COMPUTER MODELLING
OF ENGLISH GRAMMAR

GrRAEME DONALD RITCHIE

PHD, | UNIVERSITY OF EDiNBURGH 1977

Acknowledgements

Thé work’reportéd‘in this thesis was carried put between October
>1973 and September 1974 in the Theoretical Psychology Unit, School of
Artificial Intelligence, UniQersity of Edinburgh, and between October
1974 and October 1976 in the Department of Computer Science, School
of Artificial Intelligence and ‘Computer Science, University of
édinburgh‘ The work was supported by a Science Research Counéil
Research Studentship. I should 1like to thank ~my supervisors,

Christopher Longuet-Higgins and Hamish Dewar, for the assistance

vhich they provided during these periods.

Thanks are also dug ﬁo Robert Rae for his long suffering
guidance on programming matters, and to Mike Gordon and Martha Sténe
for their comments on‘ an earlier draft of this thesis. I
particularly wish to thank Stephen Isard for many extremely valuable
discussions. The ideés p§e$ented in Sections V.1.3, V.4.2 and V.7
owe much to Vhis suggestious. Two papers have been submitted to
éonferences in the course of the pfoject, and these are listed in the

bibliography as Ritchie(1976) and Ritchie(1977).

I declare that this thesis has been conposed by myself, and that

the work reported in it is my own.

 G.D. RUICHIE

ABSTRACT

Recent work in artificial intelligence has developed a number of
techniques which are - particularly appropriate for constructing a
molal of the process 5f understanding English sentences, These
methods are used here in the definition of a’ffamework for linguistic
déscription, called ‘“computational grammar". This framework is
employed fo explore the details of the operations involved in
transforming an English sentence into a ‘general semantic
representation., Computational grammar includes both "syntactic" and
"semantic" constructs, iﬁnorder to clarify the interactioné between
ali the various kinds of information, and ‘trea{s the
sentence-analysis process as having a semantic goal which may require
syntactic means to achieve it. The sentencg;analyser is based on the
concept of an "augmented transition network grammar', modified to
minimise unwanted top-down proceséing and unnecessary embedding. The
analyser‘does not build a purely syntactic structure for a sentence,
but the semantic rules operate hierarchically in a way which reflects
the traditional tree ~ structure. The processing operations ére
Simplifiéd by ﬁsing temporary storage to postpone premature decisions
or to ‘conflate different options. The computational grammar
framework has been applied to a few areas of English, including
relative clauses, referring expressions, verb phrases and tensc. A
computer program ("MCHINE") has been written which implements ﬁhe
construéts of computational grammar and some of the linguistic
descriptions of English. A number of sentences .have been
successfully processed by the program, which can carry on a simple.
'dialogue as well as building semantic rebresentations for isolated

sentences., » -

CONTENTS
INTRODUCTION
\Chapter T : METATHEORY AND METHODOLOGY
Section I;l ¢ Theories, Paradigms and Frameworks

Section I.2 : Some Assumptions
I.2.1 Semantic Structure
1.2.2 Syntax

I.2.3 Recognition Rules
Section 1.3 : Terminology and Grammaticality
Section I.4 : Computer Modelling
Section I.5 : Detailéd Analysis

Section I.6. : Psychology, Linguistics and Artificial
Intelligence

Ch;pter I1 : OTHER FRAMEQéRKS
Section II.0 : Preamble
Section II.1 : The Aspects todel (Chomsky)
Section II.2 : Deep Interpretive Semantics (Katz)
‘Seétion 11.3 ; Surface Interpretive Semantics (Jackendoff)
~ Section II.4 : Generative Semantiés (Lakoff, McCawley, Postal)

Section II.5 : Montague Grammar (Montague)

éeétion I1.6 : Préference Semadtics (Wilks)

Section 1137 : Conceptual Dependency (Schank, Rieébeck)
Section II.8 : Transiﬁion Qetwork Grammars (Woods)
Section I1.9 : The SHRDLU system(Winograd)

_ Section II‘IOv: Wait—-and-See Strategies (Marcus)
Section III,1l : Semantic Networks (Simmons)

Chapter III : IMPROVING THE EXISTING CONSTRUCTS

Sectiou I1I.0 : Preamble

‘ Section III;l : Structural Combining Rules-
Section ITI.2 : Syntax and Semantics

Immediate Semantic Processing

..

Section III.3
Section I1I1.4 : Sense and Reference
Section TII.5 : Registers

Section II1.6

..

Control Structure

Section I1I.7

e

Processing Levels
Section ITI.8 : Decisions, Mistakes and Predictions
Section IIL.9 : Bottom-up Devices

" Section ITI,10 : Semantic Representation

Section
Section
Chapter Iy :
Sectioh
Section
Secﬁion
Sec?ion
Section
_ Section
Section
Section

Section

III.il ¢ Levels of Description
I1I.12 : Conversational Structgre
COMPUTATIONAL GRAMMAR

IV.0 : Preamble

Iv,1 Structural Combining Rules

.o

IV.2 : Recognition Rules

IV’3;: Semantic Representation

IV.4 : Syntactic Propergies and Features
IV.5 : Analysis Procedure

IV.6 : Rggisters

IV.7 : Conversation Routines

IV.8 : Guidelines for Analyses

Chapter V : SOME AREAS OF -ENGLISH GRAMMAR

Section V.0 : Preamble

‘Section V.l : The Internal Structure of Noun Phrases

V,1l.1 Possessives and Determiners

V.1.2 Restrictive and Non-Restrictive Adjectives

V.l.3 Adjectives and Classifiers

Section V.2 : Auxiliary Verbs

V.2.1 Avoiding Braanching

V‘2‘2
Vl 2'43

V.2.4

Section V.3 :

V13'l

v-‘3o 2

Section V.4
V.4.1
Vid.2
V.4.3

Vob.4

. Section V.5
’V‘S.l
V5.2
V.5.3

V.5.4

Section V.6
V.6.1
VI6‘2

V.6.3

Section V.7 :

V.7.1
V.7.2
V.7.3

\,l 7#4

The Information Conveyed
Negation

"DO"

Number Agreement
Subject-Verb Agreement

Determiner~Head Agreement

: Wh - Clauses

The Surface Structure of Wh-Clauses
The Complex Noun Phrase Constraint
Semaﬁtics of Wh~Clauses

NMon-Restrictive Relative Clauses

: Limits on Embedding

The Idea. of CompLéx Embedding
Right-Embedding
Left-Embedding

Relative Clauses

: The Semantics of Noun Phrases
Definiteness
Specificity

Predication

Tense and Time

The Previous Descriptions
Nested Tense Settings

The Function of Time-binders

Disembodied Time References

V.7.5 Tense Clash

V.7&6'A Summary of the Tense-Slot System

V.7.7 Time Semantic Structures and Relationships
V‘7.8 Perfect Aspect

V.7.9 Some Rules and Structures

V.7.10 "When" Clauses

V.7.11 Summary of Rules
Section V.8 : Verbs and Cases
Chgpter VI : THE MCHINE PROGRAM
Section VI.l : Implementation ﬁetails

Section VI.2 : Data-base and Data-structure system
VI.2.1 Property lists
Vi.2.2 Pseudo;Records
- VI.2.3 Contexts
VI.2. 4 Matching'

Vi.2.5 Data Baéé

Section VI.3 : Representing Linguistic Information
VI.3.1 Lexicon
VI,3.2 Recognition Rules
VI.3.3 Structural Cdﬁbining Rules
VI.B;A‘Regisfers |
VIQ3;5‘$hé ATN Interpreter
VI.3.6 Surface Structure
VI%3;7 Sémantic Networké

.VI‘3q8‘Output Translation

VI.3.9 Conversation Games
VI.3.10 World Model

VI.3.11 Semantic Hierachy

Section VI.4 : Iﬁplemeﬁted.Grammar
VI.4.1 Noun Phrases
VI.4.2 Verb Phrases, Auxiliaries and Predicates
VI.4.3 Prepositions
VIi.4.4 Imperatives
VI.4.5 Embedded Clausés
VIi.4.6 Wh~Clauses

VI.4.7 Time Adjuncts

Section VI.5 : Comparison with Other Programs
VI.5.1 Technical Details

VI.5.2 Grammatical Coverage
Chapter VII : CONCLUSIONS, PROBLEMS AND SPECULATIONS
Section VII.0 : Preamble

Section VII.l : Structural Combining Rules
VII.1.l Present Version
~VIIL.1.2 Bidirectional Rules
VII.1.3 Left-Right Ordering

VII.l.4 Yocus and Topic

Section VII.2 : The Analysis Procedure
VIL.2.1 Present Version

VII.2.2 Top-down and Bottom-up

VII.2.3 Predictions and Procedures

VII.2.4 Demons and Packets

Section VII.3 : Semantic Representation
VII.3.1 Present Version
VII.3.2 Semantic Well-formedness

VIL.3.3 Contexts and Referring Expressions-

Section VII.4 : Syntactic Markings

VIiI.4.1 Present Version

Section VII.5 : Guildelines for Descriptions
VII.5.1 Present Version

VII.5.2 Dynamic and Static Elegance

Section VII.6 : Registers
VIi1.6.1 Present Version

VII.6.2 Constraints on registers

Section VII.7 : Conversafional Rules
VIT.7.1 Preéent Version

VII.7.2 Greater Interaction

Secticn VII.8 : Points of English Grammar
VII.8.1 Present Version
VII.8.2 Prepositions

VII.8.3 Conjunction

APPENDIX A : Détails of-Implementcd Grammar
APPENDIX B : Sample Dialogues
APPENDIX C : Performance Table

REFERENCES

Page 1

INTRODUCTION

4The work reported in this thesis tries to achieve two closely
rélated goals. Tirstly, to combine some of the ideas and techniques
of recent work.in artificialhintelligencebto form a model (or partial
model) of language which allows linguistic description of English in
précessing terms. Secondly, to investigate in more detail some of
the processing mechanisms that muét‘be present in such a @odel in
order to describe the conversion of a string of English words to a

representation of the corresponding 'meaning'.

The second, more specific, goal was the main: aim, but it was
found necessary to spénd some time estaSlishing a frame of reference,
since there is currentl& novaccepted processing ﬁqdel of language.
The framework used here (called "computational grammar' for ease of
vrefereﬁpe) is not a totally new modei, since it relies heavily on tﬁe
work of Chomsky, Fillmore,rbbntague, Uoods, Winograd and others (as
will be seen from Chapgeré II and III). In order to clarify some of
the ideas involved in computational grammar, a computer program (the
"MCHINE" system) has been written, which can convert a small range of
English = sentences to a semaﬁtic repfesentation or carry on 4 &ery

simple dialogue.

J

There are’ thus several facets to the investigation. There 1is
the general framework of computational grammar (éet out in Chapter
IV); which is based on certain assumptions (outlined' in Chapter 1I)
and ,on some reactions to/existing models (discussed in ChapterlIII),
Next, there is the application of computational grammar to various

fragments of English, and the consequences which these analyses have

Page 2

for the processing mechanisms that must be postulated (see Chapter
V)., Finally, there is -the MCHINE program, which implements some of
the English descriptions and acts as a crude test of the devices of

computational grammar; the program is described in Chapter VL.

Computational grammar is neither wholly adequate nor even
complete (as 1indicated in Chapter VII), but it has provided a basis

from which some useful points have emerged.

The processing machanisas have saveral interaéting properties,
Various ‘"bottom-up" principles have been inc¢luded, which reduce the
’range of options that have to be specified explicitly in a grammar.
There 1is a general, partially-hjerarchical system of information
storage which has, as an automatic consequeﬁce, the phenomenon

previously described in transformational grammar by the "Complex Houn

‘Phrase Constraint'". Although the hierarchical surface structure of

A

English -may be fairly complex, the processing can be simpliflied by a
technique which makes a . special provision for right—-branching

structures, thereby avoiding unnecessary embedding of processes.

The rules used for combining meanings are also important, since
they lie on the traditional boundary between syntax and semantics. A
single set of rules simulténeously defines the possible surface
structdfes ‘and ‘stafes what semantic combinations these structures

represent.

Within the area of semantic representation, a particular kind of
structure has been devised ‘which is particularly suitable for the
representation of the meaning of a wide variety of surface

. .)
structures, and which therefore allows various semantic. processcs Lo

Page 3
&

be simplified:

Several areas of Eﬁglisﬂ.grammar-have been explored using the
computational framework, and‘kthese ére described in Chapter V.
Sectioﬁs V.l, V.2, V.3 and V.5 illustrate how the various devices in
computational ‘grammar operate, and their appropriateness for certain
phenomena, The analysis of "y "~-clauses, in Section V.4, shows how
an otherwise arbitrary 1linguistic constraint can be re-expressed
naturally in computational terms. Section V.6 combines concepts from
logic and ‘computation to develop a way of describing referring
expressions. A detailed investigation of tense and time is set out
in Section V.7, and the deséription of verb phrases in Section V.S

shows how careful use of lexical entries can simplify the grammar.

, CHAPTER I

METHODOLOGY AND METATHEORY

v ek o o

Page 5

Section I.,1 : Theories, Paradigms and Frameworks

The phrases "theory of language" or "linguistic theory" are
often wused in discussing research into natural language, The aim of
this section is to question whether .we always have "theories'", and to

suggest that something weaker is guiding current research.

One widely—aécepted version of 'how scientific investigation
proceeds 1is characterised by Heméel (1966), In such an approach, a
theory is a cohereni, structured body of ideas concerning some
subject, which makes predictions that may be verified, -and which can
be used to "explain", in some sense, observations made about the
subject matter. - Hempel presents a very neat picture of a highly

1

organised objective scientist using a carvefully constirucutal tlizory
in an unprejudiced fashion . A somewhat different analysis is
presented by Kuhn (1970), who has less faith in the ijectivity of
the séientist¢ Kuhn sees science working within a series of
"éaradigms". A paradigmris an accepted theory which not only guides
research, but positively straitjackets it, by defining problems, and
possible solutions, in such a way as to narrow the scientist’s view
greatly., A paradigm is not just a theory, but has an attached set of
ways of working and a‘whole terminology of its own. Hence it imposes
a very definite structure on the way research nroceeds. Whereas’
Hempel discusses the notion of choosing between competing theories by
gathering evidence, Kuhn asserts.that these rational choices are not

" possible between paradigms, siace each paradigm defines differently

the criteria for such choices,

Page 6

A'case could be made for regarding linguistic research as
praceeding in Kuhnian paradigms. A paradigm in this sense
contributes to research at two levels - it brovides é theory, which
can be regarded as '"true" or “explanatory"; it also provides
guidelines for the everyday investigations of the subject matter. It
is this latter aspect that 1is more relevant in artificial

intelligence and computational liﬁguistics, since both lack an
overall '"theory" to provide a received body of "facts" or
"explanations“. In the period before the develoﬁment of a paradigm,
there is, according to Kuhn, an atheoretical stage in which a body of
‘techniques and concepts are built wup, which serve to guide
investigation and descriptioh of a topic. Let wus call suéh a
collection of devices a v"framework", A framéQork is weaker than
either a theory, in Hempel’s sense, or a paradigm, in Kuhn’s sense,.
- It makes no really precise predictions, since it is not sufficiently
elaborated. It cannot, therefore, claim to provide any explanation,
since it does not relate all obscrved phenomena to some systenatic
generality. It has no use for "ecritical experiments' or "ecrucial
counter—exanmples', since it is not an integrated edifice that can be
demolished = by rémoving one brick, It contains nél"truths" which can
be taken as unquestionable by the community using the framework.
However, it is of great use to what Fillmore (1972) calls the
"ordinary working grammarian'. It provides tools for investigating
aﬁd describing the subject-matter. It provides a terminology which
'workers in the field can use to communicate 'with each other., It
suggests problems that must he atbacked, and, often, Qays of
attacking tﬁem. It provides some means of assessment of putative

solutions (usually using some general classification of "elegant"

Page 7

against "ad hoc"). Tt is a cluster of related ideas, rather than a
tightly structured whole, so that different workers may disagree over
the acceptance of certain aspects of the framework, and yet still be

able to share the rest of it.

Current artificial intelligence work definitely has a framework,
but Lt 1is doubtfﬁl if it has a paradigm, since it lacks any real
theory. To demonstrate that there exists a common cluster of ideas
and tecﬁniques, it is necessary only to list some of the terminology
currently used in artificial intelligence: top~down, bottom-up,
depth-first, breadth~first, goal-directed, procedufal-embedding,
diséributed knowledge, flow of control, access enviromment,
subroutine call, pattern-invocation, demons, middle-out,
backtracking, plan formation, interacting goals, updating a world

model, etc.

It might be thought that, Vitﬁout the concept of a critical
" experiment, there could be no notion ‘of- "refutation" or
"igcorrectness" within éAframework. That this 1is not so can be
demonstrated by considering the form of argumentation conducted in
transformational linguistics during the 1960s. Although the results
of Peters and Ritchie (1971, 1973) showed that the mechanism of
traﬁsfbrmational grammar was so general as | to be virtually
irrefutable, 1linguists continued to produce "counter-examples" to
each other’s claims. Despite the fact that the formally defined
transformational grammar could; strictly speaking, perforn anj
operations whatsoever, there was an additional notion of "simple'

against "ad hoc" . This could be used to eliminate many of the

technically possible manipulations - a '"counter—example'" was an

Page 8

"example which could not be handled neatliy" .

This hés to be borne in mind when discussing computational .
linguistics, In order to cope with the- detailed complekity of
grammatical phenomena, computational descriptions generally contain
‘mechanisms which are formally as powerful as a Turing machine.
However, what makes such models distinct from each other kis the
diéferent structuring that is imposed on the mechanisms. Couplad
with the notion of "simplicity" or "elegance'", the different models
kor rather, the different sub-frameworks) may well make different

claims.

Page 9

Section I.2 : Some Asswnptioﬁs

Part of a framework consists of the assumptions it makes in
order to provide an initial basis for investigation., This section

outlines the assumptions for later chapters, without providiing any

real justifications for any of the positions adopted.

I.2.1 Semantic Structure

It is logically possible that a language—understagding system
might be constructed in which all tasks (such as inferénce, detection
of ambiguity, etc.) can be performed using the word string as the
sole representation of the input sentence. That is,4no independent
levei of ”meaniﬁg" is required to show, fof example, the similarites

between the- pairs of sentences below, or to detect the aubiguity of

(3).
(1) -
(a) John bought an alligator from the zoo manager .

(b) The man who administers the zoological sardans =s01ld Jahn an

alligator.
(2)
(a) The alligator attacked John.

(b) John was attacked by the alligator,

Page 10
(3) Attacking alligators can be dangerous.

If such an approach is viable, the onus of proof rests with
those advocating it, since years of linguistic and philosophical
research have demonstrated the unsuitability of word strings for

manipulations such as inference.-

This does not necessarily inveolve claiming that the surface
string ‘contains "less information" than some other 'semantic "
structure for the’sentence; if the latter is computed from just the
surfacer string, this cannbt be true, although the infofmation may be
in‘a more useable form in the computed structure. However, the
computation might use information from outside the word string itself
(contextual clues),‘whicﬁ will make a contribution to the semantic
structure. Not performing the conversion might entail storing these
contextual clues (if they'could be isolated) along with the surface

form, so that the information they contained could be usad

A D
(ARSI R

ot

the "neaniag" of the sentence was required.

Some balance nust be struck, nevertheless, between the
simélicity of semantic operations (for inferencing, etc) and the
‘complexity of the way of converfing surface form to semantic
’structure. (Cf.‘ comﬁents in Section II.2 on interpretive

semantics) .

1

The assumption used, therefore, in this project, is that there
is some level of vrepresentation which can be called "semantic
structure" which is logically distinct from the surface form, and

which is computed from -the surface form together with other

(contextual) information.

Page 11

It might be érgued that to proauce a "structure" is ﬁisguided,
as the best way t? analyse an English utterance, in context, is to
rcoﬁsider the effect that was intended by thé'speaker (on any hecarers)
and/or the effect that the utterance had on the hearer(s). Thinking
in terms of conversational effects is extremely véluable, and'ﬁay be
the most general way to describe an utterance - but this does not
contrast with the "structure" approach outlined here, exéept in
terminology. Suppose we have a linguistic model in which sentences
ére described in terms of their effect on the‘speaker‘and/of hearer,
ﬂis model (unless it is to be totally unilluainating) will have to
provide a precise representation, in some formal terms, of these
""effects'; hopefuily, this representation may even aliow some
comparison of "similar effects", so that similé?iti;s like those 1in
.(1) and (2) are shown. Such a set-up will not differ fundamentally
from the vague outline presented already — "semantic structure" is
being wused in such a broad sense that it does not contrast with

"representation of conversational effect".

1.2.2 : Syntax

In certain logical languagés like the predicate calculus, syntax
“has a A.clearlyndefinéd purposer and is distinct from (though
systematically related to) semantics. Syntactic rules spgcify whicﬁ
strings in the language are to be classed as "well-formed", and only
well—fofmed’ strings need be considered for inference ox oiher
semantic manipulation. This is similar to the notion that Chomsky
adopted in his theory of natural language (1957, 1965), although it -
has now been widely questioned (see Scction IIL.1 for further .

discussion). It is logically possible that a natural languaage may not

Page 12

have a comparable conceptyof "well—formed/illnformed" characterised
by a set of syntactic rules, although some'sentences‘may express an
~odd 1idea, and some sentences may be more complex to process. Also,
some sentences may sound odd because they are uttered in an

inappropriate context.

The investigation in later chapters assumes that we need not
‘search for rules oﬁ syntactic well-formedness, and that it is
sufficient to search for rules of semantic manipulation, together
with rules for converting between surface form and semantic
structure. bbny of the phenomena attributed to syntax (particularly
Chomskyan "grammaticality") may be more accurately describable in
terns of semantic or conversion rules(see also Section I.3 bhelow).
This may sound as if syntax is merely being banished to lurk under
another heading, since syntéx has traditionally been a fuandanental
part of the process of conversioa batween surface form and meaning.
This is true, since any conversion rules which are postulatéd will
almost certainly have to ﬁaké extensive use of traditional syntactic
notions such as "vefb",r "preposition", possibly 'transitive" and
perhaps even "subject"; the change thét is being highlighted here is
more a change of emphasis. In this project, the primary aim of
writing these grammatical rulésA is not to specify any
"well-formedness" for sentences; the goal is tc show how surface
strings relate to 'semantic str&cture* Having made that point? the
terms "syntax" and'"syntéctic“ will be used in the later chapters for
rules or structures whéée sole fask is to guide the conversion
process, and thich ;cannot ‘reasonably be said to be de;cribing
palterns of meaning. For example, the class of verbs which appear at

the front of the sentence in lnglish questions (auxiliary verbs) is a

Page 13

useful syntactic class, since it aids in the detection of the
question construction; it is not obvious that auxiliary verbs are a
semantic class (although some more sophisticated analysis might show

this to be so0).

Thié does not mean that no notion of "well-formedness/
ill-formedness" will result from such rules. if there are conversion
rules and semantic rules,’then certain items may fail to be processed
by one -or the other, An accurate model would‘ be .one& whose
rule~failures, or complekities of processing, corgeSpond to
utterances :or strings 'which gsound bad to the traditional native
speaker. However, it is the model as a whole which willicharacteriée
such 1ill-formedness, not just one component. In fact, the existence

"oood/bad" provide much of the evidence

of these native judgements of
for rules of any kind, and the Chomskyan style of argument can be

adopted in discussing such data. (See I.3 and III.8 for further

remarks on this topic).

1.2.3 : Recognirion Rules

So far, the (deliberately vague) term "coaversion" has been used
for the relationship betwecen surface form and semantic structure.

This concept can now be examined in greater detail.

A‘Qbmplete model of a lanéuage user will have to épeéify, among
other things,‘how semantic étructupe can 5e converted effectively to
strings of words (production) and how strings of words can be
effectively converted to semantic structure (recogui(ion)g One
obvious way of making such specificafions would be to present two

(probably enormous) algorithms, one for production and one for

recognition.” To allow for alterations‘tq the language (or {idiolect,
if modelling a specific user), it might be preferable to separate out
-some items called "rﬁles" which the algorithm uses to pegform its
task; language-expansion could con;ist then of alteration to thev
ruie—sys;em, or to the algorithm, or to both. The'twé algorithms are
distinct, since the form of inpur usedxfor~onekis the form of output
for the other (and vice-versa). ft might be possible; nevertheless,
to find common aspects of the:two processes, Ideaily, it would be’
neat if all such points of.similatity could be separated out and
built into the rules; then there might be two fotally distinct
interpreters (in the computational sense) workiﬁg on one common set
of dafa (the rules). This could of course be done trivially, just by
taking the union of the two disjoint sets of "rules" to be the common
) _

sel but that 1is gnot what 1is meant. Sea Kay (1975) for some
> Y J

comments on this topic).

Some linguists claim fo be building a modél of language théh is
not biased towards eirher“préduction or recognition (this was one of
the claims of Chomksy (1965)). In a sense this is true, gut it 1is
reminiscent of the- joke about a blind horse seeing equally well at
both ends. Chomskyan linguists usually ignore the need for effective
- production and recogniiién prééedures, and so in a sense the modelg
are equallyrincémplete answers. to both broblems, Such an apprqach‘
alsou has to assume that all aspécts of language can be described in
suqh a neutral, mnon-directional way. Hence, if there are any
phenomena ‘which are‘directionwspecific (i.e. are Consequences of the
algorithmic parts) either thesc phenomena will not be describable or

olse the neutral formulation will have to be distorted to accommodate

them.

Page 15

Computational approaches to language have genérally treated the
two processes separately. This is largely because computer models
‘must include effective algoritlms for whichever of the two processes
they simulate; hence the task of investigating‘both problems at once
is’ inconveniently large. Aiso, there is probably ~a greater
conviction. among computational linguists that the two processes have
substantial differences, than there is among theoretical linguists.,
The justificatioﬁ for this approach is that similarites between the
two précesses are a further ‘topic for exploratidn‘ Common
sub~processes are ‘tb be found @npirically, and we do not start from

the assumption that the whole processes differ only trivially,

Chomsky has often stated that any human language must be subject
to constraints on what it is possible for the human mind to ”know";
in some sense. It should not be forgotten that whatever ‘know" is
taken to mean here, it must cover the constraint that langﬁagé nust
be able to be produced and to be recognised. The assumptiqn in
Chomsky (1965) 'seemS tb‘ bé that the latter constrainté are both
obvious and trivial (e.g. the 1limits oni'mulﬁiply ~centre~embedded
structures), but this is not necessarily true, Hence some
charaéterisation of the production and recognition processes is just

as fundamental to the study of lingulstic wuniversals as the

investigation of "deep structures',

The focus of the reseavech reported in this thesis has been on
the recognition process, but some attempt has been made to scparvate
out generalisations in the form of - rules, S0 - that
frequently—occurring wechanisms are explicitly emphasised. However,

there has not bean time to formulate any bi-directional rules,

.

Page 16

although there are some parts of the description which obviously
ought to be shareable with a production-oriented model, The detailed

"specifications of many of the rules are (ultimately) in'programming

code - very much a one-directional, algorithmic form.

Page 17

\

-

Section I.3 : Terminology and Grammaticality

In later chapters, expressions such as "noun .phrase" and
"subject" will be used frequently in discussiung examples of Faglish
grammar, but this does not mean that these terns are constructs in

computational grammar, "Noun "

phrase” is a term which is extranefy
usaful for describing English’informally, but which is very difficult
to .define rigorously, Some fraditiona1 concepts (e.g. "verb") are
used directly in computational grdﬁmar; ‘ others (e.g,‘ "subject")
could be defined if\ﬁecessary, although they are not useé at present;
some (e.g. "person" and ‘number” markings) are not wused in the
standard way.* Nevertheless, these traditiqgal expressions are so
well;known that they provide the best expository vocabulary for

describing English informally, and they are employed for that reason.

Chomsky (1957) used fhe wﬁrd "grammatical” to refer to a string
of words which a native spéaker accepts as belonging to his language;
strings which are not in the language were "ungrammatical". In 1965,
he introduced a further classification - a sentence could also be
classed as "acceptable/ unacceptable", depending on whether or not it
was easily processed {(under !perfomnmrance conditions"); also, a
sentence could be classified as "seman;ically normal/ sémantically'
anomalous™, depending. on the well-formedness -of the meaning

expressed. Chomksy made the assumption that these three dimensions

.

of classification were relatively independent (apart from the fact
that grammaticality was a pre-reguisite for the other classifications
to be made). He also assumed that it was ecasy enough for the linguist

to say which native-$peaker judgements pertained to which dimension,

N

Page 18

Laﬁer papers in seﬁantically-based«\grammar (see Fillmore and
Langendoen (1971)) wuse the asterisk (the traditional Chomskyan sign
for an ungrammatical string) to condemn sentences (or strings) for a
wide variety of reasons, meawley (1971) uses [#] to mark
"presuppositional oddity",‘and the devicé of insefting one or more
question marks to mark ‘degrees of "oddity" is very c0mmon-in

-

linguistic literature.

What emerges from these ‘post~l957 develoments is that the
"oddity" of a putative sentence (as judged by a natije.speaker) is
graded not‘just along . one dimension, bu£ along several. Also,
despite Chomksy’s oriéinal assumption, neither the n;tive speaker nor
the linguist may have clear intuitions about which dimeansion(s) he is
using to classify a string as "odd". It is the task of the linguiét

to construct a theory in which '"odd"

strings are classed as
ill-formed in some vrespect (if the theory is to model human
behaviour), but the judgements have not been rigidly pre-sorted into

T

boxes labelled "percepfudlly difficult", "semantically anomalous",

etc.,

" This is a suitable point to introduce some informal terminology.
The term grammatical will be used not in the Chomskyan sense, but in
the sense of "pertaining to grammar"; its contrary will therefore be

non-grammatical, vrather than "ungrammatical’, An utterance which

sounds, in some way, strange to a native speaker, will be classed as

; tha coatrary to this is acceptable, Both "odd" and

arm——— e

old;

"acceptable" are classifications of the data, with no assumptions
: ;
about the type of strangeness involved; both may be context

dependent, since the judgement may be of ihe form "sentence § would

Page 19

sound strange in context C", An utterance which would sound’ strange
in viptually any conteﬁt may be referred to 53 111-formed (this is
“the nearest equivalent to Chomsky’s "ungrammatical? that will be
used) . An utterancé whose strangeness résults entirely - from

contextual effects (rather than from its internal properties alone)

wiii be termed inappropriate, A string which is deemed, for some
theoretical or linguistic reésoh, to be abnormal in some way wili Be’
called anomalous. That is, "inéppropriate" and "anomalous" refer to
the wéy that the linguistic theory or grammar classes the item, not

to the judgements about the original data.’

These do not constitute precise definitiens of the way that these
words will be wused, but they should clarify the informal usage in

later chapters.

The aim of a grammar (including both semantic rules and
recognition rules) ié to specify how a sentence or phrase can be
converted to semantic rgpresentation. . Since there. may be several
possible ways 'of performing the conversion, we must introduce more
detailed evidence concerningrthe way that it is done. Tﬁe assumption
will be made here (following Chomskyan linguistics) that "odd"
sentences result from rule-failures of some kind, of from abnormal
structuring, That is, there should. be a‘jdirect correspondenée
between anomaly (something goiﬁg wrong in processing or in the final
structure) and oddit? (senteﬁces sounding bad). Adding this criterion
to the grammar—wrifing methodology enriches the information available
concerning the details of English grammar (see Section Izé)_and has
non—-trivial consequences for producing 1ipguistic analyses (see also

Section III.9).

Page 20

Section I.4 : Computer Modelling

Most of the time’épeat on the project repdrted here was spent
coﬁstructing and debugging the program described in Chapter 1V, It
is therefore necessary to state why the program was written. None of
the justifications are novel, but it is worth pointing out which of
fhe possible arguments were thought valid and which are regarded as
irrelevant. Most of the reasons are of a pﬁactical nature, rather
than Being'strong/theoretical justification, |

In addition, one practical disadvantage of .writing é full
prograh, in a project like this should be meﬁtioned. Program—-writing
and debugging is time-consuming, and usually introduces many
implementation problems which have no theoretical content. This
means that there is a "law of diminishing returns" concerning what
should and should not be programmed, in‘that a section of program is

worthwhile only if it will demonstrate some useful pdint,'or will in

some way enlighten the programmer himself. Unfortunately, often this

can be determined only after the programming has been done.

One advantage.of expreééing ideas in program form 1is that one
can build on an exisﬁing descriétive’language‘ In trying to descri?e
some complex subject matter where theré is not an established theory,
problens of notation quickly arvise. It is di%ficult to m&k@
statements which are detailed and'yet comprehensible to the reader,
if the descriptive system 1is completely new and ad hoc. To some
extent the widely—uéed transition network notation (see Section II.8)

has helped the situation in computational linguistics, but there are

-still uncharted areas. If the model-~builder uses a programmning

Page 21

language, he can at least express his constructs in primitive terms
which will be understood by those who know that language. If, for
example, the way that some "mapping" operates is slightly obscure,

the corresponding code can be examined to provide an alternative

description.

A computer also acts as a stern (if somewhat undiscriminating)
critic. To have a machine take all of one’s half-formulated ideas to

their logical (if absurd) conclusion 1is an edifying (if somewhat

.

humbling) experience; to see the intermediate stages of this
developmenﬁ (by tfécing>the steés, of the program’s execution) is
positively enlightening. In this ‘Qay, interactive debugging of a
computationally~expressed grammar develops a strqng»inéuition for the
details of a language. It also forces the grammar~writer‘to be
rigorous and precise in the expression of his rules - the device has

yet to bz designed that takes hand-waving as its input.

3
J

However, perhaps the biggest advantage of using a computer to
test one’s ideas is the complexity of medel which can be handled. 1t
is véry difficult to keep track; on paper or in oné's head, of how
vagious rules and different sub-components interact, so that
non-computational models must remain either fairly simple or wholly

unchecked,

One of the biggest contributions that computer modelling has
made to the ideas expressed in this thesis dis in the range of
concepts it has provided. As noted in I.2, one obvious way to
express language comprehension is in the form of steps that must be
performed on an inpdt sentence, Computer programming is based on

algorithmic description, and hence provides a natural way' of

Page 22

expressing a series of instructions which wust be performed. Theré
are also certain computational concepts (subroutines, registers,
assignment, etc) associated with this form of description, which are
useful notions to wuse in describing a process. The augmented
transition network notation, for example, is really just a form of
programming language, with primitives which are particularly useful
for déScribing the task of processing English. and many of its
aspects are just re—formulations of ordinary pfogramming devices.,

(see Wiﬁograd (1972, pp.44-46), and Ritchie (1977)).

It isAalso worth menticning someypossigle‘ aims or assumptions
that are not relevant to this projecf, although they might apply to
other computational approaches to lnglish. A possible aim of using
computers in linguistics might be to allow the use of English as a
high-level prégramming language. This is not only not the aim of
this project, it dis a somewhat misgdided aim. The feason English
works sd well as a vehicle of communication is that people are

extremely clever at usiﬁé‘ii. Partial utterances, oblique allusions,
etc,, are frequen;ly u;ed in everyday speech in a way which would be
hopelessly inefficient if one was not taiking to a very sopﬁisticated
understanding device. In situations where efficienf communication is
required between humans (for example: ﬁetween aircraft) stylised
forms are often used. .if we had a mach;ne_which was as intelligent
and \subtle as the human hearer, Engliéh might be a féasible means of
cbmmuniéation -~ but it would still not be the best., (5ee

Longuet~Higgins and Isard (1970) for discussion of some of the

difficulties).

Page 23

Also, there is not a significantly(péeful similarity hetween tha
structure of English and that of a progamming language, although
inspection of certain:program texts in COBOL,.POP—Z, étc., (full of
"IF...THEN...ELSE", '"MAKE", etc,) might suggest to ; naive reader
that there is no essentialAdifferencg between the two. This is not
very helpful, as the differences between FEnglish and a programming
language éré greater than the similarities. Many of the similarities

are superficial, and often result from the attempts of the language

designer to make the text = understandable to humans.
"IF....THEN...ELSE" is nore transparent than (say)

"TEST...OPTION....DEFAULT", but it should not delude the reader into
thinking"he is reading English. Ambiguity, use of pronouns, lack of
a clear notion of syntactié well-formedness, ‘the ability to be
self—refergntial, are all features of Fnglish which are generally
absent from (and perhaps e?en undesirable in) programming languages.
This 1is not to say that it is impossible to build a language which

has some, or all, of these features - but this would be narrowing the

1"

gap by constructing an unusual "programming language', rather than

showing the gap to be small alreédy¢

For some time, artificial intelligence was a field in which the
main research éctivity was writing prograns. Sometimes no separaté
statement of theories or suggestions waéqurthcoming along with the
program. If -challenged, a write; might reply that his program was
his theory 5 that the very code embodied clear hypotheses about
intelligent Dbehaviour, which could be assessed by ’running the
prograﬁ. Sﬁch a claim cannot be taken literally, unless the LISP

programmer intended to assert that intelligence is formulated in

CARs, CDRs and CONSs, or the FORTRAN programmer meant that -

’ | Page 24

non-recursive subroutines were fundamental parts of his model.
Clearly there are some parts or aspects of a programmed model that
can be taken to constitute the substantive proposals, and some which
are merely implementation details, For}unatéiy, this deficiency is
being gradually remedied, with AGI.‘workeré being more . explicit about
what they are suggesting, rather than dumping ‘a méss of code and
output in the lap of the reader. Althoﬁgh the impiemented version of
a model is the énly one that can actually be regarded as "tested" in
the fullest sense, it is stillrﬁecessary to be clear about which
aspects of it are to be taken seriously. (Sce the exchanze betwean

Simaons and Giuliano, following Simmons (1965)).

Allied to the approach just mentioned is the attitude that any
program which actually works and produces impressive output must be
of value, and that any ideas which cannot be directly expressed in a
working program are meaningless hand-waving. Probably no one holds
this view in such an extreme form, but it is a detectable thread in
some discussions in artificial intelligence‘ This yardétick would
make ELIZA (Weizenbaum (1966)) the most important language mnodel so
far produced, and dismiss as worthless all of theoretical linguistics

S

(including many of the ideas of Schank (1969, 1970) prior to their

being programmed). Although ‘the first parvt of this attritade is

slightly absurd, it cannot be denied that much of the impact of

Winograd. (1972) thesis came from the sample dialogue.

Nevertheless, even people who hold very strongly that ideas must
be programmable, tend nevertheless to criticise or praise ideas on
grounds (e.g. generality,. elegance, intuitive appeal, etc) other than

whether they have been (or can be) programmed.

Page 25

Ultimately, ideas can be assessed 1in vavious terms, and the
existence of an implemented program is just one (important) criterion

among scveral.

Anreveﬁ stronger Version of the\"working proggam" attitude just
described further stibulates what kind of pérformance the working
program should have. Since one of the essential uses of language 1is
to carry out conversations, it 1s a. very rigorous test of a
linguistic model if it can describe precisély the process of human
Vdialogua. " In fact, Schank (at the NATOhAdvanced‘Sfudy Institute,
Santa Cruz, 1973) commented that modelling éonversation was perhaps
the hardest task facing researchers in language processing. It is
somewhat uanreasonable, in the currenﬁ state of the field, to demand
of any computati onal linguistic hypothesis that it be dgmonstrated
within a fully conversational system. HMany interesting theories and
programs have been produced which would not meet this criterion.

(Again, ELIZA would score disproportionately well on this count).

Page 26

Section I.5 : Detailed Analyses

Another justification for writing the MCHINR,pﬁﬁgram (deécribed
in Chépter VI) 1is a general argument which applies to linguistic
description whether done with“pencil and paper or - implemented on a
computer., It is important not to lose touch with the real details of
grammdtical phenomena, since any hypothesis should derive from
. natural language observations, and must fit future observations. It
is easy to become into*icared with étrong hypotheses and‘ seduced by
loose conclusions, and not devofe enough tihé to seeing if the claims
are even half-true. This.is not to say that strong, false hypotheses
are worthless -~ the Popperian idea of learning by refutation is

relevant - but we must first find that they are false, . not assume

them to be true.

This is not to suggest that linguistic investigation proceeds in
the fashion outlined by a textbook on scientific method - hypothesis
construction, experimeqé aeéign, experiment execution, confirmation
or refutation. The whole process is much less tidy than this, with
partially-formed ideas being tried out on small collections of data,
only. ﬁo be modified in the light of what is found, and then applied
again to‘.ﬁore items. There 1is al constant iteration between
hypothesis—fofmation and testing, with concepts‘growing organicaily

(and often quite patchily) as a result. Neatness can often be

achieved by working apart from the data for a while, but one always

125 o return to the examples eventually, whether at the computer ,

v

" terminal or the desk.

Page 27

Certaiﬁ ideas which were held at the start of this projéct have
been found, on examination of English data, to be incorrect. For
exampie, the idea of semantic rules Which operate incrementally as a.
sentence 1is proceésed (see Section 1III1.3), the definition of a
"constituent type" as a staté and a list of registers (sce Section
11I.7), and the didea of selecting semantic rules by examining the
semantic items so far found‘(see'Section I11.9) all proved to be more
complicated (or less adgquaté) than was first thought. Similarly,
the hYpothesis that a seﬁtence«analyser used only semantic
information (cf. - Riesbeck (1974)) and'that much of ehe processing
could be performed locally (cf. Marcus (1975)) were explored at an
early stage, without success. This represents‘a gain iun knowledge
whicﬁ might not ﬁave been achieved withadﬁ an attempt ’(not
necessarily in program form) to folféw up the %ull implications of

these notions.

Page 28

Section I.6 : Psychology, Linguistics and Artificial Intelligence

Linguisticvtheories'frequently occupy -an ambivalent bposition
with respect to psychology. One one hand, languagé is an essentially
L

human activity, and the only evidence for the linguist is the way

" "

humans use language, (where '"use is‘taken in a very broad sensc, to
include, for example, the intuigions and judgements employed as data
by traqsformational grammarians). On the other hand, linguists do not
generally ciaim to be carrying out ﬁsthological expe?iments, and
their notion of ‘”empirical" ‘differs radically froﬁ that of an

1.1 1

hligzhted by Chomsky’s

(v}

experimentalist, fhis dual position was hig
controversial attempt = to distinguish betwgen "competence" and
"performance"} (Chomsky (1964, 1965)). Generally, linguistic
descriptions have been - what Chomsky would regard as "competence"
theories, since linguists have usually aimed at describing patterns
in linguistic structure, without specifying processes for producing
or interpreting sentences. Hence the methodological stance 'of
linguists has been fairly consistent =~ they _mgrely attempt to
describe, in a theoretical fashioﬁ; the nature of Linzuistic
'stfucture; how this. would actually be used by a human speaker or
‘hearer in a real situation is aﬂother matter, to be 1investigated by
psychologisté. Unfortunately, anydne | attempting to design a
"performance" model is in a more difficult positioh, and 41; is

desirable to clarify here some of-the aims of the framework described

in this thesis,

Pége 29

The partial model presented in later chapters is primavily a4
linguistice model of <performénce, with an obvious but wholly
speculative relationship to a psychological model. This approach was
adopted largely because it seemed intuitively to be more productive,
but it can be'justifiéd in greater detail (see Section I1.2). The main
point is that it is observable that people do intérpret and produce
sentences (subject to philosophical provisos which‘are too complex to
discuss here); hence it is reasonable to investigate laaguage in
terns éf two analogous processes. There is no guarantée that any
regularities or constructs will be formed in language outwith these
processes (e.g. Chomskyan ‘"competence"), so to search for such

non-processing patterns may well be fruitless.

The evidence used in constructing the model has been wholly
linguistic -in nature, since it consists of considering intuitiye
judgements about the wuse of languagé (oddity of utterances,
difficulty in understanding of sentences, notions of similarity or

~

diflereace in meaning, étg;). The .main advantage of wusing such
"evidence" is its potential richness. If we allow judgements of
synonymy, oddity, etc., as data for our model-building, we will be
ablé to filll in many details whichr are not easily amenable to
treatment kéy experimental technique. The linguistic style of
argument (largely developed within transformational grammar) yields a-

mass of "information" of debatable reliability, whereas the

experimental method gives strongly-supported results in minute areas.

This raises anothav point - the need for a fairly full model.
Psycholinguistic evidence does not yet constrain the set of possible

theories far enough to tell us much about it; stipulating that the

Page 30

theory should be detailed, cohereﬁt and fairly consistent does;
hoWever, provide a fairly stringeﬁt set of constraints, In fact they
‘are \probably enough to rule out all current linguistic theories or
frameworks, including the one 0utlined> latef in ’thisv thesis, but -
these properties can be regarded as goals that the ideal thedry4ﬁ

should aim at. They have the advantage that they can be applied ' at

every stage in theory construction without recourse to experiment.

If we ever get near to having a full model, its viability as a
psychélégical theory becomes relevant. This does not imély that even
a detailed model is easily tested within thé experimental paradignm,
since it 1is not‘ a trivial matter to state how constraints in the
wodel should reveal themselves in measurable psychological
paranmeters. For exémple, certain experiments (see Carey et.
al.(1970), Garrett(l1970)) suggest that when people are faced with a
potential structural ambiguity while listening to a sentence, they
consider all possibilities. This scems, at first glance, to suppoft
a "breaéth—first" interpretation wmodel rather than a "depth—firét”
one (see Section III.6). However, further consideration shows that
this 1is an over-interpretation of the results. The results really
- show that wheﬁ‘a hearer is faced with a multiple choice, he requirés
nore brocessing time - it showémnothiug about how he uses this extra
time, and so does not distinguish between two models in which all
options are attempted in some ‘way; it.is also compatible with a
strategy in which a careful selection of one option is made after

some estimating process.

Page 31

Héving stated these: disclaimers, some ‘'questions remain
concerning what the model in this thesis is a model of. It is not a
model of some abstract ﬁcompetehce", but it .cannot be claimed to be a
psychological model of a human. . This dilemma is not unique to
linguistic performance models, but is a common aspect of much of
artificial intelligence. The main justificétioﬁ that can be offered
for artificial intélligence models, from a psychologist’s vieWpoint,
is that, while mnot directly psychological, they may furnish
suggestions and concepts for an eventpal psychoiogical description.
(This is also true of\linguistic‘models which, like Chomsky’s, aim to
form part of an eventual performance modei)a The disciplines of
cognitive psychology and artifical intélligence now overlap, as some
psychologists recognise the need to work out full models of a fairly

speculative nature before attempting to seek expcerimental support.

The framework in later chapters forms a partial iinguistic model
of the English language. It is phrased in terms of 'processing"
primarily because this seems -to be an obvious Qay to look for
patterns. in language. It includes the concept of a "model hearer",
which is a device capable of performing‘ certain voperations on
linguistie structures. The model hearer includes certain subparts
(e.g. an ”aﬁé;yser") which deal with specialised tasks in these
operations. Occasionally the notion of'a "program" will be referredw
to. A computer program is intended to be an impleméntation of the
model hearer, which may serﬁe to clarify certain points of detail,
but it is not the central descriptive device (see Section I.4). The
data to be wused in sketching the model‘ hearer include various
intuitive judgements abgut English sentences, their meanings and

about English dialogues. This follows the principle that all we know

Page 32

about the wgrkings of language is what the language-users cén tell us -
about it; this principle is as old as field-work in linguistics, if
not - older. A fairly agnostic approach will be taken towards
judgements of "oddity" (see I.3), rin that as few assumptions as

possible will be made about the cause of the oddity (see also Section

1.2.2).

CHAPTER 1II

OTHER FRAMEWORKS

Page 34

Section II.0 : Preamble

Work in artificiél intelligencg tends to impinge on Che Fields
of linguistics, psychology and philosophy, so there are relationships
(of varying strength) betweén the worereported in Chaptérs TI1I, IV,
V and VI and é wide variety of other investigations of the English
language. No attempt will be mgde here to give a complete guide to
these other frameworks, but the aspects most péréineﬁt to later
investigations will be discussed. The more detailed Vérgumenfs of
Chaptér I1I will>also incorporate comments on the other franeworks,

patrticularly those most relevant to computatiénal grammar .

It is noticeable that most of the schools ofvthought that will
be examined here are "frameworks" in the sense of Section I.l, rather
thén theories. Generally, linguisticA research operates with a
cluster of ideas and gﬁidelines (which often are not related by any

necessity), rather than some monolithic theory with clear boundaries.

)

For example, it is hard to say what are the defining principles of

o

ﬁha‘"conceptual dependency" of Schank (1972). It is\ fundamental = to
conceptual dependency that meaning can be described by a small set of
primitive elements which are not language~specific. However,
Schank”s work has associated ideas and methods which are not logical
conclusions from this assumption - e.g. the use of a particular set
of primitives, the avoidance -of traditcional syntax, etc. Someoné
could therefore adhere to the central tenet (meaning deséription in
non-linguistic elements), but still not be working on conceptuél
dependency as it is normaily recognised. Sonme frameworks are even

harder to define precisely, although all are clearly recognisable to

their users. Katz explicitly states (1972, Chaﬁter 8) the defining
principle of deep interpretive semantics, and discards as peripheral

certain notions often attributed to him, - His mwminimal definitive

o

statement might surprise some linguists, since it contains so little
of the framework that has come to be associated with interpretive

semantics.

The discussions in this chapter will therefore deal with the
Loosely linked packages of dideas that are normally taken to
charactérise the various ViepriﬁtS,l rather than aétempting to
isolate and examihekdefining properties. ‘A framework éxists in the
minds of the users, rathef‘than in explicit definitions, unfortunate

though this often is.

Sections II.l to II.5 describe the framework that provided the
background in linguistics and logic for computational grammar,
Sectionsg II.6 to IX1.9 outline the artifidial intelligence influences
on the framework, and Sections I1.10 and II.ll summarise work which
was carried out independéntiyvof this project but which hés cer%ain

similarities to it.

Page 36

Section IT.1 : The'fﬁpects ModgL.QquyygdL

One of the most influential linguistic theories of recent years
has been transformational grammar»és developed by‘Chomsky. (Chomsky
(1955, 1956, 1957, 1958, 1959, 1961, 1964, 1965, 1966)). The remarks
here will be addressed to the more comﬁiex 1965 version, rather than

the 1957 prototype.

Chomsky proposed a model éf grammaf in which there were separate
(but closely related) syntactic, semantic . and phdnologicél‘
components. (The phonological component . (see Chomsky and Halle
(1968)) 1is not of interest here). Although some work was done on the’
seméntic component by others (see Section .iI.Z), Chomsky’ s own

suggestions were primarily concerned with the syntactic component.

There were to be two main kinds of syngactic rules - phrase
structure and transformagional‘ The former characterised a sct of
labelled trees, and the'iéﬁfef defined a set of tree-manipulating
operatioﬁs‘ Each sentenge was analysed as having a surface structure
(a labelled tree whose terminal nodes represented the words of the
.senteﬁce), a deep structure (a labelled tree describable by the

‘ phrase structure rules) and a derivation (an ordered subset of the
transformational rules, which defined’the relation between the deep
structure and the surface structure). The deep structure was supposed
to be the level at which certain linguistic gencralisations (e.g.
categorisation of verbs) were repreéented, ana formed the interface
with the semanfic component (in that the semantic rules were defined

on phrase-structure-generated deep structures). Ambiguous sentences,

therefore, might have more than one associlated deep structure, thus

Page 37

providing more than one possible inpul to the semantic component,

One -major asset of this model was that it was a fairly detailed
and complex system; vwhich aftempted to systematise a wide range of
phenomena. Cértain " problems and linguistic ‘pattern; were
simultaneously drawn to the“attention of linguists, and described in
an elggant fashion. This stimulated a great amount of work which
uncovered a vast number of regularities in natural language
(éspecially English). The resulting literature'provideé a vast store

' ‘ '

of linguistic patterning which subsequent theories can look on as

partially—digestedxdata.

Over recent yearé, many criticisms have been aimed at Chomsky’s
work, Eut only the three’ most relevant to this project will be
mentioned here. Firstly, ﬁhe model was not one of
language-processing (despite a tentative suggestion at the end of
Katz and Postal (1964)), but was a static descripfion of patterns.
(See Section I1I.2.3 for a d?scussion of this issue). Chomsky (1965,
pp.30-31) seems to imp%y that the mode of employing transformational-
rules to conprehend 1anguage would be some kind of general
rulg—interpreter, but no details are given of how such a mechanism
uight wo;k‘

Secondly, the model was dominated by syntactic generalisations.

1

Althougﬁ deep,stﬁuctures were supposed to provide the interface with
Ui semantié compounent, the criteria for postulating particular deep
structurés and transformational devivations were almost always based
on syntactic patterns. Tﬁe ascumpilon éecmed to be that if the

syntactic generalisations were captured, the semantic rules would

work correctly (see Section II.Z for fuvther remarks). Thirdly, (as a

Page 38

consequence of ‘the- . two preceding points), the model was
disproportionately dependent on the separation between ill-formed and
well-formed sentences, Instead of this providing just one criterion

to apply, it formed the central task of the grammar, with the latter

being wholly syntactic, (See Sections 1.2, 1.3 for more discussion)*

. R | Page 39

Section I1.2 : Deeprlnterpretiyg_égmantics (Katz)

—

Katz and Fodof (1963) sketched a sgmaﬁtic theory which was
intended to provide a semantic component suitable for the Linguistic
model being déveloped by Choﬁsky {see Section ‘II.l, above) . They
provided some simple examﬁiés of‘how tbeir model was to operate, but”
not éll the details wére explicitly stated. Katz and Postal (1964)
elaborated on this theory, ané suggésted how.the semantic component
night interface with a syntactic component in the st&le of the
"Aspects" . model, This semantic theory was gradually developed in a
series of articles (Katz (1967, 1970, 1971) and the fullest
description éo far 1is' contained in Katz (1972). It is this latest

version which will be discussed here.

Katz maintains the position that the relationship between syntax
and semantics 1is as foliows. For each séntence, there is an
associated deep structurg,_in“the form of a labelled tree, related to
the hsurface structure By a sequence of‘syntactic transformational

rules. (See Section I1I.1). There are semantic interpretive rules

which relate each deep structure to a semantic representation. The

semantic representation for aan item consists of a set of semantic

markers., Other forms of information in Katz’s model are held in

redundacy rules, which impose a hierarchical organisation on the

-

markers, and antonym sets, which cluster mutually exclusive markers.

These latter two devices seem intuitively to capture generalisations,
and are a useful contribution to the problem of defining and

describing "semantic anomaly".

Page 40

A semantic marker is not (as it appeared from the original Katz
and Fodor forhulatipn) an unanalyseable unit (like a syntactic
feature), but can have internal strﬁctﬁridg¢ That 1is, Gsemantic
marker" iis roughly eqhivalént to "piece of semantic structure", with
no atomic connotations.‘ Hence thé 1972 version allows é wider vrange
of operations to be defined on markers, whereas the 1963 theory
permitted little other than,‘ordinary‘ set operations (union, -
intersection,‘ etc) on the sets of}nafkers, This can be regarded as
an improvement or a retrog;adgjstep, depending on the metatheoretical
standpoint, but from the point of view of building working modeys, it
is a useful enrichment for exploring the complexities of natural
language semantics. Unfortunately, Katz uges ; semi~formal notation
for his markers, so it is hard to determine aii the details. For
example; it 1is 'not clear exactly how the integnal structuring of a

marker like

(EVAL : seat for one)
can be operated upon, or what elements are atomic in his system.
Also, it may be that Katz has not taken advantage of this potential
‘enrichment, for the following reasons., In the 1963 and 1964 versions

of the theory, there were projection rules which showed how the

meanings of the immediate constituents of a syntgctic item were
qombined to form the meaniné of’the whole. There were differe;t
projection rules for differeﬁt' syntactic constructions,v and 50
different rules could combiﬁe meanings in different ways (subjecﬁ to
the proviso that the items they were acting on were unordered sets of
atomic elemgnts). Katz suggests that such rules can be removed from

his theory and their function performed by syntactic aunnotations ou

Page 41

each semantic. lexicgl-item, showing how other items may be attached
to or combined with it. .He illustrates this by déscribing how the
lexical meaning of a verb can ﬁ;;éﬂannotated "slots" showing which
syntactic constituents will brovide the meanings to be inserted in
the meaning of the main verb, It is not clear how this approéeh will
work in general; presumably the lexical meéning ‘fof \a noun will
reqﬁire annotations showing where all possible modifiers can be.
attached. Possibly only nouns and.verbs will need these markings%/
and other items can be dependent on them (cf. dependency grammar,
Robinson (1970)). This seems a little cumbersome - having semantic
items carrying details of all possible combinations that they can
undergo,'ipcluding\syntactic details of the way that their associated
items will be expreésed (cf. comments in Secﬁion IV.8 on where to
represent information)f Also, it restricts the modes of combination,
unless the marking system is t§ be expanded in somé way to allow the
markings to be lists of differeat ways'of combining. In Katz's wverb
example, there 1is one mode of combination (roughly equivalent to
filling in a case~frame, in the model of Fillmore (1968)5, SO no more
ﬁeeds to be specified. This seems to bé inherent in the mechanisn,
whereas the 1963 &ersion allowed the projection rules‘ to describe
different semantic patterﬁs‘in terms of different inter-constituent

-ie. the

T

relationships. Abolishing projection rules seens to
linguist’s hands, and eliminate one of the more useful parts of the

theory (cf. Montague’s rules (Section IT.5)).

The annotations on semantic items can only specify one syntactic
form that related items may have, so this iunnovation is, like wmost of
Katz’s theory, heavily dependent on having a canonical syntactic form

(deep .structure) for the semantic rules to operate .on. This

Page 42

-

dependence means that any simplicif& or elegance that Katz's rules
acﬁievg is conditional wupon the syﬁtactic component being able to
define tﬁe fequisite deep structure, Whereas Chomsky made the
assuﬁption that a grammar which captured éyntac;ic geheralisations
would define the approPriaté deep structures for ° the semantic
component, Katé makes the assumption that the syntactic component -
will provide whatever structures are neéded for the semantic rules.
Such assumﬁions aré ﬁﬁavoiﬂablé iﬁ a modular médel (thiskis how some
complex computer systems are written, for example) but great care
needs to be taken to eusufe that the interfacés are compatible, and

that simplification on one side of the line does not cause

complication on the other.

Page 43

Section II.3 : Surface Interpretive Semantics (Jackendoff)k

One development of the "Aspects" model was the introduction .of
semantic rules which operated on sygtactic structufes qthervthan deep
s;ructures, as proposed by Jackendoff énd others. (Jackendoffv(l968,('
1973), Dougherty ‘(1969), Bresnan (1970)). There are certain aépects’
of this approach which bring it slightly closer to computational -
grammar than the original Kétz semantic theory. Unfortunafely, there
are many unexplained detailé in Jackendoff's proposals (%s has been
observed by opponenfs of surface interpretive rules) so it is hard to

deliver an overall verdict.

Jackendoff suggesté the use Qf' a ‘widerA'variety\ of semantic
representations rather than just sets of seﬁantic markers (e.g.
"coreference tables", a 'thematic hierarchy", etc.). This_ is an
important step, since it frees the linguist from the straitjaéket of
haying to capture every aspect of the meaning of a sentence in a set
of markers. It seems plausible that coreferenée can be incorporated
more easiiy in a model of language use if it is explicitly handled as
.ﬁart‘ of referential semantics rather than being squashed into
syntactic rules. It is not quite sé easy to Seg how benefits will

accrue from Jackendoff’s notation for opaque contexts, since no .

mechanisms are outlined (e.g. inference) which use the notation.

As observed in Section II.2, deep interpretive semantics depends

' ‘ 0] N . . 1 . /\
on a fairly sophisticated syntactic component to connect deep and
surface structure, and so presents problems for a model of language
understanding. Surface interpretive semantics replaces many

previouslyéfotmulaﬁed “syntactic transformations with semantic

Page 44

interpretation rules, and so makes a start on the problem of
determining semantic representation from surface form. Howe&er, it
is only 'a partial step, since very few of Jackendoff’s rules operate
directly on the surface structure. The rules usuélly operate on some
structure intermediate between deep and sprface,“and so it woul& be
more appropriaté to call them "derived structure interpretation/
rulgs?. From the point of view of ‘trying to model language
understanding as a process, this introduces as many problems as L6
eliminates (if not more); since the analyser would have to perform
semantic processing at arbitrarily interleaved parts ofighe syntactic
processing; That ‘would not be imgoésible, but it ;equires a more
complex processing model than the term 'surface interpretive

semantics" might suggest.

One issue which becomes rather confused in the course of

"syntactic well-formedness"

Jackendoff’ s arguments 1s the question of
(or "grammaticality" in the Chomskyan sense). AlrhOugh he adheres to
the position that there 1is a notion of syntacfié well-formednéss
whigh is independent of semantics, his proposals regarding
undeveloped nodes lead to"raéher bizarre strings being classed as
syntactically well-formed. Jackendoff admits that his notion of
.well-formedness has changed from thé original Chomskyan idea in
certain respects, but does not regard this as a problem. His
position is. quite consistent. (and it emphasises the point made in
SectinuvI,B thap the kind oflwéllfformedness (or ill—formeqness) that
a string has is defined by rhe EEEQEX* rather than being given in the
data), but it rasises ancw {(without freéh debate) the question of what

role syntactic well-formedness is to play in the theory.

' \ ' Page 45

Section II.4 : Generative Semantics (Lakoff, th@&@gy, Postal)

Another developmént stimulated by éhomsky's work in the
mid—lgﬁos was that of "generative semantics" (Lakoff and Ross (1967),
McCawley (1968, 197la$, Bach (1968); Postal (1972)). fhis framework'
retained certain parts of Chomsky}s model (in particular, the notion”
of a fransformational derivation of treemstructufés) but discarded
the idea of a separate sgyntactic component. A generative semantic
deri?atipn felated the semantic representation (a tree of éredicates,
arguments - and propositions) to surface form by a unifogm sequence of
tfansformgtional rules, with no intermediate level of sjntactic deep

structure, A later development (see Lakoff (1971)) was the

incorporation of global derivational constraints, which were general
rules with the power to influence the operation of traansformational

rules in any way.

The initial tenet of generative semantics . (that it is
unaesirable to posit éééérate syntactic rules Qnd structures) is‘
shared by computational grammar, but thera are fev other
similarities. The main difficulty in assessing the advantages of the
.theory (as opposed to the attractiveness of its assumptions) is that
it 15 very hard to aésess whetber a given solution falls within thé
predicﬁions of generative semantics, since global“ derivational
constraints allow any manipulation whatsoever, and the concept of
"transformation" has changed so mﬁch. As observed in Sectibn‘ I.1,
most theories include theoretically powerful devices, restrained only
by the idea of "ad-hoc-ness", but this theory seems to allow ‘any

7z

"rule" to be inserted without the linguist’s comnscience complaining.

‘Page 46

Also, since there is no good independent definition of "syntax" or
"semantics" (a frequent problem), it is difficult to see whether the
hypothesis of there being no wholly syntactic rules has been
verifiéd‘ (These 1issues have beeen covered very fuli} elsevhere -
Partee (1970, 1971), Lakoff (1970); Chomsky ,(l97i,'<l972), Postal.

(1972), Katz (1970)).

The methodology adopted in Chapters III, IV and V is that
independent syntactic constructs should -not be postulated
unnecessarily, but that the linguistic description (or the notion of

"semantic") should not be distorted to protect this guideline.

Page 47

Section II.5 : Montegue Grammar LERREQ&EEL

e

At present, one of the few formally defined frameworks for
describing language is that of Montague (1968, 1970a, .1970b, 1972),

which is unparallelled in its rigour and precision.

Montague’s systgm contains many traditional notioné in a-
mathematically formalised form. The syntactic rules are very like
phrase-structure rules (see ‘Chomsky ~ (1957)), in that they
characterise a treg-likerstructure with‘wordé as terminal elenents,
Most of thg syatactic terminology is merely a tidying—up of notions
like "lexical entry" and "phrase'. Syntax and semantics are défined
separately, but there 1is a well-defined interface in that each
syntactic rule has an associated semantic/combining rule. This is «
closely related to the‘Tarski semantics for predicate logic, and is
aiso very similar to the Katz-Fodor system of "projection rules" (see
Section II.2 above); The semantic concebts are related to formal
loéip, and provide a- very comprehensive géneralisation of notions
like "sense and reference" (Frege(1892)) and '"indexical expression"

(Bar-Hillel (1954)).

The main advantages of Montague’s work are 1its precision and
generality. Also, it has provided a start to illuminating such
difficult and confused areas as the distinction between categories of

meanings and categories of objects referred to, and the way that

meanings can vary systematically with changes in the context of use.

Page 48

The main disadvantages of Montague’s work are that it is not a
process model, and leaves no place in the theory for any form of

production or recognition rules.

There seems to be a feeling within artificial intelligence that
Montague’s semantic system is based too strongly on traditional,
Tarski-style truth-values. For example, Wilks (public lecture at

Edinburgh University, 1976) stated that one deficiency of lontague’s

1

ideas was that it assigned the same "meaning" to "Snow is white" and

"Two "~ is prime", namely "TRUE". This misrepresents Montague’s theory,

which provides two - distinct fIntensional wmweanings for these two

sentences, with the same extensional meaning in some worlds. Also,
it is currgntly fashionable to talk in terms of‘describing sentences
in terms of their use in a dialogue‘r It is important to notice that
the latter does not necessarily contrast with a trgth—valued system
of meaning, unless a modél of conversation can be developed which
genuiﬁely uses a different method: of describing coavarsational
effact, TFor example, the SHRDLU, LSNLIS and MCHINE programs (see
Sections II.8, I1.9 and Chapter VI) all treat a yes-no question as
‘
requiring a paétern (the "meaning" of the sentence)‘to be tested
against the "hearer’s'" model to see if that state holds {(or held at

sone time). This is very much a truth-value system, although improved

by making "truth'" relative to each hearer or speaker,

The MCHINE system uses many traditional syntactic and senaatic

ideas, and lbntague’s writings havé been particularly useful in

s

clarifying certain distinctions (pavticularly in semantics) which are

often not consgidered elsewhere.

-

Page 49

Section I1.6 : Preference Semantics (Wilks)

One;of the most distinctive approaches to laﬁguage—processing in
recent years has been that of Wilks (1972, 1973, 1975). Although the
implemented versions have generally beén aimed »at machine
translation, it 1is worth considering whether any généfal principles
of language-processing can be extracted frﬁm the ideas he uses, The -
form of ‘'interlingual representation"’ used ié influenced by the
translation task, so it is not iery relevant to ‘try to assess its
adequacy for general purpose meaning representation.. Howaver the
processing strategies are inte;esting, sincé Wiiks claims that they

are predominantly semantic, rather than syntactic, and are capable of

processing metaphors and other non-standard constructions.

A preference semantics grammar can be thought of as being in two
sections <~ structures and procedures. There are three principle
kinds of structures - primitive elements (like Katz—Fodor‘ “semantic
markers'), Eorﬁulae (corresponding to lexical entries) and bare
templates (corresponding to structural rules or patterns). Each word
has an associated formula, which consists of a binary tree of
primitive semantic elements, with one‘element designated the "head",
A bare templaté is a triple of . primitive semantic elements

representing three formulae-heads to be sought in the input words.
t
The procedures are many and varied. The input string is Eflrst
put through a "fragmenter", which clumps the words into small phrases
("fragments") ., There is a matching routine, which tries to find a

bare template to match each fragment, inserting "duamy" elements

where necessary to complete the match. The bare template together

with‘ the elements that matched it are called a "full template". Then
various routines (in the 1973 paper, réfeired to as EXTEND and TIE)
-attempt ‘to find linksvbetween,the filled templates so far built; in
later Versiong of Wilks’ system, further structures called
"paraplates" help to perform théSe. connectioné‘ - The notion of
"preference" is introduced 5ecause the routines which f£ill out
conﬁections between structures will ﬁot discérd’a structure éimp}y
because its internal semantic specifications are not meg - hoﬁever, a
structure where all the specifications are met will be praferved to a
deficient one, thereby résolving possible ambiguities on semantic

grounds.

The main Advantage that thié system has 1s that it has beeﬁ
implemented, and has traﬁslated passages of Bnglish and French. The
main difficulty in trying to assesé the details of the mechansins is
that Wilks tends to highlight certain areas at the expéhse of others,
His papers generally concentrate on the notions of “template",
"formula" and 'preference", and imply that most of the linguistic
information is contained in the structures plus the simple notion of
counting semantlic connectioﬁs. In fact, much of thé work is done by
the routines for matching templates and tying together strvuctures,
and inférmation is encoded in ﬁ wide variety of forms. - Although the
central aspect of the system is supposed to be that it is based on
semantic matching, and not syntactic structure~building, much of the

"extending") is traditionally

processing (e.g. the "fragmenting" and
syntactic, Since the preferential semantic accounting occurs only
ounce the building routines have made ties, the overall demarcation is

not vastly different from that in the programs of Woods, Winograd, ot

Marcus (cfl, Sections quS,'II.9, 11.10), where semantic checking 1is

Page 51

applied to the results of ayntactic building., The main differences
are that the initial template-matching is at least partly semantic,
"and that Wilks’ semantic checking does not discard possibilities, but

merely gives them a preference ordering.

As discussed in Section IIT.6 and VI.5, a form of 'preference"
facility has been implemented in the MCHINE program (although it has

not Béen fully excrcised).

Page 52

Section II.7 : Conceptual Dependency (Schank, Riesbeck)

One of the more influential artificial intelligence approaches
to natural language in recent years has been "concéptual depen&ency"
as developed by Schank and others (Schank (1969, 1970, 1972a, 1972b),
Riesbeck (1974, 1975), Goldman (1973), Rieger (1974)). The main aim
of conceptual dependency is to. provide a system of "conceptual
represeﬂtétion“ which can be used to describe the meaning of natural
language in terms which are unanalyseébly primitive and which aré
independentb of the natur;1 language in?olvéd.‘ By cohstructing a
vocabulary of primitive constructs, and rules for using them, Schank
hopes to develop a single representation system which will serve for
all language-processing and inferential tasks, e.g. machine
translation, question—-answering, etc. ‘This seems a wqrthwhile aim,
and the desire for generality is a great improvement over earlier
artificial intelligence ‘appyoaches te meaning-representation. As
argued in Chaptér I, some of the most interesting questions in
language research concern the processing that must be done either to
convert a string of words to the 'meaning representation, or vice
versa, Al though it is clear that Schank regards language
comprehension as fundamental, his articles have tended to concentrate

on issues regarding semantic representation, rather than processing.

Nevertheless,. pépers bylﬁieébeck (1973, 1974, 1975) ‘have given -
some indicatipn of how a conceptual dependency sentence-analyser is
intended to'operaté, and this outline will be examined here, as it is
the aspect of conceptual dependency most relevant to the MCHINE

project. There are two slightly different proposals concerning

Page 53

analysis strategies; the first is described in Riesbeck (1973, 1974:

part I) and the second in Riesbeck (1974: part II, 1975).

Roughly the system is as follows, The central device is a
"reqﬁest", which is a "demon" - di.,e. a test + action pair (cf.
Charniak (1972)). Eacﬁ word Eas an éssociated list of \requests, and
the analyser maintains a list of currently active requests, As each
word is taken in, its requests are added to the list. The 1list 1is
then scanned, and if the tesg part of any request yields TRUE, the
action bart of that request-is carried out, and the vreqdest removed
from -the "list. The second version of Riesbeck’s system attempts £;
£i1l in more details of this process. "Expectations" (an alternative
term for requests) are now annotated with informqtipn about‘what they
do,vin terms of which variable value is relevant to the TEST (or
"FOCUS"), and which slot will be filled if the action is executed
(the "NEED"). This seems to help in indexing the expectations, since
the FOCUS device will make the-implementation move efficient, but it

does not impose any structure on how the expectations operate.

The main problem with Riesbeck’s suggestions are that they say
virtually notﬁing about the the details of laﬁguage processing. All
that he says about the form ofv;he processing strategy, or the shape
of grammatical rules, is that the grammar is in the form of "demons'.

.
This can be contrasted, for example, with the more subtle proposals
of Marcus (1974, 1975) (sec Secfion IT1.10), where the notion of
"demon" is taken as a building block for making further detailed
suggestions (rathef' than being left as the entire theory). Ricsbeck
asserts that his program treats syntax andd semantics in a uniform

manner and allows concepts of both types to communicate freely. This

‘Page754\

is true,’ in as much as all information 1s programmed into
expectations, but it could equally well be saild that any program
writfen wholly in LISP achieves the same uniformity ~ the whole
problem is in elucidating how diffe?enf information interacts,vnot
mereiy expressing it in‘some‘common computing language., Demons (or
expectations) are a tholly general compufationgl dev&ce, and this
kind of mechanism is a common implementation detail of language

processing systems - what are needed are some rules about how these-

demons can or cannot be used.

Despite Riesbeck”s claims, it is not the case that syntactic

information 3is not wused in his progrém‘ He merely puts it into
expectation form and re-labels it. For example,-the worked example
in Riesbeck (1975) starts with the expectation "Is INPUT an NP ?" - a

very appropriate (but syntactic) prediction. In the same example,

1

the word "a" causes the action to be performed :

“save the current set of expectations and replace it with 76 =~

does INPUT end an NP 7~ "

This seems to recognise the surface integrity of the traditional noun

phrase, and the saving of expectations seems to be analogous to the

nesting devices in syntactic systems (e.g. the "PUSH” in Woods’

transition networks (see Section 11.8), or PROGRAMMAR"s "PARSE" (see

Section I1.9)). ‘ o B -

This saving of expectations raises doubts about one of

Riesbeck’s other examples.

Page 55

(4) Jobn was mad at Mary. He gave her a socl,

He suggests that in (4), the word "sock" would be disambiguated
as soon as the word "sock" was read (not when the whole NP was
processed) using the expectations set up at the higher level., If a'"
has caused the highér le&el exﬁectation list to Qe temporarily
shelved, it is not clear how.this can happen,

%

Even Riesbeck’s attempt to enrich his theory by annotating each
expectation with a "NEED" and a "FOCUS" does not help much. He
suggests that 1f expectations E2 and E3 are both active, and both
would have to fill ﬁhe NEED of EIl, aﬁd if E2 "cannot produce a
structure that will satisfy/the predicéte of the first expectation"
(i.e. E1), then E3 is tested first. This is strange for two reasons,
Firstly, if E2 "cannot produce a structure" that 1is suitable, wh?
test it at all ? It could just be discarded. Secondly, where does

this useful information come from ? Neither NEED nor FOCUS indicates

what kind of structure an expectation-action will produce.

The NEED/FOCUS system can apply only to _some of the
manipulations performed by the analyser since, as Riesbeck admits,
"Unfortunately, there are no constraints on what sets of functions

ce -
rrects

can appear as predicates and programs', and arbitrary side-e
are allowed. In an attempt to broaden the notion of a NEED to cove;
a particular operation that he needéd, Riesbeck (1974) distorts the
original idea to the extent of making it vacuous. He argdes that>
certain constructions can be handled by the "need" for all wovds in.

the sentence to be used up; this is hardly the name of a conceptqal

- slot being filled.

Page 56

Fundameutal to the approach of Schank and Riesbeck is the idea
that conceﬁtual (not syntactic) predictions will provide the
mechanism for analysiné a sentence., They sesa to over-estimate the
extent to which predictions of conceptual meaning will constrain the
possible input forms (which is what the ahalyser ultimately has to
deal with). Suppose tﬁat the conversatiﬁnal situation facing the
analyser (and accompanying semantic model) 1is as follows. The
context (to talk in the terms of Riésbeck (1973)) is that of being in

a bar, drinking. The input utterance starts as in (5).

(5) T Likeu...

This utterance might continue in any one of several ways, for example
those in - (6). The analyser would have to process vastly different
sequeaces of words in these cases, and the "context" Joos aob help it

maeh Lo rniqrtask.
(6)
(a) «..this pub.
(b) ...peanuts.
(¢) ...McEwan’s Export.

(d) ...that girl we met last night.

Even if the "context" were much narrower, say, the consumption of

'

s

peanuts, the analyser would be given no help in working its way
through the surface strings in (7), even though some of them Ahave

very similar meanings.

" Page 57

(7

(é):¢..eating peanuts.

(b) ...to eat peanuts. ;
(c) «..these peanuts.

(d) ...crisps as well as peanuts,

Schank and Riesbeck suggest that, while it is necessary for a
theory of language to specify some way of converting sufface’strings
to meaning‘represeﬁtation, it is not important to ‘specify that
process in any theoretically interesting way. If a program can be
written whithprodﬁces the desired output from particular inputs,
thaf is all that is vrequirved at preseat. As can be judged from
Chapter I, this is a fundamental difference inr attitude betweaen

computational grammar and conceptual dependency.

Page 58

Section II.8 : Transition Network Grammars (Woods)

The LSNLIS progfam (Woods et.al. (1972)) is av major
implementation of vgrious Aideés which contribute to the basis of
computational grammar, In particular, the recognition grammar is
written wusing a forﬁalism which has becone widely used in language
processing, and which has been ;he basis of the mechanisms used iﬂ
the MCHINE program, so it is worthldigressing to'give the background
to fhis formalism (see also Bobrow and Frasef (1969), wqéds et. al.

(1969), Woods (1970, 1973)).

The kind of grammar Woods uses are known as augmented transition

network grammars, or ﬁATN grammars' for short; (The abﬁreviarions
"RATH" and "AFSTN' are also used sometimes), The grammar is a
standardised description of a sequence of tests and operations that
have to be performed when a sentence is being processed. This can be
represented graphically‘ by -a directed graph, where arcs repreéeut
test—-action pairs and- states (or nodes) igdicare common points

joining arcs, e.g. (8) (cf. Conway(1963)).

(8)

action 1 test 3 action 3
= SRS S "

The tests ave generally (but not necessarily) conditions on an

input word and the network represents the possible ways of. analysing

a sentence. . A complete analysis is produced by a path through the

Page 59

networg on which all the tests ‘are satisfied by the input words
(which are scanned gradually as the path, is traced through the
network) and all the vacticns' are carried out in order.\ The
"augmented" in the title refers to the fact fhat any arbitrary tests

or actions can be included, making the AIN a Eotally general

computational formalism.

Oﬁe of the most important aspects of the ATY formalism is the
meqhanism for handling embedded constituents. - Where a test on an arc
simply checks the grammatical categéry of the next word, processing
is simple, but if the network is to check for the>presenéewof a
particular kind of phrase, things become more complicated. There 1is

a special kind of arc (called a "PUSH" arc by,Woods) for including

phrasestests.

(9)

e, LUSH NP NP-action

In a network like (9), the PUSH NP indicates that the category
being checked (i.e. NP) may be made up of more than one word; and
independent processing space is needed for it. The destination state
(82 above) is saved (as is the "NP-action", in some versions) and
some other part of the network (indicated by the label "NP"j is used
to process the incoming phrase. If the phrase is Vpro;essed
successfully, another specialbarc (a "POP" arc) will be encountered
in the NP qetwork, | Traversing a POP arc causes érocessing to be

resumed in the saved part of the network (S2 in example (9)), with

the whole phrase that has been found acting as the input item for the

action on the original PUSH arc (in (9), "NP-action"). This jump and
return mechanism (analogous to a subroutine call in a programning
-language) canAbe invoked again while processing a phrase; so . that
constituents 'can be nested inside each other, to an extent limited

only by the space for storing information about the return point.,

The LSNLIS program contains a large bank of geological data

(concerning moon-rock samples) and the syntactic-semantic components

are designed to allow a scientist to interrogate this store of facts.
Hence there 1is a slight bias in the type of sentence tackled, since

questions and certain imperatives were the main types needed. There

is a general semantic representation (related to predicate logic),

which provides the necessary devices for searching the data-base for

specific details (see also Woods (1968)). The system has a synfactic

recognition grammar (written in ATN form) which converts input =

sentences - to (approximately) a deep-structure represeﬁtation in the
sense of Chomksy (1965). This syntactic structure is processed by a
set of interpretive rules ‘into the semantic form necessary for
exanining the data-~base. Ail conversion of syntactic form to
semantic pepresentaﬁon is performed at the end of a sentence; with no
interaction between the two components other than this. The semantic
intefpretive rules are hierérchically organised, so that they are
applied to the syntax tree as a whole and each rule can .call other
rules on the bran;h of the tree,

There are few significant differences’ between the overall
organisation of the LSNLIS and the MNCIINE systems. Tl}é main
difference is that LSNLIS iécludes a full, separate syntact}c

'

component, which the semantic interpretive rules are geared

%

‘Page 60

ro

Page 61

handling, whereas the structure built in the MCHINE program 1is
directly part of the setting up of the semantic rule hierarchy - the
-surface structure, in computational grammar is the intérpretive rule

sequence.

One other main differenceris in the aims of the two & programs.
L3WLT5 1s a practical working system, using generalisations and
patlerns only to improve the efficiency of the ovefallvservice to the
user, The MCHINE program, on the‘other hand, has been written onlyw
as a testing device for linguistic ideas, and the general aim is to
experiment with liﬁguistic descriptions_ and deviceé, in order to
illuminate the structure of language. Woods (at the workshop on
Theoretical Issues in Natural Language Processing, Camb%idge, bhss.,\
June, 1975) claimed that working with the goal of achieving practical
efficién¢y will achieve the goal of linguistic discoveryk as a

by~product, but this remains to be seen.

Page 62

Section II.9 : The SHRDLU System (Winograd)

The SHRDLU program (Qinoérad (1972)) is oﬁe of the best known
English dialogue programé of recent years. It is interesting here
since it includes some of the devices to be developed and wused in
éomputatiOnal grammar.‘k Winograd did not use the AIN notation, but
instead designed‘a programming lénguage PROGRAMMAR, which provides
more or less .the same facilities (he comments (pp.44~46) on the
similarities‘of these two mechanismss. The _overall org;nisation of
the SHRDLU \syﬁtactic and semantic comﬁonents-is similar to that of
the LSNLiS system, and the two programs are very close in their
linguistic analyses (although Qoods gives.crgditrto Chomsky for the

structures, and Winograd discusses Halliday’s systemic grammar).

Syntactic classification is entirely in‘terms of features, where
a feafure is ‘an unanalyseable marking. The written description of
SHRDLU (Winograd (1972)) emphasises that these features are
interdependent .in ways that can be perspicuously represented by a
particular form of graph (a '"systems network"). Since Halliday
(1967a, b; 1968) uses this notation, this has been taken to mean that
Winograd is using Hallidayan grammar. This ié slightly misleading,
as the program itsélf does not use the systems networks —‘they are
merely a good expository deviéé .for describing the relationships
between the featqres< The MCHINE program alsq uses features, but at
no stage have these been organised into systems networks;
neveftheless; a.glosé examination of the MCHINE program would.allowra

reader to draw up his own system network of how the features are

distributed throughout thé- grammar. This would be true of any

Page 63

grammar that.employed features. There is more to Halliday’s ideas

than this part of the notation.

The lexical entry for a word consists of a list of features, and
a semantic entry, the latter being a data structure which will act as
the "meaning" of the Qord. The paréer, written in PROéRAMMAR, builds
a surface syntactic tree. Each node in the tree has a categéry label
(indicating that it is a Noun Group, Clause, etc.jy a list‘ of
features, and an associéred 'sanantic structure. The features are
attache& to the nodes directly by the parser, on tﬁe basis of the
words it ~ finds in the sentence (and other tests); Tﬁe semantic
structure is constructed by a "semantic specialist", which will be

.described below.

The PUSH/POP facility of the augmented transition network 1is
replaced in PROGRAMMAR by the "PARSE" command, which takes a

constituent label (e.g. NG) as an argument. Hence

(PARSE NG....)
is a command to try to parse a Noun Group (the other/arguments e
indicate what to do on completicn ot fai}ure; ﬁsing various standard
options). Successful execution of this command should produce a
subtree, which is then attached to'the part of the syﬁtactic tree.
currently being constructed« During fhe ¢xecution_of this command,

the line

(PARSE DET waus)

might be encountevead. This {is similarly a command to parse a

Page 04

particular category (this time one word) and attach it to the tree.
In this way, the tree~structure results from the hierarchical
processing; parsing commands may be nested within each other to

~

produce a correspondingly branching tree structure.

Ope exception te this 1eft«to~right, top»to—Boﬁtom flow of
processing is ~the use of "demons". Winograd suggests that the best
way to handle a conjunction (a difficult construction for any parsing
system) 1is to define a special type of lexical entry for "and".
Instead of "aﬁd” having a small "semantic structure" which is handed
statically to a semantic specialist, the entry for "and" contains a
special program,.which must be run on encountering the wdrd in the
input, causing an intervuption of the ordinary flow of instructions.
The "and" program makes the PRCGRAMMAR system suspend 1its current
parsing task, and start ﬁrying to parse another constituent of the

same type as the one it is currently parsing.

The SHRLDU program converses about a small world of toy blocks
sitting on a 'tdble' ("the BLOCKS world”).< It has an internal
representation of these items in the form of a relational structure.
That 1is, there is a data-base of items where each item represents a
relationship between entities‘:REach entity is represegted by a LISP

atom. Thus the data~base item

(SUPPORT BL B2)

two "blocks" Bl and B2. The whole state of the BLOCKS world can be
recorded in statements like this. The "meaning" of a scntence for

SHRDLU is therefore expressed in terms of itcems and operations in the

Page 65

BLOCKS world data-base. For example, the meaning of "a red cube" is
a small program to find an equidimensional block which is marke:d as
T

“red.,

i N . .
he meaning of "pick up a red cube" is a program to find such a

block and pick it up.

The conversion from ihput wordé to BLOCKS world éctions is in
several stages (not necessarily consecutive, bﬁt logically separate).“
Firstly, the syntactic tree 1is built. Secondly, . each major
constigyent node (NG, ACLAUSE, eté.) is Vcoﬁverted to seménpic.
represéntation, by the "semantic specialists". Thirdly, the semantic
representation is used to examine or alter rhé,BLOCKS ﬁata—base. In
fact -the syntax to semantics conversion may be carried out af~ stages
during the syntactic tree-building, since, when a major category node
is completed, the semantic specialiéts may be used to- transforﬁ the
node to a BLOCKS world item. (Unfbrtunately, Winograd®s exposition

is not too clear about certain aspects of the interleaving - see

Ritchie (1976)).

The SHRLDU'program is related in various ways to the ICHINE
program, but there are major diffevences, as in the case of the
LSHLIS “system, in the mefﬁodological approach. Winograd was not
constructing a practical program for non—lingﬁists to use for
information retrieval, but the goal of implementing a working program
with impressive performance was f@irly.central. .This may have led to
some blurring éf the distinction between implementation details gnd
proposed principies, and to the use of slightly ad hoc measures. 1t
is possible‘fo look on computational grammér {and the MCHINE project
in particular)’as an atteapt to clean up some of the ideas in SHRDLU,

LSNLIS and related systems in order to perform linguistic

description,

Page 66

Page 67

Section I1.10 : Wait-and-See Strategies (Marcus)

It is worth examining in detail the suggestions made by Marcus

(1974, 1975), since he adopts goals and techniques which are closzly
related to those of the MCHINE project. The emphasis in Marcus’ work

is on deterministic processing

g, and he wishes to design a parser

which contains enough grammatical knowledge to avoid making mistakes
or having to follow ué several analyses simultaneously, This is a
worthwhile aim, and work done with this goal should help to elucidate -
the sentence-understanding process. bhrcué observes tbat many
language-understanding programs in artificial intelligence rely on
exhaustive, mistake~driven strategies, instead of incorporating more
specialised decision-making devices (see Section III.8 for further
comments on this). He then proposes a system which, he claims, will

perform more efficiently without such mistake-based control.

Marcus’ grammar‘isrprganised as follows. The smallest units are
modules, which are structure-building = procedures, invoked by the
presénce of certain features in the inputk(each module has dts own
feature pattern), and modules are grouped into packets. A module can
be invoked only if it is aclive, and a module is actlve LL and only
if some packet which contaihs it has been/made\active. Certg?n
packets are active at the start of the'analysis, and others become

~active vas a vresult of modgléé explicitly activating them. Ibdules
have a priocrity number and those with higher priority numbers will be
|

invoked din prefercnce to those with lower priovities. Processing

occurs at two levels - group and clause ~ with each level having an

input buffer of items waiting to be tested by the modules, and an

‘Page 68

outpuf buffer of étructures produced. At the group level fhe input
buffer contains the words of the sentence, and the output buffer
contains the groups (smail phrases) formed by‘clustering the words.
At the élause‘ level, the inpht buffer is the output buffer of the
group level - i‘e. it con;ains groups = and the gutput buffer
contains clauses, The feature-pattern on a module is compared with
the first few iﬁems in therinputﬂbuffer, and if the features Vmatch,
the module 1is idinvoked. IE the feature-patterns of several active
modules match the input, the analyser may use a "differential

1

diagnostic' to narrow down the range of possible hypotheses.

\

Differential diégnostics are a "series of easily computed tests that
decides between the competing hypotheses" (1975, 'p.7). Clause
structures are built by "a case-~frame interpreter that is intended to
serve as an 1interface Between it v[the. parser] and deep world
modelling" (1975, p.8). Also, "the parser can ask pre-compiled
fill=in—~the-blank questions ’ofr the world model itself (the world

model in question being the author" (1975, p.8).

This onerall outiine 1is similar enough to other curreﬁt
frameworks and programs not to be too controversial. The interesting
aspects of Marcus” suggestions are the constraints within which he
wants the mechanism to operate, and the performance which he claims

is possible within these bounds. Marcus makes wvarious speculative

t
claims regarding processing time, use of world knowledge, and ways of
processing semi-grammatical or elliptical sentences, but these are

more pervipheral aspects. The main strong claims regard syntactic

processiig.

Page 69

Marcus claims that, at any poiﬁt in the analysis, the
feature-patterns of active modules aré to be matched against only the
first few items‘in the input buffer -~ no extended 1look-ahead is
required. This initial testing should narrbw the possibilities down
to what he terms two or thrée "hypotheses". If several hypotheses are
possible, the parser executes a differential diagnostic to de;ermine“
which single "hypothesis is correct, before attempting aﬁy of them "
(1975, p.6). It is crucial to Marcus’ claims that this test uses very
limited lookahead, is simpie, and yields a definite result. It is
unclear ffom .the; two papers cited whetherv recursive levels are
allowed, or whether just one clause level and one group levell can
exist'-siﬁultaneously. If recursive levels are involved (e.g. a

clause Ikvel outputting items into the input buffer for a group level)

then look-ahead of three constituents is not very restrictive, since

one constituent hay contain an acbitrarily large nested sfructure;
if récursive levels are not incorporated, presumably short look-ahead
tests wiil fail in any example where some embedded structure occurs
in the group that 4s being built (e.g. a relative clause within a

noun phrase).

The simp}icity of the tests 1is also open to question. The
example he gives (1974, pp¢15¥i6) includes a test to §ee if the next
item will be an adverb or a time adjunct; this does not seem to beva
simple test, and would probably require the item in question to be
parsed. Marcus’ grammar is fairly narrow in scope, énd it is fairlyv
easy to construct Msimple rules if “only a few eiamples are to be
coverad; 1t is another step to élaﬁn that grammars of this form will

never need complex rules. Tt 1is not clear whether "hypothesis"

corresponds to “"successfully matched module'" on a one-to-one basis;

Page 70

if they do not, it is not clear th "hypotheses" are to be counted.
It may be that thei counting of hybotheses? and resorting to> a
differgnfial diagnostic 1if the total exceeds one, oceurs in the -
grammar-writers mind, rather than in the execution of the program,
sipce Marcus talks of a differen%ial diagnosticbbeing‘a particular
kind of module, constructed so that it is dinvoked only when the
~modules it has to choose between wil% élSo have been invoked. vbhybe

i

this describes the way that the modules are constructed, rather than

an algorithm which they actuélly obey. .

Thereiare several aspects of Marcus’ work waich aré similar to
the work 1in this thesis, For example, both projeéts accept the
principles that structure, once built, mnust not be re-built 6r
dismantled during an analysis, and that look-ahead should be a;oided

if possible. ‘However, the more central clains of the "wait-and-see"

approach remain unproven so far.

(For further comments, see Sections II1.6 and I11.8, and Section

VII.2.4).

Page 71

Section IT.11 ': Semantic Networks (Siﬁmons)

Simmons (1973, 1975) has outlined an inglish langﬁage
understanding system which hés many similarities to the framework
used here. Simmons uses a form of augmented transition network
grammar to process input senteaces directly into a "sema;tic network'

representation.

A "semantic network" is a form of representétion cloéely relaﬁed

to the -standard semantics for ptedicéte logic (cf., Shoenfield
. ’ . " ¢

(1967)). There are a set of "relations" which can occur between

items, and the items can be virtually anytﬁing‘ The word "network'

is used because such relational structﬁres are often represented as

graphs with labellea edges, and "semantic" méfely refers to the use

of this representation for language meanings. For example, Simmons

gives the representation of "Napoleon suffered defeat at Waterloo"

as:
K/MQ"@ ‘
SUFFER “Somwmmamg.,,
‘ v 'ﬁﬁﬂmnm%g ‘ *%“%r'mmmwm%“w
gﬁfﬁ NY %S%% Q%%ﬁg
MODAL LoC1 - THEME LOC2
- f 1 |
Tense:Past Napoleon i Waterloo

Mood: Declarative by DEFEAT ;ﬁ) at

Essence:Positive def .gf T def
vg; N A i
MODAL ﬁ THEME ‘ LoC -
.Hood:NE © Napoleon Waterloo
DMnﬁer:finél of at
def

(For other semantic mnetwork systems, see Quillian (1969) and

Rumelhart and Norman (1973)).

Page 72

This method has been used to build a program which accepts
declarative statements (e.g. "A clown holding a pole balances on his
head in a boat") and displays corresponding pictures on a graphics

N

screene.

The grammar used does not alter the surface order or relation of
'ther input string greatly, but each verb has an associated set of
"paradigmatic ordering rules'", which express permutations of , the
surfacerrsubject, object and indirect objecf into a Jdeep case ff&né
for the varbh, Thi3 is very similar to the cnmputationa}‘grammar way
of handliﬁg verbs; as will be seen in Section V.8. However, this
action is performed in Simmons program by a particular operatioh
ARGEVAL, rather than by having anything corresponding to structural
combining(rules (see Sections III.1 and 1IV.1). The semantic. network
is built directly by the actions on the ATN arcs. As argued in
Ritchie (1977), this approach is difficult, since the suitable
constructs for a surface ATN are differgﬁt from those for/a semantic
répresentation, if thefeﬂégé ;o intermediate rules., Simmons can uée

one-stage processing largely because his semantic network is very

close to a traditional surface syntactic structure, apart from the

o)

2T tarns

pernuting of the verb arguments, and any deeper semantic

-

tzva to be covered by inference rules. It is not very clear how the

verb-permuting operation = (ARGEVAL) "chooses which "paradigmatic

e

ordering rule" to use in arranging the verb arguments, since Simmons
says that this is done usiﬁg the semantic characteristics of the
items., Since much of‘the case information in English is conveyed by
surface éyntactic aspects (order,prepostions, inflections, ete)
alloting items to vefb places using solely semantic information will

O

not in general be possible.

Page 73

The main difference between computational grammar and - Simmons’
model ‘is that the latrer has no constructs corresponding to
"structural combining rules". Hence Simmons’ grammars have to try to '
capture all syntactic and -semantic regularities at a single level of

semantic representation, and this semantic structure 1is built

directly on the ATN arcs.

CHAPTER III

IMPROVING THE EXISTING CONSTRUCTS

’ - Page 75

‘Section IIL.0 : Preamble

‘ As‘ a preliminary to presenting‘ the ,computatidnal grammar
framework in Chapter IV, this chapter discusses in more detail some
of the questions which arise when constructing a computational model
of English language 'understahding.r The arguments agé not directly
based on any one of the theories or systems in Chapter II, although
many of the poiﬁts are expressed as criticisms of the LSNLIS or
SHRDLU systems; since these two models are closely related to the

MCHINE program. , : ‘ S

Altho;gh manyléf the ideas used iﬁ comﬁutational grammai are not‘
totally new concépts,\ most of them have been modified, to somé
extent, to overcome various problems. Chapter III describes these
basic concepts and the reasonsbfor the revisions, so that Cﬁapter v
can simply summarise the framework without digressing to discuss tﬁe
background justification. in some .cases, the modifications are

minimal, and the corresponding part of Chapter IIL merely summarises

the reasons for adopting a particular device.

- Page 76

Section III.1 : Structural Combining Rules

.

Syntagmatic relationships betwgen units are decoded in two ways
in Winograd’s program. Firstly, the parser builds the syntactic
tree, ~ This gives a grouping Ainto éonstituents; together . with a -~
labélling (using features) of each constituent. Sepondly, these
laﬁelled subtrees act as inputs to the semantic‘specialist programs,
which prodﬁce semantic férms. The semantic specialists are treated
more or less as . ”biackr boxes" constrained‘ only to produce a
particﬁlar output from a given input. .The lack of constraints on
these two stages (other than the need to interface with each other)
has two slightly unfortunate consequencés; The inscrutability of the
semantic specialists means that they contribute 1little to thé
important questioﬁ of how syntax is‘relaﬁed to semantics. The second
consequence is difectly linked to this léck of a systematic method of
semantic interpretation. Tﬂe syntactic component lacks criteria for
what is ”good"'or "bad" grouping‘or.labelling of a surface structure,
other than Vﬁhe fact that 'iﬁr shoﬁld \”work" when handed to the
appropriate semantic specialist. Ad hoc feature ﬁarkings (of the
sort discussed in Section.III‘ll) are successful solely because they

serve as the input to the equally unconstrained semantic interpreter.

‘If we wiéhvto illuﬁinatgltﬁe procéss of extracting meaning from
surface strings, we must dissect the semantic specialists, and try to
ofganise the inner mechanism ss systematically as possible. Consider
. the noun group scmantic specielists. Winograd used what he called
the "slot~and~fillef“ approach to the structure of the noun group -

there are various slots Tor umodifers, etc., on the group node, which

Page 77

may or may not have entries., This meant that "null" éntries had to
be madé:on‘maﬁy noun groups (giving rise to features liké NDET - see
Section III.1ll). The semantic specialist had to e&amine\all the slots
and make 1its decisions onithevbasis of the various gntries. This
obscured any internal semantic regularities between subunits. For
example; the ' relationship between determiner and head noun is not
séparable from the relationship between adjective and ‘head noun -
both are buried somewhere in the deliberations of the semantic

specialist. Winograd suggests that his "flatter" trees are more

seméntically useful than more deeply-branching trees of

transformationalists (pp.l16-17), but this overlooks two points.

Firétly, he wuses elaborate feature markings, some of which convey
furgher structural igformation (which is inherently present in the
transformationalists; tree already). Secondly, the deep branchingywas
an attempt to reflect semantic groupings; with Winograd's method,
one has to deny these groupings, or hide them iq the viscera df a

specialist, or encode them in further "features". If we were to take

Winograd’s method to an absurd extreme, we might end up with trees

‘like (10), a single semantic specialist (for "Sentence'"), and a vast

‘collection of features.

(10)

Sentence

Word Word Word Word Word Word Word

!

the black belt sat on the mat

Page 78

The whole point of further grouping, as Winograd himself stateé;‘
is' to find generalities that can be dealt wigh at a local 1evel,'énd
make use of all semantic regularities. If we can find syntagmatic
regularities within the noun group, then there 1is a case for
separating these out into individual éeméntic specialists. During
the anaiysis of a sentence, the program would need to invoke only
those semantic specialists for which non-null argumentskéxiéted, lThe

tree might look 1like (11), where each node is marked with the

semantic specialist used.

an
~ Subject-Complement Rule

Determinéf Rule

Adjective Rule Verb-Object Rule

the black belt Preposition Rule
sat

Determiner Rule

on ,///\\

It may appear that this produces a pro;iferation of specialists,
but this ‘is misleading. The rules which we are referring to as
semantié‘specialists hére’are much smaller tgan those in Winograd’s
program, and have been obtained by dismantling his rules. One could:
keep a small numbef of large specialists by building more and more

4 - , ’)

alternatives into the body of each rule, but that would not really be

f

- simpler. '

Page 79

In Winograd’s system, the semantic specialist was selected

according to the major category label on the node (e.g. NG). If we do

not have specialists indexed to major categories, the question arises

of how to select the rule. This question is not trivial, and will be

considered next (Section III1.2).

Page 80

Section III{Z_L Syntax and semantics

Winogréd's parser acted as ,av pre-processor for the semantic
specialists, by grouping and labelling cbnstituents. As commented in
1.2.2, the only -justification for syntactic rules is that they
contribute to the language-decoding (or encoding) process, The
question is whether this two—stageiprocess has any adv;ntage over a
one- stage conversion. There is a sense in which Winograd's pgrsérﬂ
makes;all the semantic decisions, since the grouping and labelling
defines how the semantic specialists will act; on the othgf hand,
these decisions are re_eﬁcoded (in - arbitrary features)‘ instead of
being used directly to‘build a semantic structure, iherfeature—laden
tree is theﬁ dissected by the semantic specialists so that these
earlier decisions can have semantic effect. Winograd states
(pp.16—17) that the sole justification for his features is that they.
convey meaning, so presumably all the features (even bizarre ones

like DPRT) perform this function of passing decisions between the

syntactic and semantic components,
I -

One obvious‘modifiCation to investigate is the abolition of the
arbitrarily-labelled syntactic tree as a mail~box between the
components. If we could integrate the semantic speciélists and the
parser more closely, we éould péréaps allow thebparser’s decisions to

be more directly related to the meaning-manipulatios that they cause.

Consider the original form of the semantic specialists
(ignoring, for the moment, the breaking down of the specialists into
several rules, -as outlined in Section 1IIL,l). The noun group

specialist constructed a semantiec structure on the basis of the items

Page 81

in thé seven "slots" (Winograd, p.56) on the NG subtree, £0gether
with the feature-labelling of the subtree. In a sense the seven
slot-fillers were acting as arguments for the specialist, since they
provided the variable information thét disfinguished one noun group
from another. Suppose, therefore, that we re-formulate the semantic
specialist to be a procedure which takes seven arguménts (socme of
whicﬁ may be dummieé); Instead of establishing a syntactic NG rule,
and attaching labelled daughters, the parser could establish a -
semantic NG node (containing a copy éf this new specialist) and fill
in the appropriate érgumenté. Not only would this avoid sonme
tree-building, it might siﬁplify the internal code of the specialist
(since it would not " have to "read" the éyntactic tree). Also,‘
features which are intended solely to provide structural iﬁformation
(such as‘ NDET) would be eliminated. This deoes not mean that no
features are needed (number-markings would probably stil be
required) bué it would eliminate any redundant syntax, and show more
clearly what information was'Being used where,

If we also adopt the suggestion of Section III.1, and have
se;arate specialists for.each syntagmatic combination, the need for
dummy arguments should be eliminated. The parser builds a tree, each
node héving an'associateduseméntic specialist, all ofiﬁﬁéée~arguments
have to be filled. (There may‘bé_only 2 arguments for some rules, if
deeply~branching trees a?e used) . The tree would look sOmething liké

(11) above.

This proposal is not particularly radical. All that we have
done is suggest that, since the parser’s decisions determine

(ultimately) which semantic specialists are to be invoked, and what

Page 82

arguments a;e to be passed to them, these facts should be directly
represented. The operation of the semantic specialists was already
hierarcﬁically-organised (as observed in Section IIIL.l) so using them
as the cement which holds the free togethef is not an extension of
their use; it merely makes explicit the fact that the hierarchical
syntactic organisatién was uitimétely aimed at cﬁénnelling the
semantic processing. The semantic spéciélists themselves (both in
their original form and in the revised version) have {fundamentally
the same purpose as the semantic interpretive>rﬁleslof Katz and Fodor
(1963) énd Jackendoff (1973), or thé rules of Montague (3570&). The’
revised notation for the semantic/syntactic tree is éimilar to the
analysis trece of Montague (1970 . These rules could be referred to as
"structural combining rules" (SCRs), to avoid having to categorise

them as "syntactic" or 'semantic", as they fulfil a dual role.

The rules as described so far do not fulfil all the functions
traditionally covered by "syntax"., There is other information to be
used in the sentence-~understanding process and we need further

’

constructs to handle it.

Firstly, there are certain properties of words and phrases which
help to indicate how the various iﬁems are to be grouped in building
the sﬁrface tree, and which seem to have no other purpose., That is,
they do not contribute directly to the final semantic structufe, but
they help the routines which plug the combining rules together. \One
good example of this is'/"numbér agreement' which (as Katz (1972)
~argues couvincingly) is not just a semantic property. "Agéeement"
between subject and verb is a rather’arbitrary, language~specific

device which helps to signal to the analyser how (or whether) the

7

Page 83

items .are to be paired, and can be represented by some suitably neat
_symbolic markings (éee Section V.3). The "object-information"
described in Sections 1II1.9 .and V.8 1is another example. Such
information can be recorded by associating a set of "syntactic

properties" with each word or phrase; that is, a list of attributes

which can have a range of values.

Secondly, there is a need for some way of describing._
paradigmatic classes. In writing a recognition grammar, there is
often a need to include a test for some class of wordé whose only
unifying characteristic seems to be that théf can occur at certain
points of a sentence. :For example,'English auxiliary verbs generally
occur at.‘thé frént of a "yes-no" question, rather than after tﬁe
subject. A recognition grammar needs to be able to check 'the first
word of the sentence to see if it is an "auxiliary", as this suggests
that the sentence may be a question. It is hard to define
semantically what an '"auxiliary" is, and it seems to be a purely
syntactic categéry - "one of those little.verbs that precede the main
verb and are at the fronﬁ in questionsﬁ (see Section V.2). Other
examples are the various constituents within a noun phrase -
determiners, possessives, _articles,’ adjectives, = etc. These
constitute options which occur at various stages throughout - the
processing of the phrase, aﬁd. the oxrdering of them ‘(and the
oécasional'parallei options) can‘only be described by idiosyncratic
markings on the words, since their seaantic chafacteristics provide
no cluev to what order the Jﬁptions should occur in.- This
distributional information could also be covered by '"syntactic

:properties" as above; but‘there are. further generalisations about the

information. Firstly, a syntactic property may have a range of

Page 84

values, whereas the paradigmatic information wusually gives simple
class mémbership (e.g.. "is this word an auxiliary or not?'"),.
Secondly, syntactic properties (e.g. subjectfverb agreement) may need
to be marked on phrases as well as words, whereas the paradigmatic
classes are to guide tﬁe analyser whén it is inspectingi words. In
computational grammar, two separate constructs have been incorporated

to cover these two kinds of information :

Syntactic properties, which are attributes capable of taking a

range of values, and which can be marked on phrases.

Syntactic features, which can simply be present or absent

(presence denoting membership of a particular paradigmatic class) and
which are marked only on lexical items, not on larger constituents.
Notice that syntactic features are ﬁot like syntactic categories, in
that items may .be cross—classified by giving each ditem several
syntactic features, instead of just one. (See Chomksy (1965) and

Halle (1962) for argumeﬁts in favour of this form of classification).

One further construcﬁ is-needed to integrate,thesé concepts., If
syntactic properties are to be marked on phrases, how are the
markings to'appear on the phrases as théydare built ? There are a
number of logical possibilities, ranging from having a phrase inherit
all‘the syntactic properties of all the!words in it, to allowing the
properties of - the phrase to be computed in any way'whatsoever from
the properties of its words. Writing the MCHINE grammar threw very
little 1light on thié, as only one syntactic property was included
which had to appear 6n'phréses; namely, the "verb-agreement" class
of a noun phrase. The method used in the program was to allow each

structural combining tule to have, optionally, a "property

Page 85

inheritance rule". which specified which properties of the argument
nodes wére Ato be \attéched' to the result-node. (Since these
properties are not déemed to be part of the meaning, but merely
transient annotations to aid the surface-structure fout%nes, they are
marked on the nodes, not on the semantic items contained therein). It
is impogsible to claim empirical support for this method, since only

the one example.has been tried out.

Page 86

Section III.3 : Immediate Semantic Processing

-

RS

The LSNLIS sjstem postpones all semantic processing until the
end of the senteﬁce,'and SHRDLU pérforms semantic pfoéessing at the
end of major constituents. Rieger (1974) criticises Wipograd's
approach for ha§ing too great an emphasis on syﬁtax,;and Riesbeck
(1974) claims that his analyser can build up a non-syntactic
"conceptual structure" as it progresses from left-to-right through a
sentence. let us examiﬁe bow the SHRDLU mechanism might be modified
sd that semantic processing may be carried out as early in the -

analysis process as possible.

If we adopt the modifica;ions presented in Section III;I and
Section III.2, then a first step has been taken. The parser (or
"analyser") is building a tree composed of semantic rules with Vtheir
arguments inserted. To produce the semantic structures, these
semantic rules have to ﬁé ébﬁiiedi ihe question is - how early in
the analysis can this rule-application be done ? The dismantiiﬁg of
large sémantic rulés into separate éutonomous rules, each héving-
perhaps only two or three arguments, should facilitafe early semantic
processing, since the semantic rﬁle does not have to wait for thg
accunulation of several constituen;s as its gfgumeﬁts, It might be
possible to apply each semantic'fulevas soon “as all its arguments

have been found., Then semantic processing would occur every time a

subtree (no matter how small) was completed.

Page 87

A further extension is possible. Instead of each rule waiting
Vfor all its argumentstﬁo be inserted beforeioperating, a rule could
operate incrementally. That is; rules could be squiVided intolﬁarts
(call them "rulencomponengs"); one for each argument-place in the
rule. The nth rule-component would represent whatever semantic-
computationA-could be perfbrmed when the nth argument was found.
Hence each rule-component could be applied when~ the cbrresponding
argument was inserted, causing a gradual building up of a semantic
structure. (It might also be useful to include é "zeroth"

rule-component in each rule, to set up an initial blank structure for

the other rule-components to work on).

One experimental version of the MCHINE proggamvimplemented such
a system, and the grammatical rules weve re-written accordingly. The
system was soon discontinued, since it was very cumbersome in
practice, but the short trial was enough to illusﬁrate the
limitations of such a scheme. Using rule~components is ° not
impossible, but it is more difficult for the grammar-writer to desigp
rules in the incremental form, and there seem to be few advantages.

Two main problems arise.

Firstly, many of the combining rules are such that the first
argument conveys little ihformation about the final result, This ié
particularly true where the arguments are themselves being
represented as an operator applied to an operand -~ both are needeq to
produce the final result. This problem also arises where the second
(or later) argumént supplies the main sﬁructure for the result, and
the first argument fits into some slot or property=-value on it. In a

number . of rules the rule had to be written so that the zeroth rule

rage 88

component set up a structure of type X, the first component of the
rule merely stored the‘first argument in some arbitrary slot on the X‘
(as a temporary store) and the second (final) rule-component took the
firsp component outvof its intermediate storage position so that all
the computation could" be. done., These Dbizarre) manipulations

demonstrated how rarely any useful processing can be done without all

the arguments.

Secondly, even if such partial"building were possible, the
semaﬁtic processiﬁg cogld not go very far unless the nex£ rule up the
tree could accept é partially-formed argument. That is, even if rule
Rl (in (12), below) gradually built‘a semantic item X, the seméntic
consequences would stop there unless Rule R2 could accept the.

partially formed X as its argument.

(12)

[X]

\>
A

R1

Possibly the only places where it was possible to segment the
rules without losing anythihg were in the role-placement rules f9r
verbs (see Section V.8). If there is a rule which arranges the objeCF
(and indirect object) into 'slots around the verb, then each
.rule-compongnt can slot its argument in separately, and any
restrictions on the sTots (induced by the verb) can be checked
immediately. The 'slight advantage of early' checking of
verb-restrictions Aﬁaé to be offset against the other difficulties

created by having to write incremental rules,

., "~ Page 89

Section I1I1.4 : Sense and Reference

Winograd’s program keeps a single data~base which deséribes the
state of the BLOCKS world. No distinction is made betweeﬁ how the
blocks are actually arranged and how the program '"thinks" they are
arranged - since one data-base serves for both, no discrepancies are
possible. Hence there can be no real distinction made getween "Is
there a red block on the table" and "Do you think that there is a red

block on the table?". There are two ways of regarding this single

world model :
(13)

(a) It represents the "real" state of the BLOCKS world, as a
simulation of a physical system.

(b) It represents the "mental" model of the BLOCKS system that

ﬁhe program (regarded ?é é simulated speaker) has.

Therconsequence of interpretation (13)(a) is that the program
perférms all its operations, including linguistic ones, by examining
the "real" world. That is, to wérk out exactly what the phrase 'the
red block™ refers to, the program must scan the world (not its‘meﬁo:y
of the world) to find such a blgpk;” Hence no provision is made in
this mwodel for tglking about items wﬁich the hearer cannot currently

perceive, which is rather a limited approach to language.

The consequence of interpretation (13)(b) is that any operations
which the program is to perform on actual objects (e.g. "pick up")

nust be carried out on mental constructs. In this approach, actions

Page 90

are performed by fiat, analogous to a person playing chess without a
board. This makes no allowance for the case .where a 'real-world"

interface is needed (e.g;‘playing chess with a board).

There seems to be a confusion in the Winograd model between two

logically distinct processes, which might be called Y“reference

evaluation" and "referent recognition" . When someone attempts to

understand a phrase such as '"the President of the United States",
there is no need for him physically to search the White L House to
"find a referent" for ‘the phrase. If the hearer has sufficient
world-knowledge, he will be able to work out that a particular pgréon
(probably not currently perceptible by sight or touch) is béing
described. To do this, some manipulation of the gearer's memory may
be involved - but he can do this sitting down with his eyes shﬁt.
Let us call this mapping of a description to a partiéular object
"reference evaluation'". (It will be discussed in greater detail in
Section V.6). On the other hand, if someone has to obéy the command
"Shoot the President of the United States', some further processes
are necessary. The person will have to get himself into a physical
position where he can pérceive the President, and must be able to
recognise the President (probably visually). The latter stage
t
(perception and recognition) could be carriggjby a deaf-mute to whom .

the assassination command had been conveyed by pictures, and 1is not

essentially linguistic. Let us-call this "referent recognition".

A brief digression here will show that this confusion is not
confined to Winograd’s program, and will suggest some possible
consequences of this distinction., Some writers imply that a phrase

will 'have a referent" if and only if it describes some real world

Page 91

object(s). For example :-

"There érc also clear,advantagés té a language that .can embloy
expressions which have no referent or which hqve not been secured a
referent.... We surely want our language to}leave~open»f0r*its users
the possibilify of constructing theorie; which hypothesize the
existence of such things as phlogiston, ether and animal spirits.iﬁ'

(Katz (1972, p.l42))

"The reference of a proper name is the object itself"

{Frege(1892, p.60))

Brown (1958) uses "referent" in a language-learning context to
vdescribe concrete objects. Russell (1905) uses ghe word "denote" to
‘mean "standing for real world objects", and says th;t thé phrase "The
present King of France" does not denote, sinCé there is no such
existing object. However, for well-formed, successful conversation,

it is' the reference evaluation step that is important, not the

referent recognition. As Russell(ibid.) comments:

"It often happens that we know that a certain phrase denotes
unémbiguously, although we have no acquaintance with what it

denotes".(p.479).

1

Certain noun phrases in English are a clear example of a
linguistic device for automatically providing referents for the
hearer, although he may have no perceptual data from the associated

real-world object (see Section V.6 for further discussion) :

Page 92
(14) My oldest brother lives in Glasgow

(15) His father gave him a cheque.

.

Here the term "referent" will always be taken to refer to the
construct that is determined by reference-evaluation in some model of
the world. The corresponding object in one particular model (known

.as the "real world") will be referred to as the "concrete referent".

One advantage of making this distinction is that we can
distinguish between the concrete referent of a phrase and different
people’s referents for that phrase. In the classic example, the
phrases '"the morning star" and '“the evening star" have tﬁe.same
concrete referent; but someone who does not kﬂow any aétfonomy may
regard the phrases as referring to different objects . Such a person
can be said to have two different referents for the ﬁhrase (in his

notion of the world).

When describing fﬁé semantics of phrases which refer - to
something (e.g. ﬁoun phrases) it is important to make a distinction
between the "meaning" of the phrase‘(usually described.in some formal
'representation) and the set of things the phrase refers to (as
Tdbsepved above, these things are not usually in some absolute ﬁreal"
world) . This is (roughly) the traditional distinction betweén "senge"

and "reference" (Frege(1892)).

v

Montague (1968, 1970, 1972) ﬁormalises this distinction in a
rigorous way. His model uses the notion of a "point of reference",
-which is.used as a parameter in deciding what an expression réfers
to. These points of reference .(corresponding to '"'contexts" or

"states of the world") are sometimes represented as ordered pairs (a

Page 93

possible world pairéd with a situétion of use),‘but they could be
.decompoéed further, depending ‘on how many factors we wished to
separate 1in a state of ﬁhé world. The point of reference has a
direct influence on how an’ expression refers, because Mntague
defines the meaning‘ of a termi to be a function{from points of
reference to functions which define sets of objects. A single:

meaning * (i.e. the same function) may refer to different objects, if

it is evaluated at different points of reference.

There is an obvious analogy here wiﬁh pﬁogram—evaluation‘ A
piece of program must be evaluated in somé conte#t (i.e. some state
of tﬁs machine). The dinfluence of the context 1is particularly
relevant for languages4 which determine all the variable values at-
run~-time (cf. Moses (1970)), and some recent developments in
artificial intelligence languages have allowed program-contexts to be
manipulated as items, so that a piece of program may be executed in
different contexts on . different occasions (McDermott and Sussﬁan
(1972), Stansfield (1975), Davies (1973)). Even a simple piece of
program such as’' (A+B) will refer to’different numbers depending on

the values of A and B.

Expressions like "I" and "he'", whose reference 1is entirely

dependent on the context of use, are sometimes classed as "indexical
expressions”. Bar—Hillel‘(1954j'gives an elegant treatment of such
expressions, in which he fﬁints out that, to discuss reference;kwe
must always ihclude the context of wuse in the calculations.
Indexical expressions are merely those where the influence of context

is very obvious - in principle, the context must always be taken into

account. Sentences which are non~indexical (such as "ice floats on

Page 94

water') are those whose reference is 'unaltered by changing the
‘context. (Compare this with the progran "sin(0);" , which should

. yield 0 no matter what program context it is evaluated in).

<

If we let the "meaning" of a noun phrase bé a picce of program,
which, when run, will produce the set of objects referred to by the
phrase, then the sense/ reference distinction 1is automatically
incorporated. Winograd wuses pieces of prqgraﬁ to represeut the
meaning of noun phrases, although it is not ciear that they are used
as systema;ically‘ as“ fbntague's intension functiong (see Ritchie
(1976)).‘There are certain difficulties inﬁolved in using pure
programs for noun phrase meanings (see Sectiog‘v.6), but it is worth
noting the analogy between program—evaluation in a program—context
and determining the set of referents of a meaning. It seeﬁs
desirable to retain this aspect of the Winograd representation in any

modification.

~/

Page 95

Section III.5 : Registers

As >obsefved above, ‘computational grammars often store
partiaily—built vstructures ~in registers. In fact, most of the
operations performed during sentence—analysis use the contents of
registers in some way, and 1if wé are to inveétigate hoﬁ,
sentence-prccessing operates, it is deéirable to investigate how
registers are, and can be, used. In writing the MCHI&E grammar, an
attempt was made to keep track of the various uses of registers, as

these operations form '‘a major part of the work done by the analyser.

The following classifications proved useful for describing this area.

The first useful distinction is between flags, structure-holding

registers, and pointer-holding repisters. A flag is generally used

as a location to test for some simple condition, and holds one of a

small, fixed set of values (e.g. "TRUE", "FALSE"). The idea is that

when some condition occurs during an analysis, this fact is recorded

>}

for 1later wuse by

[

setting the value of a flag; at some later
stage(s), when the analyser needs to test this condition, it need not
do, any re~computing, but ‘ﬁercly examines the current value of the
flag. néome recognition grammars us% a two-valued flag to record
whether a passive or active verb-configuraticn has been formed; the
analyser, on encountering a ”by”Qphrase, can react differentiy
acccording to the value of the flag

A structure-holding register provides temporary storage for a

piece of structure which has been built but not allocated to a

position in some larger structure. Vor example, a register HEADNOUN

night be useful for holding the head of a noun group while checking

Page 96

if any adjuncts follow the group. A pointer;holding register is used
for kéeping track bf. where, within éomé larger structure, a
particular item is. Fbr,example, a register CURRENT-NODE might be
useful for keeping track of the node currently being»processed. If
this distinction seems slightly vague,. consider the foliowing.“
Failing to assign an item to a ﬁointer register makes that item
difficult (but probably not impossible) to find, and does not alter
the relationship of that item to any containing structures. Féiling
to assign an itém to a structdre—holding registe?i loses it
completely, since it is not yet attached to any other structure., (In
languages like LISP and POP-2, such unassigned structures would be

garbage~collected) .

Another distinction (independent of the 3—wdy classification

above) is between interpreter registers and grammatical registers., In

the course of analysing a sentence, it is necessary for the program
which scans the input and the network to keep track of where it is in
the network, and where-it is building structure. For example, the

CURRENT-NODE register mentioned above might be needed, and a register

g
QQNTINUATION for holding states 'still to be processed. These
interpreter registers are more or less independent of the transition
~

‘network grammar being interpreted, although the. linguistic theory
within which the grammar was written will affect the chdice of such
registers. On the other hand, certain specific grammatical regiéters
will be needed, according to how the grammar 1is written. For

example, the HEADNOUN register instanced above might be useful in one

grammar, but irrelevant in another.

Page 97

Generally, registers are used just like variables in a

programming language, with each register having a distinct name to-

identify it. The analyser can examine specific registers by name,
and have separate registers for as many items or pointers as it

needs. One possible variation on this is to have just one or two

general purpose registers, which are used for different purposes at

different stages in the parsing. Cal; these work registers. Such
registers are trickier to use, since the parser has to keep track of
what haé been most recegtly placed in a work tegister,.ahd make sure
that the 'stored ‘valﬁes for one process do not interfére witﬂ those
"for another. The- only advantage to be gaiﬁed is the general
methodological one of restricting the mechanism as much as possible.
It would be -interesting to construct a parser which requires only a
very limited amount of storage space; using work registers instead
of named registers is one way of investigating this. (It would also
avoid the covert decision-making described in Section III.8,

(28)(£)) . T

As described in Section III1.7, constituents are processed by
nested subunits. In the course of such processing, working space for
the different constituents must be kept separate, so that stored
o ;
values do mnot corrupt each other. Suppose there is a grammatical
strﬁcture—holding regisﬁer HEADNOUN whi;h is used to process a noun
group. If iseveral noun groups are nested within each other, eacﬁ
different noun group may need a separate copy of HEADNOUN. Since the
processing 1s hierarchically arranged, one way -to 'achieve, the
integrity of working sbace is to allow certain registers to act like
_loéal variables in block-structured programming languages (e.g.

ALGOL, POP-2), That is, a fresh incarnation of a local variable is

Page 98

available té each ‘hierarchical unit that requires that vafiable;
these incarnations exiét only temporarily; as long as the
hierarchical subunit is processing, and then they vanish. One way tb
‘looklon such a system ié to regard the registers inr question as
puéh—down stores; the current value is kept on top of }he store, and
the store can be pushed down on commencing a nésted unit, providing a

fresh value slot while storing the previous value temporarily. If we

call such registers stack registers (or simply stacks), this gives

another possible classification, independent of the previously

‘described distinctions.
Thus we can class a register as being:
pointer~holding, structure-holding, or a flag
grammatical or interpreter
wvork vegister or némed register
stack or non-stack.

Notice that this sectioﬁ has not suggested any concepﬁs tﬁat are
not -aiready in ‘use in existing programs; it has merely drawn
attention to certain possible classifications that are possible, so
that later sections can be describédain a more precise terminology.
Th}sl is necessary if we are to examine fully the linguistié
formalisﬁs being proposed.‘/ Hitherto, this level of detail has not
been discussed, but it 1is essential to the development of more
cbmplex (or more restricted) devices. Since most. (if not all) of the
operations carried eout during sentence énalysis use registers (andr

the transition network configuration merely expresses the list of

Page 99

options) elucidating the uses of registers 'is the major part of

elucidating the processing operations.

Page 100

Section III.Q'L'ControL structure

Owing to the ambiguity of natﬁral language, an analyser is
frequently - faced, during 'sentence analysis, with having to explore
several possibilitiés. There are two standard straﬁegies that a
parser can use to follow up multiple options. A program is said to

use a depth-first strategy if, at each choice point, it chooses one

of the options and follows it up fully, to the exclusion of others.
Tf a choice proves to be wrong, the program "backtracks" - i.e. it
returns to the most recent choice point, undoing all or most of the
processing performed since that point, and tries another option.
When all the options at a choice poiﬁt have been tried
unsuccessfully, the program backtrécks to the previous choice point.
This has the advantage that there is only one partial analysis being

maintained at once (with choice points recorded in some way), and (if

the program makes the right choices) the corrvect analysis is found

very quickly. One disaévantage is that if the progrém makes the
wrong choices, it has to do a great deal of backtracking, and this
may involve undoing processing which will have to be repeated when
other options are taken.. A drawback to having only one partial
analysis in existence is that there i1s no way of comparing several
possibilities, so that the "best'", in some sense, may be chosen.
‘Several analyses can be compared only by producing complete analyses.

Instead of the analyser stopping when it has found one successful
path, it continues to explorc aystematically all the other choices

that it has not yot tried (in the same way that it would if it were

backtracking) .

Page 101

A program is said to use a breadth-first strategy if, at each

choice point, all the options are developed simultaneously., This has
the advantage of finding all the analyses in one pass, if there are a
few, and it allows (in principle) the program to compare several
different partial analyses, selecting the better» ones for
consideration. In a pure breadth~-first system,»such a selection
facility would not be wused, since all analyses are developed,
regardless of merit, but a naﬁural development would be some form of
"pruning" of the set of analyses (if some principled method could be
found) . The main disadvantage 1is that several analyses must be
maintained simultaneously, even although many of them will prove to

be transient.

The augmented transition network formalism"is neutral between
depth- and breadth-first exploration. A particulér network proQides
the arrangement of the choice points, but these may be explored in
either fashion. The program of Thorme, Bratley and Dewar (1968) used
a pure breadth-first approach, and‘the LSNLIS system (according to

Marcus (1975)) uses the depth-first approach.

If we wish to examine the details of how decisions are made in
sentence-analysis (with an eventual aim of constructing a plausible
model of human processing), then pure depth- or breadth-first systems
are not very helpful. The reason for this is that both methods have
inherent inefficiencies which are overcome by brute force. These are
exhaustive strategies, in which the grammar does not have to be
particularly clever, elegant, or carefully constructed in order to
succeed . If parsers are justified solely on the grounds that they

"work" with sufficient computation, then we are left with no means of

Page 102

comparing rival recognition grammars, With a suitably large
computer, one could write a parser which would produce any desired
analyses for sentences, just by putting suitable (ad hoc) markings in
the dictionary, and by making the paréing strategy exhaustive, The
whole point is thaf we want.to be able to say something about how the
parser operates, and whether one program is neater than another - the
fact that it eventually produces the analyses is not é sufficient
condition for adequacy. We need to refine our notions of parsing
strategies, simply because, as commented in Chapter I.1, oﬁr ultimate
criterion in a scientific investigation is that we should try to find

the neatest soluticen.

This is not to say that all parsers that use .exhaustive
strategics are alike. The parser for the IBM REQUEST system (Plath
(1973), Petrick (1973)) used a reverse transformational derivation,
which resulted in a large combinatorial explosion. Quite short
sentences had so many possible surface groupings that even with
several 100K of machine space the parsing was difficult (or
impossible) . On the other hand, the program of Thorne, Bratley and
Dewar (1968), wusing a breadth~first exploration of an ATN grammar,
wvas able to parse comparable sentences quite quickly, using only 16K.
It is implausible to suggest that this difference could be due solely
to implementation details. The radiqally different analysis
prqccdures muzt account for some of this discrepancy - but that is a
‘dircct admission that we can appraise a program'in terms of how it
woris. Once ihis eriterion is allowed, the obvious step is to try to
refirce the brute force exhaustive strategies into neater, more

elesant devices,

Page 103

A more specific objection to exhaustive processing strategies is
raised by Marcus §l974). He points out that there exist "garden-path"
- sentences (like (16) agd (17)), where people (usually) make a mistake
in perceiving the structure of the sentence on first assessment, aﬁd

hence need more than one attempt to "understand" them.
(16) I told the boy the dog bit Sue would help him.

(17) In the book the girl took the basket had magical powers,

In such situations people are ccnscicuz of making a mistake and
having to re-assess the sentence. Marcus argues that if the normal
processing method is depth~first (where automatic backtrcking is part
of the process), then people must be making'continﬁal "mistakes"
while processing ordinary sentences, without any disruptive effect.
If that is the case, why should the "garden-path" sentences not be
handled smoothly by this automatic, unconscious, backup method ? This
argument can also be applied éo exhaustive breadth-first systems. If
people normally consider all partial analyses simultaneously (and
throw away those that go wrong without being aware of any oddity),
.why should they see only one analysis for "garden-path'" sentences ?
Marcus concludes that people do in fact process just one of the
possible analyses (and hence can be "wrong" in a garden-path
sentence), but that they choose this analysis very carefully, rather
than relying on automatic backtracking to allow an arbitrary blind

choice. He =suggests that a recognition grammar should proceed

deterministically, building structure only if it will not have to

alter it later, and holding partial structures in registers until

they can be attached in their final position. This matter will be

Page 104

discussed in greater detail in Section III.8.

Both Woods (1970) and Winograd (1972) suggest the use of a
numerical "weight' which can be associated with different anaiyses in
a parse, indicating which of the analyses is the "best". As observed
above, partial analyses cannot be compared in a depth-first system,
so if Winograd®s parser were to make use of the weighting (the SHRDLU
parser does not), it would have to compare alternative complete
analyses. Woods says that the weight allows one "to suspend unlikely
looking paths din favour of more likely ones" (ibid.,p.605), which
suggests that partial analyses are being compared. Wilks (1975)
suggests a totally different framework which uses a nore

sophisticated '

'preference" system (sce Section 1II.6), and presents
good semantic avguments for using such a device. (His metric is not

used in a gradual left~to-right analysis, so many of the comments

here do not apply directly to it).

The question of how to use "weighting' or '"preference" 1is not
simple. There afe éwo main issﬁes - relative versus absolute
failufe, and local versus global assessment. A facile approach to
the idea of preference might abolish the notion of "discarding" a
partial analysis, in favour of some mechanism of "reducing
preference". Although superficially plausible, that would .be
unworkable for the following reasons. At any given stage 1in an
analysis, there are certain options available, and "failure" occurs
when the input word does not meet the conditions for any of thesé.
If we no longer discard failed analyses, we would have to follow up
every option, regardless of the input. Leaving aside the problem

that the struciture-building

«

might be unmanageable if, for example, a

~ Page 105

preposition has to act as a surrogate for a verb, we have created a
severe combinatorial ‘problem, sin;e the. input would not be
constraining or guiding the analyser at all. 1In ATN terms, the ATN
interpreter would have to pass through the entire network, keeping

different preference counts, with no search paths being terminated by

"failure'".

Another suggestion might be to assign each option at any stage
(each arc, in ATN terminology)Aa value, depending on how well the
input word matches the corresponding condition. The arc with the
"best'" value would be the only one to be explored. There are two
main problems with such an approach. Firstly, 4it is a form of
"depth-first" searching, and hence does not allow the comparison of
more than onc partial analysis (thus losing one of the aims of a
preference system). Secondly, the initial choices in the analysis
process will be made on the basis of the "best" options at that early

stage, thus discarding any analyses which might prove "better" later.

These two hypotheéical set-ups illustrate an important point
regarding "weighting" ¢ the weighting system must discriminate
sufficiently to ignore some possibilites, otherwise the search space
is absurdly large; on the other hand, it must not discard, for local
reasons, possibilities which might later prove viable, and it should

not always concentrate on just one analysis.

A working system secms to need the notions both of "discarding"
and of "reduced preference", with different kinds of "failure"
invoking the two reactions. The MCHINE system operates with the
following division c¢f mechanisms. Fach analysis path has a weight

("TENSION") which can, in principle, be incremented by any part of

Page 106

the program (TENSION is initialised to zero, and the lower the
TENSION, the "better" thé analysis). Féilure in arc tests and surface
structure building causes the analysis to be discarded, but failure
in applying any of the seman;ic rules (or in "reference e?aluation" -
see Section IIL,4) merely causes the TENSION to be increased. (This
demarcation seems to be similar to that which 1is implicit in the

programs of Wilks (see Section IL.6)).

The above discussion has been aimed at establishing two points
concerning search étrategics in parsers. Firstly, xhaustive
strategies, in which arbitrarily maﬁy erroneous paths may be followed
are both theoretically uninteresting and intuitively implausible.
When a recognition grammar is written, the linguigt should attempt to
make it as deterministic as possible, in the interests of economy.
Secondly, where multiple analyses have to be considered, some notion
of "preference'" would be wuseful, so that the "besg" of several
alternative analyses may be chosen. This entails simultaneous
development of a few paths, with some part of the program haviﬁg

access to all the partial analyses.

Another way of classifying parsing strategies depends on whether
the parser searches for some specific configuration in the input

("top-down'") or whether the input is examined first and then arranged

into successively larger structures ("bottom-up'").

The breadth/depth classification is logically independent of the
top~down/Lottom-up distinction, but the combination of top-down with
depth-first is quite common (what Marcus calls the "Guess—and-Backup
Principle'). Purcly bottom~up parsers fdt natural language are rare

in the artificial iuntelligence literature, and many of the devices

Page 107

currently in wuse are hard to classify firmly as either top-down or

bottom-up.

For example, the notion of a "demon" (as described by Charniak
(1972)) has been used as a sentence-analysing dévice by Marcus (1975)
and by Riesbeck (1974) (under the names ‘'module" and "expectation"
respectively). A demon consists of a pattern and a body. At any
given point in the execution of a demon~based program, certain demons
are deemed to be active. If a demon is active, and some item(s) in
the input match its pattern, then the body (a piece of program) is
executed, In a sense this is a bottom~up device, since the body of

the demon will be peformed only if the input triggers the demon, via

the pattern; however, the demon-based program as a whole is somewhat

top-down, in that only the active demons are . available for
triggering. To some extent the list of active demons defines what
the program is "looking for" in the input, but it will react only to
those items which are actually present. The options specified by the
arcs in an ATN state are similar in this respect to a small list of

"packet" in Marcus’

demons which may be activated together (like a
terminology). The state suggests what few options to 1look for
(top-down), but only those arcs whose tests are satisfied will be

explored (bottom-up). (This does not apply exactly to (PUSH..) arcs,

which will be discussed later (Section III.7, Section IILIL,8))\

ATNs are often‘ regarded as purely top-down, and demons as
bottom-up, but this is slightly inaccurate., It is also not very
illuminating to try to put every mechanism wholly into one of these
categories, particularly as the most appropriate method for certain

tasks may well be some mixture of the two. Various aspects of these

Page 108

strategies will be discussed further in Sections II1T1.7, II1X1,8 and

II11.9, but no attempt will be made to say whether a system '"should"

be top-dowm or bottom~-up.

Page 109

Section III;7_L‘ProcessiggAkgvels

One of the main features of computational grammars is the way in
which autonomous subunits can be used to process constitdents, S0
that a constituent made up of several words can be treated in ’the
same way as a one-word constituent of the same grammatical type., The
basic éctions and operations for performing these nested processes
are defined in both the ATN and PROGRAMMAR notations. This
subsection attempts to redefine these commands in such é way that the
independent decisions in processing constituents may be described
separately in the formalism. Some of the chagggs are simply the
introduction of notational conventions, but others fepresent slightly
different ways of controlling the processing subunits. HMHost of what
is said here applies to both the ATN and PROGRAMMAR systems, but the
ATN notation will be used as it lends itself to displaying the
various facets of the conmands. The device pfovided in the ATN
system for activating a subunit is the (PUSH X) arc, where X 1is a
category name (e.g. NP), represented graphically by a section of

-network like (18).

(18)

ST
Ty,

-
(PUSH X) £ 52

P -
53
\'«* A¥

g

ripne

2

Page 110

Assuming the usual interpretation of the (PUSH) device, the
parsing program should carry out various operations on encountering a

(PUSH X) arc during an analysis:
(19)

(a) The continuation state (S2 in the above example) is saved on

an interpreter stack register.

(b) Some other interpreter stack registers may be pushed down,

to keep track of interpreter information at the separate level.

(c) Any grammatical stack registers associated with category X

are pushed down.

(d) The start-state associated with category X (i.e. the
beginning of the appropriate subnetwork) is used as the next state to

be processed.

The operations 5ummariséd in (19) define, effectively, the

situations where a (PUSH X) arc is appropriate in an AIN grammar :
(20)

(a) Where fresh working space is needed to process a constituent
separately, without destroying information about higher coanstituents.

(This is the reason for (19)(a)and (b)).

(b) Where a particular category of constituent is predicted by
the grammar (this 1is necessary to provide the information X fox

(19)(c) and (d)).

Page 111

(c) Where the grammar. predicts what state will be appropriate
after the constituent has been completéd tThis is necessary to

provide the information for (19)(a)).

(d) Where the grammar predicts that one of several categories is
imminent, the (PUSH X) device is the only way to represent these

parallel options in one state (e.g. by a state like (21)).

(21)

Pl

(PUSH HNP)

ran, el
ffymwngil

5 £, YUSH RELCLAUSE
L Sl /4:‘\>.._;h(}'Ub“ RELCLAUSE)
'i“"ch::'ﬁé:«;\\

.
‘mK(PUSH CLAUSE)

This displays seveval aspects of the (PUSH X) notation:
(22)

(a) It 1links idnte one decision several points which are

logically distinct ((20)(a), (b) and (c)).

(b) It forces grammars to be written in a top-down style, since
continuation states must be specified, and the grammatical registers
arce pushed down on the basis- of an advance prediction of what

category of constituent is coming.

(c) The only way that different states can be merged 1is to
search, top-down, for the various options ((20)(d)). Since this will
involve, for cach optinn, the whole register pushing process, it is

very messy.

Page 112

We can deal with (22)(c) first, gsince it is trivial and largely
notational. If there 1is some combination of options which occurs
frequently in a grammér, then there is a good case for constructing a
particular state to represent that combination, containing all thé
component arcs for the variéus separate networks. This would be
slightly redundant, since it would not make use of the fact that
these arcs fall into natural groupings according to the wvarious
options. What 1is really needed 1is a way to handle arcs in small
sets, and to produce various states (whose sets of arcs may overlap)
by forming uvnicns of these minimal sets of arcs (much a3 the systenm
of Marcus (1975) uses independent activation of packets). If we
introducce pscudo-arcs of the form (INCLUDE X) (where X 1is a
state-name), this will provide this wunion fécility. A state (or
rather a pscudo-state) like S3 in (23) can be treated as having all

the arcs for states NP0Q and THATSO.

(23)
~ INCLUDE NPO
P ,ﬂ"(e)
/ Y
£ s3
Y £
‘Ran"uk%» (INGLUDE THATSO)
e s et

The statw-name S3 can then be used in a (PUSH S3) arc, where the

pushing dova is done once for the whole pseudo-state.

If we eitawmine ithe decisions énd operations initiated by a (PUSH
X) arc theve scems to be a natural division into what might be terﬁed
"olobal predictions” ond "local findings". The former are based on,
and are largely about, what is happening at the current ievel of

processivg {a.p. vhat continuation state will be relevant after the

incoming coastituant); the latter are based on what input comes in

Page 113

after the PUSH arc, and concern details of the constituent (evg. what
grammatical registers to'push down) . The globél predictions are those
aspects of the situation defined by the environment (in particular,
the ;elationship of the incoming item to the existing structure),
which are‘not inherently aspects of the category of item (e.g. NP)
involved. The local findings are specific to the processing ofrthe

item itself, and ignore how the finished item must be related to its

environment.

We can therefore redefine the PUSH command, so that it specifiés
just those aspects of the situation which will bé predictable in
advance (start state for coﬁstituent, wvhat to do with constituent
vhen found, continuation state if any) and usé a different:command
for specifying those aspects which are better décided within the
subnetwork (what structure to stért building within the constituent,
what grammatical registers to push down). Let us call the wmodified

construct "NEWLEVEL", to distinguish it from the original "PUSH".

On encountering a (NEWLEVEL S3) arc, the interpreter will do the

following:
(24)

(a) If a continuation state S2 (not NIL) is specified, this 1is
pushed on to the continuation stack, all interpreter registers are
pushed down, and S3 is set as the next state. (This creates a new

working level, saving all the information for the current level).

Page 114

(b) 1f the continuation state is NIL, the continuation stack is
unaltered, the interpreter stack registeré are cleared of their
current values, and S3 is set as the next state. (This creates a new

working level by deleting the information about the current level).

(c) One of the interpreter stacks (call it GRAMREGS) holds a
list of the grammatical registers currently in use at the present
level; this is pushed down or cleared along with the other

interpreter stacks.

That is, the NEWLEVEL arc has no direct effgct on the
grammatical registers, since what registers are needed can be decided
only after the actual input is exanined. This means that some
construct is needed for explicitly controlling the activation of
grammatical registers. Two different devices were tried out at
different stages of the development of the MCHINE program. The first

one was as follows.

There are in the grammar ifems called constituent types,
consisting of a pair (<list of grammatical registers>, <state-name>).
These items are used to describe certain common decisions4 at the
start of processing certain constituents using a command "CALL". This
command appears in the action part of an arc, with a constituent type
as argument, If there is a constituent type CINPl, with QTNPl =

([HEADNOUN], NP3), then it may appear on an arc like (25).

=
)

ge 115

(25)

(CAT DET) ((DO NPACT3) (CALL CTNP1))

I, /
3
On encountering the command (CALL X), where X= ((Rl....Rn), S), the

interpreter should do two things :
(26)

(a) The grammaﬁical registers Rl.....Rn are activated; this
means that for each Ri the following proce#urg is carried out. If
there is a version of Ri at the current level, it 1is cleared. If
‘there is none, but there is a version at a higher level, Ri is pushed
down. 1If none exists at any level a new version is created at the

current level.
(b) S is set as the next state..

It may seem strange to specify the next state in the action part
of an arc, since there is a ready notation for providing the next
state (which would not bé used on an arc which had a CALL din the
actions’. The reason for this is ‘that &he action of activating

certain registers and moving to a pavticulav state seemed to occur

i2ful to group these into

o

together in recurre..nt pairs, so it secemed u
units. An arc like (25) is useful at the Leginning of processing a
constituent, where a specific test (such ac (CAT DET)) can be made on

thelinput word, and the pavsing continues oin the basis of that test.

Page 116

The reason this device was discontinued was that there did not
seem to be enough "constituent types" in the grammar to justify using
~ the concept. The occurrences of state and regiéter list were not as
closely relafed as had been thought, and many of the "constituent

types" turned out to have null entries for the register list.

"Constituent types" were therefore replaced, in later versions
of the program, by a more direct device, which operates as follows,
Two operations PINITREGS ("initialise pointer-~holding registers") and
SINITREGS ("initialise structure-holding registers") are provided,
which take a list of register names as an .argument and cause these
registers to be activated at the current level (much in the way
described in (26)(a) above). This requires the gfammar—writer to bear
in mind what 1local registers he needs, and there is no automatic
indexing of register-lists to any other items (such as states or
rules). There might .be a case for a compromise between these two
approaches, where a "constituent type" is simply a commonly-occurring
list of registers. -Then the grammar-writer could keep track of
registers more easily by having them in standard clumps, e.g. a. list
for clauses. Alternatively, it could be made part of the ATH
interpreter algorithm to check each state it goes through, to see 1if
there are any associated registers to be activated. HNeither of these

last two suggestions have been investigated at all.

Levels are terminated in the following way. When a (POP) arc is

encountered:

Page 117
(27)

(a) The grammatical registers active at the current level are
deactivated. That is, if previously pushed down, they are popped up;

otherwise they are deleted. -
(b) All the interpreter stack registers are popped up.

(c) Processing continues from the state stored on the top of the

continuation stack.

So far, very few arguments have been presented for the
NEWLEVEL...NIL primitive. In fact, it allows more than just the
avoidance of specifying a continuation state, as will be seen in

Chapter V.,

Page 118

Section ITI.8 i Decisions, Mistakes and Predictions

If we are to examine sentence-processing in detail, one notion
that needs some clarification is that of a "decision". An analysing
(or parsing) program makes, as it processes a sentence, various
choices and performs various operations -~ attaching pieces of
structure, developing oneAaﬁalysis path\but not another, pushing down
stack registers, etc. When we talk of a parser making a "mistake" or
"wrong decsion", which c¢f these actions are relevant ? The argument
put forward by Marcus (see Section III.6) regards backtracking as a

form of revoking of "decisions"

on discovery of a mistake, and he
suggests that people are conscious of these alterations. If this is
so, what actions can the hearer revoke without sensing a '"mistake",
and vhat re-processing causes a feeling of "oddity" ? If we are to
use "garden-path" sentences as clues to what parsing strategies are
operating, then our formal model must be explicit about wvhat
constitutes a mistake, or we cannot relate anomaly (mistakes defined
by the model) to oddity (mistakes detected byythe hearer). It conveys
very little information to say that a parser makes very few mistakes
during parsing, if there 1is no clear notion of what constitutes a

mistake; similarly, it is not a restriction to specify that a parser

w

should not make any wrong decisions, if we do not specify what counts

as a decision.

We can tackle this by reviewinpg some of the kinds of operations
. I&] 5

i

that an ATN intevpreter pavforms while it is processing a sentence.

.

Page 119

(28)
(a) Testing an arc, using the current word.

As pointed out in Section ILI.6, there is a sense in which the
arcs of the current staté predict, since they define the relevant
options at the current stage of the analysis. in a normal, unadorned
ATN there is no notion of "prediction" or a '"decision" in making the
individual tests, since the tests are just a way of getting the input
word to guide the next step in the analysis. No special structure is
built for each arc, and the state of the analysis 1is not altered
until after an arc test has succeeded. As observed in Section III.6,
the tests could be regarded as demon patterns which .the inﬁut may
trigger. Hence choosing to test a particular arc will not be

regarded as a "decision'".
(b) Jumping to a new state without taking in a new word.

This generally mwmeans that some further testing is being
performed on the current word . It is therefore part of carrying éut
one of the arc-tests in the original state and hence does not4 yet
constitute a decision to follow that option. Such jumps occur as
part of the processing of a (PUSH...) or (NEWLEVEL...) arc (see
Section TII.7), where the state jumped to is the start state of the

subnetwork given.
{c) Taking in a new wurd and jumping to a new state.

This might seens to reprcvent a decision, and the jump to the
new state might prove to be "wrong" (i.e. none of its arcs match).

Howevcr, this is bound up with the hazy question of limited

Page 120

lookahead.

Sometimes it is the case in a recognition grammar that a
particular decision will be resolved completely once the next input
word has been processed. A look-abead of one word would thus .avoid
making an unnecessary branch point in the analysis. (The TESSA
barser (Soul (1975)) includes a one-symbol lookahead). If the
information to be extracted from the next word can be simply
expressed (e.g. '"is it the word “mnot‘?"), then the necessary
look-ahead can be casily programmed in as an extra condition on an
arc, However, in many cases, the information required is exactly a
complete parsing of the next word in context (e.g. "can this word
start a suitable noun phrase ?7"). This could also be directly
programmed in, but it would require applying a full set of arc-—tests,
for some state in the grammar, to the word. 7This would be slightly
redundant, since, if the test succeeded, the parser would then
proceed to exactly that state,. and carry out all the processing
again. Also, to be certain that the look-ahead processing was vaiid
(in terms of the context it was performed in), all the modifications
(e.g. movement of the sentence pointer) would have to be made that
are part of jumping to the statce in question anyyéy. It might be
better just to allow the parser (in these more complicated cases) to
continue processing, bt not to regard this as non-determinism. That
is, Dbranches which last for only one word are not to be looked on as

"mistakes".

(d) Pushing down Lthe intecpreter stack registers.

Page 121

As commented already, one of the actions taken on encountering a
(NEWLEVEL...) arc (namely, using the start state of the.sﬁbnetwork as
a further set of tests) is not really a "decision". If the analyser
doeé this by jﬁmping into the subnetwork, and using the stértnstate
as the expahded test, then the environment must be adjustea'
accordingly. The interpreter stack registers (or some of them) have
to be pushed down, so that there are new pointers for certain
data-structures (the node being currently processed, for example).
Such stack alterations are a preparation for a sub-~constituent which
may need independent work space, but they do not constitute a
prediction about what is to come next (since they are not specific to
the subnetwork involved). It seems reasonable not to regard the
alteration of interpreter stacks as a '"decision'" (Woods (1970) states
that (non-augmented) transition network grammars can be optimised so

that the only non-determinism is in the push-down mechanism, which

suggests that there is a qualitative difference between the two kinds

of operation).
(e) Pushing down a set of grammatical registers.

Grammatical registers are 'slightly different. The registers
ﬁeeded fér a noun phrase are different from those for a clause, and
there is no need to push down all the registers for each new
constitueht. Choosing to push down a certain set of grammatical
registers constitutes a decision to . process a particular kind of
constituent. As pointed out in éection III.7, this part of the
(NEWLEVEL) operation can be postponéd until the first word of the

input has been tested, and this word can influence the choice of

registers.

Page 122

(f) Storing a structure in a rcgister.

This might seem not to be a deciéion, since one of the
advantages of wusing struéture-holding registers is supposed to be
that structure-building decisions can be postponed. However, thié
depends on how the registers are used. Woods (1970) states that
using registers enables the postponement of decisions until the
relevant information is available; instead of éuessing and then
altering the sitﬁation later (p.60l). In fact, in the examples he
deseribes, the decisions are made at an early stége and then changed
if wrong. The grammar he gives makes quite specific initial
hypotheses, by placing structures into particular registers, then
alters these decisions if necessary by moving tﬁe structures to other
registers. There are several labelled registers; one for each aspeét
of the syntactic analysis being produced, and the contents of these
registers at the end of the parse define the analysis constructed.
Tbat is, the assignment to structure holding registers is effectively
structure-building, since no separate tree needs to be built out of
the contents of thesc registers later. Hence the sample grammar does
make premature guesscs about the sentence structure and revise them
later - using labelled registers instead of an explicit
tree-structure does not alter this fact. Registers could be used to
postpone decisions by having them [fulfil genuinely temporary roles,
but regarding them as labelled slots in the final analysis does not

do this.

(g) Attaching a structuve to the main surface structure.

Page 123

Structure-building of this sort is a definite decision, since it
directly determines the final form of the analysis, without any
further manipulation by the parser of that particular relationship.
If we are to have any notion of "irrevocable decision" it seens
plausible that structﬁre—building sﬁould fall into this category.
Winograd makes no attempt to restrict the re-structuring that may go
on within a parse, and uses a modified form of depth-first top-down

exploration, which allows arbitrary revoking of decisions.

Al though it is probably easier to write a pérser without
constraints on decision-altering, it is not helpful if we wish to
develop a detailed model of the decision-making process. The MCHINE
program (Chapter VI) included an attempt to writg»a parser which made

as few "mistakes"

as possible, and this severely slowed down the
programming. The actions which were regarded as '"decisions" were
structure-building, flag-setting (although the MCHINE grammar does
not resort to wusing flags at aany stage), altéring the state of
grammatical registers, and assignment4to specially-named grammatical
registers. Since the program uses a modified breadth-first approach,
-miétakes show up not as backtracking but as 'analysis paths which
terminate prematurcly. In wview of the comments above about
one-symbol look-ahead, branches which are terminated after existing
for only one word are not regarded as "mistakes". Any other
processing which does not involve, taking in a new word (e.g. Jjumping

to a new state) is nol regarded as a "decision".

Page 124

Section IIL.9 : BoLtom-up Devices

One complaint sometimes made about language anal&sers such as
those in the LSNLIS and SHRLDU systems is that they are "“too
top—-down" (c.f. Marcus (1975)). That is, the actions taken by the
analyser are deterﬁined to too great an extent by the typé of dinput
that it is searching for, rather than by what input it has actually
received. This section illustrates that certain modifications to the
basic ATN/ PROGRAMMAR type of system can introduce a greater degree

of influence by the input.

Pre-~tests in PUSH or HNEVULEVEL arcs

A o e . W 4 A TR s 2 At B B ARt

Marc Eisenstadt (personal communication) has made the following
observation regarding ATN gremimars describing embedded constituents.
Suppose a grammal defines one of the possibilities for "sentence" to
be a "questioA”; one of the possibilities for a "question" is a
"wh-question'; a ‘wh-question" starts with a "wh~phrase'; a
"wh-phrase" starts with a "wb-word". In analysing the first word of a
sentence, such a grammar mighi gé through the following sequence of
arc—conditions :

PUSH <Question>

PUSH <WH-question>
PUSH <Vi-group>

PUSH <WH-phiose>
FEATURE I

Page 125

At this stage, the input word is tested; if it turns out to be
"does" (in keeping with the hypothesis of a question), this analysis
path fails - but it has to nest several levels just to achieve this.
The recognition rules have decomposed the initial task very
straightforwardly into simplef subtasks, so all the subtasks have to
be‘initiated, even although the input word is unsuitable. This extra
work could be avoided if the grammar-writer was able to include
pre-tests in some of the PUSH arcs. Instead of a simple (PUSH
WhQUESTION) indication, ordered conjoined tests could be included,
e.g. ((FEATURE WH) (PUSH WH-QUESTION)). Thus,'the'full search would

be made only if the initial word is suitable.

Notice that this is slightly different from the device used in
the program of Thorne, Bratley and Dewar (1968), where the ATN
interpreter automatically carried out a form of pre-testing for any
subnetwork, as a form of optimisation. Here, the grammar-writer can
include an explicit pre-test in the ATN grammar, in cases where he
requires some very specific check. It is werth noting that simply by
allowing cohjoined tests, a pre-test can be incorporated anywhere in

a grammar.

Some difficulties still remain. It will not necessarily be easy
to find a simple pre-test which is appropriate for a particular kind
of constituent, although (FEATURE WH) and (FEATURE VB) are obvious
examples for Wl~clauses and verb phrases. Ordinary noun phrases, for
exanple, seem to have no natural class of initial words, sincej for
example, '"any", 'black", "bananas" and "Harry" can all start a noun
phrase. (In the MCHIﬁE grammar, the rather dubious feature "STARTNP“

has been included for this purpose, but that is not very

Page 126

satisfactory. DPewar(personal communication) has stated that the
automatic pre-testing in the Thorne-Bratley-Dewar program relied on
the presence of suitable category markings, and this also lead to

some otherwise unmotivated category assignments) .

Dynamic Grammar-building

It may occur that a part of the recognition rules of a grammar
shows some internal pattern with certain clearly-defined variations.
What is needed is some way for such generalisations to be extracted,
thus simplifying the specification of the grammar. One example of
this occurred while designing the MCHINE grammar for verb phrases,

the -
and) solution adopted has the consequence that the analyser is

strongly guided, when analysing verb phrases, by the properties of

the input. The situation is as follows,

Verbs in English may have t&o, oue or no object(s), where
"object" is used loosely to mean, roﬁghly, "any post-verb constituént
whose meaning is to be considered as an argument for the main
verb~relation". (See Section V.8 for alfuller discussion of English
verbs) . This could be described by allowing three options in the
grammar, and analysis paths could branch depending on whether the
verb required two, one or zero objects., However, the situation is
slightly more conplicated. The surface forms that the objects may
take can vary greatly and will usually depend to some extent on the
particular veib involvad., If this dnformation were to’ be
incorporated directly into the gramimar, fhe number of options‘ (arcs)
would expand excecssively. On the other hand, the informatiop

concerning the quantity and swurface form of the objects can be stored

Page 127

in the lexicon for each wverb, and the grammar need only contain
actions which extract this information and usé it to build, in the
course of the analysis, a section of transition network which sets

out the relevant objects.

For example, in the MCHINE program, the lexical entry for a verb
includes a 1list of object-information lists. An object-information
list gives the name of the structural combining rule and the names of
certain AIN states == one state for eac object involved. The
analyser, on encountering the verb, consults this part of the lexical
entry; a surface subtree is establishaed using the combining rule,
and the states are used to construct the AIN which is then wused for

the next part of the analysis,

In this way, the pattern (that the verb idiosyncratically
determines the number and form of the objects) has been extracted and
built into the actions which perform the grammar~building. As a
consequence, the verb can’guide the analyser more strongly than if

all possible object configurations had to be tried (see Section V.38

for further details).

Processing units tyig

(R

Winograd suzoests that certain words could be regarded as
“demons"., That is, instead of the recogﬁition grammar having rules
stating what te do with a particular word, the lexical entry for the
word -should specify an action to be performed on encountering that
word (see Section TIL1.9)., In the examples he gives (conjgpctions), the
as they radically alter the flow

e ¥

actions involved are quite sweeping,

Page 128

of the analysis process. Winograd observes that such a mechanism is
‘not allowed in the ordinary ATN formalism, but that is slightly
misleading. The PROGRAMMAR system in which SHRDLU’s parser is
written allows two -varieties of input analysis - (PARSE X.L.)
statements and demon words -~ and the PROGRAMMAR interpreter must be
written to handle both, 1In the éame way, an ATN interpreter could
easily be written which would examine each input word to see if it
was a "demon'" before passing it on to the arc-testing routines. Such
an interpreter would increase the similarities between the ATN and

PROGRAMMAR methods.

Many English constructions have the consequence that an initial
substring ‘'of a sentence will itself resemble a complete English

sentence, e.g. (29) and (30).

(29) ﬁg_wrohe several letters after eating.

(30) 1 saw the full moon when I was in the garden.

One way to allow for this in the grammar is for such constructions to
be sought explicitly in a two-stage top-down manner - fin& a clause,
then find the second constituent. This has the slightly inelegant
consequence that every sentence is ambiguous right to its clause end.
That is, when analysing (30), the-analyser has to consider several
possibilities (one for each possible optional constituent at the

end), including the case of the full sentence being (31).

(31) I saw the full moon.

Intuitively, what is needed is some way for the analyser to process

Page 129

the initial clause. on a single path, and then consider the second
clause only if it in fact is present. One way to do this would be to
make the grammar contain a form of loop ~ the sentencé—final state
could be linked back to the sentence-initial state (or clause~initial

state). This possibility has not been explored here.

A more interesting approach is to let the opening word of ‘the
second clause directly influence the way that the analyser restarts
.its processing. One way to do this is as follows. Syntactic
features appear ' in various word-tests in the recognition rules, and
hence any set of syntactic features implicitly defines a subset of
rules (of arcs, in aun ATN), namely, the set of ruies such that some
feature from the set appears in the condition. Hence we can define a
"restart" mechanism for the AIN interpréter : on reaching the
sentence-final point in the grammar, if there are still dinput words
to be processed, the interpreter should use the feature-list of the
next word to construct a set of appropriate rules (the set of arcs
associated with the _feature-list,- in the way described here) and

continue processing using these rules,

Notice that this is different from Winograd’s "demons'", and is
aimed at .covering a different set of phenomena. A demon word takes
over the analysis process wherever it occurs, and supplies all the
necesséry actions. The "restart" facility is used only when there is
no currently active sct of vules (i.e. no non~trivial arcs in the
current state) and there are more words to be brocessed; under ény
other circumstances the implicit wmapping from words to rules 1is

ignored.

Page 130

It might be interesting to try to generalise the '"restart"
mechanism so that words can select rules in situations other than
clause~endings, (e.g. at the start of the sentence), but this has not
been explored here. A simplified '"restart" system has been

incorporated successfully in the MCHINE program.

Selecting Structural Rules by their Arguments

If a recognition grammar searches directly for two related
codstituents, the recognition rules can specify directly what
building rule should be used to combine the meanings of the two items
once found, However, if the constituents are found by some less
top-down, explicit method (e.g. analysing a clause, doing a restart
(as described above), then analysing a time-adjunct clause), there
may be nowhecre in the recognition gramar to specify which combining
rule to wuse. This deficiency can be overcome partially by having a
- technique which can select a combining rule on the basis of what
potential arguments have been fouﬁd so far. (The crudest way to
implement this would be to have the analyser search the whole set of
combining rules for one for which the found items would be suitable

inputs).

This still leaves some difficulties., Firstly, if the gombining
rules have an input specificationv in terms of a list of simple
predicates, a list of potentisl arguments may satisfy the input
conditions of severzl diffevent rules, particularly if some rules
have very broad 1input conditicns. This could lead to multiplé

go

ambiguity at the stage of rule-selection. This problem can be

reduced by refining the classification of semantic structures so that

Page 131

each rule specifies as narrowly as pqssible what its inputs sho;ld
be. However, in any non;trivial grammar, several cdmbining rules
will have overlapping input specifications to an inconvenient extent.
Section VI.4.5 gives a more détailed description of the probleﬁs
which arose when debugging the MCHINE grammar as a result of these
difficulties. The whole question of determining inter-constituent
relationships on the basis of the semantic structures of the

constituents needs much more investigation.

Page 132

Section ITI.10 : Semantic Representation

The focusAof this project is on the way that processing occurs
during sentence-analysis, rather than on the kind of structure
eventually produced. However, it is impossible to study processing
in isolation, particularly if a computer program is-to be written.
This section discusses some of the possible ways of representing
"facts", as a preliminary to defining (in Chapter 1IV) a semantic
system which is at least adequate enough nat to vitiate any of the
rest of the framework. Let us consider some of the criteria that a

semantic formalism should mect.

It will have to be general, in two respects. Firstly, it mnust
not be specific to the subject matter involved; secondly, it must
not be specific to the language involved. It sﬁould allow the
representation of any meaning that can be expressed on any subjecﬁ in

any languape,

It should interface closely with other parts of the language
model. That >is, there should be ways of relating the semantic
structure systematically to the more structural aspects of language.
This may seem an irrelevant comment, but it could be argﬁed (see
Section I1.7) thaﬁ cne deficiencyﬂof Schank”s work is the lack of a
clear théory of the relationship between surface form and conceptual
meaning. Semantic structure should not cxist in isolation, however

splendid.

- It should provide some way of comparing or relating semantic
structures, for example by rules of inference, so that "meanings" of
different sentences can interact in some way (although not

necessarily in traditional syllogisms, for example).

-~

Other desirable attributes of a representation system might be
simplicity, perspicuity and having self-evident atomic constructs,

but these are less important.

There seems to be a consensus forming within artificial
intelligence and linguistics over semantic represcntation. The
systems proposed by Wilks (1973), Schank (1972a), and Rumelhart and
Norman (1973) have many similarities. All are proposing systenms
which purport to be independent of subject matter, and Schank and
Rumelhart and Norman claim that their representaticns are
language-independent. (The latter claim is largely unproven, since
the systems are mainly 1illustrated with examples from English or

related languages).

Two kinds of devices are wused in these systems to express
relationships between different meanings. Firstly, there are ruies
of inference (which are generally discussed informally, so that it is
not obvious what canonical form(s) are being proposed, if any).
Secondly, meanings {(of particdlar_words, etc.,) can be decomposed

into smaller wunits ("primitives") so that similariiies in maanings

can be displayed in the configuration of primitive eleanents. Both
inference rules aund primitive~decomposition arve very difficult
issues, for which no one has found any good solutiors (see thas papers

in Schank and Nash-Webber (1975)). The main problews in both ave when

to operate the mechanism, and when to temminate it - how wany

inferences should be followed up at any given point, or how much

breaking down into primitives should occur?

Theré is another problem for a system which operates entirely in
‘terms of primitive elements. Some information about particular
meanings or concepts will.have to be associated with the larger
sémantic items, rather than with the component primitive elements.
To take an example suggested by Wilks (lecture at Edinburgh (1976)),

there is information about '

'smoking' which cannot properly be tied to
its representation in terms of "drawing smoke into the lungs through
burning tobacco'; also, Charniak has suggested that some aspects of
the meaning of "sweat" cannot be indexed under the component items
like "water" and '"skin". A primitive-based system might aséociate
such information with sub-structures made up of priuitive elements,

but this would be to acknowledge the validity of these Jarger

"chunks" for some descriptive purposes.

There is an added problem for any system which describes all
meanings by associating a static structure with each sentence. Some
words or sentences may be better expressed 1in terms of somctning

.
other than a simple relationship between the few items involved. For

example, if we are to use the meaning of (32) to make any
(32) John believes that Mary likes Bert.
(33) Does John think that Mary likes Pert ?

deductions concerning John, it would be useful to have it recosded

(somehow) that a particular proposition (namely, that Mary likes

L

Bert) has a particular truth-value in Jolm”s model of the world.

Page 135

.Then (32) could be related to (33), for example, without a specific
inference rule relating "thinks" and "believes". A simple semantic
network like (34) being designated as the "meaning" of (32) would not

be very helpful.

(34) -
: QELIEVEB
, L T L
<JOEN> “LIKE %
G Sy
<MARY> <BERT>

Rumelhart and Norman allow each relation in their semantic
system to have an associated piece of program, which can be executed
undér particular circumstances. This general facility allows the
person defining the rélations to include arbitrary special effects;
in particular, the procedure could be used to re;expfess the relation

in terms of some other conditions on the semantic network.

The semantic system adopted in this project is very similar to
that of Rumelhart and Norman. There are "velations", which can be-
used to form a general relational structure (a semantic net). Each

1

relation has a fixed number of "roles" which can be filled with other

i
semantic items, each role having an associated 'restriction" which
limits the kind of item which can £fill that role. Facilities are
provided fof both primitive and procedural remexpressian,vas foilows,
Each relation can (optionally) have an '"expanded form" aud an
"elaborated form". The expanded foirm, if present, 1is a picce of
semantic network which expresses the relation in‘priﬁitive Lornm,
Some notational device is necesary to keep track of how the arpumcnts

of the main relation fit into the primitive network. The system thus

Page 136

includes both non-primitive and primitive relations, and the former

may be re~expressed in terms of the latter.

The elaborated form'(if present) can be'thogght of as a set of
three procedures ~ a proéedure for testing if the relation holds, one
for making‘the relation "true™ in the main network, and one for
making the vrelation '"false" in the network. (In the implemented
version, thesebthree functions are fulfilled by a single structure,
interpretable in three different ways - see Section VI.3.7). When
matching two pieces of relationai network, for similarity, or tesﬁing
to see if a relation is '"true" in the the.network, the expanded
version can be tried as well. When testing or setting the
"truth-value" of a relation, the elaborated version can be used as
well aé the main relation itself. 1In this way, the meaning of some
relation (e.g. "believe") can have alternative exbression in terms of

conditions on configurations of other parts of the network,

The interface with other aspects of the linguistic model is
achieved by having the SCRs build up semantic networks gradually, so
that each subpart of a seuntence has its own associated semantic
structure, The semantic part of iexical entries for words are always
pieces of semsntic network. In particular,’each 4main verb has an
associated relation. This means tﬁat aﬁy idiosyncratic parts of the
meaning of a verb can Be associated with that relation, and its
conncetion with other meanings caun, if nccessary, be included via the
expanded or elaborated forms; The set of roles for a relation thus
pro?ides the "“case-~frame" (see Section V.8) for the verb,fand the

SCRs which would be regarded as "role-placement'" rules, (since they

fit meanings into the case frame) are simply building a semantic

Page 137
network around the relation of the main verb.

There is one kind of semantic structure which has been extremely
useful in finding repgesentations for the meanings of several
categories of item. If we take a piece of semantic network and
select one of the roles (whetﬁer filled or not) as a "focus of
attention", the resultingAstructure can be ﬁsed in various ways. (In
the implemented version, these structures are represented as a pair
consisting of a semantic network and the name of the selected role).
These structures can be created dufing proéessing, if a semanti§ rule
selects some role in a piece of network, or they can be entered

directly in lexical entries, with the role already sclected.

Let us call such a structure a "definer". It can function as a
predicate, which is "true" of all items X for which there us a "true"
network matching this one, with X in the selected role. It can be

used to find a particular spot in the overall semantic network by

finding a piece of network to match, and then singling out the

selected role; thus found, any item located at that spot can be
examined, or another item can be placed there.

Not all the roles in the biece of network in a definar need be
filled for it to operate successfiully. Suppcose we have a relation
FATHER, with roles "SON" and "DAD", which can hkold betwesza sets of
items (classed in the semantic model as "PEOPLE"). Ve could

o

construct a semantic item for the word "father'" by a definer like

(35)

Page 138

(35)
e,
“ FATHER
< >
SON *DAD
¢ Y
where == is a "blank” entry and * marks the selected role in the

definer. This will act as a predicate which is true of any item X
for which there is a network like (36) recorded as '"true'", where Y

can be any item.

(36)

” TATHER ™
FAJIHJ:#//

h-nﬂea““i

son”” N, DAD

S

Y X

k3

This allows for the use of "father" without wmention of the offspring,
e.g. '"Harry is a father". If the other role became filled (e.g. in
the structure for the phrase '"John"s {father™), the scmantic ditem
would then- look something like (37), where angle brackets enclose an

"
item whose internal details are not important here.

(37)
v Wmmja,,&wk\w
< FATHER 3
"FW:"‘%,‘Q%
son f \g‘rzm)

Page 139

In this case, the definer can still operate as before, except that

the range of semantic networks that it will match is much narrower
/

(since one of its roles now must match a specified value <JOHN>). It

could, for example, act as a predicate which is true of any item X

for which there is a "true" network like (38).

(38)

<JOHN> X

The same definer (i.e. (37)) could also be used to find a position in
the ‘network, and the item thére (e.g. X in (38)) could then be
accessed or replaced. That is, one representation for the meaning of
"John’s father" can act as a predicate, a way of finding an item, or
a path to some spot in the network where some item . can be placed.
(The latter might be usefui for interpreting a sentence like "Dave is

John”s father", for example).

The other versatile aspect of thé& "definer" is the wide variety
of grammatical categories for which it can be used to’represent the
meaning. - As well as using a definer as the semantic item for a noun
(as above), the fact that a simple regular adjectivé can be regarded
as a predicate means that a definer can represent the meaging of an

adjective, e.g. for "blue" we could have (39), or even (40).

(39)
N - mm;
URLUE T
& /
ATHING :
i

it
it

(40)
m
COLOUR
S*—'{
*THING HUE
Va
/ \‘\
Y ~d
== <BLUE>

Page 140

Since verbs arc represented by relations, and case frames by the

roles of a relation, role-placement can

occur in

what is

traditionally called a verb phrase. The meaning of a verb phrase can

be represented by a definer, vwhere the semantic network part has the

selected role unfilled, so that the "subject" of the sentence can be

fitted in there. A phrase such as "likes John" would then have a

definer like (41) as its meaning (sce Section V.8 for more details of

verbs and case struciures).

(41)

’K’Mq&'& L
4y LIKE i
\\"?W«&'@f“r
FAGENT \"’s{ _ PATIENT
£ ' &
<JOHN>

e
IS

oy

This simplifies the subject<«complement

rules.

(42)(a)-(d) have diversoe surface structures, the underlined

'

all be represented by some kind of definer. .
P

Al though

parts can

Page 141

(42)

(a) John is Harry’s father,

/
(b) John is a doctor.

(c) John is stupid.

(d) John likes bananas.,

The subject-complement rule can be designed to insert the semantic
structure for the subject into the selected role in the definer from

the complement, thus producing a semantic network.

(Bach (1968) discusses certain semantic patterns which cross
traditional syntactic boundaries and which seem similar to the

generalisations that are attempted here).

Several details have been omitted or glossed over here, since
théy have not been Qorged out fully. The notion of a "definex"
proved very wuseful in writing the MCHINE program, and its
characteristics seem interesting enough to suggest its general
.applicability. Some more points are discussed in Chapters V and VI,

but not every detail has been perfected yet. .

Semantic representations can be classified in. many different
ways, and it is advisable (to avoid confusion in later chapters) to
explain here somé of the kinds of semantic categories used in
computational grammar. (See Section III.11 below for some comments
on classificationj. The system of semantic vrepresentation described
here gives rise to three different kinds of semantic classification,

as follows :

Page 142

Referential Classes

The items in the subject matter of the discourse or dialogue can
be cléssified acéording, to their characteristics in the external
world. This area was much debated within transformational grammar in
the 1960s (under the heading simply of-”semaﬁtics"), and some of the
more intransigent problems are summarised by Bolinger (1965).(Sce
also Katz and Fodor (1963), Weinreich (1966), Katz (1967)). In the
MCHINE program, each referential class is represented by a predicate
which tests for membership of that category (the predicates are
represented as "definers'" -~ see above). The referential classes are
structured into a hierarchy of sub- and super-classes, and grouped
into antonym classes (as proposed by Katz (1972)).for the purposesrof'

describing "semantic anomaly" (see Section VI.3.11).

Sense Classes

The linguistic representations of meanings (that 1is, the
semantic structures, not the referents) can also be described in
terms of their semantic network structure, Different kinds of
structures (e.g. '"rvelations'", "definers", etc.) have different

capabilities for combining with each other, so it could be said that

t

the sense classes describe the "abstract syntax'" of the linguistic

items.
Sense Properties

As well as the gross network structuve of a semantic item, the
grammar may need wiscellanecus informatinn about how to process the
item. For cxample, "definer" is a sense class, but definers can Dbe

used (as described above and in Chapter V), to represent

Page 143

miscellaneous linguistic items, and they may need different
annotations to indicaté how they are to be processed. .Properties
like '"definite", '"specific", are the clearest examples, giving
details of what matchiné apd instantiating should be carried out on
the semantic items they are marked on (see Section V.06). The meaning
of a relative clause 1is also representable as a definer, but with
different sense properties to vecord the fact that it must be used in

slightly different ways in the semantic routines.

Page 144

Section IIT.11 : Levels of Description

There are sceveral ways in which a linguistic constituent could
be <classified: what its internal structure is, how it is related to
other constituents, what steps are necessary to parse it, where it
can occur in a sentence, what kind of meaning it has., These six
criteria for classifying are logically distinct, and might be
déscribed as morphology, syntagmatic relationships, parsing method,
distributional {or paradignatic) behaviour; semantics, Traditional
syntactic categories wusually try to summarise some or all of these
under one label (e.g. "Noun Phrase"), which makes an implicit claim
about how these different factors ave related. There are some
interesting relationships between these classifications (e.g. the
internal structuring of an item deterwmines how it must be parsed) but
it will lead to confusion if we assume immediately that all 6 give

the same classification.

4

For examplc, -consider articies and possessives in English.
Articles ("a" and "the") sre paradigmatically related to possessive
adjectives ("my", "Fred’s", etc), in that they all occur at the
beginning of a noun phrase, and there cannot be both an article and a
possessivé at this stage in a noun phirase. This suggests we might

simplify the grammar by c¢reating a category or feature (say, DET)

B

which includes both, and not distinguish the two. However, this
ignores the possibility that the syntagmatic relationship between

article and head noun may be differont from the relationship between

possessive and head ncuon. If our grammar is to represent such

relationships explicitly {(as was sy

in Section IIL.1), it may

Page 145

be necessary to distinguish the two subclasses in the syngagmatic
representation, even although they are treated similarly during
parsing. Winograd(p.QB; has his parser attach possessives under a
"DET" label on the syntax tfee, and has a class of "determinefs"
which includes both articles and possessives. This 1is largely
because syntagmatic relétionships are not represented in .his
syntactic tree, but are wprked'outvlater by the semantic specialists.
Hence his syntactic labelling need not be too fine, It might be
asked what the criteria are for assigning different syntagmatic
relationships to different combinations. The answer to this is that
if different semantic operations nust ber performed on the
combination, then a different relationship is required. This begs
the question wuntil we have some clear idea of "different semantic
operation", but, as will be argued in Section V.l.l, there is a case
for regarding possessives as semanticélly different from the other

"determiners".

Related to this is Winograd”s all-embracing use of "features" to
classifyl‘every aspect of a syntactic unit, which is as confusing as
the traditional packing -of all characteristics into syntactic
categories, Some features are distributional/ paradigmatic, and
guide the parser - e.g. DET in the lexical entry for 'the". Some
features are morphological, ‘anq &escribe the internal form of the
unit they are attached to - e.g. NDET on a noun group node means that
there is no deterﬁiner attached beneath that node. Some features are
syntagmatic - é.g. AGENT, when attached to a Prep Group node,
describes. the relationship of that node to the main verb; when
attached to a Clausec node, it describes the internal relationships

between the items of the clause. Some features arc both syntapgmatic

Page 146

and semantic - e.g. NPL marked on a noun group node indicates its

number. Some features appear to be wholly semantic - e.g. DEF or

INDEF marked on a noun group. The major categories like NG (noun

group) contain similar conflations = NG is the name of a parsing

method (as in a command (PARSE NG...)); NG is a feature marked on a
i

node; there are a particular set of semantic specialists associated

with the category NG.

Marcus (1974) suggests that a feature 1is any aspect of a
constituent that the parser may need to find out by a quick
inspection. This sums up one important aspeét of features in a
recognition grammar (they are there to guide the parser) but it is
not very perspicucus to use the same device fof'describing disparate
aspects of structure without indicating the distinctions. This
confusion is also present in other areas of granmatical
classification, particularly around the boundary between syntax and

senantics.
Consider the underlined phrase in (43) :

(43) The man who you saw last nicht rang up.

There are several statements that might be made about this
phrase and/or its meaning. It is a noun phrase. It is made up of a
noun group and a relative clause. It is wade up of a noﬁinal and a
modifier. It is a 'referring “expression, and is definite and
specific., It is the subject of the wverb in the sentence. It refers

to a human, animate thing (or should do, if used appropriately).

These make seven different classifications, and cannot be covered

sinply by providing one set of "syntaciic" categories and one set of

Page 147

"semantic" categories. Strangely enough, the hardest classification
to make firm 4is the traditional '"‘noun phrase'". All of (44)(a)-(f)

could be classed as noun phrases, and they differ in many respects.

i

(44)
(a) The_ég& attacked him.

(b) Flying kites can be tricky.

(c) To have been loved is better than to have been lost.

(d) I don”t like what you did.

(e) It amazed me that vou arrived here.

(f) I will ignore anything you may do.

It is very hard to lay down levels of classification in
isolation from an overall model, since different descriptive
frameworks nay make differént>distinctions (e.g. the "deep structure"
of Chomsky (1965) is a disputed level). Computational grammar
includes various concepts and rules ‘which can be used to induce
classifications of linguistic structures at various levels. Some of
these. categories fit easily under the headings of syntax and
semantics, but others are less easy to allocate. The kinds of
categories and rules available are the following, ‘grouped under

headings that may help to indicate the level at which they operate.

(45)

Page 148

(a) Concrete Syntax : syntactic properties, syntactic features

(see Section I1II.2)

(b) Abstract Syntax or Intensional Semantics : structural
combining rules’ (see Sections III.l, IIIL.2, III.3), senée classes,

sense properties (see Section ITI.10).

(c) Referential Semantics : referential classes (see Section

II1.10).

Notice that the only categories which may vary with a change of
subject matter are those at level (c)’— all‘other classifications
should be general linguistic statements. It is not the case that all
semantics 1is dependent on the domain of discourse - the level of
intensional semantics ("sense" as opposed to "reference") should be

domain—-independent.

These ways of describing items take on meaning only once the
full framerrk- has been déséribed in Chapter 1IV. Drawing attention
to these distinctions should clarify the exposition, and avoid the
need to class every concept as éither “"syntactic" or "semantic".
Traditional ccncepts {e.g. "noun phrase", "subject") could be defined
in this framework by fitting them into this system. For example,
computational grammar does nat\use the concept "subject" as such, but
cerfain SCRs couid be classed as "subject-complement" rules, and an
item could be said to be a subject if it is the first argument of a

subject-complenent rule,

Page 149

Section III.12 : Conversational structure

Winograd’s program did not include any systematic treatment of
how one wutterance relates to others in a conversation. A question
from the person talking to SHRDLU was translated directly into a
program for producing an answer, and the reply was given immediately.
The only example in the sample dialogue where one conversational
exchange (question + answer) seems to be inserted inside another is
example 22 (pp.12~13); where an ambiguous éhraég is queried before
the original questionris given a reply. In this case, a stereotyped
form is used, and the human’s reply wmust be not another English
sentence, but an integer. Hence this is hardly a "conversational
exchange". Pronoun reference dim the program uses precceding
utterances, apparently by consulting a 1list of the most recent
sentences, Presumabiy th; program has the -equivalent of a LISP
(READ-EVAL-PRINT) loop, where cach sentence is processed on its own,
before the program goes into a "wait" situation for the next

sentence. This has certain disadvantages.

Firstly, a human hearer can generally choose to answer a
question or not. Although this is difficult to simulate in a program
without including a set of "beliefs" cor '"goals" which might influence
this choice, it 1is reasonable to have this decision made at an
appropriate 1eycl.in the model. Winograd®s approach huilds fhe
choice dinto the semantic interpretation of the sentence, so that
"understanding" a sentence includes deciding te avswer it. It seems
more plausible to “have some level of description of conversational

behaviour, at which such decisions (relating to the illocutionary and

Page 150

perlocutionary force of the utterance (cf. Austin (1962)) can be

handled.

Secondly, we need to make a distinction between the
sentence-~type of an ' utterance (declarative, interfogative, or
imperative) and its illocutionary force (a statement, a question, or
a command). For a simple conversation, there is a simple one-to-one
relationship between the two, and the distinction may be overlooked.

However, these are logically separate categories - interrogatives can

serve as (polite) commands, aqd statements can be orders:
(46)
(a) Can you pass me the fingerbowl ?
(b) You are not going to the party.

It might be argued that requests (e.g.(46)(a)) are idioms, but
that would not alter the fact that the intended response by the
hearer is- not tﬁo supply of information, despite the fact that the
surface form of the utteraﬁce is interrogative. This suggests the
need for separate levels of description, which separate the hearer’s
reaction to the utterance from the semantic/ syntactic form of the
sentence. (¥Winograd’ s sample dialogue includes one command starting
"Will you pleasev..", but i£ is not clear how it is handled by the

program) .

If utterances are processed on a one-off basis, then there is no
way in which different exchanges between the interlocutors can be

nested inside each other, To generalise Winograd”’s ad hoc mechanism

for vesolving ambiguity, we need some way that the hearer can suspend

Page 151
his reaction to a question while he seeks further information from
the questioner. This may not be a simple clarification of the
question, but may be, for example, -information about what would

constitute an adequate answer for this particular questioner, e.g.
(47) !
A : Where is the Bionics Research Laboratory ?
B : Do you know Sandy Bell’s pub ?
A ! Yes.
B : The Bionics Lab is behind that.

Another related improvement that is desirable is some way of
relating utterances to higher goals. If a sentence is treated as an
isolated string of words, there 1is no way of describing how it
fulfils a function in a dialogue. If a person wants to find out
information, he has to ask a question and know how to use the answer.
He must also have some idea of whét constitutes a suitable answer,

and how to react if this is not given.

To sum up, an adequate description of the conversational use of
language will not treat a dialogue as a disconnected series of

self-contained utterances.

CHAPTER 1V

COMPUTATIONAL GRAMMAR

Page 153

Section IV.0Q : Preamble

Chapters I, II and III have provided the background to the‘ work
which 1is describedr in Chapters V and VI, Here is a summary of the
model (or partial model) which has been adopted. It is based on the
work of Woods and Winograd, but inspiration has also come from much

of the other work discussed in Chapter II, to varying extents.

It is worth giving a brief outline of the assumptions and
decisions 50 far discussed. (The numbers in brackets vrefer to the

relevant sections in Chapters I and III).

This project is an attempt to examine the structure of the
English language and the way that the structure could be used by a
hypothetiﬁal hearer. The research strategy is to write a recognition
grammar for a subset of English (or a series of fragments of grammar)
(L.5). Sentence processing proceeds in a strict left-to-right order
and as much semantic processing is carried out at each stage as seems
feasible. (I11.3). The analyser attempts to make only those
decisions wﬁich arve justified at any given point at the input, rather
than using exhaustive, mistake~driven techniques (II1I.6, III.8). To
achieve this, registers are used to avoid premature structure
decisions (IL.5, I11.8). In describing grammatical phenomena, a élear
distinction is made between syntagmatic, paradigmatic and other types
of description (III.1ll), so that these dimensions may be ' treated
independently if necessary. No separate syntactic structure is
built, but a tree structure based on hierarchically organised
structural combining rules is used instead (III.1, III1.2, IIXL.3).

There are many different structural rules, as they have to make all

Page 154

the '‘distinctions previously made‘ by syntactic rules and semantic
Vrules (III.1). Where the analyser encounters possible ambiguity, it
develops both paths in parallel, but tries to order the paths
relative to each other (III.6). Constituents are processed at
separate levels, with independent local register space, in a way that
avoids the creation of too many different levels (III.7). The
semantic system dincludes some form of sense~reference distinction,
and allows expreésions to. refer to non-existent objects (III.4).
Syntactic classification is ‘in terms of binary features aimed at
guiding the anaiyser explicitly, and syntactic properties to guide
the structure building routines (III.2). A system of conversatiocnal
rules is used to describe certain aspects of sentence usage which are

properly not included in the sentence-grammar (IIT.12).
The framework will be described in eight sections, as follows :
IV.1 Structural Combining Rules
These combiue semantic items to form other semantic items.
IV.2 Recog§ition Rules
These direct the flow of input-processing.
IV.3 S;mantic Representation

This defines the constructs available for building meanings.

IV.4 Syntactic Properties and Featuvcs

Page 155

These markings allow arbitrary processing information to be

marked on structures.
IV.5 Analysis Procedure
This sets oﬁt how the sentence interpretation proceeds.
IV.6 Registers

These are the facilities for storing information during

sentence~analysis.
1V.7 Conversational Routines

These have not been greatly developed, but are included to

rovide a level of '“paralinpuistic" description.
P p bt P
IV.8 Cuidelines for Analyses

Some informal rules are provided for applying the apparatus of

Sections IV.,1 - '1IV.7.

No formal definitions arc presented here, and all the concepts
are described in an informal way. The outline is brief, but Chapters

I1Y and V present the arguments in favour of the various methods, and

Chapter VI offers a possible elaboration of the details.

Page 156

Section IV,1 & Structural Combinin& Rules

These rules are on the conceptual boundary between "syntax" and
"semantics", and so are hard to allocate in either category. They
are very similar to the "projection rules" of Katz and Fodor (1963),
or the "semantic specialists" of Winograd (1972), since they combine
semantic items to form other semantic items. On the other hand, the
gradual setting up of rules and arguments while processing a sentence
(see Section IV.5 below) results in a tree~-building précess like a
traditional synactic parse. One way to look at a structural
combining rule is to regard it as the pairing of a Montague syntactic

rule with its corresponding semantic rile (Montague (197(%)).

A structural combining rule (SCR) consists of :

(48)

(a) Rule body : the operations toc be performed on the inputs.
At present, these can be any manipulation, and there is no basic set

of "primitive semantic operations".

(b) Input specification : A list of semantic predicates, one for
each argument-place, which states what kind of items arc allowable as
arguments (like type restrictions in some programming languages). The

semantic predicates will be composed from sense classes and sensc

properties,

(¢) Output specification : This allows the result produced by
the rule to be explicitly labelled with some semantic classification.

The output specification will be either a veferential class or a

Page 157

function which produces a referential class by combining information
about the inputs to the rule in some way. (See Ritchie (1976) for

some of the reasons for this).

(d) Property inheritance rule (optional) : for each argument
place, a list of syntactic property names. This is used for handling
temporary structural information, during the sentence analysis
proéess (see Section IV.5) and does not directly affect the semantic

structure produced by the structural combining rule.

The way that structural combining ruless are wuscd will be

explained in more detail in Section IV.5.

Page 158

Section IV.2 : Recognition Rules

The linguistic model willvuse the concepts of an ATN/PROGRAMMAR
system subject to the modifications in Chapter III . The exact
nofation is not important‘ here (the repreéentation used in the
implementation will be given in Chapter VI), but the ATN terminology
is adopted for ease of exposition. This is not a formal mathematical

definition, but it is intended to be clear rather than rigorous.

A recognition grammar is defined to be an unovdeved set of

states, A state 1is an unordered set of arcs. Notice that "state"

e iz e

"set of arecs") and dis not

has a very specific use here (meaning
exactly synonymous with the general notion of "machine—stéte" or
"computational context", although‘ a "state" does represent the
computational state of the ATN portion of the program. Since an
augmented transition network is based on a directed graph, the term
"node'" could ﬁave been Qsea, gut this would be excessively confusing,

"nodes" are used elsewhere in the model., Notice also that the

since
notion of "subnetwork'" does not need to be defined, since the notion
of "jumping to" or "activating" a subnetwork wuses just the first
state of the suSnetwork. The interconnected aspect of states in a

subnetwork is never used directly by the interpreter when making the
jump to its initial state. The reason that a state is not defined as
an ordered set of arcs is that no principled way of ordering the arcs

has been found; if some use could be made of a "priority" rating for

each arc, that would have been included.

Page 159

An arc consists of an arc-head, an arc—~action and a

state-specification. An arc-head can be any truth-valued function of

one argument, and Section VI.3.,2 lists the kinds of tests which were
found to be suitable, most of which represent tests on the current
word., An arc-action is any operation which returns no vresult, A
state-specification consists of either a special null marker, or a
pair comprising a state and a tag. A tag can be oner of two

indicators, signalling one of two possible options to the interpreter

of these rules (see Section 1IV.5).

The way that these rules are used are described in Section IV.5.

v

Page 160

Section IV.3 : Semantic Representation

—

The semantic system is discussed at greater length in Sections

ITT7.10 and VI.3.7, and just an outline is presented here,

There is a set of relatiogi. Each relation has associated with

(49)

(a) A set of roles

(b) A set of role-restrictions

(c) An expanded form
(d) An elaborated form

Semantic structures are coanstructed from relations in the

following way. A relation-instance consists of:

(50)

(a) A relation

(b) A list of role-values

(c) A truth-value

A role-restriction is a truth-valued function of one argument.
An exﬁaﬁded form 1is a relation-instance, with certain special
role-values; these ave needed to indicate how the entries in the
expanded form correspond Lo tﬁe entries in the main relation (see
Sections II1.10 and VI.3.7). An elaborated form is a triple of

procedures -~ one has side—-effects but no result, and the other two

return truth-values,

Page 161

A semantic network consists of a set of relation-instances with

truth-values either "TRUE" or "FALSE .

A definer consists of a pair comprising a relation-instance and
a role, where the role is one of the roles associated with the

relation in the relation-instance.

There are a set of sense properties, each with a set of possible
values (the '"range" of that property) and a sense property name. A

sense—-property list is a set of pairs, each pair comprising the name

of a sense property and a value from the range of that sense
property. While being processed or constructed, a semantic structure
may have associated with it a sense property list, which indicates

how the structure is to be processed.

There are certain operations which can be carried out on
semantic structures. These include matching one piece of semantic
network against another, ~ setting the trutﬂ—value of a
relation-instance to "TRUE" or "FALSE", using a definer to produce an
item from a network, and inserting an item in a network at a point
indicated by a definer. As in the case of structural combining rules
(Section IV.1) no particular primitive set of operations has been

found.

Page 162

Section IV.4 : Syntactic Properties and Features

Each grammar contains a set of syntactic features.

Every lexical entry has an unordered set (possibly enmpty) of

features, which is a subset of the full set of syntactic features.

An arc-test (sece Section IV,2) may stipulate presence or absence

of any set of syntactic features.,

The associated arc-set of any feature is the set of arcs which

include that feature in their arc-tests. The associated arc-~set cof a
list of features is the union of the associated arc-sets of the

members of the list of features,

The associated state of a list of features is the state composed

of the arcs in the associated arc-set of the list of features.

Syntactic features do not appear anywhere else in the
recognition grammar, and are not used at all by any of the structural

combining rules or the semantic network system.

Each grammar contains a set of syntactic properties

Each syntactic property has an associated set of values, koown

as the range of the property, and a syntactic property name,

Each lexical eutry has a syntactic property list, which either
is empty or is an unordered set of pairs of the foim (<syntactic
oy r

property name>, <value>), wherc the <value> comes from the range of

the syntactic property associated with the syntactic property namne.

Page 163

Each node (see Section IV.5) may have a syntactic property list,

which is defined in the same way.

Syntactic properties may be included in arc-~tests, arc-actions
or any of the node-manipulating routines. They are not used by the
structural combining rules (except via the property inheritance

rules, where these exist), or by the semantic network system,

Page 164

Section IV.5 : Analysis Procedure

The main aim of the MCHINE project has been to investigate how
the constructs outlined in the rest of Chapter IV interact in the
course of analysing a éentence. Hence this section, which amplifies
the basic outlines to show how the devices are used, is more detailed

than the others,

There is a device called an analyser which takes as input a
string of words, a context, and an initial state (i.e. one of the
"states" of the recognition rules). (There is a slight redundancy
here, in that the context could be taken to include the other two
inputs, since the context represents a global computational
environmen;. However, it is clearer to phrase it this way, so as to
emphasise that thesé two dinputs are essential for the analyser,
whereas extraction of. information from the context may not always
occur), The definition éf "word" is not relevant here - we will
assume an adequate definition can be given at some stage -~ but each
word has an associated lexical entry. A lexical entry ccnsists of a
triple -~ a semantic item, a syntactic property list and a syntactic

feature list (see Section IV.4). Any one of these parts of the triple

may have a null entry, but no lexical entry may have all three null,

The analyser associates with each initial =egment of a string a

set (possibly ~empty) of partial analyses (sometimes called."partial
paths"). If the segment is not a proper initial segment (that'is, 1t

comprises the whole string), the sct is referced te as the set of

complete analyses of the string . 'he last word in the initial

nca® T AL st e e i

segment concerned is referved to as the current word of ihe analysis,

Page 165

An analysis (partial or complete) consists of a state, a context, and
~a weight. (Again, this is a redundant description, in tﬁat both the
state and the weight could be subsumed by the context, but the
presentation here seems clearer). The weight is a non-negative
integer, The context includes the value of all registers
(interpreter and grammatical) and the state of the main semantic
network, and so can represent any structuring'or side~effects. The

state 1is referred to as the current state, and is originally set to

be the initial state. That 1is, the 1list of partial analyses
associated with the empty initial segment is set te be the input

context, the initial state, and the weight zero.

The analyser makes one scan through the input string, keeping a
list of partial analyses which is altered as the analyser processes
gradually larger initial segments. For each initial segment (i.e.
for each current word), the analyser performs the following procedure
on each partial analysis on the list. It finds all the arcs 1in the
current state ‘for which the arc—test yields true if applied to the
current word. For each of these arcs, a new partial analysis 1is
created (from the one being processed at the moment), the arc—-action
is executed in that analysis, and the state-specification is used to
select a ;ew current state for the new analysis (except in the case
of NEWLEVEL arcs ~ see below - where the state 1is selected in a

different manner). The new list of partial analyses is made up of all

partial analyses produced in that way.

There is one special type of arc, the NEWLEVEL arc, and one
special action, POPUP, which must be described in detail. Processing

occurs in the analyser at various levels, only one of which 1is

Page 166

current (in any given partial analysis) at one time. Different
levels have their own workspace, both in - terms of interpreter
registers and grammatical registers, and therefore the analysis can
use a2 new level to process a constituent independently, using
information distinct from that at a previous 1evel..‘Levels are
created when the analyserAencounters a NEWLEVEL arc, in the following
way. The arc-test in a NEWLEVEL arc 1is not really a test, butb
indicates some state in the recognition rules, and the
state-specification may be null. When a NEWLEVEL arc is processed,
the state given in the (pseudo) arc—test is set as the new current
state, and the registers are modified in the following way. If the
statg-specification is nuil, then the structure for the old level is
attached to its appropriate destination in the surface structure, and
all the interpreter registers (apart from the one which keeps track
of the grammatical registers) are cleared. If the
state~specification is not null, it is pushed on to the continuation
stéck (see Section Iv;6); the arc—action is pushed on to the action
stack and all the interpreter registers are pushed down. Thus there
are two ways of creating new leve}s - destructively, with all
.processing information from the old level being discarded, and by
enbedding, /with all processing information from the old being stored

on stacks.

The POPUP action is, in a sense, the reverse of a NEWLEVEL arc.
It causes the current level to be left, and processing to return to
the last level which has.been saved; 1if none has been saved, special
action is taken (see below). POPUP causes the structure built at the
current level to be attached to its destination, the grammatical

structure~storing registers currently active are tidied up (see

Page 167

Section 1V.8) and the interpreter registers are popped up .
Processing continues from the state given by the state-specification

popped off the continuation stack.

If no previous level has been'saved on stacks, and there are
still words to be processed, the analyser performs a restart (see
Section III.9). That is, it sets up new structufes to build on, and
computes a new state to process from, using the associated state of
the syntactic feature list of the next word (see Section IV.4). If no
such state can be found, the analysis is terminated (i.e. removed
from the partial analysis list). On the other hand, if no words are
left, the analyser winds up the analysis by checking that all the

structural combining rules so far used have been applied (see below).

The semantic structure produced by the analyser is the.result of
using structural combinng rules to combine the semantic entries for
the lexical entries of the input words, and applying further
combining rules to combiné tﬁe semantic items thus formed, and so on
in a hierarchical fashion. The analysis process consists of working
out which 1lexical items to use as inputg to which combining rules,
and which combining rules to use thereafter, The input-output
relationships operate hierarchically (see Section III.1l, IIT.2), and
the lexical entries are examined in a left-to~right order, so the
whole process can be looked on as building a tree from left to right:
The analyser keeps track of this gradual building wup of rules and
arguments by preating structures called nodes. A node contains an
structural combining rule, a list of the nodes which will contain its
arpuments, and the result produced by applying that rule to those

arguments. FIach node can have syntactic properties (see Section

Page 168

IV.4) associated with it, to help the analyser connect nodes
correctly. When a node containing a rule is created, nodes are built
below it to carry the argument values that will subsequently bé
inserted. These nodes are constructed using information in the rule

(e.g. how many arguments it needs) and are called dunnmy nodes.

A dunmy node contains restrictions for some or all of its
entries, delimiting what items cén later be filled in on them. These
restrictions will come from various sources during the analysis,
including the semautic rule on the node.domiéating the dummy node.
(In some ways, dummy nodes are like the complex symbols of Chomsky
(1965)). Evaluatigg a rule~node consists of applying the semantic
rule at thag node to the semantic items on the daughter nodes. A
lexical entry is allocated to an input slet in an SCR (structural
combining rule) by creating a rule node for the SCR, creating a node
which " contains the semantic part of the lexical entry (and has the
syntactic propeﬁties of the lexical. entry), and inserting the latter
as one of the "argument nodes'" of the former, The syntactic
properties of lexical entries can be passed up the nodes if the SCR
has a property inheritance rule (see Section 1IV.l). Aproperty
inheritancelrule for an un~argument SCR will be of the form (LI,,
Ln), where each Li is a list.of syntactic property names., For i=1
to n, the property values of tke ith node will be entered on the
syntactie property list of the SCR node (and should not then be
altered). Evaluating a SCR-node consists of applying the SCR to the
semantic items contained in the argument (daughter) nodes. If the
daughter is also a rule-node, a check is made first to see that it
has been evaluated, and the property inheritance rules (for the

daughtev) arve -applizd at thot stage.
e pry

Page 169

At the end of the sentence, the topmost node in the SCR tree 1is
cvaluated, and hence the whole tree of rules is evaluated (by the

recursive system just outlined). The analyser associates with each

complete path a list of result-pairs, A result-pair consists of the
semantic item from the root of the fule tree, and the corresponding
context, (The latter can then encode, for some higher level process,
any ‘. > alterations to the "world" which have resulted from the
process of analysing the sentence). The 1list of result-pairs is
chosen by scanning the complete analyses for the sentence, and
selecting those which have the lowest weight. (There should be only

one result-pair in this list unless the sentence is "ambiguous'").

This description does unot describe every detail of the analysis
process, but it should be sufficient to explain the descripticns in
Chapter V (which may themselves elucidate the mechanisms), and covers
most of the important points. Chapter VI describes one particular
inplementation of this kind of analyser, and may give some indication
of how éome of the vaguer aspects of the outline here could be

realised.

Page 170

Section IV.6 : Registers

There are certain registers which are used in the

sentence-analysis process., The dnterpreter registers (i.e. those

vhich are part of the framework - see Section III.5) are as follows :

Continuation stack : holds the state to be used on terminating

the current level (see Section III.7 and IV.5).

Action stack : holds the action to be taken (if any) on leaving

the current level.

Register stack : holds the list of grammatical registers in use

at current level,

Holding register : holds the structure being built at a lower

level, prior to attachment to the main surface structure.
Temporary register : a single slot for temporary workspace.

Shelf : a slot which can held input words temporarily, on a

last-in~first-out basis,

Current node : pointer to surface structure currently being

wvorked on.

Top node : pointer to topmost node of subtree being worked on at

this levecl.

Top nodes §{ list of subtrees so far built at this level.

Page 171

Treetop : the overall result of the analysis.

In addition, the grammar-writer can define any register he
wishes, designaéing them as either "structure-holding" (i.e. to be
included in the "tidying~up" process - 'sée Section 'IV,8) or
"pointer-holding". There are constructs available for activating
registers at the current level, and for performing arbitrary

manipulations on them.

The three stack registers above (continuation, action and
egister) always stack or uastack together, when level-changes occur,
so it would be possible to replace them with a single register (a

"control stack!") which contains items recording all the information

("stack frames"). This would not be a significant change.

Page 172

Section IV.7 : Conversation Routines

Conversational structure is not the main focus of the MCHINE
project, but it was necessary to implement some dialogue system to
test out the MCHINE grammar (Chapter VI). The implemented version iis
based on Power (1974), but does not follow his notation closely. The

main points of the system are as follows,

Dialogues are structured .into instances of conversation games.

A game is simply a procedure, with various properties, that performs

certain tasks.

The special properties are all in terms of control structure,
and are very simple. When any game is in progress, another game can
be initiated in any of three ways -~ a ‘nested" call, where the
current game may be continued when the new game is finished; an
"exit" call, where the current game is immediately terminated Dbefore
commencing the. new game; an "exit-all' call, where all games
currently in progress are immediately terminated before commencing

the new game.

The tasks performed by the games are not restricted, but they
should include the following. A gawe initiates sentence-processing
by providing the appropriate arguﬁents {string, context and state) to
the sentence analyser (see Section IV,.5), when an input utterance is
required, A game also uses the resulfQPair from the analyser to
modify the world model of the hearer, in a way defined by the.details

of the particular game. The operations carried out by various games

will -depend on the illocuticnary analyses made by the linguist,

s

Page 173

Section IV.8 : Guidelines for Analyses

As observed in I.l, 1linguistic theories generally have a
collection of techniques and concepts which are employed in applying
the theory. Many of these are not explicitly stated, and linguists
may sometimes not be awvare that they are making implicit
methodological aséumptions. This section outlines those aspects
pertaining more to the application of the devices outlined in earlier
sections of Chapter IV, rather than to the formal properties of those
devices. To some extent, the rules—of—thumb'here characterise the

1"

notion of "ad hoc solution" for a computational grammar.

One major question that has to be considered is where, in the
nodel, to describe particular patterns. In a description which uses
several syntactic. and semantic mechanisms, it may not be obvious

where a given generalisation should be allocated.

Generally, the role of the SCRs (structural combining rules) is
to factor out any syntagmatic regularities. If there are several
examples X1Yl, X2Y2,Xn¥n, where the relationship bétween
constituent Xi and constituent _Yi is the same in each case, this
relationshi; can be most economically represented by putting it in
the SCR used to cembine the Xi Yi pairs, rather than trying to build
this syntagmatic pattern either into the Xis or the Yis. On the
other hana, if we have éxamples X1Zi,X1Zn, where there seccms to
be some semanﬁic similarity between the pairs, and no examples YIlZi
with this semantic property, 1t 1is neater to try to capture this

pattern in the representation of Xl. Some kind of balance must be

struck lLetween these two approaches - an SCR which only ever occurs

Page 174

wiﬁh one particular value for its first argument is slightly ad hoc;
conversely, a whole battery of semantic items with some common
property directed towards syntagmatic combination suggests that a
generalisétion is being missed. (This principle wunderlies the

arguments in Section V.1.3 concerning modifier-head relationships),

Related to this is a need tb avoid mnmultiplying lexical items.
We do not want to describe different usages of a particular surface
word by producing a differeﬁt lexical item for each use. As far as
possible, we should account for different nuances of meaning by
having the same item interact in different ways with the context
(both linguistic and situational). This last point is an example of a

fairly general principle, which might be termed localised semantic

descyiption. The idea is that, for ease of semantic computation in
the surface structure tree, all decisions are carried out at an
indcependent, local level as far as possible. If we can arrange our
senantic description so that each noun phrase, for example,
constructs 1its éwn semantic representation without much reference to
its surroundings, then rules can be written in a more modular
fashion. Different wuses of a noun phrase would then have to be
desciibed by appropriate differences in the SCRs that combine them
with ophar structures, or 1in the way that they react with other

struntures, once combined.

If some aspect of a constituent cannot be processed within that
consitinueant, buit has to be held until some more global information
(either higher up the SCR tree, or in ;he conversational context) 1is
avallable, then the way of representing this aspect may change. When

the processing happens locally, it may be possible to describe this

Page' 175

property as a function acting on an argument, for example. If the
property is uninterpretéble locally, its contribution cannot be
expressed in a function-application occurring at the local level, and
it must be held in some static form which a higher semantic item can

react with later, or which can be manipulated by a highef SCR.

Section V.l gives some examples of situations where a
generalisation can be extracted into an SCR. The assumption of
localised semantic description underlies several of the analyses in
Chapter V, particularly Section V.6. Sections V.2 and V.7 include
examples of information which cannot be integrated ét a local level,

but must be interpreted by a higher rule.

As stated earlier (I.3 and I.6), computational grammar assumes
that sentences or dialogues which sound "odd" must contain (or result
from) some ancomalous structure or process. This criterion has not
generally been wused in artificial intelligence language programs.
Recognition rules are soﬁeﬁimes given which will accept an eundless
stream of auxiliar; verbs uncritically, for example. The
justification is that these rules will work correctly on correct

.
input, and their behaviour on 1ill-formed strings is completely
irrelevant. However, if we adhere to the principle of‘ relating
oddity and- anomaly (subject at least to a partial specification of

wvhat constitutes anomaly), then grammars must be more carefully

constructed.

Since the focus of this investigation is on the
sentence-analysis process, the guidelines for writing the recognition
rules are important. As discussed in Section III.8, grammars should

not be allowed wunlimited power to revoke all decisions once made.

Page 176

Unlimited look-ahead should be avoided, for the following reasons.
The computational grammar model uses strict left-to—rigst processing,
taking in one word at every stage. If the analyser requires to test
a word somewhere "ahead" in the input, it should explicitly store the
intervening items somewhere, and process them later, If this can be
managed, then the look-ahead 1is permissible - the analyser is
"remembering'" the string of words before starting to process them.
However, if the look-ahead is a hidden way of parsing a later item
before the current word, it is obscufing the true flow.of decisions,
and should be avoided. (Martin Kay (at the Workshop on Theoretical
Issues in Natural Language Processing, Cambridge, Mass., June 1975)
commented that look-ahead could often be backtracking in disguise;
look—-ahead, he suggested, moved the sentence-pointer forward, but
left the 1label "YOU ARE HERE" behind). The exception to this ié the
"one-word look-ahead" discussed in Section III.8; this is not so much
look-ahead as delaying, until the next word is taken in, all the
acfions that might have>£o.be performed at the current point. Since
the actions will be performed (or abandoned) immediately, there is no

need to store anything.

As commented in Section III.S5, it may be possible to wuse
unnamed, general purpose registers for storage during
sentencewan;lysis ("work registers"). There is no clear criterion for
when these can or should be used, although it seems appropriate to
~use them when the item in question has not been analysed, and so
cannot be allocated to a very specifically named register (e.g. if
indulging in explicit look-ahead in the way described above). In the

interests of seeing how far this concept can be taken, two work

registers have been included among the interpreter registers -

Page 177

TEMPORARY and SHELF,

It seems plausible to suggest that a .structure stored in a
grammatical register must eventually be wused (either by being
incorporated into a larger structure, or by being discarded after
some information has been extracted from it). Let us assume‘that the
interpreter can distinguish pointer-holding registers from
structure~holding registers. An intuitively attréctive principle is
that all structures built at a particular level should be explicitly
used before leaving that level. That is, all structures which have
been temporarily stored in structure-holding registers should be
renoved from these registers and either attached to some larger
structure, or else explicitly discarded (perhaéé because all their
information has been vrecorded in some way, as with an auxiliary
verb) . This is not to say that structures cannot be left lying in a
register while a lower constitpgnt is processed; it is just that
such items should not be lost when the interpreter exits to a higher
level and restores all the stacks. The grammar-writer should
discipline himself so that any operations which wuse items from
registers to build structure (as opposed to merely examining them)
simul taneously rémove those items, leaving the registers empty. Then
the interpréter, before leaving a given level;fcan checkrthat all the
structure~holding stacks that it is about to pop are empty. If any
are not, it should try to use up the left-over items before leaving
that level. This "using-up" process will have to be fairly general
and based on formal properties of the current surface structure,
since it will have to be programmed.into the interpreter, not the
grammar. A first approximation might be to attempt to attach the

spare structuve on the bottommost empty node (cf. Kimball (1974)).

Page 178

Uses of thiS'tidying'gaigrinciple will be discussed in Chapter V).

As defined in Section IIIL.5, a "flag" is a register with a small
fixed range of values, used for recérding the presence or‘absence of
some condition . These can be very useful deviceé, allowing the same
analysis network to be wused for two similar phenomena, with minor
differences recorded in flags (Bobrow and Fraser (1969)). However,
they should not be allowed to obscure the real relationships between
various conditions and opérations in sentence—-analysis. For example,
the fact that a clause has a passive verb form convefs information
about the way that deep semantic roles (or "cases" - see Section V.8
) will be arranged in that clause. Using a two-valued flag at
various stages during structure-building is one way of handling this,
but it may not be. the most transparent. If possible, the
conséquences of a particular construction occurring in a sentence
should be recorded or carried out as directly as possible. This
compiaint about arbitrary flags is analogous to ghe criticism of
using arbitrary syntactic features to vrecord (temporarily) a
particular fact which 1is later deconposed into heterogeneous

‘consequences (Section IIX.1ll).

As discussed in Section TIII.6, an analyser which handles

—

decisions by exhaustive exploration 1is 1less interesting than one

which manages to postpone decisions until sufficient information is

available to vresolve then. Ideally, an analyser which only ever

maintained one (covrect) analysis throughout the parsing process

would be extremsly elegant. It therefore seems desirable to write
e - + - -1y o].“ h Hb [n -L

grammars in such a2 way that the analyser has to ranch’ as rarely as

possible.

Page 179

So far, all the points mentioned in this subsection have been

fairly peripheral to ‘computational grammar. Most of them are not

hard rules, but rough guidelines, Some of them suggest ways of

"keeping the grammar clean", others are suggestions for ideas to try
out. The points which follow may be slightly more important, since

they serve to clarify the notion of a "structural combining rule'.

In transformational grammar (at leas; in the "Aspects" model),
most phenomena were handled by one mechanism - the transformation
(see Section II.1 for a discussion of that aﬁproach). In
computational grammar there are various ways one could handle these
constructions, Descriptions previously formulated in terms of
transformations can largely be replaced by descriptions employing two
kinds of device - using structure-holding registers, and defining

several different SCRs.

For example, there were good syntactic arguments for the
transformnation of ”Subject—Verb Inversion'" (Chomsky (1957), Burt
(1672)), whereby the auxiliary verb at the start of a "yes-no"
question was described as part of the main verb phrase of the
‘sentcnce, When writing a recognition grammar, this notion again

arisoes, 7t is rather clumsy to have to specify all the possible

v
awsiliaries at two points 1in the grammar and . use elaborate
intoreconnactions to vrelate the auxiliary at the start of a question
to thoe Collowing‘verb phrase. IL is much simpler to store the
questicon—-auxiliavy in a register (without vrecording all the
infowwaiion from it, but noting that the sentence is interrogative),
and ositrcact it later when commencing the verb phrase. This seems to

be =« very divect expression of the Chomskyan transformation .

Page 180

Al though the phenomena which supported this strategy are the same as

those used in a transformational argument, . the justification comes

from the simplification of the parsing rules with no allied

s kv

complication of any other part of the grammar.

On the other hand, the different surface configurations of deep
semantic roles (Secgion V.8) are not amenable to -such obvious
re-ordering manipulations. Transformations such as "Dative Movement"
and "Passive" were intended to shuffle subjects, objects and indirect
objects inte a canonical structure, resulting in a simpler statement
of cooccurrence relations. However, cooccurrence relations are based
on semantic properties (Lakoff and Ross (1967), McCawley (1968))
rather than on surface syntactic form. Hence éuch re—-ordering would
not simplify the recognition rules, since these handle the structﬁral
options available at surface level; this 1is not where the
generalisation is. It might be, however, that the set of SCRs could
be simplified .using re-ordering operations; for examuple, we might
need only one two-object rule instead of two separate rules if we
replace Dative lbvement by a register manipulation at the surface,
As will be discussed in Section V.8, there are reasons for including
separate semantic rules anyway. Given this, there is no motivation

for attempting to include a re-ordering operation.

Generaliy, it is the overall simplicity of the grammar that
decides whether to multiply the set of SCRs or to Arewerder
constituents directly. Re-ordering is usually appropriaste whore the
generalisation 1is describable in surface syntactic terwms, siuco then
(and only then) it should simplify the recognition ruies. Whera rthe

pattern is semantic, the decision will depend on whether re-ordering

Page 181

would greatly complicate the recognition rules and whether the SCRs

can be significantly reduced or simplified. -

This brings up another point concerning the ordering of

arguments in SCRs, The SCRs are functions whose arguments must be

ordered so as to distinguish them, as with any mathematical function.

Complications can arise when the same notational device (namely,
left-to-right order) is used to represent this arbitrary ordering as
is wused to vrepresent temporal ordering in the words of a sentence
(see, for example, the chaotic arguments of I!cCawley ‘(1970)).' The
crucial point seems to be as follows. Since the SCRs are used to
process a temporally-ordered sequence, there is an ordeving imposed
on the SCR argument-slots, other than just tﬁe'arbitrary order used
to distinguish them - namely, the ordering determined by the order of
processing of the individual arguments. "First argument" in an SCR
effectively means the "first to be allocated to a slot in the SCR",
(This temporal ordering can then be used to distinéuish the argument
places, since any ordering achieves that). A definition like this
restricts SCR surface trees to being built in a particular order
-(notationally, left-to-right), with no "gaps'" being left to be filled
later, (In fact, the MCHINE program does use strict 1eft—to~yight
building, as it makes it much easier to keep track of the structure
being built). So far no examples have been found which are difficult
to handle in this way. .Therefore,we can adopt the principle that the
ordering of SCR argument—places is significantly related to surface
ordering, and that arguments must be inserted in left-to-right ovder,
(See Isard (1974) for some related comments on trees and processiag

order) .

CIAPTER V

SOME AREAS OF ENCLISH GRAMMAR

e e ras o e et oot o

Page 183

Section V.0 : Preamble

This section uses the framework of Chapter IV to describe
certain aspects‘ of English grammar. The descriptions are phrased
informally, with references to the concepts and devices of Chapter
IV, .since this seems the clearest expository device. Some of the
analyses have been implemented, or partially dimplemented, in the
MCHINE program (Chapter VI), but others have to be assessed wholly on
whatever mérits of generality, logic, elegance and plausibility that
they may have. Ideally, a cowmputational model of language should
suggest both how to describe language and how to program the
description. Chapter VI illustrates an implemented version of the
framework, but Chapter V demonstrates how the idéas can be used away

from the machine room.

The areas of English examined may seem slightly mundane, and it

might be thought that a new framework should test itself ou tougher
ground. Unfortunately,rif the grammar, or a major part of it, is to
be implemented on a computer, then there are certain basic areas
(e.g. noun phrases, verb phrases, auxiliary verbs) that have to be
covered if the program is to function at all. 1If workingzwith a new
framework, there are no existing analyses to be relied upon, since it
is not clear (starting from\scratch) how eﬁen these prosaic regions
will look from the new vantage point, Section V.2, for example,
supplies the background to the implemented grammar, but does not

reach any dramatic conclusions.

Page 184

The linguistic descriptions are necessarily rather
~over-simplified, and this is also a consequence of having to develop

a new model and implement it at the same time.

Section V.1l shows how structural combining rules (SCRs) provide
an appropriate way of describing certain regularities which cannot be

properly described simply by allotting words to syntactic categories.

Section V.2 outlines the justification for the way that

auxiliary verbs are handled in the MCHINE grammar.

Section V.3 illustrates the need for syntactic properties (in

the sense of Chapter IV) and property inheritance rules,

Section V.4 gives a description of relative clauses which
demonstrates several facets of computational grammar, particularly

the use of registers.

Section V.5 examines how the processing devices of computational

grammar can be used to describe "perceptually complex' sentences.

1

Section V.6 uses "definers'" and "sense properties" to describe

the processing of referring expressions.

Section V.7 gives an extremely detailed examination of the
English tense system, showing how semantic networks and structural

combining rules can capture various regularities.

Section V.8 outlines a description of verbs and "cases"

which is simple and useful.

Page 185

Section V.1 : The Internal Structure of Noun Phrases

V.1l.1 Possessives and Determiners

As observed in Section IIL.1ll, determiners ("the", "that, etc.)
are distributionally related to possessives ("my", "Fred’s", etc.).
If we could arrange our semantic representations for referring
expressions so that the combining process for <deterﬁiner> + <head
noun> was the same as the combining process for <possessive> -+ < head
noun>, then one SCR will do for both. This is probably not possible,
for the following reasons. Determiners form a closed class,
containing what are traditionally known as "grammatical" formatives
(see Lyons (1968)). Their function is to provide more detailed
information about the semantic processing of the nominal provided by
the head noun, regarding its definiteness, specificity, etc; they do
not provide substantive semantic structure, Possessives, on the
other hand, are an open class, and arbitrarily complex possessives
can be built from noun phrases. These possessives contribute a
substantial part of the weaning of the referring expressions, and
supply a whole semantic structure which is to be combined in some way
with the head nominal. 7The possessive construction is recursive (as
will be discussed in Section Vel.2 below) and structures can be built
up within structures, vhnveas - the determiner construction is not

itself recuvsive, Two different SCRs are needed, say

t

~ ! . LM
e and "SUR-Determiner’.

SCk-Possessive

Nevertheleas, the distribuiional generalisation can still be
captured in the recognition grammar, where the two categories (with

features POSS5 and DET) anoscar as pavallel options at the appropriate

point of the ATN. A which puts both classes of item into one

Page 186

category for all purposes would force the two levels of processing to

be tied together, Here, we have managed to separate the level of

SCRs from the level of ATNs.

V.1.2 Restrictive and Non-Restrictive Adjectives

Many adjectives have two uses as modifiers in a noun phrase,
usually referred to as “restrictive" and "non-restrictive" (or
"defiﬁing" and 'non-defining" - Fowler and fowler (1906)).
Informally, the restrictive use is where ;he meaning of an adjective
(usually denoting some properfy) is used to delimit the class of
items denoted by a head noun, so that the combination of (adjective -+

noun) denotes some narrower class of objects, as in (51)(a) and (b).
(51)
(a) Pick up the blue block

(b) The male employees should read this copy of the Sex

Discrimination Act, and the female employees should read that one.

The non-restrictive use is where the class denoted by the noun
phrase is not narrowed down by the meaning of the adjective, but the
adjective conveys some property that the speaker wishes to attribute
to that class. These are hard to illustrate, since most adjective +
noun combinations can be understoéd restrictively, and there are few

examples where only the non-restrictive interpretation is possible.

(52)

Page 187
(a) These‘fgggii arguments do not concern me.
(b) Your fickle friends have deserted you.
(¢) His wealthy parentg have bought him a golf club.

Since a wide range of adjectives can have either use, it seems
better to describe these as two seéarate constructions, rather than
having separate lexical entries for the two uses. (The latter could
bhe dbne by having a feature [ATTRIBUTIVE] and a lexical redundacy
rule stating that an'adjective with that feature had ﬁwo forms -~
[RESTRICTIVE] and [NONRESTRiCTIVE]. Possible, but inelegaﬁt). SCRs
provide an obvious mechanism for this, since there can be two SCRs
for combining adjectives and nouns. One of theée performs some kind
of property-intersection on the sense to yield a new class, and the
other constructs an assertion which is to form part of the message

conveyed by the speaker.

The non~restrictivé‘SCR (call it SCR-NRAdj) has some interesting

consequences for building surface structure.

Let us assume that the head noun generally provides some kind of
predicate, denoting a class of items, and that a restrictive modifier
can be combined with it to form a new, narrower élass-predicate.
This process can be applied repeatedly, so that the reétrictive rule
(call it SCR-RAdj) con take part in a right-branching structure. like

(53).

Page 188

(53)
SCR¥Determiner
the SCR-RAd]
old SCR~RAd
blue
car
In this structure there are no discontinuous constituents = all the

surface 1items which form a subtree are adjacent, and the restrictive
adjective is always to the left of the item(s) it has to combine
with. The non-restrictive case is noé so0 simple. The
non-restrictive adjectives acts not on a class—prédicate to form a
narrower class predicate, but on the final result of the
SCR~Determiner, to form an assertion. In (52)(b) "fickle" makes an
assertion about "your friends", and in (52)(c), "wealthy" makes an
assertion about "his parents". This seems to call for surface-tree of

the form (54).

(54)
SCR-NRAd j
%%.M
wealthy SCR-Possessive
his parénts

(Remember, as outlined in Secfion_III.l, I1I.2, that the surface tyee
directly represents how the SCRs act on their arguments. There is no
question of tempofarily pasting together some "syntactic structuig",
with different dominance relations, and letting the SCRs sort out.

their arguments later).

Page 189

Here there is a discontinuous constituent ("his...parents"). The
non-restrictive adjective seems to act on the meaning of the
(possessive + noun) and the subtree to the right of the adjective may

be arbitrarily large. There are at least two ways of handling this.

“Firstly, the analyser could hold the possessive (or determiner -
see V.l.1) in a register until it had ascertained what adjectives
were present in the noun phrasg. Once all the non—festrictive
adjectives had been built into a right~branching structure (there may
be several adjectives, e.g. "His kind, loving, wealthy parents..."),

the possessive could be attached and the rest of the phrase analysed.

Alternatively, the analyser could build the . possessive (plus a
node with SCR-Possessive) oﬁ to the surface tree at once. On
encountering non-restrictive adjectives, it could build branches on
to the top of the subtree for the noun phrase. The stages would be

as in (55).
(55) . -
(a)

SCR~Possessive

N

his Cwvanw
(b)
SCR-NRAd]
wealthy

SCR-Possessive

.
his parents

Page 190

The latter approach requires the subtree for the noun phrasé to
be built as a.separaté item, before being éttached to higher nodes
(so that nodes can be interposed above the root of the subtree). It
is quite feasible to assume that each processing level (see Section
I11.7) has a separate register, an interpreter stack called TOPNODE,
which holds the root of the subtree being built at that level. (Both
the MCHINE and SHRDLU programs do that). The former approach scems

equally viable, but hasAnot been tested here.

This structural aspect of SCR-NRAdj is related to the recursive
aspect of SCR-~Possessive, mentioned in V,1.1., Possessives may be
arbitrarily large phrases (e.g. "the tired old man’s hat"), attached
as constituents of other noun phrases. Let us assume that such

phrasal possessives are processed initially as noun phrases, then (on

e 1t

encountering the s at the end) attached under a SCR-Possessive
node, with processing continuing on the main noun phrase without
initiating a new lcvel (see Section V.5 below for further details of
the processing levels involved). While processing the phraéal
possessive, the analyser may have no indication that this is not the
main noun phrase, and so will be building it as the subtree for the
current levél. On creating the SCR-Possessive node, some
re-organisation is required, since the SCR~Possessive ﬁode becomes
the new root of the main noun phrase, with the structure that formed
the previous subtree as left daughter, Here 1is another situation
where it is useful to have the TOPNODE register for stofing the root
of the current subtree, Notice that these two. manipulations of
TOPNODE would ﬁot intecrfere with each other, although phrasal

possessives and non~restrictive adjectives may occur in the same noun

phrase. During the processiang of the phrasal possessive, TOPNODE

Page 191

contains the root of the péssessive, and so any non-restrictive
adjectives encountered '(e.g. "[that careless man] s motorbike') are
inserted correctiy above the posséssive. Once the phrasal possessive
has been completed, and the subtree restructured to allow the rest of
the noun phrase to be processed, TOPNODE contains the root of the
main noun phrase, and any non-restrictive adjectives will be attached
correctly above this phrase, since they always follow tﬁe possessive,
Even 1if a vrecursive left-branching structure occurs (as in the
examples in Section V.5 below), this re—structuring will occur in the
same way at each embedding. The two potentially recursive
constructions (possessive and adjective) will not interfere with each
other, despite the fact that both re-allocate the contents of

TOPNODE,

It was observed above that several non—restrictive adjectives
. may occur iﬁ a single noun phrase. Careful examination of the two
approaches outlined above (holding the possessive in a register, or
building a tree which is then re~rooted) will show that they will
result in slightly different trees for such sentences. Holding the
possessive in a register will retain the surface order of the
adjectives (see (56)(3)), whereas re-rooting re-orders the adjectives

(see (b)).

Page 192

(56)

(a)
SCR-NRAd]
kind SCR-NRAdj
loving SCR-NRAdj
wealthy SCR}Possessive

his parents

(b)

SCR-NRAd j

/\\\\
wealthy '

SCR-NRAd]

loving -
SCR-NRAd
T,

ki;géﬂm- K\xk
SCR-Possessive
his parents
This does not give‘é Qay of chopsing between the two methods,
since both structures are suitable semantically, for the foilowing
reason, The inputs to SCR-NRAdj should be an adjective-meaning (say,
a property P) and a noun-phrase meaning (say, a set S). The important
question is - what is the output of SCR-NRAdj ? The effect of the
rule is, informally,ito create an assertion that the set S described
by the noun-phrase meaning has property P. However, this cénnot be
the‘ output of the rule, since that would provide the wrong input for
the SCRs higher up the tree. The novun phrase subtree as a whole
should produce a set description §7, since the constituent which
includes the NP will use that set-description in some way; the

containing constituent dees not reauive an assertion to operate on,

Page 193

The best way round this is to have SCR-NRAdj 'pass wup its second
argument S unaltered as its output in the rule-tree, and do its work
solely by placing the assertion (i.e. that P is true of S) somewhere
suitable (e.g. in the "world model" of the speaker). This‘allows
SCR-NRAdj to apply to its an output, as is necessary in (56), since
its second argument is a set-description and its ‘output is a
set-description. Since the same set S is beiqg passed up trees like
(56)(a) and (b) unaltered, with various assertions being made about
it on the way, the order of application of‘the different invocations

of SCR-NRAdj is immaterial.

One advantage of separating out the non~restrictive secmantic
relationship dinto an SCR (instead of tfying to build it into lexical
entries), is that certain modifiers other than traditional adjectives
sometimes occur with a non-restrictive type of relationship to the

noun, e¢.g. (57).

(57) The E@Ei.admirers of Shostakovitch will be saddened by this

performance,

The word "many" occurs here after the detérminer, and seems to
express an assertion that there are many admirers of Shostakovitch
(it is certainly not restrictively distinguishing the "many admirers"
from the "few ~admirers'). Such ﬁsage might be describable by using
SCR-1RAL] to combine the,meaniﬁg of "many" with the meaning of the

rest of the phrase,

Page 194

This discussion has dignored the mwmajor question of how the
analyser 1is to decide, while processing -a sentence, whether a
particular adjective is being used restrictively or
non-restrictively. The decision seems to depend on factors which are
impossible to formalise within the limited grammatical framework here
- intonation, context> of utterance, hearer’s view of speaker’s
beliefs, etc., may all contribute. To test that the two surface
structures described are practicable, the MCHINE program has been
designed to allow cither, but the choice of which to build is fudged
by having 'adjectives categorised 1into two disjoint subsets, with

features NRA and RA to distinguish them.

V.1.3 Adjectives and Classifiers

So far the traditional term '"adjective" has been used quite
freely, and the adjectives discussed in V.1,2 have been regarded as
expressing '"'properties' that may be predicated of sets., These
over-simplifications aided the exposition (without affecting the

relevant arguments), but they will now be examined in greater detail.

Bolinger (1967) discusses the wide wvariety of English
adjectives, showing that it 1is not reasonable to describe all

adjectives as denoting "properties'. Examples like (58) are relevant.
(58)
(a) chief problem

(b) alleged thief

Page 195

(¢) former president

(d) possible problem

Montague (1970b) points out that describing the adjeétive—noun
relationship as the intersection of properties (cf., Winograd (1972))
is valid only for a certain subclass of adjectives, and there is no
reason to vregard this as the adjective-noun relationship. He
. suggests that there should be several adjective~noun combining
functions, and this proposal is easily re-phrased in terms of
computational grammar as the need for different SCRs. if we could
make the operations of the SCRs sophiéticated enough, that might even
allow for constructions like those in (59), wheré the way that the
adjective modifies the noun depends in quite subtle ways on both the

adjective and the noun.
(59)
(a) big flea -
(b) small elephant
(¢) good cook
(d) bad athieté

Further investigation shows that it is not very plausible to
regard "adjective" as a clear semantic category (although its
pre-nominal usage gives grounds for a syntactic feature [ADJ]).

Consider a phrase like (60).

Page 196

(60) brass candlestick

Traditional grammar has two ways of describing this combination of
words. Either it is an adjective-noun pair, like the rather
heterogeneous. examples in (58) and (59), or it is a noun-noun pair

(sometimes known as a classifier-noun pair), like the examples in

(61).
(61)
(2) donkey jacket
(b) soup spoon
(c¢) boiler suit
(d) monkey wrench

(e) gas stove

It is hard to define what criteria are used for sorting an- example
like (60) dinto either list. The main criterion seems to be that
adjectives can be used to médify a wide class of nouns, whereas
classifiers (i.e. nouns used as pre-nominal modifiers) are
idiosyncratic. This generalisation is not strong enough to provide
any real two-way classification, since some of the classifiers in the

phrases in (61) can modify various nouns:

(62)

nge 197
(a) soup plate
(b) gas fire
(¢) soup kitchen
(d) gas mask

There does, nevertheless, appear to be a distinction between
systematic modifier-noun pairs and idiosyncratic modifier-noun pairs,
but it does not corréspond to traditional adjective/classifier

boundaries.

The relationship between the meanings of words in (62)(a) is
(intuitively) wvery similar to the relationship petween the meanings
of the words in (61)(b). The same relationship seems also to occur in
pairs like "fish knife", "dessert spoon', where the name of a kind of
food is used to classify an eating implement. (62)(c), on the other
hand, is different. Similarly, the relationghip between the
word-meanings in (62)(b) is 1like the relationship between the
word-meanings in (61)(e), and this relationship also appecars in
‘phrases like '"coal fire", "oil heater", etc., where a fuel is used to
classify a fuel-using device. (62)(d) seems to be different. We
could perhaps say that there are certain systematic modifier-noun
relationships, which manifest themselves in phraées consisting of
pairs "X4Y" where both X and Y may vary over more than one item.
There are also certain idiosyncratic modifier~noun relaticuships,
which manifest themselves in phrases consisting of pairs "X+Y", where
X and Y do not vary (i.e. these are "one-off" items). (61)(a), (c),
(d) and (62) (¢), (d) seem to be examples of these. Thus it appears

1

that, while the traditional distinction between "systematic" and

Page 198

"idiosyncratic" modifier noun pairs may well exist, it certainly does
not correspond to the wusual classification of "adjective" versus

"classifier',

It is worth digressing here to point out a simple linguistic
test vwhich distinguishes these two kinds of combination. In
contrasting noun phrases with different modifiers, the head noun may

be replaced by "one" under certain circumstances, as in (63).

(63) This is a red ball and that is a blue one.
In (63) the modifier-~noun pairs are traditional property-denoting
adjectives, which are highly systematic in the way they modify nouns.

If the modifier-noun pairs are totally idiosyncratic, then the

"one"-pronominalisation results in oddity.

(64) ?7?7? This is a monkey wrench and that is a pipe one.
This may be because the contrast which is being expressed includes
the particular modifier-noun relationship involved, and if the two

phrases have different internal relationships, the contrast is

difficult:
(65)
(2) This is a wine bottle and that is a whisky bottle.

{b) This is a red bottle and that is a blue one.

Page 199

(¢) ?? This is a wine bottle and that is a red one.

Intuitively, the contrast‘is being made between different values for
a particular property of the items, and so the same property must be
referred to in both phrases. Systematic modifier-~head relationships
may be those where the modifier specifies some value for a particular
aspect of the head, whereas idiosyncratic items are more like

"ulterior

arbitrary labels. (There are borderline examples like
motive", where, intuitively, the modifier expresses some aspect of
the head, but where there are no related phrases "ulterior X" showing

the same modification - ??"This is a worthy motive and that is an

ulterior one.")

This discussion has been somewhat vague, with frequent appeals
to the reader”s intuition. Hopefully it has been sufficient to make

two points.

Firstly, although tﬁéfévmay be syntactic distributional grounds
for grouping pre-nominal modifiers into adjectives and nouns, there
is no useful semantic distinction to be made, since there are
systematic uses of a wide variety of modifiers. Secondly, the‘aspect
of modifier-head combinatious which is semantically relevant is the
wvay that the modifier modifies the meaning of the head; it may be

possible to describe this by having many different SCRs for the wvast

nunber of passible relationships.

The latter proposal has grave repercussions., Leaving aside the
prickly question of whether we want to have a multitude of
velationships like "uses as fuel", "is used to eat', etc., built into

linguistic vules, there is still the problem of how an analyser is to

Page 200

choose the right SCR for a particular pair. It is somewhat
implausible to have the analyser treat a pre—ﬁominal modifier as
n-ways ambiguous (where there are n SCRs which could take it as first
argument), so the analyser will have to wait until the head of the
phrase is found, and then select a modifier~head SCR which will

accept as inputs this modifier and head.

This may sound similar to the process described by Quillian
(1969), where a semantic program examines the semantic structures of
the modifier and head to work out the relationéhip between the two,
but there is a slight difference. Here we are assuming that certain
commonly-occurring semantic relationships are stored in standard
modifier-head SCRs (instead of having ﬁo Bé computed eachvtime).
Thus, under normal circumstances, only the 1list of SCRs is’
considered, rather than all possible relationshipé. The Quillian
process (which starts from scratch, with no standard set of
relationships) would be useful for computing poss{ble meaningsyof a
hitherto unencountered pair, but even then it might be wrong if the
newly encountered example is in fact idiosyncratic; consider what a
productive process like that would have done withA"pyramid salesman"
or "battery hen'" on a first attempt. While a heuristic process like
" Quillian’s would generate guesse; for unknown phrases, the suggestion
here ié to keep a set of standard relationships for systematic
purposes, and enter idiosyncratic phrases directly in the lexicon as
compound nouns., This also produces a problem for a analyser, since
as well as searching the SCR list, it will have to check whether the

lexicon has a compound entry for the two items it is examining.

Page 201

The process of searching a list of SCRs for one which '"matches"
a-pair of arguments is in fact required elsewhere in the grammar (see
Sections III.9, V.4) so it is not necessarily a weak point of this
description that it needs such a search process, but the search
routine is not a well developed concept at present, and cannot be

relied upon.

None of the suggestions in V.1.3 have been implemented in the
MCHINE grammar, so this discussion can be regarded only as

speculation on the possible uses of SCRs.

Page 202

Section V.2 : Auxiliary Verbs

Ve2.1 Avoiding Branching -

The part of the ATN in the MCHINE grammar that processes the
auxiliary verbs is deterministic, subject to the "one~word-lookahead"
provision of Section III.8. That dis, no wrong analysis is ever
pursued for more than one word, and no markers or structures are
altered once they have been set. The network appears to be slightly
nore complicated than other networks for English auxiliaries that
have appeared in the literature, but this is a consequence of three

constraints within which the rules were written.

- Firstly, the network should not backtracklér follow up several
wrong paths. Secondly, detailed information régarding the various
auxiliaries should be extracted (see below). Thirdly, the grammar
should accept exactly the sequénces of auxiliaries that occur in
English, and no others (see Sections 1.2 and 1.3 for justification of

this).

The general word-storing register SHELF 1is wused on several
occasions to postpone decisions for one word. This may seen
unnecessary, if one-word branches are being allowed anyway, but these
were cases where it was possible to predict that the information
would be forthcoming immediately, and where the options were a small
fixed number (here, usually two oOptions). The SHELF register is also
used to hold the auxiliary verb which occurs at - the start of a
question while the subject noun phrase is analysed. This allows the
same part of the auxiliary network to process the first auxiliary

verb, whether the verb occurs before or after the subject (cf.

Page 203

Chomsky (1965)).

V.2.2 The Information Conveyed

The information contained in the auxiliary verbs is recorded in
various ways. Much of the iqformation cannot be interpreted within
the sentence grammar, but must merely be marked on to the semantic
representation for the clause, so that some higher iﬁterpreter can
act on it. The tense, modality, and aspect of a sentence are
interpretable only within some context (e.g. a conversation) and so
their meanings must be‘defined outside the sentence (see Section V.7
below) . Some of these properties (e.g. progressive, perfective) seenm
to belong to the verb .phrase (since there aré perfective and/or
progressive verb phrases which do not form surface clauses (see (66)
below)), and some are associated with the clause (e.g. tensé,
modality). The information extracted from the auxiliafy sequence is

as follows:

Perfect aspect : a two-valued marker is set on the semantic item

for the verb phrase.

Progressive aspect : a two-valued marker is set on the senmantic

item for the verb phrase,

Verb-negation (see V.2.3) : a two-valued marker is set on the

semantic item for the verb phrase.

Clause~negation (see V.2.3) : A two-valued marker is set on the

semantic item for the clause.

Page 204

Tense : a two-valued marker is selb on the semantic item for the

clause.

Illocution : SAY, ASK or ORDER is marked on the representation

for the clause.

Modality : the corresponding modal (CAN, WILL, etc) is marked on

the semantic item for the clause. ‘ -

Voice : a restriction is set on the surface node for the wverb
phrase, so that the SCR used must be of the correct variety (active

or passive). See Section V.8 for more details.

V,2.3 Negation

The distinction between verb-negation and clause-negation may

seem unusual. This is intended to capture the following patterns.

Firstly, verb phrases (in the infinitival or gerundive fornm)

often contain a negative element separate from the negation (or

otherwise) of the containing clause.
(66)
(a) Not to go to the party would be impolite.
(b) Not having been there, he did not want to comment.

Secondly, a negative element in a sentence can sometimes be

interpreted in two different ways =— compare (67)(a) and (b).

Page 205

(67)
(a)
A : How can I find time to write this essay ?

B: You can not go to the party tonight, or you can not go skiing

at the weekend.
(b)
A: I broke my ankle on Saturday.

B: You cannot gb to the party tonight, and you cannot go skiing

at the weekend.

In (a), the "not" seems to state that a negative course of action is
possible; in (b), the "not" seems to state that a particular course
of action is not possible. (This distinction - is more easily
expressed in the notation of modal logic). One possible way to
express this is Lo associate the negation with the verb phrase in (a)
and with the clause as a whole in (b). (The modal "can'" is also

associated with the clause),

Thirdly, sentences can, under cervrtain circumstances, contain two

negative elements, (corresponding to the two usages just described),

(68) ? You can’t not go to the party - they will be expecting

you.

Such sentences sound more acceptable if the first negative clement is

"

conflated with the first auxiliary vevb to preduce an "n’t" form, and

Page 206

even then a slightly unusual intonation is necessary if the sentence

is not to sound odd.

The same patterns regarding double negation hold with other
auxiliary verbs, but not all of them provide clearly distinct
semantic interpretations for the two types of negation in the way

that "can"

does. This may be due to the fact that, for other modals,
there is no imaginable situation in which one interpretation is true
but the other is not, If we follow the patterns of (67), the

sentences in (69) should be approximately paraphrased by those in

(70) ~ but what situation would distinguish these cases ?
(69)
(a) He mustn’t go to the party.
(b) He nmust not go to the party.
(70) ’
(a) It must not be the case that he goes to the party.
(b) It must be the case that he does not go to the party.

Unfortunately, this phenomenon has not been analysed in depth
here, as it would need a full description of the semantics of modal
verbs., (See Isard (1$74) for a partial treatment of modal verbs in a
compntational framework). Jackgndoff (1973) discusses the use of "VP"
and "S" negation in conseciion with certain quantifiers, but his

description is phrased in transfoimational terms.

: " Page 207

The network in the MCHINE grammar opefates as follows. An "n"t"
form indicates clause—degation; a "not" following an "n’t" form
indicates verb-negation; a single "not" is taken as either
clauée—negation or verb-negation depending on a variable which the
user can set (this is because, in a full model, these decisions would
not use the kind of grammatical information represented in the
current model, but would be based on intonational or contextual

information); two "not'" elements in succession cause a failure.

V.2.4 "Do"

It has been suggested for some time that the verb "do" in

sentences like (71) is an unusual item.
(71)
(a) Do you want a cup of tea ?

(b) You do not like asparagus.

(c) Do not enter that room.

It can be regarded as a verb, since it carries an inflection for
tense and ‘'number" agreement. It can be regarded as an auxiliary

verb, because (like the aspect and modal verbs) it appears before the

V]

subject in questions, and precedes the negative marker if there i

jed]
Q

one. However, it has the oddity of appearing only when there are
other auxiliary verbs, and not appearing‘even then in unemphasised,
non-negative declarative sentences. This prompted the intcoduction
of the transformation often known as "do"-Support (Chomsky (1957),

Burt (1972)). Trying to class this "do" as either a modal or an

Page 208

aspect verb leads to difficulties, so it seems better to regard it as
a separate kind of auxiliary altogether. From the point of view of
sentence-processing, the information that can be extracted from the
auxiliary "do" is considerably different from that extracted from the
other auxiliaries, and is largely based on what its paradigmatic (or
distributional) behaviour tells the analyser about the absence of

other auxiliaries.

Talking of '"aspect" verbs is misleading, since, for all
practical purposes, this 1is a pseudo-class containing only two
members ("have'" and "be"), both of which may occur in a sentence, and
which convey totally different information. 'Have", "be" and "do"
are separate, one-off auxiliaries which can be'&istinguished by any
consistent feature-marking that the analyser may need., The MCHINE
grammar has them marked (redundantly) with the features [ASPECT],

{COP] and [DOl]} respectively.

rPage 209

Section V.3 : Number Agreement

In Section I.2, it was stated fhat, since language comprehension
was a primarily semantic goal, syntactic mechanisms should be
introduced only where necessary to achieve this goal; 1if some aspect
of English could be fully described in semantic terms, then there was
no need to postulate any additional syntactic structure. This may
seem a clear aim initially, but there are areas of English where it
is impoesible to give wholly semantic descriptions, and additional
devices have to be introduced, despite the methodology of avoiding
separate syntax. Sometimes the syntax and semantics are related in
such a way that vredundacy occurs, but neither can be completely
eliminated. A good example of this occurs in the English system of
number agreement. (Katz (1972, pp.378ff) gives a good discussion,
within a different framework, of this area of grammar, and the

argunents here overlap with his to some extent).

V.3.,1 Subject-Verb Acrecnent

S ittt e A o

Subject—~verb agreenent is often referred to as

"singular' and

"nunber-agreement', and is described in terms of
"plural'. This is wmisleading, since it gives the impression that the
agreement systean is basced on plurality of the set of things denoted
by the subject (i.c. that it is a semantic phenomenon). The two-way
4 .
_
classification into "perscn’” and "number" for verb forms (e.g.'"3rd
person singular') may be helpful for vrelating English to other

languages, but it docs ot reflect the agreement patterns which

actually oeccur in fnglish,

Page -210

Consider regular verbs. Most of these have two present-tense
forms (e.g."run", "runé") which we can refer to as PRESP (mnemonic
for traditional - Present Plural) and ES (mnemonic from the
inflectional ending) formsf The PRESP form is compatible with

subjects "I", "you", "

we'', '"they", or any "plural" noun phrase. That
is, it covers what were tra&itionally known as Ist and 2nd person
singular, plus all plural forms. The ES form is compaﬁible with what
are traditionally called 3rd person singular subjects - "he", "she",
etc. Regular past tense forms (or "remote" tense forms, to use the
terminology of Section V.7), are generally compatible with any

subject at all, as are the present and past forms of modal verbs

(vhich are "defective" in traditional terminology) .

An exception to these agreement patterns is the verb 'be". There
are four classes of subject for agreement with inflected forms of

"be", as follows.

Compatible with "am" : "IV

Compatible with "was"™ : "I", "he", "she", etc.

1" "o,

are" : "you", "

Compatible with "were", we', "they", etc.

Compatible with "is" : "he", "she", etc.

Although "be" is a solitary case, and so can be treated
exceptionally, we still need\?greement-classes that are capable of
describing this pattern as well as the regular one,. The most

economical set seems to be :

Page 211

Agreement Class 1 : "IV
Agreement Class 2 : "you'", "we", "they", etc.

Agreement Class 3 : "he", '"she", etc.

Other classes can then bé formed by taking the union of these minimal
classes. Thus the four classes for "be" outlined above are }, 1+3, 2
and 3 respectively. Regular verbs will generally require 14+2 and 3
to describe the present tense, and 14243 to describe the remote
tense., Using unione is of practical ﬁsc for the way that agreement
information can be used during sentence»analysis, as will be

described below.

The difference between Class 2 and Class 3 might seem to
correspond to a semantic difference in the subjects involved, as in

(72), but that is not always the case.
(72)
(a) The dogs run round the garden,
(b) The dog runs round the garden.
There are phrases where the "agreement-number" differs from the

"semantic number", (e.g. (73)), so thesc notions are logically

distinct.

(73)

Page 212

(a) These scissors are blunt, and your trousers have to be

trimmed.

(b) Measles are not hard to cure, but cancer is. (Katz, p.379).

Also '"mass" nouns (like “snow", "rice", "mist") cannot be given a
semantic number, since they do not denote a set of discrete objects,

but have a very definite agreement class (namely, Class 3).
(74)
(a) Snow falls softly.

(b) * Snow fail softly.

To emphasise the distinction between agrecment classes and semantic
plurality, notice that "you" is unmarked for semantic plurality (or
else has two lexical entries, one for each plurality), but has a

definite agreement class, Class 2.
(75)
(a) You run very fast.
(b) * You runs very\fast.

The picture is further confused when we consider that verb
agreement classes can (occasionally) have semantic effects in the
understanding of sentences. Some subject noun phrases are unmarked
for both semantic number and agreement class. In such cases, the

verb form used may provide the nissing semantic number information:

Page 213

(76)
(a) The sheep runs very fast.

(b) The sheep run very fast.

Also; agreement classes cannot be marked statically in the lexicon,
since they are a property of whole noun phrases. The assignment of
phrases to agreement classes is productive (i.e. new examples can be
allocated systematically) and seems to be based on semantip number.
If someone tells you that a "sib" is a tool for cutting cloth, and
that "latt" is a confetti—like substance, then you will probably
regard (77)(a) and (b) as acceptable, but (78)(a) and (b) as somewhat

odd.
(77)

(a) Twelve sibs are lying on the shelf.

(b) Some latt is pouring out of the bag.
(78)
(a) ?7?7Twelve sibs is lying on the shelf.

(b) ??7? Some latt are pouring out of the bag.

/

. (
Brown (1958, pp.250-253) reports that children sometimes work in the
reverse direction; that is, they make systematic guecsses about the

meaning of a new word on the basis of its verb agreement class in

exanples like (77).

Page 214

These phenomena can be describedvin the following way. Each
noun phrase has a syntactic agreement -class (1, 2 or 3) and a
semantic number (SINGULAR, PLURAL or MASS) . Each inflected verb .is
marked with a list of the agreement classes which are compatible with
it. (Listing them takes advantage éf the fact that some classes are
formed by taking the uniqn of the basic three classes). Nouns like
"sheep'" (which are unmarked for égreement class or number) have two
separate entries, with different agreement and syntactic number for
each. (Hence the semantic information provided in cases like (76) is
conveyed by eliminatioﬁ of ambiguity using.syntactic agreement) .
Agreement compatibility can be tested in the following way. On
finding a 'subject" in a clause, a restriction is set on the
syntactic property list of the node that the 'complement" of the
clause will be built on. This restriction states that the verb’s
agreement class list must contain the agreement class of the subject.
The way in which number is treated within noun phrases will be dealt

with below.

V.3.2 Determiner - !llead Agrecment

s A s et S P

As mentioned above, asreement classes cannot just be marked on
all noun phrases in the lexicon, since most noun phrases are
conctructed out of othev lexigal entries. Sometimes. the determiner
decides the agreement class, 6é in (79)(a) and (b); sometimes the

head noun contributes the information, as in (79)(c) and (d); and

somaetimes both are marked for agreement class, as in (79) (e).

Page 215
(79)
(a) A sheep is sinking in the mud.
(b) Many sheep are swimming in the loch,
(c) The dogs cavort in the tree~tops.

(d) Your children are spreading marmalade on our cat.

(e) Those apples are very sour.

(f) * These man is selling pornography.

Vhen both constituents provide an agreement class, it must be the

same one, or oddity results, as in (79)(f).

This is one place where the mechanism for combining properties
of constituents (see Section IV.l) is useful. The SCR for combining
determiners and head nouns can have an associate property inﬁéritance
rule, which passes up to the noun phrase node the agreement classes
of both the determiner and the noun (if present). Examples like
(79)(f) will cause the analyser to attempt to make two different
entries for the same property, which is not allowed. Since
determiners are often combined wi;h more than a single head noun (for
example, if there are adjectives or other modifiers Befofe the head
noun), any SCRs for constructing-intermediate parts of a noun phrase
(e.g. the adjective~noun combining rule) will also have to have a
property inheritance rule which passes up the head noun’s agrecement

class.

Page 216

Section V‘4.L Wh~Clauses

V.4.1 The Surface Structure of Wh-clauses

English relative clauses, and certain question~forms, share a
common surface structure, consisting of a sentence (or partial

sentence) with a "wh-word" ("who'", "what", etc.) at the beginning .
(80)

(a) What did you buy 7

(b) The car which~g§_parkgé_qgggiﬂg has a flat tyre.

(¢) The man who you sold the book to wants his money back.

(d) When did he leave the house ?

This. formal simiiarity suggests that thése clauses
("wh-clauses") may be describable in similar terms. This subsection
examines how a recognition grammar can handle the surface form of
wh-clauses, and later subsections will examine the semantic

regularities involved.

The way that wh-clauses have been described in transformational
analysis is as follows, The clause 1is vregarded as a complete
sentence, where one constituent {rsually regarded asla noun phrase)
has been converted to a "wh~phrése" (either a wh-word or a phrase
starting with "which"”, "what", or "how") and moved to the beginning
of the clause from some position within the clause. This way of
looking at the structure hﬁs certain advantages, since the
relationships betwecen the wh-phrase and the rest of the clause are

generally the same as those wvhich would Lold between an NP in the

Page 217

"original" position and the rest of the clause. Semantically, the
wh-phrases in (80) can be regarded as displaced versions of the
subject, object, indirect objecf, and time-adjunct, respectively.
Syntactically,»subject—verb agreement seems Lo occur between the
wh-phrase and the main verb of the wh-clause, if the "original"
position is that of subject (cf.(80)(b)). Fuller arguments for this
way of describing wh~clauses can be found in Kuroda (1966), Burt

(1972), Chomsky (1964) and Ross (1967).

In the framework being used here, there are two ways to describe
wh—-clauses. One way would be to accept the spirit of the
transformational analysis, and write a recognition grammar which
attempts to locate the wh‘phrése in its "original" place in the
clause. Alternatively, -we could poétulate a Qh-clause <SCR which
takes the meaning of a wh-phrase as its first argument, and the
meaning of a sentence (or partial sentence) as second argument, and
produces a suitable semantic form. The former "approach has been

adopted here, because of the following difficulties with the latter

method.

Firstly, the wh-clause SCR would have to duplicate all the
semantic intra-sentential relationships (e.g. subject~to~verb,
time-adjunct~to-main clause, etgx) since these can all be used

between wh-phrases and their associated clauses.

Secondly, the wh-clause SCR would have to include subject-verb
agreement as a special case, since it would be treating an "objecct”
wh-phrase and a "subject" wh-phrase as merely two possible options in

a list of relationships,

page 218

Thirdly, the criteria for deciding which intra-sentential
relationships to use ére»not‘primarily semantic (i.e. they are not
based on the semantic structure of the two arguments for the putative
SCR), but are surface.syntactic. If the wh-clause sentence lacks a
surface subject, then the wh-phrase can be used regardless of what

deep roles (in the terms of Section V.8) are filled.

AFourthly, if the sentence-part of the wh-clause is a
sentence-fragment (i.e. lacking a subject or object), then this
cannot be analysed correctly by the simple sentence recognition
procedure. For example, if we assume that "say" must have a surface

object, then (81)(a) is an acceptable sentence, but the sentence

fragments (b) and (c) are not.
(81)
(a) What did you say ?

(b) * Did you say ?
y

¥

(c) You say ?

Hence some recognition procedure is needed for the second part of a
wh—clause which is different (albeit in some minor fashion) from the
simple sentence grammar, and which takes into account the fact that a

wh-clause is being processed.

Both SHRDLU and LSNLIS parsers (see Sections II.9, II.l) adopt
this approach, using structure~holding registers to perform the task.
On encountering a wh-clause, the opening wh-phrase is processed and

stored temporarily din a vregister. The rest of the clause is then

Page 219

processed by a procedure which is similar to the sentence procedure,
except that it may usé the itém stored in that register as part of
the surface structure, Thié gene;al strategy has been incorporated
in the MCHINE grammar, but some interesting questions still remain.
In particular, how do we ensure thét the analyser processes the

sentence successfully, and uses the stored wh—item in a suitable

place ?

Consider a sentence like (80)(d) above. The sentence part of
the wh-clause ('"did he leave the house") constitutes a complete
clause,‘and so the analyser should find the right surface structure
for it without failing. On attempting to leave the level at which
the wh-clause has been processed, the tidying. up procedure (see
Section 1IV.38) will cause the wh-phrase left in WHSLOT (the register
allocated to this purpose) to be found. Suppose we incorporate into
the tidying-up procedure the option of performing rulé—selection (see
Section II1.9) to combine the left-over item Qith the current
subtree, If this works, the Time~Adjunct SCR (sce Séction vV.7)
should be selected, and the wh-phrase attached as a time-adjunct to
the sentence part of the wh-clause. A similar analysis might work
for place adjuncts, e.g. "Wbefe did he see you ?", However,
wh-clauses in which the wh-phrase has to be treated as an obligatory
surface structure constituent (such as subject, object or indirect)
object, cannot be handled din this way. .Consider (80)(a)« If the
grammar-requires "buy" to heve a surface object, and the analyser

does not find onc after the verb, it may discontinue the analysis

o}

(since we are assuming that the analyser will not treat strings like
"Did you buy?'" as acceptsble sentences). The tidying-up process is

invoked only on leaving a level (at a "POPUP", in the ATN

Page 220

terminology), so it would not heip here, unless we inttoduced the
additional principle that, before abandoning an analysis, the
analyser should first try to leave the current level.' Even if this
could be made to work, it would be suitable only for situations where
the wh-phrase has to be located at the end of the sentence fragment.
If the wh-phrase has to be put in subject position (as in (80) (b)),
the lack of a consituent will show up long before it is feasible to
leave the level of the wh-clause. One solution might be to have
another general principle that, if a failure is about to occur, the
analyser should try to use any structures in the current set of
grammatical registers to fill the current structural requirement,
and, if successful, continue. This is unattractive, for two reasons,
Firstly, it seems to be introduced simply to patch up this problem,
with no other justification. Secondly, it.needs'a clear definition
of what would be regarded as the '"current structural requirement" and

wvhere (in the recognition rules) to re-commence if the

structure~-filling process succeeds.

It turns out that there is one quite neat way to ensure that the
stored item 1is available exactly as needed. Notice that the
wh-phrase can be regarded as a form of '"noun. phrase" (cf. the
transformational version of this phenomenon) and wh-phrases will
always be allocated to a position that a "noun phrase" could have
filled. We can therefore write the noun phrase grammar (i.e. an AIN
subnetwork) so that one of the options is to look in WHSLOT for a
stored structure. Then, at any point where the analyser is looking
for a noun phrase, it can fulfil this expectation by using the storved
WH-item, if one is present. Using this trick has certaiun advantages.

Firstly, it means that the sentence fragment in a wh-clause can be

~ Page 221

processed using exactly the same network as is needed for an ordinary
sentence - the inéertion-of the stored wh-item will happen 1if and
only if it has been stored.l Secondly, it allows the wh-item to
occupy any position that a noun phrase could have 6ccupied, without
separate rules for each case. in particular, since a prepositional
phrase includes a noun phrase, dangling prepositions (e.g. (82)(a)

and (b))'will be automatically covered.
(82)
(a) Who did you speak to ?
(b) The man who I was addressed by is here.

This will not interfere with the method already outlined abo%e
for optional adjuncts. By wvirtue of being optional, the adjunct
wh-phrase will not be sought by the sentence grammar (via the NP

network) and so should still be in the WHSLOT at the end of the

level.

V.4.2 The Complex Noun Phrase Constraint

If we adopt the description in V.4.1 of how to analyse
wh—-clauses, there are some interesting consequences, Sincé WHSLOT is
a grammatical register associated with the 1level processing the
wh-clause, it Dbehaves 1like a '"local variable" in a programming
language (see Section TIII.5). That is, each time the analyser
initiates a wh-clause, a new version of WHSLOT is set up at the
current level, only one incarnation of WHSLOT can exist at each
level, and so only the contents of the current WHSLOT are accessible.

If one wh-clause is processed inside another (e.g. din (83)), the

Page 222

inner wh-clause will not be able to use the contents of the WHSLOT
register for the outer clause, since that register is at a higher
level, for which the processing and register contents are temporarily

suspended.

(83) VWhat did the man who you saw say ?

Consequently, the analyser will become confused if two wh-phrases are

associated with one wh-clause, both at different levels, as in (84).

(84) * What did the man who bought arrive ?

(Vhere the intended interpretation is that '"what" represents the
object of "bought'). This is not to say that two wh-phrases cannot be

associated with one relative clause - cf. (85).

(85) What did you say to whom ?
Heve, both wh~phrases are located at the one level, and can both be
processed by the one userf WdSLOT. The two wh-phrases will occupy
the single incarnation of WHSLOT at different times (if in fact the
sccond one ever has to be stored). Also, there is nothing to prevent
the wh-phrase appeering in a containing clause being used in a lower
clause, provided it doesrnqt, as in (84), become entangled in another

whi—clause,

(86) Wnat did Mary think ¥Fred liked ?

In (86), the "what" is intended as the object of "liked", but appears

at the cpening of the clause "did Mary think...". this creates no

Page 223

problems, since no other use of WHSLOT occurs, and so the one version
of WHSLOT esfablished at the start of the sentence will still be
untouched when needed at the end. Several wh~clauses may appear in
the same sentence, provided the wh-phrases are kept adjacent to their
associated sentence parts, allowing the WHSLOT register to be used

properly.,

(87) Where did the man who you mentioned bury the treasure which

he stole ?

)

This pattern (i.e. the acceptability of sentences like (83),
(85), and (86), but the oddity of sentences like (84)) has been
documented in the transformational literature. The best known
description of the phenomenon is due to Ross (1967), who formulated

it as a constraint on alterations to deep structures :

(88) The Complex Noun Phrase Constraint

No element contained in a sentence dominated by a noun phrase
with a lexical head noun may be moved out of that noun phrase by a

transformation.

The procedure outlined in V.4.l1 was based on providing a simple
and effective way of locating wh-phrases in wh—clauses. The notion
of a register being local to a level was not constructed solely for
this analysis, being an obvious computational technique for
processing constituents as embedded units. Nevertheless, this
procédure (based on surface analysing procedures) appears to embody

Ross’s constraint insofar as it applies to wh~clauses.

Page 224

The Ross 1rule (88) also covered complex noun phrases
(hereinafter CNPs) other-than wh~clauses, so it is natural to examine
these other cases to see how the procedure here relates to them. The
other form of CNP was thap where an ordinary noun phrase (NP) and a

clause (S) were in apposition :
(89)

(a) You believed the claim that he was an agitator for a washing

machine firm.,

(b) The fact that it was Tuesday was overlooked,

Let us 1investigate what similarites there are, in surface
structure, between relative clauses and appositional CNPs. A
sequence of the form "NP + that" may be the start of either of

these :

(90) e

(a) I didn”t believe the claim that he made.

(b) 1 didn”t believe the claim that he made a mess of things.

A possible way for the analyser to handle this potential ambiguity is
to consider both possibilites in parallel. This has no particular
drawbacks apart from the general unattractiveness of exhaustive
searching, as discussed in Section II1.6., However, let us consider
one way in which the decision could be postéoned by using a register.
Let us assume that, after getting thc.intial "NP 4 that" Sequencev(or
perhaps the relevant sequence is NP + that + NP, since critafia for

recognising the beginnings of relative clauses are difficult to

Page 225

state), the analyser decides that a CNP (of some type) is to Dbe
processed but it does not know what the relationship between the head
NP and the sentence-part will be, since it is either apposition, or
one of the relative-clause possibilities., The analyser therefore
does not build the head NP into the surface SCR trée, but holds it in
a register, and goes on to process the sentence part of the CNP.
This shows the similarity between tﬁe appositional CNPs and relative
clauses =~ they consist of a head phrase and a sentence-part, where
the semantic relationship between the two points is wunknown at the
start of the clause; the head phrase can be stored tem?orarily until
the end of the «clause. The appositional rélationshiplAis not
intra-sentential, like subject or object, but is extra-sentential,
like the optional time and place adjuncts., If we assume that there
is an SCR for apposition, the relationship will be found at the same
stage as one of the adjunct relationships would be found in a
relative clause - namely, during tidying up. The wh-clause strategy
will then serve for both typeé of CNP, and the 1limits on registers
discussed above will apply equally to both. Hence Ross’s constraint
(88), in its full form, will-be incorporated into a single method of
‘dealing 'with appositional and wh—clauseé, and one more case of

breadth-first searching has been avoided using registers.

Unfortunately, there are certain problems with' this approach.

In some sentences, the CNP constraint appears to be inapplicable :

(91) What did you wmake the claim that you liked ?

(Lf (91) is unacceptable in some idiolects, then presumably what

follows here does not apply to the grammars of those idiolects).

Page 226

In (91), a wh-phrase, the object of "liked", has been placed, in
surface strﬁcture, outside the CNP which contains it. By Ross’s
constraint, and by the analysing strategy given here, this should
result in an odd sentence. Intﬁitively what seems to be happening is
that the sequence "make the claim'" is being treated as a single verb
‘(roughly synonymous with '"claim"), and the "that + S" sequence.is
treated as the object of this "verb". (Cf. "What‘did you claim that
you liked ?"). It 1is not at all clear how this could bi)handled in
either a transformational or a computational account, and it is
slightly obscure even how to treat it as an exception. Perhaps the
neatest solution would be to enter "make the claim" as an ddiom or
compound verb in the lexicon. The analyser would then be faced with
two possible analyses for sentences beginning like (91), There would
be one analysis where "the claim" is part of the verb, and one where
it is the head of a CNP. The latter analysis would eventually fail,
since the displaced wh-phrase would cause problems;. that would leave
only the analysis where'"médewthe clain" is a compound verb, Since
computational grammar has, at present, no way of treating idioms or

compound lexical entries, this suggestion is not very enlightening.

David Kilby (personal communication) has observed that in some
examples, the ambiguity between relative clause and appositiomal CNP

is not resolved even at the end of the sentence :

(92) Did you consider the claim that he made:- an

’

over-gsimplification ?

Page 227

The two inﬁerpretations of (92) are describable as follows. The
‘relative clause interpretation results from the head NP "the élaim"
being taken from the WHSLOT and inserted as the object of 'made",
with the NP "an overasimﬁlification" being processed as the second

"consider". The appositional CNP interpretation results

object of
from "an over-simplification" being inserted as the object of "made',

with "the claim" being left in the WHSLOT register until the end of

the clause.

-

Whether‘a particular grammar would find both these analyses or
not would depend on the finer details of the mechanism for getting an
item out of the WHSLOT, If we introduce some form of ordering
between options (i.e. between ATN arcs 1in each state), then the
analyser will get only one of the analyses. That is, if the grammmar
specifies that stored wh-items are to be wused in preference to
looking for an input noun phrase (where both are available), then
only the first interpretation of (92) will be found. This would be a
rather awkward ordering, as it would empty the WHSLOT into the-
subject position of every wh-clause. On the other hand, if input
phrases have priority (i.e., WHSLOT is searched ohly if a gap 1is
found), then only the second interpretation will found. In fact, it
seems better not to order these two options, since either ordering
will cut out possibilities that we need to include in the grammar.,
Sentence (92) is a special case of the fact that certain wh-clauses
may present the analyser with a choice of using a stored wh~iteﬁ ox

analysing the next part of the input string :

Page 228
(93)
(a) What did you give your father ?
(b) What did you give to your father ?
For example, assuming that the SCRs used within wh-clauses are

exactly those -used in ordinary clauses for combining verbs and

objects, (93)(a) and (b) differ in the order that "what" and "vour

T

father" are to be placed in the SCR tree.

The MCHINE grammar places no ordering on the two options (using
a wh-phrase and using an incoming NP), and so will find both analyses

in cases like (93).

V.4.3 Semantics of Wh-Clauses

It was suggested in V.4.2 anve that the best surface structure
for a wh-clause was one similar to that of a senfence, but with a
wh-phrase as one of the constituents. This assumes that the SCRs for
combining the constituents of a sentence will function equally well
with either a wh-phrase or some other item (such as an ordinary NP),.
Such a situation is desirable, since otherwise we would need a
duplicate set of SCRs, for all the cases where one of the arguments
was a wh-phrase, Now it is necessary to consider what the semantic
representation of a wh-clause . should be, and whether the
representation will allow such assumptions about the surface

structure.

Page 229

Consider the various uses of a wh-clause (exemplified in (94)).

In a question, it acts as a pattetn to single out some set of items
. AN

about which the questioner wishes further information . In a relatiQe

clause, it acts as a predicate to convey more informatioﬁ about the

antecedent noun phrase (apart from the separate construction

described in Vibd,4 below). In a relative clause without an

antecedent, it acts as a descriptive term to refer to some item.
(94)
(a) What did you buy ?
(b) The book which you stole is boring.
(c) What you did was wrong.

If we simply let a wh-clause meaning be a clause-meaning (i.e. a

"wh" part, all

relation-instance) with one component marked as the
the semantic rules for handling semantic structures would have to
check every relation-instance to see if it had a "wh" component,
since the behaviour of an ordinary reiation—instance is complétely
different from this nmulti-purpose structure. On the other hand, one
semantic structure which is ideally suited to this multiple role (&s
a pattern, a predicate or a term) is the "definer" (sce Sections
I11.10, IV.3). If we can arrange our rules so that wh~clauses are a
form of definer, we may be able to capture all thése uses in one
structure, This will require some extra SCRs . to construct these
wh-clause definers, since at present we have assumed that only the
ordinary clause SCRs are necessary.. It may scem that what we need is
a unary SCR which acts on a wh-clause (represented as a

relation-instance) to produce a definer, e.g.

Page 230

(95)

<definer>
”N

SCR Wh-Clause

Py

<relation-instance>
Py

SCR Subject~Complement

) B
"you buy what"

However, if we make the rule binary, with the wh-phrase forming

the first argument (e.g.(96)), certain advantages accrue.

(96)

<definer>

T

SCR Wh-Clause
<wh~item> <relation-instance>
|
"what" T
SCR Subject Complement
“you buy w;at"
In particular, it allows for the fact that, in ordinary relative
clauses, the semantic content of the wh~item is spread betweeun the
antecedent nominal and the reiétive pronoun. For example, the
information that the underlined éhrase in (94)(b) refers to a book
derives from the antecedent "book". Therefore we might want to have
some way of incorporating the semantic content of the antecedent into
the overall meaning of the wh-clause. The phrase in. (93)(b) might

have a tree like (97).

Page 231

(97)
<term>
term \\
‘<detefminer> <definer>
"the"

SCR Wh-Clause

<definer> <relation-instance>

A

SCR Subject~Complement

“"book"

"you buy which"

If we have organised the representation of referring expressions
so that thaey are nofmally‘represented as definers (see Section V.6),
then the two descriptions will connect quite well, since relative
clauses (both with and without antecedents) will produce the same
sort of structures (definers) as ordinary noun phrases, The only
other interface to be arranged is for the question wh-clauses. The
conversational routines will have to be able to manipulate a definer
(suitably. marked) at any stage where a question might occur. (See
Chapter VI for a possible way of achieving this).

The vay of converting a relation-instance with one component
holding o whe~item dinto a definer 1is straightforward for simple
™

examples, The wh~clause SCR has to find the component with the

wh—item, mark it as "blank", and select it as the selected role when

Page 232

constructing the definer. That is, a relation-instance like (98) (a)

would become a definer like (98) (b).

\
(98)

(a)

Agent Patient
£ @
<hearer> <wh—-item>

(b)
v
Agent *Patient
4
<hearer> ==

Marking the selected component as blank has oneunmdesirable consequence
- the dinformation in the wh-item 1is lost. This information
constrains the class of items that the definer refers to, and may be

quite rich, as in (99).

(99) Which large green furry object did you buy ?
The dinformation can be retained, in quite a natural way, by
transferring it to the restrigtiqg_fof that component in the definer.

Then the definer will denote only items which match ‘the description

originally specified in the wh~phrase.

V.4.4 Non—-restrictive Relative Clauscs

Page 233

There is yet another way in which wh~clauses4\ban be used.
Corresponding to the distinction Dbetween restrictive and
non-restrictive adjectives (see Section. V.1 above) there is a

distinction between restrictive and non~restrictive relative clauses.

’

(100)
(a) The girl who you met last night rang up.
(b) Alice, who I cannot stand, rang up.

Some relative clauses (e.g. (100){a)) act as modifiers to»
restrict the. scope of the antecedent phrase, thereby‘constructing a
more narrowly referring expression. Other relative clauses
(e.g.(100) (b)) do not restrict the range of items specified, but add
incidental information about the item(s) that the speaker wishes to
convey. (See é;ith (1964), Thompson‘(l97l), and Ross (1971) for some

comments on these clauses from a transformational standpoint). .

The other main difference between the two types of relative
clause is that,'while the restrictive relative clause combines with
-the head nominal of the antecedent to create a more complex nominal
(which other items such as determiners can interact with), the
non-restrictive relative clause makes an assertion. about the semantic
item produced by the entire antecedent phrase, Hence restrictive
relative clauses cannot be appended to proper names unless the name

is treated as the head nominal of the noun phrase, e.g. :

(101)

odn

fage 234
(a) Alice, who you like, has arrived. (Non-restrictive)
(b) The Alice who you like has arrived. (Restrictive)

The only problem in incorporating these clauses into the
wh~clause grammar outlined above 1is finding some way that the
analyser can distinguish between the two (cf. comments in Section
V.l.2 on adjectives). As Smith (1964) comments, non-restrictive
relative clauses often have "comma intonation" surrounding them, and
commas are the wusual device for indicating the usage in written
English. The MCHINE grammar can analyse relative clauses as
non-restrictive 1if and only if they are sqrroundcd by commas, since
its ATN includes an explicit test for an opening comma at the start

of the network for non-trestrictive relatives,

The rest of the grammar is fairly straightforward. There is an
SCR "NRel-Clause" which takes any item and a wh-clause meaning as.its
arguments, makes an assertion about the item, using the wh-clause,
and then returns the item unaltered- as its result. The latter stage
may seem redundant, since the main purpose of the SCR is merely to
make the assertion, but the analysis process has been designed on the
assumption that the SCRs will forim a tree (with results from lower
rules forming arguments for higher rules).vﬁence every rule must

return one result. (Sce similar comments in Section V.1). The trees

for non~restrictive relative clauses will be as in (102).

(102)

<relation-instance>
T
SCR Subject Complement

/N"‘"‘N%

<Alice> <definer>
NRel Clause "has arrived"
- <Alice> <definer>
| T
"Alice" SCR Wh-Clause
l[(m!N “MMMM-

<vh—-item> <relation~instance>

"who!' "you like who"

Page 235

"~ Page 236

Section V.5 Limits on Embedding

V.5.1 The Idea of Complex Embedding

It has often been noted (e.g. Yngve (1960, 1961), Miller and
Isard (1964), Chomsky (1965)) that certain kinds of English sentence
are bhard to understénd, although their grammatical structure secems to
follow the same pattern as other, easily understood, sentences.
Examples include centre~embedded clauses (e.g. (103) (a)) and,

verb~particle constructions containing "heavy" noun phrases (e.g.

(103)(b)).
(103)
(a) ? The rat the cat the dog chased bit died.

(b) ? He called almost all the thirty Philipinos he met on his

Globtik holiday in France up.

Investigations of fﬁese phenomega sometimes scem to assume that
such complexity will be accounted for by some single principle, and
that the actual structure of the whole éentence will be the relevant
factor in determining complexity. MNeither of these assumptions is
necessarily true ~ there may be several principles which contribute
to "complexity'", and the most difficult examples may fall under more
than one of these principles. Also, the relevant parameters for
determining complexity may be within the processes of perceiving or
producing the sentences, and may not be directly measurable in the

final structure of the sentence,

. © Page 237

One measure of complexity which is possible is the.depth of the
surface structure tree, in terms of the longest path from the root to
a tip. Thisrdoes not account very adequately for the data, as
certain constructions appear to be easily comprehended despite great
depth; left-branchiﬁg or‘ right-branching structures, such as
(104)(2) and (b), are the wusual examples (Yngve (1960), Chomsky

(1965)).
(104) | \
(a) The emperor”s wife’s servant’s room.
(b) The room of the servant of the wife of the emperor.

Yngve (ibid.) put forward a production model, with a more subtle
definition of '"depth". His '"depth" was measured in terms of
partially-processed surface structure nodes. This measure was -nore
satisfactory, in that it did not rate right-branching structures as
being complex (i.e. (lO&)(b))vwould not be classed as complex), but
it did rate 'lgft;branching st;ucturcs as complex, which is
counter~intuitive. this resulted from Yngve’s model being for
production of sentences, vather than for analysis; the producing
mechanism therefore started from the root of a subtree like (105) and
began producing nodes down the left of the tree, depth-first., The
leftwb%anching construction caused the nodes to be initiated in the
order indicated in (105) (1-2-3-4), and completed in reverse order

(4~3-2-1).

Page 238

(105)

the emperor’s

Such constructions therefore resulted in a large number of partially

completed nodes, and hence had a large "depth'".

, S
\

Let us consider how a recognition mechanism might deal with some
of these examples, to see whether the éomplexity might result from
difficulties in the sentence analysis process. We will first examine
right-cmbedding and centre-embedding constructions, before returning
to the questién of left-embedding constructions. Intuitively, most
(or ally of the "difficult" sentences are cases where a large
constituent (in some sense) has been inserted in a central position
in the sentence. 1f a'émali‘consituent is inserted, or if the large
constituent is at the right-hand end of the sentence, oddity does not

occur.,
(106)
(a) I toldvmy story to the police.

(b) 7?7 1 told the story that I had heard from a crowd of Arabian
borse-thieves who were planning to set up a Citizens Advice Bureau in

Friockhein to the pelice,

Page 239
(c) ? He said that he had an appointment to the secretary.

(d) ?? He said that almost all of his friends were founder
members of the First International League of Bad Linguists to the

secretary.,

(e) He said that almost all of his friends were founder members

of the First International League of Bad Linguists.

(f) I said that Bill knew that Harry thought that Fred was a

crook.
\

Informally, what seems to be happening is that the analyser,
while processing‘ the embedded item "forgets'" some information
relevant to the containing clause, and so has difficulties when it
attempts to recommence processing at the higher level. As Miller and

Isard suggest:

"Let us imagine that anyone who knows English has something
corresponding go a relative clause subroutine that can be called to
process sentences containing such structures. Wheﬁ this subroutine
is called, the main sentence-analysing routine is interrupted and the
point at which it must be resumed is stored temporarily wuntil the
subroutine has been executed,....suppose that, while the subroutine
is being executed, a secdnd such construction is encountered, so the
subroutine is rgquired to «call itself. ‘IfAthis recurgive feature
were not available, confusion would result; the temporary memory for
the point ' of re-entry into the main routine might be erased, for
example, so that when it is resumed, the main routine would have to
treat subsequent words as if they began a new constituent of the

sentence."

‘Rage 240

(Notice that this was written some years before the augmented
transition network model was suggested for English). This would be
compatible with the fact that larger constituénts (which presumably
require greatef processing resources) cause greater difficulty, and
with the fact that no ’difficulties occur in right-branching
structures where no segment of the higher clause is left after the
embedded item (e.g. (106)(f)). Notice that it is not plausible to
suggest that it is the initial storing of informétion about the
containing clause that goes wrong, since phrases 1like (106)(d) and.
(e) show that the trouble derives not from embarking wupon an
arbitrarily long constituent, but from trying to re-commence Eﬁe
containing clause afterwards. If we examine this in greater detail,
it turns out that 'the subroutine analogy can be described precisel&

using the computational grammar devices outlined in Section III.7.

V.5.2 Right-Embedding

In the standard ATN or PROGRAMMAR mechanisms, ecach embeddad
constituent is processéd at a differént "level', and these levels are
organised in a strict hierarchical fashion, corresponding (usually)
to the structure of the surface tree., For example, in PROGRAM}ﬁR,
when a parsing subroutine exits normally, it attaches its result to
the current node of the syntax treé. Normally a Free with n embedded
structures will have been processed' at ﬁ different levels. Fach
level is initiated by a "PUSH" arc and terminated by a "POP" arc (in
ATN notation), with inﬁerpreter information about higher levels being
kept on stacks while lower levels are processed. The kind of
information that the interprefer needs to retain may depend on the

exact details of the theory of surface structuve being used, but the

Page 241

MCHINE program has to maintain separate values in several registers

for each level (see Sections IV.6 and VI.3.4).

The information about a particular level has to be retained
until it - is finished, and the only way of finishing it is to
"pop-up"; this, in turn, can happen only when all loﬁer ievels have
been completed and "popﬁed". Hence information builds up on the
interpreter_stacks as levels grow downwards., It is quite plausible’
to suggest that this'building—up is what contributes to COmplexixy.
Herver, embedded constituents are all treated similérly, whether
embedded in the, centre or at the extreme right of a clause. 1In
either case, all the information bulds up for each level. Hence it
is not simply that overloading stacks causés.tgouble, for then both
centre- and right- embedding would be perceptually difficult., Tt 1is
more that overloading causes some kind of "forgetting“, and this lost

information is not needed in right-embedded structures since no

further processing occurs at the higher level,

If we were not interested in modelling linguistic behaviour ip
detail, we could continue with the traditional approach of allowing
the parser unlimited space on stacks, to process arbitrarily complex
constituents (which might be incombrehensible to humans). However,
since the aim is to restrict our model wherever possible and to
reflect human linguistic ability as much as possible, it seems
reasonable to investigaﬁe how .the embedding facilities can be
linited. The exact bound on storage and/or processing is possibly
very subtle, but a crude approximation could be achieved by putting a
iimit on the iﬁterpreter'stacks, in such a way that bottommost items

are Jost 1if overloading ecccurs, This still leaves various

Page 242
possibilities for using such stacks in the ATN interpreter.

We could continue the traditional method of storing information
on the’ sﬁacks even for right-embedded structures, but organise the
structure-building mechanism so that the surface structure tree would
not be incomplete or ill-formed if certain levels were never
re—-activated by the parser. Alternatively, we could have two
different processes, centre-embedding and right-embedding, where
petvforming the latter does not increment the interpreter stacks and

leaves the structure at the current level 1in good order before

™

' its details. The main difference between these two is

"forgetting'
that the traditional method "forgets" levels only when forced to, and

“"remembers"

information at every embedding; in the second method,
the analyser decides at the start of a constituent that it is not
going to return to the current level again, and abandons the

information immediately.

The latter approach has been incorporated into the MCHINE
program, Although there is little to choose between the
alternatives, the second method was preferred for the following
Yeasons, Firstly, it fitted in well with the idea (Section III1.7) of
not necding to specify continuation states on every PUSH arc.
Secondly, it secmad easier to organise a stfucture—building mechanism
where loevels were abandoned deliberately, rather than being 1left to
surviva after being "forgotten". Thirdly, there were certain
consfructions (see helow) where this decision method seemed very
sﬁitab?c. Tourthly, it seemed an interesting idea, whose feasibility

should bLe investigated to see what happened.

Page 243

The right-embedding device has already been described in
Chapters III1 and IV, as it is the modified PUSH construct referred to
as '""NEWLEVEL...NIL", The interpregér should, on executing such an
arc, create a new processing level without storing the details of the
current level, as outlined in Chap;ers III and 1V, (In the MCHINE
program, this consisfs of attaching the cufrent TOPNODE to the
current SUBROOT, thereby ensuring that no loose ends are left in the
tree, setting the node currently being worked on - CURRNODE'— as the
new SUBROOT, and setting up a new blank TOPNODE. The continuation

stack, the action stack, and the register stack are untouched.)

This device can be used quite neatly in analysing right
branching noun phrases like (104) (b). Supposé ghat the analyser has
completed the phrase "the room", and vreads the word "of". (The
traditionally intransigent problem of attaching prepositional
adjuncts is ignored here, on the assumption that the argument offered
here applies to at least one of the options facing-the analyser). If
it decides that a right-branching prepositional adjunct is about to
be processed, the action it ‘must take is exactly that of a
-(NEWLEVEL. . .NIL) arc. It needs a new level to processrthe next NP,
but it has no new information about what will follow, since this
second NP forms a structural subpart of the first NP, It has to
assume that whatever was predicted to follow the original NP will now
follow the total NP ihcluding the. adjgnct. It would just bev au
embarrassment to have to specify another continuation state, when no
further predictions can be made about the grammatical envi;onment
surrounding the NP, Since the first NP can be regarded as finished
apart from the adjunct now being started, no interpreter informatidn

need be kept concerning it. Instead of the stacks buildivg up four

Page 244

nested levels to process (l104)(b), only one level is used at a time.
lence ‘no 'complexity" or wunintended "forgetting" is caused by
processing a multiply-branching phrase like (104)(b) inside a clause.
Using the more traditional methods, some continuation state (say,
STOPNP) would have to be specified each time, and the continuation

stack would pile up three copies of it.

V.5.3 Left~Embedding

Let ﬁs now consider left—-branching structures like (104)(a). AQ
observed before,. Yngve's model predicted a large "depth" for this
construction, since:his method was based on starting with the base of
the complete subtree, The situation is different if we examiue the
structure in recognition terms. The analyser cannot know in advance
that such a deep tree will be part of the input, and so it does not
start by building a series of partially ‘processed nodes, After

rocessing the phrase "the emperor’s'", a whole node (like (107)) will
P g P I

have been completed (sece Section V.l above for more details).

(107)
SCR Determiner

o / N"""& ~

"the" "emperor"

The "’ s" signals that this whole node is to be subordinated to a new
node that must now be commenced.. S0 at any given time, only one of

the phrase nodes is incomplete and boing processed.

Cousider how this processing can be decribed using the

constructs defined in computational graowar. As discussed in Section
V.1, possessive noun phrases fulfil the same vole {(in the containing

“structure) as lexical posscssives, znd are parvadipmatically related

Page 245

to articles., Hence, after the analyser has built a possessive node,
it should process the containing phrase from the appropriate point;
that is, as if an article or lexical possessive had been found. It
should not try to process a whole noun phrase, since another article

or. possessive should not be present.

(108) * The emperdr's a wife lives here.

Since the phrase forming the possessive has Dbeen completed,
information held in registers for it need.not be retained, and some
of these registers will be needed for the incoming phrase. The
appropriate command to insert in the grammar at this point (aé
observed by Winograd (1972, p.93)) is a jump to the state following a
"determiner" or b"possessive", and a re-initialisation of any
registers. Notice that the grammatical registers need not be pushed
'down, since the old values are being discarded. We do not need to
save values of the interpreter register for the completed posscssive
phrase, so these can also be re-allocated without pushing down.
Hence.no new levels are created, whetﬁer by nesting or by overwriting

the old one.

Left-branching structures create difficulties for any simple
top-down recognition grammar, since there is a dahger of infinite
recursion. Some special modification is wusuvally needed in a
context—-free parsér which wuses recursive left-branching rules, 'It
should be emphasised that the above approach to the problem is just
such a special-purpose modification, and there is no claim that the
ATN inﬁergrg&gE'in the MCHINE program can handle any left~branching

structure, as currently written. In order to analyse left-braunching

Page 246

phrases, épecific instructions had to be inserted in the ATN grammar
in. the program. A similar method ﬁight be employed for
left—bfanching structures (for example, in another language) but it
would have to be included in the recognition grammar of that

-language.

V.5.4 Relative Clauses

Another classic case of embedded structure which is difficult to
perceive 1is that of relative clauses within relative clauses, as in
\:

(103)(a) above., It is intetresting to assess what the computational
analysis of relative clauses given in Section V.4 suggests regarding

the possible processing difficulties presented - by sentences 1like

this.

There are several aspects of this construction which lead to a
great deal of storage space (in interpreter and grammatical

registers) being used :
(109)

(a) Thé;relative clauses are all attached to the subject of the
containing clause. In writing the MCHINE grammar, it became apparent
that the subject position is one of the few places in Eanglish gramﬁar
where a NEWLEVLL...NIL arc 1is 7not an adequate form of emﬁedding,_
since some continuation state nust be spécified (for the start of the
complement of the clause), and the new processing level must be
nested. Hence, the register values for the containing clause .are

4
N

being saved whila the subject phrase is being analysed.

Page 247

(b) The relative elements are all to be located as, objects of
their clauses,. so that théy must be stored from the start of the

clause until the end.

(¢) The wh—clause uses all the registers of the clause network,
plus a structure-holding register (WHSLOT). This is more than any

other class of constituent.

Also, a great deal of processing must be carried out at the end
of the clauses, since three wh-clauses all terminate within alggw
words. At the end of each wh-clause, the analyser has to tidy Qp
registers at that level, fit the contents of WHSLOT into surface

structure, and pop up stacks to resume the higher level.

Due to the points made in (109), the interpreter and grammatical
stacks are more deeply piled with entries during the centre-embedded
relative clause construction than in most others. Thus, 1if there
were a limit to how many entries can be made on a sfack, with earlier

entries being lost, this could also create difficulties.

There are several factors which might be thought to contribute

vto complexity, e.g. :
(110)
(a) Total storage space required
(b) Total processing required (if this could be quantified)

(¢) Depth of stacked information

i * Page 248

(d) Loss of*infoymation about a higher level (owing to (a), (b)

or (¢), or some other factor)

It can be seen from the points made here that the description of
Section V.4 will predict that multiply-embedded relative clauses are
"complex", whichever metric is selected from (110). This is not very
interesting, since the same 1is 1likely to be true of almost any
serious description of English relative clauses. However, there is
one point Vorth noting about the MCHINE grammar version, if our

complexity metric is based on (110) or related factors.

A more standard ATN analysis of relative clauses will also
predict that any multiply-embedded structure. is complex, since
information builds up on staqks for every constituent processed, as
outlined in V.5.2 above. In the MCHINE grammar, this is not the
case, since the NEWLEVEL...MNIL construct allows soﬁe constituents to
be nested without loading up the staéks. Hence the discrepancy in
complexity between a right-branching and a centre-embedding structure
is much clearer in the MCHINE grammar than it would be in a standafd
ATH description. The sélf—embedded relative clause is one of the few
cases where genuine nesting (as opposed to NEWLEVEL,...NIL processing)
has to occur to several layers. (One of the other examples 1s the
embedding of a clause within the first of two objects in a clause, as

in (106)(c) and (d)).

2> MCHINE program had been debugged on 1its target

=
D

After ¢

sentences and had carried out several simple dialogues (see Chapter
<

Vi), a test was carried out to see how the NEWLEVEL...NIL construct

infteracted with nmultiply—enbedde relative clauses. There 1is a

- " Fage 249

variable DEPTH in the MCHINE program which records the maximum number
of entries allowed on stack registers, and the program had been
debugged with DEPTH set to 8. This allowpa at least four
self-embedded relative clauses to be processed successfully. With
DEPTH altered to 3, the proéram could still successfully process
non-centre—embedding sentences, but failed on triply-embedded

relative clauses,

To summarise, the analysis of relative clauses presented in

Section V.4 indicated that multiply embedded relative clauses will be

~

complex, if any of the factors in (110) are taken to determi;e‘
complexity. ‘ The vacuity of this[observation is mitigated by the
point that a grammar with the NEWLEVEL...NIL device distinguishes
more sharply the qomplexity of centre-embedded relative clauses from
that of other embedding constructions. The ididea of wusing a
subroutine-like mechanism for embedded constituents is not new, but

the NEWLEVEL...NIL construct introduces a modified form of subroutine

which seems particularly useful.

‘Page 250

Section V.6 : The’Semantics_“g Noun Phrases

The term "noun phrase" can be taken to cover a wide range of
forms, including nominalised clauses. For the purposes of this
discussion, we will focus primarily on the simpler forms - proper
nouns, pronouns, and common nouns with optional modifiers before and
after. Various classifications (e.g. "definite/ indefinite",
"specific/ non-specific"™) can be made of such phrases, and these
categories are generally treated as syntactic, rather than semantic.

| , =
The object of this section 1is to show that these traditional
distiqctions are better looked on as semantic vegularities, and to

suggest how the patterns might be incorporated into a computational

model.,

The SHRDLU program (Section 1I.9) translated English noun
phrases into procedures which, when executed, found the referent(s)
of the phrase. As obéerved in Section III.4, this incorporateé some
aspects of the "sens§/reférence" distinction, provided that we take
"referent" to mean some internal construct, rather than a concrete
object. We will try to refine that approach, to see exactly what
kinds of "meaning-procedures' theré are, and what kind of operations

can be performed on them.

V.6.1 Definiteness

Certain kinds of "definite" .ﬁoun phrase (using the wusua
classification) seem to have a fairly straightforward behaviour.
They can be regarded as providing desctiptions which, in a particular
context, will identify a unique set of objects that the hearer knows

about.,

Page 251
(111)
(a) The red block
(b) This man
(c¢) The farmer’s wife

Even if we could formalise this way of describing the meaning of

NPs, it would be neither a necessary nor a sufficient criterion for
AN

\

traditional "definiteness". It is not clear whether proper names and
personal pronouns are traditionally "definiée", but they are
certainly used to identify a unique set of objects that the hearer
knows about. Winograd (1972) points out that it is odd to use a
phrase like "the pyramid" if the context does not make it clear to
the hearer which pyramid is referred to. Compare this with the
comment by ﬁcCawley (1971b) that (112) sounds odd if the context does

not make it clear who "he' is.

(112) He resembles Mike.

The further observation should be made that (112) also sounds odd if
the context does not make it clear who '"'Mike" is. This alleged
similarity between proper names and descriptive phrases ﬁay seem
dubious at first, but in fact proper names, as used in English
conversation, are not "pure names" -in the philosophicél sense; that
is, there 1is not a one-to~one correspondence between names and
objects. HNames may be intended as an approximation to pure. names,
but the way that they arc used is analogous to the use of identifiers
in programming, where the value of an identifier depends on the

context., The expression "Mike' in (112) may have different referents

Page 252

in different contexts, since different people have different mutual

acquaintances,

As Winograd points out (ibid., p.156), "definite" cannot be
identified with "known to the hearer". There are various kinds of
"definite" noun phrase which can be used to refer to objects not

previously meutioned.
(113)
(a) My brother who lives in Chicago.
(b) The title of his new book.
(c) fhe tallést elephant in Indiana.

(examples from Winograd).

Winograd observes that (113)(b) apparently is allowable because the
noun '"title" denotes, inkéoﬁe way, a function defined on the set of
books. Similarly, (113)(c), by providing é full description, allows
the hearef to assume that such an object exists. Sentenceévlike
(113)(a) are more interesting - 'brother" does not denote a
functional vrelation (since a person can have several brothers), nor
is there any guarahtee fﬁat "Qho lives in Chicago" provides a uniqﬁe
description in the Way that htallest" does. If a speaker uses
(113)(a) in addressing someone who knows nothing of his brother, the
assumption 1is that this description provides all the relevant
information (for this particular conversational exchange). .If the
hearer does know all the details of the speaker’s family, the phrase

is once again like -those in (111), and the sentence may be

Page 253
inappropriate if it does not sufficiently define a referent.

This raises a further aspect of "definite'" noun phrases - the
adequacy (and relevance) of the information involved. There seems to
be a general princiﬁle in wusing definite noun phrases, that
distinctions need not be made 1if dirrelevant in the particulaf
context. When the program of Davey (1974) is constructing referring
expressions, it takes into accounf which distinctions are relevant to

the context, using various equivalence classes within the domain of

discourse. Oddity can result from not being consistent about w>
distinctions are relevant, (114)(a) sounds acceptable, on the

assumption that which "end" is involved is irrelevant, but (114)(b)
sounds odd, with the second clause suddenly introducing a contrast as

being pertinent.
(114)
(a) I sat down on the end of a nearby log.

(b)?? 1 sat down on the end of a nearby log, and Harry sat on

the thin end.

Let us try to cover these aspects of 'definiteness'" by the

following generalisation :

(115) A definite noun phrase is used by the speaker to provide
the hearer with all the relevant information to produce a set of
referents; the information may be inherent in the description, as in

the case of "functiocazl" words, superlatives, etc.

Page 254

The main inadgquacy of (115) is that it says almost nothing, as
‘becomes apparent on considering the idea "produce a set of referents"
in more detail. 1In the case of nsomé referring expressions (e.g.
proper names, pronouns, certain phrases with "the"), the referents
are to be foﬁnd in the hearer’s "world model™, since they are things
which he should know about already. However, in the case of phrases
like those in (113), there seems to be a process of generating a
referent on the spot, given a description which it must meet. Hence
"produce" in (115) means "find or generate". At this point in -the
argument, (115) becomes so genefal as to cover many other kinds of
referring expression. "Indefinite" noun phrases can be wused to
provide a description of an object the hearer is not acquainted with,

and the speaker provides only. the information he feels is relevant.
(116)
(a) A woman with a collecting can accosted me.

(b) Some vandal has wrecked this phone box.

The differenée seems to be that "indefinite" noun phrases can be used
only to generate a set of objects =~ there is no possibility of
"finding" one automatically in the hearer’s world model. (That is
not to say that he could not infer; at some stage, who the subjects
of (116)(a) and (b) refer to, but that would ’not be part of the

information that the speaker is imparting in the noun phrase).

This contrasts with certain other noun phrases which we have
been classing as “definite'", where referents must be "found", but

"generated" if the search fails, In particular, proper

caanot be

Page 255

names, personal pronouns, and demonstratives all seem to reduire that
‘the hearer can actually identify what objects are referred to - the
meaning of the phrases allows no construction on the spot of a
referent(s) to match the description. If we class these phrases as

"deictic", then the classifications so far are as follows.
DEFINITE and DEICTIC : find a referent.

DEFINITE and NON-DEICTIC :-find a referent; if none, generate

one,
INDEFINITE : generate a referent

(Rumelhart and Norman (1973) give a similar gloss for
"definite'", but they attribute this behaviour to the article "the',
rather than to some more general property of definiteness which is

possessed by various kinds of phrase).

V.6.2 Specificity

So far all the noun phrases have been regarded as referring to
some set of vreferents in a given context. There are certain
expressions for which this 1is mnot a very satisfactory way of
describing the meaning. In particular, generic statements often do

not have particular referents as their subjects or objects :

(117)

(a) Wolves cat meat.

Page 256

(b) The wolf is a carnivore.
(cy A wolf is a carnivore.

(d) The monarch is the head of the Church of England.

The subject phrase sometimes does have a vreferent in a particular
context, as 1in (117)(d), and there may be an interpretation of the’
sentence in which that is the best way to describe the contribution
of that phrase. Nevertheless, in the cases being considered héfe,
there is also a "generic" reading of the sentence, in which the.
statement conveyed is not about one particular referent in one
particular context. Let us refer to the generic interpretation of
the noun phrase as "non-specific" énd the other interpretation as

"specific".

Noun phrases like "the monarch" or "a wolf" can have either a
specific or a non~specific reading, depending on the context of use,
but certain other kinds of expression are less- versatile. For
example, it is very difficult to find a generic (non-specific) use of
a proper name or personal prbnoun. The subject of (119)(a) cannot be

interpreted as ﬁeaning "anyone named Ed"
(119)
(a) Ed drinks Newcaétle Brown.
(b) Anyone who prntesréd waé thrown into prison.

Also, some phrases (e.g. the subject of (119)(b)) are wholly

non-specific. It might be thought that the set of wholly specific

Page 257

phrases and the set of deictic phrases might be related, since they
clearly OVerlap. However, some wholly specific phrases are not

deictic, e.g. "Someone who protested was thrown in prison".

Intuitively, the non-specific phrases are being used as
patterns, to make statements about any object(s) that match the
pattern,.whereas the specific phrases are being used to produce
instances, 1in a particular context, which do match. It would be

™

useful if we could find some single representation for the meaning of

a noun phrase which could function in both -these ways.

V.6.3. Predication

Noun phrases can be combined with the verb '"be'" ‘to produce a
verb phrase which can form the complement of a sentence. It would be
preferable if whatever semantic representation we can devise for
referring ezxpressions will also describe their behaviour when they

combine to form predicates, as in (120).
(120)

(a) Bill is the owner of that Mercedes.

(b) Your landlord is a Marxist.

The two previous subsections have indicated that a suitable

representation mieht be some kind of "pattern"
p &

which can be either
used directly (non-specific), or used to find a set of referents
(definite), or wused to generate a referent set (indefinitg).‘This
supgpests that Qe consider either using the referent set to form the

vredication (cffectively, treating the phrasec in the complement as

specific), or using the pattern dtself to convey the predication

Page 258

(effectively, treating the phrase as non-specific). If tﬂe phrase
inside rthe ‘complement is either wholly specific or wholly
non-specific, there will be no choice, but it remains to be seen
which 1is better for thosé phrases which can take | either

interpretation,

If we are making the assumption (as éuggested in Section IV.8)
that semantic processing is carried out locally as far as possible,
then the difference between using the specific'and non—-specific forms
would be as follqws. The specifiq form would produce a referent set‘
for its semantic structure, whereas the non;specific form would
produce a pattern. In the former caée, the subjeét—complement SCR
would have to perform some kind of object identification process
between the set of objectsv referred to by the subject and those
produced by the complement. In the non-specific case, the
subject-complement SCR would have to assert that the pattern was‘true
of the subject set. There seems no way to choose between these,
other than seéing which integrates best with other rules and
operations required. it would be extremely useful, for example, if
the structure chosen for such comélements was similar to that chosen
for ordinary verb-phrases, since then there would need to be only one

subject-complement rule to cover both cases.

This can be achieved (as indicated in Section III.10) by using a
"definer" for the semantic structure for referring expfessions. As
described in Section II1I.10, the definer 1is a piece of semantic
network with one role "selected", and can be semantically pfocessed
in various ways. Referringbexpressions seem to need at least 3

semantic operations defined on them :

Page 259

(121)

(a) Find-referent : use the semantic item as a pattern to get a

'set of refernts from the world model.

(b) Generate-referent : construct a new semantic item which fits

this pattern.

(¢) Construct-assertion : combine another item with the pattern
to create a relation~instance.

~

In addition, they need to remain as patterns on some occasions, soa
that they can indicate a range of items. If we adopt the "definer"
as the kind of structure for a_referring expreééion, these operations
can be defined in a fairly straightforward way. '(121)(3) corresponds
to fetching an‘item-from the semantic network to fill the seleéted
role. (121)(b) ‘corresponds to constructing an item to fill the
selected role (the rolgfgestriction can provide information for
this). (121)(c) corresponds to putting Va semantic item into the

selected role on a definer.

The phrases underlined in (122) could then provide a definer
directly to combine with the subject item to form a

relation-instance.
(122)

(a) Fred is a teacher

Page 260

(b) John is Mary’s father

'This assumes that the "be" would not affect the overall semantic
structure of the phrase, but that. is not implausible. (Some
transformational treatments of '"be" regard it as absent in deep
structure, being inserted by a transformation). Since verb SCRs
("role-placement rules" - see Section V.8) produce definers, the

modularity of subject-complement SCRs is achieved.

Section V.7 : Tense and Time

———

V.7.1 Fhe‘Previous Descriptions

This section discusses and attempts to develop two previous
computational descriptions of the English tense system (Isard and
Longuet~-Higgins (1973), which is based on Reichenbach (1966), and

Isard (1974)).

In conversation, we frequently indicate when (approximately) an

event occurred by relating it to another event, as in (123). ™
(123) When I arrived, he had already left.

The "when"-clause can be regarded as setting up a '“reference
time'", with respect to which the main clause is interpreted. We can
talk of earlier events either by using past tense or perfect aspect,

or both. Isard and Longuet-Higgins distinguish
(124) , S
(a) the time.at which the sentence is uttered
(b) the time of reference
-(c) the times at which the events in the sentence occurrgd'

Thus, in (123) "I arrived" gives the time of reference, which is
before the time of utterance and after the time that "he left". That
is, there are two event times in this example, one of whicﬁ supplies
the time of reference. Isard and Longuet-ﬂiggins offer the fdllowing

"rule of thumb"

" Page 262

(125)

(a) past tense will be used when and only when the time of

reference precedes the moment of speech
(b) present tense indicates that the two coincide

(¢) the presence of "have" (perfect aspect) signifies that the
time of the event in that clause precedes the reference time

S
N\

(d) the absence of "have" indicates the coincidence of reference
time and event time

t

The idea of distinguishing event time, reference time and
utterance time seems intuitively useful for deséribing tense, but the
"rule of thumb" is slightiy misleading on points kb) and (d). Present
tense can be used (as Isard (1974)vpoints out) to refer to events in
the future, and-so reference times which succeed the utterance time

can be set up using present tense, as in (126).

(126) When he arrives in London, he will have spent four hours

on the train.

Regarding (125)(d), the exact relationship between reference

time and event time (in the absence of "have'") is unclear :
(127)
(a) When they built the fifth bridge, they took several tenders

(by "l they used the best materials.

Page 263
(c) ™ "™ "™ " MM there was a gala opening.

"Approximately coincide" seems the best summary of examples like

these. When the data include clauses referring to intervals of time

(wvhich Isard and Longuet-Higgins were specifically excluding) even
"approximate coincidence" is not a very good description.
Nevertheless, (125)(a) and (c¢) seem to be generalisations which are

worth retaining.

Isard and Longuet-Higgins also observe that it is not necessary

for the reference time to be established within the same utterance as

it is required - it may be a previously mentioned reference time :
(128)
Was he there when you arrived ?
No, he had already left.

The reference time for the answer is that set up by the "when'-

clause in the question.

McCawley (1971h) suggests that a past tense sentence (such as
"the farmef killed the duckling") is ill-formed unless the context
provides a time~reference point for it. This is true only as long as
"context" is taken to mean the entire knowledge of the hearer of the
sentence., Certain historical stakments do not need such explicit‘
reference times, as the events themselves are well-known. Similarly,
a sentence like "Angus went to school in Edinburgh" does not sound
odd if the hearer knows that Angus is educated, and hence probably
went to school at some time. fhis is relevant ‘to the wuse of

"when'-clauses, since it would be very difficult to carry on a

Page 264

conversation if some events or states were not already
self-supporting; the whole point of a "when'-clause is to use such

an event or state to set up a reference time.

Isard (1974) develops these ideas fufther. He proposes two
slots, PRESENT and REMOTE, into which reference times can be put.
These slots maintain their values between utterances (to account for
dialogues like (128)) unless either they are obliterated by some new
value being pué in the slot or the conversation switches to using
some other slot. That 1is, (128) establishes the reference time
referred to by ‘"when you arrived" in the REMOTE slot; later
utterances which use remoté fense will automatically refer.to that
reference time unléss some new remote reference time has been
specified, or some utterance in the prgsént tense has been
interposed. .Isard suggests that it is the task of the "time-binder"
"when" to get the reference time from the subordinate clause and put
it into the appropriate slqt. The main clause then wuses the slof
which corresponds to its own tense - the "when'-clause should have
filled this. The problem of "approxihate coincidence" of events is
simplified for the Isard program by interpreting "when el, e2" as
either "el is coincident with e2" or "e2 immeaiately follows el",
both of which are clearly defined in the domain he is using - events

are moves in a noughts—and-crosses game,

V.7.2 Nested Tense Settings -

The rules suggested by Isard and Longuet-—Higgins for maintaining
reference times between utterances scem to cover many cases.

However, there are examnples which seem to escape these constraints.

Page 265

As commented above, an utterance may contain two event-times,
one of which forms the reference time for the utterance. Sometimes
this gives.the next utterance in the dialogue a choice of two
possible reference points - the already~used reference time or the

“event-time of the other (main) clause :
(129)
A : VWhen I was at university, the Duke of Friockheim visited us.
B : Was there a big reception ? ' —
(130) o \
A ¢ When I was at university, the Duke of.fgiockheim visited us.
B : What other exciting events occurred ?

This seems to suggest that the conversational reference points

are set up retrospectively, or else that some notion of "

potential
reference time" is needed, or some combination of these two
modifications., In such cases, selecting one of the two candidates
for reference time sometimes eliminates the other candidate from
later use, and sonmetimes does not. 4Consider a dialogue consisting of
(129) followed by (131). The other reference point ("I was at

university") seems to be still available for wuse in the last

question,

(131)

Page 266

A : Yes,
B : What other exciting events occurred ?

. However, if we append (132) to (130), the resulting dialogue

does not flow smoothly.
(132)
A : Nothing much., ‘ A
B : Was there a big reception ?

The ducal visit seems to have been lost as a possible reference
point in this case. This may be describableillike'thg previous set
of examples, in terms 6f conversational structure divided into
subsections. It may be that in the well-formed dialogue (129)+(131),
the centre question and answer constitute a nested subsection of
conversation using a different reference time; the
previously-established reference time is saved for use at the outer
level of conversation. The slightly odd dialogue ((130)+(132)) may
result from there being ‘no enbedded section where a different
‘reference time can be used. These comments are lamentably vague.
One possible way to formalise this description might be to have a
more precise notion .of a subsection of conversation (e.g. as in
Sections III.12, IV.7 above), with the slots PRESENT'and REMOTE being

local to each subsection.

Alternatively, it may be that the tense slots are not single
slots, but are more like push~down stores, where items can be heaped

up in a "last-in-first-out" basis. Finding the relevant reference

time for an utterance may consist of searching back down the stack

Page 267

for an appropriate reference time, removing all potential reference
points above it. That is, every tensed clause in the dialogue causes
a potential reference point to be placed on the appropriate tense
stack, but once a reference time is adopted, it causes later entries

on the stack to be lost.

These two "solutions" are not just alternative re-wordings of
the problem, but differ in their effects. If we segment
conversations into nested subsections (e.g. as described in Sections

—

I11.12, 1IV.7), then we may wish to associate various characteristicé
with each section., For example, each subsection’might achieve some
particular purpoée in the dialogue, or there might, be a whole range
of "local" information (other than just tensé. settings)‘ which 1is
specific to each subsection.r To say that tﬁe tense settings are
determined by the successive sections (nested or sequential) is to
say that the patterns which occur in these other characteristics
follow the same behaviour as the tense patterns. On the other hand,
if we just say that the tense values are étacked and unstacked, it

says nothing about the way that such storing will relate to other

aspects of the dialogue.

There seems to be a very 10Q limit’on how many reference times
can remain accessible, whether the "stack" or ‘the "subsection"
approach is used. It is quite difficult to construct a fluent
dialogue where the speakers use a succession of reference times, and
then re-use previously mentioned reference times. The following
exchange has used five different reference times, at the pqint marked
=> . The subsequent utterances attempt to re-use all of these (in a

last—in, fdirst-out basis). The last utterance- (%) seems to be

Page 268

slightly odd - a puzzled comment such as (134) seems as appropriate.

(133)

While I was a student, I lived for some time in
Did you visit Paris ?

Yes,

Did you go to the Eiffel Tower ?

Yes, we had a picnic at the top.

What other towns did you visit ?
Bordeaux.

Where else did you live ?

Italy, for a few months.

(134)

A e

What, when I was a student, you mean ?

Although the ahove discussion has been based on

examples, most of these patterns appear in present tense

well. For example, the

France.

past tense

sentences as

following "dialogue uses two present tense

time references, with the “storing" effect described above.

Page 269
(135)
A : When he is staying in London, his felatives will visit him.
B : Will they annoy him ?
A : No.
B : Will he be working during the day ?

If a retrospective selection of time-references is used, then
this provides another analogy between the behaviour of tense markers

and that of pronouns (cf. McCawley (1971b)).

V.7.3 The Function of Time-binders

Isard (1974) suggests that most of the systematic allocation of
reference times inside a sentence can be performed by the
"time-binder" word "when" in the subordinate clause. That is,
executing the semantic part of 'when" does the<following in his

program :
(136)
(a) locates the event time of the subordinate clause

(b) sets this event time into the appropriate slot (PRESENT or

REMOTE)

.

The interpretation of the main clause then uses, for its
reference time, whatever has been loadecd into the slot that its own
tense refers to. There are slight problems with this analyslis,
Firstly, there are otheér tense manipulations necessary within the

sentence; secondly, it may be inappropriate to have all the

Page 270

manipulations performed by the time~binder.

Compare (i37) and (138) :

(137)

(a) Before I arrived he sent off the letter.

(b) When I was opening the window, he left the room.

(138)

(a) At five o’clock, he left the room,

(b) On Tuesday, he sent off the letter,
N

{c) Yesterday, all my troubles secemed so far away.

Although time adjuncts in the form of a clause contain a
time~binder word (which can be given the responsibility of setting up
the refemwnce time) there are very similar sentences (e.g.(138)) where .
there 1is no single time~binder to which this task can be allotted.
These sentences may need a separate SCR for fime adjuncts, which
.takes the meaning cf‘ the adjunct (a time structure, whatever that
will look 1like) and slots it into an appropriate temse slot. Thus,
the time-binder can be :eliéved of the task of setting the ténse slot
up - it has just to opevate on the clause (or its meaning) to produce

a time structure for tihie SCR to act on,

In the Isard progrem, the meaning of '"when" operates on the
meaning of a clause s produce a reference time - namely, the time of
the event referred o by the clause. The difference between "when"

and other time-hinders like "before" and "after" seems to be in the

Page 271

structure that this conversion produces. Compare the sentences in

(139).
(139)
(a) When the sun was shining, I could see Ben Nevis.
(b) Before the sun was shining, I could see Ben Nevis,

(c) After the sun was shining, I could see Ben Nevis.

~

. \
The relationship expressed, by these sentences, between the time

of one state and another differs as the time-binder is altered;
Rather than postulate that the time~binders operate on two clauses,
it ‘might be better to have the different-time—binders construct
different reference times from the subordirate clause. Once this
time-structure is inserted in the appropriate slot, the procedure for
interpreting the main clause can act differently on the different
structures. If this conversion from’clause—meaning-to time—structuré
is the task of the time~binder, then "when" may, in some sense, be
the most basic example. Whereas other time-binders may operate on
-tha event or state referred to in the clause to produce some time
strvucture not coinecident with the event or state, the meaning of
"uvhen'" generally preoduces, as reference time; the duration of the
event or state (approsimately). Hence the "approximate coincidence"

relationship mentioned above is a, direct result of using '"when" as

the time-binder, If we set up an event or state as the reference
time without using a Uime~binder - i.e, implicitly in a dialogue -
then the effect is very similar to using "when". The

Lime~relaticnship convevad in (140) scems closer to that conveyed in

(141) than either of these in (142),

" Page 272
(140)
A : Did you cook the meat ?
B : Yes. The smell was overpowering.
(141) When I cooked the meat, the smell was overpowering.
(142)

(a) After I cooked the meat, the smell was overpowering.

\\
(b) Before I cooked the meat, the smell was overpowering.
(This is a very weak point - intuitions vary greatly). This

would fit in quite well with the description of '

'when" as a regular
"wh'"-word. A clause beginning with "wh=" ("what", "who'", etc.) can
be regarded as a pattern to describe some item, where the "wh'-word
conveys the semantic class of item (time, thing, pérson, etec) and the
clause gives a partial description of it‘/ Thus "when I cooked the
neat" is roughly paraphraseable as "(at) the time at which I cooked

"o

the meat". This is just how Isard uses "when"

clauses - they are

patterns describing times. Hence, if we postulate that the meaning

of "when" merely converts the nmeaning of a clause into a pattern for
7" "

a time, then we are saying no more than that "when" is the "wh"-word

for time.

i — . L S iR

V.7.4 Disembodied Time Refarances

Under the Isard aunalysis, a “"when'" clause causes the value of
the tense slot to change, but in some sense the "meaning" of the
- clause is not itself acted upon by a higher grammatical rule.

(In computational terms,. the clause has side-cifects but leaves no

Page 273

results). Under the analysis suggested here, the clause passes up a
result (a time structure) for a SCR to use. Hence the analysis of

partial utterances in exchanges like (143) changes.
(143)
(a) Had you taken two ?-
(b) Under what circumstancgs ?
(c) When you took eight.

Isard”s program tries to understand (a), and finds it has
nothing din its REMOTE slot; it therefore asks for a time referencel
in (b). The clause (c) is interpreted and executed, and the progr;m
attémpts once again to interpret the initial utterance (a); the
execution of the '"when'-clause should have set the REMOTE slot
accordingly. Under the analysis here, (c) would merely present the
progfam with a ready-made reference point - the program would have to
"know'" what to do with it (i.e.use it to £ill the "REMOTE" slot), and
it could then continue from where it left off. ihis distinction may
seem fairly minor, but the new approach will allow (144)(b) to be

treated similarly to (143)(c).
(144)
(a) When did you see me ?

(b) When you left the building.

Page 274

_ That is, uttering an isolated '"when"-clause is regarded as
offering a time=-structure to the hearer - the way that the hearer
reacts to this will depend on what he is expecting. An alternative
which could be adopted under the Isard analysis is to suggest that
the act of setting a value into the tense slot can be regarded as
answering a question (e.g. 1in (144)), but this seems slightly
counter-intuitive,

~.

This is not to say that the time-structures created for gﬁe:
"when'-clause does not end up in one of the tense slots; the point
is that the clause meaning itself (or the time—gindef "when") should
not perform thisb task. If we allocate such decisions to rules
outside the "wheﬁ"wcléuse, then (143)(c) and (144)(b) can be treated
identicélly at the clause level, but any diffevrences can be described
at the conversational level, in that the time structure is being used
in different ways by different conversational routines (cf."localised

semantic descripticen" in Section IV.8).

V.7.5 Teuse Clash

Once a "when'-clause has set u a reference time the main
b

clause has to use it, or oddity results :
(145) % When he walks in, I greeted him.

This is not a constraint on keeping tenses in different clauses

of a sentence the samc :

(146G)

Page 275
(a) Although she sells sea shells, she was once a frogperson.
(b) Bécauée she helpedvFred, he is very grateful.
(c) Fred said that Gladys knows that Evelyn left,

If the time-binder (under Isard;s analysis) or the time-adjunct
rule (under this analysis) merely ;lters the value of the tense slot
therelis no reason why the main clause should have to use this slot.
There seems no neat way of accounting for this constraint, but it may
be that within each clause there ié some notion of “current tense-
slot". That is, one of the two slots is selécted, on the basis of
time~adjunct and tense information in .the sentence, and that is the
reference time for that clause. The difficulty (in sentences like
(145)) is then not because the two clauses have different '"current
tense-slots", but because the process of interpreting the
time-adjunct selects the tense-~slot for the main clause using the
reference time of thgr4subordinate clause; the main clause itself
tries to select.a tense-slot using its tensc. If these are.different
attempted selections (és in (145)),.abclash results. This is ad-hoc,
but it 1is not clear what else would fit in with the other

suggestions.

V.7.6 A_Summary;gi the Tense~Slot system

Let us summarise the modifications to the Isard/ Longuet-Higgins
analysis. The ﬁask of Ehe time~binder words is solely to convert a
clause-meaning into a time structure. - This time structure can then
be used as the answer to a question, or may become the argument for a
SCR which handles time adjuncts. The basic form of time-adjunct is

the "when"-clause, which indicates a moment or interval of time using

-Page 276

an event or state which has roughly that duration. Time adjuﬁcts may
occur in forms other than bound clauses (e.g. prepositional phrases)
but are handled in a similar way. The time~adjunct SCR rule selects
the tense- slot indicated by the time adjunct to be the "current"
tense-slot for the main clause, and puts the time-structure supplied
by the tense of the time adjunct into that slot. In interpreting the
main clause, a selection is made of a "current" tense~slot on the
basis of the clause’s tense, and the interpretation proceeds u§i§g

the reference time held in that slot (or perhaps by searching a stack

of stored values - see above).

V.7.7 Time Semantic Structures and Relationshgng

Before discussing the details of the various semantic categories
and SCRs needed to describe such structures, let us examine

informally the kind of information that will have to be represented.

The way in which an event can be used to convey a time structure
can vary. For example, (147) secems to refer to a definite point in

time, wvhereas (148) seems to describe an interval of time :
(147) When 1 opened the box «....

(148) When I was opening the box «iuas

This distinction affects the'way in which a mwain clause is
interpreted; if we append (149) to (147) the interpretation is that
the leaving followed the opening, but if it is appended to (148), the
interpretation is that the leaving ogcutred‘at some stage duiing the

opening

o .

Page 277
(149) 'nn--he let-

If we assume that events and states are 1located on a simple
"time-line", the appropriate primitives scem to be "points" and
"intervals". (These are left as Qnanalysed primitives, whose mnemonic
names should be intuitively useful). One way to describe an interval

of time is to mention a state which existed during that period :
(150) When I was at school .«vuee. - A ™

The verb "beﬁ, together with a complement is a simple way to
achieve this. As illustrated in (148), the use of a progressive verb
form can also describe an interval of time. (Sone generélisation
might be possible about the meaning of copular "be" and progressive
"be", regarding its use for describing states of affairs; this will
not be attempted here). I1If a. sentence attempts to relate two
intervals (in the way described above) the dinterpretation is often
that the state of affairs described in the ."when'"-clause held for a
sub-interval of the duration of the state described in the main

clause :
(151) When I was at school, de Gaulle was still alive,

Some examples can be found where there seems to be a slight

implication that the two.time intervals are co—extensive -
(152) When the sun was shining, the room was quite warm.
However, it is rather difficult to find examples where the main

clause describes a sub-interval (proper) of the interval indicated by

the "when''-clause ~ the reverse use, as in (151) seems more natural.

Page 278

It may be that the suggestion of co»extensiveness that in sentences
like (152) derives from some kind of 'conversational implication".
The sentence just states that the state of affairs described in the
main clause existed while that in the "when" clause did - i.e. a
sub-interval relationship, as in (151). The feeling that theé state of
affairs did not hold outside the interval. described . by the
"when'-clause may be a deduction from the fact that there must be
some point to saying (152). If we add "...And when the sun went down
we turned on the heater to keep it that way" to (152), there is no
contradiction; (152) does not assert that the state of affaitrs
described in the main clause failed to hold outside the smaller

interval.

Point reference times can be described by the non-progressive
forms of certain verbs, as in (148). As observed above, relating t@o
point reference times leads to some interpretation of "approximate
coincidence" (see (127)). Here is a case where "wofld knowledge" 1is
necessary to soft out the exact relationship between the two events -
the syntax/semantics can only provide the"approximate coincidence"
relationship.' This vague relationship seems to be paraphraseable as
"just before, during, or just after", where there is no absolute

definition of "just after " or of "just before"; these depend on the
J J

1" i

scale” of the event, in some sense :

(153)

(a) When the bell rang, I opened the door.

~ Page 279

(b) When the Americans dropped the ‘atomic bombs,' Japan

surrendered .

It may scem rather glib to keep allotting various problems to
"world knowledge" and "higher—~level iﬁferences", but there are limits
to what should be crammed into the grammar. One further
non-grammatical aspect of (153) is the slight implication of
causality that some people may extract from sentences like (153) (b).

However, this nuance does not come directly from the use of "

when"',
\\
but rather from the juxtaposition of the mentions of the events,

Compare (154), which conveys a similar sense of causality (or fails

to, according to your intuitions).

(154 The Americans dropped the atomic bombs. Japan

surrendered.

The use of the "when'-clause does help to draw attention to the
temporal proximity of the two events, and hence may spark off some
deductions in the hearer’s mind, but there is no need to cram these

inferences into the grammar of time clauses.

If the sentence describes a point event and an interval the
relationship betrwveen the two seems to be the same no matter which

occurs in the "when'"-clause :
(155%)

(a) When I was quite young, Fred hit me with a shovel.

Page 280

(b)IWhen Fred hit me with a shovel, I was quite young.

(There is no suggestion that these two sentences are synonymous -.
merely that the time relationships expressed in them are the same).
As pointed out in (148) and (26), there are two ways of wusing an
event to vrefer to a reference time - either as a point or as an

interval. As in (127)(b), two point events can be related by being

coincident :
(127) ' ‘

(b) When they built the fifth bridge, they wused the bhest

materials.

If we wish to state that one event occurred at some stage during
another event, describing them as point events is awkward; it seems

more natural to describe the "surrounding" event as an interval :

(156)

(a) ? When they built the fifth bridgé, a workman drowned in the

river,

(b) When they were building the fifth bridge,.a workman drowned

in the river.

Also, if both clauses describe events as "points”, they causot
be interpreted as locating the event described by the when-clanse

during -the event described in the main clause :

Page 281
(157) ?7? When he put in salt, he cooked the meat.

Thus there are certain possible ways of relating time-points and

time-intervals using "when"-clauses;

"When''-clause main clause relationship

point x point y X approx.coincides with y
point x interval i x contained in i

interval i point x x contained in i

interval i interval j i a subinterval of j

~.

. M
The ways in which point and interval time structures can be

conveyed by different verb forms is quite complex (or even messy). As

\

commented already, an interval can be described by either
(158)
v(a) the copular "be"
(b) the progressive form_pf a Yerb

Certain other verbs can also serve to describe states of
affairs, and produce interval time structures without the use of

progiressive verbs., Stative verbs, like "believe", for example :
(159) When I believed in deep structure, life was much simpler.

This does not seem too odd, since stative verbs usually do not

have a progressive form and seem to already contain the sense
- S

normally associated with progressive verbs. However, there secem to

be wverbs which are semi-stative, in that they have a progressive

form, they describe a siate of affairs even in non-progressive form,

and they fail some of the standard syntactic tests for stative verbs.

"Live', in Uhe sense of "dwell' or "rveside'" is one such verb. The

Page 282

oddity of (160)(a) suggests that this is a stative verb, but the

acceptability of (b) and (e) suggest that it méy not be:
- (160)
(a) é? I lived in London and he did so too.
(b) Whaﬁ he did was to live in London.
(c¢) Live outside London - the rents are lower.

The two sentences in (16l) seem almost synonymous; in

particular, the time relationships conveyed are the same.
(161)
(a) Vihen he was living in London, the rents were high.
(b) VWhen he lived in London, thé rents were high.

If we try to use the "when'-clauses of (161) to describe an
interval within which some event cccurred, the two verb forms are not

equally suitabie :
(162)
(a) When he was living in bondon, someone bombed the GPO Tower.
(b) ? Vhen he Lived in L@ndon, sonmeone bombed the GPO Tower.

As pointed outr ({147) and (148)), the progressive form of a verb
is more suitable for describing an interval during which some point
event occurred. 1t may be that (162)(b) sounds odd because of its

similarity to the completely non-stative, non-progressive verb form

(cf.(156)), whercas (152)(a) sounds better because of some similarity

Page 283
to the standard form. The whole issue seems very messy.

Sq far, the only time structure associated with totally
non-stative, non-progressive verbs has been the simple point
reference time. If we now look at the use of such verbs to describe
habitual events, further complications arise. Roughly speaking, a
habitual occurrence can be regarded as a series of events which
together define an interval (namely, the interval within which they

occurred) . Thus a clause like:

(163) When I travelled in by tube ... as

is ambiguous between (at least) 2 possibilities :
(164)

(a) it refers to a single event; consider adding to (163) the

clause : ".,..I left my briefcase behind"

(b) it refers to an interval during which the event occurred
several times; consider adding to (163) the clause "...I was able to

claim expenses"

This may be the only way in which a non-progressive, non-stative
verb can describe an interval - by describing some habitual action
which took place within that interval. An interesting consequence of
this is the way in which the ambiguity of (163) is preserved even

when a progressive marker is added :

Page 284
(165) When I was travelling in by tube....
(a) «..Someone stole my briefcase. (b)...They raised the fares.

There seems to be no grammatical way of disambiguating these -

again some resort is necessary to extra-linguistic knowledge.

V.7.8 Perfect Aspect

As mentioned previously, the use of perfect aspect generéily
indicates that the event time of a clause precedes the reference time
of the clause. This information can be used in two wa?s - if tﬁe
reference time 1is known, it locates the event time; if the event
time is known, it helps to define .the referencg.time. The rules for
determining whether to use a verb with perfect aspect, rather than a
past tensed verb, (i.ec. "I have scen him" rather than "I saw himn'")
are unclear. One relévant factor may be a reluctance (or inability)
on the part of the specaker to specify an exact refewnce time at which
the event occurred. This alone would not account fér all the nuances
that the present perfect seems to convey, but it is outside the scope
of this chapter to examine thié wider problem.(McCawley (1971b) gives

‘an inconclusive discussion of several examples).

There has not been time to develop a full analysis of perfect
aspect here, as it is probably the most difficult part of the English
tense/aspect system. The MCHINE program (Chapter VI) bincludes some
‘ad hoc devices to allow it to re;pond to questions vhich use perfect

aspect,

Page 285

V.7.9 Some Rules and Structures

Let us examine 1in slightly more detail how the rules and
structures could operate for time clauses. As pointed out above, it
seems plausible to regard time-binder words like "after" and "before"
as combining with a clause-meaning to form some kind of
"time~-descriptor". That is, we could have two semantic categories -
"time-binders" and "time-descriptors' - and an SCR (say, "Time-Bind")

\\
which performs the combination. Surface trees like (166) would be

the result:

(166)
<time-descriptor>

T

Time-Bind

T~

<time-binder> <relation-instance>

|

"after" o
"you left"
In order to relate these time—descriptors to another clause, there
would vhave to be a further SCR (say, "Time-Adjunct") whicﬁ relates
adjuncts to main clauses. Trees like (167) would follow, wherc the
semantic category of the overall result is yet to be discussed (see

below) .

Page 286

(167)

<at-time>
Time~Adjunct
3 . “‘N
<time-descriptor> <relation-instance>
A~ .
"after you left" "he arrived"

By separating these two functions into separate SCRs, we allow
other time-descriptors (e.g. (138) above) to combine with ma@n

clauses in the same way, and time-descriptors to be created

independently, as in (168)(b).
(168)
(a) When did he arrive ?
(b) Af%er you left.

The overall structure produced by the Time-Adjunct SCR is hard
to characterise. It seems to express a relationship between a time
and an action, or state of affairs. We can represent this (in a

rather ad hoc fashion) with a semantic network relation "AT-TIME".

Let us consider what characteristics a '"time-descriptor" will
require to .represent the time relationships discussed above. (i.e.
in thé table in V.7.7). The éirst important point 1is that‘ a
time-~-descriptor is at the level of intensional semantics (see»Se;tipn
II1.11), not referential semantics. The "points" and "intervals"
used in V.7.7 above are abstract constructs, which entér into the
relationships skctched here; they are distinct from "points" and

"intervals" in tinme, Time-descriptors denote segments of the

Page 287

traditional "tiﬁe—line", but they are at a different level of
description. The duration -of a particular event may deéine one
segment of timé, but it may have several different Ilinguistic
descriptions, with these different descriptions behaving in different
ways (cf. (l47) and (148)). It might secem that the minimum amount of
information that a time-descriptor would need is the segment of time
involved, plus an indication of whether it is to Dbe treated as a
"point" or an "interval”. If we consider the way that fimeuclauses
are used, it turns out that this is not the appropriate kind of

. s 3 \-
information. Although the point/interval indication is necessary i

c
L,
we are to systematise time relationships as above, the exact times

involved may be totally unknown to speaker and/or hearef.

Time-clauses serve to locate events or situations relative to one

another, not with respect to some absolute time-line. A
time-descriptor should therefore contain a representation of the
event (orsituation) involved, and an indication of how the start and
end of the "point" or "iﬁtéf;al" are defined by the start and end of
the event, For example, in a clause like (169), the end point of the

event provides the start of the interval described.
(169) After he arrived.

In all the time clauses ' examined so faf, the "point;" and
"intervals" can be deécribed Airectly in terms of the start and
finish of the eveﬁt or situation, with the further option of being
"undefined'". Hence a time—descfiptor can be represented fairly
simply, containing just a description of the reference event, a
point/interval marker, and an indication of how the event’s

end-points define the end«points of the time described. The SCR

Page 288

Time-Bind will act on a clause (which contains an event description)
and a time-binder (which will provide some of the information to

construct the other markings), to produce a time-descriptor.

V.7.10 "When'" Clauses

One obvious way to describe "when" clauses would be to class
"when" as a time-binder, along with "after" and "before". That would
not capture certain other patterns concerning "when". In particular;
"when" is a "wh'-word (see Section V.4 above), and it would be'neggér
if clauses like (168)(a) could be processed by the general wh;clause
grammar, as in Section V.4, Also, it might be difficult to procegs
question "when'"-clauses (e.g.(168)(a)), answer "when'-clauses (e.g.
(143)(c)), and subordinate "when''-clauses (e.g.(147)) all in the same
way, if the latter are to be described as time-binder + clause

combinations, since (168) (a) does not seem to produce a

time-descriptor.,

As discussed in V.4, wh-clauses can be looked on as a pattern
which identifies some item (or items), and this pattern can be used
to insert a reference to that item into a sentence (via a relative
clause) or to séek more information about that item (via a
wh-question) . "When'-clauses fit into this description, since most
subordinate '"when'-clauses can be regarded as relative clauses, with
a paraphrase wusing "at the time at whichﬁ instead of ‘''when".
Questions (e.g.(l68)(a)). also fit the genéralA"wh"~clause system,
since they indicate an item (in this case, a time) which the ‘speaker
wishes more information abﬁut. As pointed out in Section V.4, the
meaning of a wh-clause is a semantic structure with one component

marked as '"blank" in some way. If we are to treat "when'-clauses

Page 289

similarly, some suitable semantic structure of this general form will

“have to be devised.

This can be achieved as follows. An independent "what"-clause
like (170) 1is given a surface tree like (171), with a semantic

network representation as in (172).

(170) What did John bring ?

(171) h
<definer>
]
1el—Cléuse SCR
<definer> <relation-instance>

Ywhat" , T

Subject-Complement SCR

s
<definer> <Definer>
"John'" - - Role-~Placement SCR
M
<relation> "<definer>
"bring" "ohat"

(172)
nggaiz:kawwmw~§%§0perties:

“%\\\ " (WHITEM -~ TRUE)

Agént *Patient
-e \‘ N
AV S\
<John> =

Similarly, a "when"-clause (173) can be given the structure in

(174) for its surface tree.

Page 290

(173) When John arrived.

(174)
<definer>
Rel-Clause SCR
%Mu-“.
<definer> <relation-instance>
N
— |

Time-Adjunct SCR

<relation=instance> <definer>

ﬂ - 1\ '"wien"

Subject—-Complement SCR _ —
<indexical> <relation>

"Tohn" “"arrived"

That is, "when" is regarded as a "wh" form of time-descriptor,
which can thus fill the second argument of the Time-Adjunct SCR, in
the same way that the meaning of "what" can £ill an argument in a
role-placement rule. Thg resulting AT-TIME relation-instance will
have a component marked as a "wh"-form, and the Rel-Clause SCR will

work on this as usual to produce a network like (175).

(175)
‘!FM
QNNAT—EIq&;:hmmm@mfrgperties:
TN 4
*Time Rel Deqc % (WHITEM-TRULE)
gi :h,~ '
- (ﬂa RIVE
T
.A&ent
\f
<John>

This means that a "when'"-clause will be a definer which singles out

rhe time associated with the state or event described in the main

Page 291

part of the clause. Thus, this item describes a time, but is not a

"time-descriptor" as created by the Time-Bind SCR described above.

V.7.11 SumquX'QE.@Jles

Let us summarise the representation of time-clauses. . There is
an SCR Time-Bind which combines a "time-binder" with a

relation~instance to form a "time-descriptor'". The time descriptor

contains the original relation-instance, a "point" or "interval"

indicator, and an indication of how its end-points are to be used té
delimit the time period. There is an SCR Time~Adjunct wihich inserts
the tense of the adjunct as the tense of the meaning of the main
élause, sets this tense as the "purrent" tense in tﬁe current
conversational section, and creates an "AT-TIME" relation-instance as
its result. "When'" clauses are treated as wh-clauses which will
produce a definer (in the normal wh-clause way) which indicates the
time period of some event. This structure may also act as input to
the Time-=Adjunct SCR, as méy any time-adjunct (whether created by an

SCR or already formed as a lexical ecntry). (Section VI.4.7

discusses a detailed implementation of these suggestions).

Page 292

Section V.8 : Verbs and Cases

—

Winograd’s syntactic system uses the features SUBJ, OBJ, and
AGENT to classify the groups which are directly related to the main

"

verb of a clause. '"Subject" and "object" are useful classifications

for describing English surface structure, but their ‘semantic
relevance might be queried; Lakoff and Ross (1967) (in attacking
Chomsky (1965)) claimed that "subject'" and "object" cover no semantic

generalisations, and are purely a surface classification. ~

Different surface configurations may be used to exprass ecimilar
semantic relationships; for example, (176)(a) and (b) are very

similar in meaning, and (177)(a), (b), (c), and (d) are glsoT
(176)
(a) John hates Mary.
(b) Mary is hated by Jéhn.
177)
(a) Fred gave HMary the book.
(b) Fred gave the book to Mary.
(¢) The book was given to‘Mary by Fred.
(d) Mary was given the book by F?ed.

This could be expressed by associating with each..verb a
canonical set of object and subject slots, and classing together
those sentences which are similar in terms of the items filling these

places. That is effectively what Chomsky (1965} did, using

Page 293

"subcategorisafion rules" to describe the slots for main verbs, and
having qanonical- deep struétures (to which the subcategorisation
rules applied) for .superficially different sentences. The '"deep
sfructures" for (176)(a) and (b) differed only by the presence or
absence of a passive marker - they had the same deep subject and the
same deep object. Similarly, all the sentenceé in (177) had a deep
structure in which the deep subject, objéct and indirect object
| ' —
correspond to the surface subject, object and indirect object of
(177)(b) . Although Chomsky’s subcategorisation rules did not use\
relations such as '"subject" and "object'", he pointed out that it
might be possible to define terms like these at the level of deeé
structure. Chomsky”s method is sufficient to capture the
similarities in the sentences in (176) and '(177). He could
re~-formulate the information by stating that verbs can have an
"AGENT", a "PATIENT", and a "GOAL" at some "deep" level, énd these
may appear in various érderings at the surface, but this is more or
less a notational variant of the "Aspects" system. Let us call thesé

1"

deep canonical slots around the verb "roles".

A further elaboration of this description of verb meanings was
producéd by Fillmore (1968) who made the suggestion that there was a
small fixed set of roles (more than just the three correspondihg to
"subject", "object" and "indirect object') and that certain of these
deep roles were semantically similar. For exampie, there is a role
AGENT, which various verbs have, which has some independent semantic
content. He hypothesized that there was a small, universal set of
roles which are wused in deep classification of verbs, such that
whenever é certain role appears it always expresses the same

relationship between the verb and the term involved. If a term X has

Page 294

the role of INS?RUMENT in a verb V1 and a term Y has the role of
INSTRUMENT in a verb V2, then Fillmore’s hypothesis is that, in some
sense, X and Y are serving the same semantic function in the
structures containing V1 and V2. Filimore called these semantically

relevant roles ‘cases".

To account for the semanfic similarities in sentences like (176)
and (177), it is necessary to have some descriptién of the ﬁain verb
other than its surface behaviour. The most obvious way is to look on
the verb as being a relation with a certain number of arguments;
where these arguments may appear in a variety of surface
configurations. Some rules for showing how these surface
configurations are related to the argument places in the relation
would also be necessary in a complete description. This is very
similar to what Chomsky proposed in 1965, if we avoid the confusion
caused by the use of different terminology. Fillmore’s main
extension was to suggest that there could be some semantically
interesting classification of the kind of roles that verbs can have,.

"Some natural language systems in artificial intelligence (see Bruce

g a "case grammar" where in fact

(1375) for a review) claim to be using
they are using a notational variant of Chomsky’s system. A progranm
does not really use a Fillmore-style system unless it inclg§es some
non-trivial categorisation of the.roles used in verbs, and useé this
categorisation in some way, for cxample to perform inferences. At
least some of thé inferences would have to be phrased solely in terms

"dnvolved, without reference to the particular verbs,

of the Ycases'
If the verbs {(or relaticns) concerned are mentioned at all times,
then. the semantic coutent of the role has not been made independent

of the verb, and the infovsnce is vreally referring to '"the nth

Page 295

argument of the relation R" as could be done without cases. '"Cases"
~in mostartificial intelligence language systems are simply mnemonic

labels for argument slots.

Verb constructions are handled in the following wvay in
conputational grammar. Eéch verb has an associated semant@c
relation, and the set.of roles for that relation fulfils the purpose
of a ”case~framef for that verb (see Section III.10 for more details
of the semantic representation). Some of the SCRs (which will Be
referred to informally as "role—placementArules") take a relation as
first argument, and build a "definer" based on a relation-instance
using that rclgtion (see Sections III.10 and IV.3). A role-placement
rule puts its other arguments (which will come from the object and/or
indirect object of the verb into the roles of the relation-instance.
The subject-complement rule creates a relation-instance by putting
the semantic item from the subject of the clause into the selected
role of the definer, Diagramﬁatically, the SCR tree is like (178)
(vhere the semantic item produced by each SCR in the tree has been

sketched in).

© " Page 296

(178)

>
D i

AGENT PALLENT
1A AT}
<JOHN> <MARY>

T

Subject~Complement Rule

T

<JOHN> E
L o=)
“John® *AGENT PAj;ENT

YA Y

o <RARYS

Case-Placement Rule

M‘“‘N

. HATE <MARY>
* hates® - “Mary®

This has scveral advantages. TIHrstly, the case frame for the
verb need not try to express, in one frame, the necessary deep
semantic pattern and the necessary surface syntactic configuration.
All the vroles arve obligatory, inr the sense that, in any given
instance of a relation, each role will be present, even though the
sentence analyser or semantic network processor may not have an item
to £111 it. This captuves the point that 1if two relations have
different sets of possible parvticipants, they are different
relations., Fillmore’s. case frameé allowed some cases to be
”optional”v ot to be classed in pairs one of which must occur. This
atteapted to fecord, in the deep semantic structure for the verb,

information which was concerned with the surface realisation of the

. © Page 297

items. In computational grammar, such optionality is covered by the
recognition grammar, using the syntactic properties of the verb and

the various role-~placement rules, as will be described below.

Secondly, if we wish to represent the fact that two verbs have
"similar" meanings, there are two ways of doing this. ‘One crude way
is to give the two verbs the same relation (with, consequently, the
same rgle—list). .Thus two verbs can have the same '"meaning", and
still differ in their surface behaviours (since that is specified

separately). In the MCHINE grammar, "address" and "

speak' are han¢l§d
in this way. If we do not wish to identify the two meanings, we may
still vrepresent some degree of similarity by using the facility for
re~expressing a relation in expanded (primitivé).formn Two verbs can
have different non~-primitive relations, but have the same primitive
relation in their expanded forms. Fillmore tried to capture such
similarities (e.g. between "kill" and "die") by simply comparing case
frames. As Charniak (quoted in Wilks (1976)) has pointed out, this
will show the similarity only if it is assumed thét there is sonme

common semantic "core" of meaning paired with the two different case

frames. The method here achieves exactly that.

The sentence anal&ser in the MCHINE grammar processes verbs as
follows. On encountering the main verb, it accesses various
syntactic properties in the lexical entry, which tell it how many
objects there may be, and how to process them. ("Object! is used
loosely here to mean "a post-verb constituent whose meaning fills dne
of the roles inﬂbthe relation associated with the verb"). This
information is c¢onveyed by thfee lists (any of which may be cmpty).

One list indicates the possible SCRs if no object is present, the

Page 298

secqnd list contains pairs of SCR and ATN state—néme (for single
object processing), and the third list contains triples of SCR and
two state-names (for double-object configurations). The analyser uses
the state-names, if given, to process the object(s), if any, and uses
the corresponding SCR given to build a structure round the meaning of

the wverb. This has the advantage of allowing the individual

~

\A

behaviour of verbs (in terms of how their objects are expressed and
how they fit into the verb roles) to be specified separately in thé
lexicon, rather than itemising every possibility in the grammar (see
Section III.9 for further comments). New verbs, with idicsyncratic
surface constraints; can be added simply by writing an appropriate
lexical entry. Case-placement SCRs do little (in the MCHINE grammar)
apart from permuting objects into the deep roles and setting up the
selected role (which the subject of the clause, if any, will £ill).
Prepositions can act as clues to the analyser in processing the
objects, since a verb cén be marked (using the state-names in its
lexical entry) as having.a-bagticular kind of prépositional phrase as
an object (e.g. '"speak'" takes an (indirect) object starting with
"to"). This illustrates the case-marking function of prepositions to

some extent (but see Section VII.8.2 for some difficulties).

Passive constructions are handled quite naturalLy within this
system., The role-placement SCRs are subdivided into "active" and
"passive" (no good criterion has been found to characterise these two
clazses of rules, so at present the grammar writer has to mark the
SCRs explicirly). When the anaiyser ‘encounters a 'passive'" wverb
coufiguration (auxiliary "be" 4+ perfect participle), it sets a
restriction on the SCR entry for the verb phrase node, disallowing

anyrhing other than a "passive” SCR to be put there. '"Passive" SCRs

Page 299

have to be marked in the lexical entries for verbs, 1like any other
object specification; the grammar writer has to bear in mind that
the "agent" phrase (if it is included) has to be treated as an‘
"object" marked with the preposition "by". The construction
illustrated in (179) can be included for the verb "address" by
including (180) among dits single-object specifications in the
lexicon, where SCR4 is some suitéble role-placement rule marked as

"passive', and STPRPBY is the ATN state which "expects" "by". N
(179) I was addressed by the chairman;
(180) [SCR4 STPRPBY]

There are several role-placement rules (SCRs) for single-object
configurations, and several for two-object configurations. For
example, the surface order of the items for the verb-roles is

different in (18l)(a) and (b).
(181)
(a) He said something to me.

(b) He said to me that you had left.

It might be argued that these tould be handled by one SCR, with the
analyser re-ordering the:surface ébjects before putting them into the
nodes for the SCR., This would have certain drawbacks. Firstly, we
could no lénger have such a simple, extendible method of specifyiﬁg
the object configurations for a verb, since the grammar would have to
incorporate some register manipulation specifically for that verb,

Secondly, it may be that the different orderings of the objects has

Page 300

some semantic content (e.g. concerning "topic" or "focus"); if so, we
would want to be able to describe this difference by incorporating it

into the different SCRs.

Charniak (1975) has advanced the thesis (also presented,
briefly, in this chapter, above) that mostartificial intelligence
language programs do not at the moment use "case" in the Fillmore
sense, and Wilks (1976) has taken up some of the iséues in this area.
Studying this debate reveals how difficult it is to state exactly

1

what it would mean to be "using case", sc it is not very informative

N

(in the present confusion) to state that a particular system does or
does not '"use case". Charniak would probably regard the MCHINE
grammar as not being a case system, but it is worth noting two

respects in which the verb-roles are used independently of the verbs.

Firstly, the role-placement SCRs ére totally defined (as
mentioned above) by the way that they assign items to roles, and are
not verb specific in any'ﬁa§;>kDifferent verbs can often use the same
SCR, if their role-lists are similar, There is, for example, a
one-object SCR which puts the object item into the PATIENT role,
which can be used in the object-specification for any verb that has
PATIENT among its roles. Nevertheless, this does not give the role
any independent semantic cdntent, and so could be said not to be a

case facility in the strongest sense.

Secondly, in 'the MCHINE program (Chapéer Vi), whenever an
"event" occurs in the program (i.é. an input or output utterance),
the program "remembers'" the event by storing a relation-instance
representation of it. The "bersoﬁ" who is deemed ﬁo have "performed"

the action (either "MCHINE" or the one curreatly marked as

Page 301

interlocutor) is entered under the "AGENT" role for the event. This
is done as a simplified way of setting up the relation-instance, but
it could be regarded as attaching some content to the role of

"AGENT" .,

To summarise, the description of verbs given here has several
advantages. By having a deep representation of verb roles, it can
(as in case grammar) capture semantic similarities of diverse surface
forms. By separating the surface specification of a verb from the
deep roles, it avoids confusing the possible surface éonfigurations‘
with the set of relationships available at the lével of meaning
(unlike Fillmore’s approach). By allowing decomposition of
verb-relations, it allows a further level to show notions of
similarity, while retaining the identity of individual verbs. By
specifying surface configurations in the lexical enfries, it allows
the set of verbs to be extended easily. Passive and active
constructions are freated in a wuniform, generél fashion. The
structure built around the verb (a definer) 1is general enough to
provide a good interface with the subject-~complement SCR (see Section
-I11.10) . Checking of selectional restrictions occurs automatically
when the semantic items are fitted into the roles around the verb,
since semantic relations have role-restrictions as part of the

general semantic system.

CHAPTER VI

BE MCHINE PROCRAM

o e e et e e

Page 303

Section VI.l : Implementation Details

——

The MCHINE program implements some of the ideas discussed in
Chapters III, IV, and V, and has been used largely as a means of
investigating the details of these ideas (see Section I.4 for a
discussion of this technique). The program can run in two modes -
isolated sentence analysis or conversation. In the former mode, " the
user can type in a single sentence or phrase and the program will‘try
to construct a data structure representing the semantic network (see
Section VI.2.7) associated . with tﬁat senteﬂce or phrase, This
structure (which will be the word "NIL" if the analysis has been
completely wunsuccessful) can then be printed out and examined by the
user, In conversational mode, the érogram can carry on a series of
typed exchanges with the wuser, answering siﬁple questioné and

responding to statements. (See Section VI.3.10 for more details).

The program is ,writteh J&n POP-2 (Burstall, Popplestone and
Collins (1971)) as implemented at the Department of Artificial
Intelligence, University of Edinburgh, and runs on the standard DEC
System 10 operating system. The compiled code occupies approximately
45K of 36-bit wordé, above the 11K used by the POP-2 compiler. While
running in conversational mode, the program uses additional storage
(to "remember" the conversatioﬁ) énd can perform é dialogue of * about
20 exchanges din 109K (+11K) of'cqre. The processing time usedvto
analyse an input sentence varies from about 5. secohds for a short
simple sentence to about 1 minute for a Lwo~clause sentence. The
real response time varies depending on how hecavily loaded the DEC

System 10 is, but under optimal conditions (typically, 3.00am with no

Page 304

other users on the machine), conversational replies can vary from 8
seconds to 2 minutes (real time). That is, the program is very slow

(see Section VI.5 for further comments).

There is not space here to summarise the POP-2 language, but it
should be pointed out that the MCHINE program makes extensive use of
certain facilities-in the Edinburgh implementation which are not part
of the language definition. This is not crucial, since most (if not
all) of these facilities can be implemented (and were, previously)
using the basic language, albeit more cumbérsomely. The most notable
faciiity is.the'NEWPROPERTY mechanism; the POP-2 system provides\\a
general hash-table which allows the programmer (optionally) to
associate‘ arbitra;y information with any data item (i.c. a

generalisation of the LISP property list).

- Page 305

Section'VI.Z.i Data-structures and Data-bases

Most of the ideas used to represent information in the MCHINE
program are not novel, and have been fully discussed in the
artificial intelligence literature. This section merely summarises

the methods used, for the purpose of completeness.

VI.2.1 Property Lists

The association-~list is a widely-used structure. This consists

of a 1list of pairs, where one member of each éair (the ﬁindicatdt!
represents some field or slot and the other member of the pair (the
"value') represents the informatidn present in that slot. This
association list,‘ coupled with the HNEWPROPERTY system (VI.l.lj
provides a completely general property-iist system. Incidental
pieces of information about some item can be‘ stored on its

property~list. For example, the lexical entry for "you" might have

the property-list

(DEFINITE.TRUE) (SPECIFIC.TRUE)

to represent the fact that it is definite and specific.

(cf.Burstall, Popplestone and Collins (1971, pp.l27-132)).

Any entry on an association list can have a "restpiction" set on
it. ' When values are entered in an association list, the restriction
is examined. If it is non~empty, it is used to test the value being
entered. If the test yields false, the value is not entered.
Testing the restriction constitutesvapplying the resfriction to. the

incoming value, if the restriction is a function, and treating the

Page 306

restriction as a description otherwise (see VI.2.4). Since functions
are applied, this facility allows the programmer not only to filter
entries to the association list, but also to set "demons". which will
be triggered by specific entriesv being updated. The latter
possibility has not been required in the MCHINE program, but the
notion of filtering entries to association ‘lists has been very

useful,

VI.2.2 Pseudo-Records

Although POP-2 provides a record-definition facility, it1
incorporates strict run—-time type-checking for any record~class that
the programmer may define. Hence it 1s not easy to have
recofd—updating or record—accessing functions which can operate on
several classes of records (polymorphic functions). One simple way to
allow such sharing of functions is to use association lists to stqre
all information that would normally be kept in records. In the
MCHINE program, there is'é POP;Z record-class of 3 components, called
an "SITEM", and -all semantic items in the MCHINE program are

represented as SITEMS. The three components are :
Class—word
Serial ﬁumber
Association list

The serial number is merely a debugging aid. The association
list holds all the values that would otherwise be stored in the
components of a record, (CE. Burstall, DPopplestone and Collins -

(1971, pp.218-219). The class-word is a POP-2 word indicating which

Page 307

pseudo-record class the SITEM belongs to. The class-word acts as an
index (via NEWPROPERTY) to any class-specific information that the
program may need to associate with the SITEMs.. Hence each class can
have its own constructing function, its owﬁ printing format, etc.,

accessible by the class-word.

VI.2.3 Contexts

It often happens that the programmer wants to lét the values of
a particular data-structure vary according to qircumstanceg,
maintaining several values without corrupting them. For example, a
planning program wmay have to make hypothetical deductions in some
"imaginary" state of the world, withouﬁ altering any valués
corresponding to the "real" state of the world. Similarly, a
sentence-analyser may have to pursue scparate possibilities Qithout
letting structure-building associated with one possibility interfere
with phat of other possibilities. Various mechanisms have been
imblemented to allow -éuéh éwitchiug back and forth between values,
such as the CONNIVER "context' (McDermott and Sussman, 1972). POP-2
has a counterpart, (the '"saved-state"), but this is cumbersome and
inconvenient for various reasons. A much simpler facility 1is
provided by the POP-2 library program, "CONTXI", designed by Harry
Barrow, This mechanism does not store "control" information, and
affects exactly those wvariables and data—-structures which the
programmeyr specifies. Also changés in values are recorded only és
they occur, so extra space is consumed only‘as changes occur in a new

context, not with the creation of every context.

Page 308

This facility has been widely used in the MCHINE program - all
pseudo-record entries, property~list values, and data-base entries
are context-dependent, and the sentence-analyser distinguishes

different analysis paths by contexts.

VI.2.4 Matching

The semantic representation system (see VI.3.7) makes extensive

use of matching; so the POP-2 library program "ACTOR" (designed by
—

Harry Barrow) has been used to provide simple facilities. Artificial
intelligence programs soﬁetimés treat the notion of "matching" in two
distinct ways, appérently without realising it. "Matching" usually
refers to comparing two ditems for similarity of structure in some
way; For example, (182)(a) matches (182)(b) (where == is a special
blank item whiéh matches anything) because they have a similar form,

Similarly, (a) matches (c).
(182)
(a) [FRED LIKES BANANAé]
(b) [FRED LIKES ==]

(c) [== LIKES ==
Avrtificial intelligence data—bases, in representing information about

1 1

specific items, often used "mafching'" as a mechanism to access the
information. Many of the pieces of information being represented
were relational, analogous to predicates applied to arguments;

(183)(a) might represent the predicate logic assertion (183)(b).

Page 309

(183)
(a) [CLEVER FRED]

(b) |- CLEVER(TRED)

In matching, two items are operated on to produce a truth value;
this 1is vaguely similar to the process of applying a predicate to an

argument (e.g. APPLY(FRED, CLEVER) vyields TRUE). Somehow, this

S
N

similarity has 1led to a blurring of the distinction bereen the two
questions "do X and Y have similar structure?" and "does Y describe
the structure of X?". These are diffefenf questions - if X and Y are
as in (184)(a), the answers are "YES" and "NO", but if X and Y are as

in (184)(b), the‘answers are "NO" and "YES" respectively.
(184)
(a) X : [HAS LENGTH 7], Y: [HAS LENGTH 7]
(b)
X: [ALPHA BETA GAMMA DELTA EPSILON OMEGA ZETA],
Y: [HAS LENGTH 7]

The MCHINE program contains two different procedures EMATCH (for
testing similarity of structure) and TRUEOF (for testing whether a

description holds).

VIi.2.5 Data-base

Page 310

The MCHINE program uses a semantic network system to represent
information about the "state of the world" (see VI.3.10). Thié is
implemehted using a very simple data~base system, which is derived
from concepts in PLANNER, CONNIVER and the POP-2 library program

HBASE,

There is a data-base which can be thought of as a set of
"base-slots'", Any POP-2 -item can be "index a" by being given a
base-slot; ' a pointer to the base-slot will be sfored with the item

: . ™
(using the NEWPROPERTY mechanism), and. the base-slot will contain a.
pointer back to the item. Each base-slot has a "value" which is‘
context-dependent. In any context, the item can be "present” (the
value = the item) or absent (the value = UNDEF). Since the base-slct
is directly associated with the item, certain operations can be
carried out directly without searching the data-base. However, more
general queries (e.g. 'is .there an item present which matches this
one ?") do require some form of searching. This is simplified by
sectioning the base dinto sub-bases, . each with an associaﬁed
"index-word'. There is a procedure INDEXWD which, for any item,
computes the appropriate index word, and hence determines which
sub-base is relevant, The class-words of pseudo-records function as
index-words for some items, so that some pseudo-record classes have a
corresponding sub-basc (the exceptions are mentioned in VI.3.7). If
INDEXWD produces NIL, this indicates that there is no information to
constrain the search, and the whole data~base must be used; this
could occur for a generalbpattern which might match various classes
of item. The contents of subnbaseé are held in two-way linked lists,
to facilitate ° removal (and garbage. éoliection) of unwanted

base~slots, but there d1s no master-list "of the whole base.

Page 311

Exhaustive searches make use of a POP-2 dynamic list which generates

all the base~slots as required.

The data-base imposeé no interpretation on ‘'present" or
"absent'"; in particular, these concepts do not necessarily correspond
to "true", "false" or "unknown'., It is the task of the semantic
network mechanism (VI.3.7) to represent "truth" and "falsity", and

the data-base merely provides certain primitive indexing devices for

.

the network program to use. _ , . K

A Page 312

Section VI.3 : Representing Linguistic Information

VI,.3.1 Lexicon

The simplest form that a lexical entry can take is .a triple -

(<pointer to semantic item>, <list of features>, <property list>).

As there is a small fixed range of features and properties used

. ’ » \\
in the lexicon, both the feature list and the property-list can be
coded into a reduced bit-string representation, so that a simple
lexical entry takes between 6 and 10 words (excluding any space for
the semantic item used). In order to economise further, compound
lexical entries are wused to take advantage of certain recurring

patterns in the entries. One form that a compound lexical entry can

take is a pair :
(<lexical entry>, <add-~list>)

The add-list specifies propértiés to be added to the basic
lexical entry. Thus, the various forms of a verb can be stored as
compound entries, all with the same <lexical entry>, but differing in
the <add-1list>, The other form for a compound entry is a POP-2
closure fﬁnction - i.e. a procedure with some of 1its arguments
already fixed. If some entries can be summarised by a rule for
constructing them, with all differences captured by a few simple
parameters, then it is more ‘economical to store the rule and
parameter list than to keep fully constructed entries around all the

time.

© - rage 313

Ail these devices were incorporated because of the urgent
practical need to save épace on the machine, not for any theoretical
reésons. No attempt has been made to construct linguistically
.interesting redundancy rules, although some of the implemented
devices might be wuseful if such a study were undertaken. In
particular, some of the generalisations - used to save space (and
programming time) are expressed in the procédures for putting entries
into the lexicon and for accessing them. For example, there is a’
~procedure DEFVB which tékes three arguments (semantic item, list of
surface forms, property~list of didiosyncratic informatioﬁ) aﬁd
constructs the various lexical entrics for the forms of a verb. The
various regularities (e.g.bthat thé perfect pa?ticiple is the same as
the past participle unless otherwise specified) are embodied in this
procedure. On the other hand, some generalisations are expressed in
the procedures which examine the lexical entries during sentence
analysis. For example, each~ verb entry has a propérty INFLECTION

which (for regular verbs) tékes one of 6 values; there are no TENSE

or AGREEMENT entries, but the tense and agreement can be computed

from the solitary INFLECTION entry.

Accessing of the lexicon is done by a rudimentary hashing system

using the POP-2 "MEANING" facility.

VI.3.2 Recognition Rules

The recoguition rules are most easily described wusing the AIN
notation (Section 1I.9) although (as observed in Chapter 1I) the ATN

notation simply provides a graphical representation of a procedure.

Page 314

States are vepresented as lists (or strips) of arcs. Arcs are
pairs consisting of aﬁ arc~pair and a géntinuation pair, The
continuation-pair is either NIL, or else it is a list of either "TO"
or '"JuMP" followed by a state-name. An arc-pair consists of an
arc~head and an action-list. The arc—head épecifies the input test
for the arc, and an action-list 4is a 1list of operations to be
performed if the fest yields TRUE. Some simplifications are
in orporated, both to save space and to make the grammar easier to
read. The arc-tests are given in a standard form which displays its

internal structure :
<full test list> ::= (NOT)<test list>
<test list> ::= <full test>%
<full test> ::= (NOT)<test>

<test> ::= <test word> <test information>

<test information> ::= <POP-2 list>

.
.

<test—word> ::= FEATURE | NEWLEVEL | CATEGORY | PROPERTY |

SEMANTIC | WORD | RUN | TEST

This allows an arbitrary logical combination of tests - the
optional NOT at the front covers the whole remaining <test list>, and
the items of the <test 1ist> are treated as a conjunction, each of

which may be negated individually. For example,-

[NOT [FEATURE VB] ([NOT PROPERTY PREPOS OF]]

yields TRUE if the input word cither has not the feature VB or is the

- " Page 315

preposition '"of". The approximate meanings of the various <test

words> are :

FEATURE : <test information> gives a list of features which must

be present on lexical entry for input word.

CATEGORY : <test information> gives a POP-2 predicate which must

be true of lexical entry for input word.

-
PROPERTY : <test information> gives a property name and value

that must be present on lexical entry for input word

SEMANTIC : <test information> gives a predicate that must be

true of the semantic item in the entry for input word,
WORD : <test information> specifies what the input word must be.

RUN : <test information> is a piece of code to be executed,

leaving no result, but having side-effects.

TEST : <test informmation> is a piece of code to test global

aspects of the environment.

NEWLEVEL : <test information> gives.a state-name to activate at

the new level, and a place to put the item found at the new level,

Obviously this set of tests is redundant - all.possible .testing
could be dﬁne with just TEST., However, this subdivisioq makes the
content of the tests more .obvious to the grammar-writer, and
highlights what different types of tests are being usedvu RUN is a

particularly undesirable trick, and should not be allowed to hide.

Page 316

Similarly, action-lists are organised into a '"forward . Polish"
notation for readability. Although all the ATN structures are packed
as economically as possible into records;>they are read in as lists

to allow easy reading and writing of grammars.

Some states and arcs display common patterns - for example, the
state which "expects" the preposition "to" is very similar to the
state which "expects" the preposition "by". Such patterns are used IB
save sﬁace by having a general constructing function for such states,
with enough parameéers to distinguish the states; a closure of this

function can be stored instead of the full state. Patterns among

arcs can be handled similarly.

VI.3.3 Structural Combining Rules

The surface structure rules are represented in a very
straightforward fashion. There is a POP-2 record class "SRULE" which
has components for the rule body, input specification, output type
specification and (optionally) a "list of properties (includi;g'a

property inheritance rule, if the SCR has one).

VI,3.4 Registers

ATN registers are implemented as data-structures with one,
context-dependent component. Various operations are provided to

perform all the manipulations such as pushing down, clearing, etc.

There are 14 interpreter vregisters. Some might be termed
"control registers', since they keep track of the path through the
grammayr :

CODETRAC : points in ATN visited so far.

Page 317
Debugging aid only.

' PSTOREGS : Pointer-storing registers active at
current level. A stack.
SSTOREGS : Structure-storing registérs active at
current level. A stack.
CONTLINK : The AIN state to be used on
leaving the current level. A stack,
STORACTS : Postponed actions to be done on leéving
current level. A stack.
HELDACTS : A sligﬁtly underhand device for '

postponing actions at the current level,

i

Other registers ﬁight be termed "value" registers, since they
keep track of the surface structure being built ":
TOPNODE : Top node of subtree beihg worked on at
current level., A stack.
TOPNODES : Subtrees so far constructed at this
level but not yet joined together..
A stagg;
SUBROOT : The node to which the subtree being
worked on at this level is to be attached.
A stack.

CURRNODE : Node currently being worked on.

TREETOP : The overall result of the analysis,

The remaining registers are. general-purpose struéture~holding
registers that any part of the grammar can make use of :
HELDSLOT : Stores the result of a NEWLEVEL

temporarily, if the destination of that

structure cannot be predicted at the

start of the NEWLEVEL. A stack.

: Page 318
TEMPSLOT : Genexal temporary storage, holding

one item at a time.
SHELF : General temporary storage, storing itcms
in a last in first-out basis..Not
classed as a stack becuse the "push/pob".
actions are independent of the NEWLEVEL

system.,

VI.3.5 The ATN Inﬁepgggter

The part of the analyser that scans the ATIN grammar (and builds
the surface tree) is rather cumbersome, owing to a wish to aligh
freedom to experiment with various control structures, etc., in the
course of developing the program. The interpreter could probably be
rewritten more efficiently to perfomm justﬁ its current tasks,

eliminating some of the obesity along with the general flexibility.

The ATN is interpreted in the following way. A partial analysis
can be vrepresented by a pair (<state-name>, <context>), wheré
<context> provides ail fﬁe ;tﬁer information via register- values,
(The state information could be held similarly, but this has not been
done) . The interpreter maintains a list of‘such ' analysis paths,
.initially comprising one pair - STARSTAT and CUCTXT (béth being

» variables.global tc the analyser).

The interpreter takes in the next word, expahds the current
state~name into a list of arcs (see VI.3.2), loops down this list
testing each arc. A new context is created from the curr§nt one for
each arc, So that any side-effects of the arc-tests (an undesirable
but occasional occurrence)} affect only that path. Each arc which

yields TRUE is then ''developed". This consists of performing the

action-1ist of the arc, sud crocessing the state-specification at the

Page 319

end of the barc.' If the arc was not a NEWLEVEL arc, the
state-specificatijon will either be [TO <state-name>] or [Jump
<state-name>]. If it is the former, this indicates that the given
state-name 1is appropriate ‘for processing the next word, and
development of the current arc ceases, after storing the current
context and state-name on the analysis list. If the specification is
[JUMP <state-name>], the state-name supplies a new current state, and

processing continues on the current word. o

NEWLEVEL arcs are special in that they directly affect several
interpreter registers and pass on the analyser to a new state. The

head of a NEWLEVEL arc is of the form

{NEWLEVEL <destination> <state-name>]

e.g.

[NEWLEVEL IN SSBNPO]

This is interpreted to mean : creatg a newlevel, setting up the
SUBROOT as indicated by <destination>, and commence processing in the
.state given. The destination can be either IN, HOLD or a vregister
name; IN means "item to be attached where CURRNODE now points', HOLD
means "item to be stored in HELDSLOT", and a register name means
"item to be stored in the given register'. (The latter option has not
been used anywhere in the implemented grammar). If the state
specification at the end of the NEWLEVEL arc is NIL, creating a
NEWLEVEL entails attaching the TOPNODE for the current level to the
SUBROOT (so that further structure-building at this level can‘be
forgotten) and élearing SUBROOT, CURRNODE, 'TOPNODE, HELDSLOT and

TEMPSLOT. (It might seem that clearing HELDSLOT will be unsafe if

~ Page 320

HOLD has been indicated in the arc~head, but it would be unwise to
specify HOLD on a NEWLEVEL..NIL arc, as no action-list is added to
STORACTS in the NIL case, and so the stored‘ item could not be
retrieved from the HELDSLQT.?‘ Similarly, attempting’to provide an
actiqn for storage in a NEWLEVEL...NIL arc is pointless since it will
be discarded. These are two places wheré the ATN interpreter can
spot a badly-written grammar and warn the user; there are very few
other checkable constréints,'unfortunately). If the NEWLEVEL arc has
non-null state-spécification, then the following operations age

performed. The state-~specification is pushed on to CONTLINK, the
action-list 1is pLshed on to STORACTS, and SSTOREGS, PSTOREGS,

HELDACT, SUBROOT, CURRNODE, TOPNODE, TEMPSLOT, .and HELDSLOT are all

pushed down.

Execution of arcs continues in this way. until either the
interpreter detects the end of the input string before starting a
pass along the analysis list or a POPUP action 1is encountered, 1f
the interpreter reaches the end "of the input string, it sets a

variable to indicate this fact and does one more pass along the

analysis list. This is because some arcs may indicate options which

do not require a word, and which can succeed in the absence of input
(e.g. extracting a "wh'-phrase from a register). All arcs which do

require an input word automatically yield FALSE on this final path,

Encountering a POPUP action initiates various actions. If
processing 1is already at top level (i.e. there is only one item on
the CONTLINK stack), then CONTLINK is popped to provide a new state,

and the tree-structure reviewed.

N Page 321

If processing is not at top-level, the interpreter stacksb are
popped, the registers‘tidied up, and CONTLINK provides the new state
for processing. If>no words are left in the dinput, the interpfeter
attempts to finish up the analysis path by checking if TOPNODES has
accunulated more than one subtree (in which case rule-selection is
necessary - see Section III.9) and then putting the current context

on the analysis list with state-name STOP. If a POPUP occurs at top

~

level when there are more words in the input, a function called
BOTTOMUP is called to find a new state for processing; this

implements, very crudely, the "restart" system of Section III1.9.

Each analysis path has a TENSION value which holds a value
between 0 and 100. Since this wvariable is global within the
analysis-path, it can be alteréd by any operation, but in fact has
been used only in the operation of the SCRs (see VI.3.6). At the end
of the analysis, the analysié paths whose TENSION value is the lowest
are selected as the .. final versions. This provides a
"weighting”(ﬁooés (1970)) or "preference"(Wilks (1973)), but allows
ambiguity din ‘that more than one analysis path may have the same

TENSION value.

There is a variable FAIL, which is initially set to IDENTFN, the
POP-2 null function. Many of the procedures in the ATN interpreter
and the MCHINE grammar call FAIL if something gbes wrong, and FAIL
can be reset locally (using the POP-2 dynamic binding/ local vgriable
regime) to be some appropriate failure actiqn. Whén arcs are being
processed, FAIL is set to be a JUMPOUT function which will agort the

processing of the current arc.

 Page 322

VI.3.6 Surface Structure

The tree of rules and arguments 1is vrepresented using a
pseudo-record class SNODE, which is used for nodes. As well as the
information which holds the tree-structuring, each SNODE has the

following components :
SRULE : The SCR associatgd with the nqde\
‘ INTVAL : Semantic item prior to reference evaluation.
EXTVAL : Semantic itemlafter referénce evaluation
STRINGFM. : WO;ds associafed with this structure (debugging aid)

The property-list of each SNODE can hold any optional
information, but in fact has been used only for certain syntactic

properties (e.g. verb~agreement markings).

There 1is a range. of - procedures for . tree-building and

manipulating, the exact details of which are not relevant here.

Each processing level has a'node~pointer in TOPNODE,‘ indicating
the subtree being worked on, and a node pointer in SUBROOT,
indicating where on the main tree this node is to be attached. These
two pointérs indicate different data-structures (so that temporary
modifications may be madé to the fOPNODE'Before attaching the final
version) but are logically the same point in the tree. On leaving a
level (either through a POPUP or a NEWLEVEL...NIL arc) the TOPNODE is

always merged with the SUBROOT.

Page 323

The analyser builds the tree in strict left~to-right order,
depth-first fashion ("depth" of tree, not of network path search).
Any alteration of this order must be achieved by holding
sub-structures 1in registers until they are ready for attaching. The
current node (in CURRNODE) can therefore always be recomputed (e.g.
after popping up from a 1level) since it is the leftmost blank or

"dummy" (see below) node.

There are certain operations which insert an SCR as a node Agﬁd
use the SCR details to fill out the " node. This 1is done byi
constructing "dummy" daughter nodes, one for eaéh input piace in the
SCR. A "dummy" node contains no values, but has various restrictions
imposed on the components, using the input specifications from the
dominating SCR. Restrictions 'can also be set explicitly on the
components and properties of a node by the action~list of an ATIN arc,
and this is one way that syntagmatic information (e.g.
verb-agreement) is conveyed., If the analyser ever attempts to enter
a value thch'does not meet the restriction specified (if any), the

procedure FAIL is executed (see VI.3.5).

Application of the SCRs works in the following way. At -any
intermediate stagevof the analysis, the analyser can attempt to apply
an SCR to its arguments (i.e. the values on the daughter nodes). If
the daughter nodes have:SCRs, these are also applied, and so on down
the tree. 1f a "dummy" or.blank node is encountered, thé SCR cannot
be applied at present and neither can any of the SCRs in dominating
nodes, so an "unsuccessful" signal is passed back up the tree; If a
node is found, during the evaluation process, whose SCR has already

-

been applicd, that SCR is not re-rerun. At the end of the analysis,

Page 324

the topmost node'SVSCR is applied, and the same recursive application
~occurs down the tree; in this case, an '"unsuccessful" signal will
cause FAIL to be executed, since this is the lastAopportunity that
there will be to run the SCRs. When applying SCRs,
reference~evaluating and making entries in EXTVAL (all of which occur
at the same point), FAiL is locally set to be a procedure which
increments TENSION, rather than one which aborts the analysis
cOmpletely.v (This crude measure allows "semantic anomaly" to cause

—
less havoc than "syntactic anomaly", which may achieve a similar

effect to Wilks’ "preference scmantics" (see Sections II.5, I1I.6%).

When an SCR is applied, its result is first stored in the INTVAL
of the node, and then examined to see whether it may require
reference~evaluation. If so, this is performed and the result is put
in EXTVAL; otherwise, the item is merely inscrted in EXTVAL itself.
The SCR in the mother node will then take the EXiVAL entry as an

argument. ’ e T

If thé.analyser finds it is at top-level (i.e., its SUBROOT stack
has only one entry left), with no dummy nodes left to build on, and
more words to process, it calls a procedure NEWTREE. This sﬁores the
current topmost node (in SUBROOT) on the TOPNODES list, and creates a
new‘set of nodes (TOPNODE, CURRNODE, and SUBROOT) to start building a
new subtree, (This norﬁally occérs in conjunction with the BOTTOMUP
process - see VI,3.5). When tﬁe analyser completes a sentence, it
checks to seée if TOPNODES is non~NIL; - if so, it tries to select an
SCR which couid combine ?he EXTVAL entries of the nodes on fOPNODES
(see Section II1,9). 1If éuccessful, it forms a new tree by joining

the list of TOPNODES as daughters to a node with this SCR.

" Page 325

VI.3.7 Semantic Networks

The ideas >discussed in. I1T.10 are implemented using POP-2
records and pseudo-records. Each "relation" is a record of 5
componenfs :

RELNAME : print-name of relation
RELROLES : list of names of roles
RELBODY : expanded form of relation N

RELELAB : elaborated form of relation

RELRESTS : restrictions on values for roles N

There 1is a POP-2 pseudo-record class of type RELINST
("relation~instance") for representing pieces of semantic network;
its components include COREREL (Qhose ‘value should be a RELATION
record) and the various rolenames of its COREREL. That is, a RELINST
has a relation plus an association list which binds other items to

the roles for that relation, e.g. /

(RELINST 30 (COREREL,LIKE) (AGENT.JOHN) (PATIENT.MARY))

The property 1list of a RELINST can hold miscellaneous
information é.g. indexing for the data-base. These structures can be
used to form a semantic network which represents a "world model",
using two mechanisms. Firstly, a RELINST can be given a component
TVALUE which can be filléd in witg TRUE or FALSE; secondly, the
RELINSTl can be made PRESENT or ABSENT in the data-base. Since bbth'
the value of TVALUE and presence/absence are context—dependent, this
allows a very flexible system. There are certain standagd procedures

such as ASSERT, DENY, FINDIF for updating and cxamining the network.

" Page 326

The RELBODY of a RELATION is a RELINST containing some other
COREREL, with markers to show how the argumeﬁts of the main relation
should fit into thenroles in the associated RELINST. This is to
allow the expression of "non-primitive" RELATIONs as a configuration
of some "primitive" relations, "Primitive" relations are those which
have NIL as the RELBODY, When doing an ASSERT, DENY, or FINDIF, this
expanded form can be used as well as the main relation. This

expansion is optional, and can be controlled by the programmer

S~

N
setting certain variables to 0 or 1; expansion can be used in ASSERT

and DENY, and/or in FINDIF, or in none of them.

The RELELABVof a relation is a list of triples of the form
(<expression> <operator name> <expression>) ;nd is used to give a
procedural version of the relation (if néeded). When the reiation
(with some or all of its roles filled) is "elaborated", all the
triples are evaluated in one of two possible modes. In testing mode,
the evaluation is intended to yield a truth-value (thus providing an
elaborate FINDIF); in updating node, the evaluation is intended Vto
affect the semantic network (thus providing an elaborated ASSERT or
DENY). Each <operator name> ié associated with 2 operations -~ one to
be wused in testing mode, the other to be used in updating mode. 1In
addition, there is a wvariable TRUTH which will contain the value TRUE
when ASSERT is being executed, and FALSE when'DENY is being executed.
Thus update mode can cover two separate actions if the eléborated
forn makes appropfiateAuse of TRUTH in its manipulations. Hence the
sane triple can, if necessary, be used differently in three different
cases, while still representing the same '"item of meaning". For

exanple, the relation "BELIEVE" is defined -in the program by an entry

 Page 327
RELATION BELIEVE [ENTITY ENTITY] AGENT PATIENT;

L1

[PERSVIEW($:AGENT) ->-> [SRCHCTXT]

[TRUE] =-> [FACTVAL(S:PATIENT)]

which indicates the following. The relation has two roles ("AGENTﬁ
and "PATIENT"), with restrictions to ENTITY for both roles. There is
no expanded form (indicated by the empty bracketé [1), but there 1is
an elabornted ‘form, with two operations listed in it., The operator
(=>=->) in the first line indicates that, whether testing or updating,
the AGENT s ;ersonal context is té be set as the SRCHCTXT ('search
context"). The operater in the second line (=->) indicates that when
testing, the two arguments should be tested for equality; when
updating, the first should be assigned to the second. FACTVAL is a

function which accesses the '"truth-value" of a statement in a

PERSON s context,

Elaboration can also he turned on and off by the programmer

scetting varivus variables to 0 or 1.

"Definers", as described in Section III.10, are simply
pseudo~records with componentsv RISTRUCT and SLOTNAME,
("relation~iusrance»stfucture" and '"siot—name”). In addition, 7 a
coaponent ROLEGAPS (é list of the roles in the relinst which are not

yet .filled) may be included for management purposes. As mentioned in

. Page 328

VI.2.5, pseudo-records are generally indexed in the data~base under
their class~name., However, this approach wouid not give a very fine
categorisation for thé~ semantic network, as most of the structures
are in the form of RELINSTS. Therefore, RELINSTs are indexed under
their RELNAME, ana DEFINERS arec indexed under the RELNAME of the

RISTRUCT.

Referring expressions are more neétly described if we look on
relations as holding * between sets of elements, where a set may\hg
characterised other than by listing ifs elements. This facility has
been included in thek.semantic network system, in that there is a
pseudo~record class SET, and entries in the roles of a RELINST are
always SETs. A set can be characterised'by listing its members or by
including a definer which acts as a characteristic predicate. There
are various manipulative functions defined on these SETs to allow the
network to use then., ‘Unfortunately, the scope of the MCHINE program
did not reach a stage where the SET mechanism was fully utilised, and
it cannot be regarded as validated, "In most, if not all, of ﬁhe
examples that the program handled, some much simpler representation

could have been used equally successfully. It seems very likely that

the SET system as implemented contains logical defi. ciencies.

VI.3.8 Qutput Translation ’

There is no production grammér in the MCHINE program. -In 1its
conversations, the range of output utterances is extremely limited,
and these are handled by a small routine which replaces semantic
network structures by surface strings in an ad hoc fashion. The only
‘items which are not translated in & one-to-one lobkup are definers

(2528

(which are translated nsineg the RELNAME of the RISTRUCT) and PERSONS

Page 329

(see VI.3.10) which are translated using the PERSNAME, The other

translations are as follows :

Semantic Item Surface String
FALSE “No*
TRUE " “Yes®
UNDEF “I dont know®
<the speaker> ‘1t
<the hearer> “you® h

Some other output formulae are provided by certain conversation
games (see VI.3.9) supplyinmg the strings directly (for example,
CGQUERY supplying the “which' directly in utterances like ‘which

man') .

VI.3.9 Conversation Games

The overall flow of the. MCHINE program, when running in
conversational mode, 1is controlled by a set of 9 POP-2 procedures
referred to as 'conversation gémes" {the terminology and the idea are
borrowed from Power‘(19745; cf. also Levin and loore (1976)). Each

game is supposed to be a "stereotyped sequence of conversational
actionsv and reaction;; with each game being associated with some
purpose or task (cf. chhank (1975)). This aésociation is wholly in
the mind of the progrémmef énd in the way that the games are used;
there 1is no 'goal-directed invocation'" as in, for example,
Micro-Planner (Sussman‘ et. al. B (1972)). For example, there is a
gane CGANé for replying to a question, and CGBAFFLE for notifying the
interlocutor of a failure to understand an input string., As one game
can call other games, the structure of the dialogue proceeds in a
sequence of Sections, either nested or consecutive, corresponding to

the various invocations of games. In standard POP-2 procedure call,

a function cannot exit and specify which function is to be called

Page 330

next - either it exits or it calls another function nested within
itself, This would be vrather restrictive for convefsation games,
since it is desirable for one gamé to be able to specify what is to
be -done next, without having to build up a deeply nested hierarchical
structure for the whole conversation. This\ difficulty has been

avoided by introducing three game-calling routines :

RCALL(x) : call x nested within the current game, returning to

~

\\
this point afterwards.

ECALL(x) : exit from current game and then call x.
EACALL(x) : exit from all active games and then call x.

The games are responsible for taking in input from the teletype
(including lexical lookup), passing the string to the aﬁalyser, and
accepting the result of the analysis (a piece of semantic network).
The game can then decide, on the basis of the strucﬁure received, to
pérform any acfion whatééevég; such as wupdating or examining the

"world-model", or initiating another game.

Each game has certain loéal variables, so that information
global to the analyser can be controlled during the cenversation.
These include REMOTE, PRESENT (the two '"tense" locations = see
Section V.7), CURRTENS (which indicates which tense location is
currently appropriate) and STARSTAT. ‘The latter is the wvariable
which indicates to the analyser where it is to start in the.ATN, s0 a
conversation game can influence the initiél expectations of the
analyser, using its predictions about whether a question, statement
or command is imminent. Initially, tﬁe prbgram RCALLs a game CGREET,

which expects a ritual greeting string. It does not call the

Page 331

analyser, but éompares the dinput string with a pre-set 1list of
greetings. ‘If no match is found, it ECALLs CGBAFFLE to tell the
user; 1f a match is found,bthe appropriate action (entered in the
greetings table) is performed =~ this is wusually repeating the

greeting as output., The general game CGREADY is then ECALLed.

CGREADY applies the analyser to the next,input string, starting
froﬁ a neutral start-state which will allo& any sentence or phrase\}o
be analysed. On the basis of the ILLOCUTION of the analysed form, ‘a
more specialised game (CGANS, CGOBEY, or CGABSORBY is ECALLed.
CGBAFFLE, which is applied when the analyser fails to produce a
result, attempts to match the inpﬁt string against a pre-set list of
"farewell" utterances. If this fails, it utté;s [‘Pardon ?] and
ECALLs CGREADY; if it succeeds in finding a "farewell", the
appropriate action from the farewell list (again, usually repetition)
is taken, and CGREET is EACALLed, sincé a new interlocutor is
expected. The whole conversation can be terminated By terminating an

utterance by the character $ instead of punctuation, or by a general

System 10 POP-2 interrupt.

Punctuation is used to guide the analyser, but not forcibly.
The seﬁting of STARSTAT (made by the current game) can be overridden
by the input routines as follows : a fullstop sets up a
declarative~cxpecting state, and a éuestion—mark sets up a
question—expecting state. Even these STARSTAT settings should not
cause the analyser to be tricked by wrong punctuation, since all
start-states have a default arc which jumps back to the neutral
start-state., Hence "Have you spoken to Mary." would be successfully

analysed as a question, after some thrashing around at the start.

Page 332

This 1is not very elegant, but it allows punctuation to provide some

of the information sometimes gained from intonation.

In most dialogues, the games will be invoked consecutively,
using ECALL, with FACALL being used for greetings and farewells.
RCALL is used only wheﬁ the current game is to be temporarily
suspended while some conversational exchange takés piace. This is a
useful facility since it allows the program to seek information from
the user at any stage without corrupting the current exchangé. %hé‘
only place éhat this Qas been tried is in the reference-evaluation of
definite expressions (see Section VI.6). If no referent set can be
computed for a definite expression, the reference~evaluation ' routine
RCALLs CGQUERY to ask “which <string§‘ .Qhere <string> 1is a
"translation" (see VI.3.8) of the structure being
reference-evaluated. The wuser can then reply with a noun phrase,
which will be analysed (CGQUERY having sett STARSTAT to a suitable
value) and passed up to the routine which is evaluafing the definite
expression, with CGQUERY exiting normally. This exchange would take
place while the analyéer was running on some input for a higher game,

.and, in principle, such nesting could go on indefinitely.

The following games are used:
CCREET : match and reply to greeting;
CGADIEU : match and reply to farewell
CGREADY : expect any analysééble utterénce
CGANS : find answer to question
CGTELL : output reply to a question
CCOBEY :‘obey a command

CGQUERY : get information from user.

F@g; 333

CGAWAIT : expect an imperative

CGBAFFLE : complain about input failure

VI.3.10 World Model

The semantic network system is supposed to be general, in the
sense that it can be used to represent any relational structure (see
Section IIT.10). The particular toy world that has been used for

testing the conversational system is simpler than the SHRDLU BLOCKS

world.

The world contains pseudo-records with dataclass PERSON. Eaéh
PERSCN has components PERSNAME (a POP-2 word), PERSVIEW (a POP-2
context) and a PERSCRED ("eredibility" - 0 or 1). There are RELATIONs
which can hold between SETs of PERSONs - FATHER, MOTHER, BROTHER,
SON, etc.. and some RELATIONS which can be used to attribute
properties to the PERSONs - MAN, WOMAN, etc. The reason for choosing
this world rather than,'ééy;.éABLOCKS world, was that two areas of
grammar that were originally to be examined were indirect speech and
tense, The world of PERSONs seemed to allow a natural-sounding
.dialogue in which_questions like '"Did Harry say that Fred likes Mary
?" could be posed, for example. Unfortunately, these long term _aims
did not come to fruition, so the choice of subjec; matter may seen

slightly arbitrary.

There are féur Variﬁbles~~ SPEAKER, HEARER, SELF, INTERLOC - -
which keep track of how the conversational roles are being filled.
SELF always holds a pointer to a PERSON with PERSNAME "MCHINE" and
INTERLOC holds a pointér to whichever PERSON. is regarded as '"talking

to'" MCHINE., The values of 3PEAKER and HEARER are set up in the

Fage 334

obvious way (by the conversation games) whenever input or output is

to occur. Initially, SPEAKER = INTERLOC and HEARFR = SELF.

Imperatives from the interlocutor are regarded‘ as requests to
carry out an operation stored under the TASK pfoperty of the RELATION
in the imperative, using the RELATION’s ro;e-fillers as arguments
(there 1is a notational. device for keeping track of which roles
correspond to which argument-places). Although an earlier version of
the pfograﬁ included a simple table-top world in which the imperagzse
system operated successfully, it was hara to fit plausible commands
into the PERSON:world. The final version of MCHINE would therefore
react to. an imperative by entering CGOBEY, getting the TASK
corfesponding to the meaning of the imperativé, then giving a POP-2

error, since TASKAPPLY (the execution routine) is not defined in this

version.

Questions are tréated as requests for info;matioﬁ, and the
semantic network is ééarcﬁéd using the semantic structure of the
utterance as a pattern. Since the semantic network system allows the
explicit representation of truth-values, a distinction is possible
‘between TRUE, FALSE and unknown relations; these will produce the
answers ‘Yes‘, “No*, and “I dont know" respectively. If the question
is a WH-question, any item found in the networkfsearch will Dbe

returned as the answer, via the translation routine.

Statements are taken as assertions which are TRUE in the
speaker’s Qorld model, and this fact will be recorded (storing a
POP-2 context with each FERSON makes this straightforward). The
speaker’s PERSCRED is then examined, and, if 'this is 1, MCHIUE

attcempts to assimilate the assertion. Depending on the state of

- © Page 335

MCHINE’s own semantic network, the reply will be either ‘I know', ‘I
disagree®, or ‘Really ?°, depending on whether the assertion is

already recorded as TRUE, FALSE or not known.

VIi.3.11 Semantic Hierarchy

The system of antonyms and sub-classes mentioned in Section
III.10 is implemented fairly crudely. Each semantic category
(usually represenfed by a definer) has on its property list a
HIERINFO record. This provides a pointer into a 3-dimensional array
which represents the necessary hievarchy. Each category has one
super-category and a list of sub-categories; the cafegories are alsé
clustered into antonym sets. Using numerical indexes into an array
is nerely a fairly efficient way of implementing this
mul ti-dimensional classification, as it allows quicker

category-compatibility checking and uses less space,

"~ Page 336

Section VI.4 : Implemented Grammar

Although earlier chapters made various suggestions concerning
points of English grammar, it has not been possible (fdr‘a variety of
reasons) to incorporate all of these ideas into the MCHINE program.
This sections summarises the grammatical rules which are coded in the

working program.

VI.4.1 Noun phrases

~

Only very simple noun phrases are covered (unlike, for example,

the TESSA program - see Section VI.5). The main reason for this isi
that it éeemed uninteresting to write an ATN which would allow a
whole range of modifiers before the noun, ﬁnléss the extra options
introduced a need for new processing faciiities. In the grammar as a
whole, there were certain structure-building operations which often
recurred; for example, going from a structure like (185)(a) to one
like (185)(b), where "yyyy" was the input word and the <dummy> node

is the "current" node in each case,.
(185)
(a)

Rule N

Taxxx" <dummyl>

(b)

Rule N
’TMQN%A
"xxxx Rule M '
z”"w »ﬂ\m%
"yyyy" <dummy 2>

- Page 337

Hence{ any repetitive sfructure—building which merely accumulated a‘
tree 1in some simple fasﬁion was not of any gfeqt syntactic interest.
(The various modifiers are all radically different semantically, of
course) . Possessive noun phyaées and non~restrictive adjectiv;s both
require special building operations, and it was dimportant to check

that the implemented ATN does not rule out such constructions.

The nouﬁ phrase part of the grammar allows a determiner or
possessive (optionally), one or more non-restrictive adjectives
(optionally), one or more restrictive gdjectives (optionally)' and a}
5ead noun (obligatory). Alternatively, a single proper name or
personal pronoun can function as a noun phrase. The distinction
between a restrictive and a non-restrictive adjéctive is a matter of
use (i.e. how it relates to the rest of the context), rather than an
inherent aspect of the ~lexical item. However, for an analyser to
distinguish between the two usages of a single 1lexical item would
require a very sophisticated use of contextual information, which is
beyond the capability 6f the MCHINE program., In order to test that

" MCHINE's grammatical ‘system nevertheless allows the requisité
structure~building to take pléce, the adjectives used were marked in
the lexicon as- either resfrictive or mnon-restrictive, and this

feature was tested explicitly in the ATN.

After the analyser encounters a head-noun, it looks to see if
the current word could start an adjunct to the noun ph?ase. "The head
noun is temporarily stored in the named grammatical stack register
HEADNOUN, so that its attachment can have the adjunct'incorporated
into it or not. This allows a structure like (186)(a), instead of

(186) (b) .

Page 338
(186)

(a)

SCR Determiner

"the" SCR NP~of~NP
A“
“father" SCR. .
"of . e "
(b) B

SCR NP—Of«NP

SCR Degg;;;;Z:\\\\\
AN

“the father" "ofiiiene M

There are five possible post-modifiers allowed :

(187)

(a) an "of + NP" phrase

(b) a verb phrase starting with an "i@g" form

(¢) a verb phrase .starting with an "ed" form

(d) a restrictive relative clause (with or without a ‘'wh-word"

to start it)

(e) a non-restrictive relative clause

In case (187)(a), a node is erected with the SCR NP-of-NP, and
processing continues. The NP-of-NP rule attempts to generalise the
"possessive' relationship, (the SCR Possessive differs only in minor

details from NP-of-NP). It is fairly well established that there is

Page 339

no constant referential semantic relationship between the items in a
"possessive' construction (see, for example, Stockwell, Schachter and

Partee (1972, Chapter 11)).

(188)

(a) John”s book :
the book John wreote ?
the book John owns ? - . \\
the book Johﬁ is holding ?

(b} Bill’s present :
the prescnt Bill gave ?

;he present Bill received ?
The way that the two SCRs ?oésessive and NP-of-NP operate 1is as
follows. The head noun;s semantic item contains a
"relation~instance" with some slots unfilled. The SCR scans these
‘slots in order (the order being specified when the relation is
defined) to find the first unfilled slot, and then dinserts the
meaning of the "possessing' item in that slot. This works on simple
examples, but so would some simpler, cruder trick. The extra
complication of searching fof ffee slots has been used in the hope

that it will be the prototype for some more general device,

Page 340

Cases (187)(b) and (c) are handled in a very similar way to (d).
The ' incoming verb phrase is aﬁalysed by the VP network, with the
inflection of the opening verb determining whether an "active" or
"passive" roleuplacgment rule is required. The resulting structure
(which is a definer) is handed to the SCR NP Modifier, which takes
the head-noun meaning (also a definer) as its other arghment. The
SCR constructs a new definer identical to that from the verb-phrase,
but with the head noun meaning set as a restriction on the seléézgdr
slot. This is exactly the structure that would result from a:
corresponding relative clause (sce Section VI.4.6) so the semantic
similarities between (187) (b), (c) and (d) are captured without
incorporating them into the syntax (as, for example, in Smith (1964),

Burt (1972)). (Cf. (18%9)(a) and (b}).
(189)

(a) The man who is speaking to you.

(b) The man speaking to you.

Restrictive and non-restrictive relative clauseé are
distinguished by the absence or presence, respectively, of a comma
following the head noun. This is similar to the trick of marking
adjectiﬁes in the lexicon. as Vrestrictive or not, in that the
approximation is justifiéd by the..aim of trying out the various

grammatical processes involved.

Restrictive relative clauses arc treated as forming a -further
modification of the meaning of the head noun, and are incorporated
into a structure somewhat similav to (186) above, Non-restrictive

relative clauses-ave treated as making an assertion about the set of

Page 341

things referred to by the whole preceding noun phrase. This
A necessitates attaching the contents of HEADNOUN (to complete the NP),
and altering the contents of TOPNODE (the: current task, which should
have been the NP) to be a rule node combining NP and relative
clause :

SCR NRel Clause

SV,

SCR Determiner SCR Wh Clause ~—
the man who you saw

The NRel Clause rule, when cxecuted, makes the appropriate assertion,

with due consideration for speaker/hearer context.

Almost every semantic'iteﬁ in the system is a SET, a RELINST or
a DEFINER, (See Section VI.3),. All'these classifications can be
refined further by the addition of sense-prppgrtieé (e.g. DEFINITE)
and new items (other than RELATIONS, which are atomic) cam be built
up from existing ones. A common noun is a DEFINER, with an added
component NUMBER, and-"fﬁéq beterminer SCR merély adds all the
sense~properties of the determiner to the head noun (i.e. the meaning
of a determiner is defined entirely by its list of sense properties).
All the other SCRs involved in building referring expreséions combine
definers tec build a more complex definer; either by filling in roles

or by setting restrictions on selected slots.

The general problems regarding reférence—evaluation (see Section
V.6 and Ritchie (1976)) have not been solved in the MCHINE program.
Complex referring expressions are not reference-evaluated when built,
but - are manipulated as they are in question~answering, etc. (Even
here, the matching routines have not been teste@ on very complex

examuples, and so are suspect). However, to simplify_this cumbexrsome

"~ Page 342

generality, a sense property INhEXICAL has been includgd, which can
be marked on a referring expression in the lexicon. ‘(So far it has
not been used on non-lexical phrases). An INDEXICAL expression
(roughly corresponding to the class of '"deictic" expressions
discussed in Section V.6) is reference-evaluated during the
SCR~evaluation process, as soon as it is built into the tree. From
there, the definer is replaced by a set of '"referents", which
\\
simplifies later processing. The only items which it seemed safe to

class as INDEXICAL were the personal pronouns ("I'", "you") and proper

nouns ("Fred", etc.).

The sense-properties used on determiners are DEFINITE and
SPECIFIC, each of which can be TRUE or FALSE. These guide
reference-evaluation in a way which approximates the scheme of
Section V.6, DEFINITE = TRUE.causes the program to search its world
model for a RELINST to match the one in the definer it is processing,
and to use that RELINST if it exists; if it fails to find one, it
examines the definer (which should have certéin ad hoc markings to
allow this routine fo operate) to see if it uniquely defines a set of
items, in which case the evaluation continues. If both‘parts of this
fail, the analyser complains (sée, VI.3.9 for the means of
"complaining"). SPECIFIC = TRUE causes the program, when reference
evaluating, to replace the definer with its referent set. SPECIFIC =
FALSE causes the definer‘itself to become, the resulf of reference
evaluation. Although this algorithm is written in to the program, it
has unot been exercised on a full range of test cases, so the ideas

stand or fall by the arguments in Section V.6

" Page 343

VI.4.2 Verb phrases, Auxiliaries and Predicates

The auxiliary‘verbs are handled in a comprehensive but féirly
straightforward way by a detailed, non-embedding network, based on the
notes in Section V.2, At the stage when the auxiliaries are being
analysed, the tree structure will alﬁays include a structure like
(190)(a), (often as part of a structure like (190)(b)), there the

<current node> will eventually hold the role-placement SCR for the

verb‘phrase, o

(190)

(a)

SCR N

S

SCR M <current node>

(b)
SCR Subject Complement

<subject> <current node>

The information in the auxiliary sequehce is used to set proberties
and restrictions on the current node and its entries., The properties
PERFECT, PROGRESSIVE, NEGATIVE are all set on the semantic item, aqd
the SRULLE component is given a res}riction to disallow either Passive
or Active _role—placement Arules, as appropriate. The properties
MODALITY, POLARITY and TENSE may also be set on the semantic item in
the Subject-Complement ﬁode if the auxiliary sequence is within a
clause, raﬁher than just a verb phrase. By the time the analyser
réaches the main verb, all these properties should have been set up,

and only the verb and its objects, if present, need to be processed.

Page 344

Some other parts of the grammar also use the verbbphrase network, but
do not enter it right at the beginning of the auxiliary network (e.g;
the NP-modifier construction - see VI.4.l1). In such cases, the other
part of the grammar must ensure that the right properties are set up

before joining the VP network.

The main VP network is very simple, due to the lexicon-driven
strategy described in Secfion I11.9. The network branches into 3
paths (corresponding to two objects, one object, or no objects), and
on each path the varioﬁs possibilities are provided by the
object~information properties on the lexical enfry for the main verb;
this gives a 1list of 1lists, each containing an SCR and some
state-names. The énalysis branches further, depending on how many
options are given in the lexicon. On each path, however, the
operations are of the same géneral form, A rule~node 1is erected
using the given SCR, and the verb is inserted as the first argument
(i.e. as the leftmost dqughter). A piece of ATN is constructed (from
the given staté«names) which will try to £ill the remaining argument
places with the appropriate number of constituents, and the analysis

proceeds through this network.

This device makes it very easy to add new verbs, with different

"grunk"

object configurations, to the grammar. For example, a verb
which combined with two objects uéing SCR 4, the first object being a

prepositional phrase with "to", and the second being a "wh" clause,

could be entered in the lexicon with the property

- Page 345

[0BJ2 [SCR4 STPREPTO STWHCL]]

The grammar would not need to be written. This may seem a trivial
point, but the TESSA grémmar[and presumably the SHRDLU one, (sce
VI.5 below)) searches explicitly in its recognition routines (the
equivalent of MCHINE"s ATN) for any object configuration that it
handles, and would thus need a new piece of grammar for each new

verb.

The SCRs that act as role placement rules are almost all of FEhe

same form. The main verb”s semantic item is a RELATION,.and this is
used to construct a RELINST. The object meanings are slotted into
various roles in this RELINST. This RELINST should have at least one
role unfilled, and it becomes part of a DEFINER, with one of the
unfilled roles being the selected role. This definer forms the
meaning of the verb phrase. Different role~placement rules (of the
same object number) diffgr'_in the way they permute the surface
constituents into the RELINST roles; and in the role that they select

for the definer,

Ther verb "be" is treated differently. It has no »object
informétion in the 1lexicon, énd is not regarded as a RELATION from
which a RELINST and a DEFINER can be built. On encountering "be'" in
the main verb positicon (and making sﬁre it is not just one of the
auxiliaries) the analyscr discards. the >"be" word (i.e. does not

attach it to the tree) and begins to build the complement (that is,

11 1

whatever follows the "be" verb) directly on to the node which would
have held the role-placement SCR if a major verb had been encountered

(i.e. the <current node> in trees like that rvepresemted in

" Page 346

(190) above). Since noun phrases, adjectives and wh-clauses are
all represented as definers, this provides a standard interface for

the SCR Subject Complement.

This means that there is only one Subject Complement rule for

all constructions, including those in (191).
(191)
(a) John hates Mary. : . N
(b) John is clever.
(c) John is a doctor.
(d) Mary is hated by John.
In each case, the subject meaqing is placed in the selected part of
the definer, provided by the complement, to form a relation-instance,

More subject complement rules would be needed if more

complicated constructions like (192) were inqluded.
(192)
(a) There ére lions at tﬁé bottom of my window-box.
(b) What I want to do is vomitu

(¢) It’s bread pudding that he likes.

(See also VI.4.5 for some complex subject-complement constructions).

" Page 347

Some SCRs are marked as "active", and some others as 'passive".

to cover a sentence like (191)(d), the following are needed :
(193)

(a) An SCR, say SCRPl, marked as '"passive", which takes two
arguments (i.e. one verb + one object), putting the object into the

AGENT role and selecting the GOAL role.

(b) the entry for the verb "hate" must include -the syntactic
prdperty [0BJ1 SCRPI STPREPBY] where STPREPBY is the name of an ATN

state which expects "by + NP" to follow.

That is, the object-phrase is treated as an "object" prepositionally
marked with '"by'". This fails to use the fact that getting a "by"
phrase and using it to fill the AGENT slot is a recurring pattern;

otherwise, it is fairly neat,

The object«informatiﬁn.of a verb allows thei"ébject" of a verb
to be any constituent, such as an infinitive phrase, for example.
Hence "I believe him to be clever" is handled by giving "believe" an
object—inﬁormation property specifying two objects (NP and "to"+VP),
and a slightly more complex role»placemeﬁt rule than usual. This SCR
has to form the two object meanings inté a RELINST (in chh the same
way as the Subject»Complément SCR‘does), then put this structure into

one of the roles in the RELINST being constructed for "believe'.

VI.4.3 Prepositiouns

" Page 348

For each preposition, there is a corresponding arc which tests
for exactly thqt preposition, and a state which contains just that
arc, These states are used in specifying object information for
verbs. The preposition arcé,all connéct to the initial state of the
noun phrase network. Since one of the ares of the NP network
searches the wh—registef for its result (see Sections V.4 and
VI.4.6), "dangling" prepositions are au£omatically included in gﬁg
grammar . That is; 'fhe,recognition rules for (194)(a) and (b) will:

handle (194)(c) without further elaboration.
(194)
(a) You spoke to Mary.
(b) Who did you address ?
(c) Who did ybu spéak to ?

VI.4.4 Imperatives .. .- -

Imperatives are treated simply. The options at the start of the.
sentence include looking for an untensed main verb, with an entry
under the TASK property on its meaning; other options include
certain combinations of "do", "don’t", "do not", followed by such a.
§erb. The incoming verb phrasé‘is“then processed by the ordinary
verb phrase ATN, and :its meaéing handed up as the meaning of the

sentence, with ORDER entered as its ILLOCUTION.

Although embedded imperatives (é.g. "He told me to speak') could
be handled at the surface level by treating the infinitival phrase as
an "object" of the verb of ordering (as with "believe" - sce VI.4.2

above), this has not been tried, as the semantics of embedded

- Page 349

commands has not been explored.

VI.4.5 Embedded clauses

Sentences like (195) (a) are automatically covered by
incorporating the "that'"+S construction as an option in the NP
network. Such incorporation is desirable if we are to avoid having

to treat sentences like (196)(a) and (b) as separate cases).
(195)

(a) That you like Mary surprises me,

(b) It surprises me that you like Mary.
(c) It surprises me.
(196)

(a) I said that you were leaving.

(b) I said something.

The related sentence (195)(b) is assigned the same semantic structure
as (195)(a), in the following way. The initial clause "It surprises

me' is analysed, resulting in an SCR tree of the form

(197)

SCR Subject Complement

T \"hsw.. . - T
- ""‘nk
sy,

o

e SCR Role~Placement N

T
et T e

pr .,uu&‘r‘ ““""--v.,

PEREE i as mata 3 s ar SR T

"surpriscs me"

After "me', the analyser finds that there are more words left in the

- Page 350

input, and so uses the BOTTOMUP mechanism (see Section VI.3.5) to
find a new state. The iexical entry for '"that" gives ig the
syntactic feature "THATS", and there is a pointer from that feature
to the ATN state SSBTHS, which "expecté" anb embedded clausé. The
analyser stores the old TREETOP (the Subjeét—Complementvnode) on
TOPNODES, establishes new nodes (see Section VI.3.5) and continues.

At the end of the sentence, TOPNODES is found to be non-empty so the

\\‘

nodes on it are evaluated, and an SCR sought which might relate the,
various EXTVALs found. The rule "SCR It+thatS" is selected (as a
result of certain underhand tricks -~ see below) and a tree¢ like (198)

constructed.

(198)

SCR It+thatS$S

//\\M_

SCR Subject Complement SCR Subject Complement
SCR Role Placement X SCR Role Placement Y
"I "surprises me" "you" "like Mary"

The semantic item for the left-hand Subject Complement node will
be a relation-instance with the semantic item for "it" enterea in one
role. The "It+thatS" rule searches its‘first argument for the "it"
meaning, and replaces it with the second argument. That is, tﬁe
RELINST produced by the right-hand Subject Complement ruie node is
slotted 1into thé indiéated roie in the RELINST from the left-hand

node. This gives a structure like (199).

Page 351
(199) o ,

SURPRISES

P

Agenﬁff Goal

; ‘?Egspeaker>

é \

<h%2rer> <MARY>-

Agent

o

It is worth digressing here to describe one problem that arose
while debugging this pért Aof the grammar, as it illustrates how:
computer implgmenﬁatioﬁ can draw attention to inadequacies in a
superficially attractive scheme. When the anélyser was first tried
on sentences like (195)(b), it produced a structure 1like that for
(195)(c). The grammar had been written .so that ’séntences like
(195)(b) would be analysed by first analysing a clause 1ike'(l95)(c),
then doing a "restart'" (see above) when the word '"that”" was
encountered, and uéing the rule-selection technique to' find a
two-argument rule to combine.thé two clauses. The analyser did not
produce the e#pected result; but. instead returned a structure
corresponding to the meaning of '(195)(c). At first, this error
suggestedrthat the restart mechanism had malfunctioned, and discarded
the second clause (either in its input‘fofm or after processing it).
Further investigation revealed that something else had happened. The
whole mechanism had functioﬁed, exactly as intended (an a priori
incredible occurrence, as any programmer will attest), but the input
specifications of the structural combining rules had not been
sufficiently narrow, and the "wrong'" rule had been selected. The

intended rule ("It+that S") had specifications

"~ Page 352

((RELINST) (RELINST))

for two clause-meanings (see Sections I1II1.10, 1IV.1l, VI.3.7 - for
explanations of the semantic notation). The "wrong" rule found was
that for non-restrictive relative clauses (see Sections V.4 and

~

VI.4.6), which had specifications ' . M

((ENTITY) (RELINST))

for a term meaning and a clause meaning. Since a RELINST is also an
ENTITY (anything is an ENTITY), the arguments had\lmatched the
specification for the NRelClause'rule, wvhich happened to be examined
earlier in the selection routine. Since NRelClause returns its first
argument as its result, the first clause~meaning became the overall
result of the analysis. In ordep to patch up this inadequacy, the

NRelClause specification was made more specific

((ENTLTY) (WHCLAUSE))

This hid the problem temporarily, but the difficulty reappeared when
time—adjuncts were incorporated into the grammar. A two-clause
sentence like (200) was also to be analysed by using the restart and

rule-selection technique.

(200) I spoke to Gladys when you were speaking to Boris.

Here, the second clause is a WHCLAUSE, so once again the 1ist of two
clause-meanings will match the input specification for HRelClause.

It might seem that the solution is to have the time-adjunct ‘rule

input specification require something like

Page 353

((RELINST) (TIMEREF))

or something similar, but that would not avoid the overlap. Since
"when"-clauses can indeed form non~restrictive relative clauses (cf.
(201)), they must match the input specifications of both rules, no

matter what they are classed as.

(201) Half an hour ago, when you were speaking to Boris, I spoke

.

-
to Gladys.

The MCHINE prograﬁ has an ad-hoc solution to this problem.

There 1is a short list of "

clause-rules" and it is this list which is
searched by the rule-selection routine. Since the rule-selection
routine is wused only in two. parts of the MCHINE grammar (after

restarts and in certain wh-clauses), and clause + modifier pairs are

involved in each case, this range of rules is sufficient.

VI.4.6 Wh-Clauses

One of the most complex parts of the MCHINE grammar is the part
for processing wh-clauses. The grammar is an implementation of that
‘discussed in Section V.4, but the general facility for analysing
other forms of Complex Noun Phrases (e.g. Appositional Phrases) is
not included. To be more accurate, no '"SCR Apposition” has been
designed, so the program would not be able to build the fight
structure for the appositional cases, even though it would follow the
correct path through the transition network (since, as pointed out in
Section V.4, appositional phrases are merely a special case of the

wh~clause path).

" Page 354

There are . various slightly different kinds of structures
involved in wh-clauses, and it is worth déscribing them in detail

here.

Wh~words are cross~¢lassified using four syntactic features :
WH, WHDET, WHREL, and WHFULL. All the wh~words ("who", "which",
"that", "what") are marked WH. Those which can form the determiner
of a wh-phrase (i.é. "which", "what")‘are marked WHDET. Those whiih
cén act as relaﬁive pronouns with ’an antecedent ("which", "who“,l

"that") are marked WHREL. Those which can act as relative pronouns

without an antecedent ("which", "who", "what") are marked WHFULL.

A wh-phrase can be either a WHFULL word, or a WHDET word

followed by a head phrase :
(202)

(a) Who did you see ?

(b) Which large policeman arrested you ?

A wh=-clause is a clauée which starts with a wh-phrase, whether
embedded (as in (201)(c) and (d)) or forming a sentence (as in

(202) (a) and (b)).

A wh-question is a question in which the topmost clause is a

wh-clause (e.g. (202)(a) and (b)) .

A relative clause, with anfecedent, is a noun phrase followed by

a wh~clause.

* " Page 355

An independent embedded wh-clause is a wh-clause starting with a

wh-phrase and without an antecedent.
(203) . .

(a) What you did was wrong.

(b) Which book you choose doesn’t interest me,

(c) I know which book you were reading.

- a

(d) I eat what I sece.

Independent embedded wh-clauses can be classed as either
independent relative clauses (where the opéning{;h—phrése is just a
single WHFULL word), as in (203)(a) and (d), or embedded questions
(vhere the opening wh-phrase can be more than one\word), as in
(203)(b) and (c). These differ semantically in that the iddependent
relative clause 1is used to single out some item(s), in the same way
that the corresponding ofdiﬁé;y relétive clause is, whereas the
embedded | question ;epresents the question expressed by the

corresponding wh-question. One form refers to ‘some thing(s), the

other refers to some proposition or query.

These are- all informal descriptions, rather than precise
definitions, but they should make the later exposition somewhat

simpler,

As obsevved in Ritchie (1977), the notion of a "noun phrase" is
hard to define, and the things that are traditionally referred to as
"noun phrases" are a heterogeneous collection whose common

characteristic is that they can act as terms in a relationship. The

Page 356

"noun phrase'" network in the MCHINE grammar therefore has to include
such un-phrase-like items as independent wh-clauses, amongst others.
A great deal of effort went into merging the networks for the various
kinds of wh-clauses, and they all use the same network with only
minor variations in how it is entered. The difference between the
two forms of dindependent embedded. wh-clauses is expressed by the
ILLOCUTION property of the structure built; an independént relative
clause is marked "SAY" and a question is marked "ASK". As can be seen
from the above description, some strings will be ambiggous betweeg
the two interpretations, if the opening wh—-phrase is only one WHFULL
word. This ambiguity‘should often be resolved by the rest of the
sentence, since the verb-frame into which the independent clause fits
may>have a narrow enough semantic restriction on the reievant role to
eliminate the unwanted interpretation. The necessary semantic
classifications to separate '"question-meanings" from ‘"referring
expressions" are fairly subtle, and are beyond thg MCHINE program.
Hence the analyser treats as éﬁbiguous not only (204)(a) and (c)
(wvhich are ambiguous) but also (204)(b) and (d) (which should be

resolved within the sentence).
(204)
(a) I know.vwhat you‘saﬁ.
(by I iike what you saw.

(¢) What is on the noticeboard does not interest me.

Page 357

(d) What you broke was very valuable.

VI.4.7 Time'Adjunctg

Thé grammar allows time-adjunct clauses either before or after
the main clause, One of the optioﬁs at the start of a sentence is a
time-adjunct, after which the ordinary sentence—initialv state"is
re-entered, thus allowing sentence~initial constructions (e.g.
subject-verb inversion) to occur after a time-adjunct. Time adjuncts
at the end of the main clause are found by the BOT?OMUP/ RESTAB?
system, together with the mechanism for searching for an SCR (see

Section III.9).

There are two time-~adjunct SCRs, which differ only in the order
of their arguments, for combining the meaning of a time-adjunct with
the meaning of a main clause to create a RELINST with fhe relation
YATTIME". Events (i.e. utterances in a dialogue with the MCHINE

program) are "remembered" in a semantic network of the form (205).

(205)

o R

ST
. PO PR S
o «‘:‘:'-'""" B g,

-

Relati v “rimeperiod s, Truthval
elationdesc,” Timeperiod =, LTruthvalue

7.
P, h \\
ADDRESS ™. & 3

8,

\»%“ 2 . 1 . -
e <time-descriptor> TRUE
v g P

Patient
",
55 Q,'

<speaker> “Cutterance>
The tense-manipulation described in Section V.7 1is implemented
in the time-adjunct rules, but no complicated dialogues have been

tried to test it.

Page 358

Relationdesc

74

<relation-instance>

STimeperiod

il
i

A time-descriptor is implemented as a definer in the form (206),
with an entry on the property list under "TIMEPATT" which provides

~

the necessary information, in the following way. M

Tﬁe TIMEPATT is a triple,‘the first éomponent being’ the point/‘
interval indicator, and the other two components indicating how the
end-points of the time period relate to the end-points of the event
described by the relation~-description. The sécond component of the
triple correSponds‘to the start of the denoted ti&e periéd, and the
third component corresponds to its end;r these two componenté contain
distinct values (actually, 0, 1 and 2) dependingf:whether the

end-point in question is represented by the start of the event, the

end of the event or is undefined.

As discussed in Section V.7, "when" clauses can be handled by
‘the ordinary wh-clause grammar, and this 1is how the implemented
grammar operates. However, the grammar for time-adjuncts at the
beginning of the sentence has to make the distinction between‘a
"when" clause and other "wh" clausés,,because‘only in the "‘former case
will an SCR tree with the rule SCR Time Adjunct need to be built.,
This distinction can be’made by having a syntactic feature "TBIND",
which is present on time-binders ("after", "before", etc.) and on
"when". The recognition rules for time adjuncts check for this

feature before trying to process the time-clause and ercct the SCR

" Page 359

Time Adjhnct node if appropriate. This does not interfere with the
way that the "when" clause is analysed, and so the wh-clause grammar

can still be used.

" Page 360

Section VI.5 : Comparison with Other Programs

.

Al though ‘Chapters II and III discussed the ideas of the MCHINE
program and their relationship to other frameworks, no comparison was
offered of the more mundane details of actual programs. It 1is
difficult to make fair df aécurate comparisons between natural
languagetprograms in artificial intelligence; since there is a dearth
of real statistics about the performance of the programs. It is good
that -such prosaic details have not assumed undue prominence at ;Re

expense of the principles involved, but it makes it difficult to

summarise what practical work is being done.

Three programs have been documented in sufficient detail to
allow some comparisbn, so this section will pfdvide a discussion of
the relative merits and deficiencies of the MCHINE program with
respect to the Thorne-Bratley-Dewar parser (referred to here as the
TBD program for short), Winograd’s SHRDLU and Soul’s TESSA (Thorne et
al (1968), Winograd (i97éj, Soul (1975)). Unfortunately, these
programs are very siﬁilar in *tﬁeoretical orientétion, and so the

survey here will be somewhat narrow.

Vi.5.1 Technical Details

The TBD program praduced a labelled bracketing of the input
String, with special ﬁarkings éor indicating any constituents that
were not in ”deep‘étructure position", and whére these constituents
had- been "transforﬁed" from, That is, it was a wholly syntactic
parser, operating on single sentenées. It bccﬁpied 16K of. 48-bit
words on the Fnglish Electric KDF9, and took between 0.5 énd 2.2

seconds to analyse sentences, depending on complexity.

» Page 361

SHRDLU was an entire dialogue system, but it contained as a
(separable) subpart a syﬁtactic'analyser. This analyser could be run
autonomously on isolated sentences, and could produce anélysés for
all thé sentences in the list published for the TBD program. The
SHRDLU system as a whole could deal with a narrower range of
sentences, but its performance was not trivial. The analyser alone
occupied about 25k of 36-bit words on the PDP-10, and the whole
system took about 80k (both figures dinclude the ﬁnderlying LIQP‘
system) . The system responded to sentences in between 5 and 20

seconds.

TESSA was intended to be an improved implementation of the
grammar described in Winograd (1972). (The ?ﬁRDLU program did not
include all the grammatical constructions exactly as described). It
ran on isolated sentences, performing no semantic processing, and
included some elaborations of the SHRDLU grammar. The program
occupied about 30k of 36~bit words on the PDP-10, plus an 1lk POP-2
system. The time taken to analyse a sentence is about 2 to 3

seconds.

Asvétatea in Section VI.(Q, the MCHINE program can run either in
isolated sentence ‘mode (when it builds a semantic network for eachA
phrase or sentence) or in conversational mode., It can therefore be
compafed with the performance of all three programs on isolated
sentences, and with the conversational ability of SHRDLU. In
isolated sentence mode, MCHINE"s performance 1s spectacularly
cumbersome. Not only does it occupy 56k total‘core épace, it 1is by
far the slowest of the programs (by a factor of about 15). However,

it must be borne in mind that the MCHINE program éonstructs a

© - Page 362

semantic nétwork as it proceeds, and so is performing what many other
systems would treat as two.stages. The conversational ability of the
MCHINE program also seems to be inferior to that‘éf SHRDLU, aésuming
that Winograd’s "sample dialogue" is a typical sample (as obposed to
a one-off performance). The énly mitigating factor for MCHINE is that

it is fairly robust (by the standards of such programs) in

T\‘
conversational mode, and several sample dialogues have been produced.

without error.

Although this summary has been included for = completeness, it
nust be admitted that ‘certain details are almosﬁ‘ completely
irrelevant to. artificial intelligence - and linguistics. The
processing time consumed by a program is of little interest, as it
depends so directly on implementation details and the particular
programming language used. For example, POé-Z subroutines can be
defined as "functions" (held in genefal purpose .identifiers) or as
"operations" (with their own syntactic type). Since functions
therefore require run-time checks that are redundant for operations,
the call of an operation is about 257% faster. Most of the rbutines
in the MCHINE program are defined as '"functions", and hence the
program could be | speeded up simply by redefining them as
"operations"., Such an \improvemeht is hardly of .theoretical
importance. Thorﬁe, Bratley and Dewar’(l968) included in their data
the number of ATN states visited in each analysis. This 1is a
somewhat more intevesting statistic, but uﬁfortunately similar

figures are not available for the other programs.

- Page 363

The point made in Section I.4 could be emphasised here. It 1is
not the -superficial perfdrmance of the program that is important, but
the principles émbodied in it, MCHINE s pedestrian performance can
perhaps Be' attributed to the aim of develéping general mechaﬁisms,

rather than achieving a virtuoso performance,

VI.5.2 Grammatical Coverage

The coverage of the programs is difficult to compare, since
different workers tend to use slightly differing vocabulary and .
constructions. However, it is possible to produce an imaginary
"master sample sét" by combining the published data from all_tﬁe
programs and making some reasonable assumptions about ”"equivalent"
examples. One can only speculate about how the programs would fare
on these standardised examples, but some reasoned estimates, tempered
with charity, are possible. Appendix C contains such a hypéthetical
standard sample set, and an estimate of thea performance of each
program. The summary 4ébhce}ns only the ability of the programs to
aﬁalyse sentences, S0 éHRDLU's mechénisms for producing sentences
have been dgnored. Tt is not clear how punctuation will affect the
various programs. MCHINE is guided by punctuationronly slightly (as
noted previously), and the TESSA list (Soul (1975)) includes a few
examples in both punctuated and unpunctuated form. SHRDLU depends on

\
question mwarks to indicate questions. Since the SHRDLU parser

successfully analysediﬁall the sentences on the TBD 1list, the
information in Appendix C regarding SHRDLU is based on that for TBD.
Soul (1975) has also provided a list of complicated noun phrases that

are within the capability of THESSA, so that program can probably do

better than the performance table might indicate.

CHAPTER VII

CONCLUSIONS, PROBLEMS AND SPECULATIONS

e e e e s 1 s o

~ - Fage 365

Section VII.Q : PreainE

This project has explored the English language in various ways.

Firstly, it has indicated how the artificial dintelligence
devices embodied in computational grammar can be used for linguistic

description.

Secondly, it has used this framework to analyse a few fragments
of English.

™
Thirdly, it has made some proposals concerning the processing

mechanisms needed in a model of English sentence understanding.

However, this work has merely started to attack some of tﬁe
‘problems, and has not really provided full solutions.; Chapter VII
suggests some of the points that it might be interesting to follow
up, ranging from fuﬁdamental alterations in the processing mechanism

to small points of detail concerning English grammar.

- Page 366

S

Section VII.1l : Structural Combining Rules

VIiI.1l.1 Present Versggg

The main advantage of structural combining rﬁles, as currently
defined, is that they provide .an interface between what are
traditionally known as syntax and semantics. The hierarchical
grouping of sﬁrface constituents which has béen so much part of
previous linguistic theories has often been regarded .as syntactic,
necessitating the development of syntactically-motivated rules (eigl
phrase~structure grammars). The comprpmise represented by SCRs is to
accept fﬁat there are tree-like patterns in surface structure, but to
stipulate that the rules which express these. groupings must be
devised on semantic grounds, and that the operations that these rules

perform should be on semantic structures.

VII.1,2 Bidirectional Rules

One obvious shortcéﬁiﬁéA)of the entire computational grammar
framework is the la;k of any means of sentence production, and the
oﬁe-directionai rules whicﬁ have resulted from this bias. A possible
refinement is to see how ruch of the information used by the analyser
is also useful in sentence production, and to try to factor out those
parts into rules which are inte;pretable in both directions, ‘(Cf.
Section I.2). It is not obvioué whether this would be best tackled by
writing a separate production grammar, or whether the current grammar
should be modified, The first step would probably be Fo make SCRs
bidifectioqal, since they will be needed - in production. Tbe

experimental form of SCRs, described in Section I1I.3, where the

operation of the rule was subdivided into separate components, one

N : : - " - Fage 367

for each argumeht; would be more easily reversed than the form in
which all computation is done in one wnawalyseable block. Much of the
recognition grammar might remain one-~directional, since it is aimed
at a sfrongly directional task, but even there some information
regardiﬁg éonstituent~ordering might be extfactéd into the
dual-purpose part of the grammar. One major problem is that the
recognition rules ofteﬁ test for some sufficient condition before
taking some action (not always a nécessarx'condition) and some rules
test simply for the presence of some particular marking or structure, |
wvithout testing all the defails of that item. Hence these rules

might not be fully reversible.

VIT.1.3 Left-Right Ordering

As discussed in Sections IV.5, and IV.8, SCR trees are built in
a strict left-to-right fashion, with any re-ordering of constituents
being perfofmed by the ATN part of the grammar before the re-ordered
items are built into ‘the tree. This appfoach is particularly
suitable for English, where much of .the linguistic information is
convéyed by word-order, but it raises doubts about the generality and
flexibility of computational grammar. If grammars are to be written
fo; languages wﬁich make much less use of sequential arrangement as a
communicative device (using, for example, inflections instead), new
problems arise. It is fér from clé;r what criteria would be used for
such grammars for cﬁoosing an ordering for the places in SCRs, This
whole issue 1is very complex, and some of the arguments have already
been raised within transformational linguistics, in the discussion of
"underlying word order" and ﬁuniversal basesf (cf. McCawley (1970),

Peters and Ritchie (1969)).

" Fage 368

VII,l.4 Focus and Topic

One . of the many areas of linguistic communication which
cpmputationai grammar has not touched is that of "topic" and "focus".
Different arrangements of semantically similar sentences can be
regarded as ‘differing in the emphasis that they put on the various
items of information in the sentence, and in the way that they
separate ''mew" information from "given" information (cf. Halliday
(1967a,b, 1968)). This is an obvious point for further investigation,
since very little work has been done in this area computationally
(but see Davey (1974) and Kay (1975) for some suggestions). Within'
cémputational grammar as defined here, the best way to describe such
a notion would be to incorporate these aspects into the SCRs, so
that, for example, "passive" rules would have different consequences,
in terms of '"topic", “"focus" and "new/given" characteristics, from

"active' rules,

. Page 369

Section VII.2 : The Analysis Procedure

v

VII.2.1 Present Version

Méstlof the ATN system ﬁsed in computationél grammar is fairly
standard. The most dinteresting ﬁodification is the NEWLEVEL;..NIL
construct, which allows the gfammar writer to specify a new
processing level without having to state what will follow the
constituent for which the new levei is needed. Beyond that, the main
advantage of writing the ATN rules for the MCHINE grammar has been to

highlight some of the inadeqguacies of the ATN formalism as it stands.

VII.2.2 Top-down and Bottom-up

One disadvantage of the AIN formalism is that it has been
developed mainly as a way of expressing a top-down search strategy.
As discussed in Section‘IIl.Q, the decomposition of networks into
subnetworks promotes' a classic top-down approach, and the analyser
can do little with an inpﬁt.igém that is not explicitly specified as
a‘ possible option innthe current state. Many English constructions
allow items to occur at any one of several points in the sentence
(e.g« adverbs), and grammars should be a little more flexible in the
way that they handle such constructions. There are other
circumstances wﬁere it might be neater to let the input itéms guide
the énalyser, rather than having the analyser search single-mindedly

for all possible options. Tor example, some verbs can take various

configurations of objects, as in (207).

- - Fage 370

o

- (207)
(é) We gave Veronica a teaset.
- (b) We gave a tegset.
(c) Hé_never gives to charity.
(d) We gave a teaset to Veronica.
(e) The chef is cooking. N
(f) The chef is cooking something exotic.

At the moment, these are covered by having the analyser explore
an exhaustive network representing all the possibilities for the
given verb {(see Section III.9 and V.8). It would be neater if the
analyser could in some way process whatever objects are present and

then allocate them to nodes in the surface tree.

Also, a relative clause may, under certain circumstances, be

scparated from its antecedent, as in (208).

(208) A man came in who had been at the party.

The relative clause is generally understood as modifying the most

recent noun phrase in the sentence (cﬁ. Grosu (1972)), so this seems

to require a procedure which searches back for an antecedent, on

encountering the relative clause. However, that would necessitate a
5

grammar capable of analysing a detached relative clause, even if it

wvas not anticipated, without assuming that it was an "independent

embedded wh~clause' in the sense of Section VI.4.6.

© 7 page 371

Whether these kinds of "optional" constituent need a new
formalism, or merely a more imaginative use of the ATN mechanism,

remains to be seen.

VIi.2.3 Prédictions and Procedures -

One of the difficulties in trying to‘ construct é semantically
motivated processing model 1is the problem of relating.prédictions
made during the analysis of a séntence (possibly in some semantic
terms) to methods of processingr actual words. This has been
discussed elsewhere{ (see Sections II.7 and Ritchie (1977)), but no:
solution to the problem has emerged.. As pointed out in Ritchie
(1977), the ATN mechanism, as currently used, is an implicit (and
rather unprincipled) way of effecting the cdnversion from high~level
semantic predictions to low;level processing procedure. The first
step in tackling this awkward area is to make this conversion
explicit, in order .fo see what relationships do exist between
semantic and syntagtié'kcétégories. If we‘ introduced a set»Qf
"category conversion r;les",.we migh£ at léast see what was going on,

as a preliminary to systematising the process.

VII.2.4 : Demons and Packets

Over recent years, a particular form of control structure has.
been used for various processing models in aftificial’intelligencé;
It is based.bn the concept of a '"demon" (Charniak (1972)), and has
been- used for English language programming by Marcus (1975) aﬁd
Riesﬁeck (1974) . (See Sections I1I.7 and II.IO for | a fuller
exposition). As observed in Section III.6, there are various formal

similarities between the ATN "arcs" and "states" and Marcus’ 'demons"

" " Page 372

and "packets".

The méin differences betweenA the two formalisms are in the
possible ways of activating and de-activating the units. A packet is
usually a smaller unit ﬁhan the ATN states, and so several packets
may be active at one timg, whereas each path in an ATN analysis has
only one active state. This extra flexibility in thez packef method
might avoid the unsuitablility of the AIN states for expressing
alternative groupings of arcs, and the unions of states (see Sectign
III.7). As mentioned in Section ITI.7, the AIN interpreter in theé
MCHINE program allows ;hé NEWLEVEL arcs to specify a list of ATN
states, which together make up the new active state. This ié a

covert way of gaining an advantage of the packet method.

This leaves unresolved ﬁhe\question of de-activating demons and
packets. Since an ATN analysis path has only one currently active
state, the de-activation procedure is simple - once all the arcs in
the state have been ﬁf&céséed (i.e. tested against the input word,
and appropriate action-taken) that state is no longer active. Each
arc has to supply a new state for activation on the path it creates.
If 2 demon—-and-packet analyser is maintaining a list of active
demons, there is not such a simple way of deciding when to remove a
given demon from the list. Since a demon represents a possible
option for the input word, and such options are generally plentiful{
the active demons may accumulate somewhat. One possible method of
de—acﬁivation suggested by Marcus (personal communication) is to
class certain demons as "one-shot", These units would . be -
automatically de-~activated as soon as'they were triggered, and would

be, in this respect, similar to ATN arcs. - Notice that a '"one-shot"

= - Page 373

demon is not exactly like an AIN arc, since the demon is not
de-activated unless it ié first.ttiggered (this corresponds to an ATN
arc "matching" an dinput word). If 'one-shot" demons are never
triggered, they will still hang around. If a demon were a "one-word"
demon (i.e. it only stayed active for one word of input), it‘ﬁould be

very much like an AIN arc.

Apparently, some combromise between the standard ATN and the

demon-and-packet approach is needed. The flexibility of the latter,

™

combined with some well-defined procedure for de-activating demons,

should lead to a grammar-writing formalism that is easier to use,

v: - Page 374

Section VII.3 : Semantic Representation

VII.3.1 Present Version

The semantic network system adopted for computational grammar is
general, and includes some useful facilities (such as the "expanded"

and "

elaborated" forms for relations), but in most respects it adds
very little to the proposals of Rumelhart aﬁd Norman (1973)., The only
novel item is the discerry of a particular kind of network structure
(the '"definer") which is especially useful in specifying semantic -

structures which can wundergo a variety of operations and which

interface neatly with the syntactic constructs.

VII.3.2 Semantic Well-formedness

The concept of 'semantic anomaly" has been used, rather
uncomfortably, for some time within language research (e.g Katz and
Fodor (1963), MCCawley (1968), Winograd (1972), Wilks (1975)), but
there is still no clearFWAy-of characterising the distinction betwegu
semantically wellwfo;ﬁed and jll-formed meanings. If a
senténceﬁanalyser is to use referential semantic considerations to
guide ifs processing (e.g. choosing betwgen two possible analyses by
selecting the one whicﬁ offers the "betﬁer" meaning), then this whole
érea will haveA to be examined - much' move thoroughly. The
over;simplified notion of “éelectional restrictions" has been
regarded as'theoréticall§ inadequate for some time; but computational
~models still resort to it, fov want of anything else. Computational
grammar includes the improvémen; of not treating violation of
selectional restrictions as an éll—or~nofhing matter (as does the

Wilks system — see Section I1.6), but that just scratches the

g “Fage 375

surface, particularly as there are no principles developed yet
concerning how semantic combinations are " to be graded for

ill-formedness.

There are a few preliminary proposals concerning ways of
"choosing better interpretations”" (e.g. Wilks. (1973), McDermott
(1973), Charniak (1972)) but the theoretical side has not beén

developed.

VII.3.3 Contexts and Referring Expressions

If we are to have structures for certain noun phrases that
allows them to describe different objects in different contexts, then
the question arises of which context should be used when a particular
expression is eQaluated. Using the analogy of Section III.4, let us
identify a 'state of the world" with an "environment', where
"environment" is used in the programming sense (cf. Davies (1973),
Stansfield (1975), Mosgs“ £1970)), meaning a set of values for
variables. When é pattern 1is wused to produce an item from the
database (as has been suggested here for the semantics of specific,
definite noun phrases), the item(s) produced will depend on the
current values in the data-base - different environments will produce
different "referent sets". The appropriate environment may be the
hearer’s model, the speaker’s model, or some 6ther state of affairs,

possibly hypothetical or associated with some third person.

This means that the linguistic model will need some way of
keeping track of which "environment" is to be used for evaluating the
various referring expressions in a sentence or dialogue. (See

Ritchie (1976) for some of the problems involved heie). This device

Page 376

will have to operate within the sentence analyser (not just in some
global conversational routine) as the relevant context may vary

within a sentence,

It is perhaps worth including some speculation concerning the
possible connection between this problem and the notions of
"specific" and "generic" discussed in Section V.6. For example,

compare the two uses of '"someone" in (209)(a) and (b).
\

(209)
(a) Did someone attack that man ?

(b) Someone attacked that man.

The ''someone'" in (a) seems to be non-specific, in that 4it is being
offered to the hearer as a pattern; in this respect, (a) is simiiar
to "Did anyone attack that man ?", where "anyoﬁe" is non-specific.
In order to respond to the duestion; the hearer uses the pattern ﬁo
search his world model for any approériate items. The 'someone" in
(b) secems 'to be specific, in that it represents some item that the
speaker does not expect thg hearer to be able to identify further.
There 1is a certain symmetry here. In (a), the speaker has no
information about the refefent, but assumes that the hearer has; in
(b),‘ the hearer has no information about the referénﬁ, but assumes
that the speaker has., Possibly notions 1like 'specific'" could be
re-defined in terms of the way that referring expressions are handléd

in the two contexts ~ speaker’s and hearer’s (cf. Hintikka (1973)).

- Page 377

Section VII.4 : Syntactic Markings

VII.4.1 Present Version

Computational grémmar has tried to clarifi the role that
syntactic information plays in the sentence-analyser, by separating
those devices that seem to be wholly non-semantic, without
constructing a full "syntactic component”. If syntactic features,
properties and rules are allowed to be used in the grammar, but there
is no committment to giving a syntactic explanétion to evexny
phenomenon, the amount of syntax needed can be assessed more .

accurately.

If we were to disallow any device that resembles "traditional
syntax" (as Schank (1972) and Riesbeck (1974) seem to wish) we would
bias the investigation from the outset, Conversely,‘ trying to
provide a full "syntactic analysis" for every sentence may introduce
pseudo-problems, in that there may not be an appropriate way of

describing some aspects of a sentence in a syntactic structure.

The MCHINE grammar has shown the need for twenty-two syntactic
features, three ‘syntactic properties, and about eight
property-inheritance rules (see Appendix A). This is interesting, but
not spectécular‘ It remains to bewseen how this view of the role of

syntax can be refined by further grammar—writing.

-~ " " Page 378

Section VIL.5 : Guidelines for Descriptions

- VII.5.1 Present Version

The guidelines used in devising linguistic descriptions are very
rérely made explicit, and some of the intuitive meta-rules are so
widely accepted that a linguist may not realise that he dis tacitly
using certain methodological axioms. Section VI.8 attempted to
articulate some of the more important criteria that were empléyed in
writing the MCHINE grammar, since some of the reasoning used in the .
linguistic descriptions would seem unfoundéd otherwise. This setting
out of methodological axioms for grammar-writing is an importént
step, since lack of acknowledgement of such.assﬁmptions could lead to
confusing disputes between workers following differeﬁt schools bf
thought. (cf. Householder (1965, 1966), Chomsky and Halle (1965)).
Althbugh many of the principles are very general, and might be
adopted by many linguistic frameworks, some of the guidelines are

specific to this ’partibular framework. It is an advantage of

computational grammar that it makes even its peripheral assumptions

explicit.

VIL.5.2 Dynamic and Static Elegance

Linguists piace great stress on the "eleganée" or "neatness" of
a particular grammatical description, and, as commented in Chapter I;
this is one of the main means of assessing descriptions when there is
more than one possiblei solution, In a processing grammar, the
elegance may be assessead at more than one stage; Firstly, there is
the "statié" elegance of the grammatical rules as stated - are they

obviously ad hoc or redundant, or are they general and simple ?

© " prage 379

Secondly, there is the "dynamic" elégance of the grammar in operation
- does the analysef thrash round exploring many dead ends, or is it
efficient enough to constrain its searching ? (In programming terms,
static elegance concerns the source code, but dynamic elegance
concerns the run—structuré). Only Marcus (1974, 1975) seems to have
considered the latter as a topic, but it may be an increasingly
interesting area 1in future. There is often a trade-off between the
two forms of elegance, since a completely general stétic descriptign
of the options in a grammar may give no guidance on how theset
constructs are to be found. On the other hand, a more complicated
description (coptaining more information to guide the analyser) ﬁay
produce a shorter, neater processing stage. Anyone attempting to
write recognition grammars should be coﬁécious of this distinctioh,
and perhaps consider what his methodological priorities are; The
MCHINE grammar slid confusingly between these two criteria, trying to
gain the best of both forms of elegance, and the project might have

benefitted from an carlier realisation of this trade-off.

© 7 Page 380

Section VII.6 * Registers

VII.6,1 Current Version

This project has achieved two wuseful results concerning
"registers". The first is the classification of the kinds of
registers and their uses, which will hopefﬁlly lay the foundations of
a deepér investigation of this area (see VIL.6.2). Ihe second, more
substantive, achievement has been to show some‘ of the ways that
careful use of registers can contribute to more adequate descriptionsl
of English grammar. The analysis of relative clauses in Section V.4

is a particular example of this.

VII.6.2 Constraints on Registers

One major metatheoretical deficiency of computational grammar is
the 1lack of any constraints imposed on any of its devices. For
example, to state that registers are used for temporary information
storage during analysisAis.torgay almost nothing, unless some furthgr

claims are made concerning the various ways that these registers can

and cannot be used.

Some of the register principles used in the MCHINE grammar have
been developed indeﬁendently by other ATN users (see quds (1973)),
which reinforces the case in favour of ‘these constfaints. Woods
(1973) wuses a general work register called the HOLD 1list for
temporary structure storage, and 1imposes Fhe following general

principle:

© - " Page 381

"the constituent saved on the HOLD list must be used by some
virtual arc, either at the current level or at some embedded level

before a POP from the level at which it was saved can be taken."

(p.119).

This is exactly the "tidying-up principle' which was found useful in
writing the MCHINE grammar (see Section IV.8). Woods comments:

\

"The preéence of such a facility in the model raises a number of
questions of theoretical linguistic iﬁterest: for example, should
the hold list be constrained so ﬁhat constituents can be taken off
only inr the reverse of thé order in which they are put on....or can
constituents be taken off in any'order? Our expérience in writing
grammars within this model has not turned up any examples which would

resolve this question." (p.120).

The constraint that Woods postulates here would have a similar effect
to . the use of stack registers in the MCHINE grammar. In particular,
the patterns described in Section V.4.2 would be partly covered by

such a principle.

This area appears to be a promising one for further exploration.

'~ " rage 382

Section VII.7 : Conversational Rules

VII.7.1 Present‘Versioh

Computational grammar has included a 1level of conversational
description in . its model of sentence-processing, since the
"conversation games" of Section IV.7 provided a systematic -way of
structuring a dialogue in such a way that the conversational
information could intefact witﬁ the sentence analyser. This 1is yet
another area where the barest skeleton has been constructed, but at

least the step has been taken. i

VII.7.2 Greater Interaction

One area for major improvement~is‘the interaction between the
conversational games and the 'sentence analyser. The interface
implemented in the MCHiNE program allows arbitrary information to
pass 1in either direction, since the games call the analyser as a

subroutine, any part of thehprogram may call a game if required, and

the analyser vreturns the semantic structure of the sentence as a
result to the game which called it. In practice, the interactions
are limited, and there are very few places where either of the two

levels directs the flow of control at the other level.

In some games, the ILLOCUTION of the "result" passed up by the
analyser determines which game is to be initiated next. 1In one or
two places, the semantic routines can call CGQUERY if they lack
information, The current COnQersation game always éelects the
initial state for the analyser to use. Beyond these, the analyser

and the games plod forward without consulting cach other much.

" Page 383

It should‘ be emphasised that the practical facility for
arbitrary interaction is‘already present in the MCHINE program (being
quite trivial - both levels are progammed in the same programming
language) , but this 1is not the point., What woﬁldrbe interesting
would be to find exactly what intractions are néeded, and ‘to try to
formalise these within the given framework (or modify the framework

to allow it, if this proved necessary).

- " " Page 384

Section VII.8 : Points of English Grammar

VII.8.1 Present Version

Although much of the grammar-writing that went into the MCHINE
program was, as commented in Section V.0, fairly mundane, there are
one or two areas where the deécriptions themselves are of interest.
The unified treatment ‘of wh-clauses, the computational approach to
referring expressions, the detailed investigation of tense and: Eﬁe
description of verb phrases are the main areas where some innovations

have been made.

There are obviously many areas of. FEnglish as yet unexplored
computationally; this Section outlines two which seem particularly

crucial, and extremely difficult.

VII.8.2 Prepositions

As described in Seétion V.8, prepositions can be used as clues
to the analyser concerning which constituents fulfil which roles in
the verb~frame. This approach has certain limitations, and will not
work as a general description of English prepositions, let alone as a
general system of case markings. This approach is based on several

assumptions about prepositional phrases, including the following :
(210)

(a) The phrase is to fill a role in the verb-meaning, and is not

an optional adjunct.

' Page 383

(b)h The syntactic properties of the verb predict that a
particular preposition will be used to indicate the filler for that

role.

(c) The prepositional phrase occurs after the main verb that

creates the prediction.

-
(d) The preposition causes no change in the semantic structure

of the noun phrase involved (so that the representation of "at the

station" is the same as that of "the station').

All the prepositional usage in the sentences that the MCHINE program

was tested on conformed to the assumptions in (210); sentences like

those in (211), for example, could be analysed quite
straightforwardly.
(211)

(a) You spoke to bbfy.
(b) John is liked by Mary.
(c¢) Who did you speak to ?

It is easy to construct examples of prepositional phrases which

violate these assumptions. For example, (212) violates all four

conditions.

(212) Near what town did you see the monument ?

- Page 386

Perhaps the most serious error is (210)(d), which renders all
prepositions semantically vacuous. Since we want to distinguish the

meanings of (213)(a) - (c¢), this raises problems.
(213)
(a) Under the table.
(b) On the table. o

(c) Near the table.

This difficulty can arise even if (210)(a)~(c) are fulfilled, since
we want to distinguish (214)(a) and (b), even if we describe the

prepositionél phrase as fulfilling a role in the verb frame.
(214)
(a) I put it under the table.
(b) I put it on t@érLégle‘ . -

Perhaps what is needed is a "Prepositional SCR", which combines
the meaning of a preposition with the meaning of a phrase to produce
some slightly modified structure - typically; a locationv or time
meaning. These néw semantic structures could then act as arguments
to higher SCRs (e.g. locative- or,fime— adjunct r&les) wﬁich required
such items. For less obvious examples (like the "to you") in
(211)(a)), we would have to either create suitable semantic types .
(e.g. a "goal-structure') or givé an entry for "to" which had vacuous
effect. Prepositions would then have multiple entries, since a

single preposition (e.g. "by", "to", "in") can have many semantic

© " Page 387

effects. There appears to be no simple solution.

VIT.8.3 : Conjunction

Oné of the most‘difficult areas of English grammar dis that of
conjunction, and there is as yet no good computational treathent of
it. Probably the best known épproach is that of Winograd (1972), but
a ﬁore detailed treatment was included in the Thorne, Bratley and
Dewar program (as described by Hamish Dewar (personal
communication)). The strategy was as follows. On‘encountering "and",l
find some previous state whare the set of predictions (ATN arcs) .has
a non-zero intersection with the current arcs; process from that
state until another state is reached which has arcs in common with
the state which was current when "and" was eﬁcountered; start
analysing the next item using the arcs which the‘last two states have

in common.

Even this technique might not be adequate to cover the more

awkward examples, such-as (215). -
(215)
(é) The”bulldozer drove into and complgtely demolished the shed.
(b) The Burglar climbed up and‘over the wall,

Even if spme'improved scheme could be worked out for the surface
structure of conjoined structures, it still leaves the very difficult

task of defining the semauntics of these constructions.

APPENDIX A

DETAILS OF IMPLEMENTED GRAMMAR

v s o s v e e e

Syntactic Features

DETERM : determiner
CN : common noun
NP : noun phrase

PPN : personal pronoun

STARINP : possible initial word in noun phrase

ADJ : adjective

>RA : restrictive adjective
NRA : non-restrictive adjéctive
VB : verb

MAJOR : major verb

AUX : auxiliary

NTAUX : negative auxiliary
COP : part of '"be"

MODAL : modal verb

ASPECT : part of "have"

DO : part of "do"

WH : wh~word

WHDET : can start a wh-phrase

WHFULL : can start an independent embedded wh~clause

WHREL : relative pronoun

TBIND : time-binder

THATS : introduces embedded question or statement

Syntactic Properties

AGREEMENT : three values, Markad on noun phrases.
INFLECTION : eleven values, marked on verbs,

OBJECT-1NFORMATION : an SCR and a list of

verbs.

major.

Structural Combining Rules

Determiner-Head : carries sense properties from determiner to head
phrase.

NP-of-NP : combines head phrase with "of" phrase.
Possessive : combines possessive with noun phrase.
R-adjective : combines adjective and head-phrase restrictively

NR-adjective : combines adjective and noun phrase to make assertion
about things referred to by the phrase. ‘

. NP-Modifier : combines a verb~phrase post-modifier with a head
phrase,

Subject-Complement : inserts the subjeét into ~the slot of the
predicate '

It+that+S : inserts an embedded clause in the meaning of another.
Time~Adjunctl : relates a time adjunct to a following clause.
Time—~adjunct2 : relates a time adjunct to a preceding clause.

Time-Binder : combines a time~-binder and a clause to form a
time~descriptor -

WH-Phrase : carries the wh-marking from a wh-determiner to a head
phrase.

Relative Clause : combines a head phrase and a wh~-clause to form a
wh~item - :)

NR-Relative Clause :.given a term and a wh-item, makes an assertion
about the term. '

Role-Placement Rules : there are ten rules for constructing meanings
for verb phrases from the meaning of its verb and its objects, as
follows :

Active : 1 intransitive, 2 single-object, 3 double-object

Passive : 2 intransitive, 2 single-object, no double object.

APPENDIX B

SAMPLF. DIALOGUES

——— rr

The foliowing conversations are based on ‘a ludicrously simple
"world", inhaﬁited by five "PERsONS". GLADYS is the MOTHER of HIRAM
and of BORIS., BORIS is the. FATHER of DELIA. Both GLADYS and DELIA
have "FAIR" marked on the property "HAIR", and so can be referred t@
as BLONDE (using the elaborated form of the la;ter), HIRAM is' a
DOCTOR. GLADYS, HIRAM -and DELIA have PERSCRED'I; BORIS and EGBERT

have PERSCRED 0.

All the dialogues are short, as the program soon runs out \gf

space and becomes inconveniently slow.

MCHINE’s stupidity in Example 5 results from the unsophisticated
(
set-matching .routines, which match the first example found; in the

case of GLADYS SON, this happened to be BORIS, not HIRAM.

The meaning given to SURPRISE is that P SURPRISES X if X

BELIEVES not—X,

In Example 3, MCHINE's-f;ilure to Lépot that GLADYS does not
believe BORIS to be cl;VGr (i.e. that STUPID(X) => NOT(CLEVER(X))) is
because the relationship between the two relations is via their
elaborated forms, and the elabéfation system does not make the

distinction between FALSE and UNKNOWN properly when the proposition

is embedded in a BELIEVE }elation.

ExamEle _l_

: . CONVERSE;

GLADYS : HAVE YOU SPOKEN TO THE DOCTOR ?
MCHINE : PARDON ?

GLADYS : HAVE YOU SPOKEN TO THE DOCIOR ?
MCHINE : NO

GLADYS : CHEERIO

MCHINE : CHEERIO

* %k kX
: GOOD AFTERNOON !

BORIS
MCHINE : GOOD AFTERNOON
BORIS : HAS THE BLONDE SPOKEN TO YOU ?
MCHINE : WHICH BLONDE ?

BORIS : GLADYS . AT

.

MCHINE : YES -
BORIS : GOODBYE .

MCHINE : GOODBYE .

o
PR
oo»
PR

v

Examg].e }_

: «CONVERSE;
GLADYS : GOOD MORNING !

MCHINE GOOD MORNING

e

GLADYS

.o

BORIS , WHO IS STUPID , LIKES EGBERT .
MCHINE : REALLY ?
GLADYS : GOODBYE !

GOODBYE

e

MCHINE

EGBERT : HI !

MCHINE HI

.o

EGBERT : IS IT TRUE THAT GLADYS BELIEVES THAT BORIS IS STUPID ?
MCHINE : YES

EGBERT

DOES ANYONE LIKE ME ?

MCHINE : YES -

EGBERT : WHO LIKES ME ?
MCHINE : BORIS
EGBERT : CHEERIO .

MCHINE : CHEERIO

DELIA : GOOD MORNING !
MCHINE : GOOD MORNING

DELIA : HAVE YOU SPOKEN TO EGBERT ?

MCHINE : YES .

DELIA : DO YOU BELIEVE THAT GLADYS BELILVES THAT EGBERT
IS LIKED BY BORIS ?

MCHINE : YES

Lxample _3_

: . CONVERSE;

GLADYS
MCHINE
GLADYS
MCHINE
GLADYS
MCHINE
GLADYS
‘MCHINE
GLADYS

MCHINE

s

HI

HI

BORIS IS STUPID .

REALLY ?

IS BORIS CLEVER ?

NO

DO I BELIEVE BORIS TO BE CLEVER ?
DUNNO |

DO I BELIEVE BORIS TO BE STUPID ?

YES

Example 4

: . CONVERSE;

GLADYS : HI !

MCHINE : HI

GLADYS : HIRAM , WHO IS CLEVER , LIKES BORIS .
MCHINE : REALLY ?

GLADYS : IS HIRAM CLEVER ?

“ MCHINE : YES | \
GLADYS : DO T BELIEVE THAT HIRAM IS CLEVER ?
MCHINE : YES
GLADYS : DOES IT SURPRISE YOU THAT HIRAM IS CLEVER ?
MCHINE : NO

_Examgle 2

: . CONVERSE;

GLADYS
MCHINE
GLADYS
MCHINE
GLADYS
MCHINE
" GLADYS
MCHINE
GLADYS
MCHINE
GLADYS
MCHINE
GLADYS
MCHINE
GLADYS

MCHINE

e

Xy

o

HI !

HI

HIRAM LIKES DELIA .,
REALLY ?

HAS IT BEEN SAID THAT HIRAM LIKES DELIA ?
YES

DOES MY §ON LIKE DELIA ?
YES

WHO IS MY SON ?

BORIS

DOES BORIS LIKE DELIA ?
DUNNO

CLOT !

PARDON 7 e T
WHO IS DELIA 5 FATHER ?

BORIS

APPENDIX C

PERFORMANCE TABLE

(See Section VI.5.2 for details)

This summary concefns only the ability of the programs to
analyse sentences, so SHRDLU’s mechanisms for producing sentences
have been ignored. It is not clear how punctuation will affect the
various programs., MCHINE is guided by punctuation only slightly (as
noted previously), and the TESSA list (Soul(l1975)) includes a few
examples in both punctuated and unpunctuated form. SHRDLU depends on
question marks to indicate questions. Since the SHRDLU parser
successfully analysed all the sentences on the list in Thorne et?\
al.(1968), the information in the table regarding SHRDLU is related
to that for TBD, but the table takes into acéount the samples in
Dewar et. al.(1969). Soul(l975) has also proﬁided a list of
complicated noun phrases that are within the capability4of TESSA, so

that program can probably do better than the performance table might

indicate.

The information is préSehtéd here in the following way. First,
there is a list of 110 éentences, baséd on the sample lists from the
four programs. A brackeﬁed integer (e.g. (2)) after a sentence
indicates the numbers of -interpretations of an ambiguous sentence
that are being considered). Each sample sentence is followed by a
list of mnemonic names, with up to §ix entries indicating which of
the giVen programs can analyse the corresponding sentence. There mayr
be six entries, since both SHRDLU and MCHINE have two each -~ one for
isolated sentence’mode, and one for conversational mode. (These are
indicated as SHRDLUI, SHRDLUC, DMCHINEI, MCHINEC, with I denoting
isolated mode, and C denoting conversational mode). The entry ALL

means that all six programs could analyse the sentence successfully.

Entries preceded'by a question mark indicate that it is very
hard to tell from the published examples how the program would fare
on this sentence. After some entries in the performance liét, there
follows a bracketted integer. This dindicates a footnote which
qualifies the simple yes~no juagement of whether the programs would

succeed on that sentence. The numbered footnotes are then listed.

4

10.

11.

12,

13.

Performance List

Say something to me !

SHRDLUI, SHRDLUC, TBD, TESSA, MCHINEI.

Don‘t utter anything !

?SHRDLUI, ?TBD, ?TESSA, MCHINEI.
Go. M
SHRDLUI, SHRDLUC, TBD, TESSA, MCHINEI.
Your fatherbis clever,

ALL,

You will not have been being addressed by Mary.
SHRDLUI, TESSA, MCHINEI. (1)

Wont you speak to me ?

?SHRDLUI, MCHINEI. (2)

I cant not speak to Mary.

MCHINEI (3). o ’“,

Are you Jim ? -

?SHRDLUI, ?TESSA, MCHINEI.

Mary“s mothéf’s brother likes’you.
ALL.

Does Clarence like Alicé ?

ALL. ﬂ:’ o

Who likes Albert ?

ALL,

Who saw you ?

SHRDLUI, TBD, TESSA, MCHINEIL.
Have you spoken to the doctor ?

SHRDLUIL, TBD TESSA, MCHINET,

141

15,

l6.

17.

18.

19.

20.

21.

22,

231

24,

25,

26,

27.

Who did you speak to ?

?SHRDLUI, TESSA, MCHINEI, MCHINEC.
She visited him yesterday.
SHRDLUI, TBD, TESSA. (4)

This cat adores fish.-‘

SHRDLUI, TBD. (5)

The clever doctor is short.

ALL.

Who dogs Mary like ?

ALL.

With what did you hit him ?

TESSA (6).

When was it broken ?

SHRDLUI, SHRDLUC, TBD, TESSA. (7)
When ?

TESSA, MCHINEI;'bmHINEC.

Why did you hit him ?

SHRDLUI, SHRDLUC, TBD, TESSA &é).
How often can you swim ?

TESSA (9).

What size is it ?

TESSA (10).

How many blocks are there ?

SHRDLUI, SHRDLUC, TESSA (l1).

Which day will he swim ?

SHRDLUI, SHRDLUC, TBD, TESSA, MCHINEI.
The brother of the mother of Mary likes Gladys.

?SHRDLUI, MCHINEI, MCHINEC. (12)

28,

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39'

40.

41.

Mary hates my teasihg you,

SHRDLUI, TBD, TESSA, MCHINEI,

Mary likes teasing me.

SHRDLUI, TED, TESSA, MCHINﬁI, MCHINEC.(13)

Mary likes to tease mé.

SHRDLUI, TESSA, MCHINEi, MCHINEC .(13)

I love him to mow the grass.

TESSA, MCHINEIL.

Liking Mary is stupid.

SHRDLUI, TBD, TESSA, MCHINEI, MCHINEC. (13)
Flying aeroplanes are nice.

SHRDLUIL, TBD, TESSA, MCHINEI.

Flying aeroplanes is nice.

SHRDLUI, TBD,. TESSA, MCHINEI.

Flying aeroplanes can be nice (2).

TBD, MCHINEI.

The boy who kissed'the'girl laughed uproariously.
SHRDLUTI, SHRDLU&, TBD, TESSA,‘MCHINEI. (14)

The boy who the girl kissed laughed uproariously.
SHRDLUI, SHRDLUC, TED, TESSA, MCHINEI. (14)

The boy the girl kissed laughed uproariously.
SHRDLUI, SHRDLUC, TBD, TESSA, MCHIREI. (14)

Fred gave the dog biscuits.

SHRDLUTI, TBD, TESSA, MCHINEI.

Fred lost therdog biscuits.

SHRDLUI, TBD. (15).

Do you believe that I believe John tovbe clever ?

MCHINEI, MCHINEC. (16)

42, Mary, who is stupid, likes John.
MCHINEI, MCHINEC. (17)
43, Have I said that Mary likes John ?
TESSA, MCHINEI,»MCHINEC.
44. When did John say he Qould come ?
SHRDLUI, TBD. (18)
45, He observed the man with the telescope (2).
SHRDLUI, TBD, TESSA., (19) ™
46. The rascal who John claimed committed the crime has escaped.
SHRDLUIL, TBD, TESSA, MCHINEI. (20).
47. While John swam the boat dragged its anchor.
TBD, TESSA, MCHINEI.
48, While John swam, the boat dragged its anchor.
TESSA, MCHINEI. |
49, The boat dragged its anchor while John swam.
SHRDLUI, SHRDLUC, TESSA, MCHINEIL
50. Did you speak to bhry:after John addressed you ?
SHRDLUI, SHRDLUC, TBD, TESSA,'MCHINEI‘

51. After you spoke to Gladys, did you believe that John was
stupid ? '

MCHINEI; MCHINEC.(21)
52. John reached the men swimming in the lake.
TESSA, MCHINEI.(22) -
53. The thing tﬁat you hit him with is red.
7 SHRDLUIL, ?SHRDLUC, ?71BD, TESSA, MCHINEI.
54, The thing with which you hit him is red.
.TESéA.(6)
55. The day wheﬁ you swanm was good.

TESSA.(23)

56.

57.

58.

59.

60.

61.

62.

63.

641

65.

66. -

67.

68.

69.

The size that itfis is too big.
TESSA.

The blocks that there are in thé box are red.
TESSA,(ZA)

The box in which you said that.youibut it is red.
TESSA. (25)

John is the man to beat Jack.:
TESSA. (26)

John is the man fof us to beat.
TESSA. (26)

John is the man beating Jack.
TESSA, MCHINEIL.

John is the man beaten by Jack.
TESSA, MCHINEI.

For John to mow the g:ass is nice.
TESSA.(27) |

He did it by pushihg éhé machine.
TESSA. (28) —

John said it when you asked.
TESSA, MCHINEI. (29)

I know whéE hit you.

TESSA, MCHINEI.(29)

What you said surprised me.
?TESSA, MCHINEIL,

I asked you what you liked.

TESSA, MCHINEI.(30)

I asked which girl you spbke to.

TESSA, MCUINEI.

70.

71.

72,

73.

74,

75.

77.

78.

79.

80.

81.

82.

83.

The story was told to me by John.
?SHRDLUI, TESSA, MCHINEI.

The story was told to me.

?SHRDLUI, TESSA, MCHINEI.

I was told the story Ey John.

?SHRDLU, TESSA, MCHINEI.

I was told‘the story.

?SHRDLUI, TESSA, MCHINEI.

Who was told the story ?

?SHRDLUI, TESSA, MCHINEI.

Which story was I told ?

?SHRDLUI, TESSA, MCHINEIL.

To whom was the story told ?

SHRDLUI, TESSA.(6)

The box was put én the table by John.
?SHRDLUI, TESSA.(31) | |
Where was the box put ?

?SHRDLUI, TESSA:u

Whose book did you say you wanted ?
TBD.(32)

When he has fixed dates he wili ring us .(2)
SHRDLUL, TBD, TESSA, MCHINEI.(33)

A lawyer who cheats the clients he sees deserves censure.
SHRDLUL, TBD, TESSA, MCHINEI

Has the portrait they bought disappeared ?
SHRDLUT, SHRﬁLUC, TBD, TESFA,’MCHINEI

He rolled up the bright red carp;t,(Z)

-

SHRDLUL, SHRDLUC, TBD.(34) .

84.
85.

86.

87.
88.
89.
90.
91.
92.
93.
94.
95.
96;

97.

She handed John a pear and Mary an apple.
SHRDLUT, TBD.(35)

The élants he watered and tended flourisﬁed.
SHRDLUI, TBD.(36)

Are the elephant and the kangaroo he adopted obéying him 7
(2) :

SHRDLUI, TBD.(37)

What was the box put in ?

?SHRDLUI, TESSA, MCHINEI.(38)

She said "Rubbish".

TESSA.(39)

"Rubbish" she said.

TESSA.(39)

"Rubbish", she said.

IESSA.(39)

"Rubbish", said Jack.

TESSA.(39) | -

That she was nct there moved us.

TESSA, MCHINEI, MCHINEC.(40)

It moved us that she was not there.
TESSA, MCHINEI, MCHINEC.(40)

1 know which molasses your mother told. you to buy.
? SHRDLUT, ?iBD, TESSA.(41)

Who did you give the ball 7

MCHINEI, MCHINEC.(42)

Has it been said that John likes Mary ?
MCHINEI, MCHINEC.(43)

Do you believe John to be liked by Mary ?

MCHINEI, MCHINEC. (44)

98.

99.

100.

101,

102‘

103.

104,

105.

1061

107.

108.

109.

Have I asked you whether John likes Mary ?
MCHINEI, MCHINEC.(45)

Find a block which is taller than the one you are holding -
and put it into the box.

SHRDLUIL, SHRDLUC, ?TESSA.(46)

It‘is funny to see how fast they get away from one anofher.
TESSA‘ |

Jack laughed and said "Take your things and go away'.
TESSA.

. . \
How many eggs would you have been going to use in the cake
if you hadn’t learned your mother’s recipe was wrong ?

SHRDLUI, TBD, TESSA.

Pick up anything green, at least three of the blocks, and
either a box or a sphere which is bigger than any block on
the table.

SHRDLUI, SHRDLUC.(47)

I own blocks which are not red, but I don’t own anything
which supports a pyramid. o |

SHRDLUT, SHRDLUC.(48)

Will you please_stack up both-of the red blocks and either a-
green cube or a pyramid ?

SHRDLUT, SHRDLUC.(49)

Put a small one onto the green cube wvhich supports a
pyramid. '

SHRDLUI, SHRDLUC, TESSA.(50)

Put the littlest pyramid on ‘top of it.

SHRDLUL, SHRDLUC, TESSA.(50)

Is there anything which is bigger than every pyramid but is
not as wide as the thing that supports it ?

SHRDLUL, SHRDLUG.

A "steeple" is a stack which contains two green cubes and a
pyramid,

SHRDLUT, SHRDLUC.(51)

'110. Call the biggest block "superblock".

SHRDLUI, SHRDLUC.(52)

Footnotes Eg_Performance List

1. TBD includes no passives (surprisingly) and the SHRDLU
dialogue only one. |)

2. No sign of "n“t" forms in other progranms,

3. No sign of double negatives in other programs (not
surprisingly) . '

4. MCHINE has no one-word time-adjuncts in its vocabulary. Cf.
notes 49, 50.

5. Most programs have ignored mass nouns. MCHINE also lacks
demonstratives. —

6. Only TESSA seems to have catered for the "“prepositiont+WH"
phrases.

7. MCHINE cannot handle general pronouns.

8. MCHINE has not covered "why", or causal relations in any
form.

9. Only TESSA and TBD scem to have generalised '"howtmodifier"
rules.

10. If the programs use similar “wh/how" rules for 23 and 24,
that would be elegant.

11. SHRDLU allows 'how many'" as a special case.

12, MCHINE has only one way of handling "of+NP" (attachment to-
previous NP).

13, MCHINE can absorb this information, but not very subtly.

14, Only TBD and SHRDLUI allow manner adverbials, but other
" programs allow the relative clause construction.

15, MCHINE has no facility for compound nouns; TESSA has, but
offers no samples.

16. * Only MNCHIHE includes any deeply-embedded examples of "that"
clauses. ’ .

17. Only MCHINE has attempted non-restrictive relative clauses.

18. The lack of a "that" before the embedded clause presents
difficulties for MCHINE and TESSA.

. , o '
19, TESSA can get one reading, but may fail to attach "with..."
to "the man" in the other interpretation.

20.
21.

22,

230

24,

25.
26.

27.
28.

29.

30‘

31.

32.

33‘

34,

35.

36.

TESSA and MCHINE both contain the relevant rules, but- have
not been tried on this particular combination.

. \ .
Only MCHINE dincludes questions preceded by optional
adjuncts,

This appears to be ambiguous. TESSA gets one or both
readings, but MCHINE can only get the reading where "the
men" are swimming.

Only TESSA includes adjunct wh-words (e.g. "when", 'where")
as relative pronouns.

MCHINE lacks any '"there is/there are" rules. —

Only the "in whlch" should prevent MCHINE from handling this
one (see note 6).

Only TESSA allows "totinfinitive" or "fortNP+totinfinitive"
as a post-NP modifier,

Only TESSA has "for+NP+infinitive'" as a possible NP form.
Only TESSA has$ instrumental phrases (Cf. note 14).

SHRDLU and TBD do not include embedded wh-~clauses without
antecedents.,

The readings correspond to "I asked you the question which
you liked" and "I asked you which question you liked". TESSA
may not get both. There is a bug in the MCHINE grammar
which causes this ambiguity to appear spuriously in other
wh-clauses.

o~

MCHINE cannot handle prepositional phrases as adjuncts to .

clauses, but could cover this example by treating "on the
table" as a prepositionally marked object of "put"

Only TBD handles "whose"; TESSA could probably cope with the
rest of the structure.

MCHINE and TESSA have not been tested on this example, but

should manage it. TESSA might miss the reading with "fixed

dates" as a noun phrase.

MCHINE has no rules for verb-particle constructions. Only

" TBD definitely gets the ambiguity.

It is not clear whether this sentence is analysed by the

generzl conjunction method (see Section VI1.8.3).

The °ﬂ510u1ty results from the choice of con301n1ng verbs or
conjoining verb phrases.

37, ?he ambiguity results from the attachment of "he adopted" to
'the elephant and kangaroo" or just to "kangaroo".’

38, The dangling preposition is a problem for TBD. MCHINE could
handle it only subject to the proviso in note 31.

9. Only TESSA makes any attempt to handle direct quotation.
40, Although Winograd(l972; p-.52) mentions constructions like
this, there is no indication that his implemented grammar

includes them.

4. MCHINE cannot cope with either the mass noun or the embedded
imperative. ' '

42, This illustrates the difference between TESSA (and SHRDLU) ,
and MCHINE concerning objects. MCHINE allows the”

alternative indirect object via a lexical marking.

43, MCHINE covers this sentence automatically from the 'grammar
for sentences like 93 and 13.

44, A well-formed but inelegant sentence ?
45, MCHINE treats "whether" the same way as '"that".

46, Conjunction and comparatives are difficult, and are not
handled completely generally by most.programs.

47, This is possibly the most complicated sentence that any
program has ever handled. '

48, The semantic complexity of this-sentence would defeat most
programs. - . h

49, Presumably an idiom like "will you please" is handled by a
"demon" .

50. Only SHRDLU includes any pronoun semantics.
51. Only SHRDLU includes definitional facilities.

52. Oaly SHRDLU includes naming facilities.

REFERENCES

JL. ‘ :

AUSTIN(1962) "How To Do Things with Words". Oxford University Press,
" Oxford,

AS. —

AYER(1936) "Language, Truth and Logic'". Penguin Books, 1972.

E.
BACH(1968) "Nouns and Noun Phrases". In Bach and Harms (1968).

E. R.

BACH AND HARMS (1968) "Universals in Linguistic Theory". Holt

Rinehart and Winston, New York.

Y.
BAR-HILLEL(1954) "Indexical Expressions". Mind 63, pp.359-379.

D.G 73 o
BOBROW AND FRASER(1969) "An Augmented State Transition Network

Analysis Procedure", First International Joint Conference on
Artificial Intelligence, Washington, D.C. Mitre Corporation, Bedford,
Massachusetts.

D.L.
BOLINGER(1965) "The Atomisation of Meaning". Language 41, No.4,

PP~555-573.

" (1967) "Adjectives in English: Attribution and Predication".

Lingua 18, pp.l1-34.

T '
BRESNAN(1970) "On Complementizers: Toward a Syntactic Theory of

‘Complement Types'. Foundations of Language 6, pp.297-321.

R.
BROWN(1958) '"Words and Things'". Free Press, New York.

B.C.

BRUCE(1975) "Case Systems for Naturaf‘Language". BBN Report 3010 (AI
Report 23), Bolt Beranek and Newman, Cambridge, Mass. (Also in
Artificial Intelligence 6.)

.M. R : J.s.
BURSTALL, POPPLESTONE AND COLLINS(1971l) "Programming in POP-2",

Edinburgh University Press, Edinburgh. : -
M.K.

BURT(1972) "From Deep to Surface Structure'", Harper and Row, New
York.

P W. J. T.G.

CAREY, MEHLER, AND BEVER(1970) '"When do we compute all the
interpretations of an ambiguous sentence ?". In "Advances in
Psycholinguistics", ed. TFlores d"Arcais and Levelt., North Holland,

Amsterdam,

£ B) .
CHARNIAK(1973) "Toward a Model of Childrens Story Comprehension".

Memo AI-TR-266, AI Lab, MIT, Cambridge, Mass,

" (1975) "A Brief for Case'". Working Paper No.22, Institute for

Semantic and Cognitive Studies, Castagnola,

N

CHOMSKY (1955) '"rhe Logical Structure of Linguistic Theory".

Microfilm, MIT, Cambridge, Mass.

"' (1956) "Three Models for the Description of Language". IRE
. v

Transactions in Information Theory, pp. 113~114.(Reprinted in Luce,

Bush and Galanter(1965)).
" (1957) "Syntactic Structures". Mouton, The Hague.

" (1958) "A Transformational Approach to Syntax". Third Texas
Conference on the Problems of Linguistic Analysis din English.

(Reprinted in Fodor and Katz(1964)). : \

" (1959) "On Certain Formal Properties of Grammars". Information
and Control 1, No.2, pp. 137-167. (Reprinted in Luce, Bush and

Galanter(1965)).

" (1961) "On the Notion “rule of grammar’ ". In Jakobson(1961).

(Reprinted in Fodor and Katz(1964)).

" (1964) "Current Issues in Linguistic Theory". Mouton, The

Hague. (Reprinted in Fodor and Katz(1964)).

" (1965) "Aspects of the Theory of Syntax". MIT Press,

Cambridge, Mass.

" (1966) "Topics in the Theory of Generative Grammar". Mouton,

The Hague.

"' (1971) '"Deep Structure, Surface Structure and Semantic

Interpretation”, In Steinberg and Jakobovitz(1971).

" (1672) "Some Impirical Issues in the Theory of

Transformational Grammar'™. In Peters(l1972).

N. M,
CHOMSKY AND HALLE(1965) "Some Controversial Questions in Phonological

Theory". Journal of Lingﬁistics 1, No.2, pp.97-138.

" (1968) "The Sound Pattern of English". Harper and Row, New
York.
M.E.
CONWAY (1963) '"Design of a Separable Transition-Diagram Compiler!.
CACM Vol.6 No.7. July 1963, pp.396-408,
A.C.
DAVEY(1974) “The Formalisation of Discourse Production". Ph.D.
Thesis, School ~of Artificial Intelligence, University of Edinburgh,
Edinburgh.
D.I.M. | | .
DAVIES(1973) "Popler 1.5 Reference Manual', TPU Report No.l, School
of Artifical intelligence, University of Edinburgh, Edinburgh.

H. P. 1P ‘ :
DEWAR, BRATLEY AND THORNE (1969) "A program for the Syntactic

Analysis of English Serntences". CACM- Vol.12, No.8, pp.476-479. N

R .C.
DOUGHERTY(1969) "An Interpretive Theory of Pronominal Reference".

Foundations of Language 5, pp.488-519,

’ C'Sc .
FILLMORE(1968) "The Case for Case'., In Bach and Harms(1968).

" (1972) "On Generativity". in Peters(l1972).
c.T D.T.

FILLMORE AND LANGENDOEN(1971) "Studies in Linguistic Semantics". Holt

Rinehart and Winston, New York.

J.A. M.E
FODOR AND GARREIT(1967) "Some syntactic determinants of sentential

complexity". Perception and Psychophysics 2, pp.289~296.
—

~

TA. M.E T.G. :
FODOR, GARRETT AND BEVER(1968) "Some syntactic determinants of

sentential complexity, II: Verb Structure." Perception and
Psychophysics 3, pp.453-461.

H.W. F.G.
FOWLER AND FOWLER(1906) "The Kings English". Oxford University Press,

.

Oxford, 1973. !

FREGE(1892) "On Sénsg: and Reference". In' "Translations from the
Philosophical Writings of Gottlob Frege'", Geach and Black.
Blackwell, Oxford, 1960.

M.F.

GARRETT(1970) '"Does ambiguity complicate the perception of
sentences ?".' In "Advances in Psycholinguistics", ed. Flores

d“Arcais and Levelt. Nofthﬂﬂolland, Amsterdanm.

N.
GOLDMAN(1973) '"Sentence Paraphrasing. from a Conceptual Base'".

International Confereuce on Computational Linguistics, Pisa,

September 1973.

J. - PM. _ : .
GRINDER AND POSTAL (1971) "Missing Antecedents". Linguistic Inquiry

2, No.3, pp.269-312,

A. .
GROSU(1972) "The Strategic Content of Island Constraints". Working

Papers in Linguistics No. 13, Department of Lihguistics, Ohio State

University .

M.
~ HALLE(1962) "Phonology in Generative Grammar". Word 18, pp.54-72.

(Reprinted in Fodor and Katz(1964)).

~

M.A K .
HALLIDAY(1967a) "Notes on Transitivity and Theme Part I". Journal of

Linguistics 3 No.l, pp.37-81.

" (1967b) "Notes on Tranéitivity and Theme Part II". Journal of

Linguistics 3 No.2, pp.199-244,

" (1968) "Notes on Transitivity and Theme Part III". Journal of
Linguistics 4 No.2, pp.l179-715.
C.G.
HEMPEL(1966) '"Philosophy of Natural Science", Prentice Hall,
Englewood Cliffs, N.J.
J. . ‘
HINTIKKA(1973) "Language-Ganes for Quantifiers". In "Logic
Language-Games and Information', Hintikka. Oxford University Press,
Oxford, 1973.
F.W.
HOUSEHOLDER(1965) '"On Some Recent Claims in Phonological Theory".

Journal of Linguistics 1.

" (1966) "Phonological Theory: A Brief Comment". Journal of

[

Linguistics 2.

S.D. v

ISARD(1974) "What would you have done if...". Theoretical Linguistics
1, No 3.

S.D. . Hc

TSARD AND LONGUET-HIGGINS(1973) '"Modal Tic-tac-toe". 1In '"Logic,

‘Language and Probability", ed. Bogdan and Niiniluoto. Reidel

Publishing Co, Dordrecht.

~
C

R.S. .
JACKENDOFF(1968) "An Interpretive Theory of Pronouns and Reflexives".

Indiana University Linguistics Club, Bloomington, Indiana.

L (1973) "Semantic Interpretation in - Generative Grammar". MIT
p =

Press, Cambridge, Mass,

™

R. ‘
JAKOBSON(1961) " Proc. 12th Symposium in Applied Mathematics. -
American Mathematical Society, Providence, Rhode Island.
R.M.
KAPLAN(1971) "Augmented Transition Networks as Psychological Models
of Sentence Comprehension". Second International Joint Conference on
Artificial Intelligence, London. British Computer Society, London.
3.7, .

KATZ(1967) "Recent Issues in Semantic Theory" Foundations of Language

3; pp.124-194,

" (1970) "Interpretive Semantics vs. Generative Semantics".

Foundations of Language 6, pp.220-259.

" (1971) "Generative Semantics is Interpretive Semantics".

Linguistic Inquiry 2 No.3, pp.313~332.

" (1972) "Semantic Theory". Harper'and Row, New York.

7.0 T.A. -
KATZ AND FODOR(1963) "The Structure of a Semantic Theory'". Language
39 No.2, pp.170-210.

J.7 PM. :
KATZ AND POSTAL(1964) "An Integrated Theory of Linguistic

.
0

-eseription", MIT Press, Cambridge, Mass,

I
LAY(1975) "Syntactic Processing and Functional Sentence Perspective".

In Schank and Nésh—Webber(l975).

S

HEENAN(1975) "Formal Semantics of Natural Language". Cambridge
University Press, Cambridge.

¥ ‘ e
EANBALL(1973) "Six or Seven Principles of Surface Structure Parsing".
Indiana University Linguistics Club, Bloomington, Indiana. (Also in
Copnition 2),.

T.5)

PUNN(LI970) "The Structure of Scientific Revolutions". Chicago
University Press, Chicago.

S.Y

FURODA(L1966) '"English Relativization and Certain Related Problems'".

hdern Studies in vﬁhglish", ed. Reibel and Schane, Prentice

In "

Yall, Englewood Cliffs, N.J.

v

LLAXOFF(1970) "Repartee". Foundations of Language 6, pp.389-422,

" (1971) "On Generative Semantics'"., In Steinberg and

Jakohovitz(1971).
B TR .
LALOEY AND ROSS(L967) "Is Deep Structure Necessary?". Indiana
Uaiversity Linguistics Club, Bloomington, Indiana.
- T.A.
- econ AND MOORE(L976) '"Dialogue Games: A Process Model of Natural

“yn inee Interaction". Proc. AISB Conference, July 1976. Department

of Artificial Intelligence, Edinburgh.

HC. S.D. |

LONGUET-HIGGINS AND ISARD(1970)’"Ihe Monkey’s Paw', New Scientist,
Vol.47, No.717, Sept.1970.

RD. . E. ’ ‘

LUCE, BUSH AND GALANTER(1965) "Readings in Mathematical Psychology".
Wiley, New York.

J.
LYONS(1968) "Introduction to Theoretical Linguistics". Cambridge
University Press, Cambridge.

M.

MARCUS(1974) "Wait—and-See Strategies for Parsing Natural Language'".

Working Paper 75, AI Lab, MIT, Cambridge, Mass.

" (1975) "Diagnosis as a Notion of Grammar". In Schank and

Nash-Webber(1975).

J.0. .
MCCAWLEY(1968) "The Rcle of Semantics in a Grammar". In Bach and

Hérms(l968).

" (1970) "English as a VSO Language". Language 46 No.2,

PpP.286-299,

" (1971a) "Pre~-lexical Syntax'". Report of the 22nd Annual Round
Table Meeting on Linguistics and Language Studies. (Georgetown

Monographs 22).

" (1971b) "Tense and Time Reference in English'. In Fillmore and

Langendcen(1971).

D.V. » :
MCDERMOTT(1973) "Assimilation of New Information by a Natural

Language-Understanding System". MSc Thesis, Department of Electrical

Engineering, MIT, Cambridge, Mass.

~N

DV 6T .
MCDERMOTT AND SUSSMAN(1972) "CONNIVER Reference Manual". AI Memo No

259a, AI Lab, MIT, Cambridge, Mass.

G.A. S.D. o
* MILLER AND ISARD(1964) "Free Recall of self-embedded [nglish
Sentences", Information and Control 7 No.3, pp. 292-303.
R. ' ;
MONTAGUE(1968) "Pragmatics" . In "Contemporary Philosophy: A

Survey", ed.Klibansky. La Nuova Editrice, Florence.
" (1970a) "Universal Grammar'". Theoria 36, pp.373-398.

" (1970b) "English as a Formal Language I". In "Linguaggi nella

societa e nella tecnica", ed. Visentini et al. Edizioni di

Comunita, Milan.

" (1972) "Pragmatics and Intensional Logic". In- "Semantics of
Natural Language'", ed. Harman and Davidson. Reidel Publishing Co.,

Dordrecht,
T
MOSES(1970) "The function of function in LISP". AI-199, MAC-M-428,
Project MAC, MIT, Cambridge, Mass.

R.H. :
PARTEE(1970) "Negation, Conjunction and Quantifiers: syntax vs.

semantics". Toundations of Language 6, pp.153 = 165.

" (1971) "On the requirement that transformations preserve

meaning". In Fillmore and.Langendoen(l97l).

P.S.

PETERS(1972) "Goals of Linguistic Theory". Prentice Hall, Englewood
Cliffs, N.J. N

p.s. R.W.

PETERS AND RITCHIE(1969) "A note on the universal base hypothesis".

Journal of Linguistics 5, No.l, pp. 150-152,

" (1971) "On Restricting the Base Component of Transformational

Grammars". Information and Control 18, No 5, pp.483-501. ~

" (1973) "On the Generative Power of Transformational Grammars".
Information Sciences 6, No 1.
S.
PETRICK(1973) '"Semantic Interpretation in the REQUEST System".
International Conference on Computational Linguistics, Pisa,

September 1973,

W.

PLATH(1973) "Transformational Grammar and Transformational Parsing in
the REQUEST System'". International Conference on Computational

Linguistics, Pisa, September 1973,

P.M.
POSTAL(1972) "The Best Theory". In Peters(1972).

R.7.
POWER(1974) "A Computer Mdel of Conversation". PhD Thesis, School of
Artificial Intelligence, University of Edinburgh, Edinburgh,

MmR. .
QUILLTAN(1969) "The Teachable Language Comprehender: a simulation

program and theory of language'. CACM Vol 12, No 8, August 1969.
REICHENBACH(1966) 'The Elements of Symbolic Logic". Free Press, New
York.

C. ‘
RIEGER(1974) '"Conceptual Memory". PhD Thesis, Computer Science

'

Department, Stanford University, Stanford, California.

C.

RIESBECK(1973) '"Expectation as a Basic Mechanism of Language
Comprehension". International Conference on Computational

Linguistics, Pisa, September 1973,

" (1974) "Computational Understanding: Analysis of Sentences
and Context". PhD Thesis, Computer Science Department, Stanford

University.

" (1975) "Computational Understanding". In Schank and
Nash-Webber(1975).
G.D. ,
RITCHIE(1976) "Problems in Local Semantic Procesing'. Proc. AISB
COnference, Edinburgh, July '1976. Department. of Artificial

Intelligence, Edinburgh.

J
" (1977) "Augmented Transitionm Network Grammars and Semantic
Processing". Paper submitted to the Fifth International Joint

Conference on Artificial Intelligence.

T

ROBINSON(1970) "Dépendency Structures and Transformational Rules".

Language 46 No 2, pp. 259-285.

J.R.
ROSS(1967) "Constraints on Variables in Syntax". PhD Thesis,

Department of Linguistics, MiT, Cambridge, Mass. (Also Indiana
University Linguistics Club, Bloomington, Indiana).

D.E- DA ?

RUMELHART AND NORMAN(1973) "Active Semantic Networks as a Model of
Human Memory". Proc.. Third International Joint Conference on
Artificial Intelligence, Stagford Uni&ersity, Stanford, California.
Stanford ResearchAInstitute, Menlo Park,;California.

B. - : '
RUSSELL (1905) "On Denoting". Mind 14, pp.479-493. S

R. ‘ :

RUSTIN(1973) "Natural Language Processing'. Algorithmics Press, New
York.

R.C. .
SCHANK(1969) "Linguistics From A Conceptual Viewpoint (Aspects of
Aspects of the Theory of Syntax) '". Memo AI-88, AI Project, Stanford

University.

" (1970) "‘Semantics® in Conceptual Analysis". Memo AIM-122, AI

Project, Stanford University.

" (1972a) "Conceptual Dependency : A Theory of Natural Language

Understanding" Cognitive Psychology Vol.3 No.4,pp.552-630.

" (1972b) . "Adverbs and Balief". Memo AIM-171, Stanford

University.

\

" (1975) "Using Knowledge to Understand" In Schank and

Nash—Webber(1975)u

R.C. K.M. :
SCHANK AND COLBY(1973) '"Computer Models of Thought and Language".

Freeman, San Francisco.

R.C. B.L.

SCHANK AND NASH-WEBBER(1975) Proceedings of the. Workshop on
Theoretical Issues in Natural Lénguage Processing, MIT, June 1975,
Cambridge, Mass.

R.C- I. :

SCHANK AND TESLER(1969) "A Conceptual Parser for Natural Language".

Proc. First International Conference on Artificial Intelligence,
: /

/
v

Washington D.C. Mitre Corporation, Bedford, Mass.
3.. -

SCHOENFIELD(1967) - "Mathematical Logic". Addison-Wesley, Reading,
Mass.

R.F '

SIMMONS(1965) "Answering English Questions by a Computer: A Survey".

CACM Vol 8. No.l. pp. 53-70.

" (1973) "Semantic Networks: Their Computation and Use for

Understanding English Sentences". In Schank and Colby(1973).

" (1975) "'The Clowns Microworld", In Schank and

Nash~-Webber(1975) .

c.s.

SMITH(1964) "Determiners and Relative Clauses in a Generative grammar
of English". Language 40 No.l, pp. 37-52.

m.J,

SOUL(1975) "parsing and Refercnce Determination". PhD Thesis,

Computing Centre, Univevsity of Essex, Colchester, Essex.

T L. A
- STANSFIELD(1974) '"Programming a Dialogue Teaching Program". PhD

Thesis, Department of Artifical Intelligence; University of
Edinburgh.

D. L. : .
STEINBERG AND JAKOBOVITZ(1971) '"Semantics: an Interdisciplinary
“reader - in philosophy, linguistics and psychology". ‘Cambridge

University Press, C@ybridge.

R.P. P B.H.

STOCKWELL, SCHACHTER AND PARTEE(1973) "The Major Syntactic Structures
of English". Holt Rinehart and Winston, New York. J
G.J. T E.

SUSSMAN, WINOGRAD AND CHARNJAK (1972) Micro-Planner Reference Manual.
ATl Memo No.203a, AI Lab, MIT, Cambridge, Mass.

3.8. .

THOMPSON(1971) "The Deep Structure of Relative Clauses'". In Fillmore
and Langendoen(1971).

J.P P. H.._) -
THORNE, BRATLEY AND DEWAR(1968) ''The Syntactic Analysis of English by

Machine". In "Machine Intelligence 3", ed. IMichie. Edinburgh
University Press, Edinburgh.

u.

WEINREICH(1966) "Explorations in Semantic Theory". In "Current Trends
in Linguistics, Vol IILI" , ed. Sebeok. Mouton, The Hague.

J.

WETZENBAUM(1966) "ELIZA - A Computer Program for the Study of Natural

Language Coumunication Between Man and Machine". CACM Vol.9, No.l.

pp.36=45.

Y.
WILKS(1972) "Grammar, Meaning and the Machine Analysis of Language".

Routledge Kegan Paul, London.

" (1973) "The Stanford Machine Translation Project". 1In

Rustin(1973).

" (1975) "Preference Semantics'. In "Formal Semantics of Natural

Language" ed. E.L.Keenan. Cambridge University Press, Cambridge.

" (1976) "Processing Case" . American Journal of Computational

Linguistics. - Ve
|

T :
WINOGRAD(1972) "Understanding Natural Language". Edinburgh University

Press, Edinburgh.
W.A. : _ '
WOODS (1968) "Procedural Semantics for a Question Answering System'.

Proc. AFIPS Fall Joint Computer Conference, Vol 33, pt.l.

" (1970) "Transition Network Grammars for Natural Language

Analysis'. CACM Vol 13, No 10, Oct 1970.

" (1973) "An Experimental Parsing System for Transition Network

Crammars' . In Rustin(1973).

W.A. ;
WOODS et al.(1969) '"Augunented Transition Networks for Natural

Language Analysis". Report CS-1 to thevNSF, Computation lLaboratory,

Harvard University.

WA BL. R.M,

WOODS, NASH-WEBBER AND KAPLAN(1972) "The Lunar Sciences Natural

‘Langﬁage System: Final Report". BBN Report No 2265, Bolt, Beranek

and Newman, Cambridge, Mass.

V

YNGVE(1960) "A Model and An Hypothesis for Language Structure". Proc.

American Philosophical Society 104, No.5, pp.444-466., Philadelphia.

" (1961) "The Depth Hypothesis". In Jakobson(1961).

e o e e o e s

