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Introduction

A program input system for the Atlas [1] 1s described which operates in two
phases. In the primary phase 1t accepts the definition of a phrase structure
language, and in the secondary phase 1t will translate a sourece program written
in that language. The primary material consists of format definitions and phrase
definttrons describing the form (syntax) of the sentences, clauses and constituent
expressions, and assembly routines which describe their “meaning” (i.e. seman-
tics). The system is extendable and allows the user to define the meaning of new
formats in terms of existing formats as well as in terms of basic assembly 1n-
structzons (whose meaning i1s built in). Both the form of expressions and their
meaning can be defined recursively, a feature which is particularly useful, for
example, 1n dealing with algebralc formulas involving parentheses.

It is unlikely that every machine user will want to write his own autocode:
what is more likely is that he may wish to extend one of the standard languages
to include statements suited to his own problem area. To build up a reasonably
useful language from “scratch’ would take about one to three months. The
mechanism 1s explained below with reference to Mercury Autocode [2].

Phrase Definitions

N .

Phrase definitions are used to build up classes of logically similar phrases. To
each class is assigned a name, the class identifier, which may then be used in
further phrase definitions and format definitions to indicate that any phrase ot
the class in question may be substituted in its place. Class identifiers are repre-
sented by a string of characters enclosed in square brackets (e.g. INDEX
might be assigned to the class of index letters). The following, therefore, could
be the start of a formal definition of Mercury Autocode:

phrase [V] = a, b, ¢, d, e, f,g, h,u, v, w, X, y, 2z, =
phrase [V'] = a/, b/, ¢/, d, ¢/, f', g/, h', v/, v/, w/, X', y', 2
phrase ir:[}U:);E}{] = i: j: kr 1: m, n, o, p,q,rI,s, t

phrase [VARIABLE] = [V’], [V] [N}, [V] [INDEX], [V] (INDEX] [+£] [N]), [V]

Nore. The four symbols [ , space and end of line have a metasyntactical
significance in all the primary material. Appearances of these symbols in the
source material being described are denoted by [[] [] [SP] and [EOL] respectively.
(The principal input medium of Atlas is 7-hole punched paper tape prepared

on Ilexowriters.)

!
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The class [N] denotes an integer and 1t 1s a built-in class which does not re-
quire further definition. The same applies to the class [K], used below, which
deseribes a general constant.

Two features which are very often present in a phrase or source statement
are “repetitive appearance’ and ‘“‘optional appearance’ of some item. In order
to describe these two situations the qualifiers * and ? may be used and the rele-
vant formal definitions will be constructed behind the scenes. Thus:

‘Al IB*] [C] means [A] [B] [C] or [A] [B] [B] [C] or [A] [B] [B] [B] [C] ete.
Al [B?] [C] means [A] [B] [C] or [A] [C
‘Al [B*?] [Cl means [A] [C] or [A] [B] [C] or [A] [B] [B] [C] ete.,

where only [A], [B], and [C] require formal definitions.
The general arithmetic expression in Mercury Autocode could now be defined
as toliows:

phrase [Q] = [VARIABLE], [K], INDEX] Xq, 3.0, 1
phrase [TERM] = [Q*] [DIVISOR?] 2xu/3
phrase [DIVISOR] = / [Q] /n
phrase [4=] = -+, — —
phrase f TERM] = [+] [TERM] - 2% /3

phrase [GENERAL ARITHMETIC] = [4-?] [TERM] [&= TERM?*?] 2uius — 3vyvy/4

When there is more than one alternative in a phrase definition the ordering
may be important as in the definition of [VARIABLE] given earlier. Here the
last category [V] logically includes the 2nd, 3rd, and 4th categories, in the sense
that [V] by itself means [V] followed by ‘“anything.” By placing it last, there-
fore, in order of preference the expression recognition routine (ERR) will only
fall back on this possibility when having recognised a [V] it fails to identify an
IN], INDEX], or (INDEX] [2=] [N]). The ordering of the categories of a
phrase definition is then the order in which the ERR attempts to identify them
when looking for a phrase of the class in question. To take a more abstract
example we must also exclude such definitions as C = A,B where A = xyyx
and B = xy. Here B includes some of the phrases represented by A, and since
the reverse also applies we cannot have C = B,A. Instead, we must write ¢ =

XyV, Xy, X —if this 1s what we mean.

Format Definition

Certain expressions are more conveniently defined in a progressive fashion.
1h1s 18 the case where the number of alternative formats is large and likely to
grow. T'wo such classes are of permanent significance, the class of source state-
ments (1dentified by [SS]) and the class of auxiliary statements (identified by
[AS]). The source statements are the “sentences’ which can appear in the source
language, while the auxiliary statements are, as their name suggests, used in
building up the meaning of the source statements from the basic assembly in-
structions. '
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The mdividual members of a format class are defined in order of preference
by formal definilions, for example:

format [bDo] = [VARIABLE] = [GENERAL ARITHMETIC! [EOL]
format [Ab] = ACC = [GENERAL ARITHMETIOC]

format [Ab] = [VARIABLE] = ACC

format [Ab] = ACC = (7] [TERM]

tormat [Anl = ACC = ACC [«4] [TERM]

i

(Both these and the phrase definitions given in the previous section will be
referred to In the subsequent examples of assembly routines.)

t'ormat classes other than [55] and [AS] need to be introduced by a special
statement, for example:

format class [IDENTIFIER]

Individual members are then presented as described above. In Mercury Auto-
code, however, no format classes other than [SS] and [AS] are needed.

Assembly RKoutines

T'o each member of a format class corresponds an assembly routine. This
describes the ‘‘meaning’ of the format, i.e. the action to be taken when 1t is
encountered in the analysis of a source program. For source statements of an
imperative nature the action 1s to plant the equivalent set of machine instruc-
tions in the target program, but in the case of declarative statements such as
x —> 10 representative of the general source statement defined by

format [SS] = [V] — [N] [EOL]

(and analogous to the dimension statement of FORTRAN) the action is to enter
certain information in a list for reference by subsequent imperative source
statements. Statements can of course be partly imperative and partly declarative
and both are ultimately expressed in terms of list compiling operafions, the only
difference being that in the former case the “list” in question 1s the target pro-
cram itself. These list compiling operations represent a group of the basic as-
sembly instructions. -

Very often the “meaning’ of a source statement in the above sense can be
expressed in terms of a sequence of other less complex source statements (or
suitably chosen auxiliary statements) where the subexpressions of the main
statement are the parameters of the assembly routines corresponding to the
“sub”’ statements. It is necessary therefore to have some means of resolving a
source statement (or any other expression) into subexpressions consistent with
its known structure. If a phrase has alternative forms it is necessary to be able
to discriminate between them, selecting appropriate courses of action. It 1s
necessary to be able to construct new expressions from the phrases of existing
expressions, and finally it is necessary to be able to compare existing phrases for
identity. These operations are performed by another group of the basic assembly
instructions, the tree operations (so called because a source statement 1s repre-
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sented in the machine by a branching structure or “tree’’). For the purpose of
“control” transters, a floating address system is employed and any substate-
ment or basic assembly instruction can be labelled, for example

10 |} — 3 unless [VARIABLE] = [V] [INDEX}

18 a basic tree operation labelled 10. The effect is to jump to an “instruction”
labelled 3 unless a specific phrase [VARIABLE] takes the form [V] [INDEX],
the 3rd principal category. If it does take this form then the phrases [V] and
INDEX] automatically become ‘“known”.

‘To summarize, an assembly routine will consist of the following types of
“Instruction’:
1. Substatements (i.e. calls for the corresponding assembly routines)
2. List compiling operations (basic assembly instructions built into the system)
3. Tree operations

Last Compiling Instructions

Associated with these instructions is a central group of 24-bit registers de-
noted by «;, a2, a3, - -+ which do not form a field (i.e. cannot be referred to
as a,). In addition to these, there is a further set of local 24-bit registers 3, , 8.,
B; , - - - associated with each assembly routine. The list compiling instructions
are concerned with selecting, processing, and comparing the information in
these registers and in the registers whose addresses are contained in them. Thus,
e.g. o = B2+ (a7 -+ 3) means set register oy equai to the contents of register
3. plus the contents of the register whose address is given by oy + 3; and —1 if
(By) > a3 + 2 1s typical of the testing variety and means ‘gump’ to the in-
struction labelled 1 if the number 1n the register whose address is in 8; is greater
than as -+ 2.

Now in general if «; (say) 1s the address of the first item of a conventional
hist (1.e. one in which consecutive items lie in consecutively addressed registers)
then (a; + n) is the (n—+1)-th 1tem in that hist. In addition to the conventional
list, however, the chain list is also of frequent use. In this list each 24-bit word
containing an item 1s accompanied (in the next register) by a further word
which contains the address of the next item (i.e. word pair). Generally the
address of the first word of such a list is recorded in the link word of the last
item, thus making the list circular. The advantage of the chain list 1s that it 1s
easy to manipulate, e.g. to insert and delete items simply means inserting or
detaching a link. However, given «o; (say) as the address of the first item of such
a list the (n+1)-th item is not now («; + n). Instead, the address of the second
item 1n fact 1s given by B8; (say) = (a; -+ 1), and the third by 8; = (8 + 1),
and so on. As a shorthand way of referring to various items in a chain, the symbol
1s used. The (n41)-th item is thus denoted by (a; @ n), and this item can
be transferred to Bs (say) by the instruction B8 = (a; ® n). Thus (a;®1) is
equivalent to (a; + 1) if o1 18 an address in a chain.
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Some fixamples of Assembly Routines

The use of substatements and the basic assembly instructions is illustrated
by the following examples.

routine [SS] = [VARIABLE] = [GENERAL ARITHMETIC] [EOL]
ACC = [GENERAL ARITHMETIC]
VARIABLE] = ACC
END

‘T'he first item 1n every assembly routine is the heading. This serves the dual
purpose of relating the routine to a particular format (of the class [SS] in this
case) and also resolving the actual format into its principal subexpressions,
[VARIABLE] and [GENERAL ARITHMETIC]. These then become “known”’,
1.e. are gvailable for use as parameters in subsequent instructions. In the above
case the two nstructions which follow are routines, using as actual parameters
the phrases [GENERAL ARITHMETIC] and [VARIABLE] which appeared
in the heading, i.e. in the particular source statement being processed.” In the
above example the principal phrases of the heading pass directly into the sub-
statements as parameters.

Ultimately however they will have to be broken down into further subex-
pressions before the information can be used, and in general a new level of
stratification is revealed in each subroutine. The next example illustrates this

point.

routine [AS] = ACC = [GENERAL ARITHMETIC]

let [GENERAL ARITHMETIC] = [+?] [TERM] [+ TERM*?]
ACC = [£?] [TERM]
— 1 unless [+ TERM*?] = [ TERM¥*]

3] — 2 unless [+ TERM?*] = [+] [TERM] [= TERM?*]
ACC = ACC [+] [TERM]
- 3

2] let [+ TERM?*] = [+] [TERM]
ACC = ACC [+] [TERM]

1] END

In this case only one parameter appears in the routine heading. So obviously
if the auxiliary statement is to be defined in terms of simpler statements this
parametric expression must be resolved into its subexpressions. The first “In-
struction’”’ of the definition does this, and the expressions appearing on the right-
hand side of the equality can then be referred to. The next “instruction’ is an
auxiliary statement which is not defined here but which is intended to plant
instructions in the target program to set the accumulator equal to the first
(possibly signed) term of the [GENERAL ARITHMETIC]. Next the nature
of the [+ TERM?*?] has to be determined as this may be either [+ TERM?*] or
»il”’. In this latter case, control is passed to the end by the conditional param-

1 If there is more than one phrase of the form [VARIABLE] (say) in a routine heading,
then we distinguish them by writing [VARIABLE/1], [VARIABLE/2], ete.
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eter-resolving instruction. If control passes sequentially to the next “struc-
tion”’, the [GENERAL ARITHMETIC| must :irw{)ﬁe 2 SUDeXPression
4 TERM™. Now in order to resolve this into a more elementary form it is nec-
essary to know how the “*7 classes are defined inside the machine. In general
A DENTIFIIER® 183 defined recursively as [IDENTIFIER] IDENTIFTERY],
T DENTIFIER] The recursive structure of {<4= TERM*| 15 thus expanded by
a cycle of Instructions which deal with each [&= TERM] in the sequence until
the last, which 1s dealt with at the point labelled 2. As in conventional program-
ming, the same name can be dynamically assigned to a sequence of different
expressions. In this example the names [&], [TERM], [+ TERM*] are all used
in this way. The auxiliary statement

ACC = ACC [=] [TERM]

vhich appears in every cycle including the last makes use of the [TERM]/s
resolved 1n each cycle: the corresponding assembly routine plants instructions
i the target program to add (or subtract) each [TERM] to (or from) the ac-
cumulator.

Another method of access to the individual [TERM]’s in the heading is illus-
irated in the next example, which is an alternative version of the same assembly
routine.

routine [AS] = ACC = [GENERAL ARITHMETICI

let [GENERAL ARITHMETIC) = [4&?] [TERM] (2= TERM*?]
ACC = [&7] [TERM]
—» 1 unless [-= TERM*?] = [+ TERM?*]
3; = number of [ THERM¥*]
B2 = 1

Z] let [&=# TERM*(3:)] = [:&] [TERM]
ACC = ACC [&] [TERM
Bs = B + 1
—» 2 1f B1 = B

11 END

The tree mstruction 81 = number of [+ TERM*| determines the number of

-+ TERM/}’s actually present in the particular phrase {4 TERM?%*| on hand.
This 1s used to count the number of cycles in the Joop which follows. In this

ioop the instruction

let [ TERM*(8:)] = [] [TERM]

if

automatically selects the B2’'th appearance of [4= TERM] and resolves this into
the expressions |[4] and [TERM]. Strictly speaking, this is not as efficient as
the proeess of recursive resolution used in the first example, since the counting
1s done from the beginning each time by counting through the branches of the
tree representing [+="TERM*|.

Yet another version of the same routine makes use of a rather different defini-

tion of [GENERAL ARITHMETIC], thus:

phrase [GENERAL ARITHMETIC] = [+?] [UNSIGNED ARITHMETIC!
phrase [UNSIGNED ARTTHMETIC] = [TERM] (] [UNSIGNED ARITHMETIC]
TERM]
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With these definitions we can associate the following assembly routines.

routing [AB] = ACC = [GENERAL ARITHMETIC]
let [GENERAL ARITHMETIC] = [4?] [UNSIGNED ARITHMETIC]
ACC = [UNSIGNED ARITHMETIC]
— 1 unlesg |47 = —
change sign of ACC
1] END |
routine [AS] = ACC = [UNBIGNED ARITHMETIC]
—» 11f [UNSIGNED ARITHMETIC] = [TERM
let [UNSIGNED ARITHMETIC] = [TERM] {] [UNSIGNED ARITHMETIC)
ACC = [UNBIGNED ARITHMETIC]
ACC = [TERM] [] ACC
END
11 ACC = [TERM]
END

In these routines the instructions

change sign of ACC
ACC = [TERM] [+] ACC
ACC = [TERM]

are auxiliary statements whose assembly routines will plant instructions to
perform the tasks indicated.

Although the above examples do not contain actual listing instructions, the
definitions of some of the substatements used will eventually lead to sequences
of basic instructions which will compile the target program. For example:

routine [AS] = change sign of ACC
(1) = Ny
(ay + 1) = N
a1 = oy + 2
END

Here «; is always the current address in the target program, that is, the next
instruction will occupy the pair of 24-bit locations «; , ay-+1. The function and
modifier digits (N;) stand in «;, and the address part (N;) in og-+1. In this
case a single instruction of the form “ACC = 5 — ACC”, where 5 = N is
the address of floating-point zero, will suffice to change the sign of the accumu-
lator. Clearly a format for any machine instruction—or a general format for
them all—could be defined and interpreted in the same way.

Some of the lower level auxiliary statements of Mercury Autocode will re-
quire a knowledge of the variable directives (1.e. source statements of the form
V] — [N]) which have gone before. One way this information might be made
available is for the assembly routine associated with [V] — [N] to record the
IN] associated with each of the [V] letters in a particular position in a conven-
tional list of 15 registers separate from the target program. The obvious way of
associating the letters of [V] with positions in the list is to use the same ordering
as in the phrase definition of [V], i.e. a in position 1, b in position 2, etc.
This, however, requires that a mechanism be provided to determine which
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alternative within a phrase definition a particular expression represents. 'he
built-mn mstruetion,

(@8] = category of [*‘any phrase identiher’]

is provided for this purpose. Thus, in the example below, whenever the [V} in
question is a ““‘d” (say) then 8; will be set to 4. It is assumed below that «; has
been reserved for the address of the directive list and that it will not be altered
by other statement definitions, but, of course, they may refer to it.
routine [SS] = [V] - [N] [EOL]
81 = category of [V]
B1 =B — 1

(a5 + 81) = [N]
END

Other Fornat Classes

We have associated assembly routines with the individual members of a
format class. The two classes [SS] and [AS] enjoy a privileged position insofar
as they also represent two forms of instruction found in an assembly routine.
This 1s expressed more formally as:

linstruction| = [built-in instruction}, [AS], [SS]

The formats of all three classes must be mutually distinet. An assembly routine
associated with a format class other than [SS] or [AS] might be headed (to
borrow an example from a commercial autocode) :

routine {logical description statement] = units = [LITERAL]

;

corresponding to a format definition:
format [logical description statement] = units = [LITERAL]

To call iIn the routine associated with the category or format of a particular
logical description statement/1] on hand (i.e. already resolved), we use the
mstruction -

call in R [logical description statement /1]

(representative of the more general form “call in Rlformat class identifier]”).

We have not associated assembly routines with the principal categories of a
phrase definition. The meanings of phrases are embodied in the routines asso-
ciated with the formats which employ them. If a phrase has several alternative
forms this 18 reflected in the relevant routines by the appearance of a multiway

switeh, e.g.,

B, = category of [Y]

— 3
or other means of discrimination. If the number of alternatives is very large and
likely to grow the routine will become unwieldy and in this case the phrase
definition 1s better treated as a format class.
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{onclusion

The foregoing examples are intended to give a general idea of how the system
1s used, but nothing has been said about how 1t is realized behind the scenes.
Some of our earlier ideas on this matter are presented in [10}, but the techniques
currently employed will have to be the subject of another paper. There is space
here for only a very briet outline of how assembly routines are used 1n the process
of translation (the secondary phase).

hach source statement is first analyzed with respect to the dictionary of
source statement formats by the expression recognition routine. This produces
o record of the phrase structure in the form of a branching structure or tree.
The assembly routine associated with the particular source statement is then
entered with this tree as working material. The routine heading picks out the
subtrees corresponding to the principal subexpressions and enters their locations
in a {ist of selected expressions (I.SE). There is a local LSE for each assembly
routine. Any subsequent tree instructions in the routine will operate with these
subtrees, e.g. resolving them into further subtrees, identifying categories, con-
structing new trees, etc. The subtrees may also be employed as parameters in
“substatement’’ instructions and it is appropriate to explain how this is effected.
Instructions involving parametric phrases (which may include basic instructions)
are recorded in the assembly routine as incomplete tree structures, the “loose
ends’’ indicating the points at which the subtrees representing the parameters
should be connected. When such an instruction is executed these loose ends are
first connected to the “tops’ (i.e. the main branches) of the frees in question,
which will be found in the LSE, since these phrases will have already been re-
solved. With the tree complete the corresponding assembly routine is called in,
and in the case of a basie instruction a built-in interpretive sequence is entered.
(Basic instructions which are free of parameters are replaced by the equivalent
machine instructions when the assembly routine Is first read into the machine.)
Control eventually returns to the original routine after passing down and up a
heirarchy of similar routines in the usual way.
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