binders 

Isard (1974) suggests that most of the systematic allocation of 

reference times inside a sentence can be performed by the 

"time-binder" word "when" in the subordinate clause. That is, 

ex~cuting the semantic part of "when" does the following in his 

program 

(136) 

(a) locates the event time of the subordinate clause 

(b) sets this event time into the appropriate sl_ot (PRESENT or 

REMOTE) 

The interpretation of the main clause then uses, for its 

reference time, whatever has been lo::-:dcd into the. slot that its own 

tense refers to. There are sl:i.ght problems with this analysis. 

Firstly, there are oth~r tense manipulations necessary within the 

sentence; secondly, it mny be inapp!:·opriate to have all the 



Page 270 

manipulations performed by the time-binder. 

Compare (137) and (138) 

( 137) 

(a) Before I arrived he sent off the letter. 

(b) \lhen I was opening the window, he left the room. 

(138) 

(a) At five o'clock, he left the room. 

(b) On Tuesday, he sent off the letter. 

(c) Yesterday, all my troubles see;ned so far. away. 

Although tirae adjuncts in the form of a clause contain a 

tir:le-:binder ~mrd (which can be given the responsibility of setting up 

the refetl!nce time) there are very similar sentences ·(e.g.(138)) where 

there is no single time-binder to which this task can be allotted. 

These sentences may need a separate SCR for time adjuncts, which 

takes the meanin,s of the adjunct (a time structure, whatever that 

will look like) arid ~::lots it into an appropriate tense slot. Thus, 

the time-binder cnn be relieved of the task of setting the tense slot 

up - it has just to operate on the clause (or its meaning) to produce 

a time stt·ucture inc the SCR to act on~ 

In tlk: lsard 1n-ogra1n, the. meaning of "when" operates on the 

meaning of a. cl.J:Jsc L·~) produec a reference time - namely, the time of 

the cveiit referred l:o·hy the clause. The difference between "when" 

and other time-binr.k~rs like "before" and "after" seems to be in the 



Page 271 

structure that this conversion produces. Compare the sentences in 

(139). 

(139) 

(a) When the sun was shining, I could see Ben Nevis. 

(b) Before the sun was shining, I could see Ben Nevis. 

( c) After the sun was shining, I could see Ben Nevis. 

~ 
The relationship expressed, by these sentences, between the time 

of one state and another differs as the time-binder is altered. 

Rather than postulate that the time-binders operate on two clauses, 

it might be better to have the different time-binders construct 

different reference times from the subordinate clause. Once this 

ti~e-structure is inserted in the appropriate slot, the procedure for 

interpreting the main clause can act differently on the <lif ferent 

I 

st.ructures.. If this conversion from clause-meaning to time-structure 

is the task of the time-binder, then "when" may, in some sense, be 

the. most b~sic example. Whereas other time-binders may operate on 

.the event or state referred to in the clause to produce some time 

structure not coincident with the event or state, the meaning of 

"uhen" generally procluces, as reference time, the duration of the 

e\·eut or state (approximately). Bence the "approximate coincidence" 

n-~l.:1tionship mentioned above is a direct result of using "when" as 

the time-binder- If ke set up an event or state as the reference 

i.e, implicitly in a dialogue 

t rH:·n the very similar to using "when" .. The 

ti1:1e·-relati.onship col1vcy.:.'d in (140) seems closer to that conveyed in 

( J !: J.) than e :i t her o i: L l w s E.~ in ( 11+ 2 ) ~ 



Page 272 

(140) 

A Did yo~ cook the meat ? 

B Yes- The smell was overpowering. 

(141) ~Jhen I cooked the meat, the smell was overpowering .. 

(142) 

(a) After I cooked the meat, the smell was overpowering. 

(b) Before I cooked the rneat, the smell was overpowering. 

(This is a very weak point intuitions vary greatly). Thfs 

would fit in quite well with the description of "when" as a regular 

"wh"-word. A clause beginning with "wh-" ("what", "who", etc.) can 

be regarded as a pattern to describe some item, where the 11 wh"-word 

conveys the semantic class of item (time) thing, person, etc) and the 

clause gives a partial description of it - Thus "when I cooked the 

neat" is roughly paraphraseable as "(at) the tir:ie at which I cooked 

the meat".. This is just how Isard uses "when" clauses they are 

patterns describing times~ Hence~ if we postulate that the meaning 

of "when" merely converts the EK.~aning of a. clause in to a pattern for 

a time, then we are saying no rni)re than that "when" is the "wh"-word 

for time. 

V. 7. 4 Disembodied Ti:;12 R(! L~re.n::-c-:s 

Under the Isard analysis, a 11 '.-ihen" clause causes the value of 

the tense slot to change, but in some sense the "meaning" of the 

"when"- claus2 is not itself acL·cd upon by a higher grammatical rule. 

(In computational tcrrns). the cL<~tE.:c has s:idc·-cffects but leaves no 



Page 273 

results). Under the analysis suggested here, the clause passes up a 

result (a time structure) for a SCR to use.. Hence the analysis of 

partial utterances in exchanges like (143) changes. 

(143) 

(a) Had you taken two ? · 

(b) Under what circumstances ? 

( c) When you took eight .. 

Isard's program tries to understand 
~ 

(a), and finds it has 

nothing in its RE~IDTE slot; it therefore a&ks for a time reference 

in (b). The clause (c) is interpreted and executed, and the program 

attempts once again to interpret the initial utterance -(a); the 

execution of the "when"-clause should have set the REMOTE slot 

accordingly. Under the analysis here, (c) would merely present the 

program with a ready-made reference point - the program would have to 

"know" what to do with it (Le.use -it to fill the "REHOTE" slot), and 

it could then continue from where it left off.. This distinction may 

seem fairly minor, but the new approach will allow (144)(b) to be 

treated similarly to (143)(c) .. 

(144) 

(a) When did you see me ? 

(b) When you left the building. 



Page 27 l~ 

That is, uttering an isolated "whenu-clause is regarded as 

offering a time-structure to the hearer - the way that the hearer 

reacts to this will depend on what he is expecting. An alternative 

which could be adopted under the Isard analysis is to suggest that 

the act of setting a value into the tense slot can be regarded as 

answering a question (e.g. in (144)), but this seems slightly 

counter-intuitive. 

This is not to say that 
'-\ 

the time-structures created for the. 

"when"-clnuse does not end up in one of t~he tense slots; the point 

is that the clause meaning itself. (or the time-binder "when") should 

not perform this task. If we allocate such decisions to rules 

outside the "when"-clau~e, then (143) (c) and (144) (b) can be treated 

identically at the clause level, but any differences can be described 

at the conversational level, in that the time structure is being used 

in different ways by differcn t conversational routines ( cf. "localised 

semantic description" in. Section IV. 8). 

V.7.5 Tense Clash ---·- --- _,,, __ .,. ___ _ 

Once a "when"- clause has set up a reference time, the main 

clause has to use it) or oddity results : 

(145) * When he walks in,· I greeted him. 

This is not a constraint on keeping tenses in different clauses 

of a sentence the same : 

(J!-t6) 



Page 275 

(a) Al though she sells sea shells, she was once a frogperson .. 

(b) Becauie she helped Fred, he is very grateful. 

(c) Fred said that Gladys knows that Evelyn left .. 

If the time-binder (under Isard's analysis) or the time-adjunct 

rule (under this analysis) merely alters the value of the tense slot 

there is no reason why the main clause should have to use this slot. 

There seems no neat way of accounting for this constraint, but it may 

be that within each clause there is some notion of "current tense­

slot".. That is, one of the two slots is selected, on the basis of 1 

time-adjunct and tense information in the sentence, and that is the 

reference time for that clause. The difficulty (in sentences like 

(145)) is then not because the two clauses have different "current 

tense-sfots", but because the process of interpreting the 

time-adjunct selects· the tense-slot for the main clause using the 

reference time of the subordinate clause; the main clause itself 

tries to select a tense-slot using its tense. If these are different 

attempted selections (as in (145)), a clash results. This is ad-hoe, 

but it is not clear what else would fit in with the other 

suggestions .. 

V. 7 .. 6 A Summary .£! -~1e Tense-Slot sysJ:_~f!: 

Let us summarise the modifications to the Isard/ Longuet-Higgins 

analysis .. The task of the time-binder words is solely to convert a 

clause-meaning into a time structure. ·This time structure can then 

be used as the answer to a question, or may become the argument for a 

SCR which handle_s time adjuncts. The basic form of time-adjunct is 

the "when"-clause, which indicates a moment or interval of time using 



. Page 276 

an event or state which has roughly that duration. Time adjuncts may 

occur in forms other than bound clausP.s (e.g .. prepositional phrases) 

but are handled in a similar way. The tirne-adj unc t SCR rule selects 

the tense- slot indicated by the time adjunct to be the "current" 

tense-slot for the main clause, and puts the time-structure supplied 

by the tense of the time adjunct into that slot. In interpreting the 

main clause, a selection is made of a "current" tense-slot on the 

basis of the clause's tense, and the interpretation proceeds using 
~ 

the reference time held in that slot (or perhaps by searching a stack 

of stored values - see above) • 

Before discussing the details of the various semantic categories 

and SCRs needed to describe such structures, let us examine 

informally the kind of information that will have to be represented. 

The way in which an event can be used to convey a time structure 

can vary .. For example) ( 1Lr7) seems to refer to a definite point in 

time, \Jhereas (148) seems to describe an interval of time : 

(147) When I opened the box ...... 

(148) When I was opening the box 

This distinction affects the·way in which a main clause is 

interpreted; if .we append (149) to (147) the interpretation is that 

the leaving followed the opening, but if it is appended to (148), the 

interpretation is that the leaving occut'red at some stage dui·ing the 

opening. 



Page 277 

(149) · ...... he left. 

If we assume that events and states are located on a simple 

"time-line", the appropriate primitives seem to be "points" and 

"intervals" .. (These are left as unanalysed primitives, whose mnemonic 

names should be intuitively useful). One way to describe an interval 

of time is to mention a state which existed during that period 

(150) When I was at school ...... 

The verb "be", together with a complement is a simple way to 

achieve this. As illustrated in (148), the use of a progressive verb 

form can also describe an interval of time .. (Some generalisation 

might be possible about the meaning of copular "be" and progressive 

"be", regarding its use for describing states of affairs; this will 

not be attempted here). If a sentence attempts to relate two 

intervals (in the way des.cribed above) the interpretation is often 

that the state of affairs described in the ."when"-clause held for a 

sub-interval of the duration of the state described in the main 

clause : 

(151) When I was at school, de Gaulle was still alive. 

Some examples can be found where there seems to be a slight 

implication that the two. time intervals are co-extensive -

(1.52) When the sun was shining, the room was quite warm. 

However, it is rath0.r difficult to find examples where the main 

clause describes a sub-interval (proper) of the interval indicated by 

the "whcn"-·clause ·- the reverse use, as in (151) seems more natural. 



Page 278 

It may be that the suggestion of co-extensiveness that in sentences 

like (152) derives from some kind of "conversational implication11
• 

The sentence just states that the state of affairs described in the 

main clause existed while that in the "when" clause did 

sub-interval relationship, as in (151) .. The feeling that the state of 

affairs did not hold outside thEi interval described by the 

"when"-clause may be a deduction from the fact that there must be 

some point to saying (152) .. If we add 11 
••• And when the sun went down 

we turned on the heater to keep it that way" to (152), there is no 

contradiction; (152) does not assert that the state of affairs 

described in the main clause failed to hold outside the smaller 

interval .. 

Point reference times can be described hy the non-progressive 

forms of certain verbs, as in (148). As observed above, relating two 

point reference times leads to some interpretation of "approximate 

coincidence" (see (127)) •. Here is a case where "world knowledge" is 

necessary to sort out the exact relationship between the two events -

the syntax/ semantics can only provide the "approximate coincidence" 

relationship. This vague relationship seems to be paraphraseable as 

"just before)- during, or just after", where there is no absolute 

definition of "just after " or of "just before"; these depend on the 

"sc a.le" of the event, in. some sense 

(153) 

(a) When the~ bell rang, I opened the door. 



Page 279 

(b) When the .Americans dropped the atomic borabs, Japan 

surrendered .. 

It may seem rather glib to keep allot ting various problems to 

"world knowledge" and "higher-level inferences", but there are limits 

to what should be crammed into the grammar .. One further 

non-grammatical aspect of (153) is the slight implication of 

ca11sality that some people may extract. from sentences like (153) (b). 

However, this nuance does not come directly from the use of "when", 

but rather from the juxtaposition of the mentions of the 
~\ 

events. 

Compare (154), which conveys a similar sense of causality (or fails 

to, according to your intuitions) .. 

(l 5Li-) The Ariericans dropped the atomic bombs- Japan 

surrendered .. 

The use of the "when"-clause does help to draw attention to the 

temporal proximity of the two events, and hence may spark off some 

deductions in tbc hearer's mind, but there is no need to cram these 

inferences into the grammar of time clauses. 

11 the sentenc:12 describes a po1nt event and an interval the 

relationship betl»cen the two seems to be the same no matter which 

occurs in the 11 whcm"-clause 

(155) 

(a) When I '.rts quite young; Fred hit me with a shovel. 



Page 280 

(b) lJhen Fred hit me with a shovel, I was quite young. 

(There is no suggestion that these two sentences are synonymous 

merely that the time relationships expressed i.n them are the same). 

As pointed out in (148) and (26), there are two ways of using an 

event to refer to a reference time - either as a point or as an 

interval. As in (127) (b), two point events can be related by being 

coincident 

(127) 

(b) t.Jhen they built the fifth bridge, they used the best 

materials. 

If we wish to state that one event occurred at some st.J.ge during 

another event, describing them as point events is awkward; it seems 

more natural to describe the "surrounding" event as an interval 

(156) 

(a) ? When they built the fifth bridge, a workman drowned in the 

river. 

(b) When they were building the fifth bridge~, a.workman dro\,lned 

in the river .. 

Also, if both clauses describe events as "points", they cannot 

be interpreted as locating the event described by the '1hc:n-·clnnse 

during·the event described in the main clause : 



Page 281 

(157) ?? When he put in salt, he cooked the meat. 

Thus there are certain possible ways o_f relating time-points and 

time-intervals using "when"-clauses; 

"Hhen"-clause main clause relationshi .. P 

point x point y x approx .. coincides with y 
point x interval i x contained in i 
interval i point x x contained in i 
interval i interval j i a subinterval of j 

'-\ 

The ways in which point and interval time structures can be 

conveyed by different verb forms is quite complex (or even messy). As 

commented already, an interval can be described by either ' 

(158) 

(a) the copular "be" 

(b) the progressive form of a verb 

Certain other verbs can also- serve to describe states of 

affairs, and produce interval time structures without the use of 

progressive verbs. Stative verbs, like "believe", for example 

(159) When I believed in deep structure, life was much simpler. 

This does not seem too odd, since stative verbs usually do not 

have a progressive form and seem to already contain the sense 

non:ially associated- with progressive verbs. However, there seem to 

be verbs which are . t t . :::c::mJ_-·s a ·ive, in that they have a progressive 

fon:1!' they de::.cribe a sl:ate of affairs even in non-progressive form, 

anJ they fail some of the standard syntactic tests for stative verbs. 

11 Livc:'!~ in th(~ ~;cnse of "(hlcll" ot· "reside" is one such verb. The 



Page 282 

oddity of (160) (a) suggests that this is a stative verb, but the 

acceptability of (b) and (c) suggest that it may not be: 

(160) 

(a) ? ? I 1 ived in Land on and he did so too .. 

(b) What he did was to live in London. 

( c) Live outside London - the rents are lower. 

The t• .. .ro sentences in (161) seem almost synonymous; in 

particular) the time relationships conveyed are the same. 

(161) 

(a) When he was living in London, the rents were high. 

(b) When he lived in London, the rents were high. 

If we try to use the "\-lhen"-·clauses of (161) to describe an 

interval within ·which sof.1e event occurred, the two verb forms are not 

equally suitable : 

(162) 

(a) When he was Living in London, someone bombed the GPO Tower~ 

(b) ? \Jhen be Ltved in London, someone bombed the GPO Tower. 

As pointed out· ((lt.'.~7) and (lf1.8)), the progressive form of a verb 

is more suitable for descril1ing an interval during which some point 

event occurred. lt may be that (162)(b) sounds odd because· of its 

similarity to tbe completely non·-stati.ve, non-progressive verb form 

(cL (156) L whcrc.1::.: (162) (a) .sP~t:vJs better because of some similarity 



Page 283 

to the standard form. The whole issue seems very messy .. 

So far, the only time structure associated with totally 

non-stative, non-progressive verbs has been the simple point 

reference time.. If we now look at the use of such verbs to describe 

habitual events, further complications arise. Roughly speaking, a 

habitual occurrence can be regarded as a series of events which 

together define an interval (namely, the interval within which they 

occurred). Thus a clause like: 

(163) When I travelled in by tube ...... 

is ambiguous between (at least) 2 possibilities 

(164) 

(a) it refers to a single event; consider adding to (163) the 

clause : " ..... I left my briefcase behind" · 

(b) it refers to an interval du~ing which the event occurred 

several times; consider adding to ( 163) the clause " ..... I was able to 

claim expenses" 

This may be the only way in which a non-progressive, non-stative 

verb can describe an interval - -~y describing some habitual action 

which took place within that interval. An interesting consequence of 

this is the way in which the ambiguity of (163) is preserved even 

when a progressive marker is added : 



Page 284 

(165) When I was travelling in by tube ........ 

(a) ...... Someone stole my briefcase. (b) ~ ... They raised the fares. 

There seems to be no grammatical way of disambiguating these 

again some resort is necessary to extra-linguistic knowledge .. 

V. 7 .. 8 _Perfect ~£.£! 

AB mentioned previously, the use of perfect aspect gener~Uy 

indicates that the event time of a ciause precedes the reference time 

of the clause. This information can be used in two ways if the 

reference time is known, it locates the event time; if the event 

time is known, it helps to define .the reference time.. The rules for 

determining whether to use a verb with perfect ~spect, rather than a 

past tensed verb, (i.e. "I have seen him" rather than 11 1 saw him") 

are unclear.. One relevant factor may be a reluctance (or inability) 

on the part of the speak.er to specify an exact refennce time at which 

the event occurred. This alone would not account for all the nuances 

that the present perfect seems to convey, but it is outside the scope 

of this chapter to examine this wider problem.(McCawley (197lb) gives 

·an inconclusive discussion of several examples) • 

There has not been time to develop a full analysis of perfect 

aspect here, as it is probably the most difficult part of the English 

tense/aspect system. The NCHlNE program (Chapter VI) includes some 

'ad hoe devices to allow it to re.spond to questions which use perfect 

as pee t.. 



Page 285 

V.7.9 Some lli1les and Structures -- --- -- --------

Let us examine in slightly more detail how the rules and 

structures could operate for time clauses. As pointed.out above, it 

seems plausible to regard time-binder words like "after" and "before" 

as combining with a clause-meaning to form some kind of 

"time-descr~ptor". That is, we could have two semantic categories 

"time-binders" and "time-descriptors" - and an SCR (say, "Time-Bind") 

which performs the combination. Surface trees like (166) 

the, result: 

(166) 

<time-descriptor> 

T 
Time-Bind 

~ 
<time-binder> <relation-instance> 

"afL. · D 
"you left" 

~ 
would be 

In order to relate these time-descriptors to another clause, there 

would have to be a further SCR (say, "Time-Adjunct") which relates 

adjuncts to main clauses. Trees like (167) would follow, where the 

semantic category of the overall result is yet to be discussed (see 

below). 



Page 286 

(167) 

<at-time> 

T 
Time-Adjunct 

~---<time-descriptor> <relation-instance> 

~ L 
"after you left" "he arrived" 

By separating these two functions in to separate SCRs, we allow 

other time-descriptors (e .. g .. (138) above) to combine with m~in 

clauses in the same way, and time-descriptors to be created 

independently, as in (168)(b) .. 

(168) 

(a) When did he arrive ? 

(b) After you left. 

The overall structure produced by the Time-Adjunct SCR is hard 

to characterise .. It seems to express a relationship between a time 

and an action, or state of affairs. We can represent this (in a 

rather ad hoe fashion) with a semantic network relation "AT-THIE". 

Let us consider what characteristics a "time-descriptor" will 

require to represent the time relationships discussed aboye .. (Le. 

in the table in V~7 .. 7). The first important point is that a 

time-descriptor is at the level of intensional semantics (see_ Section 

III.11), not referential semantics. The "points" and "intervals" 

used in V. 7. 7 2bove are abstract constructs, which enter into the 

relationships sketched here; they are distinct from "points" and 

"intervals" in time .. T:L1ne-descriptors denote segments of the 



Page 287 

traditional "time-line", but they 

of a 

are at a di.ffe rent level of 

description .. The duration particular event may define one 

segment of time, but it may have several different linguistic 

descriptions, with these different des~riptions behaving in different 

ways (cf.. (147) and (148)) .. It might seem that the minimum amount of 

information that a time-descriptor would need is the segment of time 

involved, plus an indication of whether it is to be treated as a 

"point" or an "interval" .. If we consider the way that time-clauses 

are used, it turns out that this is not the appropriate kind of 

information .. Although the point/interval indication is z1ecessarjl£ 

we are to systematise time relationships as above, the exact times' 

involved may be totally unknown to speaker and/ or hearer .. 

Time-clauses serve to locate events or situations relative to one 

another, not with respect to some absolute time-line. A 

time-descriptor should therefore contain a representation of the 

event (or-situation) involved, and an indication of how the start and 

end of the "point" or "interval" are defined by the start and end of 

the event.. For example, in a clause like (169), the end point of the 

event provides the start of the interval described. 

(169) After he arrived. 

In all the time clauses · examined so far, the "points" and 

"intervals" can be described directly in terms of the start and 

finish of the event or situation, with the further option of being 

"undefined"_ llence a time-descriptor can be represented fairly 

simply, containing just a descriptj:on of the reference event, a 

point/interval marker, and an indication of how the event's 

end-points dc:fine the end-points of the ti.rne described. The SCR 



Page 288 

Time-Bind will act on a clause (which con~ains an event description) 

and a time-binder (which will provide some of the information to 

construct the other markings), to produce a time-descriptor .. 

V. 7 .. 10 "When" Clauses 

One obvious way to describe "when" clauses would be to class 

"when" as a time-binder, along with "after" and "before" .. That would 

not capture certain other patterns concerning "when". In particular, 

"when" is a "wh"-word (see Section V. 4 above) , and it would be ne~er 

if clauses like (168)(a) could be processed by the general wh-clause 

grammar, as in Section V .. 4. Also, it might be difficult to process 

question "when"-clauses ( e .. g .. (168) (a)), answer "when"-clauses ( e .. g. 

(143) (c)), and subordinate "when"-clauses (e .. g .. (147)) all in the sane 

way, if the latter are to be described as time-binder + clause 

combinations, since (168) (a) does not seem to produce a 

time-descriptor. 

As discussed in V .. 4, wh-clauses can be looked on as a pattern 

which identifies some item (or items), and this pattern can be used 

to insert a reference to that item into a sentence (via a relative 

clause) or to seek more information about that item (via a 

wh-question). "When"-clauses fit into this description, since most 

subordinate "when"- clauses can be regarded as relative clauses, with 

a paraphrase using "at the time at which" instead of "when" .. 

Questions (e .. g.(168)(a)) also fit the general "wh"-clause system, 

since they indicate an item (in this case, a time) which the ·speaker 

wishes more infonnation about. As pointed out in Section V.4, the 

meaning of a wh-·clause is a sernantic structure with one component 

marked f.lS "blank0 in some way.. If we are to treat "when"-clauses 



Page 289 

similarly, some ·suitable semantic structure of this general form will 

have to be devised. 

This can be achieved as follows. An independent "what"-clause 

like (170) is given a surface tree like (171), with a semantic 

network representation as in (172). 

(170) \/hat did John bring ? 

(171) 

<clef iner> 

T 
Rel-Clause SCR 

<definer> <relation-instance> 

I 
"what" T 

Subject-Complement SCR 

~ 
<definer> <Definer> 

I T 
"John" Role-Placement SCR 
~ 

<relation> · <definer> 

I 
"bring" 

I 
"what" 

(172) 
~~~foperties: 
;-~ -;ii. (WHITEH -

Ao-ent *Patient
6~ \.
\..r-'!' ,\l' x.:; ~,

<John> ="--=

TRUE)

Similarly, a "when"-clause (173) can be given the structure 1n

(174) for its surface tree.

(173) When John arrived.

(174)

<definer>

T
Rel-Clause SCR

<definer> <relation-instance>

"when" T
<relation-instance> <definer>

T I
·"when"

Subject-Complement SCR

~
<in<lexical> <relation>

I
"::rohn"

. I

f
"arrived"

Page 290

That is, "when" is regarded as a "wh" form of time-descriptor,

uhi.ch can thus fill the second argument of the Tirne-Adj unc t SCR, in

the same way that the meaning of "what" can fill an argument in a

role-placement rule. The resulting AT-TIME relation-instance will

have a component marked as a "wh"-form, and the Rel-Clause SCR will

work on this as usual to produce a network like (175).

(175)

~"'~
~AT-TIME _).-..~roperties:
/~<- ~

*;rime Re\-.;Desc ~ (WHITEH-TRUE)
I ... ~J

~ G;~~~Vl~
I

. Agent
f

\V
<John>

Tb.is rnc;.rns that a 11 \1hen"-clause will be a definer which singles out

the time associated with the state or event described in the main

Page 291.

part of the clause. Thus, this item describes a time, but is not a

"time-descriptor" as created by the Time-Bind SCR described above.

Let us summarise the representation of time-clauses. There is

an SCR Time-Bind which combines a "time-binder" with a

relation-instance to form a "time-descriptor". The time descriptor

contains the original relation-instance, a "point" or "inter~"

indicator, and an indication of how its end-points are to be used to

delimit the time' period. There is an SCR Time-Adjunct widch inserts

the tense of the adjunct as the tense of the meaning of the main

clause, sets this tense as the "current" tense in the current

conversational section) and creates an "AT-TIHE11 relation-instance as

its result. "When" clauses are treated as wh-clauses which will

produce a definer (in the nonnal wh-clause way) which indicates the

tioe period of some event. This structure may also act as input to

the Time~Adjunct. SCR, as may any time-adjunct (whether created by an

SCR or already formed as a lexical en try). (Section VI.. 4.7

discusses a detailed implementation of these suggestions).

Page 292

Section V.8 : Verbs and Cases

Winograd's syntactic system uses the features SUBJ, OBJ, and

AGENT to classify the groups which are directly related to the main

verb of a clause. "Subject" and "object" are useful classifications

for describing English surface structure, but their semantic

relevance might be queried; Lakoff and Ross (1967) (in attacking

Chomsky (1965)) claimed that "subject" and "object" cover no semantic

generalisations, and are purely a surface classification. ~

Different surface configurations may be used to expr.;ss si:rrilar

semantic relationships; for exam p 1 e , (1 7 6) (a) and (b) are very

similar in meaning, and (177) (a), (b), (c), and (d) are also.

(176)

(a) John hates Mary.

(b) Nary is hated by John.

(177)

(a) Fred gave Bary the book.

(b) Fred gave the book to Nary.

(c) The book was given to Mary by Fred.

(d) Nary was given the book by Fred.

This could be expressed by associating with each .verb a

canonical set of object and subject slots, and classing together

those sentences .which are similar in terms of the Hems filling these

places .. That is effectively what Chomsky (l %5.) did, uslng

Page 293

"subcategorisation rules" to describe the slots for main verbs, and

having canonical· deep structures (to which the subcategori~ation

rules applied) for superficially different sentences. The "deep

structures" for (176) (a) and (b) differed only by the presence or

absence of a passive marker - they had the same deep subject and the

swne deep object. Similarly, all the sentences in (177) had a deep

structure in which the deep subject, object and indirect object

~
correspond to the surface subject, object and indirect object of

(177) (b). Although Chomsky' s subcategorisation rules .did not use

relations such as "subject" and "object", he pointed out that it

night be possible to define terms like these at the level of deep

s true ture. Chornsky's method is sufficient to capture the

similarities in the sentences in (176) and (177). We could

re-formulate the information by stating that verbs can have an

"AGENT", a "PATIENT", and a "GOAL" at some "deep" level, and these

may appear in various orderings at the surf ace, but this is more or

less a notational variant of the "Aspects" system. Let us call these

deep canonical slots around the verb "roles" •.

A further elaboration of this description of verb meanings was

produced by Fillmore (1968) who made the suggestion that there was a

small fixed set of roles (more than just the three corresponding to

"subject", "object" and "indirect object") and that certain of these

deep roles were semantically similar. For example, there is a role

AGEFl', which various verbs have, whi.ch has some independent semantic

contc;nt. He hypothesized that there was a small, universal set of

roles which are used .Ln deep classification of verbs, such that

whenever a certain role appears it always expresses the s~me

relationship between the verb and the term involved- If a term X has

Page 294

the role of INSTRUMENT in a verb Vl and a term Y has the role of

INSTRUMENT in a verb V2, then Fillmore's hypothesis is that, in some

sense, X and Y are serving the same semantic function in the

structures containing Vl and V2. Fillmore called these semantically

relevant roles "cases" •

To account for the semantic similarities in sentences like (176)

and (177), it is necessary to have some description of the main verb

other than its surface behaviour. The most obvious way is to lookon

the verb as being a relation with a certain number of arguments,·

where these arguments may appear in a variety of surface

configurations. Some rules for showing how these surface

configurations are related to the argument places in the relation

would also be necessary in a complete description. This is very

similar to what Chomsky proposed in 1965, if we avoid the confusion

caused by the use of different terminology. Fillmore's main

extension \.Jas to suggest that there could be some semantically

interesting classification of the kind of roles that verbs can have.

Some natural language systems in artificial intelligence (see Bruce

(1975) for a review) claim to be using a "case grammar" where in fact

they are using a notational variant of Chomsky' s system. A program

does not really use a Fillmore-style system unless it includes some
)

nori-·trivial categorisat icm of the. roles used in verbs, and uses this

c atcgorisation in some way, for example to perform inferences •. At

least. some of the infen-:nees would have to be phrased solely in terms

of the "ca~:;e;_.;'' invo1\rr.!d ~ without reference to the particulaI' verbs.

If tlie verbs (or relat.i.u1H-;) concerned are mentioned at all times,

then. the scrnan.tic content of the role has not been made independent

of t lie verb, and the 5.0f e n::nce is re<1l 1.y re f:erring to "the nth

Page 295

argument of the relation R" as could be done without cases.. "Cases"

. in most artificial intelligence language systems are simply mnemonic

labels for argument slots ..

Verb constructions are handled in the following way in

computational grammar .. Each verb has an associated semant?.c

relation, and the set of roles for that relation fulfils the purpose

of a "case-frame" for that verb (see Section III.10 for more details

of the semantic representation) .. Some of the SCRs (which will be

referred to informally as "role-placement rules") take a relation as

first arguCTent, and build a "definer" based on a relation-instance

using that relation (see Sections III .. 10 and IV .. 3). A role-placement

rule puts its other arguoents (which will come from the object and/or

indirect object of the verb into the roles of the relation-instance.

The subject-complement rule creates a relation-instance by putting

the semantic item frrnn the subject of the clause into the selected

role of the definer.. Diagrammatically, the SCR tree is like (178)

(\\'here the seinantic iter.1 produced by each SCR in the tree has been

sketched in).

l'age 296

(178)

Subject-Complement Rule

<JOHN>

I r~--i
' /~ '~ I -1: AG ENT PAT/ ENT

t'6. ,, f
~= =r~· <~"RY_>j

,. John'

Case-Placement Rule ___ ... __________
HATE <MARY>

'}.!l;es' 'l·J ry'

This has several 2dvantages. Firstly, the case frame for the

verb need not try to express, in one frame, the necessary deep

semantic pattern and the necessary surface syntactic configuration.

All the roles are obligatory, in the sense that, in any given

instance of a relation, each role will be present, even though the

sentence analyser or semantic nct\/ork processor may not have an item

to fill it. This captures t.he point that if twG relations have

dHf erent sets of possible participants, they are different

rc:lations. Fillmore' s case f r;:rn1es allowed some cases to be

"optional" en- to be cla:::sed in pairs one of which must occur. This

2.tternpted to record, :i.n 1-he <lecp semantic structure for the verb,

infonnation Hrdch was concerned with the surface realisation of the

Page 297

items. In comp~tational grammar,_such optionality is. covered by the

recognition grammar, using the syntactic properties of the verb and

the various role-placement rules, as will be described below ..

Secondly, if we wish to represent the fact that two verbs have

"similar" meanings, there are two ways of doing this. One crude way

is to give the two verbs the same relation (with, consequently, the

same role-list). .Thus two verbs can have the same "meaning", and

still differ in their surface behaviours (since that is specified

separately) • In the MCHINE grammar, "address" and "speak" are hanclled
\

in this way. If we do not wish to identify the two meanings, we may

still represent some degree of similarity by using the facility for

re-expressing a relation in expanded (primitive) form. Two verbs can

have different non-primitive relations, but have the same primitive

relation in their expanded forms. Fillmore tried to capture such

similarities (e .. g. between "kill" and "die") by simply comparing case

frames. As Charniak (quoted in Wilks (1976)) has pointed out, this

will show the similarity only i~ it is assumed that there is some

common semantic "core" of meaning paired with the two different case

frames. The method here achieves exactly that.

The sentence analyser in the MCHINE grammar processes verbs as

follows. On encountering the main verb, it accesses various

syntactic properties in the lexical entry, which tell it how many

objects there may be, and how to process them. ("Object'.' is used

loosely here to mean "a post-verb constituent whose meaning fills one

of the roles in the relation assoc:i..ated with the VE!rl.>''). This

information is conveyed by three lists (any of which may be empty).

One list indicates the possible SCRs if no object is present, the

Page 298

second list contains pairs of SCR and ATN state-name (for single

object processing), and the third list contains triples of SCR and

two state-names (for double-object configurations)~ The analyser uses

the state-names, if given, to process the object(s), if any, and uses

the corresponding SCR given to build a structure round the meaning of

the verb .. This has the advantage of allowing the individual
~

behaviour of verbs (in terms of how their objects a re expressed and

how they fit into the verb roles) to be specified separately in the

lexicon, rather than itemising every possiJ?ility in the grammar (see

Section IIL 9 for further comments). New verbs, with idiosyncratic

surface constraints~ can he added simply by writing an appropriate

lexical entry. Case-placement SCRs do little (in the MCHINE grammar)

apart from permuting objects into the deep roles and setting up the

selected role (which the subject of the clause, if any, will fill).

Prepositions can act as clues to the analyser in processing the

objects, since a verb can be marked (using the sta~e-names in its

lexical entry) as having a particular kind of prepositional phrase as

an object (e-g. "speak" takes an (indirect) object starting with

"to") .. This illustrates the case-marking function of prepositions to

srnne extent (but see Section VII.8.2 for some difficulties).

Passive constructions are handled quite naturally within this

system. The rol.e-pl;ic.cment SCRs are subdivided into "active" and

"passive" (no good criterion has been found to characterise these two

cLL:o;ses of rules, so at present the grammar writer has to mark the

SCRs explicitly) .. When the analyser encounters a "passive" verb

co11figuration (auxiliary 11 be" + perfect participle), it sets a

restriction on tJ:.e SCR entry for the verb phrase node, disallowing

other dian n SCR to be put there. "Passive" SCRs

Page 299

have to be marked in the lexical entries for verbs, like any other

object specification; the grammar writer has to bear in mind that

the "agent" phrase (if it is included) has to be treated as an

"object" marked with the preposition "by". The construction

illustrated in (179) can be included for the verb "address" by

including (180) among its single-object specifications in the

lexicon, where SCR4 is some suitable role-placement rule marked as

"passive", and STPRPBY is the ATN state which "expects" "by".

(179) I was addressed by the chairman.

(180) [SCR4 STPRPBY)

There are several role-placer:ient rules (SCRs) for single-object

configurations, and several for two-object configurations. For

example, the surface order of the items for the verb-roles is

different in (18l)(a) and (b).

(18i)

(a) He said something to me.

(b) He said to me tha~ you had left.

It might be argued that these could be handled by one SCR, with the

an;Jlyser re-ordering the surface objects before putting them into the

node:3 for the SCR. This would have certain drawbacks. Firstly, we

could no longer have snch a simple, extendible method of specifying

the object conf:Lguratio!!.S for a verb, since the grammar would have to

incorporate some register manipulation specifically for that verb.

Secondly, it may be that the diffe.ri~nt orderings of the objects has

Page 300

some semantic content (e.g. concerning "topic" or "focus"); if so, we

would want to be able to describe this difference by incorporating it

into the different SCRs.

Charniak (1975) has advanced the thesis (also presented,

briefly, in this chapter, above) that most:a.rtificial intelligence

language programs do not at the moment use "case" in the Fillmore

sense, and Wilks (1976) has taken up some of the issues in this area.

Studying this debate reveals how difficult it is to state exactly

what it would mean to be "using case", so ·it is not very informative
. '-.\

(in the present confusion) to state that a particular system does or

does not "use case". Charniak would probably regard the HCHINE

grammar as not being a case system, but it is worth noting t\.Jo

respects in which the verb-roles are used independently of the verbs.

Firstly, the role-placement SCRs are totally defined (as

mentioned above) by the way that _they assign items to roles, and are

not verb specific in any way. Different verbs can often use the same

SCR, if their role-lists are similar. There is, for example, a

one-object SCR which puts the object item into the PATIENT role,

which can be used in the object-specification for any verb that has

PATIENT among its roles. Nevertheless, this does not give the role

any independent semantic content, and so could be said not to be a

case facility in the strongest sense.

Secondly, in the HCHINE program (Chapter VI), whenever an

"event" occurs in the program (i.e. an input or output ut te.rancc),

the program "remembers" the event by storing a relation-instance

representation of, it. The "person" who is deemed to have "pcrformecl"

the action (either "NCHINE" or the one currently marked as

Page 301

interlocutor) is entered under the "AGENT" role for the event.. This

is done as a simplified way of setting up the relation-instance, but

it could be regarded as attaching some content to the role of

II AGENT" •

To SW11marise, the description of verbs given here has several

advantages .. By having a deep representation of verb roles, it can

(as in case grammar) capture semantic similarities of diverse surface

forms. By separating the surface specification of a verb from. '"rhe

deep roles, it avoids confusing the possible surface configurations

with the set of relationships available at the level of meaning

(unlike Fillmore's approach)~ By allowing decomposition of

verb-relations, it allows a fur t.her level to show notions of

similarity, while retaining the identity of individual verbs- By

specifying surface configurations in the le~ical entries, it allows

the set of verbs to be extended easily. Passive and ac,tive

co.nstructions are treated in a uniform, general fashion. The

structure built around the verb (a definer) is general enough to

provide a good interface with the subject-complement SCR (see Section

·111.10). Checking of selectional restrictions occurs automatically

when the semantic items are fitted into the roles around the verb,

since semantic relations have role-restrictions as part of the

general semantic system ..

CHAPTER VI

TEE NCHINE PROGRAM

Page 303

The HCHINE program implements some of the ideas discussed in

·chapters III, IV, and V, and has been used largely as a means of

investigating the details of these ideas (see Section L4 for a

discussion of this technique). The program can run in two modes -

isolated sentence analysis or conversation. In the former mode, the

user can type in a single sentence or phrase and the program will try

to construe t a data structure representing -the semantic network
~

(see

Section VI.2.7) associated . with that sentence or phrase. This

structure (which will be the word "NIL11 if the analysis has been

completely unsuccessful) can then be printed out and examined by the

user. In conversational r:lode, the program can carry on a series of

typed exchanges with the user, answering simple questions and

responding to statements. (See Section VI.3.10 for more details).

The program is written in POP-2 (Burstall, Popplestone and

Collins (1971)) as implemented at the Departr:lent of Artificial

Intelligence, University of Edinburgh, and runs on the standard DEC

System 10 operating system. The compiled code occupies approximately

45K of 36-bit words, above the llK used by the POP-2 compiler. While

running in conversational mode, the program uses additional storage

(to "remember" the conversation) and can perform a dialogue of, about

20 exchanges in 109K (+llK) of core. The processing time used to

analyse an input sentence varies from about 5. seconds for a short

simple sentence to about 1 minute for a two-clause sentence. The

real response time varies depending on how heavily loaded the DEC

Syster:l 10 is, hut under optimal conditions (typically, 3.00am with no

Page 304

other users on the machine), conversational replies can vary from 8

seconds to 2 minutes (real time). That is, the program is very slow

(see Section VI.5 for further comments).

There is not space here to summarise the POP-2 language, but it

should be pointed out that the HCHINE program makes extensive use of

certain facilities in the Edinburgh implementation which are not part

of the language definition.· This is not crucial, since most (if not

all) of these facilities can be implemented (and were, previously)

using the basic language, albeit more cwrrbersomely. The most notable

facility is the NEWPROPERTY mechanism; the POP-2 system provides a
~

general hash-table which allows the programmer (optionally) to

associate arbitrary information with any data item (Le. a

generalisation of the LISP property list) •

Page 305

Section VL-2 ..:_ Data-structures and Data-bases

Host of the ideas used to represent information in the NCHINE

program are not novel, and have been fully discussed in the

artificial intelligence literature. This section merely summarises

the methods used, for the purpose of completeness.

The association-list is a widely-used ·structure·. This consists

of a list of pairs, where one member of each pair (the "indicator.~:!

represents some field or slot and the other member of the pair (the

"value") represents the infonnation present in that slot... This

association list, coupled with the NEWPROPERTY system (VL 1.1)

provides a completely general property-list system. Incidental

pieces of information about some item can be stored on its

property-list. For example, the lexical entry for "you" might have

the property-list

(DEFINITE.TRUE)(SPECIFIC.TRUE)

to represent the fact that it is definite and specific ..

(cf.Burstall, Popplestone and Collins (1971, pp.127-132)).

Any entry on an association list can have a "restriction" set on

it. When values are entered in an association list, the restriction

is examined.. If it is non-empty, it is used to test the valu~ being

entered .. If the test yields falsej the value is not entc~red.

Testing the rest.riction constitutes applying the restriction to. the

incoming value, if the restriction is a function, and treati.ng the

Page 306

restriction as a description.otherwise (see VI.2.4). Since functions

are applied, this facility allows the programmer not only to filter

entries to the association list, but also to set "demons"· which will

be triggered by specific entries being updated. The latter

possibility has not been required in the MCHINE program, but the

notion of filtering entries to association lists has been very

useful.

VI.2.2 Pseudo-Records

Although POP-2 provides a record-definition facility, it

incorporates strict run-time type-checking for any record-class that

the programmer may define .. Hence it is not easy to have

record-updating or record-accessing functions which can operate on

several classes of records (polymorphic functions). One simple way to

allow such sharing of functions is to use association lists to store

all information that would normally be kept in records. In the

HClUNE program, there is a POP-2 record-class of 3 components, called

an "SITEN", and all semantic items in the HCHINE program are

represented as SITEMS. The three components are

Cl.ass-word

Serial number

Association list

The serial number i.s merely a debugging aid. The association

list holds all the values that would otherwise be stored in the

components of a record. (CL l3urstall, Popplestone and Collins ·

(1971, pp .. 218-219). The cLs.ss~\.1ord is a POP-2 word indicating which

Page 307

pseudo-record class the SITEM belongs to.. The class-word acts as an

index (via NEWPROPERTY) to any class-specific information that the

program may need to associate with the SITENs. Hence each class can

have its own cons_tructing function, its own printing format, etc_,

accessible by the class-word ..

VI. 2 .. 3 Contexts

It often happens that the programmer wants to let the values of

a particular data-structure vary according to c.ircurnstancB~,

For example, a maintaining several values without corrupting them.

planning program may have to make hypo the tic al deductions in some

"imaginary" state of the world, without altering

corresponding to the "reallf state of the worid ..

any values

Similarly, a

sentence-analyser may have to pursue separate possibilitie~ without

letting structure-building associated with one possibility interfere

with that of other possibilities. Various mechanisms have been

implei;iented to allow such switching back and forth between values,

such as the CONNIVER "context" (McDermott and Sussman, 1972).. POP-2

has a counterpart (the "saved-state"), but this is cumbersome and

inconvenient for various reasons, A much simpler facility is

provided by the POP-2 library program, "CONTXT", designed by Harry

Barrow. This mechanism does not store "control" information, and

affects exactly those variables and data-structures which the

programmer specifies. Also changes in values are recorded only as

they occur, so extra space is consur:ied only as changes occur in a new

context, not with the creation of every context ..

Page 308

This facility has been widely used in the MCHINE program all

pseudo-record entries, property-list valu~s, and data-base entries

are context-dependent, and the sentence-analyser distinguishes

different analysis paths by contexts.

The semantic representation system (see VI.3.7) makes extensive

use of matching, so the POP-2 library program "ACTOR" (designed by
'-\

Harry Bar~ow) has been used to provide simple facilities. Artificial

intelligence programs sometimes treat the notion of "matching" in two

distinct ways, apparently without realising it. "Matching" usually

refers to comparing two items for similarity of struc t.ure in some

way. For example, (182) (a) matches (182) (b) (where== is a special

blank item which matches anything) because they have a similar form.

Similarly, (a) matches (c).

(182)

(a) [FRED LIKES BANANAS]

(b) [FRED LIKES

(c) [== LIKES

Artificial intelligence da t a-!1a:3es, in representing infonnation about

specific items, often used "matching" as a mechanism to access the

information. ~hny of the pieces of information being represented

were relational, a1rnlogous to predicates applied to arguments;

(183) (a) might represent the predicate logic assertion (183) (b).

Page 309

(183)

(a) [CLEVER FRED]

(b) I- CLEVER(FRED)

In matching, two items are operated on to produce a truth value;

this is vaguely similar to the process of applying a predicate to an

argument (e.g.APPLY(FRED, CLEVER) yields TRUE). Somehow, this

~
similarity has led to a blurring of the distinction between the two

questions "do X and Y have similar structure?" and "does Y describe

the structure of X?". These are different questions - if X and Y are

as in (184) (a) , the answers are "YES" and "NO", .. but if X and Y are as

in (184) (b) , the answers are "NO" and "YES" respectively.

(184)

(a) X [HAS LENGTH 7), Y: [HAS LENGTH 7]

(b)

X: [ALPHA BETA GAMMA DELTA EPSILON OMEGA ZETA],

Y: [HAS LENGTH 7]

The MCHINE program contains two different procedures EMATCH (for

testing similarity of structure) and TRUEOF (for testing whether a

description holds).

VI.2.5 Data-base

Page 310

The HCHINE program uses a semantic network system to represent

iliformation about the "state of the world" (see VI. 3.10). This is

implemented using a very simple data-base system, which is derived

from concepts in PLANNER, CONNIVER and the POP-2 library program

HBASE.

There is a data-base which can be thought of as a set of

"base-slots". A..riy .POP-2 · i tern can be "indexed" by being given a

base-slot; a pointer to the base-slot will be stored with the item
~

(using the NEWPROPERTY mechanism), and. the base-slot will contain a,

pointer back to the item. Each base-slot has a 11 value11 which is

context-dependent. In any context, the item can be "present" (tlie

value = the item) or absent (the value = UNDEF). Since the base-slot

is directly associated with the item, certain operations can be

carried out directly without searching the data-base. However, more

general queries (e.g. "is .. there an item present which matches this

one ? 11
) do require some form of searching. This is simplified by

sectioning the base into sub-bases, each with an associated

"index-word". There is a procedure INDEXWD which, for any item,

computes the appropriate index word, and hence determines which

sub-base is relevant. The class-words of pseudo-records function as

index-words for. some items, so that some pseudo-reco~d classes have a

corresponding sub-bnsc (the exceptions are mentioned in VI. 3. 7). If

INDEXWD produces NIL, this jnrl icates that there is no information· to

constrain the search, and the whole data-base must be used; this

could occur for a general pattern which might match various ~lasses

of item. The contents of sub-bases are held in two-way linked lists,

to facilitate · removal (and garbage ~ollection) of unwanted

base-slots, but ther:(~ is no master-list .. of the whole base.

Page 311

Exhaustive searches make use of a POP-2 dynamic list which generates

all the base-slots as required ..

The data-base imposes no interpretation on "present" or

"absent"; in particular, these concepts do not necessarily correspond

to "true", "false" or "unknown" .. It is the task of the semantic

network mechanism (VI. 3 .. 7) to represent "truth" and "falsity", and

the. data-base merely provides certain primitive indexing devices

the network program to use ..

for

~

Page 312

VI.3~1 Lexicon

The simplest form that a lexical entry can· take is a triple

(<pointer to semantic item>, <list of features>, <property list>).

As there. is a small fixed range of features and properties used

in the lexicon,
~

b6th the feature list and the property-list can be

coded into a reduced bit-string representation, so that a simple

lexical entry takes between 6 and 10 words (excluding any space for

the semantic item used). In order to economise further, compound

lexical entries are used to take advantage of certain recurring

patterns in the entries. One form that a compound lexical entry can

take is a pair :

(<lexical entry>, <add-list>)

The add-list spectfies properti~s to be added to the basic

lexical entry. Thus, the var·ious fonns of a verb can be stored as

compound entries, all with the same <lexical entry>, but differing in

the <add-list>. The other form for a compound entry is a POP-2

closure function - i.e.. a procedure with some of its. arguments

already fixed. If some entries can be summarised by a rule for

constructing them, with all differences captured by a few simple

par~meters, then it is more econo~ical to store the rule and

parameter list than to keep fully construe ted entrie.s around all the

time.

Ail these devices we re incorporated because of the urgent

practical need to save space on the machine, ·not for any theoretical

reasons. No attempt has been made to construct linguistically

interesting redundancy rules, although some of the implemented

devices might be useful if such a study were undertaken. In

particular, some of the generalisations used to save space (and

programming time) are expressed in the procedures for putting entries.

into the lexicon and for accessing them. For example, there is a

procedure DEFVB w~ich takes three arguments (semantic item, list of

surface forms, property-list of idiosyncratic information) and

constructs the various lexical entries for the forms of a verb. The

various regularities (e~g. that the perfect part~ciple is the same as

the past participle unless otherwise specified) are embodied in this

procedure. Ori the other hand, some generalisations are expressed in

the procedures which examine the lexical entries during sentence

For example, each verb entry has a property INFLECTION

which (for regular verbs) takes one of 6 values; there are no TENSE

or AGREEMENT entries, but the tense and agreement can be computed

from the solitary INFLECTION entry.

Accessing of the lexicon is done by a rudimentary hashing system

using the POP-2 n~1EANING" facility~

The recognition rule·s are most easily described using the ATN

notation (Secti.on IL 9) although (as observed in Chapter II) the ATN

notation simply provides a graphical representation of a procedure.

States arc represented as lists (or strips) of arcs. Arcs are

pc:li rs consisting of an arc-pair and a continuation pair.. The

continuation-pair is either NIL, or else it is a list of either "TO"

or "JUMP" followed by a state-name. An arc-pair consists of an

arc-head and an action-~ist. The arc-head specifies the input test

for the arc, and an action-list is a list of operations to be

·performed if the test yields TRUE. Some simplifications are

in orpnrated., both to save space and to make the grammar easier'to

read.. The arc-tests are given in a standard form which displays its

internal structure :

<full test list> : := (NOT)<test list>

<test list> .. - <full test>-l:

<full test> .. - (NOT)<test>

<test> .. - <test word> <test information>

<test infci'rn1ation> : := <POP-2 list>

<test-word>::= FEATURE

SEr1ANTIC I WORD I RUN I TEST

NEOLEVEL CATEGORY PROPERTY

This allows an arbitrary logical combination of tests the

optional NOT at the front covers the whole remaining <test list>, and

the items of the <test list> are treated as a conjunction, each of

which may be negated i.ndi.vidually ,, Fo.r ezrn:iple, ·

[NOT [FEATURE VB] [NOT PROPERTY PREPOS OF .]]

yields TRUE if the input word either has not the feature VB or is the

· Page 315

Preposl.. t.i· on "of". I'he · t · f l · approxima e meanings o t ie van .. ous <test

words> are :

FEATURE : <test information> gives a list of features which must

be present on lexical entry for input word.

CATEGORY : <test information> gives a POP-2 predicate which must

be true of lexical entry for input word.

"·\

PROPERTY : <test information> gives a property na11e and value

that must be present on lexical entry for input word

SEMANTIC : <test information> gives a predicate that must be

true of the semantic item in the entry for input _word~

WORD <test information> specifies what the input word must be ..

RUN : <test information> is a piece of code to be executed,

leaving no result, but having side-effects.

TEST : <test info~ation> :l.s a piece of code to test global

aspects of the environment.

NEWLEVEL : <test information> gives. a state-nar.1e to activate at

the new level, and a place to put the item £ound ai the new level~

Obviously this set of tests is redundant - all possible testing

could be done with just TESL However, this subdivision makes the

content of the tests more obvious to the g rn.mmar-wri ter, and

highlights what different types of tests are 1Hcing used - RUN is a

particularly undesirable trick, and shoulrl not be allawad to hideQ

Page 316

Similarly, action-lists are organised into a "forward Polish"

notation for readability. Although all the ATN structures are packed

as economically as possible into records, they are read in as lists

to allow easy reading and writing of grammars.

Some states and arcs display common patterns - for example, the

state which "expects" the preposition "to" is very similar to the

~ state which "expects" the preposition "by". Such patterns are used to

save space by having a general constructing function for such states,

with enough parameters to distinguish the states; a closure of this

function can be stored instead of the full state. Patterns among

arcs can be handled similarly.

The surface structure rules are represented in a very

straightforward fashion. There is a POP-2 record class "SRULE" which

has components for the rule body, input ,specification, output type

specification and (optionally) a "list of properties (includini a

property inheritance rule, if the SCR has one).

VI.3.4 Regif!.._ters

ATN registers are implemented as data-structures with one

context-dependent component. Vari6us operations are provided to

perform all the manipulations such as pushing down, clearing, etc.

There are 14 interpreter registers. Some might be termed

"control registers"·, since they keep track of t.he path through the

grammar

CODE TRAC points in ATN visit.e<l so far~

Debugging aid only.

PSTOREGS : Pointer-storing registers active at

current level. A stack.

SSTOREGS : Structure-storing registers active at

current level.· A stacL

CONTLINK : The ATN state to be used on

leaving the current level. A stack.

STORACTS : Postponed actions to be done on leaving

current lev eL A stack-

HELDACTS : A slightly underhand device for

postponing actions at the current level.

Page 317

Other registers might be termed "value" registers, since they

keep track of the surface structure being built·:

TOPNODE : Top node of subtree beirig worked on at

current level. A stack.

TOPNODES : Subtrees so far constructed at this

level but not yet joined together •.

A stack-

SUBROOT The node to which the subtree being

worked on at this level is to be attached.

A stack.

CURRNODE : Node currently being worked on.

TREETOP : The overall result of the analysis.

The remaining registers are. general-purpose structure-holding

registers that any part qf the grammar can make use of :

HELDSLOT : Stores the result of a NEWLEVEL

temporarily, if the destination of that

structure cannot be predi.cteq at the

s t ::n:t of the N~~WLEVEL. A stack.

the

TEMPSLOT : General temporary storage, holding
~ge 3tS

one item at a time.

SHELF General temporary storage, storing items

in a last in first~out basis. Not

classed as a stack becuse the "push/pop"

actions are independent of the NEWLEVEL

system.

The part of the analyser that scans the ATN grammar (and builds

surface tree) is rather ~
cumbersome, owing to a '·lish to allotv

freedom to experiment with various control structures, etc .. , in the

course of developing the program.. The interpreter could probably b_e

rewritten more efficiently to perfoDn just its current tasks,

eliminating some of the obesity along with the general flexibili.ty.

The ATN is interpreted in the following way. A partial analysis

can be represented by a pair (<state-name>, <~ontext>), where

<context> provides all the other information via register~ value~-

(The state information could be held similarly, but this has not been

done). The interpreter raaintains a list of such analysis paths,

initially comprising one pair STARSTAT and CUCTXT (both being

variables global to the annlyser)~

The interpreter takes in the next word, expands the current

state-narne into a list of arcs (see VI.3. 2), loops down this list

testing each arc. A new context is created from the current one for

each arc, so that any s:icL>·E:ffects of the arc-tests (an undesirable

but occasional occurrence) affect only that path. Each arc which

yields TRUE is then 11 ceveloped 11 ~. This consists of performing the

action-list of the arc, at1d p~ocessing the state-specification at the

Page 319

end of the arc. If the arc was not a NEWLEVEL arc, the

state-specification will either be [TO ·<state-name>] or [JUMP

<state-name>]. If it is the former, this indicates that the given

state-name is appropriate for processing the next word, and

development of the current arc ceases, after storing the current

context and state-name on the analysis list. If the specification is

[JUHP <state-name>], the state-name supplies a new current state, and

processing continues on the current word.

NEWLEVEL arcs are special in that they directly affect several

interpreter registers and ~ass on the analyser to a new state. Th~

head of a NEWLEVEL arc is of the form

[NEWLEVEL <destination> <state-name>]

e.g.

[NEWLEVEL IN SSBNPO]

This is interpreted to mean : create a newlevel, setting up the

SUBROOT as indicated by <destination>, and commence processing in the

. state given. The destination can be either IN, HOLD or a register

name; IN means "item to be attached where CURRNODE now points", HOLD

means "item to be stored in HELDSLOT", and a register name means

"item to be stored in the giv:en register". (The latter option has not

been used anywhere in the implemented grammar). If the state.

specification at the end of the NEWLEVEL arc is NIL, creating a

NEWLEVEL entails attaching the TOPNODE for the current level to the

SUBROOT (so that further structure-building at this level can be

forgotten) and clearing SUBROOT, CURRNODE, TOPNODE, HELDSLOT and

TEHPSLOT- (It might seem that clearing HELDSLOT will be unsafe if

Page 320

HOLD has been indicated in the arc-head, but it would be unwise to

specify HOLD on a NEWLEVEL NIL arc, as no action-list is added to

STORACTS in the NIL case, and so the stored item could not be

retrieved from the HELDSLOT. Similarly, attempting to provide an

action for storage in a NEWLEVEL NIL arc is pointless since it will

be discarded. These are two places where the ATN interpreter can

spot a badly-written grammar and warn the user;. there are very few

other checkable constraints, unfortunately). If the NEWLEVEL arc has
'\

non-null state-specification, then the following operations are

performed .. The state-specification is pushed on to CONTLINK, the
!

action-list is pushed on to STORACTS, and SSTOREGS, PSTOREGS,

HELDACT, SUBROOT, CURRNODE, TOPNODE, TEHPSLOT, .and HELDSLOT are all

pushed down.

Execution of arcs continues in this way. until either the

interpreter detects the end of the input string before starting a

pass along the analysis list or a POPUP action is encountered. If

the interpreter reaches the end - of the input string, it seti a

variable to indicate this fact and does one ~ .l?C:~~ al on~ ~~-he

analysis list. This is because some arcs may indicate options which

do not require a word, and which can succeed in the absence of input

(e.g. extracting a "wh"-phrase from a register). All arcs which do

require an input word automatically yield FALSE on this final path.

Encountering a POPUP action initiates various actions. If

processing is already at top level (i.e. there is only one item on

the CONTLINK stack), then CONTLINK is popped to provide a new state,

and the tree-structure reviewed.

Page 321

If processing is not at top-level, the interpreter stacks are

popped, the registers tidied up, and CONTLINK provides the new state

for processing. If no words are left in the ~nput, the interpreter

attempts to finish up the analysis path by checking if TOPNODES has

accumulated more than one subtree (in which case rule-selection is

necessary see Section III.9) and then putting the current context

on the analysis list with state-name STOP. If a POPUP occurs at top
~

level when there are more words in the input, a function called

BOTTONUP is called to find a new state for processing; this

implements, very crudely, the "restart" system of Section III.. 9.

Each analysis path has a TENSION value which holds a value

between O and 100. Since this variable is global within the

analysis-path, it can be altered by any operation, but in fact has

been used only in the operation of the SCRs (see VI. 3. 6). At the end

of the analysis, the analysis paths whose TENSION value is the lowest

are selected as the "'. final versions. Thi.s provides a

"weighting" (Woods (l 970)) or "preference" (Wilks (1973)), but allows

ambiguity in that more than one analysis path may have the same

TENS ION value.

There is a variable FAIL, which is initially set to IDENTFN, the

POP-2 null function~ Many o-f the procedures in the ATN interpreter

and the MCHINE grammar call FAIL if something goes wrong, and FAIL

can be reset locally (using the POP-2 dynamic binding/ local variable

regfo.e) to be some appropriate failure action.. When arcs are being

processed, FAIL is set to be a JU}WOUT function which will abort the

processing of the current arc.

Page 322

VI.3.6 Surface Structure - ~---- --··------......

The tree of rules and arguments is represented using a'

pseudo-record class SNODE, which is used for nodes~ As well as the

information which holds the tree-structuring, each SNODE has the

following components :

SRULE The SCR associated with the node'

INTVAL Semantic item prior to reference evaluation.

EXTVAL Semantic item after reference evaluation

STRINGFH Words a_ssociated with this structure (debugging aid)_

The property-list of each SNODE can hold any optional

information, but in fact has been used only for certain syntactic

properties (e.g. verb-agreement markings).

There is a range of procedures for .tree-building and

manipulating, the exact· details of which are not relevant here.

Each processing level has a node-pointer in TOPNODE, indicating

the subtree being worked on, and a node poihter in SUBROOT,

indicating where on the main tree this node is to be attached. These

two pointers indicate different data-structures (so that temporary

modifications may be made to the TOPNODE before attaching the final

version) but are logically the same point in the tree.. On leaving a

level (either through a POPUP or a NEWLEVEL NIL arc) the TOPNODE is

always merged with the SUBROOT.

Page 323

The analj~er builds the tree in strict left-to-right order,

depth-first fashion ("depth" of tree, not of network path search).

Any alteration of this order must be achieved by holding

sub-structures in registers until they are ready for attaching. The

current node (in CURRNODE) can therefore always be recomputed (e.g.

after popping up from a level) since it ·i.s the leftmost bla.nk or

"dummy" (see below) node.

There are certain operations which insert an SCR as a node -~d

use the SCR details to fill out the · node. This is done by 1

constructing "dummy" daughter nodes, one for each input place in the

SCR. A "dw:1my 11 node contains no values, but has various restrictions

imposed on the components, using the input specifications from the

dominating SCR. Restrictions ·can also be set explicitly on the

components and properties of a node by the action-list of an ATN arc,

and this is one way that syntagmatic information (e.g.

verb-agreement) is conveyed •. If the analyser ever attempts to enter

a value which does not meet the restriction specified (if any), the

procedure FAIL is executed (see VI.3.5).

Application of the SCRs works in the following way. At any

intermediate stage of the analysi-s, the analyser can attempt to apply

an SCR to its arguments (Le. the values on the daughter nodes). If

the <laughter nodes have SCRs, these are also applied, and so on dm-m

the tree. lf a "dummy" or blank node is encountered, the SCR cannot

be applied at present nnd neither: can any of the SCRs in dominating

nodes, so an "unsuccessful" signal is passed back up the tree. If a

node is found, during the evaluation process, whose SCR has already

been applied, that SCR is not re·-rerun. At the end of the analysis,

Page 32q

the topmost node's' SCR is ~ppl ied, and the same recursive application

occurs dm·.TI the tree; in this case, an "unsuccessful" signal will

cause FAIL to be executed, since this is the last opportunity that

there will be to run the SCRs. When applying SCRs,

reference-evaluating and making entries in EXTVAL (all of which occur

at the same point), FAIL is locally set to be a pro.ceclure which

increments TENSION, rather than one which aborts the analysis

completely. (This crude measure allows "semantic anomaly" to cause

~
less havoc than "syntactic anomaly", \~hich may achieve a similar

ef feet to Wilks' "preference semantics" (see Sections II. S, III., ..).

llhen an SCR is applied, its result is first stored in the INTVAL

of the node, and then examined to see whether it may require

reference-evaluation. If so, this is performed and the result is put

in EXTVAL; otherwise, the item is merely inserted in EXTVAL itself.

The SCR in the mother node will then take the EXTVAL entry as an

argument.

If the analyser finds it is at top-level (i.e. its SUBROOT stack

has only one entry left), with no dummy nodes left to build on, and

more words to process, it calls a procedure NEWTREE. This stores the

current topmost node (in SUBROOT) on the TOPNODES list, and creates a

new set of nodes (TOPNODE, CURRNODE, and SUBROOT) to start building a

new subtree. (This normally occurs in conjunction with the BOTTOMUP

process - see VI.3.5). When the analyser completes a sentence, it

checks to see if TOPNODES is non-NIL; if so, it tries to select an

SCR which could combine the EXTVAL entries of the nodes on TOPNODES

(see Section III.9). If successful, it forms a new tree by joining

the list of TOPNODES as dauglitc~rs to a node with this SCR.

Page 325

VI.. 3. 7 Semantic Networks ·- .

The ideas discussed in III.10 are implemented using POP-2

records and pseudo-records. Each "relation" is a record of 5

components :

RELNAME : print-name of relation

RELROLES : list of names of roles

RELBODY expanded form of relation

RELELAB elaborated form of relation

RELRESTS : restrictions on values for roles

There is a POP-2 pseudo-record class of type RELINST

("relation-instance") for representing pieces of semantic network;

its components include COREREL (whose value should be a RELATION

record) and the various rolenames ot its COREREL. That is, a RELINST

has a relation plus an association list which binds other items to

the roles for that relation, e.g.

(RELINST 30 (COREREL.LIKE) (AGENT.JOHN) (PATIENT.MARY))

The property list of a RELINST can hold miscellaneous

information e.g. indexing for the data-base. 111ese sfruc tures can be

used to form a semantic network which represents a "world model",

using two mechanisms. Firstly, a RELINST can be given a component

TVALUE which can be filled in with TRUE or FALSE; secondly) the

RELINST can be made PRESENT or ABSENT in the data-base- Since both

the value of TVALUE and presence/absence are context-dependent, this

allows a very flexible system- There are certain standard procedures

such as ASSERT, DENY, FINDIF for updating and cxamini.ng the network-

Page 326

The RELBODY of a RELATION is a RELINST containing some other

COREREL, with markers to show how_the arguments of the main relation

should fit into the roles in the associated RELINST. This is to

allow the expression of "nop.-primitive" RELATIONs as a configuration

of some "primitive" relations. "Primitive" relations are those which

have NIL as the RELBODY. When doing an ASSERT, DENY) or FINDIF, this

expanded form can be used as well as the main relation. This

expansion is optional, and can be controlled by the programmer
~

setting certain variables to O or l; expansion can be used in ASSERT

and DENY, and/or in FINDIF, or in none of them.

The RELELAB of a relation is a list of triples of the form

(<expression> <operator name> <expression>) and is used to give a

procedural version of the relation (if needed). When the relation

(with some or all of its roles filled) is "elaborated 11
, all the

triples are evaluated in one of two possible modes. In testing mode,

the evaluation is intended to yield a truth-value (thus providing an

elaborate FINDIF); in iipdating mode,-the evaluation is intended to

affect the semantic network. (thus providing an elaborated ASSERT or

DENY). Each <operator name> is associated with 2 operations - one to

be used in testing mode, the other to be used in updating mode e In

addition, there is a variable TRUTH which will contain the value TRUE

when ASSERT is being executed, and FALSE when DENY is being executed.

Thus update mode can cover two separate actions if the elaborated

form makes appropriate .use of TRUTH in its ~anipulations. Hence the

same triple can, if necessary, be used differently in three different

cases> while still representing the same "item of meaning". For

example, the relation "BELIEVE" is defined in the program by an entry

Page 327

RELATION. BELIEVE [ENTITY ENTITY] AGENT PA~IENT;

[]

,[PERSVIEW($:AGENT) ->-> [SRCHCTXT)

[TRUE] =-> [FACTVAL($:PATIENT)

which indicates the following. The relation has two roles ("AGENT"

and "PATIENT"), with restrictions to ENTITY' for both roles. There is

no expanded form (indicated by the empty brackets []), but there is

an elaboral~d fonn, with two operations listed in it. The operator

(->->) in the first line :Lnd icates that, whether testing or updating,

the AGENT's personal context is to be set as the SRCHCTXT ("search

context':). The operator in the second line (=->) indicates that when

testing, the two argur:H.~nts shoula be tested for equality; when

updating, the first should be assigned to the second. FACTVAL is a

function which acce.ssc-::s the "truth-value" of a statement in a

PERSON's context.

Elaboration can also be turned on and off by the programmer

setting varl0us variabJ.es to 0 or l~

"Definers", as described in Section III.. 10, are simply

p s !.::'. ud o- records with components RISTRUCT and SLOTNAME,

(11 relation-.tnstance-~stnicture" and ·"slot-name"). In addition, a

coinponent lWLEGAPS (a. l:Lst of the rolc~s in the relinst which are not

y2t .filled)· may be ind_t::led for nwnngcmcnt purposes. As mentioned in

Page 328

VI.2.5) pseudo-records are generally indexed in the data-base under

their class-name. However, this approach would not give a very fine

categorisation for the· semantic network, as most of the structures

are in the form of RELINSTS. Therefore, RELINSTs are indexed under

their RELNAME, and DEFINERS arc indexed under the RELNAME of the

RISTRUCT.

Referri~g expressions are more neatly described if we look on

relations as holdine between sets of elements, where a set may,be
\

characterised other than by listing its elements. This facility has

been included in the semantic network· system, in that there is a

pseudo-record class SET, and entries in the roles of a RELINST are

always SETs. A set can be characterised by 1 is ting its members or by

including a definer which acts as a characteristic predicate. There

are various manipulative functions defined on these SETs to allow the

network to use them. Unfortunately, the scope of the MCHINE program

did not reach a stage where- the SET mechanism was fully utilised, and

it cannot be regarded ~s validated. In most, if not all, of the

examples that the program handled, some much simpler representation

could have been used equally. successfully. It seems very likely that

the SET system as impler:wnted contains logical defi ciencies.

The.re is no production grammar in the MCHINE program. ·In its

conversations, the range of output utterances is extremely limited,

&nd these arc handled by a small. routine which replaces semantic

network structures by surface strings in an ad hoe fashion~ The only

items which are not tr-an.slated in a one-to-one lookup are definers

(whi.ch arr:; translated ns:lng the RELNAHE of the RISTRUCT) and PERSONS

Page 329

(see VL 3.10) which are translated using the PERSNAME. The other

translations are as follows :

Semantic Item Surface String

FALSE 'No'
TRUE 'Yes'
UNDEF 'I dont know'
<the speaker> , I ...

<the hearer>
,

you '

Some other output formulae are provided·by certain conversation

games (see VI.3.9) supplyhig the strings directly (for example,

CGQUERY supplying the 'which' directly in utterances like 'which
\

man').

VI.3.9 Conversation Games

The overall flow of the. HCHINE program, when running in

conversational mode, is controlled by a set of 9 POP-2 procedures

referred to as "conversation games" (the terminology and the idea are

borrowed from Power (197 4); cf. also Levin and Hoare (1976)) .. Each

game is supposed to be a stereotyped sequence of conversational

actions and reactions, with each game being associated with some

purpose or task (cf. Schank (1975)). This association is wholly in

the mind of the programmer and in the way that the games are used;

there is no "goal-directed invocation" as in, for example,

Micro-Planner (Sussman et .. al. (1972)). For example, there is a

game CGANS for replying to a question, and CGBAFFLE for notifying the

interlocutor of a failure to understand an input string.. As one game

can call other games, the structure of the dial6gue proceeds in a

sequence of sections, either nested or consecutive, corresponding to

the various invocations of games.. In standard POP-2 procedure call,

a function cannot exit and specify which function is to be called

Page 330

next - either it exits or it calls another function nested within

itself. This would be rather restrictive for conversation games,

since it is desirable for one game to be able to specify what i.s to

be·done next, without having to build up a deeply nested hierarchical

structure for the whole conversation. This difficulty has been

avoided by introducing three game-calling routines :

RCALL(x) : call x nested within the current game, returning to
"'--\

this point afterwards.

ECALL(x) exit from current game and then call x~

EACALL(x) exit from all active games and then call x ..

The games are responsible for taking in input from the teletype

(including lexical lookup), passing the string to the analyser, and

accepting the result of the analysis (a piece o.f semantic network)d

The game can then decide, on the basis of the struc_ture received, to

perform any action whatsoever, such as updating or examining the

"world-model", or initiating another game.

Each game has certain local variables, so that information

global to the analyser can be controlled during the conversation.

These include REMOTE, PRESENT (the two "tense" locations see

Section V .. 7), CURRTENS (which indicates which tense location is

currently appropriate) and STARSTAT. The latter is the variable

which indicates to the analyser where it is to start in the ATN, so a

conversation game can influence the initial expectations of the

analyser, using its predictions about whether a quest.ion, statement

or connnand is imminent. Initially, the program RCALLs a game CGREET,

which expects a ritual greeting string~ It. does not call the

Page 331

analyser) but compares the input string with a pre-set list of

greetings. If no match is found, it ECALLs CGBAFFLE to tell the

user; if a match is found, the appropriate action (entered in the

greetings table) is performed this is usually repeating the

greeting as output. The general game CGREADY is then ECALLed.

CGREADY applies the analyser to the next input string, starting

from a neutral start-state which will allow any sentence or phrase to
'-\

be analysed. On the basis of the ILLOCUTION of the analysed form, a

more specialised game (CGANS, CGOBEY, or CGABSORB) is ECALLed ..

CGBAFFLE, which is applied when the analyser fails to produce a

result, attempts to match the input string against a pre-set list of

"farewell" utterances. If this fails, it utters 'Pardon?'] and

ECALLs CGREADY; if it succeeds in fin~ing a "farewell", the

appropriate action from the farewell list (againt usually repetition)

is taken, and CGREET is EACALLed, since a new interlocutor is

e~pected. The whole conversation can be terminated by terminating an

utterance by the character $ instead of punctuation, or by a general

System 10 POP-2 interrupt.

Punctuation is used to guide the analyser, but not forcibly ..

The setting of STARSTAT (made by the cur~ent game) can be overridden

by the input routines as follows a fullstop sets up a

declarative-cxpec ting state, and a question-~ark sets up a

question-expecting state. Even these STARSTAT settings should not

cause the analyser to be tricked by wrong punctuation, since all

start-states have a default arc which jumps back to the neutral

start-state. Hence "Have you spoken to Mary ... " would be successfully

analysed as a question, after soine thrashing around at the start.

Page 332

This is not very elegant, but it allows punctuation to provide some

of the information sometimes gained from intonation.

In most dialogues, the games will be invoked consecutively,

using ECALL, with EACALL being used for greetings and farewells.

RCALL is used only when the current game is to be temporarily

suspended while some conversational exchange takes place. This is a

useful facility since it allows the program to seek infonnation from

the user at any stage without corrupting the currerit exchange.

only place that this has been tried is in the reference-~valuation of

definite expressions (see Section VI.6)~ If no referent set can be

computed for a definite expression, the reference-evaluation routine

RCALLs CGQUERY to ask 'which <string>' where <string> is a

"translation'' (see VI.. 3. 8) of the structure being

reference-evaluated. The user can then reply with a noun phrase,

which will be analysed (CGQUERY having set STARSTAT to a suitable

va.lue) and passed up to the routine which is evaluating the defini.te

expression, with CGQUERY exiting normally. This exchange would take

place while the analyser was running on some input for a higher game,

_and, in principle, such nesting could go on indefinitely.

The following games are used:

CGREET : match and reply to greeting.

CGADIEU match and reply to farewell

CC REA.DY expect any analyseable utterance

CGANS : find answer to question

CGTELL output reply to a question

CGOBEY obey a command

CGQUERY : get information from user.

CGAWAIT : expect an imperative

CGBAFFLE : complain about input failure

VI.. 3 • .1 O World Hodel -------

The semantic network sys tern is supposed to be general, in the

sense that it can be used to represent any relational structure (see

Section III~lO). The particular toy world that has been used for

'\
testing the conversational system is simpler than the SHRDLU BLOCKS

world w

The world contains pseudo-records with dataclass PERSON .. Each

PERSON has components PERSNANE (a POP-2 word) , PERSVIEW (a POP-2

context) and a PERSCRED ("credibility" - O or 1) .·There are RELATIONS

which can bold between SETs of PERSONs FATHER, HOTHER, BROTHER,

SON, etc. and some RELATIONs which can be used to attribute

properties to the PERSONs - HAN, WOHAN, etc. The re.ason for choosing

this world rather than, say, a BLOCKS »wrld, was that two areas of

grammar that were originally to be examined were indirect speech and

tense~ The world of PERSONs seemed to allow a natural-sounding

dialogue. in which questions like "Did Harry say that Fred likes Mary

? 11 could be posed, for example... Unfortunately, these long term aims

did not come to fruition, so the choice of subject matter may seem

slightly arbitraryu

There ·are four var-inb les - SPEAKER, HEARER, SELF, INTERLOC

which keep track of how the conversational roles are being filled ..

SELF always holJs a pointe1: to a PERSON with PERSNAHE "MCHINE" and

INTEHLOC holds a pointer to whichever PERSON- is regarded as "talking

to" MC~HINE. The! values of ~)PEAKER ~-1~H1 HEARER are set up in the

Page 334

obvious way (by the conversation games) whenever input or output is

to occur. Initially, SPEAKER= INTERLOC and HEARER= SELF.

Imperatives from the interlocutor are regarded as requests to

carry out an operation stored under the TASK property of the RELATION

in the imperative, using the RELATION's role-fillers as arguments

(there is a notational device for keeping track of which roles

correspond to which argument-places). Although an earlier version of

~
the program included a simple table-top world in which the imperative

system operated successfully, it was hard to fit plauslble commands

into the PERSON world. The final version of MCHINE would therefore

react to. an imperative by entering CGOBEY, getting the TASK

corresponding to the meaning of the imperative, then giving a POP-2

error, since TASK.APPLY (the execution routine) is not defined in this

version ..

Questions are treated as requests for infor~mation, and the

semantic network is searched using the ·semantic structure of the

utterance as a pattern.. Since the semantic network system allows the

explicit representation of truth-values, a distinction is possible

between TRUE, FALSE and unknown ·relations; these will produc.e the

answers 'Yes') 'No', and 'I dont know' respectively¥ If the question

is a WH-question, any item found in the network-search will be

returned as the answei;, via the translation routine.

Statements are taken as assertions which are TRUE in the

speaker's world mod·el, and this fact will be recorded (storing a

POP-2 context w:i.th each PERSON makes this straightfotvD.r<l). The

speaker's PERSCRED is then examined, and, if this iL> l, HCHIUE

attempts to assimilate the assertion. Depending on the state O r

Page 335

MCHINE' s own semantic network, the reply will be either 'I know', 'I

disagree', or 'Really ? ', depending on whether the assertion is

already recorded as TRUE, FALSE or not known ..

The system of antonyms and sub-classes mentioned in Section

IIL 10 is implemented fairly crudely. Each semantic category

(usually represented by a definer) has on its property list a

HIER INFO record. This provides a pointer into a 3-dimensional array

which represc~nts the necessnry hierarchy .. Each category has one

super-category and a list of sub-categories; the categories are also

clustered into antonym sets. Using numerical inqexes into an array

is merely a fairly efficient way of implementing this

multi-dimensional classification, as it allows quicker

category-compatibility checking and uses less space.

Page 336

Al though earlier chapters made various suggestions concerning

points of English grammar, it has not been possible (for a variety of

reasons) to incorporate all of these ideas into the MCHINE program.

This sections summarises the grammatical rules which are coded in the

working program.

VL 4. 1 Noun .Phrases

'\

Only very simple noun phrases are covered (unlike, for example,

the TESSA program - see Section Vl.5). The main reason for this is

that it seemed uninteresting to write an ATN which would allow a

whole range of modifiers before the noun, unless the extra options

introduced a n~ed f6r new processing facilities. In the.grammar as a

whole, there were certain str~cture-building operations which often

recurred; for example, going from a structure' like (185) (a) to one

like (185) (b), where "yyyy" was the input word and the <dummy> node

is the "current" node in each case.

(185)

(a)

Rule N

~ ..
"xxxx" <dummyl>

(b)

Rule N
~:...,,.--~

"xxxx" Rufe M
.............. ~~ ·

"yyyy" <dummy2>

Page 337

Hence,_ any repetitive structure-building which merely accumulated a

tree in some simple fashion was not of any great syntactic interest.

(The various modifiers are all radically different semantically, of

course). Possessive noun ph!ases and non-restrictive adjectives both

require special building operations, and it was important to check

that the implemented ATN does not rule out such construe tions.

The noun phrase part of the grammar allows a determiner or

possessive (optionally}, one or more non-restrictive adjectives
\

(optionally), one or more restrictive adjectives (optionally) and a

head noun (obligatory). Alternatively, a single proper name or

personal pronoun can function as a noun phrase~ TI1e distinction

between a restrictive and a non-restrictive adjective is a matter of

use (i.e. how it relates to the rest of the context), rather than an

inherent aspect of the ·lexical item. However, for an analyser to

distinguish between the two usages of a single lexical item would

require a very sophisticated use of contextual information, which is

beyond the capability 6f the MCHINE progran. In order to test that

HCHINE' s grammatical system nevertheless allows the requisite

structure-building to take place, the adjectives used were marked in

the lexicon as· either restrictive or non-restrictive, and this

feature was tested explicitly in the ATN.

After the analyser encounters a head-noun, it looks to see if

the current word could start an adjunct to the noun phrase. The head

noun is temporarily stored in the named grammatical stack register

HEADNOUN, so that its attachment can have the adjunct incorporated

into it or not- This allows a structure like (186) (a), instead of

(186) (b) ~

Page 338

(186)

(a)

SCR Determiner -II the" SCR NP-of-NP

~&i>
"father" SCR

~
"of "

(b)

SCR NP-of-NP

~"· SCR Determiner "

A SCR

L~ ~
"the father" "of "

There are five possible post-modifiers allowed

(187)

(a) an "of + NP" phrase -

(b) a verb phrase starting with an "ing" form

(c) a verb phrase .starting with an "ed" form

(d) a restrictive relative clause (with or without a "wh-word"

to start it)

(e) a non-restrictive relative clause

In case (187) (a), a node is erected with the SCR NP-of-NP, and

processing continues .. The NP-of-NP rule attempts to generalise the

"possessive" relationship, (the SCR Possessive differs only in minor

details frora NP-of-NP)~ It is fairly well established that there is

Page 339

no constant referential semantic relationship between the items in a

"possessive" construction (see, for example, Stockwell, Schachter and

Partee (1972, Chapter 11)).

(188)

(a) John's hook

the book John wrote ?

the book John owns ? ~\

the book John is holding ?

(b) Bill's present

the present Bill gave ?

the present Bill received ?

The way that the two SCRs Possessive and NP-of-NP operate is ci.s

follows~ The head noun's semantic item contains a

"relation-instance" with some slots unfilled.. The SCR scans these

slots in order (the order being specified when the relation is

defined) to find the first unfilled slot, and then inserts the

me.!lning of the "possessing" item in that slot- This works on simple

examples, but so would some simpler, cruder trick .. The extra

complication of searching for ~ree slots has been used in the hope

that it will be the prototype for some more general device ..

Page 340

Cases (187) (b) and (c) are handled in a very similar way to (d) •

The· incoming verb phrase is analysed by the VP network, with the

in.flee tion of the opening verb determining whether an "active" or

"passive" role-placement rule is required. The resulting structure

(which is a definer) is handed to the SCR NP Modifier, which takes

the head-noun meaning (also a definer) as its other argument. The

SCR constructs a new definer identical to· that from the verb-phrase,

~
but with the head noun meaning set as a restriction on the selected

slot. This is exactly the structure that would result from a

corresponding relative clause (see Section VI.4.6) so the semantic

similarities between (187) (b), (c) and (d) are captured without

incorporating them into the syntax (as, for example, in Smith (1964),

Burt (1972)) .. (Cf. (189)(a) and (b))~

(189)

(a) The man who is speaking to you.

(b) The man speaking to you.

Restrictive and non-restrictive relative clauses are

distinguished by the absence or presence, respectively, of a comma

following the head noun. This is similar to the trick of marking

adjectives in the lexicon as restrictive or not, in that the

approximation is justified hy th<:! aim of trying out the various

grammatical proce~ses involved.

Restrictive relative clauses arc treated as forming a ·further

modification of the meaning of the head noun, and are incorporated

into a structure somewhat similar to (186) above- Non-restrictive

relative cl2uses·are rreated as making an assertion about the set of

Page 341

things referred to by the whole preceding noun phrase. This

necessitates attaching the contents of HEADNOUN (to complete the NP),

and altering the contents of TOPNODE (the· current task, which should

have been the NP) to be a rule node combining NP and relative

clause :

SCR NRel Clause _____ c#-----. __
SCR Determiner SCR Wh Clause

~ ~~
the man who you saw

The NRel Clause rule, when executed, makes the appropriate assertion,

with due consideration for speaker/hearer context.

Almost every semantic item in the system is a SET, a RELINST or

a DEFINER .. (See Section VL 3). All these classifications can be

refined further by the addition of sense-properties (e.g. DEFINITE)

and new items (other than RELATIONS, which are atomic) can be built

up from existing ones. A common noun is.a DEFINER, with an added

component NUMBER, and the Determiner SCR merely adds all the

sense-properties of the determiner to the head noun (Le. the meaning

of a deterniner is defined entirely by its list of sense properties).

All the other SCRs involved in building referring expressions combine

definers to build a more complex definer, either by filling in roles

or by setting restrictions on helected slots.

The general problems regarding reference-evaluation (see Section

V.6 nnd Ritchie (1976)) have not been solved in the HCHINE program.

Complex referring expn~ssions are not reference-evaluated whell' built,

but· are manipulated as they are in question-answering, etc. (Even

here,, the matching routines have not been tested on very complex

examples, and f~o ;tri.::~ suspect) - However, to simplify this cumbersome

Page 342

generality, a sense property INDEXICAL has been included, which can

be marked on a referring expression in the lexicon. (So far it has

not been used on non-lexical phrases). An INDEX'ICAL express:Lon

(roughly corresponding to the. class of "deictic" expressions

discussed in Section V.6) is reference-evaluated during the

SCR-evalu~tion process, as soon as it is built into the tree. From

there, the definer is replaced by a set of "referents", which

~
simplifies later processing. The only items which it seemed safe to

class as INDEXICAL were the personal prono~ns ("I", "you") and proper ·

nouns ("Fred", et~.).

The sense-properties used on determiners are DEFINITE and

SPECIFIC, each of which can be TRUE or FALSE. These guide

reference-evaluation in a way which approximates the scheme of

Section V.6. DEFINITE =TRUE causes the program to search its world

model for a RELINST to match the one in the definer it is processing,

and to use that RELINST if it exists; if it fails to find one, it

examines the definer (which should have certain ad hoe markings to

allow this routine to operate) to see if it uniquely defines a set of

items, in which case the evaluation continues. If both parts of this

fail, the analyser complains (see VI.3.9 for ~he means of

"complaining"). SPECIFIC TRUE causes the program, when reference

evalua~ing, to replace the define~ with its referent set. SPECIFIC =

FALSE causes the definer itself to become the result of reference

evaluation- Although this algorithm is written in to the program, it

has not been exercised on a full range of test cases, so the ideas

stand or fall hy the argrn:.lents in Section V-6

Page 343

The auxiliary verbs are handled in a comprehensive but fairly

straightforward way by a detailed, non-embedding network, based on the

notes in Section V. 2. At the stage when the auxiliaries are being

analysed, the tree structure will always include a structure like

(190)(a), (often as part of a structure like (190)(b)), where the

<current node> will eventually hold the role-placement SCR for the

verb phrase.

(190)

(a)

SCR N

~-
SCR H <current node>

(b)
SCR Subject Complement

~···

<subject> <current node>

The information in the auxiliary sequence is used to set properties

and restrictions on the current node and its entries. The properties

PERFECT, PROGRESSIVE, NEGATIVE are all set on the semantic item, and

the SRULE component is given a restriction to disallow either Passive

or Active role-placement rules, as appropriate. The properties

HODALITY, POLARITY and TENSE may also be set on the semantic item in

the Subject-Complement node if the auxiliary sequence is within a

clause, rather than just a verb phrase. By the time the analyser

reaches the main verb, all these properties should have been set up,

and only the verb and its objects, if present, need to be processed.

Page 344

Some other parts of the grammar also use the verb phrase network, but

do not enter it right at the beginning of the auxiliary network (e.g.

the NP-modifier construction - see VI.4.1). In such cases, the other

part of the grammar must ensure that the right properties are set up

before joining the VP network.

The main VP network is very simple, due to the lexicon-driven

strategy described in Section III.9- The network branches into 3

paths (corresponding to two objects, one object, or no objects), a~d.

on each path the various possibilities are provided by the·

object-informatio~ properties on the lexical entry for the main verb;

this gives a list of lists, each containing an SCR and some

state-names. The analysis branches further, depending on how many

options are given in the lexicon. On each path, however, the

operations are of the same general fonn. A rule-node is erected

using the given SCR, and the verb is inserted as the first argument

(i.e. as the leftmost daughter). A piece of ATN is constructed (from

the given state-names) which ~ill try to fill the remaining argument

places with the appropriate number of constituents, and the analysis

proceeds through this network.·

This device makes it very easy to ad<l new verbs, with different

object configurations, to the grammar. For example, a verb "grunk"

which combined with two objects using SCR 4, the first object being a

prepositional phrase~ with nto", and the second being a "wh" clause,

could he entered in the lexicon with the property

Page 345

[OBJ2 [SCR4 STPREPTO STWHCL]]

The grammar \JOuld not need to be written. This may seem a trivial

point, but the TESSA grammar (and ·presumably the SHRDLU one, (see

VI.5 below)) searches explicitly in its recognition routines (the

equivalent of MCHINE's ATN) for any object configuration that it

handles, and would thus need a new piece of grammar for each new

verb.

The SCRs that act as role placement rules are almost all of the.

same form.. The main verb's ser.iantic item is a RELATION, and this is\

used to construct a RELINST. The object meanings are slotted into
I

various roles in this RELINST. This RELINST should have at least one

role unfilled, and it becomes part of a DEFINER, with one of the

unfilled roles being the selected role. This definer forms the

meaning of the verb phrase~ Different role-placement rules (of the

same object number) differ in the way they permute the surface

constituents into the RELINST roles, and in the role that they select

for the definer.

The verb "be" is treated dj_fferently. It has no object

information in the lexicon, and i.s not regarded as a RELATION from

which a RELINST 'and a DEFINER Gan be built. On encountering "be" in

the main verb position (and ma.king sure it is not just one of the

auxiliaries) the analyser discards the "be" word (Le. does not

attach it to the tree) and begins to build the complement (that is,

whatever follows the "be" verb) directly on to the node which would

have held the role-place1:1ent SCR if a major verb had been encountered

(Le. the <currer1t nbde> h1 trees .l:i.kE: thaJ Yepl'esel'\ted in

Page 346

(190) above). Since noun phrases, adjectives and wh-clauses are

all represented as definers, this provides a standard interface for

the SCR Subject Complement.

This means that there is only one Subject Complement rule for

all constructions, including thqse in (191).

(191)

(a) John hates Mary.

(b) John is clever.

(c) John is a doctor.

(d) ~~ry is hated by John.

In each case, the subject meaning is placed in the selected part of

the definer, provided by the complement, to form a relation-instance.

Hore subject complement rules would be needed if more

complicated constructions like (192) were included.

(192)

(a) There are lions at the bottom of my window-box.

(b) What I want to do is vomitu

(c) It's bread pudding that: he 1 ikes.

(Sec also VI.4~5 for some complex subject-complement constructions).

Page 347

Some SCRs are marked as "active", and some others as "passive".

to cover a sentence like (191) (d) ' the f 0 llowing are needed :

(193)

(a) An SCR, say SCRPl, marked as "passive", which takes two

arguments (i.e. one verb+ one object.), putting the object into the

AGENT role and selecting the GOAL role.

(b) the entry for the verb "hate" must include ·the syntacci~

pro.perty [OBJl SCRPl STPREPBY) where STPR~EPBY is the name of an ATN

state which expects "by + NP" to follow.

That is, the object-phrase is treated as an "object" prepositionally

marked \Jith "by" - This fails to use the fact that getting a "by"

phrase and using it to fill the AGENT slot is a recurring pattern;

otherwise, it is fairly neat.

The object-information of a verb allows the "object" of a verb

to be any constituent, such as an infinitive phrase, for example.

Hence "I believe him to· be clever" is handled by giving "believe" an

object-information property specifying two objects (NP and "to"+VP),

and a slightly more complex role-placement rule than usual. This SCR

has to form the two object meanings into a RELINST (in much the same

way as the Subject:--Complement SCR does), then put 'this structure into

one of the roles i.n the RELINST being construe ted for "believe".

Page 348

For each preposition, there is a corresponding arc which tests

for exactly that preposition, and a st~te which contains just that

arc.. These states are used in specifying object information for

verbs .. The preposition arcs all connect to the initial state of the

noun phrase network. Since one of the arcs of the NP network

searches the wh-register for its result (see Sections V.4 and

VI.4.6), "dangling" prepositions are automatically included

grammar. That is, the recognition rules for (194)(a) and (b) will

handle (194) (c) without further elaboration_.

(194)

(a) You spoke to Ha ry.

(b) Who did you address ?

(c) Who did you speak to ?

Imperatives are treated simply. The options at the start of the.

sentence include looking for an untensed main verb, with an entry

under the TASK property on its meaning; other options include

certain combinations of "do", "don't", "do not", followed by such a

verb. The incoming verb phras~ is then processed by the ordinary

verb phrase ATN, and its meaning handed up as the meaning of the

sent~nce, with ORriER entered as its ILLOCUTION.

Although embedded imperatives (e_g .. "He told me to speak"·) could

be handled at the surface level by treating the infinitival phrase as

an "object" of t·he verb of ordering (as with "believe" - see VL4.2

above), this has not been tried, as the semantics of embedded

Page 349

commands has not been explored.

VI.4.5 Embedded clauses

Sentences like (195)(a) are automatically covered by

incorporat;ing the "that"+S construction as an option in the NP

network. Such incorporation is desirable if we are to avoid having

to treat sentences like (196)(a) and (b) as separate cases).

(195)

(a) That you like }~ry surprises me.

(b) It surprises me that you like M!lry.

(c) It surprises me.

(196)

(a) I said that you were leaving.

(b) I said something.

The r~lated sentence (195)(b) is assigned the same semantic structure

as (195) (a)) in the following way. The initial clause "It surprises

ml'.l 1
' is analysed, resulting in an SCR tree of the form

(197)

SCR Subject Complement
,.,,,,.,,.·~

~,..~...-· ,.,,,.""'•>.,,

"It'' SCR Role-!? I acement N

"~·,~~~;~:::::~"";e"

Af tcr "me", clie analysc.r finds that tlwre are more words left in the

Page 350

input, and so uses the BOTTOMUP mech~nism (see Section VI.3.5) to

find a new state. The lexical entry for "that" gives it the

syntactic feature "THATS", and there is a pointer from that feature

to the ATN state SSBTHS, which "expects" an embedded clause. The

analyser stores the old TREETOP (the Subject-Complement node) on

TOPNODES, establishes new nodes (see Section VI.3.5) and continues.

At the end of the sentence, TOPNODES is found to be non-empty so the
~

nodes on it are evaluated, and an SCR sought which might relate the l

I
I

various EXTVALs found. The rule "SCR .I t+tha t S" is selected (as a

result of certain underhand tricks - see below) and a tree: like (198)

constructed.

(198)

SCR It+thatS

---SCR Subject Complement SCR Subject Complement

;-;;:;;-;.;le Placement Y I ~~~~~
"you" "like Mary"-

~acementX
. ~g.

"It" "surprises me"

The semantic item for the left-hand Subject Complement node will

be a relation-instance with the semantic item for "it" entered in one

role. The "It+thatS" rule searches its first argument for the "it"

meaning, and replaces it with the second argument- That is, the

RELINST produced by the right-hand Subject Complement rule node :ls

slotted into the indicated role in the RELINST from the left-hand

node. This gives a structure like (199).

(199)

<fuRPRISES

Agent/

,

Goal

~
.. <speaker>

Ag en atient

t ~
<hearer> <H\RY> ·

It is worth digressing here to describe one problem

Page 351

that
~

arose

while debugging this part of the grammar, as it illustrates how'

computer implementation can draw attentio·n to inadequacies in a

superficially attractive scheme. When the analyser was first tried

on sentences like (195) (b), it produced a structure like that for

(195) (c). The grammar had been written so that sentences like

(195)(b) would be analysed by first analysing a clause like (195)(c),

then doing a "restart" (see above) when the word "that" was

encountered, and using the rule-selection technique to find a

two-argument rule to combine.. the two clauses c The analyser did not

produce the expected result, but instead returned a structure

corresponding to the meaning of (195) (c). At first, this error

suggested th~t the restart mechanism had malfunctioned, and discarded

the second clause (either in its input fonn or after processing it).

Further investigation revealed that s9mething else had happened. The

whole mechanism had functioned . exactly as intended (an a priori

incredible occurrence, as any programmer will attest) , but the input

specifications of the structural combining rules had not been

sufficiently narrow, and the "wrong" rule had been ·selected.. The

intended rule ("It+that S") had specifications

Page 352

((RELINST) (RELINST))

for two clause-meanings (see Sections III.10, IV. l, VL 3. 7 for

explanations of the semantic notation) • The "wrong" rule found was

that for non-restrictive relative clauses (see Sections V.4 and

VI.4.6), which had specifications

((ENTITY) (RELINST))

for a t~rm meaning and a clause meaning. Since a RELINST is also an

ENTITY (anything is an ENTITY), the arguments had matched the

specif !cation for the NRelClause ·rule, which happened to be examined

earlier in the selection routine. Since NRelClause returns its first

argument as its result, the first clause-meaning became the overall

result of the analysis. In order to patch up this inadequacy, the

NRelClause specification was made more specific :

((ENTITY) (WHCLAUSE))

This hid the problem temporarily, but the difficulty reappeared when

time-adjuncts were incorporated into the grammar. A two-clause

sentence like (200) was also to be analysed by using the restart and

rule-selection technique.

(200) I spoke to Gladys when you were speaking to Boris.

Here, the second clause is a WHCLAUSE, so once again the list ·of two

clause-meanings will match the input specification for NRelClause.

It might seem that the solution is to have the time-adjunct ·rule

input specification require something like

Page 353

((RELINST)· (TIHEREF))

or something similar, but that would not avoid the overlap. Since

"when"-clauses can indeed form non-restric·tive relative clauses (cf.

(201)), they must match the input specifications of both rules, no

matter what they are classed as.

(201) Half an hour ago, when you were speaking to Boris, I spoke
..._\

to Gladys.

The NCHINE program has an ad·-hoc solution to this problem ..

There is a short list of "clause-rules" and it is this list which is

searched by the rule-selection routine. Sinc.e the rule-selection

routine is used only in two. parts of the MCHINE granunar (after

restarts and in certain wh-clauses), and clause + modifier pairs are

involved in each case, this range of rules is sufficient.

VI.4.6 Wh-Clauses

One of the most complex parts of the HCHINE grammar is the part

for processing wh-clauses. The grammar is an implementation of that

discussed in Section V.4, but the general facility for analysing

other forms of Complex Noun Phrases (e.g. Appositional Phrases) is

not included. To be more accurate, no "SCR Apposition" has been

designed, so the program would not be able to build the right

structure for the appositional cases, even though it would follow the

correct path through the transition network (since, as pointed out in

Section V.4~ appositional phrases are merely a special case of the

wh-clause path).

Page 354

There are · various slightly different kinds of structures

involved in wh-clauses, and it is worth describing them in detail

here.

Wh-words are cross-clas·sified using four syntactic. features :

WH, WHDET, WHREL, and WHFULL. All the wh-word s ("who", "which",

"that", "what") are marked WH. Those which can form the determiner

of a wh-phrase (Le. "which", "what") are marked WHDET. Those which
'\

can act as relative pronouns with an antecedent. ("which", "who",

"that") are marked WHREL. Those which can act as relative pronouns

without an antecedent ("which", "who", "what") are marked WHFULL.

A ;-.7h-phrase can be either a WHFULL word,. or a WHDET word

followed by a head phrase :

(202)

(a) Who did you see ?

(b) Which large p0li_s~~ arrested you ?

A wh-clause is a clause which starts with a wh-phrase, whether

embedded (as in (20l)(c) and (d)) or forming a sentence (as in

(202)(a) and (b)).

A wh-questi.01~ is a question in ·which the topmost clause is a

wh-clause (e.g. (202)(a) and (b)).

A relativ~.£!::us~, with antecedent, is a noun phrase followed by

a wh-clause.

·Page 355

An in<l~_penden~ embedded wh-clau~_<;. is a wh-clause starting with a

wh-phrase and.without an antecedent.

(203)

(a) What ;:ou di~ was wrong.

{b) Which book .L~ .£!~ doesn't interest me.

(c) I know which ~ ~ ~ E.~f!.d ing.

(d) I eat what I s e e _

Independent embedded wh-clauses can be classed as either

/
independent relative clauses (where the oiening wh-phr~se is just a

single \JHFULL word), as in (203) (a) and (d), or embedded questions

(where the opening wh-phrase can be more than one word), as in

(203)(b) and (c).These differ semantically in that the independent

relative clause is used to single out some item(s), in the same way

that the corresponding ordinary relative clause is, whereas the

embedded question represents the question expressed by the

corresponding wh-question.. One form refers to some thing(s), the

other refers to some pioposition or query.

These are, all informal descriptions, rather than precise

definitions, but they should make the later exposition somewhat

simpler.

As observed in Ritchie (1977), the notion of a "noun phrase" is

hard to define, and the things that are traditionally referred to as

"noun phrases" are a heterogeneous collection whose common

c harnc ter i. s tic is that they can act as terms- in a relationship. The

Page 356

"noun phrase" network in the MCHINE grammar there.fore has to include

such un-phrase-ltke items as independent wh-clauses, amongst others.

A great deal of effort went into merging the networks for the various

kinds of wh-clauses, and they all use the same network with only

minor variations in how it is entered.. The difference between the

two forms of independent embedded. wh-clauses is expressed by the

I

ILLOCUTION property of the structure built; an independent relative

clause is marked "SAY" and a question is marked '.'ASK" .. As can be seen

from the above description, some strings will be ambiguous betwe~n

the two interpretations, if the opening wh-phrase is only one WHFULL

word. this ambiguity should often be resolved by the rest of the

sentence, since the verb-frame into which the independent clause fits

may have a narrow enough semantic restriction on the relevant role to

eliminate the unwanted interpretation. The necessary semantic

classifications to separate "question-meanings" from "referring

expressions" are fairly subtle, and are beyond the HCHINE program.

H~nce the analyser treats as ambiguous not only (204)(~) and (c)

(which are ar:1biguous) but also (204) (b) and (d) (which should be

resolved within the sentence) ..

(204)

. (a) I know. what you saw.

(b) I like what you saw.

(c) What is on the noticeboard does not interest me ..

Page 357

(d) What you .broke was very valuable ..

The grammar allows time-adjunct clauses either before or after

the main clause. One of the options at the start of a sentence is a

time-adjunct, after which the ordinary sentence-initial state is

re-entered, thus allowing sentence-initial constructions (e.g.

subject-verb inversion) to occur after a time-adjunct •. Time adjuncts

at the end of the raain clause are found by the BOTTO~IDP/ RESTART
. \

system, together with the mechanism for searching for an SCR (see

Section IIL 9).

There are two time-adjunct SCRs, which differ only in the order

of their arguments, for combining the meaning of a time-adjunct with

the meaning of a main clause to create a RELINST with the relation

"ATTIME". Events (i.e ~ utterances in a dialogue with the MCHINE

program) are "remembered" in a semantic network of tl1e form (205).

(205)

The tensc.-m~mipulation descr.ibecl in Section V. 7 is implemented

in the time.-·adjunct rules, but no comi1icated dialogues have been

tried to test it.

Page 358

(206)

~·
Relationdesc · ~*Timeperiod

I ~
<relation-instance>

A time-descriptor is implemented as a definer in th~ form (206),

with an entry on the property list under "TU1EPATT" which provides

the necessary information, in the following way.

The TIMEPATT is a triple, the first component being' the poi.nt/

interval indicator, and the other two components indicating how the

end-points of the time period relate to the end-points of the event

described by the relation-description. ~he second component of the

triple corresponds to the start of the denoted time period, and the

third ·component corresponds to its end; these two components contain
on

distinct values (actually, O, 1 and 2) depending A whether the

end-point in question i_s ~epresented by the start of the event, the

end of the event or is undefined.

As discussed in Section V.7, "when" clauses can be handled by

the ordinary wh-clause grammar, and this is how the implemented

grammar operates. However, the grammar for time-adjuncts at the

beginning of the sentence has to make the distinction between a

"when" clause and other :"wh" clauses, because only in the ·former case

will an SCR tree with the rul~ SCR Time Adjunct need to be built.

This distinction can be made by having a syntactic feature "TBIND",

which is present on time-binders ("after", "before", etc.) and on

"when" .. The recognition rules for time adjuncts check for this

feature before trying to process the time-clause and erect the SCR.

Page 359

Time Adj.unc t node if appropriate. This does not interfere with the

way that the "when" clause is analysed, and so the wh-clause grammar

can still be used-

Page 360

Section VI. 5 .:_ Com12arison ~i th Ot h~ Programs

Al though ·chapters II and III discussed the ideas of the MCHINE

program and their relationship to other frameworks, no comparison was

offered of the more mundane details of actual programs. It is

difficult to make fair cir accurate comparisons between natural

language programs in artificial intelligence, since there is a dearth

of re-al statistics about the performance of the programs. It ,is good

~
that -such ·prosaic details have not assumed undue prominence at the,

expense of the principles involved, b~t it makes it difficult to

summarise what practical work is being done.

Three programs have been documented in sufficient detail to

allow some comparison, so this section will piovide a discussion of

the relative merits and deficiencies of the NCHINE program with

respect to the Thorne-Bratley-Dewar parser (referred to here as the

TBD program for short), Winograd' s SHRDLU and Soul's TESSA (Thorne et

al (1968), Winograd (1972), Soul (1975)). Unfortunately, these

programs are very sinilar in theoretical orientation, and so the

survey here will be somewhat narrow ..

VI.5.1 Technical Details
--~- ______,.. -----

The TBD program pro,duccd a labelled bracketing of the input

string, with special markings for indicating any const~tuents that

were not in "deep 'structure po sit ion", and where these constituents

had· been "transformed" from. That :u:;, it was a wholly syntactic

parser) operating on single sentences. It occupied 16K of 48-bit

words on the English Electric KDF9, and took between 0 .. 5 and 2.2

seconds to analyse. sentences, depending on complexityv

Page 361

SHRDLU was an entire dialogue system, but it contained as a

(separable) subpart a syntactic analyser.. This analyser could be run

autonomously on isolated sentences, and could_ produce analyses for

all the sentences in the list published for· the TBD program. The

SHRDLU system as a whole could deal with a narrower range of

sentences, but its performance was not trivial. The analyser alone

occupied about 25k of 36-bit words on the PDP-10, and the whole

system took about 80k (both figures include the underlying LISP
\ .

system) • The system responded to sentences in between 5 and 20

seconds.

TESSA was intended to be an improved implementation of the

grammar described in Winograd (1972). (The SHRDLU program did not

include all the grammatical constructions exactly as described). It

ran on isolated sentences, performing no semantic processing, and

included some elaborations of the SHRDLU gramraar .. The program

occupied about 30k of .36-bit words on _the PDP-10, plus an llk POP-2

system. The time taken to analyse a sentence is about 2 to 3

seconds.

As stated in Section VI.O, the MCHINE program can run either in

isolated sentence mode (when it builds a semantic network for each

phrase or sentence) or in conversational mode. It can therefore be

compared with the perfonnance of all three programs. on isolated

sent~nces, and with the conversational ability of SHRDLU. In

isolated sentence mode, HCHINE' s performance is spectacularly

cumbersome. Not only does it occupy 56k total core space, it is by

far the slowest of the programs (by a factor of about 15). However,

it must be borne in mind that the MCHINE program constructs a

Page 362

semantic network as it proceeds, and so is performing what many other

systems would treat as two stages. The conversational ability of the

HCHINE program also seems to be inferior to that of SHRDLU, assuming

that Winograd' s "sample dialogue" is a typical sample (as opposed to

a one-off performance). The only mitigating factor for MCHINE is that

it is fairly robust (by the standards of such programs) in
'-~

conversational mode, and several sample dialogues have been produced

without error.

Although this summary has been included for completeness, it

must be admitted that certain details are almost completely

irrelevant to artificial intelligence and linguistics. The

processing time consumed by a program is of little interest, as it

depends so directly on implementation details and the particular

programming language used. For example, POP-2 subroutines can be

defined as fffunctions" (held in general purpose identifiers) or as

"op er a tions" (with their own syntactic type). Since functions

therefore require run-time checks that are redundant for operations,

the call of an operation is about 25% faster. }bst of the routines

in the NCHINE program are defined as "f tine tions", and hence the

program could be speeded up simply by redefining them as

"operations". Such an improvement

"'
is hardly of .theoretic al

importance. Thorne, Bratley and Dewar (1968) included in their data

the number of ATN states visited in each analysis. This is a

somewhat more interesting statistic, but unfortunately similar

figures are not available for the other programs.

Page 363

The point ~ade in Section I.4 could be emphasised here. It is

not the superficial performance of the program that is important, but

the principles embodied in it. HCHINE' s pedestrian performance .can

perhaps be attributed to the aim of developing general mechanisms,

rather than achieving a virtuoso performance.

The coverage of the programs is difficult to compare, si11ce

different workers tend to use slightly differing vocabulary and

constructions. However, it is possible to produce an imaginary

"master sample set" by combining the published data from all the

programs and making some reasonable assumptions _ about "equivalent"

examples. One can only speculate about how the programs would fare

on these standardised examples, but some reasoned estimates, tempered

with charity, are possible. Appendix C contains such a hypothetical

standard sample set, and an estimate of the performance of each

program. The summary concerns only the ability of the programs to

analyse scritences, so SHRDLU's mechanisms for producing sentences

have been ignored. It is not clear how punctuation will affect the

various programs. HCHINE is guided by punctuation only slightly (as

noted previously), and the TESSA list (Soul (1975)) includes a few

examples in both punctuated and unpunctua ted form. SHRDLU depends on
- - \

question marks to indicate questions. Since the SURDLU parser

successfully analysed all the sentences on the TBD list, the

_information in Appendix C regarding SHRDLU is based on that for TBD.

Soul (1975) has also provided a list of complicated noun phrases that

are within the capability of TESSA, so that program can probably do

better than the performance table might indicate.

CHAPTER VII

CONCLUSIONS! PROBLEMS AND SPECULATIONS

rage 365

Section VII. 0 : Preamble
----~---

This project has explored the English language in various ways.

Firstl~, it has indicated how the artificial intelligence

devices embodied in computational grammar can be used for linguistic

description ..

Secondly) it has used this framework to analyse a few fragments

of Eng1ish~

'\

Thirdly, it has made some proposals concerning the processing

mechanisms needed in a model of English sentence understanding.

However, this work has merely started to attack some of the

proble~s, and has not really provided full solutions. Chapter VII

suggests some of the points that it might be interesting to follow

up, ranging from fundamental alterations in the processing mechanism

to small points of detail concerning English grammar.

Page 366

VII.1 .. 1 Present Version

The main advantage of structural combining rules, as currently

defined, is that they provide an interface between what are

traditionally known as syntax and semantics. The hierarchical

grouping of surface constituents which has been so much part of

previous linguistic theories h~s often been regarded .as syntactic,

necessitating ~ the development of syntactically-motivated rules (e.g.

phrase-structure grammars) .. The compromise represented by SCRs is to

accept that there are tree-like patterns in surface structure, but· to

stipulate that the rules which express these. groupings must be

devised on semantic grounds, and that the operations that these rules

perform should be on semantic structures.

VII.1.2 Bidirectional Rules

One obvious shortcoming of the entire ~omputational grammar

framework is the lack of any means of sentence production, and the

orie-direc tional rules which have resulted from this bias. A possible

refinement is to see how much of the information used by the analyser

is also useful in sentence production, and to try to factor out those

parts into rules which are interpretable in both directions. (Cf.

Section L 2). It is not obvious whether this would be best tackled by

writing a separate production grammar, or whether the current grammar

should be mo<lifieQ.. The first step would probably be to make SCRs

bidirectional, since they will b~ needed in production. The

experimental form of SCRs, described in Section III.3, where the

operation of the rule was subdivided into .separate components, one

Fage 367

for each argument, would be more easily reversed than the form in

which all computation is done in one una:'Ylillyseable block- Huch of the

recognition grammar might remain one-directional, since it is aimed

at a strongly directional task, but even there some information

regarding constituent-ordering might be extracted into the

dual-purpose part of the grammar. One major problem is that the

recognition rules often test for some sufficient condition before

taking some action (not al ways a necessa"S'l condition) and some rules

test simply for the presence of some particular marking or structure,

without testing all the details of that item. Hence these rules

might not be fully reversible. ·

_V_I_I_ .. _l _. _3 _L_e _f t_~_R_jJ~!!_£. _o_r d_e_r_~-ng_

As discussed in Sections IV.5, and IV.8, SCR trees are built in

a strict left-to-right fashion, with any re-ordering of constituents

being performed by the ATN part of the ·grammar before the re-ordered

i terns are built in to the tree. This approach is particularly

suitable for English, where much of the linguistic infonnation is

conveyed by word-or<ler, but it raises doubts about the generality and

flexibility of computational grammar. If grammars are to be written

for languages which make much less use of sequential arrangement as a

communicative device (using, for example, inflections instead), new

problems arise-. It is far from clear what criteria would be used for

such grammars for choosing an ordering for the places in SCRs. This

whole issue is very complex t and some of the arguments have al ready

been raised within transformational linguistics, in the discussion of

"underlying word order" and "universal bases" (cf. HcCawley (1970),

Peters and Ritchie (1969)).

J:age 368

One of the many areas of linguistic communicatioh which

computational grammar has not touched is that of "topic" and "focus".

Different arrangements of semantically similar sentences can be

regarded as differing in the emphasis that they put on the various

items of information in the sentence, and in the way that they

separate "new" information from "given" information (cf. Halliday

(1967a,b, 1968)). This is an obvious point for further investigation,

since very little work has been clone in this area computational])y

(but see Davey (1974) and Kay (1975) for some suggestions). \Jithin:

computational grammar as defined here, the best way to describe such

a notion would be to incorporate these aspects into the SCRs, so

that, for example, "passive'' rules would have different consequences,

in terms of "topi.c", "focus" and "new/given" characteristics, from

"act iv e 11 rules.

·Page 369

VII.2.1 Present Version ----------

Host of the ATN system used in computational grammar is fairly

standard. The most interesting modification is the NEWLEVEL ••• NIL

construct, which allows the grammar writer to specify a new

processing level without having to state what will follow the

consti. tuent for which the new level is needed. Beyond. that, the main

advantage of writing the ATN rules for the MCHINE grammar has been to·

highlight soE1e of the inadequacies of the ATN formalism as it stands.

One disadvantage of the ATN formalism is that it has been

developed mainly as a way of expressing a top-dm·m search strategy.

As discussed in Section III.9, the decomposition of networks into

subnetworks promotes a classic top-down approach, and the analyser

can do little with an input item that is not explicitly specified as

a possible option in the current state. ~~ny English constructions

allow items to occur at any one of several points in the sentence

(e.g.. adverbs), and grammars should be a little more flexible in the

way that they handle such constructions. There are other

circumstances where it might be neater to let the input items guide

the analyser, rather than having the analyser search single-mindedly

for all possible options~ For example, some verbs can take various

configurations of objects, as in (207).

Pa.ge 370

(207)

(a) We gave Veronica a tease t.

- (b) We gave a teaset.

(c) He never gives to charity.

(d) We gave a teaset to Veronica.

(e) The chef is cooking.

(f) The chef is cooking something exotic.

At the moment, these are covered by having the analyser explore

an exhaustive network representing all the possibilities for the

given verb (see Section III.9 and V.8). It would be neater if the

analyser could in some way process whatever objects are present and

then allocate them to nodes in the surface tree.

Also, a relative clause may, under certain circumstances, be

separated from lts antecedent, as in (208).

(208) A man came in who had been at the party.

The relative clause is generally understood as modifying the most

recent noun phrase in the sentence (cf. Grosu (1972)), so this seems

to require a procedure which searches back for an antecedent, on

encounterin~ the relative clause~ However, that would necessitate a
'

grammar capable of analysing a detached relative clause, even if it

was not anticipated, without assuming that it was an "independent

embedded wh-clause" in the sense of Section VL 4. 6.

Page 371

Whether these kinds of "optional" constituent need a new

formalism, or merely a more imaginative u~e of the ATN mechanism,

remains to be seen.

VIL 2. 3 Predictions and· Procedures

One of the difficulties in trying to construct a semantically

motivated processing model is the problem of relating predictions

made during the analysis of a sentence (possibly in some semantic

terms) to methods of processing actual words. This has been

discussed elsewhere, (see Sections II. 7 and Ritchie (1977)), but no

solution to the problem has emerged ... As pointed out in Ritchie

(1977), the ATN mechanism, as currently used, is an implicit (and

rather unprincipled) way of effecting the conversion from high-level

semantic predictions to low-level processing procedure. The first

step in tackling this awkward area is to make this conversion

explicit, in order to see what relationships do exist between

-
semantic and syntactic categories .. If we introduced a set of

"category conversion rules", we might at least see what was going on,

as a preliminary to systematising the process.

VII-2.4 : Demons and Packets

Over recent years, a particular form of control structure has,

been used for various processing models in artificial intelligence.

It is based on the concept of a II demon" (Charniak (1972)) ' and has

been used for English language programming by Marcus (1975) and

Ri"esbeck (197 I~) • (See Sections II. 7 and II. 10 for a fuller

exposition). As observed in Section IIL 6, there are various formal

similarities between the ATN "arcs" and "states" and Marcus~ "demons"

Page 372

and "packets".

The main differences between the two formalisms are in the

possible ways of activating and de-activating the units. A packet is

usually a smaller unit than the ATN states, and so several packets

may be active at one time,. whereas each path in an ATN analysis has

only one active state. This extra flexibility in the packet method

might avoid the unsuitablility of the ATN states for expressing

alternative groupings of arcs, and the unions of state~ (see Section
~

III. 7). As mentioned in Section III-7, the ATN interpreter in the

HCHINE program allows the NEWLEVEL arcs to specify a list of ATN

states, which together make up the new active state. This is a

covert way of gaining an advantage of the packet method.

\

This leaves unresolved the question of de-activating demons and

packets. Since an ATN analysis path has only one currently active

state, the de-activation procedure is simple - once all the arcs in

the state have been processed (i.e. tested against the input word,

and appropriate action taken) that state is no longer active. Each

arc ~as to supply a new state for activation on the path it creates.·

If a demon-and-packet analyser is . maintaining a list of active

demons, there is not such a simple way of deciding when to remove a

given demon from the list .. Since a demon represents a possible

option for the input word, and such options are generally plentiful,'

the active demons may accumulate somewhat.. One possible method of

de-activation suggested by ~hrcus (personal communication) is to

class certain clenons as "one-shot". These units would be

automatically de-.'.lctivated as soon as they were triggered, and would

be,- in this respect, similar to ATN arcs.. Notice that a "one-shot"

- -__ Page 373

demon is not exactly like an ATN arc, since the demon is not

de-activated unless it is first triggered (thfs corresponds to an ATN

arc "matching" a.n input word). If "one-shot" demons are never

triggered, they will still hang around. If a demon were a "one-word"

demon (Le .. it only stayed active for one word of input), it would be

very much like an ATN arc.

Apparently, some compromise between the standard ATN and the

demon-and-packet approach is needed. The flexibility of the latter,

~
combined with some well-defined procedure for de-activating demons,

should lead to a grammar-writing formalism that is easier to use.

Page 37L1

Section VIL 3 .!.. ;Semantic -~'::.Prese_ntation

VII.3.1 Present Version
------~--

The semantic network system adopted for computational grammar is

general, and includes some useful facilities (such as the "expanded"

and "elaborated" forms for relations), but in most respects it. adds

very little to the proposals of Rumelhart and Norman (1973). The only

novel item is the discovery of a particular kind of network structure
'1

(the "definer") which is especially useful in specifying semantic

structures which can undergo a variety of operations and which

interface neatly with the syntactic constructs.·

VII.3.2 Semantic Well-fdrmedness

The concept of "semantic anomaly" has been used, rather

uncomfortably, for so~e time within language researcl1 (e.g Katz and

Fodor (1963), NcCawley (1968), Winograd (1972), Wilks (1975)), but

there is still no clear way of characterising the distinction between

semantically well-formed and ill-£ ormed meanings .. If a

sentence-analyser is to use referential semantic considerations to

guide its processing (e~g .. choosing between two possible analyses by

selecting the one which offers the "better" meaning), then this whole

area will have to be examined much more thoroughly. The

over-simplified notion of "selectional restrictions" has been

regarded as· theoretically tna<l c;qua te for some time, but computational

models still resort to it, for want of anything else. Computational

grammar includes the improvement of not treating violation of

selectional restrictions as an all-or-nothing matter (as does the

Wilks system - see Section II.6), put that just scratches the

·Page375

surface, particularly as there are no principles developed yet

concerning how semantic combinations are to be graded for

ill-formedness.

There are a few preliminary proposals concerning ways of

"choosing better interpretations" (e.g. Wilks. (1973), McDermott

(1973), Charniak (1972)) but the theoretical side has not be~n

developed ..

VIL 3 .. 3 Contexts and Referring Exe_ressions

If we are to. have structures for certain noun phrases that

allows them to describe different objects in different contexts, then

the question arises of which context should be us~d when a particular

expression is evaluated. Using the analogy of Section III .. 4, let us

identify a ustate of the world" with an "environment", where

"environment" is used in the programming sense (cf. Davies (1973),

Stansfield (1975), tbses (1970)), meaning a set of values for

variables. When a pattern is used to produce an item from the

database (as has been suggested here for the semantics of specific,

definite noun phrases), the item(s) produced will depend on the

current values in the data-base - different environments will produce

different "referent sets". The appropriate environment may be the

hearer's model, the speaker's model, or some other state of affairs,

possibly hypothetical or associated with some third person ..

This means that the linguistic model will need some way of

keeping track of which "environment" is to be used for evaluating the

various referring expressions in a sentence or dialogue. (See

Rite hie (1976) for some of the problems involved here) • This device

i?&ge 376

will have to o~erate within the sentence analyser (not just in some

global conversational routine) as the relevant context may vary

within a sentence ..

It is perhaps worth including some speculation concerning the

possible connection between this problem and the notions of

"specific" and "generic" discussed in Section V .. 6. For example,

compare the two uses of "someone" in (209) (a) and (b).

(209)

(a) Did someone attack that man ?

(b) Someone attacked that man.

The "someone" in (a) seems to be non-specific, in that it is being

offered to the hearer as a pattern; in this respect, (a) is similar

to "Did anyone attack that man ?", where "anyone" is non-specific ..

In order to respond to the question, the hearer uses the pattern to

search his world model for any appropriate items. The "someone" in

(b) seems to be specific, in that it represents some item that the

speaker does not expect the hearer to be able to identify further-

There is a certain symmetry here - In (a), the speaker has no

information about the referent, but assumes that the hearer has; in

(b), the hearer has no information about the referent, but assumes

that the speaker has. Possibly notions like "specific" could be

re-defined in terms of the way that referring expressions are handled

in the two contexts - speaker's and hearer's (cf. Hintikka (1973)).

Page 377

Section VIL!+..:._ §~tactic Markin~

VII .. 4 .. 1 Present Version ---------

Computational grammar has tried to clarify the role that

syntactic information plays in the sentence-analyser, by separating

those devices that seem to be wholly non-semantic, without

constructing a full "syntactic component" .. If syntactic features,

properties and rules are allowed to be used in the grammar, but there

is no comrnittment to giving a syntactic explanation to eve~y

phenomenon, the amount of syntax needed can be assessed more

accurately ..

If we were to disallow any device that resembles "traditional

syntax" (as Schank (1972) and Riesbeck (1974) seem to wish) we would

bias the investigation from the outset. Conversely, trying to

provide a full "syntactic analysis" for every sentence may introduce

pseudo-problems, in that there may not be an appropriate way of

describing some aspects of a sentence in a syntactic structure-

The HCHINE grammar has shown the need for twenty-two syntactic

features, three syntactic properties, and about eight

property-inheritance rules (see Appendix A) .. This is interesting, but

not spectacular. It remains to be seen how this view of the role of

syntax can be refined by further grammar-writing.

Page 378

VII.5 .. 1 Present Version

The guidelines used in devising linguistic descriptions are very

rarely made explicit, and some of the intuitive meta-rules are so

widely accepted that a linguist may not realise that be is tacitly

using certain· methodological axioms. Section VI .. 8 attempted to

articulate some of the more important criteria that were employed in
~

writing the HCI_UNE grammar, since some of the reasoning used in the .

linguistic descriptions would seem unfound~d otherwise. This setting

out of methodological axioms for grammar-writing is an important

step, since lack of acknowledgement of such assum.ptions could lead to

confusing disputes between workers following different schools of

thought. (cf. Householder (1965, 1966), Chomsky and Halle (1965)) ..

Although many of the principles are very general, and might be

adopted by many linguistic frameworks, some of the guidelines are

specific to this particular framework .. It is an advantage of

computational grammar that it makes even its peripheral assumptions

explicit~

Linguists place great stress on the "elegance" or "neatness" of

a particular grammatical description, and, as commented iI1, Chapter I,

this is one of the main. means of assessing descriptions when there is

more than one possible solution. In a processing grammar, the

elegance may be assessed at more than one stage. Firstly, there is

the "static" elegance of the grammatical rules as stated - are they

obviously ad hoe or redundant, or are they general and simple ?

l:'age 379

Secondly, there is the "dynamic" elegance of the grammar in operation

- does the analyser thrash round exploring maii.y dead ends, or is it

efficient enough to constrain its searching ? (In programming terms,

static elegance concerns the source code, but dynamic elegance

concerns the run-structure). Only ~hrcus (1974, 1975) seems to have

considered the latter as a topic, but it may be an increasingly

interesting area in future. There is often a trade-off between the

two forms of elegance, since a completely general static description
'--\

of the options in a grammar may give no guidance on how these

constructs are to he found. On the other hand, a more complicated

description (containing more information to guide the analyser) may

produce a shorter, neater processing stage. ~yone attempting to

write recognition grammars should be conscious of this distinction,

and perhaps consider what his methodological priorities are. The

MCHINE grammar slid confusingly between these two criteria, trying to

gain the best of both forms of elegance, and the project might have

benefitted from an earlier realisation of this trade-off.

.Page 380

VII.6.1 Current Version

This project . has achieved two useful results concerning

"registers". The first is the classification of the kinds of

registers and their uses, which will hopefully lay the foundations of

a deeper investigation of this area (see VII.6.2). The second, more

substantive, achievement has been to show some of the ways that

careful use of registers can contribute to more adequate descriptions

of English grammar. The analysis of relative clauses in Section V~4

is a particular example of this.

VII. 6. 2 Constraints !2.~ _!~is~

One major metatheoretical deficiency of computational grammar is

the lack of any constraints imposed on any of its devices. For

example, to state that registers are used for temporary information

storage during analysis is to say almost nothing, unless some further

claims are made concerning the various ways that these registers can

and cannot be used.

Some of the register principles used in the HCHINE grammar have

been developed independently by other ATN users (see Woods (1973)),

which reinforces the case in favour of these constraints. lloods

(1973) uses a 8eneral work register called the HOLD list for

temporary structure storage, and imposes the following general

principle:

·Page 381

"the constituent saved on the HOLD list must be used by some

virtual arc, either at the current level or· at some embedded level

before a POP from the level at which it was saved can be taken."

(p .. 119) ..

This is exactly the "tidying-up principle" which was found useful in

writing the NCHINE grammar (see Section IV .. 8). Woods comments:

~
"The presence of such a facility in the model raises a number of

questions of theoretical linguistic interest: for example, should

the hold list be constrained so that constituents can be taken off

only in the reverse of the order in which they are put on or can

constituents be taken off in any order? Our experience in writing

grammars within this model has not turned up any examples which would

re so 1 ve this question .. " (p. 120) •

The constraint that Woods postulates here would have a similar effect

to . the use of stack registers in the MCHINE grammar.. In particular,

the patterns described in Section V .. 4.2 would be partly covered by

such a principle ..

This area appears to be a promising one for further exploration.

·· :Page 382

Section VII.7: Conversational Rules

VII.7.1 Present Version

Computational grammar has include·d a level of conversational

description in · its model of sentence-processing, since the

"conversation games" of Section IV. 7 provided a systematic way of·

structuring a dialogue in such a way that the conversational

information could interact with the sentence analyser. This is yet

another area where the barest skeleton has been constructed, but at

least the step has been taken.

VII.7.2 Greater Interaction

One area for major improvement is the interaction between the

conversational games and the ·sentence analyser. The interface

implemented in the HCHINE program allows arbitrary information to

pass in either direction, since the games call the analyser as a

subroutine, any part of the program may call a game if required, and

the analyser returns the semantic structure of the sentence as a

result to the game which called it. In practice, the interactions

are li1nited, and there are very few places where either of the two

levels directs the flow of control at the other level.

In s01~1e games, the ILLOCUTION of the "result" passed up by the

analyser detennines which game is to be initiated next. In one or

two places, the semantic routines can call CGQUERY if they lack

information. The current conversation game always selects the

initial state for the analyser to use. Beyond these, the analyser

and the games plod forward without consulting each other much-

Page 383

It should be emphasised that the practical facility for

arbitrary interaction is already present in the NCHINE program (being

quite trivial - both levels are progammed in the same programming

language) , but this is not the point. What would be interesting

J

would be to find exactly what intrac tions are needed, and to try to

formalise these within the given framework (or modify the framework

to allow it, if this proved necessary).

!-'age 38!~

Section VIL~_:_ Points of EnglisI:_ G!;am~

VII.8.1 Present Version

Although much of the grammar-writing that went into the NCHINE

program was, as commented in Section V .. O, fairly mundane, there are

one or two areas where the descriptions themselves are of interest.

The unified treatment of wh-clauses, the computational approach to

referring expressions, the detailed inveitigation of tense and
'~
the

description of verb phrases are the main areas where some innovations

have been made.

There are obviously many areas of English as yet unexplored

computationally; this Section outlines two which seem particularly

crucial, and extremely difficult.

As described in Section V.8, prepositions can be used as clues

to the analyser concerning which constituents fulfil which roles in

the verb-frame. This approach has certain limitations, and will not

work as a general description of English prepositions, let alone as a

general system of case markings. This approach is based on several

assumptions about prepositional phrases, including the following :

(210)

(a) The phrase is to fill a role in the verb-meaning, and is not

an optional adjunct.

Page 385

(b) The syntactic properties of the verb predict that a

particular preposition will be used to indicate the filler for that

role ..

(c) The prepositional phiase occurs after the main verb that

creates the prediction.

(d) The preposition causes no change in the semantic
\

structure

of the noun phrase involved (so that the representation of "at the

station" is the same as that of "the station") ..

All the prepositional usage in the sentences that the HCHINE program

was tested on conformed to the assumptions in (.210); sentences like

those in (211')' for example, could be analysed quite

straightforwardly ..

(211)

(a) You spoke to Mary ..

(b) John is liked by ~hry.

(c) Who did you speak to ?

It is easy to construe t examples of prepositional phrases which

violate these assumptions. For example, (212) violates all four

conditions.

(212) Near what to\-m did you see the monument ?

r~ge 386

Perhaps the. most serious error is (210)(d), which renders all

prepositions semantically vacuous. Since we ·want to distinguish the

meanings of (213)(a) - (c), this raises problems.

(213)

(a) Under the table.

(b) On the table.

(c) Near the table.

This difficulty can arise even if (210)(a)-(c) are fulfilled, since

we want to distinguish (214) (a) and (b), even if we describe the

prepositional phrase as fulfilling a role in the verb frame.

(214)

(a) I put it under the table.

(b) I put it on the table.

Perhaps what is needed is a "Prepositional SCR", which combines

the meaning of a preposition with the meaning of a phrase to produce

some slightly modified structure - typically, a location or time

meaning. These new semantic structures could then act as arguments

to higher SCRs (e~g~ locative- or time- adjunct rules) which required

such items. For less obvious examples (like the "to you") in

(211) (a)), we would have to either create suitable semantic types

(e.g. a "goal-structure") or give an entry for "to" which had vacuous

effect. Prepositions would thc~n have multiple entries, since a

single preposition (e.g .. "by", "to", "in") can have many semantic

- Page 387

effects.. There appears to be no simple solution ..

VII .. 8 .. 3 : Conjunction

One of the most difficult areas of English grammar is that of

conjunction, and there is as yet no good computational treatment of

it. Probably the best known approach is that of Winograd (1972), but

a more detailed treatment was included in the Thorne, Bratley and

Dewar program (as described by Hamish Dewar (personal

communica~ion)) .. The strategy was as follows. On encountering "and",

find some previous state wh~re the set of predictions (ATN arcs) .has

a non-zero intersection with the current arcs; process from that

state until another state is reached which has ar.cs in common with

the state which was current when "and" was encountered; start

analysing the next item using the arcs which the last two states have

in common.

Even this technique might not be adequate to cover the more

awkward examples, such-as (215) ..

(215)

(a) The/ bulldozer drove into and completely demolished the shed ..

(b) The burglar climbed up and over the walL

Even if some ir:1pr.oved scheme could be worked out for the surface

structure of conjoined structures, it still leaves the very difficult

task of defining the semantics of these constructions.

APPENDIX A

DETAILS OF H1PLENENTED GRAHMAR

Syntactic:_ Features

DETERM : determiner

CN common noun

NP noun 1phr ase

PPN : personal pronoun

STARTNP : possible initial word in noun phrase

ADJ : adjective

RA : restrictive adjective

NRA : non-restrictive adjective

VB : verb

MAJOR : major verb

AUX : auxiliary

NTAUX : negative auxi.liary

COP : part of "be"

MODAL : modal verb

ASPECT : part of ,"have"

DO part of "<lo"

Wll wh-word

WHDET : can start a wh-phrase

WHFULL : can start an independent embedded wh-clause

WHREL relative pronoun

TB IND time-binder

THATS introduces embedded question or statement

AGREEMENT : three values, Marke.d on not.in phrases-

INFLECTION : eleven values, marked on verbs-

OBJECT-lNFORHATION : an SCR and a list of states, marked on major.
verbs-

Determiner-Head
phrase.

Struc tura.l,;_ Combining_ Rules

carries sense properties fr6m determiner to head

NP-of-NP combines head phrase with "of" phrase.

Possessive : combines possessive with noun phrase.

R-adjective : combines adjective and head-phrase restrictively

NR-adjective: combines adjective and noun phrase to ·make assert±on
about things referred to by the phrase.

NP-Modifier
phrase.

combines a verb-phrase post-modifier with a head

Subject-Complement
predicate

inserts the subject in to the slot of the

It+that+S : inserts an embedded clause in the meaning of another~

Time-Adjunctl

Time-adj unc t2

Time-Binder
time-descriptor

relates a time adjunct to a foll9wing clause.

relates a time adjunct to a preceding clause.

combines a time-binder and a clause to form a

WH-Phrase : carries the wh-rnarking from a wh-determiner to a head
phrase.

Relative Clause
wh-item

NR-Relative Clause
about the term.

combines a head phrase and a wh-clause to fonn a

given a terr.1 and a wh-item, makes an assertion

Role-Placement Rules : there are ten rules for construe ting meanings
for verb phrases from the meaning of its verb and its objects, as
follows :

Active : 1 intransitive, 2 single-object, 3 double-object

Passive 2 intransitive, 2 single-object, no double object.

.,

APPENDIX B

SAHPLS DIALOGUES

The following conversat.lons are based on a ludicrously simple

"world", inhabited by five "PERSONS" .. GLADYS is the MOTHER of HIRAM

and of BORIS. BORIS i~ the FATHER of DELIA. Both GLADYS and DELIA

have "FAIR" marked on the property "HAIR", and so can be referred to

as BLONDE (using the elaborated form of the latter).. HIRAM is a

DOCTOR. GLADYS, HIRAM and DELIA have PERSCRED 1; BORIS and EGBERT

have PERSCRED O ..

All the dialogues are short, as the program soon

space and becomes inconveniently slow ..

runs out ~£
\

MCHINE's stupidity in Example 5 results from the unsophisticated

(
set-matching routines, wh~ch match the first example found; in the

case of GLADYS SON, this happened to be BORIS, not HIRAH ..

The meaning given to SURPRISE is that P SURPRISES X if X

BELIEVES not.-X.

In Example 3, HCHINE' s failure to spat that GLADYS does not

believe BORIS to be clever (i.e. that STUPID(X) => NOT(CLEVER(X))) is

because the relationship betHeen the two relations is via their

elaborated forms, and the elaboration system does not make the

dis tine tion between FALSE and UNKNOWN properly when the proposition

is embedded in a BELIEVE relation.

Example .!.

: • CONVERSE;

GLADYS HAVE YOU SPOKEN TO THE

HCHINE PARDON ?

GLADYS HAVE YOU SPOKEN TO THE

HCHINE NO

GLADYS CHEERIO

MC HINE CHEERIO

* * * * *

BORIS : GOOD AFTERNOON !

HCHINE : GOOD AFTERNOON

DOCTOR

DOCTOR

BORIS : HAS THE BLONDE SPOKEN TO YOU ?

MCHINE : WHICH BLONDE ?

BORIS : GLADYS

MCHINE : YES

BORIS : GOODBYE •

MCHINE : GOODBYE •

****~;

?

?

_Example l

: .. CONVERSE;

GLADYS GOOD HORNING

NCHINE GOOD MORNING

GLADYS BORIS , WHO IS STUPID , LIKES EGBERT •

MCHINE REALLY ?

GLADYS GOODBYE

MCHINE GOODBYE

* * * * *

EGBERT HI

MCHINE HI

EGBERT IS IT TRUE THAT GLADYS BELIEVES THAT BORIS IS STUPID ?

MCHINE YES

EGBERT DOES ANYONE LIKE NE ?

MCHINE YES

EGBERT WHO LIV.ES HE ?

HCHINE BORIS

EGBERT CHEERIO

MCHINE. CHEERIO

DELIA : GOOD HORNING !

MCHINE : GOOD MORNING

DELIA : HAVE YOU SPOKE:N TO EGBERT ?

MCHINE : YES

DELIA : DO YOU BELIEVE THAT GLADYS BELIEVES THAT EGBERT
IS LifJ:D BY BORIS ?

MCHINE : YES

Example l

: • CONVERSE;

GLADYS HI

.HCHINE HI

GLADYS BORIS IS STUPID •

HCHINE REALLY ?

GLADYS IS BORIS CLEVER ?

HCHINE NO

GLADYS DO I BELIEVE BORIS TO BE CLEVER ?

MCHINE DUNNO

GLADYS DO I BELIEVE BORIS TO BE STUPID ?
.......

HCHINE YES

Example _i

.. CONVERSE;

GLADYS HI

MCHINE HI

GLADYS • HIRAM , WHO IS CLEVER , LIKES BORIS •

MCHINE REALLY ?

GLADYS IS HIRAM CLEVER ?

· MCHINE YES

GLADYS DO I BELIEVE THAT HIRAM IS CLEVER ?

MCHINE YES

GLADYS DOES IT SURPRISE YOU THAT HIRAM IS CLEVER ?

HCHINE NO

Example 2

: • CONVERSE;

GLADYS HI

MCHINE HI

GLADYS HIRAH LIKES DELIA •

MCHINE REALLY ?

GLADYS HAS IT BEEN SAID THAT HIRAH LIKES DELIA ?

NCHINE YES

GLADYS DOES MY SON LIKE DELIA ?

HCHINE YES

GLADYS WHO IS HY SON ?

MCHINE BORIS

GLADYS DOES BORIS LIKE DELIA ?

MCHINE DUNNO

GLADYS CLOT !

MCHINE PARDON ?

GLADYS WHO IS DELIA -3 FATHER ?

HCHINE BORIS

APPENDIX C

PERFORMANCE TABLE

(See Section VI.5.2 for details)

This summary concerns only the ability of the progrruns to

analyse sentences, so SHRDLU's mechanisms for producing sentences

have been ignored.. It is not clear how punctuation will affect the

various programs. MCHINE is guided by punctuation only slightly (as

noted previ,ously), and the TESSA list (Soul(1975)) includes a few

examples in both punctuated and unpunctua ted form. SHRDLU depends on

question marks to indicate questions. Since the SHRDLU parser
~

successfully analysed all the sentences on the list in Thorne et.

al.(1968), the information in the table regarding SHRDLU is related

to that for TBD, but the table takes into account the samples in

Dewar et .. al. (1969) • Soul (197 5) has also provided a list of

complicated noun phrases that are within the capability of TESSA, so

that program can probably do better than the performance table might

indicate.

The information is presented here in the following way. First,

there is a list of 110 sentences, based on the sample lists from the

four programs. A bracketted integer (e.g. (2)) after a sentence

indicates the numbers of interpretations of an ambiguous sentence

that are being considered) .. Each sample sentence is followed by a

list of mnemonic names, with up to six entries indicating which of

the given programs can analyse the corresponding sentence. There may

be six entries, since hoth SHRDLU and MCHINE have two each - one for

isolated sentence mode, and one for conversational mode.. (These are

indicated as SHRDLUI, SHRDLUC, NCHINEI, NCHINEC, with I denoting

isolated mode, and C denoting conversational mode). The entry ALL

means that all six programs could analyse the sentence successfully ..

Entries pre~eded by a question mark indicate that it is very

hard to tell from the published examples how the program would .fare

on this sentence. After some entries in the performance list, there

follows a bracketted integer. This indicates a footnote which

qualifies the simple yes-no judgement of whether the programs would

succeed on that sentence. The numbered footnotes are then listed.

Performance List

1 .. Say something to me !

SHRDLUI, SHRDLUC, TBD; T~SSA, MCHINEI ..

2 .. Don't utter anything !
/

? SHRDLUI, ?TBD, ?TESSA, MCHINEI ..

3 .. Go ..

SHRDLUI, SHRDLUC, TED, TESSA, NCHINEI.

If .. Your father is clever.

ALL.

5.. You will not have been being addressed by Mary ..

SHRDLUI, TESSA, HCHINEL (l)

6.. Wont you speak to me ?

? SHRDLUI, MCHINEL (2)

7.. I cant not speak to ~fury.

NCHINEI (3) ..

8. Are you Jim ?

?SHRDLUI, ?TESSA, MCHINEI.

9. Hary' s mother's brother likes you ..

ALL.

10. Does Clarence like Alice ?

ALL.

11.. Hho likes Albert ?

ALL.

12.. Who saw you ?

SHRDLUI, TBD, TESSA, MCHINtU ..

13. Have you spoken to the doctor ?

SHRDLUI, TBD TESSA, NCHUJEL

14 .. Who did you speak to ?

?SHRDLUI, TESSA, MCHINEI, HCHINEC ..

15. She visited him yesterday.

SHRDLUI, TBD, TESSA. (4)

16. This cat adores fish.

SHRDLUI, TBD. (5)

17 .. The clever doc tor is short ..

ALL.

18.. Who does .Mary like ?

ALL.

19.. With what did you hit him ?

TESSA (6).

20. When was it broken ?

SHRDLUI, SHRDLUC, TBD, TESSA. (7)

21.. When ?

TESSA, tiCHINEl, NCHINEC ..

22. Why did you hit him ?

SHRDLUI, SHRDLUC, TBD, TESSA (8) •

23. How often can you swim ?

TESSA (9) •

24. What size is it ?

TESSA (10).

25 .. How many blocks are there ?

SHRDLUI, SHRDLUC, TESSA (11).

26. lJhich day will he swim ?

SHRDLUI, SHRDLUC, TBD, TESSA, HCHINEL

27. The brother of the mother of Nary likes Gladys.

? SHRDLUI, NCHINEI, NCHINEC .. (12)

28. Mary hates my teasing you.

SHRDLUI, TBD, TESSA, MCHINEI.

29.. }ary likes teasing me.

SHRDLUI, TBD, TESSA, MCHINEI, MCHINEC. (13)

30. Mary likes to tease me ..

SHRDLUI, TESSA, HCHINEI, NCHINEC • (13)

31. I love him to mow the grass.

TESSA, MCHINEI.

32. Liking Hary is stupid ..

SHRDLUI, TBD, TESSA, HCHINEI, .HCHINEC.. (13)

33 .. Flying aeroplanes are nice~

SHRDLUI, TBD, TESSA, HCHINEI ..

34. Flying aeroplanes is nice.

SHRDLUI, TBD, . TESSA, NCHINEL

35 .. Flying aeroplanes can be nice (2) ..

TBD, NCHINEI ..

36. The boy who kissed. the girl laughed uproariously ..

SHRDLUI, SHRDLUC, TED, TESSA, .HCHINEI.. (14)

37.. The boy who the girl kissed laughed uproariously ..

SHRDLUI, SHRDLUC, TED, TESSA, HCHINEI. (14)

38. The boy the girl kissed laughed uproariously.

SHRDLUI, SHRDLUC, TED, TESSA, MCHINEI .. (14)

39 .. Fred gave the dog biscuits ..

SHRDLUI, TBD, TESSA, HCHINEI..

40. Fred lost the dog biscuits ..

SHRDLUI, TBD .. (15) ..

41.. Do you believe that I believe John to be clever ?

HCHINEI, MCHINEC. (16)

42.. Mary, who is stupid, likes John ..

NCHINEI, HCHINEC.. (17)

43. Have I said that ~~ry likes John ?

TESSA, MCHINEI, HCHINEC ..

1+4. When did John say he would come ?

SHRDLUI, TBD.. (18)

45. He observed the man with the telescope (2) ..

SHRDLUI, TBD, TESSA.. (19)

46. The rascal who John claimed committed the crime has escaped ..

SHRDLUI, TBD, TESSA, HCHINEI. (20).

4 7. While John swam the boat dragged its anchor.

TBD, TESSA, HCHINEI ..

48. While John swam, the boat dragged its anchor.

TESSA, MCHINEI ..

49.. The boat dragged its anchor while John swam.

SHRDLUI, SHRDLUC, TESSA, MCHINEI

50.. Did you speak to Nary after John addressed you ?

SHRDLUI, SHRDLUC, TBD, TESSA, HCHINEL

SL After you spoke to Gladys, did you believe that John was
stupid ?

HCHINEI, MCHINEC. (21)

52. John reached the men swimming in the lake ..

TESSA, HCHINEI.. (22)

53 .. The thing that you hit him with is red ..

? SHRDLUI, ?SHRDLUC, ?TBD, TESSA, NCHINEI ..

54. The thing with which you hit him is red.'

TESSA .. (6)

55.. The day when you swam was good ..

TESSA.(23)

56. The size that it is is too big.

TESSA ..

57. The blocks that there are in the box are red.

TESSA .. (24)

58. The box in which you said that you put it is red ..

TESSA.(25)

59 .. John is the man to beat Jack.

TESSA .. (26)

60. John is the man for us to beat.

TESSA.,(26)

61 .. John is the man beating.Jack.

TESSA, NCHINEI ..

62. John is the man beaten by Jack.

TESSA, HCHINEI.

63. For John to mow the grass is nice.

TESSA. (2 7)

64. He did it by pushing the machine.

TESSA .. (28)

65. John said it when you asked ..

TESSA, HCHINEI. (2 9)

/'

66. I know what hit you.,

TESSA, HCHINEL (2 9)

67. What you said surprised me.

? TESSA, MCHINEI ..

68.. I asked you what you liked.

TESSA, HCHINEL (30)

69. I asked which girl you spoke to ..

TESSA~ MCHINEI ..

70 .. The story was told to rue by John.

? SHRDLUI, TESSA, MCHINEI ..

71. The story was told to me ..

? SHRDLUI, TESSA, MCHINEI..

72. I was told the story by John.

? SHRDLU, TESSA, MCHINEI.

73. I was told the story.

? SHRDLUI, TESSA, NCHINEI.

74. Who was told the story ?

? SHRDLUI, TESSA, HCHJ..NEI.

75.. Which story was I told ?

? SHRDLUI, TESSA, HCHINEI..

76. To whom was the story told ?

SHRDLUI, TESSA.(6)

77. The box was put on the table by John.

?SHRDLUI, TESSA~(31)

78. Where was the box- put ?

?SHRDLUI, TESSA ..

79. Whose book did you say you wanted ?

TBD.(32)

80. When he has fixed dates he will ring us • (2)

SHRDLUI, TBD, TESSA, MCHINEL (33)

SL A lawyer who cheats the clients he sees deserves censure ..

SHRDLUI, TBD, TESSA, NCHINEI

82. Has the portrait they bought disappeared ?

SHPJ)LUI, SHRDLUC, TBDs Tr~~-)SA, HCHINEI

83. He rolled up the bright red carpet .. (2)

SlllrnLUI, SHRDLUC, TBD~ (34)

84. She handed John a pear and Nary an apple.

SHRDLUI, TBD.(35)

85. The plants he watered and tended flourished.

SHRDLUI, TBD .. (36)

86. Are the elephant and the kangaroo he adopted obeying him ?
(2)

SHRDLUI, TBD. (3 7)

87. \.fuat was the box put in ?

? SHRDLUI, TESSA, HCHINEI. (38)

88. She said "Rubbish";··

TESSA. (39)

89. "Rubbish" she said.

TESSA. (39)

90. 11 Rub b is h" , she said.

TESSA. (3 9)

9L "Rubbish" , said Jack.

TESSA. (39)

92. That she was not there moved l1S •

TESSA, MCHINEI, MCHINEC.(40)

93. It moved us that she was not there.

TESSA, MCHINEI, HCHINEC:. (40)

94. I know which molasses your mother told. you to buy ..

?SHRDLUI, ?TBD, TESSA.(41)

95. Who did you give the ball ?

MCHINEI, HCHINEC. (!+2)

96. Has it been said that John likes .Mary ?

MCHINEI, HCHINEC. (43)

97. Do you believe John to be liked by Nary ?

HCHINEI, · HCHINEC. (!14)

98. Have I asked ·you whether John likes Mary ?

MCHINEI, MCHINEC. (!.t5)

99. Find a block wh·ich is taller than the one you are holding
and put it into the box.

SHRDLUI, SHRDLUC, ?TESSA .. (46)

100. It is funny to see how fast they get away from one another ..

TESSA.

101. Jack laughed and sai.d "Take your ·things and go away" ..

102.

TESSA.

How many eggs would you have been going to use in the
if you hadn't learned your mother's recipe was wrong ?

SHRDLUI, TBD, TESSA.

~
cake

103. Pick up anything green, at least three of the blocks, and
either a box or a sphere which is bigger than any block on
the table.

SHRDLUI, SHRDLUC .. (4 7)

104.. I mm blocks which are not red, but I don't own anything
which supports a. pyra~id.

SHRDLUI, SHRDLUC. (4 8)

105. Will you please_stack up both-of the red blocks and either a­
green cube or a pyranid ?

SHRDLUI, SHPJ>LUC .. (4 9)

106.. Put a small one onto the green cube which supports a
pyramid ..

SHRDLUI, SHRDLUC, TESSA .. (50)

101·.. Put the littlest pyramid on -top of it.

SHRDLUI, SHRDLUC, TESSA. (5 0)

108. Is there anything which is bigger than every pyramid but is
not as wide as the thing that: supports it ?

SHRDLUI, SHRDLUC~

109. A "steeple" is a stack which contains two green cubes and a
pyramid.

SHRDLUI, SHRDLUC .. (51)

110. Call the biggest block "superblock''.

SHRDLUI, SHRDLUC. (52)

Footnotes to Performance List

1. TBD includes no passives (surprisingly) and the SHRDLU
dialogue only one.

2. No sign of "n' t" forms in other programs.

3. No sign of double negatives in other
surprisingly) •

programs (not

4. HCHINE has no one-word time-adjuncts in its vocabulary.. Cf ..
notes 49~ 50.

5. Most programs have ignored mass nouns ..
demonstratives ..

MCHINE also lacks

6.. Only TESSA seems to have catered for the "preposition+WH"
phrases.

7.. MCHINE cannot handle general pronouns.

8. HCHINE has not covered "why", or causal relations in any
form.

9.. Only TESSA and TBD seem to have generalised "how+modifier"
rules.

10.. If the programs use similar "wh/how" rules for 23 and 24,
that would be elegant.

11.. SHRDLU allows "how many" as a special case.

12. !·!CHINE has only JJne way of handling "of+NP" (attachment to -
previous NP) ..

13.. NCHINE can absorb this infonnation, but not very subtly.

14.. Only TBD and SHRDLUI allow manner adverbials, but other
programs allow the relative clause construction~

15.. MCHINE has no facility for compound nouns; TESSA has, but
offeis no samples ..

16.. Only llCHINE includes any deeply-embedded examples of "that"
clauses.

17.. Only MCHINE has a~tempted non-restrictive relative clauses ..

18.. The lack of a "that" before the embedded clause presents
difficulties for MCIITNE and TESSA ..

I
19 .. TESSA,c.an get one reading, but may fail to at.tach "with "

to "the man" in the other interpretation.

20. TESSA and MCHINE both contain the relevant rules, but - have
not been tried on this particular combination.

\

21. Only MCHINE includes questions preceded by optional
adjuncts ..

22. This appears to be ambiguous.. TESSA gets one or both
readings, but MCHINE can only get the reading where "the
men" are swimming ..

23. Only TESSA includes adjunct wh-words (e.g. "when", "where")
as relative pronouns.

24.. MCHINE lacks any "there is/ there are" rules. '-\

25. Only the "in which" should prevent MCHINE from handling this
one (see note 6) ..

26. Only TESSA allows "to+infinitive" or "for+NP+to+infinitive"
as a post-NP modifier ..

27. Only TESSA has "for+NP+infinitive" as a possible NP form ..

28. Only TESSA ha~ instrumental phrases (Cf .. ~ote 14).

29.. SHRDLU and TBD do not include embedded wh-clauses without
antecedents ..

30. The rea.dings correspond to "I asked you the question which
you liked" and 11 1 asked you which question you liked" .. TESSA
may not get both. There is a bug in the NCHINE grammar
which causes this ambiguity to appear spuriously in other
wh-clauses ..

31. MCHINE cannot handle prepositional phrases as adjuncts to
clauses, but could cover this example by treating "on the
table'-' as a prepositionally marked object of "put".

32.. Only TBD handles "whose"; TESSA could probably cope with the
rest of the structure.

33. MCHINE and TESSA have not been tested on this example, but
should manage it.. TESSA might miss the readj_ng with "fixed
dates" as a noun phrase ..

34.. MCHINE has no -rules for verb-particle constructions.
_ TBD definitely gets the a~biguity.

Only

35.. It is not clear i-.'hether th.ls sentence is analysed by the
general conjunction method (see Section VII..8 .. 3).

36. The aobiguity results from the choice of conjoining verbs or
conjoining verb phrases,

]7.

J ~i.

t,u.

.. ,
'• -.

The ambiguity results from the attachment of "he adopted" to
"the elephant and kangaroo" or just to "kangaroo".·

\ . .

The dangling preposition is a problem for TBD. NCHINE could
handle it only subject to the proviso in note 31.

Only TESSA makes any attempt to handle direct quotation.

Al though Winograd(l 972,~ p.52) mentions constructions like
r lds, there is no indication that his implemented grammar
includ cs them.,

MCllINE cannot cope with either the mass noun or the embedded
'\

ir.ipcrative~

This illustrates the difference between TESSA (and SHRDLU)
nnd NCHINE concerning objects. .HCHINE allows the
~lternative indirect object via a lexical marking.

1,]. MCllINE covers this sentence automatically from the grammar
[or sentences like 93 and 13.

~~. A well-formed but inelegant sentence ?

11 ~>. MCllINE treats "whether" the same way as "that".

!,(,. Conjunction and comparatives are difficult, and are not
h~ndled completely generally by most. programs.

1. J. This is possibly the most complicated sentence that any
program has ever handled.

118. The semantic complexity of this Jsentence would defeat most
programs.

l,'J. Presumably an idiom like "will you please" is handled by a
"c.1 emon" •

'>0.

~> I .

~?
) ...

Only SHRDLU includes any pronoun semantics.

Only SHRDLU includes definitional facilities.

Only SHRDLU includes. naming; facilities 4

REFERENCES

J.L.
AUSTIN(l962) "How To Do Things with Words" .. Oxford University Press,

·Oxford.

A.:J. '\
AYER(l936) "Language, Truth and Logic". Penguin Books, 1972.

E-
BACH (l 968) "Nouns and Noun Phrases".. In Bach and Harms (1968).

E. R.
BACH AND HARHS (1968) "Universals in Lingui_stic Theory". Holt

Rinehart and Winston, New York.

Y.
BAR-HILLEL(1954) "Indexical Expressions". Hind 63, ·pp.359-379.

D.q.~ J.B.
BOBROW AND FRASER(1969) "An Augmented State Transition Network

Analysis Procedure". First International Joint Conference on

Artificial IntelU.gencet Washington, D. C .. Mitre Corporation, Bedford,

Massachusetts.

D.L.
BOLINGER(1965) "The Atomisation of l-~aning"- Language 41, No.4,

pp .. 555-573 ..

" (1967) "Adjectives in En~lish: Attribution and Predication".

Lingua 18, pp .. 1-34.

J".
BRESNAN(l970) "On Con~plementizers: Toward a Syntactic Theory of

·complement Types". Foundations of Language 6, pp .. 297-321.

'Jl.
BROWN(l958) "Words and Things" .. Free Press, New York ..

B.C. I

BRUCE(l 975) "Case Systems for Natural· Language" .. BBN Report 3010 (AI

Report 23), Bolt Beranek and Newman, Cambridge, ~~ss. (Also in

Artificial Intelligence 6.)

'R...M. R.:L J'.$.

BURSTALL, POPPLESTONE AND COLLINS (1971) "Programming in POP-2" ..

Edinburgh University Press, Edinburgh. ·

f.'\.K.
BURT(l 972) "From Deep to Su!_·face Structure".. Harper and Row, New

York.

l>.W. J. T.G.
CAREY, MEHLER, AND BEVER(l 970) "When do we compute all the

interpretations of an ambiguous sentence ?". In "Advances in

Psycholinguistics", ed., Flores d' Arcais ·and Levelt. North Holland,

Amsterdam.

E.
CHARNIAK(l 973) "Toward a Hodel of Childrens Story Comprehension" ..

Memo AI-TR-266, AI Lab, HIT, Cambridge; Hass.

" (1975) 11 A Brief for Case". Working Paper No.22, Institute for

Semantic and Cognitive Studie~, Caitagnol~ ..

N.
CHONSKY (1955) "The Logical Structure of Linguistic Theory".

.Micro~ilm, MIT, Cambridge, H1ss ..

" (1956) "Three }bdels for the Description of Language". IRE

Transactions in Information Theory, pp. 113..:.114. (Reprinted in Luce,

Bush and Galanter(l965)).

" (195 7) "Syntactic St rue tures" • Hernton, The Hague.

" (1958) ·"A Transformational Approach to Syntax". Third Texas

Conference on the Problems of Linguistic Analysis in Engli-sh.

(Reprinted in Fodor and Katz(l964)).

" (1959) "On Certain Formal Properties of Grammars" .. Information

and Control 1, No .. 2, pp.

Galanter(l965)).

137-167.. (Reprinted in Luce, Bush and

" (1961) "On the Notion 'rule of grammar' " .. In Jakobson(l 961).

(Reprinted in Fodor and Katz(l964)) ..

" (1964) "Current Issues in Lingu,istic Theory". }buton, The

Hague. (Reprinted in Fodor_ and Katz(l964)).

" (1965) "Aspects of the Theory of Syntax" .. HIT Press,

Cambridge, Mass.

" (1966) "Topics in the Theory of Generative Grammar". ~-buton,

The Hague.

If (1971) "Deep St rue ture, Surface Structure and Semantic

Interpretation". In Steinberg and Jakobovitz(1971) ..

" (1972) 11 Some Empirical Issues in the Theory of

Transformational Grammar". In Peters(l972).

N. M.
CHONSKY AND HALLE (1965) "Some Controversial Questions in Phonological

Theory". Journal of Linguistics 1, No .. 2, pp .. 97-138 ..

" (1968) "The Sound Pattern of English". Harper and Row, New

York.

M.E.
CONWAY (1963) "Design of a Se parable Transition-Diagram Compiler~'.,

CACM Vol.6 No.7. July 1963, pp .. 396-408.

A .c..
DAVEY (l 97 4) "The Formaltsa tion of Discourse Production". Ph.D.

Thesis, School of Artificial Intelligence, University of Edinburgh,

Edinburgh.

D.J'.M.
DAVIES(l973) nPopler 1.5 Reference Manual"~ TPU Report No.l, School

of Artifical Intelligence, University of Edinburgh, Edinburgh.

H. P. :r.P.
DEWAR, BRATLEY AND THORNE (1969) "A program for the Syntactic

Analysis of English Se!;!tencesrt. CACH-Vol.12, No.8, pp .. 476-479. ·

R. .c.
DOUGHERTY(l969) "An Interpretive Theory of Pronominal Refer~nce".

Foundations of Language 5~ pp.~88-519.

c.:r.
FILLHORE(l 968) "The Case for Case"~- In Bach and Harms(1968) ..

" (1972) "On Genero.tivity" ~ In Peters(l 972) ~

c.J. D.T.
FILLMORE AND LANGENDOEN (1971) "Studies in Linguistic Semantics". Holt

Rinehart and Winston, New York.

:r.A. M.f.
FODOR AND GARRETT (196 7) "Some syntactic determinants of sentential

complexity". Perception and Psychophysics 2, pp.289-296.
~

T.~. :r.A.
FODOR,

f'\ .F.
GARRETT AND BEVER(l 968) "Some syntactic determinants of

sentential complexity, II: Verb St rue tu re." Percept.ion and

Psychophysics 3, pp.453-461.

H.W. F.G.
FOWLER AND FOWLER(l 906) "The Kings English". Oxford University Press,

Oxford, 1973.
~

G.
FREGE (1892) "On Sens~ . and Reference". In "Translations from the

Philosophical Writings of Gottlob Frege" ,. Geach and Black.

Blackwell, Oxford, 1960.

M.~.
GARRETT(l 970) "Does ambiguity complicate the perception of

sentences ? ". In "Advances in Psycholinguistics", ed. Flores

d' Arca is and Level t.. North Holland, Amsterdam ..

N.
GOLDHAN(l 973) "Sentence Paraphrasingc from a Conceptual Base".

International Conference on Cornpu ta tional Linguistics, Pisa,

September 1973.

GRINDER AND POSTAL (1971) "Hissing Antecedents". Linguistic Inquiry

2, No.3, pp.269-312 ..

A .
GROSU(l 972) "The Strategic Content of Island Constraints".. Working

Papers in Linguistics No. 13, Department of Linguistics, Ohio State

University •

M.
HALLE(l 962) "Phonology in Generative Grammar". Word 18, pp.54-72 ..

(Repri.nted in Fodor and Katz(l964)).

M.A.K.
HALLIDAY (196 7 a) "Notes on Transitivity and Theme Part I". Journal of

Linguistics 3 No.l, pp.37-81.

" (196 7b) "Notes on Transitivity and Theme Part II" .. Journal of

Linguistics 3 No.2, pp .. 19~-244.

~.
" (1968) "Notes on Transitivity and Theme Part III" .. Journal of

Linguistics 4 No.2, pp .. 179-~15.

C.G.
HEHPEL(l 966) "Philosophy of Natural Science" .• Prentice Hall,

Englewood Cliffs, N.J.

:r.
HINTIKKA(1973) "Language-Games for Quantifiers" .. In "Logic

Language-Games and Information", Hintikka. Oxford University Press,

Oxford, 1973.

F.W.
(

HOUSEHOLDER(l 965) "On Some Recent Claims in Phonological Theory" ..

Journal of Linguistics 1.

" (1966) "Phonological Theory: A Brief Comment". Journal of

Linguistics 2.

S.l>.
ISARD(197l+) "What would you have done if ••• " .. Theoretical Linguistics

1, No 3.

S .D. .H.c.
ISARD AND LONGUET-HIGGINS (1973) "Moclal Tic-tac-toe".. In "Logic,

. Langu<1gc and Probability", ed. Bogdari and Niiniluoto • Reidel

Publishing Co, Dordrecht ..

'R... ~-
JACKENDOFF(1968) ''An Interpretive Theory of Pronouns and Reflexives" ..

Indiana University Linguistics Club, Bloomington, Indiana., ·

" (1973) "Semantic Interpretation in - Generative Grammar".. MIT

Press, Cambridge, Mass.

'R.
JAKOBSON(l961) Proc. 12th Symposium in Applied M.1 thematics ..

American }~thematical Society, Providence, Rhode Island.

'R..M.
KAPLAN(l971) "Augmented Transition Networks as Psychological l·bdels

of Sentence Comprehe~1Sion" .. Second International Joint Conference on

Artificial Intelligence, London. British Computer Society, London.

:r::r.
KATZ(l967) "Recent Issues in Semantic Theory" Foundations of Language

3, pp.12Ll-194.

" (1970) "Interpretive Semantics) vs. Generative Semantics" ..

Foundations of Language 6., pp .. 220-259 ..

II (1971) "Generative Semantics is Interpretive Semantics".

Linguistic Inquiry 2 No .. 3, pp.313-332.

" (1972) "Semantic Theory". Harper and Row, New York.

::r. J. "j. A .
KATZ AND FODOR(l 963) "The St rue ture of a Semantic Theory". Language

39 No.2, pp.170-210.

:r. J. "P.M.
KATZ AND POSTAL (1964) "lm Integrated Theory of Linguistic

>·~;cription". MIT Press, Cambridge, Mass.

f·'. . ''

L\Y(l 975) "Syntactic Processing and Functional Sentence Perspective".

l n Sc hank and Nash-Webber(197 5) •

:. L

Lt:Ult\~~(1975) "Formal Semantics of Natural Language". Cambridge

t:niv(•rsity Press, Cambridge.

r
~: 1!IBAJ.L(l973) "Six or Seven Principles of Surface Structure Parsing".\,

l nd i;111a University Linguis:-.ics Club, Bloomington, Indiana. (Also in

Cnr.11 it ion 2).

T.'-l

t:um:(l 970) "The Structure of Scientific Revolutions". Chicago

l'niv<'ndty Press, Chicago •

..:; . 'f
t:trl\OIM(1966) "English Relativization and Certain Related Problems".

In "lb<lcrn Studies in English", ed. Reibel and Schane, Prentice

'I.ill, Englewood Cliffs, N.J •

•
t.M:O i"F(l 970) "Re par tee". Foundations of Language 6, pp. 389-L•22.

" (1971) "On Generative Semantics". In Steinberg and

.J:tl:n1H1·dtz(l971).

:r.R
L.\~:(l :: !,. AND ROSS (J. 96 7) "Is Deep St rue ture Necessary?". Indiana

:·:; i·:•:i·sJt·y Linguistics Club, Bloomington, Indiana.

- ~ J.A.
· ····· :: :,~:D MOORE(l976) "Dialogue Games: A Process Model of Natural

Interaction". Proc. AISB Conference, July 1976. Department

of Artificial Intelligence, Edinburgh.

H.C. S.l>.
LONGUET-HIGGINS AND ISARD(l 970) "The M:>nkey' s Paw''. New Scientist,

Vol.47, No.717, Sept .. 1970.

RJ). 'll. E.
LUCE, BUSH AND GALANTER(l 965) "Readings fo M:i thematical Psychology".

Wiley, New York ..

J.
LYONS (1968) "Introduction to Theoretical Linguistics". Cambrid~e

University Press, Cambridge~

M.
MARCUS(l974) "Wait-and-See Strategies for Parsing Natural Language" ..

Working Paper 75, AI Lab, HIT, Cambridge, Mass ..

" (1975) "Diagnosis as a Notion of Grammar". In Schank and

Nash-Webber(l975).

J.D .
.MCCAWLEY(l 968) "The Role of Semantics in a Grammar". In Bach and

Harms(l 968).

(1970) "English as a VSO Language". Language 46 No .. 2,

pp.286-299.

" (1971a) "Pre-lexical Syntax" .. Report of the 22nd Annual Round

Table Meeting on Linguistics and Language Studies. (Georgetown

Monographs 22).

" (1971 b) "Tense and Tii:1e Re fcrence in English".. In Fillmore and

Langendoen(l971).

1).V.
MCDERMOTT(l973) "Assimilation of New· Information by a Natural

Language-Understanding System" .. MSc Thesis, Department of Electrical

Engineering, HIT, Cambridge, Mass.

J>.V. G.~.

MCDERMOTT AND SUSSHAN(l 972) "CONNIVER Reference rl:lnual". AI Nemo No

259a, AI Lab, HIT, Cambridge, Mass ..

S.D.
MILLER AND ISARD (1964) "Free Recall of self-embedded English

Sentences". Infonnation and ~ontrol 7 No.3, pp. 292-303 ..

R.
HONTAGUE (1968) "Pragmatics" In "Contemporary Philosophy:

Survey", ed.Klibansky. La Nuova Editrice, Florence ..

" (1970a) "Universal Grammar" .. Theoria 36, pp.373-398.

11 (l 970b) "English as a Formal Language I". In "Linguaggi nella

societa e nella tecnica", ed. Visentini et al. Edizioni di

Comunita, Milan.

11 (1972) "Pragmatics and In tensional Logic". In "Semantics of

Natural Language", ed. Harman and Davidson. Reidel Publishing Co.,

Dordrecht.

:r.
HOSES(l970) "The function of function in LISP". AI-199, HAC-M-428,

Project MAC, HIT, Cambridge, Hass.

BJt
PARTEE(l970) "Negation, Conjunction and Quantifiers: syntax vs.

semantics". Foundations of Language 6, pp.153 - 165.

" (1971) "On the requirement that transformations preserve
. .

meaning". In Fillmore and. Langendoen(l971).

'P~ s.
PETERS (1972) "Goals of Linguistic Theoryu. Prentice Hall,. Englewood

Cliffs, N. J.

p_s. R.W.
PETERS AND RITCHIE(l 969) "A note on the universal base hypothesis" ..

Journal of Linguistics 5, No.1, pp .. 150-152.

" (1971) "On Restricting the Base Component of Transformational

Grammars". Information and Control 18, No 5, pp.483-501.

tt (1973) "On the Generative Power of Transfopnational Grammars".

Information Sciences 6, No 1.

s.
PETRICK(l973) "Semantic Interpretation in the REQUEST System" ..

International Conference on Computational Linguistics, Pisa,

September 1973.

w.
PLATH(l 973) "Transformational Grammar and Transformational Parsing in

the REQUEST System". International Conference on Computational

Linguistics, Pisa, September 1973.

P.M.
POSTAL(l972) "The Best Theory". In Peters(l972) ..

'R.. :r.
POWER(J.971.;.) 11A Computer 1•bdel of Conversation" .. PhD Thesis, School of

Artificial Intelligence, University of Edinburgh, Edinburgh.

M.1L
QUILLIAN (1969) "The Teachable Language Comprehend er: a simulation

program and theory of language" .. CACM Vol 12) No 8, August 1969 ..

H.
REICHENBACH(1966) "The Elements of Symbolic Logic"~ Free Press, New

York.

c.
RIEGER(l 97 4) "Conceptual Memory".. PhD Thesis, Computer Science

Department, Stanford University, Stanford, California.

c
RIESBECK(l973) "Expectation as a Basic Mechanism of Language

Comprehension". International ·conference on Computati_9nal

Linguistics, Pisa, September 1973.

" (1974) "Computational Understanding: Analysis of Sentences

and Context".. PhD Thesis, Computer Science Department, Stanford

University ..

II (1975) "Computational Understanding"c In Schank and

Nash-Webber(l975).

G.D.
RITCHIE (1976) "Problems in Local Semantic Procesing". Proc .. AISB

conference, Edinburgh, July '1976. Department of Artificial

Intelligence, Edinburgh ..

" (1977) "Augr.iented Transition- Network Grammars and Semantic

Processing" .. Paper submitted to the Fifth International Joint

Conference on Artificial Intelligence ..

J.
ROBINSON (1970) "Dependency St rue tures and Transformational Rules" ..

Language ~6 No 2, pp. 259-285.

J'.R.
ROSS(l967) "Constraints on Variables in Syntax" .. PhD Thesis,

Department of Linguistics, MIT, Cambridge~ Mass .. (Also Indiana

University Linguistics Club, Bloomington, Indiana) ..

~.E. D.A.
RUMELHART AND NORHAN(l973) "Active Semantic Networks as a :t-bdel of

Human Memory".. Proc .. Third International Joint Conference on

Artificial Intelligence, Stanford University, Stanford, California ..

Stanford Research Institute, H3nlo Park, 'California ..

B.
RUSSELL (l 905) "On Denoting". Mind 14, pp .479-493 .. __/

1L
RUSTIN (197 3) "Natural Language Prqcessing". Algor;i thrn ics Press, New

York ..

R.C.
SCHANK(l969) "Linguistics From A Conceptual Viewpoint (Aspects. of

Aspects of the Theory of Syntax) " .. :Memo AI-88, AI Project, Stanford

University ..

11 (1970) "'Semantics' in Conceptual Analysis". Memo AIH-122, AI

Project, Stanford University.

11 (1972a) "Conceptual Dependency : A Theory of ·Natural Language

Understanding" Cognitive Psychology Vol.3 No.4,ppo552-630.

II (1972b) "Adverbs and Belief". Memo AIH-171, Stanford

University.

II (1975) "U sj ng Know i. edge to Understand". In Schank and

Nash-\vebbcr(l 97 5) ~

R.C... K.M.
SCHANK AND COLBY(l973) "Computer t-bdels of Thought and Language".

Freeman, San Francisco. ·

'R..C... B.L.
SCHANK AND NA~H-WEBBER(l975) Proceedings of the. Workshop on

Theoretical Issues in Natural Language Processing, MIT, June 1975.

Cambridge, Mass.

"R.C.. 1-.
SCHANK AND TESLER(1969) "A Conceptual Parser for Natural Language" ..

Proc. First International Conference on Artificial Intelligence~
_/

Washington D.C. Mitre Corporation, Bedford, Mass.

:r.
SCHOENFIELD(l 967) "Mathematical Logic". Addison-Wesley, Reading,

Hass.

R.. F.
SIMMONS(l965) "Answering English Questions by a Computer: A Survey".

CACM Val 8. No.I. pp. 53-70.

" (1973) "Semantic Networks: Their Computation and Use for

Understanding English Sentences" .. In Schank and Colby(l 973).

II (197 5) ''The Clmms Hicroworld". In Schank and

Nash-Webber(l975)~

c..s.
SMITH(l 96!4) "Determiners and Relative Clauses in a Generative grammar

of English". Language 40 No.I, pp. 37-52.

/\'t.:T.
SOUL (197 5) "Parsing and Ref ercnce De termination". PhD Thesis,

Computing Centre, Unive1·sity of Essex, Colchester, Essex ..

T.L.
STANSFIELD(l 974) "Programming a Dialogue Teaching Program". PhD

Thesis, Department of Artifical Intelligence, University of

Edinburgh.

1). L-
STEINBERG AND JAKOBOVITZ(1971) "Semantics: an Interdisciplinary

· reader · in philosophy, linguistics and psychology".. Cambridge

University Press, C1J1bridge •.

'Jl.P. 1l i.~.

STOCKWELL, SCHACHTER AND PARTEE(l973) "The Major Syntactic Structures

of English". Holt Rinehart .:i.nd Winston, New YorL

G.T T. E.
SUSS.HAN, WINOGRAD AND CHAR.NT.AK (1972) Hicro-Planr}er Reference Hrnual.

AI Hemo No.203a, AI Lab, HIT, Cambridge, Hass.-

S.A.
THOMPSON (1971) "The Deep St rue tu re of Relative Clauses". In Fillmore

and Langendoen(1971).

J.P. P. H._
THORNE, BRATLEY AND DEWAR(l 968) ·"The Syntactic Analysis of English by

Na chine".. In 11
M::'lC hine Intelligence 3", ed. Michie. Edinburgh

University Press, Edinburgh~

u.
WEINREICH(1966) "Explorations in Semantic Theory". In "Current Trends

in Linguistics, Val III" , ed. Sebeok. Mouton, The Hague.

J.
WEIZENBAUN(l966) "ELIZA - A Computer Program for the Study of Natural

Language Communication Between Man and Machine". GACH VoL9, No.l.

pp .. 36-45.

'(.

WILKS (1972) "Grammar, Meaning and the Machine Analysis of Language".

Routledge Kegan Paul, London.

" (1973) "The Stanford Machine Translation Project". In

Rus tin(l 97 3).

" (1975) "Preference Semantics". In "Formal Semantics of Natural

Language" ed. E. L .. Keenan. Cambridge University Press, Cambridge.

" (1976) "Processing Case" • P .. merican Journal of Computational

Linguistics.

T,
WINOGRAD(l 972) "Understanding Natural Language". Edinburgh University

Press, Edinburgh.

W.A.
WOODS(l968) "Procedural Semantics for a Question Answering System".

Proc. AFIPS Fall Joint Computer Conference, Vol 33, pt.1.

" (1970) "Transition Network Grammars for Natural Language

An a 1 y sis" • CAC H Vo 1 1 3 , No 1 0 , 0 c t 1 9 7 0 ..

" (1973) "An Experimental Parsing Systera for Transition Network

Grammars". In Rustin(l.973).

W.A.
WOODS et al. (1. 969) "Augr.iented Transition Networks for Natural

Language Analysis". Rq1ort CS-1 to the NSF, Computation Laboratory,

Harvard University.

~.A. i.L. R.M.
WOODS, NASll-\.JEBBER AND KAPLAN(l972) "The Lunar Sciences Natural

Language System: Finai Report" .. BBN Report No 2_265, Bolt, Beranek

and Newman, Cambridge, Hass ..

v.
YNGVE (1960) "A Model and An Hypothesis for Language St rue ture" .. Proc ..

American Philosophical Society 104, No~S,. pp.444-!.•66 .. Philadelphia ..

" (1961) "The Depth Hypothesis" 4 -rn Jakobson(l 961) ..

