THE

IMP MACRO LANGUAGE
MANUAL

PREFACE

The IMP Macro Scheme is currently under development as an extension to the
compile time facilities of the IMP language as defined in the ERCC manual, A

Syntactic and Semantic definition of the IMP Language (reference 1). The Scheme
was designed originally by Alan Freeman in 1969 (reference 2).

This manual is an introduction to the IMP Macro Language. It 1s designed to
help the experienced IMP programmer use the powerful facilities provided, to
extend the permitted input to the normal IMP compilers by writing macros and

submitting them together with a program written in the extended IMP language to
the IMP macro system,

The software itself is still experimental and is liable to change
significantly as it develops. It has undergone substantial testing but is in no
sense as solid as the IMP compiler, All faults with carefully documented
evidence, should be sent to the author directly.

At present the macro scheme is only implemented on EMAS and there are no
plans to make it more widely available.

The author would like to thank Anne Tweeddale who typed this manual.,

Preface

Contents

Introduction

CONTENTS

Section 1 - IMP SYNTAX

Section 2
Section

3
Section 4
Section 5

6

Section
Section 7
Section 8

Section 9

References

MACRO DEFINITIONS

PHRASE DEFINITIONS

MACRO STATEMENTS

GLOBAL MACRO INSTRUCTIONS
WRITING MACROS

MACRO FAULTS LIST

ELASTIC IMP PHRASE LIST
ACCESSING THE MACRO SCHEME

PAGE

13
17
19
25
27
30
3

33

INTRODUCTION

The source program which is input to the macro scheme can be considered to
Ioe_ made up of two parts. The first part contains macro language statements
which define the extensions to the standard IMP language which the user wishes
to make. The second part is the user program written in the extended IMP
language which may contain normal IMP statements and the newly defined
extensions side by side.

The first part of the input, which specifies the new language phrases and
S tatements using the specialised macro language, also defines their translation
1nto valid statements in the standard IMP language. The extended language may
range from a quite minor modification to a complete redefinition of the
perm tted input.

The following simple example shows the type of source program which 1is
accepted by the macro scheme:

YMACRO: '%SET' A(NAME) '%TO' C(CONST)
: $AS=$C$
»ENDMACRO

%MACRO: '%ADD' A(NAME) *%TO' B(NAME)
: B=3B$+5AS
ZENDMACRO

YMACRO: '%DISPLAY' A(NAME)
:WRITE(AS,1)
%ENDMACRO

%BEGIN

“INTEGER I,J

%SET I %70 1

#SET J %10 3

%ADD I %70 J

YDISPLAY J

NEWLINE

YENDOFPROGRAM

The Macro Scheme is a phrase structure oriented translator whose heart is a

syntax analyser which recognises both instructions to the scheme itself and
s tatements in the user defined input language. It translates statements in the
extended language 1into IMP statements according to the rewrite rules specified

by the user. The Scheme is available in two forms, a two-pass compiler (whose
procedure name is IMPM) and a text to text translator (with procedure name MACRO
IMP). The system operates by changing the input text to a suitable internal
representation which is then used to manipulate strings in the extended language
and convert them into strings in IMP. In the two pass compiler the resulting
internal representation is passed to the compilation pass to produce a normal
object program, but in the macro translator it is converted back into valid IMP
text which may of course be presented subsequently to the standard IMP compiler.

_ IMP macros extend the current IMP syntax by adding new alternatives to
existing phrases. These extensions are normally added on to the end of all the

existing alternatives in the order in which they are specified but they may also
be added to the front if so desired.

The result of a call on a macro is that in-line IMP is planted in the
program at that point. If a macro extends phrase source statement, a Ssequence
of IMP source statements may replace the macro call. If, however, the macro
extends any other phrase, the effect is of an insertion of a sequence of IMP
source statements in front of the statement containing the call.

SECTION 1 - IMP SYNTAX

Imp is a phrase structure language; that is, its syntax is governed by a
series of rewrite rules. These rules are specified by a set of PHRASE
DEFINITIONS. The basic wunit of input to the IMP scheme is the statement or
SOURCE STATEMENT (SS). Phrase ‘source statement' 1is the generator of the
language and contains a list of alternatives which uniquely define the language
S tatement types which form the permitted input to the IMP system of compilers.
Each alternative is defined in terms of other phrases and literals (i.e. actual
IMP text). A1l other phrases similarly contain a list of alternatives which can
be defined in terms of phrases, literals or built-in phrases. Built-in phrases

are phrases which are recognised by means other than formal syntax analysis for
the purposes of efficiency and convenient internal representation. The most

prominent examples are alphanumeric identifiers (NAME), and constants (CONST).

Reference 1 contains a detailed description of the syntax and semantics of
the IMP language, however, for the convenience of the macro programmer the
syntax 1s reproduced below in the form that it is used in the macro scheme.

The conventions used in the specification of the syntax given below are as
follows. A phrase definition is a phrase name preceded by the letter P or the
letter V and followed by an equals sign which should be read as 'is defined as'.
This 1s 1in turn followed by a list of the alternatives produced by that phrase
separated by commas, which should be read as ‘or', and terminated by a
semi-colon. The null alternative is represented by the symbol 0 (zero). Note

that phrase names are enclosed in round brackets and literals are enclosed in
single quotes.

e.gd. P(ONOFF) = "%0N",
'%OFF' ;

The letter V is used in place of the letter P to introduce certain phrases
known as SPECIAL PHRASES. Special phrases are known to the macro scheme and
their names are held in a special dictionary. The scheme can only operate on
these phrases when defining transformations; see Section 8 on elastic phrases.

P{4')=
P(+'l'

I
LA

03

P(PLUS')=
T
03

V(OPERAND) =
(NAME) (APP) (ENAME*),
(CONST) (IMPMULT),
"("(EXPR)")',
"TY(EXPRY' 1Y,

P (IMPMULT)=
SNAME)(APP)(ENAME').

V(EXPR)=
(LEAVE HOLE)(+')(OPERAND) (SET MARKER)(RESTOFEXPR);
V (RESTOFEXPR)=
(OP) (OPERAND) (RESTOFEXPR) ,
03
V(APP)=
' (Y (EXPR) (RESTOFAPP)')",
0;
V(RESTOFAPP)=
', " (EXPR) (RESTOFAPP),

03

P(,')=
; ’l]
03
P(%1U)=
'YIF!,
'YUNLESS' ;
P (%WU)=
'%NHILE' &
YYUNTIL';
P(CMAEK)=
|
17

'YCOMMENT' ;

V(TYPE)=
'S INTEGER® ,
"YREAL',

'%BYTE '%INTEGER'
'%SHORT! '%INTEGER'
'%LONG' ‘%REAL',

'%STRING® (RESTOFUCS);
P(RT)=
;%ROUTINE',
TYPE) (FM) ;
» e IPE) (P
"%FN',
"ZMAP ;
V (FPDEL)=
(RT) (¥NAME'),
TYPE) (%QNAME"*) ,
#NAME " ,

' 9RECORD" (%ARRAY ') ' %NAME' ;
V (LABEL)=
(A
NAME) ;
P (ELABEL)=
(N),
(NAME) (APP);
P (%ARRAY !)=
'YARRAY® ,
VH
P(%ZNAME')=
'ZNAME " ,
O3
P(%QNAME')=
'YARRAYNAME
'YNAME* ,
03
V(FPP)=
'"(* (FPDEL) (NAMELIST) (RESTOFFPLIST)')',
0s
V(RESTOFFPLIST)=
(,')(FPDEL) (NAMELIST) (RESTOFFPLIST),
03
P(ENDLIST)=
'9OF PROGRAM' ,
'9OFFILE",
*2OFLIST',
' Y0FMCODE* ,
WF
P(%FORMAT')-
'9FORMAT' ,
0;
P(RSTMNT)-
'9FORMAT* (NAME)* (* (RFDEC) (RESTOFRFDECLN)')"',
*4SPEC' (LEAVE HOLE)(NAME)(ENAME")(SET MARKER) ('(NAME)')?,
(LEAVE HOLE) (DECLN) (SET MARKER)'('(NAME)')';
V(SC)=
sEXPR)(COMP)(EXPR)(RESTOFSC).
(*(SC)(RESTOFCOND)')';

P(RESTOFSC)=
(COMP)(EXPR),

V(RESTOFCOND
EAND (SC

;? RESTOFANDC),
'S0R" (SC) (RE

)

C)

4 STOFORC)
(

V(RESTOFANDC
'%AND (S
03
V(RESTOFORC)=

;%OR'(SC)(RESTOFORC).

P(RESTOFU])=
(ASSOP)(EXPR),

(ASSOP)-

(RESTOFANDC),

'%NORMAL'
P(RESTUFBPLIST)=
6,'(EXPR)':'(EXPR)(RESTOFBPLIST).
P(CORP)=
"%PERM® (TEXTTEXT) ,
'%IOCP'(TEXTTEXT),
'WMAINEP! (TEXTTEXT);
P(DECLN)=
S%QNAME NAMELIST),
ZARRAY ' (%FORMAT") (ADECLN);
P (ADECLN)=
(NAMELIST) (BPAIR) (RESTOFARRAYLIST)
P (RESTOFARRAYLIST)=
',' (ADECLN) ,
03
P(OWNDEC)=
(LEAVE HOLE)(NAMELIST)(CONST) (SET MARKER) (RESTOFOWNDEC)(S),
'%ARRAY (NAME)(CBPAIR)(') (CONSTLIST),
(NAME) (CONST') (S);
P(RESTOFONNDEC)
o' (LEAVE HOLE) (NAMELIST) (CONST')(SET MARKER) (RESTOFOWNDEC) ,
0
P(XOHN)
'20WN" ,
'%EXTERNAL',
VYEXTRINSIC',
'9CONST' ;

P (CBPAIR)=
'(*(PLUS") (ICONST) "+ " (PLUS*) (ICONST)")* 4

P(RESTOFNLIST)=
6,'(N)(RESTOFNLIST),
P(FLIST)=
(N)(RESTOFNLIST)'->'(LABEL)(RESTOFFLIST);
P (RESTOFFLIST)=
6,'(FLIST),
P(MON)=
'%STOP' ,
(N)»
03
P(RESTOFSWLIST)=

' o' (NAMELIST) (CBPAIR) (RESTOFSWLIST),
0;

¥
TN

P (RESTOFSS1)=
1.1

(%IU) (SC) (RESTOFCOND)(S) ,
(%WU) (SC) (RESTOFCOND) (S),
(S)s
V (RESTOFIU)=
Y%START',
V9 THENSTART!,
"9%THEN' (LEAVE HOLE)(UI)(SET MARKER)(ELSE');
P (RESTOFWU)=
Y9CYCLE',
VY9THENCYCLE',
'%THEN' (UI)
P(AUI)=
V9AND' (UI),
03
V(ELSE')=
VIELSESTART!,
'9ELSE' (UI),
03
P(ENAME' ")=
'_:(NAME),
(s
P(ENAME')=
[_'(NAME)(APP)(ENAME'),
VK
P(BPAIR)=
(CBPAIR),
‘(" (EXPR)":'(EXPR) (RESTOFBPLIST)')";
P (CONST')=
'='(+')(CONST),
03

P(%SEX')=
'%SYSTEM' ,
'%EXTERNAL',
' %DYNAMIC® ,
03
P(CYCPARM")=
SNAME)(APP)(ENAME')'u'(EXPR)'.‘(EXPR)','(EXPR),

P (OWNSTHT) =
TYPE) (OHNDEC),
GRECORD (NAMELIST)' (' (NAME)')" (S),

'YRECORD' '%ARRAY ' (LEAVEHOLE) (NAME) (CBPAIR) (SETMARKER) " (* (NAME)')'(S);
P (RESTOFRFDECLN)=

's' (RFDEC) (RESTOFRFDECLN),
0;
P(RFDEC)=
(TYPE) (%QNAME*) (NAMELIST),
(TYPE)'%ARRAY'(NAMELIST)(CBPAIR)(RESTOFSWLIST).

VARECORD ' ((4ARRAY*) 'ANAVIE ' (NANELIST),
ARECORD' (NAMELIST) ' (* (NAIE) '),

'%RECORD" ' %ARRAY (LEAVEHOLE)(NAMELIST)(CBPAIR)(RESTOFSNLIST)
(SETMARKER)' (* (NAME)*)';
P (UCS)=

(NAME) (DISP'),
'<'(LABEL)'>',
'*1(DISP');
P(DLB)=
(N)"CE(N) 5 1 (N) 1) "
(UCS)" (" (N)*) "3
P (DXB)=
UCS) (RESTOFUCS),
fN)(RESTOFDXB);
P(RESTOFDXB)-
(! 2N)' (N)1)%s
6(' N

P(RESTOFSI)=
',V (ICONST),
0;
P(DB)=
(UCS),
(N)(RESTOFUCS
P (RESTOFUCI)=

£UCSS)(DLB

(UCPD) (DLB) ',

(UCSPEC)(N),
P(DISP')=

'+'(N),

I_I(N)’

'H

V(UCIZ
(N)', '(@')(NAME)(APP)(ENAME').

N 'P'

'PUT (ILONST)
'USING*, '(N) s
'DROP* (N) ;

P (RESTOFUCS)=
(N,
03

Pl=

03
P(@')=
l@l .
03
V(UI)—
(LEAVE HOLE) (NAME) (APP) (ENAME ') (SET MARKER)(RESTOFUI) (AUI),
'=> (ELABLL)

'%PRINTTEXT' (TEXTTEXT) (AUI),
'%RETURN"

'9RESULT* (ASSOP) (EXPR)
YYHONITOR' (MON)
'%STOP! ,
'PEXIT';
V(SS)=
(LEAVE HOLE)(UI)(SET MARKER)(RESTOFSS1),
'9CYCLE' (CYCPARM') (S),
'YREPEAT' (S),
(N)':?,
(%1U) (LEAVE HOLE)
(%WU) (LEAVE HOLE)
(TYPE) (DECLN) (S),
'4END ' (ENDLIST) (S),
(LEAVE HOLE) (%SEX') (RT) (SET MARKER) (%SPEC') (NAME) (FPP)(S),
SCMARK(TEXT)(S) ,
SREALS Y (%LR)(S),
'%BLGIN'(S),
IFAULT! (FLIST) (S),
voE INISH® (ELSE") (S)
' SWITCH' (NAMELIST)
'LIST'(S),
(XOHN) (OWNSTMT) ,
{9SPECY (NAME) (FPP) (S)
' SPECTAL' '%NAME' (NAME) (S) ,
19 TRUSTED® ' %PROGRAM (S),
'9REGISTER " (NAME) (RESTOFUCS) (S)
Y9MCODE"' (S),
'SHORT' *4ROUTINE® (S),
% (UCT)(S),
V9CONTROL ' (CONST) (S) »
vy DEFINE' (CORP)(S)
'9RECORD ' (RSTMNT) (S) ,
(S),
(LABEL) ':';

(SC) (RESTOFCOND) (SET MARKER) (RESTOFIU)(S),
(SC) (RESTOFCOND) (SET MARKER) (RESTOFWU) (S),
)

(CBPAIR) (RESTOFSWLIST)(S),

The built-in phrases are

NAME
ICONST
CONST

CONSTLIST
N

<

TEXT
TEXTTEXT
NAMELIST
LEAVEHOLE
SET MARKER
UCRR

UCRX

UCRS
UCSI

UCSHIFT
UCSS
UCPD
UCSPEC
UCINM

The macro scheme also has a built in alternative 1literal facility. This
allows differing conventional hardware representations of a particular
conceptional input symbol to be equivalenced. Whenever the macro scheme 1s
searching for the master literal it accepts any of the allowed alternatives 1n
its place. At present the scheme accepts the alternative '-=' to the master

Titeral '#'. Note that whichever alternative is recognised, it is always the
mas ter 1literal which 1s output,

SECTION 2 - MACRO DEFINITIONS

A macro definition consists of two parts; the macro specification and the
macro body. The macro specification (MACRO SPEC), which is terminated by the

first occurrence of a newline character, has the following form:

<front'> “MACRO <spec'> (<phrase being extended>): <new alternative to phrase>

The macro spec serves three purposes. Firstly it specifies which standard IMP
phrase 1is being extended, whether the alternative is being attached before or
after the normal alternatives and whether the macro body follows immediately or
1S described later. Secondly it describes in detail how to recognise a call on
the macro, by specifying which text literals and which macro parameters to 1ook
for and in which order; that is, it completely specifies the new phrase
alternative. Thirdly, it specifies both the name and type of the macro
parameters, for subsequent use in the macro body.

THE MACRO SPEC

A macro spec 1is introduced by the word "MACRO optionally preceded by the
word %ZFRONT and optionally followed by the word %#SPEC., In the event of the word
»FRONT occurring, the new alternative is added to the front of the phrase being
extended (the ELASTIC PHRASE) and precedes all previous alternatives, otherwise
the new alternative 1s added to the end of the phrase and follows all previous
alternatives. In the event of the word %SPEC occurring, the new alternative is
attached but no macro body 1s compiled at this point. The macro may be
described later 1in the normal way when the macro body is connected with the
appropriate alternative. The macro must not be executed unless the macro body
has been described.

The name of the phrase being extended must follow the <spec'> option
enclosed 1n round brackets, however, if the IMP phrase source statement, V(SS),
1s being extended this field may be omitted. This field is followed by a colon
which merely acts as a separator. Everything which follows to the right of the
colon up to the first newline character, specifies the new alternative to the

elastic IMP phrase.

The elements which may be used in the specification of the new alternative
are TEXT LITERALS and MACRO PARAMETERS.

LITERALS

Text Literals are sequences of characters enclosed in single quotes as in
normal IMP character strings.

e.g. '#GOTO' , '(°

Note that before being placed in the macro definition, literals are converted to
1 anguage mode; that 1S, spaces are removed and underlines are inserted where

appropriate. (Underlining 1is specified as 1in the IMP Tlanguage by the %
Character.) Two consecutive literals must be separated by a full stop since two
consecutive single quotes represent one quote as in IMP strings.

e.g. '%READ'.* ("

PARAMETERS

Macro parameters differ fundamentally from routine parameters and variables

in IMP. They correspond, not to locations or numbers, but to_chargcter strings.
A parameter is specified by giving a mnemonic name, by which it is to be

identified within the macro body, followed by a description of its type enclosed
1n round brackets.

e.ge A(NAME), B(OPERAND)
A list of permitted types and their usage is given in Section 8,

The type refers to a definition in the IMP phrase structure. Each such
definition refers to a possible set of character sequences. For example, phrase

(NAME) corresponds to the set of all IMP identifiers, phrase (CONST) to
Character strings such as

23
X'1019°

M'AF
B*1001100101101°
INLI
Assigning a type to the parameter has the following effects:

It states first of all which character strings are permissible in place of

the formal parameter in a macro call. For example, if the following macro is
specified

%MACRO : '%OUTPUT' C(CONST)

then legitimate calls on the macro are

20UTPUT 50
%OUTPUT M'ABCD*

b t not, for example

#0UTPUT XYZ
because XYZ is a name and not an example of phrase (CONST),

Secondly 1t has the effect that during the description of the macro, the
parameter may be used, enclosed in pound signs (£), whenever the IMP syntax

permits the character string of the type assigned to the parameter. Taking the
above example, since

B =2

14

s a legitimate IMP statement, the 2 may be replaced by a parameter, thus:
B =£CE
C may also be used in any other context where constants are allowed.

This string will be substituted during the call in all text-generating
s tatements whenever the corresponding formal parameter was used.

QUALIFICATION OF PHRASE NAMES AS PARAMETERS

A phrase name by itself is not a complete specification of the alternatives to
be used in recognising the parameter since new alternatives may be added to the
phrase concerned, later, The user may wish to exclude certain alternatives from
the recognition process for the parameter. This is achieved by preceding the
phrase name by one of the words %CURRENT, %THIS, or %BASIC. If %THIS is used
then all alternatives are excluded which are subsequently added to the front of
the phrase concerned, If %CURRENT is used all such alternatives including the
a lternative currently being defined (if this is being added to the same phrase)

are excluded. If ZBASIC is used all alternatives are excluded which have at any
time been added to the front of the phrase concerned.

e.g. #MACRO : "%PLUS' A(%CURRENT OPERAND)
%FRONTMACRO(UI) : '%D0' INSTRUCTION(%BASIC UI)

whence for example

A0 %00 X = X + 1

is not a valid statement in the extended language.
Further the subsequent declaration of the macro
RONT MACRO (OPERAND) : '%»TWO'
would not make the following statemeﬁt valid,

»PLUS %TWO

THE MACRO BODY

The second part of the definition of a macro is the macro body. The body of
the macro contains a sequence of MACRO STATEMENTS which control the text which

is generated to replace the macro call. The actual generation of text is
effected by TEXT REPLACEMENT STATEMENTS and the order of execution of these
statements 1s controlled by tests and jumps called MACRO CONTROL STATEMENTS.
This control 1s exercised at compile time and affects the form of the final

program, not 1ts running. In particular it is to be noted that the EXECUTION of
a macro statement occurs at compile time,

Section 4 describes all the macro statements which are provided in the macro
s cheme, and section 6 gives examples of how to write various types of macro.

THE ORDER OF SEARCH

Macro extensions to any IMP phrase are added on the end of all the existing

alternatives in the order in which they are specified. If the compiler fails to
recognise its input as an example of the phrase concerned it tries the macros.

For this reason, if a macro is defined such that an attempted ca]] on_it is
recognised as some previous alternative or macro of the phrase, then it will not

be called. For example, calls on
“MACRO : A(NAME) '=' B(NAME)
are strings like

FRED = JIM
AB1C2 = X

which will be recognised as assignment statements by the compiler and not calls
on the macro.

Care should be taken to avoid defining two macros which start off the same
way; even if the compiler is able to distinguish calls on the two, recognition

time will be considerably increased.

Macros, of course, may be added to the front of existing phrase definitions
if desired by preceding the entire spec with the word %ZFRONT. The resulting

macro is added before the existing phrase alternatives and macros. It 1is
sometimes necessary to use ‘current' versions of a phrase in macro definitions:
i.e. to exclude from the search any further front macros which may be added.
Typical of this 1is the following macro to add a new operator %EXP to the

existing ones:

%FRONT MACRO (OPERAND) : A (OPERAND) '%EXP' X (OPERAND)

This will result in the compiler going into a recursive loop when attempting
to detect an (OPERAND) in 1its 1input,

To avoid this, the type description should be preceded by the word %CURRENT,
which excludes from the search (for the corresponding actual parameter) all
future front macros added to the phrase concerned.

#FRONT MACRO (OPERAND) : A (%CURRENT OPERAND) '%EXP' X (OPERAND)

SECTION 3 ~ PHRASE DEFINITIONS

The programmer need not confine himself in choice of macro parameters to
those permitted by the basic IMP syntax. The macro scheme permits the user to
synthesise new phrase definitions for use as parameters, and provides macro

S tatements to break these down dinto constituent parts and examine their
S tructure,

A phrase definition has the following form:

#PHRASE (<mnemonic identifier>) : <alternative list>

It is dintroduced by the word %PHRASE and is followed by a user-chosen name for
the phrase being defined, enclosed in round brackets. The phrase name 1s
followed by a colon which merely acts as a separator. Everything to the right
of this colon up until the first newline which is not immediately preceded by a
comma 1s taken as the alternative list. An alternative list is a sequence of
ALTERNATIVES, separated by commas., An ALTERNATIVE is a sequence of LITERALS
and/or PHRASES, or the word %NULL. A LITERAL is, as in macro specs, a sequence
of characters enclosed in single quotes. A PHRASE is a phrase name enclosed in

round brackets. It 1s not preceded, as in a macro spec, by a symbolic
identifier. |

e.g. %PHRASE (ABC) : (NAME),(CONST)
4PHRASE (NEWOP) : '+','-',

|*|'
i

A user defined phrase may be used to define other phrases and to define
macros exactly in the same way as an IMP phrase.

Of course, no user-defined phrase will be accepted as a parameter in a
text-replacement statement since it is not defined in the IMP syntax (unless the

s tatement is a macro call). Before use as parameters in text-replacement
s tatements, user defined parameters must be broken down into components which
are defined in the IMP syntax. (See section on macro statements).

The compiler attempts to identify an example of a given user-defined phrase
in the 1nput stream by testing each alternative in turn. For each alternative

the items are tested against the input stream, in sequence, as follows:

Each literal is tested symbol by symbol against the characters of the input
stream.

Each phrase 1s tested for in the input string again by testing each
alternative in turn,

A null alternative 1s always accepted.

If an item in the alternative matches the input string, the compiler
proceeds to search for the next item in the succeeding input characters. If an
item fails to match, then the compiler abandons the attempt to match the current
alternative, goes back to the position in the 1input stream it was at when
s tarting the phrase, and tries the next alternative.

If an alternative is all matched against the input stream the phrase
succeeds; i1f no alternative matches the phrase fails.

It should be noted that basic IMP phrase names used 1n user phrase
definitions may be qualified by the prefixes %BASIC, #CURRENT and %THIS as

described for macro definitions.

SECTION 4 - MACRO STATEMENTS

The macro body is a sequence of macro statements terminated by the statement

#ENDMACRO

Macro statements govern the generation of the substitute text. There are three
types of macro statement: declaration, text replacement and control statements.,

Macro declarations are declarations of local phrase variables which, when

assigned to, may be used exactly as macro parameters which are simply phrase
variables initialised by the macro call itself.

LOCAL PHRASE VARIABLES

The user declares further phrase variables using the statement

%LOCAL N(P)

where N is a mnemonic identifier for the variable and P is the name of a phrase.

GENERATED PHRASE VARIABLE

The wuser may generate private macro names uniquely for future use in the
macro, by using the statement

9GENERATE N(P)

where N is a mnemonic identifier for the variable and P is the name of a phrase.
This statement 1s necessary for the in-line substitution of unique labels. The
name generated has the form PMNn where n 1s an unsigned integer starting at 1.

The actual generation of text in a macro is accomplished by text replacement
s tatements of which there are two types.

il

GENERAL TEXT REPLACEMENT

The basic text replacement statement is a colon, followed by an IMP source
s tatement.

:<source statement>

When the macro statement is executed, the source statement is presented to
the compiler as the next effective statement for compilation.

€eTe : WRITE(A,3)

More than one macro statement may be placed on a line, separated by
semi-colons, but each text replacement statement must have the 1initfal colon,

Failure to insert the colon will result in a syntax ervor, or in the statement
being interpreted as a macro control statement.

€.9. : WRITE(A,3); :-> 2

Note, also, that labels are source statements {in their own right, If,

therefore, a label is placed on the same line as another 35, the later mst be
preceded by a second colon.

€.ga : FRED: : WRITE (A.4)

TEXT REPLACEMENT IN PHRASE MACROS

Another text replacement statement exists for macros replacing phreses other
than Source Statements. This statement has the form

ARESULT = (

where C is a syntactically valid example of the phrase being replaced by the

macro. For example, if a macro extends phrase unconditional Instruction, V(Ul),
SRESULT=%STOP is valid but S%RESULT=%ENDOFPROGRAM is not valid. ‘hen the

S tatement is executed C replaces the macro call and the macro will exit., Exits

from macros other than through a YRESULT statement are faulted unless the macro
extends V(SS).

Exits from phrase macros other than through a result statement will be
faulted. However, a phrase macro may generate source statements in the normal

way, and these will be generated so as to precede the source $tatement
containing the macro call.

PARAMETERS IN TEXT REPLACEMENT STATEMENTS

A parameter of the wmacro being defined may be used
replacement statement, enclosed in pound signs,

For example, if the following macro is defined

anywhere 18 a text
where it {s syntactically valid,

MACRO : 'SDISPLAY* C(ICONST)
then a valid text replacement statement would be

: WRITE (5£Cf£,2)

Some care must be exercised, however. In certain cases a parameter may be
used in a context where it will not be accepted by the syntax, although 1t
apparently could be. For example, since IMP allows integer labels, such as

2:

it ll’i?‘lt be thought that since 2 s a constant and A s a constant, one could
legitimately write

EAL:

However, A may represent more general character strings than are permitted
in this context, e,g. M'29' or 'B', and is therefore disallowed.

Nhen the macro is called, some character string will be supplied as actual

parameter (e.g. in the example above, %DISPLAY 25 is a call on the macro in
which 25 is the actual parameter,).

When the statement is executed, the parameter will be replaced by whatever
character string it currently stands for.

PARAMETERS IN TEXT

~In certain parts of the language, text is handled as it stands, without
being analysed (e.g. stri ngs and comments).

Macro variables may be used anywhere in text without any check being made on

their syntactic validity; they will simply be replaced, when the statement is
eéxecuted, by the text of the character string they stand for,

It should be noted that spaces in comments are thrown away: those in strings
and YPRINTTEXT are not,

MACRO CALLS INSIDE MACROS

If a macro is used within a text replacement statement, it will be

recognised but not called. Whenever the statement is executed, the macro will
be activated.

In the case of nested and sequential macro calls in a single text

replacement statement, the order of activation is left to right, innermost call
first.

The macro currently being defined is not added to the syntax until (and
unless) the description is complete, and can therefore not normally be called

recursively. If it is necessary to make a recursive call, a YMACROSPEC for the
same macro must be given previously.

The order in which text replacement statements are processed is governed by
macro control statements, such as tests and label jumps, in a similar manner to

the statements of an IMP program. This control is exercised at compile time and
affects only the form of the final program, not its running.

LABELS

A macro label has the following form

LABEL)

Any macro statement may be labelled with an alphabetic identifier followed by a
right bracket. The use of the right bracket instead of a colon is to avoid

confusion owning to a superabundance of colons. Integer labels are not
permi tted.

e.g. WRITE (X + 1,2)
LAB1) :WRITE (X - 1,2)

UNCONDITIONAL JUMPS

An unconditional jump to a label is written exactly as in IMP,

-)L

where L jis a label. It causes the macro to commence execution at the labelled
S tatement.

E-g- - LABZ
LAB1) :NEWLINE
LAB2) :NEWPAGE

The next three statements are provided to allow the detailed analysis of
user defined phrases which have been recognised in the call of a macro.

SWITCH ON CATEGORY NUMBER

If a user-defined phrase is being used as a parameter, it is possible to
test the category number of the phrase; i.e. to ascertain which alternative of
the phrase was satisfied by the actual parameter when the macro was called,

The statement has the form
- (L],Lz,.--Ln) P

where L1, ..., Ln are label ddentifiers and P 1is a parameter name., If
alternative r of P 1is satisfied, control 1is transferred to the statement

l1abelled by Lr. If r > n, an error is given and the macro exits.

UNCONDITIONAL RESOLUTION

Suppose a phrase P has been recognised in the input and the resultant
analysis is represented by the phrase variable V. When P was recognised, one of

1ts alternatives succeeded; the statement described above, switch on category

number, can test which one. However, all the elements of this alternative were
also recognised in the input, since P was recognised.

It is of interest to know what character strings were recognised for each of
the phrases contained in this alternative. The macro scheme permits the user to
l)re§k P down into component parts by assigning each of these to a phrase
variable. The resolution statement has the following form

N -> <Resolution list>

where N is a phrase variable and the resolution list must parallel exactly the
phrase alternative concerned, except that in place of each phrase, the name of a

phrase variable must occur. Two consecutive phrase variables must be separated
by a full stop.

€.9. EXPR -> OP1 '+' OP2
LIST -> EL.LIST

The effect is to assign the components of the string currently represented
by N, to each of the phrase variables in the resolution list, according to the

analysis given to this string by the recognition procedure.
This statement will fault at execution time if the alternative of P

represented by N does not check with the alternative specified by the resolution
list.

The statement will fault at macro definition time if the resolution 1list
corresponds to no alternative of P.

CONDITIONAL RESOLUTION

There are two forms of this statement

-> L %IF N =-> <Resolution List>
-> L. 4UNLESS N => <Resolution List>

where N is a phrase variable of type P, and L is a label.

The first statement performs the resolution, and transfers control to label
L, if the alternative of P held in N matches that specified by the Resolution

List.

The second statement transfers control to L only if the match does not
occur. Otherwise the resolution is performed.

The statement 1s faulted at compile time if the Resolution List corresponds
to no alternative of P,

The present implementation of the macro scheme has no arithmetic or general
conditional statements. The following three statements provide a 1imited method

of_ach'ieying two of the most useful facilities which would be provided by macro
arithmetic, namely, flag setting and a simple counter.

FLAG SETTING

This facility is provided by the following statement
®SETFLAG F %TO N

where F specifies which of the five flags, numbered 1 to 5, maintained by the

macro scheme is to be set and N specifies the value which is to be set. N must
1ie in the range 1 to 255.

F1s in fact a global stack of depth 9, Consequently up to nine levels of
each flag may be set at the one time. The flag is unset by specifying N as 0

and this pops up the next cell of the flag. Since the stack is global, flag

values are retained between macro calls and this provides a useful communication
between macros.

FLAG TESTING

The macro scheme also provides the following statement to test the value of
a flag setting, The statement has two forms. :

-> L %IF %TESTFLAG F = N
-> L PUNLESS %TESTFLAG F = N

where L is a label, F 1s one of the five flags and N is the value which the flag
is to be tested against.

The first statement transfers control to the label L if the current stack

setting of flag F is equal to N, The second statement only transfers control if
the flag setting does not equal N.

COUNTERS

The macro scheme provides the following statement to make use of a macro
flag as a simple counter variable. The statement has two forms

HINCFLAG F
#DECFLAG F

The first form 1increments the value Ilaf“ flag F by 1 and the second form
decrements the value by 1.

Note that a macro flag which has been 'set' cannot be used as a counter.

SECTION 5 - GLOBAL MACRO INSTRUCTIONS

In addition to the basic macro and phrase definitions the macro scheme
provides various other facilities. - '

MACRO LISTING

The special instructions

WMACROLISTON and
#»MACROLISTOFF

are provided to aid the programmer 1in checking whether the desired macro
expansions have in fact taken place. The effect of specifying 4MACROLISTON is

that after every subsequent macro call until macro listing is again suppressed
by @IACROLISTOFF, the generated IMP text resulting from the call of that macro

1S listed. The macro scheme assumes the default condition to be »HACROLISTOFF,

COMMENT PRESERVATION

The macro scheme normally treats comments exactly as the IMP compiler does,
that is, it Tists them and moves on to the next input statement. This has the

added effect in the translater version of the macro scheme that comments do not
appear 1in the output source file. However the instruction

L ISTCOMMENTS

is provided to allow the programmer to specify that comments are to be preserved
and not thrown away.

SEQUENCE NUMBERING

With operating systems such as EMAS with on-line disc based file
sophisticated editors, the sequence numbering of source programs is

and indeed undesirable, If, however, a user wishes to have a copy of a program
on cards, or to transport macro translator output to computing installations
with less sophisticated systems, the macro scheme provides the instruction

#SEQUENCE

systems and
unnecessary

to produce a sequenced card image output source file.

TRANSLATION TERMINATOR

The macro scheme, in line with the IMP compiler, norma]lx takes the input
terminator to be either of the IMP statements %ENDOFPROGRAM or %ENDOFFILE. This

1S obviously not adequate when the source input is a complete redefinition of
the IMP language. To take care of this situation and to allow files of macros

to be test compiled before being submitted complete with extended IMP program,
the macro scheme provides the terminating instruction

#ENDJOB

SECTION 6 - WRITING MACROS

The following examples illustrate some of the information given in the
previous sections.,

6.1 Simple Text Substitution

Definition Spec %MACRO : '%EXPLAIN'

Body : YPRINTTEXT®
INTEGER BECAME NEGATIVE
4ENDMACRO '
Call »EXPLAIN
Result 4PRINTTEXT"

INTEGER BECAME NEGATIVE
L

6.2 Substitution with Parameters
Definition Spec #MACRO : ‘'#DISPLAY' A(NAME)
Body + NEWLINE
: ZPRINTTEXT' £Af =

. WRITE (EAS,4)

: NEWLINE
YENDMACRO

Call $DISPLAY B
Result NEWL INE
%PRINTTEXT *B="*

WRITE(B,4)
NEWLINE

6.3 Extension of a Phrase other than Source Statement

Definition Spec ZMACRO (OPERAND) : '%BYTEMASK®

Body YRESULT=X'FF"
%ENDMACRO

Call B =1 & %BYTEMASK
Result B=1& 255

6.4 Use of Generate Instruction

Definition Spec #MACRO : '#RS(' A(NAME) ')’

Body %GENERATE B(NAME)
: $Bf
: READ SYMBOL (£Af) _
+ => £Bf %IF £AE =NL %0R SAf = ' °

% NDMACRO
Call %RS(P)
Result PMN] ¢

READ SYMBOL (P)
-> PMN1 %IF P=NL %0R P=32

6.5 Use of a Front Macro to redefine an existing language facility

This macro provides run time label tracing

Definition Spec %FRONTMACRO : L(LABEL ':' S(SS)

Body « ILE
+ NEWLINE
. YPRINTTEXT'**LABEL £LE REACHED**’

. NEWLINE
¢ £Sf
%ENDMACRO

Call ENTER: X=20

Result ENTER:

NEWLINE
9PRINTTEXT '**LABEL ENTER REACHED**'

NEWL INE
X=20

6.6 gﬁe gf User defined Phrases and resolution in the provision of Boolean
gebra

Definitions %PHRASE (NLIST) : (NAME)',' (NLIST),(NAME)
4PHRASE (BOOLEAN) : '%TRUE', '%FALSE'

Spec %MACRO : '%BOOLEAN' HL(NLIST)

Body %%gCAL N (NAME)
A
-> A2 %ZUNLESS NL => N ',* NL
+ PINTEGER £NE
-> Al ’
A2)
NL => N
: »INTEGER ENE
2ENDMACRO

Spec %FRONTMACRO (UI) : A(NAME) '=' B(BOOLEAN)

Body -> L3 %IF B -> '%FALSE'
YRESULT = EAE = 1
L3)
9RESULT = EAE = 0
%ENDMACRO

Call %BOOLEAN BA,BB
BA = %TRUE

Result %INTEGER BA
%INTEGER BB
BA = 1

SECTION 7 - MACRO FAULTS LIST

As the macro scheme processes a source program, it may encounter errors in

the syntax or semantics of certain statements. If this occurs a fault message

MACRO DEFINITION FAULTS

Fault Number

PHRASE NOT DEFINED

PHRASE DEFINED TWICE

NAME NOT SET

NAME SET TWICE

LABEL NOT SET

LABEL SET TWICE

LABEL OUT OF CONTEXT

NOT A LABEL TYPE

ATTEMPT TO EXTEND BUILT=IN PHRASE
RESOLUTION DOOMED

ATTEMPT TO RESOLVE SYSTEM PHRASE
GENERATE PARAMETER NOT NAME TYPE

D b

MACRO EXECUTION FAULTS

Fault Rumber Message
50 RESOLUTION FAILS
51 MACRO NOT DESCRIBED
52 RESULT NOT SPECIFIED
53 USER FLAG DEPTH > 10
54 NO LABEL FOR CATEGORY NO

30

SECTION 8 = ELASTIC IMP PHRASE LIST

The IMP phrases which the programmer is allowed to extend by adding IMP
macros, are listed below:

REST OF FPLIST

REST OF IU
SC

SS

TYPE

UCI
Ul

expression which follows the
first operand.

Rest of Formal Parameter Part
Rest of %ZIF or ZNLESS statement
Simple Condition

Source Statement

An IMP variable declarator

User Code Instruction

Unconditional Instruction

Phrase lfleaning Examples
APP Actual Parameter Part (i.e.
the bracketed parameter list éZ)
following an array or function XsYs2)
identifier)
ASSOP Assignment Operator ==
COMP Comparator >z
ELSE® Conditional Alternative %ELSE #%START
EXPR An IMP expression X+Y =2
FPDEL Formal Parameter Delimiter $INTEGERNAME
FPP Formal Parameter Part (i.e.
the bracketed list of parameter (%REAL X)
descriptions following a
routine or function declaration)
LABEL An IMP Label FRED
OP An operator +
OPERAND A simple constant, IMP variable, 29,X
array element, function call B(29,31)
or a bracketed expression (X +Y - 2)
REST OF APP Rest of Actual Parameter Part .
REST OF COND Rest of Condition WAND Y = 3
REST OF EXPR Defines that part of an +1 (in the

expression X+1)

, INTEGER I
ATHEN 1 = 1
X< =Y
#BEGIN
HBYTEINTEGER

USING *, 5
#RETURN

A1l of the above IMP phrases, together with the built in phrases listed
below, may be used in user macro and phrase definitions.

Built-in Phrases Meaning Example

NAME An IMP variable name TOTAL

ICONST An integer constant o

CONST A genera]ilMP constant X'FF*

CONST LIST A list of IMP constants 4,-7,0

! An unsigned integer | 5

S A separator »

TEXT General Text THIS IS A COMMENT
TEXT TEXT Text within quotes "IN QUOTES'

NAME LIST A list of IMP names AV ,COUNT, I

SECTION 9 - ACCESSING THE MACRO SCHEME

Thg macro scheme can be accessed by anyone who is an accredited EMAS user by
appending the Vibrary ERCC11.MIMPLIB.

The text to text translator version of the macro scheme is accessed through
the call MACRO IMP e.g. '

MACRO IMP (<extended IMP source>,<output source>,<listing>)

where

<extended IMP source> 1is the input program file containing the user defined
pnrases and macros

<output source> is the name of the file into which the translated source
1s to be entered

<listing> 1s the name of the file or pseudo-device to which the
translator listing is to be given

The two-pass compiler version of the macro scheme 1is accessed by the
procedure name IMPM e,.q.

IMPM (<extended IMP source>,<object code>,<listing>)

where

<object code> 1is the name of the file into which the compiled object
code is to be placed

i.e. The parameters to IMPM are exactly the same as those to IMP or IMPS.

The extended 1input source may be specified as the concatenation of two

files, although there 1s a small increase in efficiency if input is combined in
one file.

e.g. MACRO IMP (MACROS + PROGRAMA, MACOUT, .LP)

The main limitations of the present implementation of the macro scheme and the
major known faults are listed below.

REFERENCES

1) A Syntactic and Semantic definition of the IMP Language by P.D. Stephens,
First Edition, August 1974,

2) A Syntactic Macro Scheme by A. Freeman, a paper submitted as part
requirement of a Diploma in Computer Science, University of Edinburgh, June

1969,

