technical contributions 24
PS-algol: an Algol with a Persistent Heap.

Malcolm Atkinson, Ken Chisholm, Paul Cockshott
Department of Computer Science, University of Edinburgh, Scotland

Ke rds

Algol, heap, pointer, database.

Abstract

PS-algol is a dialect of algol for the programming of problems that
would normally require a database management system. It supports a
persistent heap, and an associative store; it has embedded within the
language features to support tasks normally carried out by filing
systems or database management systems.

1 Databases and programming languages

Database systems and programming languages have each developed their
own method of structuring data. Database systems have developed
relational8 1%ieﬁfr?8ical, network and functional models of data
structure . Programming languages have, instead, vectors,
multidimensional arrays, structures, access or reference variables and
classes or abstract types as data structuring facilites. Given the data
structuring facilities of programming languages the database models of
data may be synthesised.

Programming languages are distinguished from database systems in
their management of data primarily by the fact that the data objects
created in the course of a program run do not persist beyond the run of
the program. In a database system data objects persist beyond and
between the runs of individual application programs. In order to handle
persistent data, programming languages have relied upon file I/0 or an
interface to an external DBMS. This is discussed elsewhere .

In general, database systems have been interfaced to a programming
language, by adding ad hoc extensions to the syntax of the programming
language to acommodate the data model used in the external database
system. Examples are the Codasyl extensions to Cobol and Fortran, or
the UDL extension to PL/I 91 .

Recently some languages have been designed with spe%;f%g qgcihftégs
making them suitable for data intensive applications .
Typically these add the data types of a predefined database model to a
pre~existing collection of types. However only PS-algol and ELLE
handle persistent and transitory data uniformly. By uniformly we mean
that any operation or type constructing facility of the host language is
applicable to all data -~ whether persistent or transitory.

05..

2 The hypothesis of minimum change

We have hypothesised that it should be possible to change an advanced
algol into a database language without any change to its syntax.

By an advanced algol we mean a block structured algorithmic language
with type definition facilities, a heap and access variables. Algol68
and Pascal are examples of such languages. The mninimum changes
necessary to convert an advanced Algol into a database language are:
1. A persistent heap.
2. A method of linking programs with preserved heaps.
3. A mechanism to delimit transactions.
An additional desirable facility is:

4, An associative store.

& persistent heap is one on which a data structure built in one run
of a program may be preserved to be used in other runs of the same or

other programs. A method of identifying these preserved heaps and
binding to them is then necessary. A transaction mechanism makes it
possible to ensure the integrity of data. It ensures that all the

changes made during a transaction are effected or that the data is
restored to its original state 1 .

Arrays indexed by scalar types provide an updateable mapping from a
range of a discrete type to some other type. Associative store is a
further generalisation of arrays. It allows the construction of
updateable functions sparsely indexed by other types such as strings.
Although associative store is not necessary in a database language,
since it can be emulated in software, its effect is required often
enough to make its inclusion desirable.

3 S=algol: the example language

S-algol is a language developed at St Andrews University, Scotland 1
15. It belongs to the Algol tradition, and has a very concise and
orthogonal syntax. The guiding tenet of its design was that power is
gained through simplicity and simplicity through generality. In
expressive power and orthogonality it is somewhat above Pascal. Its
most important features are its data structuring facilities.

The base types of the language are integer, boolean, real, file,
string and pointer. Strong typing is ensured by a combination of
compile time and run-time checks. Strings support the operations of
concatenation and substring selection.

The type constructors are vector, and structure. Vectors are
updateable mappings from dynamic ranges over the integers to one of the
base types, or to a vector type. Multidimensional arrays may be formed
by composing the vector construction operations. Structure classes are
ordered cartesians of named fields belonging to one of the base types,
or to a vector type.

— 26—

Pointers are access descriptors which can reference instances of any
of the structure classes but which may not reference instances of base
types or vectors. The 1language provides the operations of field
subscription and run~time type verification on pointers. This
arangement makes 1t possible to write algorithms to manipulate pointers
without the need to know the type of the referend.

The program fragment:

structure cons(pntr hd,tl)
structure string.atom{ string val)
structure nil

let a.string = " Dumpty"

let a.pointer = string.atom("Humpty" ++ a.string)
let another.pointer := cons(a.pointer, nil)

while another.pointer isnt nil do

begin

write if another.pointer(hd) is string.atom
then another.pointer(hd,val)
else "Not a string"

write newline

another.pointer := another.pointer (tl)

end
write "End of list"
would produce output:
Humpty Dumpty
End of list
Note the following:

1. Identifier declarations are introduced by the word 'let' and
are initialising.

2. The type of an identifier is given by the type of its
initialising wvalue.

3. Constant identifiers are initialised using '=', variables using

oot
o=

4, The operators 'is' and 'isnt' are used to check the class
currently referenced by a pntr.

5. The declaration of a structure class implicitly declares a
generator function of the same name, whose application yields
an instance of the class.

Ihe Heap
In S-algol all compound data objects: strings, structures, and

vectors are generated on the heap. There is a garbage collector which
preserves objects reachable from identifiers currently in scope.

~27—=

Implementations

S-algol has currently been implemented on the following sytems.

Machine Operating System
PDP11 Unix
VAX VMS
Z80 CP/M
PE3220 Mouses
4 PS~ ol as an extension to S-algol

PS-algol (Persistent S-algol) is a derivative of the language
S-algol. Syntactically it is identical to S-algol. The only visible
extension to the language is the addition of a number of new predeclared
procedures and a predeclared type. The effect of these, however, is to
greatly increase the power and generality of the S~algol heap. These
procedures provide:

1. A method of associating a program heap with a named database.
2. A method of commiting a transaction upon the database thus
simultaneously updating the database and preserving a subset of
data on the heap.
3. An associative store.
4, A universal nil pointer.
The procedures are as follows
procedure open.database(string user.name, password, db.name->bool)
If the correct user password is supplied, this opens a database
belonging to the specified user, with the db.name given. If the
database does not yet exist it is created. If another user currently
has a transaction open on the database then the open fails. Any failure

is indicated by returning false otherwise a mapping is established
between the database and the program's heap and true returned.

procedure root.table(->pntr)

This procedure returns a pointer to an instance of the predefined class
'table' which provides an associative store facility. The dinternal
structure of this class is hidden fﬂfm programmers using PS-algol (in
fact they are implemented as B-trees ~) . However, the procedures that
follow allow operations on instances of this class. Associated with
each database there is a distinguished table that is returned by
root.table.

procedure nil (=> pntr)

S-algol has no predefined nil pointer, so one generally declares a local
nil pointer and uses it to designate the end of lists etc. The weakness
of this in a persistent environment is that there would no longer he a
unigue nil pointer, but separate ones for each program that ran against
the database. This procedure returns a system wide nil pointer,

.28

procedure enter(string key,pntr table,value)

This enters the parameter value into the table using the key. The
value, being a pointer, can reference any arbitrarily complex data
structure, including another table. The effect of entering a value/key
pair is to set up an association between the key and the value, allowing
the key to be used for later retrieval of the value, If the value is
nil the effect is that of deleting the item from the table.

procedure lookup(string key, pntr table -> pntr)

This returns the value last associated with the key in the specified
table. If no value has been associated with this key, nil is returned.

procedure table(->pntr)
This returns a pointer to an empty table.

procedure scan(pntr table,(string->bool)user)

This scans the table with the function ‘user!' which takes a string
parameter, invoking it once for every key in the table or until it
returns false. When the procedure exits, each key in the table will
have been provided as a parameter to ‘user' once. By means of side
effects the user procedure can gather statistics about, print or modify
the entries in the table.

procedure commit

This ‘causes all the objects which can be reached from the root table to
be saved in the database and then terminates the program. If the
program terminates without invoking commit, none of the changes made to
the database during the run of this program will take effect.

5, Implementation

PS-algol has b%en implemented on a Perkin Elmer 3220 under the Mouses
operating systenm . It is based upon the 3220 S-algol system.

It was not necessary to modify the compiler. The additional built in
procedures and the predefined class Table were added to the language by
nodifying the compiler's prelude file. The most important modification
was to the run-time systen. The original S~algol run-time systenm
consisted of a heap management system and a library of predefined
procedures, The PS-algol run-time system was extended to include:

1. Additional library procedures,
2. A persistence manager.
3. A commit module.
4, A new garbage collector.
These new modules communicate over an interprocess communications

system with a_data base management process called the Chunk Mangement
System (CMS) 2. Their functions can best be understood by examining

-29.

what happens when a PS-algol program is executed twice.

a) The program starts and calls "open.database" for the first
time. This operates by remote procedure entry. A message to
the CMS, invokes a procedure in the database management system
to create a new data hase,

b) The program builds a data structure on the heap. Garbage
collections occur as in S-algol.

c¢) The program builds structures as usual on the heap, and inserts
pointers to some of these in the root table. The tables are
created and manipulated as B-trees in the CMS 6 . Pointers to
tables are returned as Persistent Identifiers (PIDs). PIDs are

tokens to database objects. They are distinguished from local

pointers.

d) The program terminates by calling commit. All items on the
heap reachable from the root table are sent back to the CMS.
All new objects sent back are given PIDs. All pointers in

objects sent back are overwritten with the PIDS of the objects
they pointed to. This task is done by the commit module.

e) Another program starts against the same database. Using the
routine lookup, it obtains a pointer to an object previously
stored in the root table. This pointer will be a PID sent over
the message interface.

f) The program attempts to dereference the PID. The fact that it
is a PID is detected by the dereference operator and the

persistence manager is invoked. The persistence manager
invokes a remote procedure in the CMS to fetch the requested
item from the data base. The pointer variable that was

derefenced is over-written with the local address of the item
which is now on the heap, and the dereferencing is retried.
This may occur repeatedly as items brought from the database
may contain pointer fields which are initially PIDS. Any
attempt to dereference these will be similarly trapped.

g) The program commits and the updated data structure is written
back as in (d).

6. Commentary

We have explored the use of a persistent heap in a traditional block
structured language. We have demonstrated, by building a working system
that it is feasible to provide such a language on the basis of a minimal
modification of an advanced Algol. We believe that this approach can be
supported efficiently. Two methods of support are being evaluated: one
in which the run-time environment is intimately connected to the
database manager; the other in which database management is centralised
on a database server and varying amounts of the local memory management
and dereferencing algorithms are executed on the client machines.

At present the system does not totally enforce type protection
between programs., Methods of providing type protection, the independent
development of programs and the provision of concurrent access are all
worthy of investigation.

We believe that this language would be suitable to directly implement
more traditional database systems. It is also likely to provide a more
productive development environment for quite extensive c¢lasses of
programs performing data manipulation.

~30-

We conslder this language a prototype and plan to investigate how the
same extensions should be added to Ada .

References
[1] Albano, A., Occuchiuto, M.E., Orsini, R, A uniform management of
temporary and persistent complex data in high level languages. Nota

Scientifica, S-80-15, September 1980

[2] Atkinson, M.P. Database systems and programming languages. In:
Proceedings of the Fourth International Conference on Very Large
Databases, September 1978, 408=19

[3] Atkinson, M.P., Chisholm, K.J., Cockshott, W.P., The Chunk
Management System. University of Edinburgh, Department of Computer
Science, Internal Report - To Appear.

[4] Atkinson, M.P., Chisholm, K.J., Cockshott, W.P., The New Edinburgh
Persistent Algorithmic Language. in Databases, Pergammon Infotech State
of the Art report, series 9, no 8, Pergammon Infotech, Maidenhead,
England, December 1981,

[5] Atkinson, M.P., Martin, J.A., and Jordan, M.J. A uniform modular
structure for databases and programs. in Data Design, Infotech State of
the Art report, series 8, no 4, Vol 1 (commentary), Infotech Ltd,
Maidenhead, England.

[6] Bayer, R., and MeCreight, E., Organisation and Maintainance of Large
Ordered Indexes, Acta Informatica 1, 173~189 (1972)

[7] Challis, M.P., Database Consistency and integrity in a multi-user
environment. In: Databases: improving usability and responsiveness.
New York: Academic Press, 1978, 245-70.

[8] Codd, E.F., A relational model for large shared databases.
Communications of the ACM, 13 (6), June 1970, 377-87.

[9] Cullinane Corporation Integrated Database Management Systems (IDMS)
publication: Language programers reference guide.

[10] Date, C.J., An Introduction to the Unified Database Language (UDI),
In: Proceedeings of the 1980 conference on Very Large Databases

[11] United States Department of Defence, Reference Manual for the Ada
Programming Language, July 1980.

[12] Kaehler, E., Virtual Memory for an Object Oriented Language, Byte
August 1981

(13] Lochovsky, F.H., Tsichritizis, D.C., Hierarchical Database
Management Systems, ACM Computing Surveys, Vol 8, No 1, March 1978,
105-123

[14] Morrison, R., Davie, A.J.T., Recursive Descent Compiling, Ellis
Horwood Ltd Chichester 1981

(15] Morrison, R., S-algol Reference Manual, St Andrews University, 1979

31

[16] Schmidt, J.W., Some high level language constructs for data of type
relation, Transactions on Database Systems, Vol 2, no 3, September 1977
pages 247-281,

[17] Shipman, D.W., The Functional Data Model and the Data Language

Daplex, ACM Transactions on Database S3ystems, Vol 6, No 1, March 1981,
140=-73

(18] Smith, J.M., Fox, S., Landers, T., Reference Manual for ADAPLEX,
Computer Corporation of America, January 1981

[19] Taylor,R.C. and Frank,R.L., CODASYL database management systems.
ACM Computing Surveys,8(i), March 1976, 67-103.

[20] Wasserman, A.I., The data management facilities of PLAIN. Medical
Information Science, University of California, San Francisco, 1978,

[21] Whitfield, C.,, Robertson, P.,The MOUSES reference manual, Moray
House College, Edinburgh, 1979.

[22] Wijngaarden, A. van, et al, Revised Report on Algorithmic Language
ALGOL 68. Supplement to ALGOL BULLETIN 36, March 1974,
Acknowledgements

We aknowledge the assistance of Richard Marshall in constructing the
PS-algol system, the help of Austin Tate and Lee Smith with the
presentation of this paper and British Science Research Council for
funding our work on grant A865419

