it cannot, however, provide quantitative informa-
tion on the projected system in the same way as a

provide a completely accurate and relevant
picture of an existing system and quickly isolate

simulation package is able to do. It can, however, inefficient areas, if they exist.

A complete and intensively used computing service has been moved
from a second to a third generation computer with a minimurmw of distur-
bance to user programming practices. The software techniques are
designed to facilitate similar transfers to future machines and to avoid
the waste of discarding strongly machine-dependent software. The criti-
cal features of the software design are discussed in relation to the sys-
tems programming effort required and objectives achieved.

Bridging the generation gap

J.K. YARWOOD and G.E. MILLARD
Edinburgh Regional Computing Centre

Introduction

Since the inception of the Reglonal Centre in 1966
to serve Edinburgh University and Edinburgh
Research Councils, a substantial computing work
load has been continuously supported on a variety
of batch processing systems. At the same time an
objective has been sustained to progress towards
the introduction of a fully interactive system for
all or part of the service. These dual aspects of
the Regional Centre's existence have caused con-
siderable attention to be directed to the problems
of mobility and complementary compatibility. The
work described in this paper has resulted from
one principal requirement: to provide a high
degree of continuity for the users despite changes
in the operating system base.

In the 1960's service to Edinburgh users com-
menced on the Manchester Atlas by paper tape
transmission link, This was augmented by the use
of off-site English Electric KDF9's with an
Edinburgh-created Atlas Autocode system
developed at the Glasgow and Newcastle installa-
tions. In 1966 the Regional Centre service for
University and Research Councils started, based
on a local KDF9 as an interim machine pending
delivery of an ICL System 4-75. The service con-
tinued using the Chilton Atlas and subsequently
was augmented with the NEL Univac 1108 in 1967
and the Newcastle 360/67 in 1968. Since then the
basis of the computing service has beenr an IBM
360/50 (now replaced by a 370/155) running
under OS (with 10 remote job entry stations) and
an ICL System 4-75 using the manufacturer's J
operating system (25 teletypes, [1]) for two
years, but now running almost entirely under the
Edinburgh Multi-access System (100 teletypes,
EMAS, [2]). OS and J are non-paged batch pro-
cesging systems, while EMAS provides large
paged virtual memories for fully interactive or
batch use.

42

Continuity for userse during the far-reaching
changes of the past siX years has been achieved in
the following important areas:

1. Compilers for IMP and FORTRAN, The
Tormer 18 a local derivative 131 of Atlas
Autocode {4] and is much used in Edinburgh,
especially for systems software. The latter,
as the most used language for the inter-
national exchange of working programs, is
supported to the level of the IBM FORTRAN
G compiler as the de facto working standard
pending publication of the new ANSI standard
in 1972 /73.

2. Data bases. Programs were written for the
initial transfer of users' data into the third
generation operating systems. Equivalent or
identical access methods now exist on these
operating systems in Edinburgh allowing
users' programs and programming tech-
niques to be freely transferable between the
systems, while utilities are available for
data transfer via magnetic tape. File facili-
ties of both languages include the sequential
and direct access methods familiar to IBM
FORTRAN users. IMP has in addition the
feature of character-by-character I/0 to
and from sequential files.

3. Job control. For an installation having
4,000 users and running 10,000 jobs per
week, the problems and costs of teaching,
documentation and advisory support must be
obvious. They are minimised by having a
standard job control language for all batch
jobs up to a defined level of complexity
(satisfying practically all users) for all of
the alternative operating systems.

However, benefits of the software techniques
developed to provide continuity to users are not
limited to the satisfaction of users and the mini-
misation of advisory support. It is estimated

TABLE

ICL System 4 and IBM System /360

Mobility: proportions of investment
movable to:

Size,

Kbytes, Investment,

1. New gperating 2. New hardware
system on equi-

valent hardware

Source each man-years,
language system all systems Program Technique Program Technique
Compilers:

(i) FORTRAN IMP 80 4.0 100% 100% T0% T0%
(ii) IMP IMP 85 4.0 100% 100% T0% 70%
Execution environment:

A (see note) IMP and 60-70 3.5 20% 50% NIL 50%
B (see note) Assembler 20-30 3.0 20% 50% NIL 50%
em librar
immz sﬁar_agrle):
{i) FORTRAN
support FORTRAN 100% 100% 100% 100%
(ii) IMP support IMP and Vi 90% 90% 70% 70%
{iii) Mathematical Assembler
functions 90% 90% 70% 0%
(see note C)
Notes:

A. Program management facilities: editor, linker, librarian, job control language analyser,

execution /batch control, library loading.

B. System Interface Module, loader, cbject output routine, basic machine interface, device drivers.
C. The shortfall, 90%-70%, is intended to represent the proportion of IMP support and Mathematical

functions coded in Assembler.

(see Table) that the move to the third-generation
operating systems during 1966-1971 has involved
17 man-years of systems programming effort.
Of this, half has been spent in developing and
refining compiling techniques for the Centre's
two main languages, FORTRAN and IMP. Experi-
ence with a series of current computers (includ-
ing non-byte-oriented machines) indicates that
perhaps 70% of this effort is effectively preserved
for the future in the form of system-independent
high-level-language programs. Similarly, large
proportions of the system library material for
the two languages, including standard routines
and functions and I/0 gupport, would be directly
applicable to a range of new hardware.

The key to this economy of effort (both in
developing the third-generation user service, and
in providing for the future) lies in the adoption of
a high-level language for implementation. The
IMP compiler is thus undoubtedly the heart of the
Regional Centre scene. Apart from its extensive
use as a user programming language, IMP is the
source language of the FORTRAN and IMP compi-
lers, a very large proportion of each 'subsystem’
execution environment and library material, and
the whole of the EMAS multi-access supervisor

and subaystem. The FORTRAN compiler, on the
other hand, was initiated in 1966 as being the only
practical solution to the requirement for a share-
able compiler for the proposed multi-access
system, but has provided incidentally the substan-
tial benefits of excellent diagnostics and run-time
efficiency, mixed-language capability and above
all mobility.

Mobhile components
The viability of techniques for inter-machine
transfer both of individual software components
and of an integrated subsystem is measured by
the ratio of investment in new programming
involved in the transfer to that which would be
required to re-create the system from scratch on
the target machine. The following are critical
areas of major invesiment:

Compilers.

Program execution environment.

System and user libraries.

The file systems.

For a computing system implemented using the
assembly code of the machine, trauma and dis-

43

MANUFACTURER'S OR ‘RECEIVED" OPERATING SYSTEM

ROUTINES
PROGRAM LOADING
THE C
FILE COMPILERS
DEVICE USER PROGRAMS | LOADER
SYSTEM DRIVERS EDITOR

SYSTEM INTERFACE MODULE (SIM)

‘ JCL EXECUTION
FILE INTERPRETER CONTROL

LANGUAGE(| |sRARY LOADING

INTERFACE
AND
BLOCKING LIBRARY %
COMPONENTS

CONTINGENCY HANDLING

COMMUNICATION REGION

‘ truly mobile and written in IMP.

¥ except those coded in assembly language

ruption can confidently be predicted in each of
these areas, both for the users and for the sys-
tems programming staff, when the time comes
for the machine to be replaced by one of a differ-
ent type. Considering each area in turn, we indi-
cate, in conjunction with the Table, the extent to
which waste is inevitable when the current
machines are abandoned and the functions which
have been isolated into machine~independent pro-
grams in the Edinburgh systems. The columns
labelled 'Technique’ under 'Mobility' in the Table
are intended to represent a purely subjective
assessment of the extent to which the experience
gained with current systems might be directly
applied to new systems. On the other hand the
columns labelled 'Program® under 'Mobility' are
intended to indicate the actual proportions of
current software which could be transferred to a
new system once compilers have been provided.
Subsequently we discuss the software and data-
handling interfaces in the Edinburgh systems
giving lists where appropriate of the functions
which must be provided in the new environment to
enable the replication of the existing computing
system. The Figure is an attempt at pictorial

44

representation of the interfaces between compo-
nents, showing how a System Interface Module
(SIM) comprising a selection of fundamental
functions is used to isolate the central invest-
ments from their surroundings so that their
development in a system and machine independent
manner has been encouraged,

Questions of efficiency of a system implementa-
tion using these technigues are ultimately depend-
ent on target hardware, Notable effectiveness has
been achieved in several operating systems on
admitiedly similar hardware, and indeed effici-
ency has beer an important consideration in
establishing the software interfaces. The critical
fact is that after a new implementation has been
effected at possibly low efficiency, a year of
tuning the basic components, in particular the
compilers, can be made extremely productive
and improvements can be continuously passed on
to users, hopefully quite withoui any step change
in programming practices and usually without the
users' immediate awareness. That this is possible
has already been adequately demonstrated in the
Edinburgh environment, both on the main service
computers and on a variety of other machines, as

is mentioned below.

Compilers
The machine-independent aspects of high-level-
language compilation have been widely discussed.
Suffice it to say that in Edinburgh the FORTRAN
and IMP compilers have been developed with the
following prime objectives:

Rapid single-pass compilation.

Excellence of compile-time and run-time diag-

nostics.

High run-time efficiency for debugged programs.

Sharability of compiler and object code.

Mobility.

Both compilers are written in IMP. Although
they have in-line machine-code in areas where
execution speed can be significantly enhanced,
versions are maintained which are IMP through-
oat. While their single-pass, non-overlaid struc-
ture is relatively extravagant of core, speed is
enhanced and the objective of mobility is served
by reducing their dependence on sophisticated I/0
requirements, and their size is by no means
embarrassing in machines having upwards of 100
Ebytes of core.

The object code generation routines are well-
defined, allowing future adaptation for the produc-
tion of dbject programs for different machines.
Further, a compiler exists which compiles a
generous subset of the full user-oriented IMP into
an assembly language for a hypothetical single-
accumulator, three-index-register machine. This
compiler will compile itself, and the full IMP
compiler will compile both itself and of course
the FORTRAN compiler. Bootstrapping proce-
dures are thus available on a broad front for
mobility to a variety of environments. IMP com-
pilers have been produced (not necessarily by
Regional Centre staff) for:

IBM System /360 (OS)

ICL System 4 (J operating System)

ICL System 4-75 (EMAS)

IBM System /360 (Michigan Terminal System -

MTS)

ICL System 4 (Multijob)

Univac 1108

CTL Modular One

DEC PDP8

DEC PDP9

DEC PDP11

DEC PDP15

Full user facilities are maintained only on the
first three of these. For the others, at the
present time, the compilers are in use primarily
for systems programming and communications
work, or for teaching.

On the System 4 and System /360, the object
code format is different from that specified by
the manufacturer, though converter programs
are available for the creation of modules loadable
by the manufacturers' software. The reasons for
the decision to proceed independently are

explained below, but one consequence is that
object code is freely movable between the first
five operating systems in the above list, giving
considerable advantages in the maintenance of
compilers and of system and user libraries. The
form of object modules on an external medium is
a sequential file of fixed-length blocks,

Program execution environment

Job Control Language (JCL) has hitherto been
mainty the province of the operating system
writers, usually the manufacturers. Frequently
its status as unfortunate necessity in the process
of describing a job and having it initiated is only
t0o evideni. Clearly some apology must be made
for the decision at Edinburgh to adopt the notation
of IBM's OS /360 JCL for implementation on other
and subsequent systems. When the Regional
Centre's hired 360/50 had been in use for some
twelve months, and was carrying essentially the
whole of the batch computing service, the problem
first became plain: the third-generation operating
system needs a great deal of information for job
scheduling, and a correspondingly large teaching
and advisory effort is involved in establishing
users on the machine. Since the JCL does provide
a description of the primitive functions of batch
computing, with a description of file usage of
sufficient generality, the replication of the

08 /360 JCL in the System 4 operating systems
has enabled the user to utilise the same hard-won
expertige in batch job description equally on the
three main systems.

The Job Control Language interpreter now run-
ning on the System 4 is not entirely operating-
system-independent, but the canonising of the
input text is the main task. Tables of information
are created to suit the operating system. The pro-
gram is wriften in IMP and will readily execute on
any machine for which an IMP compiler is provi-
ded. Indeed for small FORTRAN and IMP jobs
(particularly for teaching purposes) requiring
strietly limited CPU time and file usage, a
version of the interpreter running on the 360
itself enables generous savings in O8/360 over-
heads by reading and, with other components,
controlling the execution of, a stream of batched
FORTRAN or IMP jobs as a single OS/360 job.
The investment in this program of 20 Kbytes is
not large (about £ man-year) but it will survive
for the foreseeable fulure, and its users will
require no further re-education.

Turning now to the functions of core allocation,
compiler, program and library loading, basic
1/0, the handling of interrupts and other contin-
gencies, and file accessing ~ all these are neces-
sarily quite strongly related to the hardware and
to the supervisor. Nevertheless, in each case the
central functions have been identified and suitable
interfaces established, as described below, which
clarify the issues involved and provide the frame-
work round which a future batch system would be

a5

built. Perfecting the execution of these functions
on the three systems has absorbed in total about
6% man-years, for 80 to 100 Kbytes of software,
depending on the system. Perhaps 20% of this is
written in assembly language, the rest in IMP.
The whole would be largely inapplicable, except
in concept, to new hardware.

System and user libraries

Equivalent library facilities have been provided
for batch users on the J, EMAS and OS systems.
These allow:

1. The compilation of separate {exiernal)
routines or files of routines in FORTRAN or
IMP,

2. The linking of external routines, with
mixed-language capability (the object modu-
les having identical format).

3. The storage of external routines in a user
library.

4, A full complement of mathematical routines
in the system library.

5. Automatic loading of routines, to satisfy
external references, from user and/or sys-
tem libraries.

The means of implementing these facilities has
necessarily been different for each system. The
routines amount to some 77 Kbytes of code,
mainly in FORTRAN and IMP, with some in
assembler, the investment amounting in total to
about 3 man-years. Each item is of course
sharable, and in the EMAS system this is fully
exploited. Most of the investment could be trans-
ferred with ease to further systems.

There is an increasing demand from research
workers for existing large packages, such as
SPSS and BMD, to be made available. They are
usually written in FORTRAN and the majority
originate from universities in the United States.
Moving such packages inevitably involves some
modification where system-dependence has been
built in, but again there is benefit from the conti-
nuity of the user interface in the Edinburgh sys-
tems. The service is now backed with a substan-
tial range of such powerful packages.

The file systems

In spite of the diversity of file system concepts
between the three systems at the Regional Centre,
much has been achieved in establishing a set of
facilities which satisfy most needs of a general
computing service. At Edinburgh there are few
exceptional users requiring files in excess of two
megabytes, or requiring rapid access to such
large files. On the other hand, the 360 holds files
totalling 400 Mbytes on behalf of over 50 universi-
ty departments and other organisations. Similarly
after six months of user service EMAS holds
2,000 permanent files, totalling 50 Mbytes, on
behalf of 120 individuals, and these figures are
growing steadily.

46

It is clear that files of the following logical
types provide an acceptable range of facilities for
most batch and interactive users:

1. Sequential files of text, considered as
streams of characters or as records or
lines of text.

2. Sequential files of "binary' information, that
is, copied bit by bit from its internal form
or from an external medium.

3. Direct access files of similar hinary’ infor-
mation in records of fixed length.

Using these file-types as a basis, users can if
necessary simulate systems of greater sophistica-
tion, yet these facilities can be described with
reasonable clarity in the job control language, and
conform to the file types implied by 1I/0 state-
ments in programming languages commonly in use,
particularly FORTRAN.

Taking the above list of file-types as part of a
specification of the user /file-system interface,
the following functions need to be replicated in
transferring the system from one machine to
another: ’

1. Device-driving for the physical I/0 of blocks

of data.

2. Interpretations between these blocks and the
records to which a user program logically
refers,

3. Transfer of the data, or of its description,
between the user's program area and the
routines performing the interpretations.

It is clear that the first of these is strongly
machine or system dependent (indeed in EMAS the
supervisor shields both user and subsystem from
the external world through the virtual memory
concept) and the last is language~dependent. The
most convenient ways of handling data I/0 on each
of the three systems are significantly different,
On OS the basic access methods are used (sequen-
tial and direct access); on J the 'system file
format' is used for disk files and basic access
(physical handling) for all other devices. On
EMAS a completely different concept is involved:
files are 'connected' or 'mapped’ into a user’'s
virtual memory and can be accessed without any
explicitly organised I/0 reguest.

However, in each case, the system-independent
interface is provided at the record level, with the
basic operations of select, get record, put record
and position (for back-space, rewind and direct
access). The mapping between data set numbers
and actual files is a function of the system-
dependent area and all tables maintained in
support of this are private. By arranging that the
system-dependent code provides the buffer areas,
full advantage is taken of the special case of
EMAS where those buffer areas are part of the
actual file. The IMP character 1/0 facilities are
regarded as a language feature and are provided
by library routines accessing data through the

'record' interface.

Except for parts of the device-driving code, all

functions have been coded in IMP and are machme-

independent. Programming investment for the two
languages amounts broadly to two man-years.

Interfaces: program execution environment

In designing a bridging subsystem, the important
decisions are: first, what are the interfaces
between the subsystem and its supporting super-
visors ? Then, at what level should the division
between system-independent and system-dependent
software be pitched? We do not attempt to offer a
best solution, but indicate the choices that have
heen made at Edinburgh.

We list the facilities available by high-level-
language routine call at the interface between the
System Interface Module (SIM) and the central
and machine-independent programs, as illustrated
in the Figure:

1. From device drivers for fast and slow
devices: select channel, get a block or record,
put a block or record, close channel., For fast
devices the equivalent services with logical
records can be obtained by suitable calls on the
file routines, and this is the route by which most
of the remaining software accesses the file sys-
tem. The level at which device control is
exercised depends strongly upon the environment.
If the 'received operating system' provides facili-
ties closely corresponding to those of the SIM
interface to IMP programs they will cbviously be
used. Otherwise the appropriate code must be
written as part of SIM to the extent required or
allowed by the 'received operating system’.

2. Get date, time of day, send message to
operator, set or read CPU timer.

3. Give the address of a Communication Region,
which holds addresses of: lists of routine entry
point definitions and external references (used in
particular by the loader), system and user file
descriptors, translation tables, free space limit
references. The extent to which the Communica-
tjon Region is used depends on the implementation.

4. A mechanism for the manipulation of pro-
gram environment descriptions. In particular a
stack or register /program-counter words is
maintained, enabling control to be passed to
chosen places on the occurrence of one of a set of
contingencies. In this way the source language
diagnostic routines are entered in the event of
program error, whence control is passed to the
next task for the subsystem, The errors or condi-
tions may be asynchronous, and may be hardware
or software detected. In detail, lists of typical
functions and events encompassed by the mecha-
nism are as follows:

Contingency-handling services of the System
Interface Module

i Stack an environment description {up to 4
levels).

ii Unstack one environment description.

iii Unstack all environment descriptions.

iv Give number of stored environment descrip-
tions.

v Signal an error with given identifier at the
current level,

vi Signal an error with given identifier at the

outer level.

Repeat the latest contingency report at the

current level.

vii

Sample list of contingencies handled by the
System Interface Module contingency mechanism

i IDlegal operation code.

ii Address error,

iii Fixed and floating point overflows, exponent
underflow and divide error.

jiv Operator interrupt.

v CPU time limit exceeded.

vi Printer output limit exceeded.

vii "End of file' encountered.

Interfaces: object program standards

The most important constraint required for EMAS
(and desirable for other systems) is that code
(sharable)} and data (non-sharable) areas of pro-
grams should be separated. Compiler object out-
put is therefore via an interface routine to which
input is fragmented, with each record identified
as code, symbol tables (for diagnostic purposes),
non-~-sharable initialised data or external linkage
data. This routine stores the object output
(probably by suitable calls on System Interface
Module facilities) in the form most convenient in
the particular operating system.

Routines of FORTRAN and IMP use common
stack, parameter-passing and linkage mecha-
nisms. The latter provides static and dynamic
linking capability [5] and allows the exploitation
of the sharability of the code. Thus mixed-
language working, including correct source
language run-time diagnostics, is a standard
feature of these systems,

Acknowledgements

The following have been materially concerned in
the development of the designs described here:
Mrs M. M. Barritt, as Principal Consultant;

P. D. Stephens, in control of the IMP language and
compiler; H. Whitfield, D.J. Rees, A.S. Wight
and S.T. Hayes in finalising and implementing the
Edinburgh Multi-access System, which was initia-
ted by the University of Edinburgh Computer
Science Department in conjunction with Inter-
national Computers Limited.

References

1. YARWOOD, J.K., 'Access to an ICL System
4 computer by teletype and video terminals’,
Edinburgh Regional Computing Centre Pro-

47

gram Library Unit, Research and Develop-
ment Notes, No.2 (May 1971).

2. WHITFIELD, H. (Editor), 'System 4-75,
Edinburgh Multi-access System Reference
Manual', University of Edinburgh, Department
of Computer Science (1971).

3. BARRITT, M.M., BURNS, J.G.,
McKENDRICK, A., and STEPHENS, P.D.,
"The Edinburgh IMP Language Manual', Edin-
burgh Regional Computing Centre (1st edition,
1970),

4. BROOKER, R.A., and ROHL, J_S., 'Atlas
Autocode reference manual’, Uriversity of
I(Wancl;ester Computer Science Department

1965).

5. MILLARD, G.E., REES, D.J., and
WHITFIELD, H., 'System 4-75, Edinburgh
Multi-access System: Subsystem reference
manual’, University of Edinburgh, Department
of Computer Science and Regional Computing
Centre (1972).

6. MILLARD, G.E., FINCH, A. 5., MARR, C.R.,,
and AITKEN, W., 'The Edinburgh FORTRAN
language manual', Edinburgh Regional Compu-
ting Centre (4th edition, 1971).

7. MILLARD, G.E., 'The Edinburgh FORTRAN
Compiler and its environment’, Proceedings
SEAS XVI, Pisa, 1971, pp 318-27,

8. YARWOOD, J.K., 'Towards machine-indepen-
dent processors', BCS Computer Bulletin,
V14(7), pp 219-21 (July 1970).

Discussion

Q. It appears that yon adopted the JCL of OS/360
directly for the System 4, Did you consider
developing your own JCL, and if not, why not?
A. The decision to hire a 360/50to carry the
service for 12 months or more pending evolution
of the software for System 4 necessarily involved
teaching and advisory support on at least basic
08 JCL. Since it proved possible to replicate
this JCL on the System 4 with very modest
programming effort, this course was taken in
order to minimise user re-training in JCL.

Q. You have constructed an interface and com-~
pilers to achieve portability but thrown away the
possibility of using the manufacturers' software.
Why ?

A. This is not the case. Although object and load
modules of the Edinburgh system are not directly

compatible with those of the manufacturers, pro-
grams have been written to convert them to the
manufacturers’ (ICL and IBM) formats. Thus it
is possible to interface to and to use provided
software, and this is being done in certain areas.
In addition, use of the manufacturers' software
independently of the Edinburgh system is certainly
not precluded, as the system described in this
paper runs as an ordinary job in the machine,
multiprogrammed with other jobs which may or
may not themselves be instances of the Edinburgh
system.

Q. I you do design your own JCL, won't you have
difficulty in "bridging the gap'?

A. There seems no reason to anticipate special
difficulty with any particutar form of a JCL, since
a JCL text analyser can easily be made machine-
independent.

Q. Is your system transportable to a CDC 76007
A. The system has mainly been developed on
byte-criented machines which are fairly closely
similar, Moving to further byte-machines would
be comparatively straightforward, whereas going
to other machines would require greater effort,
mainly in adaptation of the IMP compiler for
different word-length. Experience with IMP on
certain non-byte machines indicates that this
greater effort would be by no means excessive in
view of the rewards to be gained.

Q. Does your system support ALGOL ? K not,
what are the problems ?

A. It does not support ALGOL, mainly because
IMP provides comparable and in many areas
better facilities and the Edinburgh community is
familiar with IMP, There would be no problems
other than those already encountered and solved
in providing an IMP compiler.

Q. Have you considered intermediate low-level
language compiler output as a means of assisting
compiler portability ?

A. This is one of the techniques we have adopted.
A compiler has been produced by Computer
Science Department and Regional Centre staff
which compiles an implementation subset of IMP
into the assembly language of a hypothetical
single-accumulator, three-index-register
machine. This compiler has been used to boot-
strap IMP to a Univac 1108, and is currently
being used to provide IMP for DEC PDP-11's.

