
technical contributions

	

-24 -

PS-algol : an Algol with a Persistent Heap .

Malcolm Atkinson, Ken Chisholm, Paul Cockshot t
Department of Computer Science, University of Edinburgh, Scotlan d

Kevword s

Algol, heap, pointer, database .

Abstract

PS-algol is a dialect of algol for the programming of problems tha t
would normally require a database management system . It supports a
persistent heap, and an associative store ; it has embedded within th e
language features to support tasks normally carried out by filin g
systems or database management systems .

1 Databases and programming language s

Database systems and programming languages have each developed thei r
own method of structuring data . Database systems have develope d
relational $ 1hier

7
hierarchical, network and functional models of dat a

structure . Programming languages have, instead, vectors ,
multidimensional arrays, structures, access or reference variables an d
classes or abstract types as data structuring facilites . Given the data
structuring facilities of programming languages the database models o f
data may be synthesised .

Programming languages are distinguished from database systems i n
their management of data primarily by the fact that the data object s
created in the course of a program run do not persist beyond the run o f
the program. In a database system data objects persist beyond an d
between the runs of individual application programs . In order to handl e
persistent data, programming languages have relied upon file I/O or a n

interface to an external DBMS . This is discussed elsewhere 2 5

In general, database systems have been interfaced to a programmin g
language, by adding ad hoc extensions to the syntax of the programmin g
language to acommodate the data model used in the external databas e
system . Examples are the Codasyl extensions to Cobol and Fortran, or
the UDL extension to PL/I 9 1 0

Recently some languages have been designed with spe%ific f
g
ci iti28s

making them suitable for data intensive application s
Typically these add the data types of a predefined database model to a
pre-existing collection of types . However only PS-algol and ELLS 1
handle persistent and transitory data uniformly . By uniformly we mea n
that any operation or type constructing facility of the host language i s
applicable to all data - whether persistent or transitory .

-25- -

2 The hy~nothesis_ of minimum change

We have hypothesised that it should be possible to change an advance d
algol into a database language without any change to its syntax .

By an advanced algol we mean a block structured algorithmic languag e
with type definition facilities, a heap and access variables .

	

Algo168
22 and Pascal are examples of such languages .

	

The minimum change s
necessary to convert an advanced Algol into a database language are :

1. A persistent heap .

2. A method of linking programs with preserved heaps .

3. A mechanism to delimit transactions .

An additional desirable facility is :

4. An associative store .

A persistent heap is one on which a data structure built in one ru n
of a program may be preserved to be used in other runs of the same o r
other programs .

	

A method of identifying these preserved heaps an d
binding to them is then necessary .

	

A transaction mechanism makes i t
possible to ensure the integrity of data . It ensures that all th e
changes made during a transaction are effected or that the data i s
restored to its original state 7 .

Arrays indexed by scalar types provide an updateable mapping from a
range of a discrete type to some other type .

	

Associative store is a
further generalisation of arrays . It allows the construction of
updateable functions sparsely indexed by other types such as strings .
Although associative store is not necessary in a database language ,
since it can be emulated in software, its effect is required ofte n
enough to make its inclusion desirable .

15

	

It belongs to the Algol tradition, and has a very concise an d
orthogonal syntax . The guiding tenet of its design was that power i s
gained through simplicity and simplicity through generality .

	

In
expressive power and orthogonality it is somewhat above Pascal .

	

Its
most important features are its data structuring facilities .

The base types of the language are integer, boolean, real, file ,
string and pointer .

	

Strong typing is ensured by a combination of
compile time and runtime checks .

	

Strings support the operations o f
concatenation and substring selection .

The type constructors are vector, and structure . Vectors are
updateable mappings from dynamic ranges over the integers to one of th e
base types, or to a vector type . Multidimensional arrays may be forme d
by composing the vector construction operations . Structure classes ar e
ordered cartesians of named fields belonging to one of the base types ,
or to a vector type .

S. algol i a language developed at St Andrews University, Scotland 14

-26 -

Pointers are access descriptors which can reference instances of an y
of the structure classes but which may not reference instances of base
types or vectors .

	

The language provides the operations of fiel d
subscription and run-time type verification on pointers . Thi s
arangement makes it possible to write algorithms to manipulate pointer s
without the need to know the type of the referend .
The program fragment :

structure cons(pntr hd,tl)
structure string .atom(string val)
structure nil
let a . string

	

" Dumpty "
let a .pointer = string .atom("Humpty" ++ a . string)
let another .pointer := cons(a .pointer, nil)
while another . pointer isnt nil do
begin

write, if another .pointer(hd) Is, string .atom
then another . pointer(hd,val)
else "Not a string "

write newline
another .pointer := another .pointer (tl)

end
write "End of list "

would produce output :

Humpty Dumpt y
End of lis t

Note the following :

1. Identifier declarations are introduced by the word 'let' an d
are initialising .

2. The type of an identifier is given by the type of it s
initialising value .

3. Constant identifiers are initialised using

	

variables usin g
r .- '

4. The operators 'is' and 'isnt' are used to check the clas s
currently referenced by a pntr .

5. The declaration of a structure class implicitly declares a
generator function of the same name, whose application yield s
an instance of the class .

The Hea p

In S-algol all compound data objects : strings, structures, an d
vectors are generated on the heap . There is a garbage collector which
preserves objects reachable from identifiers currently in scope .

-27 -

Im plementation s

S-algol has currently been implemented on the following sytems .

Machine

	

Operating Syste m
PDP11

	

Uni x
VAX

	

VMS
Z80

	

CP/M
PE3220

	

Mouse s

4 PS-algol as an_extension to S-algo l

PS-algol (Persistent S-algol) is a derivative of the language
S-algol . Syntactically it is identical to S-algol . The only visibl e
extension to the language is the addition of a number of new predeclare d
procedures and a predeclared type . The effect of these, however, is to
greatly increase the power and generality of the S-algol heap . These
procedures provide :

1. A method of associating a program heap with a named database .

2. A method of commiting a transaction upon the database thu s
simultaneously updating the database and preserving a subset o f
data on the heap .

3. An associative store .

4. A universal nil pointer .

The procedures are as follow s

procedure open .database(string user .name, password, db .name->bool)

If the correct user password is supplied, this opens a databas e
belonging to the specified user, with the db .name given .

	

If the
database does not yet exist it is created . If another user currently
has a transaction open on the database then the open fails . Any failure
is indicated by returning false otherwise a mapping is established
between the database and the program's heap and true returned .

procedure root .table(->pntr)

This procedure returns a pointer to an instance of the predefined clas s
'table' which provides an associative store facility . The internal
structure of this class is hidden from programmers using PS-algol (i n
fact they are implemented as B-trees) . However, the procedures tha t
follow allow operations on instances of this class . Associated wit h
each database there is a distinguished table that is returned b y
root . table .

procedure nil (-> ,pntr)

S-algol has no predefined nil pointer, so one generally declares a loca l
nil pointer and uses it to designate the end of lists etc . The weaknes s
of this in a persistent environment is that there would no longer be a
unique nil pointer, but separate ones for each program that ran agains t
the database . This procedure returns a system wide nil pointer .

--28- -

procedure enter(string key,pntr table,value)

This enters the parameter value into the table using the key . The
value, being a pointer, can reference any arbitrarily complex dat a
structure, including another table . The effect of entering a value/key
pair is to set up an association between the key and the value, allowin g
the key to be used for later retrieval of the value . If the value is
nil the effect is that of deleting the item from the table .

procedure lookup(string key, pntr table -> pntr)

This returns the value last associated with the key in the specifie d
table . If no value has been associated with this key, nil is returned .

Procedure. table(-->pntr)

This returns a pointer to an empty table .

procedure scan(pntr table,(string->bool)user)

This scans the table with the function ' user' which takes a string
parameter, invoking it once for every key in the table or until i t
returns false .

	

When the procedure exits, each key in the table wil l
have been provided as a parameter to ' user' once . By means of side
effects the user procedure can gather statistics about, print or modif y
the entries in the table .

procedure commi t

This •causes all the objects which can be reached from the root table t o
be saved in the database and then terminates the program . If the
program terminates without invoking commit, none of the changes made t o
the database during the run of this program will take effect .

5. Implementation

PS-algol has been implemented on a Perkin Elmer 3220 under the Mouse s
operating system 21 . It is based upon the 3220 S-algol system .

It was not necessary to modify the compiler . The additional built i n
procedures and the predefined class Table were added to the language b y
modifying the compiler ' s prelude file . The most important modification
was to the run-time system . The original S-algol run-time syste m
consisted of a heap management system and a library of predefine d
procedures . The PS-algol run-time system was extended to include :

1. Additional library procedures .

2. A persistence manager .

3. A commit module .

4. A new garbage collector .

These new modules communicate over an interprocess communication s
system with a data base management process called the Chunk Mangement
System (CMS) 3 .

	

Their functions can best be understood by examining

-29 -

what happens when a PS-algol program is executed twice .
a) The program starts and calls "open .database" for the firs t

time . This operates by remote procedure entry . A message t o
the CMS, invokes a procedure in the database management system
to create a new data base .

b) The program builds a data structure on the heap .

	

Garbage
collections occur as in S-algol .

c) The program builds structures as usual on the heap, and insert s
pointers to some of these in the root table . The tables are
created and manipulated as B-trees in the CMS 6 . Pointers to
tables are returned as Persistent Identifiers (PIDs) . PIDs are
tokens to database objects . They are distinguished from local
pointers .

d) The program terminates by calling commit . All items on the
heap reachable from the root table are sent back to the CMS .
All new objects sent back are given PIDs . All pointers in
objects sent back are overwritten with the PIDS of the object s
they pointed to . This task is done by the commit module .

e) Another program starts against the same database . Using the
routine lookup, it obtains a pointer to an object previousl y
stored in the root table . This pointer will be a PID sent ove r
the message interface .

f) The program attempts to dereference the PID . The fact that i t
is a PID is detected by the dereference operator and th e
persistence manager is invoked . The persistence manager
invokes a remote procedure in the CMS to fetch the requeste d
item from the data base . The pointer variable that wa s
derefenced is over-written with the local address of the item
which is now on the heap, and the derefereneing is retried .
This may occur repeatedly as items brought from the database
may contain pointer fields which are initially PIDS . Any
attempt to dereference these will be similarly trapped .

g) The program commits and the updated data structure is written
back as in (d) .

6 . Commentary

We have explored the use of a persistent heap in a traditional bloc k
structured language . We have demonstrated, by building a working system
that it is feasible to provide such a language on the basis of a minima l
modification of an advanced Algol . We believe that this approach can b e
supported efficiently . Two methods of support are being evaluated : one
in which the run-time environment is intimately connected to th e
database manager ; the other in which database management is centralise d
on a database server and varying amounts of the local memory managemen t
and dereferencing algorithms are executed on the client machines .

At present the system does not totally enforce type protection
between programs . Methods of providing type protection, the independen t
development of programs and the provision of concurrent access are al l
worthy of investigation .

We believe that this language would be suitable to directly implemen t
more traditional database systems . It is also likely to provide a more
productive development environment for quite extensive classes o f
programs performing data manipulation .

-30 -

We consider this language a prototype and plan to investigate how th e
same extensions should be added to Ada 11 ,

References

[1] Albano, A ., Occuchiuto, M .E ., Orsini, R .

	

A uniform management of
temporary and persistent complex data in high level languages .

	

Not a
Scientifica, S-80-15, September 1980

[2] Atkinson, M.P. Database systems and programming languages . In :
Proceedings of the Fourth International Conference on Very Larg e
Databases, September 1978, 408-1 9

[3] Atkinson, M .P ., Chisholm, K .J .,

	

Cockshott,

	

W .P .,

	

The Chunk
Management System .

	

University of Edinburgh, Department of Computer
Science, Internal Report - To Appear .

[4] Atkinson, M .P ., Chisholm, K .J ., Cockshott, W .P ., The New Edinburg h
Persistent Algorithmic Language . in Databases, Pergammon Infotech Stat e
of the Art report, series 9, no 8, Pergammon Infotech, Maidenhead ,
England, December 1981 .

[5] Atkinson, M.P ., Martin, J .A ., and Jordan, M.J . A uniform modular
structure for databases and programs . in Data Design, Infoteeh State of
the Art report, series 8, no it, Vol 1 (commentary), Infotech Ltd ,
Maidenhead, England .

[6] Bayer, R ., and McCreight, E ., Organisation and Maintainance of Larg e
Ordered Indexes, Acta Informatica 1, 173-189 (1972)

[7] Challis, M .P ., Database Consistency and integrity in a multi-use r
environment . In : Databases : improving usability and responsiveness .
New York : Academic Press, 1978, 245-70 .

[8] Codd, E .F ., A relational model for large shared databases .
Communications of the ACM, 13 (6), June 1970, 377-87 .

[9] Cullinane Corporation Integrated Database Management Systems (IDMS)
publication : Language programers reference guide .

[10] Date, C .J ., An Introduction to the Unified Database Language (UDI) ,
In : Proceedeings of the 1980 conference on Very Large Database s

[11] United States Department of Defence, Reference Manual for the Ad a
Programming Language, July 1980 .

[12] Kaehler, E ., Virtual Memory for an Object Oriented Language, Byt e
August 198 1

[13] Loehovsky, F .H ., Tsichritizis, D .C ., Hierarchical Databas e
Management Systems, ACM Computing Surveys, Vol 8, No 1, March 1978 ,
105-12 3

[14] Morrison, R ., Davie, A.J .T ., Recursive Descent Compiling, Elli s
Harwood Ltd Chichester 198 1

[15] Morrison, R ., S-algol Reference Manual, St Andrews University, 1979

--31- -

[16] Schmidt, J .W., Some high level language constructs for data of typ e
relation, Transactions on Database Systems, Vol 2, no 3, September 197 7
pages 247-281 .

[17] Shipman, D .W ., The Functional Data Model and the Data Languag e
Daplex, ACM Transactions on Database Systems, Vol 6, No 1, March 1981 ,
140-73

[18] Smith, J .M., Fox, S ., Landers, T ., Reference Manual for ADAPLEX ,
Computer Corporation of America, January 198 1

[19] Taylor,R .C . and Frank,R .L ., CODASYL database management systems .
ACM Computing Surveys,8(i), March 1976, 67-103 .

[20] Wasserman, A .I ., The data management facilities of PLAIN . Medical
Information Science, University of California, San Francisco, 1978 .

[21] Whitfield, C ., Robertson, P .,The MOUSES reference manual, Moray
House College, Edinburgh, 1979 .

[22] Wijngaarden, A . van, et al, Revised Report on Algorithmic Languag e
ALGOL 68 . Supplement to ALGOL BULLETIN 36, March 1974 .
Aekr iowledgj ent s

We aknowledge the assistance of Richard Marshall in constructing th e
PS-algol system, the help of Austin Tate and Lee Smith with th e
presentation of this paper and British Science Research Council for
funding our work on grant A865419

