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THE KDF9 AND BENCHMARKING 
by Bill Findlay

1:BACKGROUND

This paper is one of a series on aspects of the English Electric (EE) KDF9 computer. For the nearest we have to a KDF9
reference manual,  see [ICL69].  An overview of the KDF9, with a  basic description of  both the hardware and the
software, can be found in [FindlayEE]. I present a fuller account of the KDF9 hardware in a second companion paper
[FindlayHW], and of its software—both operating systems and compilers—in a third [FindlaySW]. The purpose of the
present work is rather different. Here I focus on the rôle KDF9 played in the development of benchmarking, the attempt
to measure and compare the performance of hardware and software platforms objectively, repeatably and accurately
(which is to say, scientifically). 

EE undertook performance measurements on their prototype KDF9, in order to provide support for a tender [Fell63].
Some small programs, implementing algorithms of particular interest to the prospective customer, were timed using the
hardware clock [FindlayHW, §4.1], as delivered by Director’s’s ‘OUT 3’ system call (Director is the operating system).
In a few cases this was supplemented by direct electronic observation using an oscilloscope. A ‘theoretical’ time for
each example was calculated (not easy, see [FindlayHW, §9]) for comparison with observation.

The results indicated that the KDF9 ran about 5%-15% slower than the theoretical time. This was attributed to extra
time taken: in aligning and standardizing floating point, in shifting fixed point values, in overhead from instructions
needed to set up each test correctly, and in extra instruction fetches due to examples not starting in first syllable of a
word.  Where  an  oscilloscope  result  was  available,  its  µs-accurate  time tended  to  lie  between  the  theoretical  and
measured values, suggesting that Director was slightly pessimistic. The ee9 KDF9 emulator [FindlayUG] reports times
that are a little slower again. This is largely due to ignoring the internal concurrency of the KDF9 CPU, a shortcoming
that is particularly significant when there are many relatively slow FPU operations, as in the Fell tests.

Early attempts at  machine independent benchmarking were based on  ‘mixes’ of instructions thought to be typical of
particular workloads [Longbottom]. The Gibson mix was derived from observations of scientific codes. It consists of a
set of weights to be applied to the execution times of various instruction types, the result being an estimate of the mean
instruction time. The Gibson mix rate for KDF9 is 170KIPS (0.170MIPS). The Whetstone benchmark, from historical
figures, runs at 178KIPS. This indicates that, despite the simplistic basis of the technique, KDF9’s actual performance is
reasonably well represented by its mix rating.

It is interesting to compare KDF9 with other computers of its era (1962-64). In the following table, using data from
[Longbottom], the second column gives the main store cycle time, the third column is the Gibson mix rating, and the
fourth is a ‘figure of merit’ for the architecture, defined as the product of the store cycle time and the Gibson rating.
Consider the Burroughs 5000 and the KDF9. They have the same main store cycle time (6µs) and word length (48 bits),
but KDF9 is nearly three times faster.

To put it slightly differently, KDF9 needs about one store cycle time on average for each mix ‘instruction’ executed,
while the B5000 needs nearly three. I conjecture that this is due to the B5000 keeping its expression evaluation stack
and its return address stack in main store, whereas the KDF9 has special stacks for these purposes, the ‘nesting stores’,
implemented with 1.5µs cores and in a way that overlaps much of their access times [FindlayHW, §4.2].

KDF9 6µs 170 KIPS 1020 0.98 80 KWIPS 2.125

ATLAS 1 2µs 350 KIPS 700 1.43 170 KWIPS 2.05

Burroughs B5500 4µs 144 KIPS 576 1.72 64 KWIPS 2.25

CDC 3600 1.5µs 337 KIPS 506 1.96

Burroughs B5000 6µs 60 KIPS 360 2.78

System Store cycle
time

Gibson Mix 
rate

Figure 
of merit

Store cycles
per G.M. order

Whetstone
(FORTRAN)

G.M. KIPS 
per KWIPS

One  of  the  ways  in  which  KDF9  ALGOL  60  left  an  important  legacy  was  in  the  advent  of  application  based
performance measurement. This paper describes two seminal projects: the benchmark based on the Whetstone ALGOL
system, and the Ackermann function probe of the efficiency of procedure calling.

We have FORTRAN Whetstone results for only KDF9 and the B5500 (the Atlas figure is for ALGOL 60 [C75]), but
they do serve to confirm the plausibility of the remarks above. KDF9 EGDON FORTRAN achieves 80K Whetstone
Instructions/second (KWIPS) and B5500 FORTRAN gets 64KWIPS, roughly in proportion to their Gibson mix rates,
with the KDF9 doing slightly better, pro rata, at running the ‘high-level’ language!

But that does not tell the whole story. When it comes to an ALGOL version of the Whetstone Benchmark, the B5500 is
50% faster than the KDF9; largely, I conjecture, thanks to descriptor mechanisms that efficiently implement ALGOL
constructs such as dynamic array access, ‘call by name’, and procedure calls. These are architectural features that would
make the B5500 relatively slow in FORTRAN, which gets no benefit from them. FORTRAN was designed to work
well with simple—IBM 704-style—indexed addressing, which KDF9 does superbly. 

The paper  Basic statement times for ALGOL 60 [Wichmann73b] gives the following.  With KDF9 EGDON ALGOL,
e1[1,1,1]:=1 takes 247µs, and with Kidsgrove ALGOL, p3(x,y,z) takes 136µs. B5500 ALGOL takes 66.6µs
and 53µs respectively. That the KDF9 nevertheless outclasses the B5500 on the full FORTRAN benchmark, which is
perhaps  more representative  of  workloads outside the ALGOL niche,  is  testament  to the general  excellence  of  its
architecture.
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2: THE WHETSTONE BENCHMARK

ALGOL 60 [Naur60], the first ‘structured’ language, and the common ancestor of many of the most popular languages
of the present  day,  had relatively early implementations on the KDF9 [FindlaySW, §2.3].  In  fact,  KDF9 has two
ALGOL compilers that run under the Time Sharing Director: the Kidsgrove (‘KAlgol’) and Whetstone (‘WAlgol’)
systems, which are named after the EE installations where they were written. The EGDON system also eventually
gained a third ALGOL 60 compiler. The Whetstone and Kidsgrove compilers accept a common variant of the ALGOL
60 standard, defined to remove ambiguities and other defects of the language described in the Revised Report. 

WAlgol [RR64] consists of a compiler (the ‘Translator’) that generates code for an ALGOL-oriented Whetstone virtual
machine instruction (WI) set, and a WI interpreter (the ‘Controller’). It is focussed on fast compilation and on error
checking execution. The KAlgol compiler [HH63], by contrast, generates native KDF9 code focussed on fast execution
and  has  global  optimization  features.  The  complementary  pair  anticipated  IBM’s  PL/I  ‘checkout’  and  optimizing
compilers by nearly a decade.

A benefit of using an interpreter is that it is relatively easy to augment it with code that produces useful data about the
programs it runs. This can be used for debugging, for source code improvement, and for insight into program behaviour.
The ee9 KDF9 emulator offers such facilities for native KDF9 code, including execution traces, histograms of opcode
usage, and execution frequency profiles. It is not hard to instrument the Whetstone Controller to gather similar statistical
information about the run time characteristics of ALGOL programs.

Brian Wichmann carried out systematic studies of this kind. He began in 1967 by measuring the times taken by a
selection of typical  ALGOL source statements,  and was able to compare the KDF9 results (see Appendix 1) with
measurements  made  on  a  small  number  of  other  architectures  [Wichmann71].  The  publication  of  these  figures
encouraged others to do likewise, and eventually a wide range of systems had been investigated.

It is clear from these statement times that ALGOL performance tended to be at least as much a matter of compiler
competence as of computer architecture. The times for particular statements, using different compilers on the same
computer model, could vary widely—often by a factor of 2 and in one case by a factor of 30. This is at least partly
because computer manufacturers (especially American manufacturers) did not see ALGOL as much of a selling point,
and  devoted  their  resources  to  competitive  implementations  of  FORTRAN,  a  more  widely  available  and  more
performance oriented language. This cast doubt on the suitability of ALGOL for hardware speed measurement.

These figures would have allowed for the creation of an ‘ALGOL mix’—analogous to the Gibson mix—had their
‘weights’—their relative execution frequencies—been known. The second part of the work was therefore to determine
these  weights.  This  was done in  a  comprehensive  survey  of  the static  and  dynamic characteristics  of  about  1000
Whetstone  ALGOL programs that  were  submitted  for  running  as  part  of  the  everyday  workloads  at  the National
Physical  Laboratory  and  at  Oxford  University  [Wichmann73b].  The result  was  a record  of  about  155 million WI
executions. Because of the close semantic relationship between ALGOL source code and the Whetstone virtual machine
instruction set, it was then possible to work back to weightings for the individual statements.

These studies used the Atlas as a point of reference, but it was realized that using the speed of the obsolescent Atlas as a
standard was not a satisfactory basis for future work. Few programmers had the extensive personal experience of Atlas
that would afford an intuitive grasp of its speed, fewer still would do so in future, and no one did so outside the UK. A
less parochial, machine independent measure was wanted. The WI database made that possible.

The UK government’s Central Computer Agency, a body concerned with the purchase of computers by the state, had a
vital interest in obtaining value for money, and therefore in validating the performance claims of manufacturers. Harold
Curnow, working at the CCA, collaborated with Wichmann in constructing an ALGOL program that reproduces the
distribution of WI executions in the database [CW76, Longbottom]. Its authors referred to it simply as ‘a synthetic
benchmark’, but the world at large took it up as ‘the Whetstone Benchmark’. A typical run approximates the execution
of  1 million WI.  Speeds were  initially  measured  in  kiloWIs per  Second (KWIPS),  and  later  in  MWIPS.  Modern
computers achieve gigaWIPS, but KAlgol got only 62KWIPS, and WAlgol itself crawled along at a mere 2.4KWIPS.

Unofficial FORTRAN translations of the benchmark were soon doing the rounds, but a problem—not so apparent in the
ALGOL version—became evident. Some FORTRAN compilers were capable of invalidating the whole basis of the test
by  performing  optimizations  that  reduced  the  effective  number  of  WI  executed.  A  revised  official  version,  in
FORTRAN, and designed to defeat over-enthusiastic optimization, was therefore produced. In this form it provided a
simple and easily deployed tool for estimating computer performance in scientific applications. Its uptake was rapid and
it served for many years to provide a degree of objectivity in performance measurement, its benchmark results being
quoted in advertisements that touted the superior speed of new computers.

An enhancement was later produced by Roy Longbottom that additionally gave ratings in Millions of Instructions Per
Second (MIPS) and Millions of Floating-point Operations Per Second (MFLOPS). MIPS were scaled to a speed relative
to the DEC VAX 11/780, which was deemed (somewhat generously) to be capable of 1MIPS. This too became a widely
used metric, known as a ‘VAX Unit of Power’ or ‘VUP’— the VAX range, unlike Atlas, being ubiquitous.

At the National Physical Laboratory a large collection of performance indicators for many then-current systems was
collated by Wichmann and Nott. Unfortunately it was deemed to be commercially sensitive by the Director of NPL and
was  suppressed,  all  printed  copies  being  trashed.  Brian  Wichmann  undertook  no  further  work  on  benchmarking.
Presciently, he preserved the data and it has recently been made available online [NW77]. Note that the measurements
listed there are stated as hardware instructions per millisecond, not in terms of WIPS.

The success of the Whetstone Benchmark was ultimately its downfall. As the sophistication of compilers increased it
became easy for them to recognise specific statements of the program and put extra effort into compiling them well. It is
rumoured that one system, instead of compiling individual statements, substituted a complete, hand-crafted machine
code program designed to show that computer in the best possible light!

These and other  problems led ultimately to the Whetstone Benchmark being superseded.  The  System Performance
Evaluation  Cooperative,  latterly  the  Standard  Performance  Evaluation  Corporation  (SPEC), developed  a  series  of
benchmarks [www.spec.org] which are based on non-trivial real-world applications and are not limited to a narrow
view of ‘scientific’ computing. Even the SPEC benchmarks are not immune to ‘benchmarketing’ shenanigans, and so
SPEC identifies a set of good practices that must be followed when applying them.
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3: THE ACKERMANN FUNCTION BENCHMARK

The measurements that prompted the creation of the Whetstone Benchmark pointed up the (in)efficiency of procedure
calls as being both highly variable and highly characteristic of the systems investigated. It therefore seemed worthwhile
to Wichmann to look into this matter more closely.

A recursive procedure makes it easy to invoke a large number of more or less similar calls—for ease of timing—and
stresses the allocation of stack space—a particular weakness in many implementations.

Others  had  been  thinking  along  similar  lines.  A  function  that  meets  these  requirements  is  a  common variant  of
Ackermann’s function [Sundblad71]:

A(m, n) :: if m = 0 then n+1 else if n = 0 then A(m-1, 1) else A(m-1, A(m, n-1))

Evaluated as seen, when m = 3, this invokes (128×4n - 120×2n + 9×n + 37) / 3 function calls, taking the maximum depth

of the stack to 2n + 3 – 4 activation records and yielding the result  2n + 3 – 3. This is is the most time- and space-

consuming case that it is feasible to compute: A(3, 4) is 125 but A(4, 3) is 2p – 3, with p = 265536. 

In ALGOL 60 the function looks like this:

integer procedure Ackermann(m, n);

   value   m, n;
   integer m, n;
if m = 0 then
   Ackermann := n + 1
else if n = 0 then
   Ackermann := Ackermann(m - 1, 1)
else

   Ackermann := Ackermann(m - 1, Ackermann(m, n – 1));

Removing “value m, n;” would have a catastrophic effect. With that declaration the formal parameters m and n are,
in effect, local variables initialized to the actual parameter values given in the call. Without it, i.e. specifying m and n as
‘name’ parameters (closures), they are re-evaluated on every access, causing a hyper-exponential increase in the already
enormous number of calls executed.

Note the opportunities for tail recursion elimination in the n = 0 case, and in the outer call of the general case. We can
take advantage of it thus:

integer procedure Ackermann(m, n);

   value   m, n;
   integer m, n;
HEAD:
   if m = 0 then
      Ackermann := n + 1
   else if n = 0 then
      begin
      n := 1;
      m := m - 1;
      goto HEAD
      end
   else
      begin
               n := Ackermann(m, n - 1);
      m := m - 1;
      goto HEAD

      end;

Inspired  by  Sundblad’s  paper,  Wichmann  obtained  and  analysed  measurements  of  about  25  architecture/language
combinations,  with  a  particular  view to  ‘System Implementation  Languages’—subjects  of  great  interest  before  C
achieved its later dominance. Looking at absolute speed, number of instructions executed, and per-invocation stack
space consumed, he concluded [Wichmann76]:

The results show a very wide variation in performance even for languages containing no inherent complications.
Additional instructions required in ALGOL 68, PL/I and PASCAL to check for stack overflow are quite insignificant
compared to the hundreds of extra instructions executed by the inefficient implementations of ALGOL 60. There is no
doubt that ‘System Implementation Languages’ give very much better results on this test without reducing the facilities
to the programmer. [...]

Does  Ackermann’s  function  represent  a  good  test  for  a  system  implementation  language?  Unfortunately  no
statistical information is available to the author on the use of procedures in operating systems and compilers etc. Hence
it is not known if, for instance, two parameters is typical. […] The computational part of testing for the equality with
zero, jumping and adding or subtracting one seems very typical of non-numeric work. 
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The response to this paper was an enthusiastic inflow of new measurements [Wichmann77] that more than doubled the
sample size, allowing pertinent comparisons to be made between the same language on different architectures,  and
between  different  languages  on  the  same  architecture.  Abandoning  CPU time  and  stack  space  as  useful  criteria,
Wichmann instead focussed on the number of instructions executed per call, and the function’s code size, in bytes. In
regard to the XALGOL compiler on the Burroughs B6700 he noted:  No improvement to the code generated seems
possible. Other systems did not fare so well.

Wichmann returned to the subject  for  the last  time [Wichmann82],  focussing on architectural  features  intended to
facilitate procedure calling. He remarked:

In general terms, it appears that both languages and machines are getting better at subroutine linkage. The VAX is
better than the DEC-10 and the ICL 2900 better than the ICL 1900. 

It would be good to think that at least some of this improvement was due to the light he shone on the topic himself. Here
are some figures from comparatively early language systems (estimated numbers indicated by an asterisk):

IBM System/360 Language & Compiler orders/call

PL/I OPT v1.2.2 61*

ALGOL W Stanford Mk2 74*

ALGOL 60 Delft    142*

PL/I F v5.4    212*

SIMULA NCC v5.01    230*

ALGOL 60 IBM-F    820*

By 1982 Edinburgh University’s ALGOL 60 compiler for the 360 architecture achieved 21 instructions per call.

[Wichmann82]  considered,  for  the first  time,  an Ada version of the program as well  as  one in BASIC—from the
sublime to the ridiculous! Ada compared well with C (and still does):

DEC VAX Language & Compiler orders/call bytes

York Ada global function 8 52

C-opt 9 56

C     10 80

York Ada nested function     11 64

Considering just ALGOL 60 shows the enormous discrepancies between some manufacturers’  compilers and those
developed independently:

ALGOL 60, by architecture orders/call bytes

ALGOL 60 RMCS, VAX 12.5 69

ALGOL 60 XALGOL, B6700 16.0 57

ALGOL 60 RMCS, PE 3200 17.5 94

ALGOL 60 XALGOL-5500 19.5 57

ALGOL 60 ICL,2900 19.5 84

ALGOL 60 Edinburgh, 360 21.0 128

ALGOL 60 Manchester, 1900 33.5 N/A

ALGOL 60 ICL XALV, 1900    120 * N/A

ALGOL 60 IBM-Delft, 360    142 * N/A

ALGOL 60 IBM-F, 360    820 * N/A

What of KDF9, our point of departure? With the recent resurrection of the Kidsgrove ALGOL compiler, it is possible to
make some interesting comparisons. Running under ee9, we get the following measurements for  A(3, 7), including
now the results from paskal [FindlayPC], the new Pascal cross-compiler for the KDF9:

KDF9 Language orders/call µs/call

ALGOL 60, Whetstone, fully recursive 1981 10900

Whetstone, tail recursions eliminated 1562 8746

ALGOL 60, Kidsgrove, fully recursive     83 (75)    474 (435)

Kidsgrove, tail recursions eliminated 54 (43) 302 (254)

Pascal, paskal fully recursive 29 189

paskal, tail recursions eliminated 20 130
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The Kidsgrove figures in parentheses were obtained by applying peephole optimizations such as those described in
[HW71], which are similar to those performed for Pascal. It is extraordinary that the interpretive Whetstone system
takes only a small multiple (2.4) of the number of instructions used by object code of the somewhat later, native code,
IBM F-level compiler.

Modern computers are much too fast for a single run of  A(3, 7) to yield useful information. The following table
shows results from  A(3, 10), run 100 times in succession to get an accurate measurement, on a 2017 Apple iMac. I
measured versions in Ada 2012 and C, respectively the best and the worst of the present-day descendants of ALGOL.
Note that these times are given in nanoseconds, not microseconds. 

Present-day Language on Intel x86_64 ns/call

Ada 2012   0.835

C   0.912

Usercode, real ee9 time 85

Ada is still 10% faster than C, and ee9—which is written in Ada 2012—runs at least some KDF9 code over 800 times
faster than the KDF9 hardware did!

The Ada and C times are for object programs produced by the 2017 releases of the GNU compilers at optimization level
-O2. With -O3 optimization they run, respectively, in 0.418ns and 0.585ns per call—Ada now being 40% faster! These
speedier runs are achieved by loop-unrolling the tail recursions to a quite extraordinary degree, so that the object code is
almost unrecognizable. While this is a legitimate tactic for a modern compiler aiming at the best possible performance,
and having gigabytes to play with, it takes such results out of direct comparability with historical figures.

The Usercode routine reported on above is my own go at an efficient implementation, using every trick in the book:

P1; (To compute A(C7, C8), with m in C7, n in C8 and result returned in C8);
99;
   J1C7NZ;           (to 1 if m not equal to 0);
      I8; =+C8;      (n := n + 1);
   EXIT 1;           (return);
*1;
   J2C8NZ;           (to 2 if n not equal to 0);
      I8; =C8;       (n := 1);
      DC7;           (m := m - 1);
   J99;              (tail recursion for A(C7 => m-1, C8 => 1));
*2;
      LINK; =M0M2;   (push return address);
      C7; =M0M2QN;   (push m);
      DC8;           (n := n - 1);
   JSP1;             (full recursion for A(C7 => m, C8 => n-1));
      M1M2; =C7;     (m := top of stack);
      DC7;           (m := m - 1);
      M-I2;          (pop stack);
      M0M2; =LINK;   (return address := top of stack);
   J99;              (tail recursion for A(C7 => m-1, C8 => A(m, n-1)) );

It uses 9.5 orders and 70 KDF9 µs per call. A different routine, now lost, was used by Wichmann in the cited papers.

4: KIDSGROVE AND WHETSTONE ALGOL 60 STATEMENT TIMES

Historically, timing on the KDF9 was done using the OUT 3 system call, which depended on:

(a) the resolution of the hardware real-time clock, i.e. 32µs

(b) the accuracy with which Director accounted for its own time consumed in servicing the  OUT interrupt

(c) time ‘stolen’ from the CPU by concurrent DMA transfers.

Variation due to (c) is unknowable, as it would depend on which peripherals were active during the run. A paper tape
reader consumes 1000 core cycles per second, a line printer perhaps 2000 cycles/s, and a magnetic tape at most 5000
cycles/s. On a very busy machine with two TRs, an LP, and 4 MTs working flat out, I/O would consume 15% of the
available store cycles. As KDF9 executed about 1 instruction per store cycle on average, this could slow the CPU by up
to 15%, a significant effect on attempts at precision timing. I do not know whether the tests were historically run on an
otherwise empty machine, or if they could have been subjected to timing variations of this order. I assume here that they
were run alone, which conforms with Brian Wichmann’s recollection [personal communication]. 

Considerable effort was put into (b) by the authors of Director, so I suspect that jitter in accessing the clock is the main
issue. Therefore we cannot expect a hardware clock reading to be accurate to better than 32µs. This means that, unless
there is a consistent pattern, a difference of order 64µs between two historic timings of a statement is probably not
significant.  ee9 times are accumulated in steps of 1µs, and are completely reproducible,  although they may not be
historically faithful. ee9 does not attempt to do cycle-accurate microcode emulation, but it does try to record a correct
per-instruction time, based on EE documentation. It falls short of a complete simulation of the hardware by ignoring
internal CPU concurrency, which can make the emulated KDF9 run slightly slower (in emulated time!) than the original
hardware. This effect is seldom more than 2% or so.
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When timing machine code it is necessary to take into account instruction fetches. KDF9’s Main Control brings a word
of 6 order syllables from core store to an empty Instruction Word Buffer (IWB) when all the instructions within it have
been executed (this simplifies the matter considerably, see [FindlayHW, §7]). In ee9 this time is approximated as either
7µs or 8µs per pair of fetched order words, as ee9 loads both IWBs on a successful jump and when they both empty.
This is not authentic, but it is reasonable. Fetching a word took at least 6µs—and could take as long as 12µs if the core
store was busy when the fetch was initiated—but that time was at least partly overlapped with the execution of orders in
the alternate IWB. The best argument for this fudge factor in ee9 is that the Whetstone Benchmark records the same
virtual CPU time, to the second, as it did in real CPU time on the hardware. A further complication is that the number of
instruction fetches needed to execute a sequence of orders is dependent on the starting position of its first instruction. If
that does not begin in syllable 0, one more than the optimum number of instruction word fetches may be necessary.
Bearing these points in mind, the following times for Kidsgrove ALGOL’s object code were measured using twelve
consecutive repetitions of each ALGOL statement,  so that  instruction word fetches  were distributed evenly among
them, and so that variation due to the starting syllable position was scaled down by a factor of 12.

These  complications  do  not  much apply  to  Whetstone  ALGOL timings,  in  which  such  sources  of  variability  are
insignificant by comparison with the time required to interpret WVMIs.

OVERVIEW

These abbreviations are useful: HI: KDF9 Hardware Instructions; WI: Whetstone (virtual machine) Instructions.

The time that passes between calls of OUT 3, with an intervening null ALGOL statement, was obtained and subtracted
from all  other  measured  time differences  to  obtain  the  time consumed by the  statements  under  examination.  ee9
provides hardware instruction counts similarly—a facility not available on the real KDF9.

Using the Whetstone ALGOL system:

The timing overhead is  3.791ms

A null-body for loop takes, per iteration 3.685ms 651HI  5.66µs/HI

A null-body for loop of 0 iterations takes 5.229ms 946HI 5.53µs/HI

A null-body while loop takes, per iteration 3.992ms 709HI 5.63µs/HI

A null-body while loop of 0 iterations takes 5.872ms 1066HI 5.51µs/HI

The Whetstone Benchmark executes 74670550HI, averaging 5.6µs/HI and 75HI/WI, achieving just 2.4KWIPS. 

Using the Kidsgrove ALGOL system, which generates native machine code:

The timing overhead is 38(35)µs 5(5)HI 7.60(7.00)µs/HI

A null-body for loop takes, per iteration 114(107)µs 18(18)HI  6.33(5.94)µs/HI

A null-body for loop of 0 iterations takes 104(86)µs 18(17)HI 5.78(5.06)µs/HI

A null-body while loop takes, per iteration 71(51)µs 13(9)HI 5.46(5.67)µs/HI

A null-body while loop of 0 iterations takes 73(63)µs 15(12)HI 4.87(5.25)µs/HI

The Kidsgrove figures in parentheses are obtained by applying, with an additional pass, peephole optimizations such as
those identified in the paper  Improving the Usercode Generated by the Kidsgrove ALGOL Compiler [HW71]. These
optimizations were used for the Whetstone Benchmark test, but not for the tests enumerated in the following. 

With a Kidsgrove compilation, the Whetstone Benchmark executes 3452492HI, averaging 6.05µs/HI and 3.45HI/WI
according to ee9, and achieving 20.88µs/WI for 47.9KWIPS—somewhat slower than is given in [Longbottom], which
is flagged as being for a (globally) optimized compilation. This may be because the published figure is for a run without
overflow checking and tracing, which is enabled by default in the resurrected compiler.

Using the new paskal Pascal cross-compiler, which generates Usercode, KDF9 achieves these results:

The timing overhead is 34µs 4HI 8.5µs/HI

A null-body for loop takes, per iteration 44µs 8HI  5.5µs/HI

A null-body for loop of 0 iterations takes 12µs 1HI 12µs/HI

A null-body while loop takes, per iteration 47µs 9HI 5.3µs/HI

A null-body while loop of 0 iterations takes 24µs 3HI 8µs/HI

It is clear that having a tractable language to compile, rather than ALGOL 60, makes a big difference.

The paper  Basic statement times for ALGOL 60 [Wichmann73b] (BSTA) gives results that are generally somewhat
faster than those in the earlier work  Timing of ALGOL [Wichmann67] (TOA), and are generally closer to the times
measured with ee9. In particular, BSTA gives the Whetstone null  while loop time as 3.93ms—within 2% of the  ee9
figure—and reports the Kidsgrove for loop iteration time as 129µs.

It is plausible that these later measurements, reported in BSTA, were made with a version of the Controller that had
been somewhat improved over that in TOA, shortening the WI interpretation cycle by about 15HI. There are also a few
notable differences between ee9’s times and those in BSTA. In these cases I suspect that there is some significant, but
unknown, difference in the versions of the Controller being measured.

TOA gives the null for loop iteration time of Whetstone as 10.4ms. This is a big anomaly, and difficult to explain. It is
out of line with other individual statement times, which match within a few percent. I suspect a typo, especially as the
next line of the document gives exactly the same figure for the total loop time with 1 iteration. I cannot see either entry
as being correct. Because of these problems with TOA, I have decided not to include its results in this analysis.
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7
MEASUREMENT AND ANALYSIS

The number of WI per ALGOL statement is taken from [Wichmann70a]. The measured cases are displayed in this
format:

<statement>

x {ee9 ms}  y {BSTA ms} n WI, m HI: (x/n) µs/WI, m/n HI/WI; Kµ/KI; Pµ/PI; 

where  Kµ is  ee9’s logged Kidsgrove ALGOL time in µs, including instruction fetch overhead,  KI is the number of
machine code instructions executed by the Kidsgrove object code, Pµ is ee9’s KDF9 Pascal (paskal) time in µs, and
PI is the number of machine code instructions executed by the Pascal object code. 

x := 1.0

1.30 0.99 3WI, 228HI: 433µs/WI, 76HI/WI; 16µs/2HI; 16µs/2HI

x := 1

1.34 1.03 3WI, 228HI: 446µs/WI, 76HI/WI; 48µs/6HI; 16µs/2HI

x := y

1.38 1.08 3WI, 242HI: 460µs/WI, 81HI/WI; 16µs/2HI; 16µs/2HI

x := y + z

2.02 1.75 4WI, 360HI: 505µs/WI, 90HI/WI; 33µs/4HI; 32µs/4HI

x := y × z

2.03 1.76 4WI, 361HI: 508µs/WI, 90HI/WI; 40µs/4HI; 40µs/4HI

x := y / z

2.02 1.71 4WI, 352HI: 505µs/WI, 88HI/WI; 61µs/4HI; 61µs/4HI

k := 1

1.31 1.00 3WI, 244HI: 437µs/WI, 81HI/WI; 14µs/2HI; 16µs/4HI

k := 1.0

1.40 1.09 3WI, 244HI: 467µs/WI, 81HI/WI; 83µs/16HI; 16µs/4HI

k := l + m

2.07  1.80 4WI, 369HI: 518µs/WI, 92HI/WI; 26µs/4HI; 26µs/4HI

k := l × m

2.10 1.81 4WI, 371HI: 525µs/WI, 93HI/WI; 42µs/5HI; 42µs/5HI

k := l ÷ m

2.06 1.78 4WI, 365HI: 515µs/WI, 91HI/WI; 111µs/15HI; 64µs/5HI

k := l

1.39 1.10 3WI, 244HI: 463µs/WI, 81HI/WI; 16µs/2HI; 16µs/2HI

x := l

1.42 1.12 3WI, 244HI: 473µs/WI, 81HI/WI; 50µs/6HI; 29µs/4HI

l := y

1.48 1.19 3WI, 244HI: 493µs/WI, 81HI/WI; 83µs/16HI; 85µs/14HI

From this we see that paskal converts constant operands between integer and real at compile time, unlike Kidsgrove.
paskal also generates inline code for converting integer expressions to real, whereas Kidsgrove calls a subroutine. 

The better performance of Pascal for integer division rests on its subrange types. In the Pascal version of the program
the variables are declared to be non-negative, allowing the compiler to use a simple hardware division order. That order
yields the floor of a negative quotient, but both languages demand truncation toward zero, so Kidsgrove invokes a
subroutine to correct the hardware result for ALGOL, and paskal does likewise for potentially negative integers.

x := y  ￪ 2

2.16 1.89 4WI, 379HI: 540µs/WI, 95HI/WI; 206µs/37HI; 34µs/4HI

x := y  ￪ 3

2.18 1.92 (BSTA actually has 11920!) 4WI, 384HI: 545µs/WI, 96HI/WI; 233µs/43HI; 61µs/6HI

x := y  ￪ z

2.45 2.55 4WI, 454HI: 613µs/WI, 114HI/WI; 720µs/108HI; 720µs/108HI

Kidsgrove uses different subroutines for reals raised to integer powers and reals raised to real powers.

paskal generates inline code for manifest squares, cubes, and fourth powers. It also uses a specific subroutine for
integer powers of integers. That is not possible in ALGOL 60, because of an implication in the language definition that
the type of a power depends on the value of the exponent. In practice, implementers have chosen to deliver a real.
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e1[1] := 1

2.07 1.78 5WI, 356HI: 414µs/WI, 71HI/WI; 57µs/10HI; 16µs/4HI

e2[1,1] := 1

2.42 2.16 6WI, 415HI: 403µs/WI, 69HI/WI; 172µs/26HI; 16µs/4HI

e3[1,1,1] := 1

2.80 2.51 7WI, 474HI: 400µs/WI, 68HI/WI; 331µs/48HI; 16µs/4HI

The Kidsgrove object code for  e2[1,1] and for  e3[1,1,1] invokes a subroutine to calculate the address of the
array element, but the address calculation for e1[1] is done in-line. There is a specific subroutine for 2-dimensional
arrays and a generic subroutine for arrays of greater dimensionality. paskal calculates the address of an element with
constant subscripts at compile time, so these array elements have the same performance as simple variables.

begin real a end

1.91  1.67  4WI, 357HI: 478µs/WI, 89HI/WI; 24µs/4HI

begin array a[1:1] end

3.24 3.13 7WI, 599HI: 463µs/WI, 86HI/WI; 635µs/103HI
 

begin array a[1:1, 1:1] end

3.90 3.76 9WI, 708HI: 433µs/WI, 79HI/WI; 782µs/126HI

begin array a[1:1, 1:1, 1:1] end

4.55 4.36 11WI, 811HI: 414µs/WI, 74HI/WI; 933µs/149HI

These blocks have no analogue in Pascal.

begin goto abcd; abcd: end

1.27  0.94 3WI, 221HI: 420µs/WI, 77HI/WI; 22µs/3HI; 15µs/1HI
 

begin switch ss := pq; goto ss[1]; pq: end

5.71 5.61 16WI, 1039HI: 373µs/WI, 65HI/WI; 312µs/49HI

The Whetstone code for these goto statements includes an execution-trace WI, so the jump is effected by just 2WI.
The Kidsgrove code for goto abcd includes 2 execution-trace HIs, so the jump is effected by a single HI.

p0

2.27 2.01 5WI, 417HI: 450µs/WI, 83HI/WI; 51µs/10HI;  20µs/2HI

p1(x)

3.49 3.55 8WI, 641HI: 434µs/WI, 80HI/WI; 67µs/12HI; 73µs/11HI

p2(x,y)

4.44 4.57 10WI, 812HI: 442µs/WI, 81HI/WI; 85µs/14HI; 97µs/14HI

p3(x,y,z)

5.39 5.72 12WI, 984HI: 447µs/WI, 82HI/WI; 101µs/16HI; 113µs/16HI

The Whetstone code for these calls of null-bodied procedures includes several execution-trace WIs: specifically 3WI
per call, plus 1WI per parameter. For example, p0 is actually invoked by just 2WI, and there is a 3WI tracing overhead.
This overhead was optional, but is included in the historical figures and in the present ee9 measurements.

It is of some interest to dig a little deeper into the differences between ALGOL and Pascal. The first point is that
Kidsgrove is a multi-pass, globally optimising compiler, whereas paskal is a single-pass compiler that generates code
‘on the fly’. So Kidsgrove generates the code for the bodies of these procedures after having made a deep analysis of
their characteristics, but paskal has irrevocably converted them to Usercode before its own analysis is complete.

This means that paskal cannot specialise a procedure body as Kidsgrove does, but it can significantly specialise the
entry/exit  code—which  is  generated  at  the end  of  the body—by omitting components  that  support  operations  not
present in the body. Specifically,  paskal determines whether a procedure: is a leaf (i.e. makes no calls itself), is a
function, accesses non-local variables other than globals, has parameters, or has local variables. p0, p1, p2 and p3 are
all non-function leaf procedures, do not access non-local variables, and do not declare local variables. Moreover  p0
does not have parameters. This lets paskal reduce its entry/exit protocol to the absolute minimum: a call instruction
and an exit instruction. For the other procedures, paskal must assume that their bodies require a stack-frame pointer
and so the entry/exit protocols it creates must deal with that. Kidsgrove knows that no frame pointer is required.

Making the procedure bodies a little more realistic changes the balance.  For example, this:

integer global;
...

procedure q1(n); value n; integer n; begin integer j; j := n; global := j end;

takes 408µs/70HI with Kidsgrove, while the Pascal equivalent takes only 109µs/15HI.

The ALGOL object code for q1 is much more involved than that of Pascal, partly because it uses utility subroutines to
update a ‘display’ of pointers to the most recently active stack frames of the statically enclosing procedures. paskal
maintains a single ‘static link’ to the immediately enclosing routine. If a procedure—as here—includes no accesses to
non-locals, it avoids even that  (globals are addressed directly).
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x := sin(y)

5.18 4.72 8WI, 804HI: 645µs/WI; 1195µs/ 209HI

x := cos(y)

5.20 4.61 8WI, 804HI: 547µs/WI; 1206µs/ 212HI

x := abs(y)

4.11 4.11 8WI, 753HI: 511µs/WI; 104µs/15HI

x := exp(y)

4.40 4.70 8WI, 753HI: 550µs/WI; 442µs/71HI

x := ln(y)

4.42 4.72 8WI, 794HI: 550µs/WI; 426µs/57HI

x := sqrt(y)

4.32 4.44 8WI, 782HI: 538µs/WI; 331µs/46HI

x := arctan(y)

6.05 5.13 8WI, 987HI: 753µs/WI; 1974µs/238HI

x := sign(y)

4.17 4.13 8WI, 764HI: 507µs/WI; 146µs/20HI

x := entier(y)

4.24 4.28 8WI, 777HI: 528µs/WI; 225µs/33HI

The ALGOL standard functions in the Kidsgrove system present something of a puzzle.  sin,  cos and arctan, as
listed in BSTA, were much faster than is found with ee9, whereas the BSTA times for some other functions were much
slower. It is difficult to see how sin could have been as fast as was reported, given that its instruction count (which is
exact) implies an average execution time—according to BSTA—of only 3µs per order; or how a simple routine such as
sign could have been as slow as BSTA claims, implying an average execution time of almost 10µs per order. 

The  arctan function is unusual, clocking 6.7µs/HI with Whetstone. It makes heavy use of relatively slow KDF9
orders such as floating point arithmetic and internal subroutine calls. The other analytical functions do most of their
work with fixed point fractions, converting the result to floating point only at the end of the calculation. This effect is
seen even more clearly in the Kidsgrove arctan time, which—being free of interpretive overhead—implies 8.3µs/HI.

The  paskal runtime system uses a copy of the Kidsgrove standard functions, so its performance in these tests is
essentially the same.
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