
.

ZX 725 62 /87

BRIAN EDWIN PETER ALDEN, B. A.
UNRESTRICTED

AN EXPERT SYSTEM APPROACH TO RETROGRADE-ANALYSIS

-ý,

; ̀ .

Thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

in the
FACULTY OF MATHEMATICS of AUtho, (S IfüKjj:, j-. HON 20214- THE OPEN UNIVERSITY

4 Subx4s6 5vL'. Febxuu. lw
February 1985

ri
Avwt

. 11 . '7. $6

-2-

ABSTRACT

This thesis presents a system called RETRO, which has the

capability of solving a number of retrograde-analysis chess problems

of varying degrees of difficulty. Retrograde-analysis problems are

exercises in deductive reasoning, entirely different from conventional

'mate-in-n-moves' chess problems, their nature being such that any

type of question, together with perhaps an assortment of associated

initial conditions, may be presented to the solver, whilst their solution

lies in asking pertinent questions at each step of the deduction process.

The aim has been to investigate the extent to which the deduction

of past events may direct attention to these questions, a key concept

being that of a 'Significant Event' (SE), which is an event of significance

that must have occurred at some time in the history of the game. An

SE is akin to a frame, the usual slots being replaced by the questions

that the SE prompts, to which the answers may either provide a solution

to the original problem or point to another SE, together with its

association questions. It is shown that a small number of SEs possess

widespread application.

RETRO maintains an explicit knowledge base of rules, grouped

according to function, which are used both by the SEs and the system.

This knowledge base is designed for easy amendment.

RETRO also maintains an explanation facility, which provides an

account of its deductions, including a listing of rules utilised.

A number of examples are presented which demonstrate the effectiveness

of the SE approach. There is also a discussion as to how the concept

may be expanded, and its possible limitations.

-3-

ACKNOWLEDGEMENTS

Stanley Collings, for inspiring the interest in retrograde-

analysis.

Dr. Max Bramer, my supervisor, for his unreserved encouragement

and support.

The Academic Computing Service of the Open University.

Vic Clouston and the staff of the Open University Regional Office

at Bristol for all their kindness and help.

Raymond Smullyan, without whose writings this project would have

been much more difficult.

Father Aloysius Hacker, without whose spiritual guidance and

advice I would not have succeeded.

-4-

TABLE OF CONTENTS

Page

Abstract 2
Acknowledgements 3
Table of Contents 4

1.0 Introduction 6
1.1 Introduction 6
1.2 Information processing 6
1.3 Layout of thesis 8
1.4 Retrograde-analysis - an introduction 9

2.0 RETRO - an Overview 13
2.1 The essential features 13
2.2 Block diagram 17
2.3 Functions and variables 18
2.4 RETRO at work - an example 20
2.5 An analogy 21
2.6 A challenge to the reader 22

3.0 Retrograde-analysis -a deeper look 25
3.1 What sort of questions are asked? 27
3.2 What are the initial conditions? 28
3.3 How RETRO 'understands' the question 28
3.4 Classification of problems 30
3.5 Significant Events (SEs) 31

4.0 RETRO Knowledge Representation 33
4.1 Introduction 33
4.2 Significant Events 33a
4.3 Significant Events - the questions they prompt 34
4.4 Rules 38

5.0 RETRO Control 40
5.1 How it works 40
5.2 What happens if RETRO is unable to find a solution? 46
5.3 Illegal situations 47

6.0 Knowledge Acquisition and Explanation 48
6.1 Rule grouping 48
6.2 The Dynamic Data-Base 49

7.0 RETRO - Some'examples 51

8.0 Related Work 62
8.1 Overview 62
8.2 Critical review 64

8.2.1 Knowledge representation 64
8.2.2 Control 65
8.2.3 Explanation 66
8.2.4 Illegal positions 67
8.2.5 Degradation 67

8.3 . A difficult problem 68

-5-

Page

9.0 Discussion 71

9.1 Representation 71

9.2 . Some expert systems 72
9.3 Comparisons with RETRO 74
9.4 Limitations 75

10.0 Some Different Problems 77
10.1 Overview 77
10.2 Some initial conditions 79
10.3 Significant Events 79

11.0 Cryptarithmetic 82
11.1 The problem 82

11.1.1 A dialogue 83
11.2 The dialogue - an analysis 86
11.3 Cryptarithmetic and Significant Events 88
11.4 Summary 90

12.0 Conclusions 92
12.1 Review 92

12.1.1 Knowledge representation 92
12.1.2 Control 93
12.1.3 Knowledge acquisition 94
12.1.4 Explanation 95

12.2 Future work 95
12.3 Summary 96

13.0 References 97

Appendices: 99

A. Pawn promotion rules 99
B. Rules to determine the legality of reverse moves 100
C. 'Castle' rules 101
D. Rules to determine if a promoted piece is on board 102
E. Rules to determine the promoted piece 103
F. Some of the more important functions used by RETRO 104
G. The word parsers PARS and PARSEC 106
H. The Final Bow 109
I. Source coding 110

-6-

1.0 INTRODUCTION

1.1 The work described in this thesis is concerned with the solution

of a specialised form of problem (closely concerned with the game of

chess) by means of heuristic methods. The thesis defines an expert

system called RETRO, whose domain of application is retrograde-analysis

chess problems. This type of problem, chess logic problems, as they

are sometimes called, differs from the conventional type of chess problem

in that it is concerned only with the past history of the game, and what

may be deduced about it. To understand better the tenor of the work

some knowledge of retrograde-analysis is required, an appetising source

of such knowledge being Raymond Smullyan's delightful book, The Chess

Mysteries of Sherlock Holmes. The author is particularly indebted to

this book, both as a source of inspiration and a source of problems.

Those who may be meeting retrograde-analysis for the first time

will find a gentle introduction to the subject in Section 1.4, where

Mr. Sherlock Holmes himself has consented to be the guide. Mr.

Holmes will in fact be making an occasional appearance in these pages,

to elucidate, and to challenge the Reader.

1.2 Information-processing

It is a major paradigm of Artificial Intelligence (A. I.) that

intelligent processes may be mechanised and that by using programs

as tools in their study we may perhaps become better able to understand

their nature. Winston [22] defines the central goals of A. I. as

making computers more useful and understanding the principles which

make intelligence possible, whilst Marr [18] defines A. I. as the

study of complex information-processing problems that have their

roots in some aspect of biological information-processing. Marr

further defines the goal of A. I. as identifying a useful information-

-7-

processing problem and accounting for how it was solved.

An important development, arising largely from A. I. research,

is the idea of an expert system, a useful survey and critical review

of which may be found in Bramer [191, who offers the following definition:

'An expert system may be defined as a computing system
which embodies organised knowledge concerning some
specific area of human expertise, sufficient to
perform as a skilful and cost-effective consultant. '

There is no doubt that much expert knowledge will be heuristic and

ill-defined by nature., with the expert being a master in the art of

good guesswork. The problem of how knowledge must be represented in

order to achieve expert performance has been the focus of much research,

ranging from systems using production rules (e. g. Shortliffe [5]) and

frames (e. g. Goldstein and Roberts [20]) to combinations of knowledge

representations.

The solution of retrograde-analysis problems may be regarded as

an information-processing problem, and, with RETRO, steps towards

its solution are presented.

'There are occasional chess situations, Watson, which
challenge the analytic mind as fully as any which
arise in real life. Moreover, I have found them
as valuable as any exercises I know in developing
those powers of pure deduction so essential to
dealing with real-life situations. ' S. Holmes
(from [1), p. 3).

It is not claimed that the solution is complete, or indeed that it

is the only solution. What is presented here is a report of an

actual implementation, not an idealised 'Version N'. RETRO utilises

the frame concept to direct attention to the questions that must be

asked in order to effect a solution, and reasons are given to show

that the approach taken is of general validity in its domain of

interest. Also discussed is the question: 'What happens if RETRO

is unable to find a solution? '* (It does not enter an infinite loop.)

-8-

1.3 Layout of thesis

To those who may be new to the concept of retrograde-analysis

the following section (1.4) is devoted. It offers a gentle

introduction to the subject, with the benefit of advice from Mr.

Sherlock Holmes.

This is followed by an overview of RETRO (Chapter 2), in which

the essential features of the program are reviewed and the basic

concept of Significant Events (SFs) introduced. A block diagram

is presented, together with a listing of the more important functions

and variables. An example of RETRO at work is given, followed by an

analogy with the basic SE concept. Finally in this chapter a number

of retrograde-analysis problems and their RETRO answers are given;

the reader may care to consider these before meeting the complete

solutions in later pages.

Chapter 3 takes a deeper look at retrograde-analysis, considering

the type of questions (and their initial conditions) that may be asked.

Ways of classifying these problems are discussed, followed by an

introduction to Significant Events.

SEs are examined further in Chapter 4, together with examples of

the rule structure used by RETRO.

-Chapter 5 deals with control, plus a discussion of what happens

if RETRO is unable to find a solution, and what happens if RETRO

meets an illegal situation (always a possibility in retrograde-analysis).

Knowledge acquisition and explanation are covered in Chapter 6,

which includes a discussion of the rule groupings used in RETRO, and

the use of a dynamic data-base to facilitate explanation.

Chapter 7 consists of a number of RETRO examples.

An overview and critical review of related work are given in

Chapter 8, comparisons with RETRO being made.

-9-

Some other expert systems are reviewed in Chapter 9, with

particular reference to RETRO. A look is then taken at the

limitations of RETRO.

Chapter 10 reviews a host of recently published retrograde-

analysis problems by Raymond Smullyan [21, referring in particular

to the SE concept as applied to these problems.

Final conclusions are drawn in Chapter 11 with respect to

knowledge representation, control, knowledge acquisition and

explanation. Possible future work is also discussed.

There are a number of Appendices, which include listings of

the rules used by RETRO and some of the more important functions.

1.4 Retrograde-analysis - an introduction

Retrograde-analysis (or retro-analysis) problems are problems

where deductions must be made about the past history of the game.

These problems conform to the following pattern:

a. A board position is given.

b. Initial data may be provided; for example,
'Black moved last'.

c. A question is asked: for example, 'Can
Black castle? '.

In order to answer the question trails must be sought, trails that

point to a sequence of events and/or moves that must have occurred

at some time during the course of the game. Some ways of uncovering

these trails are:

a. Analysing the pieces on board: 'How many pawns
are on board? ' 'Upon what squares did they
capture? '

b. Analysing the pieces not on board: 'What pieces
were captured on board? ' 'What pieces were
captured on their home squares? '

c. Consideration of any initial data: If 'Black can
castle' is given, it means that the Black King, at
least, has not moved or been in check.

- 10 -

By taking a kind of safari along these trails, in the correct order,

and not getting lost in the process, the destination - an answer

to the given problem - may eventually be reached. Rules must be

obeyed on the safari; usually (and at least in this thesis) these

consist of the full rules of chess, but this is not always

necessarily so, for problems may be encountered that exist within

the framework of a modified set of rules.

The Reader may now care to make a safari of his own, accompanied

by Sherlock Holmes, by considering the following problems:

8

7

6

4

3

2

1

a
111 112

1

abcdefgh

The solution below is presented as a dialogue between Sherlock Holmes

and his boon companion, Dr. Watson. Dr. Watson is the commentator.

'The problem is: "On what square was the White queen
captured? " (Holmes).

I looked at the position and reasoned thus: "Well,
Holmes, I see that White is missing his queen, both
bishops, and one knight. Now, two captures can be

accounted for by the Black pawns on e6 and h6; the
first came from d7 and made a capture on e6, and
the second came from g7 and made a capture on h6.
Now, neither White bishop ever got out on to the
board to be captured by these pawns, since the one
from cl was hemmed in by the pawns on b2 and d2
which have not yet moved, and the one from f1 was
hemmed in by the pawns on e2 and g2. "

"Good, Watson, " interrupted Holmes. "I'm glad you
were able to see that yourself. "

"Elementary, my dear Holmes, " I could not help but
jest. "However, I'm afraid my reason cannot carry
me much further. All right, we now see that the
White pieces captured on e6 and h6 are the queen and

- 11 -

"a knight. So the White queen was captured either
on e6 or h6, but I cannot see why the queen could not
have been captured on either one of them and the knight
on the other. "

"Well, " said Holmes, "then I'll have to give you some
hints in the form of questions. One of the main things
in solvin these problems is to think of the ri ht
questions to ask oneself. Now, what was capture by
the White pawn on b3? "

"Obviously a Black bishop, " I replied.

"What is the home square of that bishop? "

"Clearly cB, as the bishop from f8 travels only on
black squares. "

"Right. Now comes the crucial question: Which was
captured first, the Black bishop or the White queen? "

"I can see no way to tell, " I replied.

"Well then, put it this way: Did the White queen get
captured before or after the capture on b3 by the
White-pawn? "

I looked at the position again, and began to see the point.

"The White queen, " I said, "got out on to the board via the
square a2, hence the pawn on b3 made its capture first to
let the queen out. And, since the pawn captured a bishop,
then the bishop was captured before the queen. "

"Exactly, " said Holmes. "And now, does this not solve the
problem? "

"I do not see how. "

"Well then, I guess the next question to ask yourself is this:
Did the bishop on c8 get captured on b3 before or after the
capture on e6? "

"The pawn on e6 made its capture first, " I replied, "to let the
bishop out. "

"Correct, " said Holmes. "Now you have all the pieces of the
puzzle, Watson; you have merely to put them together. "

"Ah, " I said, "now I see it. The capture on e6 was made
before the Black bishop got out to be captured on b3, which
in turn happened before the White queen got out to be
captured. Therefore the White queen was not the piece captured
on e6. In other words, the sequence was this: First the
knight was captured on e6, then the Black bishop got out
and was captured on b3, then the White queen got out, and
must have been the piece captured on h6. So the queen
was captured on h6. "

- 12 -

"Very good, Watson, " said Holmes encouragingly. "I think
that with a bit more experience you will be able to do
retrograde-analysis. "' (Smullyan [2], pp. 18-20)

The Reader will have noticed that in this Socratic dialogue the

essence of progressing to a satisfactory conclusion lay in asking

the right questions at the right time. It is worth reiterating

Holmes' comment: 'One of the main things in solving these problems

is to think of the right questions to ask oneself. ' This point

will be brought out more strongly later. Meanwhile, Holmes sets.

another problem:

8

7

6

5

4

3

2

1

"'It is Black's move, " said Holmes. "Can Black castle? "

Dr. Watson gave the following analysis:

"White's last move was clearly with the pawn. Black's
last move must have been to capture the White piece
which moved before that. This piece would have to
have been a knight, since the rooks could not have
got out on to the board. Obviously none of the Black
pawns captured the knight, and the Black queen's rook
couldn't have captured the knight, because there is no
square that the knight could have moved from to get to
that position. Likewise the bishop couldn't have
captured it, since the only square the knight could
have come from is d6, where it would have been checking
the king. Hence either the king or the king's rook
has made the capture. So, Black can't castle. "

"You see, " said Holmes, "what progress results from
application. "' (Smullyan [1], pp. 45-46)

These problems will hopefully have given some idea of the flavour of

retrograde-analysis chess problems. A deeper look is given in Chapter 3.

abcdef9 h

- 13 -

2.0 RETRO - AN OVERVIEW

By way of previous experience or perhaps by perusal of the

preceding section (with the helping hand of Mr. Holmes), the Reader

will now possess some knowledge of retrograde-analysis, so will be

able to understand better the information-processing problem that

RETRO is attempting to solve. It is this: given a basic situation,

with perhaps some pertinent initial information, can deductions be made

to enable a particular question to be answered? In making deductions

rules must be obeyed - in this case the full rules of chess - so that

every. decision made, every trail followed, must be in accordance with

these rules.

RETRO has the ability to solve a number of retrograde-analysis

problems of varying degrees of difficulty.

The essential features of expert systems are knowledge representation,

control, knowledge acquisition and explanation, and these features of

RETRO are discussed below. Other sections in this chapter include a

block diagram, an example of RETRO at work, comparisons with other

systems, and a challenge to the Reader by Sherlock Holmes (and RETRO!).

2.1 The essential features

Mention has already been made (Section 1.2) of various representations

of knowledge, such as production rules and frames, which is the subject

of much research. Since the frame concept of Minsky [13] is pertinent

to RETRO, it is worthwhile to lay the groundwork by quoting the

definition given by Winston [22] of a frame:

'A frame is a data-structure for representing a
stereotyped situation like being in a certain kind
of living-room or going to a child's birthday
party. Attached to each frame are several kinds
of information. Some of this information is about

- 14 -

'how to use the frame. Some is about what one can
expect to happen next. Some is about what to do
if these expectations are not confirmed. ' (pp. 180-181)

A frame, then, consists of a set of slots and values that

specify the expected objects it events:

SITUATION

SLOTS VALUES

Figure 2.1: Sketch of a frame

What frame systems do is to allow classification of new situations

in terms of the stored frame situation, attempting to fill in the

slots with values, to determine whether there is a match of the

expectations specified by the slots with the new situation.

RETRO uses the frame concept in a different way. The knowledge

representation utilised by RETRO is based on the concept of the

Significant Event (SE), which is an event of significance that must

have occurred at some time. in the past history of the game. For

instance 'A pawn has promoted' is regarded as an SE, as is 'A king

is in check'. The rationale behind this concept is admirably

summed up by Sherlock Holmes (Section 1.4):

'One of the main things in solving these problems is
to think of the right questions to ask oneself. '

Each SE has questions associated with it: for instance, if the SE

is 'A pawn has promoted' then natural questions to ask would be:

'What is the promoted piece? ', and 'On what square did the pawn

promote? '

- 15 -

SIGNIFICANT EVENT

Question 1

Question 2-

Figure 2.2: Frame used by RETRO

Basically, in solving a problem, RETRO looks to find an SE, and having

found one asks the questions associated with it. The answers to

these questions may lead to a solution of the problem, or they may

point to another SE, with its own associated questions. After

each question has been asked there are three possibilities that

RETRO considers:

1. A solution to the problem has been found. RETRO

answers the given question, then asks if an
explanation is required. If the answer is 'Yes'
then RETRO prints its chain of its deductions.

2. A solution has not been found. In this case
RETRO carries on to the next question.

3. An illegal situation has been encountered.
RETRO realises that this line of enquiry is

useless.

Control is thus data-driven by the SEs.

The knowledge in RETRO is explicit, so that the system has direct

manipulatory access to the knowledge base. It consists of twenty-

nine rules, which are split into five groups according to function;

such as rules for deducing that a pawn has promoted and rules for

checking the legality of reverse moves. The problem of acquiring

this knowledge was met by studying many problems. It is not claimed

that these rules are exhaustive, merely those that have been encountered

so far in the development of RETRO, so it is quite likely that extra

- 16. -

rules will be needed as more problems are considered.

It is unlikely that any expert system will remain in a static

condition, but will be subject to modification in the process of

time, as extra rules will need to be added and old rules found to be

wanting. Ease of modification of the knowledge base is therefore

essential, and RETRO has been designed to meet this criterion.

It is becoming axiomatic that an expert system should be able to

offer an adequate explanation for its deductive reasoning, for without

this facility it is unlikely that it would be acceptable to potential

users, particularly if they are highly skilled professionals (less

relevant in this domain than, say, medicine, of course, but it still

'feels' desirable). RETRO keeps an ongoing record of its deductions

in a dynamic data-base. When an SE is found and when a question is

answered then a corresponding entry is made in this data-base, which

contains a pointer to a free text explanation of what has happened.

RETRO does not have to disentangle rules to provide its explanations.

- 17 -

2.2 Block Diagram of RETRO

Place pieces on board

What is the question?

Any initial conditi

Set up board parameters (SETP)

Last move known?

Yes

Form reverse moves
Do legality check

No

Get next reverse move I1

Question answered
(for this move)?

Yes

Yes Any more moves?

No

(rint
- deductions

No]
1 Ask questions

No Exit

- 18 -

2.3 Functions and variables

RETRO extracts as much information as possible from the given

board situation by utilising the function SETP (Set Parameters).

This information is then available for use by the SEs and rules

throughout the system. If the board is updated in any way - for

example, moving a pawn back to its home square - then SETP must be

used again to permit RETRO to take cognisance of the situation.

SETP uses other functions as it sets up variables. These are

listed below. A list of the more important functions used by

RETRO is given in Appendix F.

Function Returns

BCHSQ Lists of squares of bishops captured at home

CAPSQ Lists of squares upon which the pawns must
have captured

CPLIST Lists of pieces missing from the board; i. e.
possible black and white pieces captured

CPGTOB Lists of pieces captured on board; i. e. as
CPLIST but less constrained pieces

LFXCAP Lists of possible pawn cross-captures

MINPWN Looks at the pawns on board, trying to
associate them with definite home squares.
It returns the file co-ordinates of squares
unaccounted for. These lists are used to
determine the possible home squares of
promoted pawns.

Also returns lists of form [X Y Z)
where X= total number of pawn captures

Y= number of captures on white squares
Z= number of captures on black squares

('Have all pawn captures taken place on one
colour? ')

POSCAS Lists of possible 'castle' pieces

NPB/NPW The number of black and white pawns on board.

SETP sets up the following variables, taking note of any initial

conditions such as 'odds given':

- 19 -

Variable Name

BCAS/WCAS Lists of possible 'castle' pieces- for example,
[[[WR al][WK el]][[WR h1][WK e1]]] -
used in 'castle' problems: 'Can White castle? ',
for example. If it is deduced that the WR on
h1 must be a promoted piece then obviously White
cannot castle on this side so [[WR hl][WK e1]]
is deleted from WCAS.

POSCAS scans the board for these possible castles.

BLCAP/WHCAP CPLIST returns these lists of pieces missing
from the board; i. e. possible black and white
pieces captured. A check is made to see if
any piece has been given as odds.

BLEFT/WLEFT It is possible that a piece was captured in its
home square, being unable to leave it. It is
also possible that a captured piece was unable
to leave its home row. CPGTOB returns the
lists of pieces that were able to be captured
on board. These lists are used when trying to
determine what pieces the pawns may have captured.

BTOT/WTOT 'The number of pieces in BLEFT/WLEFT.

BHTAB/WHTAB MINPWN looks at the pawns on board, trying to
associate them with definite home squares. It
returns the file co-ordinates of squares
unaccounted for. These lists are used to
determine the possible home squares of promoted
pawns.

BNUM/WNUM MINPWN also returns these lists, of form [X Y Z]
where X= total number of pawn captures

Y= number of captures on white squares
Z= number of captures on black squares

It may be of significance if all pawn captures
have taken place on one colour.

BDC/WDC CAPSQ finds squares upon which pawns must have

captured; for example [[[WP h2][g3]]]

The White pawn from h2 captured on g3.
('If a pawn made at most N captures, could it

have. been captured by an opposition pawn? ')

XCAPB/XCAPW LFXCAP looks for possible pawn cross-captures,
adding them to BDC/WDC.

CPBX/CPWX File co-ordinates of the squares upon which pawns
definitely captured. Derived from BDC/WDC.

BBHSQ/WBHSQ BCHSQ returns lists of squares of bishops captured
in their home squares.

-20-

2.4 RETRO at work - an example

8a 4t
G

71 ii if
6 t& &1
5 #ý it

4

1 4, mom 9
abcdefgh

Smullyan [1], p. 105

Question: Is there a promoted
piece on board?

Initial Conditions: Both sides
can castle.

The Reader may care to attempt a solution of this problem, before Mr.

Sherlock Holmes presents his explanation and before RETRO's solution

is given.

Mr. Sherlock Holmes elucidates

'The piece captured on c3 was not the Black queen's bishop,
nor the pawn from h7, since it could not get to the c-file.

Hence the pawn from h7 has promoted.

It promoted on gl after capturing exactly one piece - the White
queen's bishop. The capture by the pawn on c3 had to occur
before the bishop got out to be captured by the Black pawn,
and so the capture on c3 occurred before the promotion.

Thus the promoted Black piece is still on board. '

RETRO elucidates

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT CAN
BE CAPTURED ON BOARD AND THESE OPPOSITION PIECES INCLUDE
A PAWN THAT COULD NOT HAVE REACHED A CAPTURE SQUARE THEN
A PAWN PROMOTED [RULE 001].

THE BP FROM h7 PROMOTED.

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES [g1].

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[g2].

IF A PAWN CAPTURED ON ITS 1ST MOVE AND COULD ONLY HAVE
CAPTURED AN OPPOSITION PAWN AND THE OPPOSITION PAWN MADE
N CAPTURES IN PROMOTING, WHERE N IS THE NUMBER OF PIECES
CONSTRAINED BY THE CAPTURING PAWN ON ITS HOME SQUARE

THEN THE PAWN CAPTURED BEFORE THE OPPOSING PAWN PROMOTED
[RULE 025].

- 21. -

2.5 An-analogy

The concept of using significant events or patterns to focus

attention on contingent questions appears to have relevance in other

fields than that of retrograde-analysis.

Richard Young [8] describes research carried out by John Fox,

who investigated the cognitive processes of hospital physicians

performing a differential diagnosis of patients suffering from

dyspepsia. Three distinct components of the doctor's skill were

distinguished, as follows:

B C

Fixed sequence ofý Problem-solving
questions rules

A Pattern-driven questions
and diagnoses

Fox found that doctors' actions are often made on a pattern-recognition-

like basis, in which a particular question to ask (or tentative

diagnosis) is suggested by a particular configuration of symptoms.

In other words, a certain pattern will trigger certain questions.

This is module- A.

However, early in the diagnosis not enough information is available

about the patient, who 'presents' just enough information about age and

sex, and of course the dyspepsia. Thus the doctor has no alternative

but to begin asking questions in the hope that some significant pattern

will emerge. There are no grounds for asking these questions differently

on one occasion than on another, so questions tend to be asked in a

routine order. This is represented by module B.

These two modules (A and B) now begin to co-operate, in that as

the questions are asked (in the standard order) information is gradually

- 22 -

accumulated until at some point a rule may be triggered in the pattern-

driven module. This will perhaps lead to the asking of a contingent

question, which could well trigger another of the pattern-driven rules.

If this chain leads to a diagnosis, well and good; otherwise the

sequence of questions in module B is continued. Thus the actual

path is heavily data-dependent.

Perhaps the above system may fail, the doctor reaching the end

of his questions without a diagnosis being reached, in which case he

continues in a different manner, considering what diseases are

consistent with the evidence so far, and chooses further questions to

discriminate between them. This is module C.

The analogy with RETRO is clear. The doctor asks a fixed

sequence of questions in the hope of finding some significant pattern.

RETRO looks for Significant Events.

In each case the finding of a significant pattern or event will

cause contingent questions to be asked that may or may not lead to

an answer.

2.6 A challenge to the Reader

During the course of this work a number of retrograde-analysis

problems will be encountered, these problems serving both as

illustrations to the text and as examples of the way RETRO works.

A small selection of these problems is presented below, together with

RETRO input and RETRO answer to each problem but without explanations.

The Reader may care to analyse some or all of these problems to

see if his conclusion is the same as that of RETRO. The explanations

of the problems will be met in later sections (5.1 and 7.0).

- 23 -

1.8
7

6

5

4

3

2

1

* WHAT IS THE QUESTION
[IS THE WP ON f2 OR g2?]

* ANY INITIAL CONDITIONS (Y OR N): Y
PLEASE ENTER
[BLACK CAN CASTLE]

ANY MORE CONDITIONS (Y OR N): N

* WP IS ON f2.

2.
8

7

6

5

4

3

2

1

abcdefgh

* WHAT IS THE QUESTION
[CAN WHITE CASTLE?]

* ANY INITIAL CONDITIONS (Y OR N): N

* WHITE CANNOT CASTLE.

abcdefgh

- 24

3.8

7

6

5

4

3

2

1

s:
I ß

ff

abcdefgh

* WHAT IS THE QUESTION
[CAN BLACK CASTLE?]

* ANY INITIAL CONDITIONS (Y OR N): Y
* PLEASE ENTER

[BLACK MOVED LAST]

ANY MORE CONDITIONS (Y OR N): N

* BLACK CANNOT CASTLE.

- 25 -

3.0 RETROGRADE-ANALYSIS -A DEEPER LOOK

Previous chapters have presented a brief introduction to retrograde-

analysis and an overview of RETRO. Before examining RETRO in more

detail, a deeper look at retrograde-analysis is indicated so that the

nature of these problems will become clearer.

Retrograde-analysis problems, unlike conventional chess problems

(with requirements such as 'White to play and mate in three'), are

concerned only with the past history of a position, the normal look-

ahead and search of future moves being replaced by 'look-back',

where all possible reverse moves, or sequence of events, may have to

be considered. A feature of this look-back is that no emphasis is

placed upon the 'best' reverse move, but that all possible reverse

moves, no matter how seemingly bizarre, must be considered as having

equal probability of occurrence. It is common, for instance, for a

pawn to promote not to a queen, but to some other piece.

The general form that such problems take is that a position is

given, perhaps with some attached conditions (for example, that neither

side made a capture on its last move), the task then being to answer

some question such as 'Have any pawn promotions taken place? ' or

'Can White castle? '. No restrictions are placed upon the board

situation presented or type of question posed; these are dependent

only upon the skill of the composer. For most problems the full rules

of chess apply, although there are those which make use of a modified

set of rules. An important form of this latter kind is the

Monochromatic problem, where no piece which starts on a light square

may ever subsequently move to a dark square, and vice versa. (Thus,

for example, a knight may never move and queen-side castling is impossible.)

This subset is small, and has been ignored; it would, for instance,

- 26 -

require its own reverse move generator. Sherlock Holmes was in the

habit of teasing his friends with problems involving board orientation,

no clear indication being given of which direction either side was

playing. This type of question has also been ignored.

Those people addicted to problem-solving but possessing only

minimal chess knowledge may take heart that very little chess

knowledge is required to solve retrograde-analysis problems - little

more, in fact, than knowing how the pieces move. Considerable skill

in deductive reasoning, however, is required, which is why they might

be said to lie on the borderline between logic and chess.

Mention has been made of the book by Raymond Smullyan [1] as

a valuable source book of problems; an earlier collection of problems

is Dawson and Hunsdorfer [3].

In solving retrograde-analysis problems the activity'of a human

solver can be looked at as performing a goal-directed search of a large

graph-structure, where each node corresponds to a state of partial

knowledge about the problem (with the root node representing the original

position and any associated initial. conditions given) and each one

represents the posing and answering of a question (making use of all

the facts known at the time when the question is asked). For the

human solver the selection of appropriate questions (consciously or

unconsciously) is of utmost importance, the solver posing a sequence

of questions in turn, in the style of a Socratic dialogue, until the

problem is solved. In general, the answer to a question may introduce

one or more constraints which affect the answers to subsequent ones.

Thus, asking two questions in the reverse order will not invariably

give the same result, and over a series of questions the order will

generally be of crucial importance.

Any program written to solve retrograde-analysis problems must take

- 27 -

account of (a) the question to be answered, (b) initial conditions

(if any), and (c) the board situation, using this data to find its

way to the desired goal of answering the question.

In the following sections examples are given of the type of

questions that may be asked, initial conditions that may be given,

together with a discussion of the ways in which problems may be

classified.

3.1 What sort of questions are asked?

As already stated, the only restrictions upon retrograde-analysis

problems are the skill and ingenuity of the formulator. The following

table, gleaned from Smullyan [1], gives some idea of the range and

scope of the questions that may be asked:

On what square was the White queen captured?
Prove that a promotion has taken place.
What is the missing piece on h4?
Can Black castle?
White can castle. Can he castle either side?
Is the White pawn on g2 or h2?
A White pawn has been knocked off the board. On what

square does it stand?
White has just moved a pawn to M. Did it come from f2,

f3 or g3?
Deduce that there is a promoted piece on board.
On what square stands the White king?
On what square was the other White bishop captured?
On h6 lies an unknown. Where was it 2 moves ago?
What was the last move?
Is the White queen on d2 original or promoted?

`What colour is the pawn on f2?

Obviously the type of question posed may vary considerably in detail,

but an analysis of the problems in [1] shows that there are three

particularly important types, which in order of popularity are as

follows:

(i) Castling problems (e. g. does White still have
king-side castling rights?).

(ii) Location problems (e. g. does a certain White
pawn stand on square g2 or h2?).

- 28 -

(iii) Missing piece problems (e. g. the piece on square
h4 has fallen off the board; which piece was it?).

3.2 What are the initial conditions?

Problems frequently have associated 'initial conditions' which

give information about the past history of the game. These too can

vary considerably, as the following table shows:

The White king has made under 14 moves.
White moved last.
Black to move. Neither Black nor White captured on his

last move.
White gave Black odds of a queen. Both White knights

are original.
White to move. No underpromotions.
Black to move. Black can castle.
Neither king has moved.
No promoted pieces on board.
Both sides may castle.
No White pawn has promoted.
White gave Black odds of both knights. Neither king has

moved or been in check.
White to move. No captures have been made in the last 4

moves.
Neither king has moved. On f2 stands a Black or a White

pawn. A White knight stands on either f3 or M.

The single most helpful initial condition for the solver is almost

certainly to be told which side moved last, because this implies that

the first step in solving the problem is to make the reverse move(s)

(often there is only one legal reverse move) and look at the consequences.

Something of significance is then usually to be found.

3.3 How RETRO 'understands' the question

Now that some indication has been given of the scope of the questions

that may be asked (and their initial conditions), it would be pertinent

to describe how RETRO 'understands' what it is supposed to do. In

order to avoid any immediate misconception it is pointed out that the

use of the word 'understand' does not imply that RETRO, in any way,

implements some, or any, parts of understanding. It is alsd not a case

- 29 -

of using wishful mnemonics or the simple-mindedness so aptly described

by McDermott [4]. All 'understands' means here is that RETRO must

somehow examine the given question and initial conditions (if any),

then determine what to do about them.

RETRO performs a simple 'keyword' parsing of the question and

conditions, using functions PARS and PARSEC (Appendix G). Having

extracted these, keywords RETRO then sets certain variables, as the

examples in the following tables demonstrate:

Question Keywords Action taken by RETRO

What were the last 4 'last' Find integer 4
moves? 'moves' Assign 4 to CP where CP is the

number of reverse moves that have
to be considered

Can Black castle?

Is there a promoted
piece on board?

What is the missing
piece on square h4?

Is the WP on f2 or
h2?

'Black' BCAS contains a list of possible
castle pieces

'castle' Set BCFLG = length (BCAS); i. e.
BCFLG contains the number of
positions that must be considered

'promoted' Set PPONB =1
'board' This tells RETRO that it is looking

for a promoted piece

'missing' Set MISPQ = [h4]
'square' MISPC =0

f2, h2 RETRO recognises this as a location
'WP' problem and acts LOCFLG true

[[WP f2][WP h2]] is placed in PLOC.

- 30 -

Initial Condition Keywords Action taken by RETRO

Black moved last 'Black' Assign 'B' to LM
'moved' (If it is not known which side moved
'last' last then LM = 'U'.)

No captures permitted 'captures' Find integer 2 and assign to CP
for the last 2 moves Assign 'N' to CAP

(It is assumed that captures are
permitted, i. e. CAP = 'Y',
unless otherwise stated.)

W gave odds of a WQ 'odds' Assign WQ to ODG (odds given)

Both WN are original 'both' Assign [WN WN] to ORP (original
'original' pieces on board)

Black can castle 'can' Look at BCAS. If e. g. BCAS =
'castle' [[[BR a8][Bk e8]][[BR h8][Bk e8]]]

then add [Bk e8] to the list in
PNM (pieces that have not moved) -
nothing may be deduced about the
rooks.

On the other hand, if BCAS = (for
example) [[[BR as][Bk eB]]] then
add both rook and king to PNM.

3.4 Classification of problems

When first meeting something new or novel, something which at first

sight appears to possess a wayward or random nature, then some sort

of pattern is sought, a classification to make this 'something' more

intelligible. Retrograde-analysis is no exception. Due to the

potential wide-ranging nature of retrograde problems it is important

that some form of classification be sought, in order to aid both human

and computer solvers.

There are a number of possible candidates, such as:

a. Whether it is known which side moved last.

b. In terms of the type of question posed.

c. In terms of techniques which must be applied to give
a solution. Such techniques include methods of
determining:

(i) which side moved last;

- 31 -

(ii) the last move played;

(iii), whether a player has 'castling-rights';

(iv) a route for a
.
particular man from its 'home'

square to its current position;

(v) possible pawn home squares;

(vi) which men have been captured (and on what
colour squares);

(vii) the captures made by pawns.

The solution of a complex retrograde-analysis problem will, in

general, require the application of several of the above techniques

in a carefully chosen order.

These classifications are interesting, but objections may be

raised to all of them:

a. is rather too coarse-grained. If it is known which
side made the last move, then the next step is to make
the appropriate reverse move(s) and study the board
situation afresh. If, on the other hand, it is not
known which side made the last move, then what happens?
How could the solver set about attempting a solution?

b. is perhaps too restrictive. A system could be designed
to solve certain types of problem, but would probably be
unable to solve or even attempt to solve problems outside
its domain.

c. leads to problems of control. How would the control know
what techniques to apply - in a particular order - for
all types of board situations and questions?

What is needed is some form of classification that will be of

general applicability, one that would also (hopefully) point to the

trail that must be followed to arrive at a solution.

RETRO is based upon such a classification - it is called a

Significant Event.

3.5 Significant Events (SEs)

An SE occurs when it can be deduced (or observed) that something

of significance has happened on the board. For example, the deduction

- 32 -

'A pawn has promoted' is deemed to be an SE, as is the observation

'A king is in check'. SEs are used in RETRO to focus attention upon

the questions that must be asked in order to effect a solution.

A full discussion of SEs is given in Section 4.2.

The use of SEs in RETRO is akin to the process of problem

solving in Mathematics described by Polya [231, which contains a

number of heuristics. Establishing that a SE has occurred is analogous

to the proving of a mathematical lemma, which then suggests further

questions for the mathematician to ask until a further lemma is proved,

and so on until the original problem is solved.

I

- 33 -

4.0 RETRO KNOVLEDGE REPRESENTATION

4.1 Introduction

Knowledge is represented in RETRO by rules and an adaptation of

the frame concept [23], these frame-like structures being Significant

Events (SEs). The general use of frames is based on the idea of

organising the properties of some object or event to form a prototype.

The strength-of frame systems lies in the fact that those elements that

are conventionally present in the description of an object or event are

grouped together and may thus be accessed and processed as a unit.

Following frame terminology each frame structure contains slots of

information associated with it. A slot filler can either be a constant

or the name of another frame, or even meta-knowledge about the frame

itself; there may, for instance, be general slots containing book-

keeping information, control slots about what to do if the prototype

is confirmed or disconfirmed, and rule slots for summary rules, etc.

Standard restrictions may be applied, such as 'unit' and 'range',

which specify that certain objects are required to be given, together

with a range of values that these objects may take. Default values

may be attached to the unit and range fillers.

In RETRO, the SE may be regarded as a form of frame structure. It

has a name which identifies the concept with which it is concerned. An

SE may also be regarded as having slots, but, unlike the traditional frame

with its 'unit', 'range' and default values, these slots contain only

questions. The questions (which may be added or removed) are questions

the answers to which may lead to the solution of a given problem. Thus

there is no idea of the 'completeness' inherent in traditional frames.

A listing of all the SEs in RETRO, together with their associated questions,

is given in this chapter. Each SE is described, also the significance of

- 33a -

the questions.

The different groups of rules are presented, with examples of

each.

4.2 Significant Events

The RETRO knowledge base includes 4 SEs, which are capable of

solving a significant number of problems. These SEs are as follows:

1. It is known which side moved last. This SE
is extremely helpful and is usually stated
in the initial conditions of the problem.
The implication for the solver is that the
first step towards a solution should be the
generation of all legal reverse moves, after
which make each'reverse move in turn and examine
the board situation. (In many of these
problems it will be found that there is only
one possible reverse move.)

RETRO has a reverse-move generator, PCMOV, which
generates all reverse moves, irrespective of legality.
Legality is checked by-means of LEGCHK, which applies
'legality' rules to the prospective moves.

2. A pawn has promoted. The deduction that a pawn.
has promoted prompts a number of questions to be
posed: 'On what square did the pawn promote? ',
for example. A number of rules have been derived
to enable the deduction to be made.

- 34 -

3. A king is in check. This is an observation
rather than a deduction. RETRO scans the
board using ISKCHK to see if a king is in
check. If both kings are in check then an
'illegal position' is registered.

4. It is known exactly what pieces the pawns have
captured. At first glance this is not a very
exciting SE, but if it is known exactly what
pieces the pawns have captured this could lead
to the determination of the order in which pieces
were captured, and the squares on which they
were captured.

The deduction, or observation, that an SE has been confirmed prompts

questions to be asked. These are discussed in the next section.

4.3 Significant Events - the questions they prompt

a. It is known which side moved last

Although this is a strong SE in the sense that to the experienced

retrograde-analysis solver the action to be taken is obvious - generate

all legal reverse moves and examine their consequences - it is the

weakest in the sense that it does not lead directly to any questions.

Instead, each reverse move is made in turn, which leads to one of the

other SEs being triggered.

In general, it is a common feature for one SE to point to another;

also it is not uncommon for an SE to call itself recursively.

b. A pawn has promoted

This SE prompts a number of questions that RETRO attempts to answer.

These questions are not claimed to be exhaustive.

Question 1: On what square did the pawn promote?

Routine. WiSQPP returns the following:

1. A list of possible promotion squares.

2. A list of possible promotion capture squares.

- 35 -

3. A list of those squares where the promoting pawn
crossed the last but one rank.

The consequences of these lists are as follows:

They may be involved in a possible castle situation; i. e. if

a rook or king is now on the promotion square then it must have moved

to allow the promotion. If a king, then a castle is not possible;

if a rook, then a castle is not possible on this side.

It may be possible to deduce that for every square upon which the

pawn could have promoted then an opposing pawn also promoted. This is

not an uncommon occurrence. The deduction that one pawn has promoted

may lead to the deduction that an opposing pawn has-also promoted.

Likewise it may be possible to deduce that for every piece a pawn

could have captured on promoting then an opposing pawn also promoted.

One of the squares where the promoting pawn crossed the last but

one rank may have placed the opposing king in check. This again could

be of significance in a possible castle situation, for if a king has

at any time been placed in check then a castle is not possible.

Question 2: Is the promoted piece on board?

Routine ISPPB is used to see if it is possible to deduce that

a promoted piece is on the board.

Consequences:

`A given question may be answered. A board situation may have

been presented and the question asked: 'Is there a promoted piece on

board? '

If it can be deduced that a promoted piece is on board then ask

Question 3: 'What is the promoted piece? '

If no deduction can be made then see if it is possible to determine

upon what square the promoted piece could be captured. If this'is

feasible then consider two possibilities:

- 36 -

a. The promoted piece is on board.

b. The promoted piece was captured on a certain square.

Question 3: What is the promoted piece?

A list of possible promoted pieces is returned by routine WISPP.

Consequences:

It may be possible to determine exactly what the promoted piece

is. If, for example, the promoted piece turns out to be a White rook,

then this rook could be involved in a possible castling situation.

If at this point a solution has not been found RETRO checks to

see if it has been determined that a promoted piece is on board. If

this is the case then RETRO goes straight to Question 5; otherwise it

asks Question 4.

Question 4: The promoted piece is not definitely known to be on

board; can we find a square on which it was possibly

captured?

The criterion for this is that the opposing pawns must have made

only one capture: for example, if a White pawn has promoted then the

Black pawns must have made only one capture.

If no square is found then RETRO asks Question 5; otherwise it

states that either the promoted piece is on board or was captured on

a particular square.

Question 5: For each square upon which the pawn promoted, or for each

piece possibly captured on promoting, can it be deduced

that an opposition pawn promoted?

RETRO may have determined that the pawn could possibly have promoted

upon more than one square. If this is the case then RETRO assumes that

the pawn promoted on each square in turn to see if this leads to the

conclusion that an opposing pawn must have promoted.

On the other hand, RETRO may have found just one square upon which

- 37 -

the pawn could have promoted, and if this is a capture square then it

asks what pieces could have been captured. For each piece in turn

RETRO then determines if this leads to the deduction that an opposition

pawn must have promoted.

c. A king is in check

Routine ISKCHK scans the board to see if a king is in check.

One of the following is returned:

1. Nil, if a king is not in check.

2. The king in check and the checking piece: for example,
[Wk WB g1] - the White king is in check from the
White bishop on g1.

3. False. This indicates that both kings are in check -
an illegal situation.

Consequences:

If a king is in check, find out how this happened. The following

routines are used:

CANCHK Could the checking piece have moved to its
checking position other than along the
checking line?

MOVLIN Could a piece have moved from the checking
line to uncover check?

MOVCHK Could a piece have moved from the checking
line to uncover check and then be captured
by the king?

PROM Could a pawn have moved from the checking
line - to uncover check - and then promoted?

d. It is known exactly what pieces the pawns have captured

This knowledge can determine the order in which pieces were captured,

leading to the determination of what piece was captured on what square.

This may have indeed been the question, but this SE can also provide

useful information, by asking 'What was the home square of the piece

captured? '. This could show, for example, that a White rook involved

in a possible castle would not be the original White rook; otherwise the

- 38 -

capture sequence could not have occurred.

4.4 Rules

RETRO contains 29 rules, which are grouped according to function.

These rules have been derived from a consideration of the problems in

Smullyan [1], and are not claimed. to be exhaustive or exclusive; it

may be that further study of retrograde-analysis problems would reveal

additional rules.

The rule groupings are as follows:

1. Pawn promotion rules (PROMRULE) 8
2. Legality rules for reverse moves (LEGRULE) 8
3. 'Castling' rules (CASRULE) 7
4. 'Is the promoted piece on board? ' rules (IPBRULE) 2
5. 'What is the promoted piece? ' rules (WPPRULE) 4

Each rule is stored as a 'triple'; for example, Rule 7, which is a pawn

promotion rule, is stored as:

RULE007 Category PROMRULE
RULE007 Premise [RULE7]
RULE007 Explain [R7EX]

'Category' is the group to which the rule belongs.

'Premise' is the function to be evaluated.

'Explain' is the function which gives an explanation of the rule.

A list of the rule numbers is kept in ALLRULES; i. e.

ALLRULES = ERULE001 RULE002 ...]

When, ' for instance, the pawn promotion rules are called, the 'rules are

selected one by one from ALLRULES, and if the category is PROMRULE then

the premise is evaluated, returning true or false. If 'true' is

returned then an entry is made in a dynamic data base (Section 6.2),

which is an ongoing record of deductions made by RETRO.

Examples of each type of rule are as follows:

RULE001 PROMRULE

If a pawn captured on promoting and the only piece it could

- 39 -

have captured is an opposition pawn

Then an opposition pawn promoted.

RULE012 LEGRULE

Own king in check and no way found for this to happen.

RULE022 CASRULE

The promoting pawn placed the opposition king in check from

a certain square so Black/White cannot castle

Here actual values for the square are printed, and whether it

is Black or White is determined.

RULE024 IPIRUL

If 1 pawn captured on its 1st move

and could only have captured an opposition pawn

and the opposition pawn could not have made any captures

and the home square of the capturing pawn is on the

opposition pawn promotion file

Then the pawn captured before the opposition pawn promoted.

RULE027 WPPRUL

If a side has more than one bishop travelling on the same colour

'Then one of them must be promoted.

Listings of all 29 rules are given in Appendices A-E.

- 40 -

5.0 RETRO CONTROL

The control facility in RETRO lies in the SEs, for at any one

time RETRO is processing a single SE. This association of control

with SEs provides the following advantages:

It allows domain experts to specify different control

tasks for each SE.

The control knowledge is separate from the inference

rules.

Entire SEs may be added or removed.

Flexibility to define new questions (for the SEs) as

required.

The control process is best illustrated by example.

5.1 How RETRO works

1. Smullyan [11, p. 58

8

7

6

5

4

3

2

1

abcdefgh

Question: Can White castle either side?

Initial conditions: Both White knights are original.

White gave odds of a queen.

The question is scanned by the word-parser PARS, the keywords

being 'WHITE' and 'CASTLE'.

WCAS, the list of White castle pieces, contains

- 41 -

[[[WR a1][Wk e1]][[WR h1][Wk e1]]], i. e. 2 possible castle situations,

so WCFLG is set to 2.

The initial conditions are now scanned by the word-parser PARSEC,

which assigns the list [WN WN] to list ORP (original pieces still on

board), and [WQ] is added to list ODG (odds given).

The initial variables are set up by function SETP, as described in

Section 2.3, which deletes the pieces given in ODG from the list of

pieces that could be captured on board (WLEFT).

RETRO now seeks an SE, using the information that it has been

given and derived, and having concluded that a pawn has promoted

passes control to this SE. The SE now asks the questions associated

with it.

Question 1: On what square did the pawn promote?

This information is derived by function WHSQPP, which returns

the following lists:

PSQS possible promotion squares

LIFC possible capture squares on promoting

XYLIFS possible squares upon which the pawn crossed

the 7th rank

CHKFLG now looks at the castle rules to see if this information

has any bearing upon the castling situation. It does not, so on to

the next question.

Question 2: Is the promoted piece on board?

Function ISPPB uses its associated rules but is unable to make

a deduction, so to

Question 3: What is the promoted piece?

Function WISPP determines the promoted piece to be a White rook.

CHKFLG looks to the castling rules and this time a rule is triggered,

so 1 is subtracted from WCFLG (the number of castle positions to consider)

- 42 -

whilst the rook causing the trigger is deleted from WCAS (the list

of possible'castle candidates).

SE control now asks if it is possible to find the square upon

which the promoted piece could be captured by a pawn. The answer

is yes [h6].

Now printed is:

'Assuming the promoted piece is on board'

then the deductions made so far,

All flags are reset, then printed is:

'Assuming the promoted piece was captured on h6'.

Control realises that the capturing pawn (of the promoted piece) was

captured after promotion, so it makes a reverse move, and resets all

variables by SETP.

Question 4: For each square upon which the pawn promoted can it

be deduced that an opposition pawn also promoted?

Using the pawn promotion rules, the answer is yes, the Black

pawn from b7. promoted.

Question 5: On what square did this pawn promote?

WHSQPP returns al.

CHKFLG now looks at the castle rules and prints the result of

its deductions.

This problem was a favourite of Sherlock Holmes, being composed

by his brother Mycroft. As Holmes commented:

'The interesting thing about this problem is that there is no
way of knowing on which side White can castle; all that can
be shown is that he cannot castle on both sides. '

The RETRO solution, as printed, is given below:

ASSUMING THE PROMOTED PIECE IS ON BOARD
WE CAN POSSIBLY CASTLE WITH THE FOLLOWING
[WR all

ASSUMING THE PROMOTED PIECE WAS CAPTURED ON [h6]
WE CAN POSSIBLY CASTLE WITH THE FOLLOWING
[WR h1]

- 43 -

EXPLANATION REQUIRED (Y OR N): Y

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT
CAN BE CAPTURED ON BOARD AND THESE OPPOSITION PIECES INCLUDE
A PAWN THAT COULD NOT HAVE REACHED A CAPTURE SQUARE
THEN A PAWN PROMOTED [RULEOO1]

THE WP FROM e2 PROMOTED

THE PAWN PROMOTED ON ONE OF'THE FOLLOWING SQUARES
[g8 f8 e8]

ON PROMOTING IT CAPTURED ON ONE OF THE FOLLOWING SQUARES
[g8 e8]

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE. FOLLOWING SQUARES
[g7 f7]

IF ALL POSSIBLE PROMOTION PIECES ARE PLACED ON THE
PROMOTING SQUARES
THEN ONLY THE FOLLOWING CAN MOVE

[WN WR]

THE PROMOTED PIECE IS AS FOLLOWS
[WR]

IF THE PROMOTED PIECE IS THE WR ON hl THEN W CANNOT
CASTLE ON THIS SIDE

THE PROMOTED PIECE IS ON BOARD OR WAS CAPTURED ON ONE OF
THE FOLLOWING SQUARES
[h6]

IF ONE SIDE HAS A BISHOP CAPTURED ON ITS HOME SQUARE AND
THERE IS A BISHOP ON BOARD TRAVELLING ON THE SAME COLOUR
SQUARE THEN A PAWN PROMOTED [RULEO04)
IF A PAWN CAPTURED ON PROMOTING AND THE ONLY PIECE IT
COULD HAVE CAPTURED IS AN OPPOSITION PAWN
THEN AN OPPOSITION PAWN PROMOTED [RULE007)

THE BR FROM b7 PROMOTED

FOR EACH SQUARE ON WHICH THE PAWN MAY HAVE PROMOTED OR
CAPTURED IT HAS BEEN DEDUCED THAT AN OPPOSITION PAWN
ALSO PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[al

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[a2]

A PAWN PROMOTED ON al SO THE WR MUST HAVE MOVED
SO W CANNOT CASTLE ON THIS SIDE

- 44 -

2. Smullyan [1], p. 39

8

7

b

5

4

3

2

1

Question: Can Black castle?

Initial conditions: Black moved last

The question is scanned by the word-parser PARS, the keywords

being 'BLACK' and 'CASTLE'.

BCAS, the list of Black castle pieces, contains [[[BR a8][Bk eß]]],

i. e. 1 possible castle situation, so BCFLG is set to 1.

The initial condition is scanned by PARSEC, which sets the

variable LM (last move) to W.

RETRO now acts upon the SE 'Black moved last' and generates all

possible reverse moves for Black.

RETRO recognises (via BCFLG) that it is dealing with a castling

problem for Black so it deletes all reverse moves involving the Black

rook and king. (If either of these moves then obviously Black cannot

castle.)

A legality check is now applied to the remaining moves, leaving

as the only possible moves:

[[BP g6 f7][BP a3 a4]]]

i. e. the only two possible reverse moves for Black are a Black pawn

from g6 to f7, and a Black pawn from a3 to a4.

RETRO now considers each move in turn.

a. The Black pawn on g6 is moved to f7 and SETP is run
to reset all variables.

abcdefgh

- 45 -

CHKFLG is now run. Since a 'castle' flag is set RETRO enters

the castle rules and finds that with this pawn on its home square the

Black king must have moved to let out a Black rook that was captured

on board.

So if this were Black's last move then Black cannot castle.

b. The Black pawn is moved from a3 to a4.

CHKFLG finds no significance in this move, so RETRO looks for an

SE. It finds that the White pawn from d2 must have promoted, so now

asks the questions associated with this SE.

Question 1: On what square did the pawn promote?

Function WHSQPP returns the information that the pawn promoted

on d8 and crossed the 7th rank on d7.

CHKFLG looks through the castle rules and finds that the promoting

White pawn must have placed the Black king in check.

So, with this move also, Black cannot castle.

This problem shows how one SE may call another SE, which required

only one of its associated questions to be asked before an answer was

found.

The printed RETRO solution is given below:

BLACK CANNOT CASTLE

EXPLANATION REQUIRED (Y OR N): Y

IF THE KING OR ROOK MOVED THEN B CANNOT CASTLE
THE FOLLOWING MOVES DELETED

[[BR aB bB][BR a8 c8][BR aB dB][Bk e8 d7][Bk eB d8][Bk e8 e7]
[Bk e8 f7][Bk eB fB]]

INITIAL REVERSE MOVE LIST

[[BP g6 f7][BP e5 f6][BP e5 d6][BP e5 e6][BP e5 e7][BP a3 a4]]

PIECE MOVED FROM CHECK POSITION - FOLLOWING DELETED

[[BP e5 e6]]

TOO MANY PAWN CAPTURES - FOLLOWING DELETED

- 46 -

[[BP e5 d6][BP e5 f6]]

NUMBER OF PIECES CAPTURED ON BOARD LESS THAN OPPOSITION PAWN
CAPTURES - FOLLOWING DELETED

[[BP e5 e7]]

REVERSE MOVE LIST

[[BP g6 f7][BP a3 a4]]

BP MOVED FROM g6 TO f7

THE BK ON e8 MOVED TO LET OUT A BR THAT WAS CAPTURED ON BOARD
SO B CANNOT CASTLE

BP MOVED FROM a3 TO a4

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT CAN BE
CAPTURED ON BOARD AND THESE OPPOSITION PIECES INCLUDE A PAWN
THAT COULD NOT HAVE REACHED A CAPTURE SQUARE
THEN A PAWN PROMOTED [RULE001]

THE WP FROM d2 PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[d8]

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[d7]

THE PROMOTING WP PLACED THE BK IN CHECK FROM d7 SO
B CANNOT CASTLE

5.2 What happens if RETRO is unable to find a solution?

If RETRO, after going through all the SEs in its slots, is unable

to find an initial SE, then it prints:

'Unable to find an initial SE'

and exits.

If, on the other hand, it is unable to determine a solution after

finding an SE and asking the appropriate questions, then it prints out

the contents of its dynamic data-base, with explanations. This will

show what deductions it has been able to make.

- 47 -

5.3 Illegal situations

Sometimes an illegal situation is encountered; for instance, it

may have been deduced that a pawn captured on promoting, but subsequently

it is shown that there was no piece that it could capture. When this

happens ILLFLG is set to 1.

It will be recalled that after each question has been asked CHKFLG

looks again at the situation. When CHKFLG detects that ILLFLG has

been set it realises that an illegal. situation has occurred and that

this line of questioning will be unproductive. Control is therefore

handed back to RETRO.

Illegal situations are implicit in location problems, the selection

of the 'wrong' square invariably leading to this condition.

f

- 48 -

6.0 KNOWLEDGE ACQUISITION AND EXPLANATION

A basic premise of most expert systems is the ability of the

system to present explanations for its deductions. Otherwise it is

unlikely to be accepted by highly skilled and professional users.

The ability to acquire new knowledge and modify existing knowledge

is equally important, for knowledge bases are unlikely to remain in

a static condition but will require modification in the light of

experience.

6.1 Rule grouping

As described in Section 4.4, RETRO groups rules according to

function. ' There are rules for:

1. Deducing that a pawn has promoted - PROMRULE

2. Determining the legality of reverse moves - LEGRULE

3. Determining whether or not a side may castle - CASRULE

4. Determining if the promoted piece is on board - IPBRULE

5. Determining the possible promoted piece - WPPRULE

These rules are listed in Appendices A-E.

Some of these rules are obvious, from the laws of chess, but others

have been derived from a consideration of the problems in Smullyan [1].

It is entirely possible that the study of new problems will bring

additional rules to light, which will need to be added to their

respective groups.

Suppose that a new rule (for example, RULE961) needs to be added

to the knowledge base, where RULE061 deals with castling situations,

then the following procedure must be carried out:

a. Add 'RULE061' to ALLRULES, where ALLRULES is a list

of all the rules used by the system; e. g. [RULE001
RULE002 ...

]

- 49 -

b. Add to RULES

RULL0 61 category CASRULE
RULF1761 premise RULEU, 61
RULEP61 explanation REX61

where the premise RULE061 is the function that
evaluates the rule and REX61 is the free text
explanation of the rule.

Thus, when RETRO is looking at a possible castle situation, it scans

the list of rules in ALLRULES to select all rules with category

CASRULE which are then evaluated.

6.2 The Dynamic Data-Base (DDB)

The Dynamic Data-Base is a list which contains an ongoing record

of deductions made. As an example, it could look something like this:

[[[WHSQPP][[hl g1 fl][hl f1][h2 g2]]][R50EX]][[DPPROM] NIL
[R76EX1][[DPPROM][[[BP g7]]][R52EX]][[PROMRULE][BP g7][R8EX]]
[[PROMRULE][BP g7][R5EX]][[IPPRUL][a6][R64EX]][[CHCK][BB BN BQ BR]
[WCAPEX]][[WHSQPP][[c8 b8][bB][b7 c7]][R50EX]][[DPPROM][[[
WP d4]]][R52EX]][[PROMRULE][WP d4][RIEX1]]

Each entry consists of 3 items:

1. The name of the function used or rule triggered;

2. The result of the deduction;

3. The name of the function that has an explanation for
what has happened.

The above list would translate as follows (remembering to reverse the

list):

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT
CAN BE CAPTURED ON BOARD AND THESE OPPOSITION PIECES INCLUDE
A PAWN THAT COULD NOT HAVE REACHED A CAPTURE SQUARE
THEN A PAWN PROMOTED [RULE001]

THE WP FROM d4 PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[c8 b8]

ON PROMOTING IT CAPTURED ON ONE OF THE FOLLOWING SQUARES
[b8]

- 50 -

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES'
[b7 c7]

POSSIBLE CAPTURES BY THE PAWN ARE
[BB BN BQ BR]

THE PROMOTED PIECE IS ON BOARD OR WAS CAPTURED ON ONE OF THE
FOLLOWING SQUARES
[a6]

IF ONE SIDE HAS A BISHOP CAPTURED ON ITS HOME SQUARE AND
THERE IS A BISHOP ON BOARD TRAVELLING ON THE SAME COLOUR
SQUARE THEN A PAWN PROMOTED [RULE004]

IF A PAWN MADE N CAPTURES IN MOVING FROM ITS HOME SQUARE
TO A CAPTURE PROMOTION SQUARE AND THE ONLY PIECES AVAILABLE
FOR CAPTURE ARE N OPPOSITION PAWNS
THEN AN OPPOSING PAWN PROMOTED [RULE008]

THE BP FROM g7 PROMOTED

FOR EACH SQUARE ON WHICH THE PAWN MAY HAVE PROMOTED OR
FOR EACH PIECE IT MAY HAVE CAPTURED ON PROMOTING IT HAS
BEEN DEDUCED THAT AN OPPOSITION PAWN ALSO PROMOTED

THE PAWN PROMOTED ON ONE OF. THE FOLLOWING SQUARES
[h1 gl f1 l

ON PROMOTING IT CAPTURED ON ONE OF THE FOLLOWING SQUARES
[h1 f1 l

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[h2 f2]

- 51 -

7.0 RETRO - SOME EXAMPLES

In this section a number of problems solvable by RETRO are

shown. These problems are of varying degrees of difficulty, involving

different SEs. In each case RETRO's solution is presented, followed

by a detailed look at the way in which it was found.

Problem 1 (Smullyan [11, p. 16)

8
7

11 NO,

6N

5ý

4

y
3
2

abcdefgh

* WHAT IS THE QUESTION
[WHAT WERE THE LAST 2 MOVES]

* ANY INITIAL CONDITIONS (Y OR N): Y
* PLEASE ENTER

[BLACK MOVED LAST]

* ANY MORE CONDITIONS (Y OR N): N

* BK FROM a7 TO a8
* WN FROM b6 TO a8

*EXPLANATION REQUIRED (Y OR N): Y

INITIAL REVERSE MOVE LIST
[[Bk a8 b8][Bk a8 b7][Bk aB a7]]

KING MUST NOT BE ADJACENT TO KING - FOLLOWING DELETED
[[BK a8 b7][Bk aB b8]]

REVERSE MOVE LIST
[[Bk a8 a7]]

THE BK IS IN CHECK FROM THE WB ON gl

A KING IS IN CHECK, POSSIBLE WAYS IT COULD HAPPEN AS FOLLOWS
[[WN a8 b6]]

BK IN CHECK. WN MOVED FROM aB to b6.

- 52 -

Explanation

WHAT WERE THE LAST 2 MOVES

RETRO parses this line with the word-parser PARS, the crucial

wonis being 'LAST' and 'MOVES'. Having extracted these RETRO then

scans the question for an integer value, in this case 2, which it assigns

to variable CP (the number of reverse moves being considered).

BLACK MOVED LAST

This initial condition is parsed by PARSEC, the crucial words

being 'MOVED' and 'LAST'. RETRO then looks for either 'BLACK' or

'WHITE', or 'B' or 'W'. In this case it is 'BLACK', which it assigns

to variable-LM (Who moved last?).

All reverse moves are now generated for BLACK by the reverse move

generator PCMOV, and this initial reverse move list is printed. The

moves are now subjected to a legality check (Appendix A), two being

deleted for the obvious reason that a king may not stand next to its

opponent's king.

This leaves one reverse move, which RETRO makes, updating the board.

An SE is now sought, in this case 'A king is in check'. RETRO

function KCHECK now looks for possible ways this could have happened,

finding that a White knight must have moved from b6 to a8 (being

captured by the Black king).

RETRO now checks CP to see if there are any more reverse moves to

be found, and, on finding that it has the required number, prints them.

- 53 -

Problem 2 (Smullyan [1], p. 89)

8

7

6

5

4

3

2

1

abcdefgh

* WHAT IS THE QUESTION
[IS THE WP ON f2 OR g2l

ANY INITIAL CONDITIONS (Y OR N): Y
* PLEASE ENTER

[BLACK CAN CASTLE]

* ANY MORE CONDITIONS (Y OR N): N

* WP IS ON f2

* EXPLANATION REQUIRED (Y OR N): Y

IF THE PAWNS CAPTURED 8 PIECES AND AN OPPOSITION PAWN
COULD NOT HAVE REACHED A CAPTURE SQUARE
THEN A PAWN PROMOTED [RULE O! 72]

THE WP FROM h2 PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[g8]

ON PROMOTING IT CAPTURED ON ONE OF THE FOLLOWING SQUARES
[g8]

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[h7 l

IF A PAWN CAPTURED ON PROMOTING AND THE ONLY PIECE IT
COULD HAVE CAPTURED IS AN OPPOSITION PAWN
THEN AN OPPOSITION PAWN PROMOTED [RULEO07]

THE BP FROM h7 PROMOTED

FOR EACH SQUARE ON WHICH THE PAWN MAY HAVE PROMOTED
OR FOR EACH PIECE IT MAY HAVE CAPTURED ON PROMOTING
IT HAS BEEN DEDUCED THAT AN OPPOSITION PAWN ALSO PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[g1]

- 54 -

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[g2]

Explanation

IS THE WP ON f2 OR g2

In parsing this question the crucial items are f2 and g2, which

are squares on the board. RETRO recognises that it has a location

problem on its hands so scans the question for the piece under

consideration. On finding WP it assigns [WP f2] and [WP g2] to

list PLOC (list of possible locations).

BLACK CAN CASTLE

RETRO finds 'CAN' and 'CASTLE' so looks for 'BLACK' or 'WHITE',

or 'B' or 'W'. In this case it is 'BLACK', so RETRO then looks at

BCAS, which lists the possible castling combinations for BLACK.

BCAS here is

[[[BK e8][BR hß]]]

Since only one rook is involved 'BLACK CAN CASTLE' implies that neither

the Black king on eB nor the Black rook on h8 has moved. RETRO

therefore adds [BK e8] and [BR h8] to the list PNM (pieces that

have not moved).

A feature of location problems is that if the location piece is

on an incorrect square then at some time an illegal situation will

be encountered. RETRO uses each of the possible location squares

to seek this illegal situation, which it tags.

RETRO now seeks an SE, finding by RULE002 that a White pawn has

promoted. WHTAB contains a list of possible White promoted pawn

home squares, which is used by function WHSQPP to decide from which

square the promoted pawn came. The only possible square is h2, so

RETRO prints

THE WP FROM h2 PROMOTED

- 55 -

RETRO now asks the questions associated with this SE.

Question 1: On what square did the pawn promote?

Function WHSQPP returns the following:

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[g8]

ON PROMOTING IT CAPTURED ON ONE OF THE FOLLOWING SQUARES
[gal

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[h7]

Note: The above lists contain only one entry. If there is more
than one entry then any subsequent deductions involving the
list must consider each square in turn to see if the deduction
holds true for each of them.

Question 2: Is the promoted piece on board?

No deductions made.

Question 3: What is the'promoted piece?

No deductions as to the actual piece can be made.,

Question 4: If the answer to Question 2 is not 'Yes' then RETRO

asks if it is possible to find the square upon which

it was possibly captured.

No deductions can be made.

Question 5: For each square upon which the pawn promoted can it

be deduced that an opposition pawn also promoted?

RULE007 deduces that a Black pawn has promoted, so, utilising

BHTAB and WHSQPP, RETRO finds that the only possible home square of the

Black pawn is h7.

THE BP FROM h7 PROMOTED

RETRO now returns to:

Question 1: On what square did the pawn promote?

Function WHSQPP returns

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
(9l]

- 56 -

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[g2]

At this point RETRO finds that with the location pawn on g2 an

illegal situation occurs, so concludes that the pawn is indeed on f2.

Problem 3 (Smullyan [1], p. 54)

8

7

6

5

4

3

2

1

h abcdef9

* WHAT IS THE QUESTION
[CAN WHITE CASTLE]

* ANY INITIAL CONDITIONS (Y OR N): N

* WHITE CANNOT CASTLE

EXPLANATION REQUIRED (Y OR N): Y

THE WP ON b4 CAPTURED A [BR BR]
THE BP ON g5 CAPTURED A [WR]

A BP CAPTURED THE ORIGINAL WR ON hl

THE PAWNS CAPTURED IN THE FOLLOWING ORDER

THE BP ON g5 CAPTURED A WR FROM hl
THE WP ON b4 CAPTURED A BR

Explanation

Parsing the question finds 'CASTLE' as the crucial word.

RETRO then looks at the question to discover 'BLACK' or 'WHITE',

or 'B' or 'W', here finding 'WHITE'. The list of possible castle

pieces is in WCAS, which is

[[[WR hl][WK e1]]]

WCFLG (White 'castle' flag) is set to 1 (length of WCAS)

11

- 57 -

There are no initial conditions.

RETRO now seeks an SE, finding that in this case it is possible

to determine exactly what pieces the pawns have captured; that is,

the Black pawn on g5 captured a White rook.

The next move by RETRO is to form lists of the possible pawn

moves. If the pawns had captured on their first move then obviously

there would only be one move for each pawn, but here it is not known

whether the pawns captured on their first move or the second. This

is immaterial since it is the order of pawn captures that is required,

so RETRO assumes that the captures occurred on the second move and

thus forms the following move lists for each side:

[[BP h7 h6][BP h6 g5]]

[[WP a2 a3][WP a3 b4]]

These lists are now subject to a 'sort' in order to determine

the sequence of captures, and, if possible, the home square of the

piece captured. - This is done by making moves in turn to see if the

opposing pawn could actually make the capture that it was supposed to

make, or was the possible captured piece constrained. In this instance

the 'sort' works as follows:

Both pawns are placed-on their home squares: the Black pawn on

h7 and the White pawn on a2.

The White pawn is moved from ä2 to a3.

The Black pawn is moved from h7 to M.

The White pawn is moved from a3 to b4. What could the pawn have

captured on b4? Due to the positions of the Black pawns the only

possibility is a Black knight, but both Black knights are on board,

and since all eight Black pawns are also on board there have been no

promotions.

Therefore this sequence of pawn moves is incorrect.

- 58 -

Placing the pawns back on their home squares and moving the

Black pawn first leads to the conclusion that the Black pawn must

have captured the original White rook from h1 since the rook on al

was constrained at the time.

CHKFLG is now invoked, which, seeing that a castle flag is set,

utilises the castle rules, which determine that White cannot castle

since the rook on h1 is not original.

Problem 4 (Smullyan [1], p. 56)

8
7 It t
6 i' Al
5 4

3fJ4 tl

1 2%,,,,
Fýý

ON M" 1 0'

abcdefgh

* WHAT IS THE QUESTION
[CAN EITHER SIDE CASTLE]

* ANY INITIAL CONDITIONS (Y OR N): Y

* PLEASE ENTER
[NEITHER QUEEN HAS MOVED OFF HER OWN COLOUR]

ANY MORE CONDITIONS (Y OR N): N

* BLACK CANNOT CASTLE
* WHITE CANNOT CASTLE

* EXPLANATION REQUIRED (Y OR N): Y

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT
CAN BE CAPTURED ON BOARD AND THESE OPPOSITION PIECES
INCLUDE A PAWN THAT COULD NOT HAVE REACHED A CAPTURE SQUARE
THEN A PAWN PROMOTED [RULE001]

THE WP FROM a2 PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[a8]

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[a7]

- 59 -

A PAWN PROMOTED ON a8 SO THE BR MUST HAVE MOVED
SO B CANNOT CASTLE ON THIS SIDE

IF 1 PAWN CAPTURED ON ITS 15T MOVE
AND COULD ONLY HAVE CAPTURED AN OPPOSITION PAWN
AND THE OPPOSITION PAWN COULD NOT HAVE MADE ANY CAPTURES
AND THE HOME SQUARE OF THE CAPTURING PAWN IS ON THE OPPOSITION
PAWN PROMOTION FILE
THEN THE PAWN CAPTURED BEFORE THE OPPOSITION PAWN PROMOTED [RULE024]

IF ALL POSSIBLE PROMOTION PIECES ARE PLACED ON THE
PROMOTING SQUARES
THEN ONLY THE FOLLOWING-CAN MOVE
[WR]

THE PROMOTED PIECE IS AS FOLLOWS
[WR]

IT THE PROMOTED WR IS ON g1 THEN THE WK
MUST HAVE MOVED TO"LET IT REACH ITS SQUARE, SO W CANNOT CASTLE

IF THE PROMOTED PIECE IS THE WR ON al THEN W CANNOT CASTLE
ON THIS SIDE

Explanation

In parsing the question by the word-parser PARS, the crucial

word is 'CASTLE'. RETRO looks at the question to discover 'B' or

'W', or 'BLACK' or 'WHITE', and not finding any of these assumes that

the castling rights of both Black and White are involved.

The lists of possible 'castles' for each side are in BCAS and

WCAS, which are, respectively:

[[[BR aB][BK e8]]1, [[[WR al][WK e1]]]

i. e. one possible castle for each side. Therefore both WCFLG and

BCFLG are set to 1.

For the initial condition the critical words are 'COLOUR' and

'MOVED'. RETRO then finds 'QUEEN' and 'NEITHER', so adds [Wq BQ]

to COLLST, which is a list of pieces that have not moved off their

own colour.

RETRO now seeks some SEs, finding that a pawn has promoted.

IF THE PAWNS HAVE CAPTURED ALL OPPOSITION PIECES THAT
CAN BE CAPTURED ON BOARD AND THESE OPPOSITION PIECES
INCLUDE A PAWN THAT COULD NOT HAVE REACHED A CAPTURE SQUARE'
THEN A PAWN PROMOTED [RULE001]

- 60. -

As before, RETRO uses WHTAB and WHSQPP, reaching the conclusion

that the home square of the'promoted pawn is a2.

THE WP FROM a2 PROMOTED

RETRO now asks the questions. associated with this SE.

Question 1: On what square did the pawn promote?

Function WHSQPP returns the following:

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[a8]

IT CROSSED THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[a7]

CHKFLG is now consulted, and, since BCFLG/WCFLG have values, RETRO

looks to its castling rules with regard to the above information.

A PAWN PROMOTED ON aB SO THE BR MUST HAVE MOVED SO B
CANNOT CASTLE ON THIS SIDE

BCFLG is reduced by 1, which means that BCFLG is now zero, but

since WCFLG has a value RETRO realises it has not finished.

Question 2: Is the promoted piece on board?

RETRO finds that the promoted piece must be on board:

IF 1 PAWN CAPTURED ON ITS 1ST MOVE
AND COULD ONLY HAVE CAPTURED AN OPPOSITION PAWN
AND THE OPPOSITION PAWN COULD NOT HAVE MADE ANY CAPTURES
AND THE HOME SQUARE OF THE CAPTURING PAWN IS ON THE OPPOSITION
PAWN PROMOTION FILE
THEN THE PAWN CAPTURED BEFORE THE OPPOSITION PAWN PROMOTED [RULEO24]

ICHKFLG is again utilised, RETRO looking at its castling rules in

response to a value in WCFLG. This time no deductions are made.

Question 3: What is the promoted piece?

RETRO uses function WISPP, finding that if all possible promotion

pieces are placed on the promotion square aB then only a White rook would

be able to move.

THE PROMOTED PIECE IS AS FOLLOWS
[WR]

- 61 -

CHKFLG still having a value in WCFLG, RETRO looks at its castling

rules, finding that:

IF THE PROMOTED WR IS ON gl THEN THE WK
MUST HAVE MOVED TO LET IT REACH ITS SQUARE, SO W CANNOT CASTLE

IF THE PROMOTED PIECE IS THE WR ON al THEN W CANNOT CASTLE ON
THIS SIDE

WCFLG is now reduced by one, setting it to zero.

RETRO scans its flags, and on seeing that none is set concludes

that it has finished.

- 62 -

8.0 RELATED WORK

Retrograde-analysis, despite having the approval of Sherlock

Holmes, does not appear to be a popular field for research. In

fact, the only related work that can be determined is the thesis of

Robert Filman [101; this is therefore discussed in some detail.

First an overview is presented, followed by a. discussion and comparison

with RETRO.

8.1 Overview

The aim of the thesis is a consideration of the general issues

in the computer representation of knowledqe; that is, considering

the criteria for a general representation in contrast to first selecting

the domain of application and then fitting the knowledge structure.

This consideration is based upon the following difficult retrograde-

analysis problem (a tour de force for Holmes):

8

7

6

5

4

3

2

1

t

abcdefgh

Question: What is the missing piece on h4?

This problem was selected because its solution 'requires' both

deductive and observational inferences, where deductive inference is

applied in the usual sense, acknowledging, however, that human reasoning

proceeds by the immediate recognition of results, 'observation'.

Thus, for example, a human player may see that a Black king is in

- 63 -

check. This interaction between deductive and observational

inferences is a major emphasis; indeed, the title of the thesis

is 'The Interaction of Observation and Inference'.

The representation selected is that of first-order logic, where

predicates, functions and constants are declared in this logical

system; knowledge being expressed as axioms of the logic. The

proof of the above problem lies within these axioms and is meant to

be an examination of the reasoning that would be involved in the

solution of retrograde-analysis problems. This representation system

seeks deductions from these 'first principles'.

In introducing his observational facility Filman dwells upon

the strengths and weaknesses of declarative and procedural knowledge

before attempting a synthesis of the two, by means of predicate

calculus (declarative) plus a means for evaluating the values of

predicates and functions (procedural). This semantic procedural

attachment is dubbed 'The Chess Eye', to which analogies are given;

for example, 'The Mechanic's Eye'. Thus the observation side is

performed by function evaluation in a LISP model structure.

The proof checker used for the first-order logic is FOL [16).

After this introduction a 'human' solution to the problem is

presented, step by step, although many steps have been included that

a human would have avoided (for example, statements to exclude kings

in certain situations). This solution is offered as a comparison to

the FOL proof.

.
Following this presentation of the problem together with its

representation formalism, considerable space is devoted to developing

the chess axioms with their associated chess lemmas and theorems.

Objects of the chess world are defined (with FOL declarations) and

the rules of chess are expressed with these defined objects, the aim

- 64 -

being to develop general chess theorems from the axioms, not

theorems applicable to one small set of problems.

The FOL solution to the problem is then presented. The assertion

is made that this proof corresponds in grosser level to the human

solution, there being a correlation between the chunks of lines in the

proof and the individual steps of the human solution, thus implying

the ability of the system to model the human ability to accept problem

solutions.

In conclusion Filman stresses that he has not presented a program

which would in any sense model the way the human intelligence arrives

at the proof. He (Filman) says:

'We are interested in the nature of things than an
artificially intelligent program would need to be
able to do, without specifying the mechanisms by
which the program would tie things together. '

The thesis may be regarded as part of the search for epistemologically

effective representation formalisms; that is, finding a representation

of manageable magnitude that expresses everything we wish to say.

Finally, several other problems are presented, to see how they

would look in the formalism, but the proofs are not detailed.

8.2 Critical Review

The above outline (albeit brief) of the thesis of Robert Filman

presented some idea of its aims and objectives. The remainder of

this chapter consists of a review of its more salient features, with

particular reference to RETRO.

8.2.1 Knowledge representation

Different domains of application may influence the choice of

knowledge representation, although Aikins [6] has suggested that. it

is not the kind of knowledge structure that is critical but that the

- 65 -

system should have direct manipulatory access to the knowledge as

opposed to having the knowledge built-in. Whatever the representation,

however, consideration must be given to the way in which the system

utilises this representation; in other words, how efficient is it?

Consideration must also be given to the effects of increasing knowledge

upon efficiency - does the representation admit of an optimum amount

of knowledge before its efficiency becomes unacceptable? The ideal

aim is a highly efficient general representation, but the demands of

generality could lead to a degradation of efficiency, whilst specifity

could lead to efficiency. These generality demands will tend to make

predicate calculus systems inefficient; what, for instance, would be

the effect on the running time if the number of facts were doubled?

Would the running time be squared?

RETRO, "with. its system of SEs, directs attention to the correct

questions to ask; consequently it is very efficient. The average

running time is only a few seconds. The effect of increasing knowledge

will undoubtedly lead to a loss of efficiency; if more 'pawn promotion'

rules are added then RETRO would take longer to check these rules.

The system of focussing attention should, however, keep this loss to

a minimum.

Writers of predicate calculus systems face another problem - the

size-'of the system. Filman states that his axioms, together with

the proof-checker, are already taxing the available memory of his

computer system, implying that any additions would be somewhat hazardous.

It would appear that the price of generality includes a certain

unwieldiness.

8.2.2 Control

In RETRO the SEs, with their associated questions, decide what

facts to look at next, whereas in predicate calculus this is not a

- 66 -

separate problem, for those things which are tried include any facts

that might fit in accordance with the rules of logic. There is

nothing in the basic principles of predicate calculus corresponding

to the human question 'Wiat is most likely to be relevant? '; for the

application of any particular step is to establish new facts or

establish truth or falsity.

8.2.3 Explanation

RETRO will present an explanation of its deduction process,

printing the rules which helped it make a decision, so that each step

of the proof will be intelligible to a human, who may agree or disagree.

The explanation facility is of the highest importance in expert systems,

for no expert will accept an answer unless he can see quite clearly the

way in which the problem was solved. Feigenbaum [12] states that 'a

central organising principle in the design of knowledge-based intelligent

agents is the maintenance of a line-of-reasoning that is comprehensible

to the domain specialist. This principle is, of course, not a logical

necessity, but seems to, us to be an engineering principle of major

importance'.

RETRO maintains such a line-of-reasoning. In the system developed

by Filman the results of its deliberations must be accepted as an act

of faith, its very nature preventing an explanation of why it made a

particular step.

- 67 -

8.2.4 Illegal positions

The prospective solver of retrograde-analysis problems must always

be prepared to meet an illegal situation. This could occur due to a

faulty line-of-reasoning or checking the legality of reverse moves.

With respect to his own system, Filman writes:

'It is worthwhile to emphasise that these chess axioms
apply only to situations that might arise in a legal
game. Just as formal logic is very sensitive to
inconsistency, allowing a proof of any NFF from a
false premise, so these axioms, when presented with,
for example, an impossible board, do not know which
of their axioms to doubt, and will permit the proof
of any conclusion about that board. '

It would be interesting to see how such a system would cope with

location problems ('Is the %hite bishop on a3 or a4? '), for the essence

of these problems is that with the piece placed on the incorrect square

an illegal situation occurs. In addition to location problems, other

problems exist where impossible situations may occur, Smullyan [1]

providing a good example, where it is required to prove that a given

board is illegal.

8.2.5 Degradation

What happens if a system is unable to find a solution? A feature

of the expert's expertise is a graceful degradation as the limits of

knowledge are reached; if the expert is unable to solve a problem he

-68-

can usually point a finger in the right direction. Expert systems

are generally regarded as all-knowing and all-seeing, inevitably

arriving at an answer - it may not be the correct one - but an answer

there will be. Is this to be expected always? Is it wise to expect

it always? Perhaps it would be better if a system were to say:

'Look, I am sure up to this point that I am correct, but not so sure

what follows. I have pointed my finger in the right direction; you

take it from here. '

A feature of RETRO is that it does degrade gracefully; it may

not be able to solve the problem'but it will print the result of its

deductions, those which it has deduced as correct. So it does give a

nod towards the direction to follow. Filman introduces other problems

to examine how they would look in his formalism but they would probably

be difficult to implement, both for the reasons stated earlier and the

fact that his current axiomatisation is oriented towards unknowns

centred around particular squares.

8.3 A difficult problem

Filman has developed his formalism around a difficult retrograde

chess problem. This is RETRO's solution to the problem:

Smullyan [1], p. 30

8

7

6

5

4

3

2

1

I

abcdefgh

- 69 -

* WHAT IS THE QUESTION
[WHAT IS THE MISSING PIECE ON h4]

* ANY INITIAL CONDITIONS (Y OR N): N

* THE MISSING PIECE IS A WB

* EXPLANATION REQUIRED (Y OR N): Y

THE BK HAS BEEN PLACED IN CHECK RY THE WR ON d7

THE KING WAS PLACED IN CHECK BY THE WP MOVING
FROM c7 TO d8

A PAWN HAS THEREFORE PROMOTED

POSSIBLE CAPTURES BY THE PAWN ARE
[BB BNI

IF ONE SIDE HAS A BISHOP CAPTURED ON ITS HOME SQUARE AND
THERE IS A BISHOP TRAVELLING ON THE SAME COLOUR SQUARE
THEN A PAWN PROMOTED [RULE0041

THE BP FROM. h7 PROMOTED

IF ONE SIDE HAS >2 BISHOPS OR >2 ROOKS'OR >2 KNIGHTS
OR >1 QUEEN ON THE BOARD THEN A PAWN PROMOTED [RULE003]

THE BP FROM h7 PROMOTED

FOR EACH SQUARE ON WHICH THE PAWN MAY HAVE PROMOTED
OR FOR EACH PIECE IT MAY HAVE CAPTURED ON PROMOTING
IT HAS BEEN DEDUCED THAT. AN'OPPOSITION PAWN ALSO PROMOTED

THE PAWN PROMOTED ON ONE OF THE FOLLOWING SQUARES
[91]'

IT CROSSED'THE 2ND/7TH RANK ON ONE OF THE FOLLOWING SQUARES
[92]

IF ALL PAWN CAPTURES OCCURRED ON ONE COLOUR
AND THESE CAPTURES ACCOUNT FOR ALL MISSING PIECES
AND THESE MISSING PIECES INCLUDE A BISHOP THAT COULD NOT HAVE
BEEN CAPTURED ON THIS COLOUR
THEN THE MISSING PIECE MUST BE A BISHOP [-RULE030]

The question is parsed by the word-parser PARS, the crucial words

being 'MISSING' and 'PIECE', so RETRf looks for the square h4, which

it places in variable MISPQ (missing piece square), and sets flag MISPC

(look for missing piece).

RETRO now seeks an SE, and upon finding that a king is in check

- 70 -

uses KCHECK to determine how this check could have occurred.

KCHECK finds that the only way for this check to happen is by a Weite

pawn moving from 0 to d8.

RETRO now says that a pawn has promoted and, since it is known

in this case upon what square the promotion occurred, also where the

pawn crossed the 7th rank, RETRO has no need to ask the initial questions

associated with the SE. It therefore goes straight to the question:

'For each square on which the pawn may have promoted or
for each piece it may have captured in promoting, can
it be deduced that an opposition pawn promoted? '

RETRO has used function PROMCP to*determine what pieces the promoting

pawn could possibly have captured, finding these to be a Black knight

or Black bishop.

For each of these pieces, using its pawn promotion rules, RETRO

finds that the Black pawn from h7 must have promoted.. For this SE

it asks the-initial question:

'Upon which square did the pawn promote? '

" finding this to be [g1].

CHKFLG now comes into operation, looks amongst its flags, and,

upon finding MISPC set, asks function LKFMP to see if enough has been

deduced to admit of a solution. LKFMP finds that the missing piece

must be White and a bishop.

The SE approach is an heuristic one and thus suffers from problems

of incompleteness. The FOL approach is related to the use of a uniform

proof procedure to prove theorems in an axiomatic system. Such work

is described in detail by Bundy [24]. This latter approach, whilst

complete, suffers from the combinatorial explosion and may not produce

a solution in finite time.

The difference between the two methods can be exemplified in the

context of performing integrals in Mathematics. Those who have struggled

- 70a -

with a variety of integrals will recall that a certain type of integral

will suggest an appropriate substitution that will lead to a solution.

The uniform solution approach might try all possible substitutions

(from a known and sufficient repertoire) in turn, whilst the heuristic

approach would recognise the form of a particular type of integral.

Naturally this latter approach would fail if unable to recognise the

form of an integral, but when successful would give a solution much

more rapidly than the former method.

1

- 71 -

9.0 DISCUSSION

9.1 Representation

The central issue of any expert system is knowledge, how it is

represented, utilised and acquired. Representation is concerned

with the most effective way or ways of representing the particular

domain knowledge - and a domain may require more than one type of.

representation. Utilisation looks at the design of the inference

engine, taking into account both search - the means by which the system

works its way to its goal - and control - how it selects among its

internal methods. Finally, how is this knowledge acquired -

automatically, or after intensive work by a knowledge engineer?

To the above we may add Explanation; an adequate explanation of

its deductive processes, with perhaps facility for interrogation by

an expert, is an essential part of any expert system.

Our ideal representation should be able to deal with knowledge

that is often inexact, incomplete and ill-specified. In addition,

it should be tolerant of human foibles when accepting information.

Davis [9] also has some pertinent points to make concerning an ideal

representation: what, he says, if there is conflicting expert opinion?

How could-these differences be reconciled in the knowledge representation?

Also, is it possible for a system to realise that it is out of its

depth and merely say: 'Ask someone else'?. By common agreement a

system should degrade gracefully; that is, become less and less

proficient as it reaches the limits of its knowledge - as does a human

expert. There should certainly not be a calamitous failure.

The following quotation from Slomar[7] succinctly expresses the

above:

- 72 -

'Work in Artificial Intelligence, whether aimed at
modelling human minds or designing smart machines,
necessarily includes a study of knowledge. Knowledge
about particular domains is the basis of the expertise
of all the expert systems described in this volume.
General knowledge about how knowledge is acquired,
represented and used has to be embodied in flexible
systems which can be extended, or which explain their
actions. A machine which communicates effectively
with a variety of humans will have to use information
about what people can be expected to know in various
circumstances. '

This work is part of the search for general knowledge about how

knowledge is acquired, represented and used.

9.2 Some expert systems

The archetypal expert system is undoubtedly MYCIN [5] - which

begat PUFF [13] - which begat CENTAUR [6]. MYCIN has exercised

considerable influence upon the development of expert systems, although,

like any 'first-generation' system, it is not without failings. Its

knowledge lies in production rules which express a uniform 'grain size'

of knowledge that is applied in conditions defined by their premises.

It is difficult to differentiate between types of rule and there are

no expected patterns of data, which may lead to problems of control

in that consultation questions may be asked in an unreasonable order;

even irrelevant questions may be posed. Another failing is that the

acquisition of new knowledge is. best done by a 'domain expert, for a

new rule may affect a previous rule, which may affect yet another rule

which calls it, and so on.

As an extension of MYCIN [5], a domain-independent version known

as EMYCIN [11] has been developed, which in principle can be used

as a general purpose framework from'which an expert system for any

domain can be created merely by adding a specific knowledge base.

Van Melle et al. [14] have this to say about EMYCIN:

-73-

'The framework seems well suited for some deductive
problems, notably some classes of fault diagnosis,
where a large body of input measurements (symptoms,
laboratory tests) is available and the solution space
of possible diagnoses can be enumerated. It is less

. well suited for "formation" problems, where the task
is to piece together existing structures according to
specified constraints to generate a solution.

'EMYCIN was not designed tobe a general purpose
representation language. It is thus wholly unsuited
for some problems. The limitations derive largely
from the fact that EMYCIN has chosen one basic, readily
understood representation for the knowledge in a domain:
production rules applied by a backward-chaining control
structure, with facts about the case represented by
associative triples. While the rule representation is
quite general, this choice of control structure is
unsuitable for problems of constraint satisfaction,
or those requiring iterative techniques. '

Alvey [15] reports practical difficulties in implementing an

expert system in EMYCIN. The order in which rules are applied, for

instance, appears to be the order in which they were last edited.

The above failings of MYCIN [5] and PUFF [13] (which is EMYCIN +

a pulmonary disease knowledge base) prompted the development of CENTAUR

[6], which uses a coarser grain-size of knowledge by utilising a

mixture of frames (prototypes) and rules. The benefit of this

approach is that it allows the control structure to determine a more

general context before searching for detailed information, the knowledge

base being organised into sets of general/specific knowledge about each

topic. The questions asked are directly related to the hypothesis

being considered. The author of CENTAUR [6], Janice Aikins, lists

the following desirable features of an expert system:

1. Representation of knowledge as patterns of data
typically encountered in the domain.

2. Classification of actual data patterns in terms
of prototypical data patterns.

3. Use of-data clues to suggest probable directions
for future search.

-74-

4. Separation of domain expertise to be applied at
different stages during processing.

The next section looks at the way in which RETRO conforms to these

terms.

9.3 Comparisons with RETRO

RETRO possesses certain similarities to CENTAUR [6], which may

be summarised as follows:

(i) SEs are used to guide processing and explain performance;

(ii) Has direct manipulatory knowledge (i. e. not 'built-in');

(iii) SEs provide the context which guide the questions to
be asked;

(iv) Easy inspection of the knowledge base;

(v) SEs are triggered by data;

(vi) The control structure is designed to utilise data
clues.

There are, however, basic differences between the two programs; for

instance, RETRO does not ask questions of the user but must make the

best use it can-of the information it is given. Another difference

is that RETRO does not use an agenda of tasks to be done. CENTAUR

[6] uses its agenda (a) to allow it to deal with a task that has

failed, and (b) for the system to 'look ahead' to see what tasks are

remaining. Failures can occur when the known information does not

support any hypothesis strongly'enough to outweigh the disconfirming

information, or when not enough information is known upon which to base

a decision. If either of these cases occurs then CENTAUR (6) applies

its fact-residual rules.

RETRO asks questions associated with an SE, which it can either

answer or not. An answer to a question may either lead to a solution

or not, in which case RETRO looks for further questions or SEs; if it

- 75 -

can find neither then it is unable to solve the given problem.

RETRO also possesses similarities to the way that doctors seek a

diagnosis (Section 2.5). At the start the only information that RETRO

possesses is the question asked, the board situation, and the initial

conditions (if any). The equivalent of the doctor asking initial

questions lies in the hands of function SETP (Section 2.3), which gleans

as much information as possible about the situation - this information

corresponding to a patient's symptoms. Using this information RETRO

seeks an SE (a doctor asks questions in the hope that a significant

pattern will emerge), and as with the doctor there are no grounds for

seeking SEs differently on one occasion than another, so SEs are sought

in a routine order. If an SE is found questions are asked, any one

of which may*lead to solving the problem, or point to another SE.

As with the doctor, the pathway is heavily data-dependent.

RETRO thus utilises the prominent features of CENTAUR [6], and

also processes information and attacks problems in a similar way to

doctors attempting a diagnosis: SEs may be regarded as patterns of

data typically encountered. in the domain, the classification of which

leads to clues suggesting lines of. further search.

9.4 Limitations

Is the SE approach valid for all retrograde chess problems or has

chance intervened in decreeing that all problems in Smullyan [1], the

source book for this thesis, be amenable to this type of solution?

There are two main difficulties in answering this question. Firstly,

collections of retrograde chess problems are extremely thin on the

ground; as mentioned previously, it has only been possible to trace

one previous collection [3], which consists mainly of the 'fairy chess'

type of problem. Secondly, as has also been mentioned, retrograde

- 76 -

problems are dependent upon the skill of the composer, so it is always

possible that problems could be composed that do not use SEs.

In considering the generality of-the SE approach, use must be made

of whatever evidence is at hand, and fortunately help is forthcoming

in that Raymond Smullyan has recently published a second volume of

chess problems [2]. Therefore an analysis of these problems is in

order, seeking not to prove the SE approach, which is logically

impossible, but rather, in the spirit of Karl Popper, seeking disproof.

This analysis is carried out in-the next chapter.

- 77 -

10.0 SOME DIFFERENT PROBLEMS

In contrast to his earlier volume of problems, in which we were

subject to mystification and elucidation by Sherlock Holmes, aided

and abetted by Dr. Watson, not to mention Professor Moriarty,

Smullyan's second volume revolves around the 'Arabian Knights',

where the central character is Haroun Al Rashid, posing as the White

king, with, as Smullyan puts it '... a host of phantoms, genii,

magicians, sorcerers, philosophers, beasts, merchants, hermits,

enchanted rocks, and other beings'.

The problems abound with invisible kings, invisible castles,

disputed castles, purloined treasure, tales of lazy knights, spies

and phantom bishops. This latest volume contains fifty problems,

which on the whole are more complex than those in the first volume,

and since collections of retrograde-analysis problems are rare it is

worth looking at them in some detail.

10.1 Overview

The book contains six chapters, which roughly divide the problems

into six groups, as follows:

1. 'Squares and pieces'

The problems here are concerned with certain pieces on certain

squares, typical questions being:

What is the piece on g4?
On what square stands the Black king?
On what square stands the-White rook?
Is the queen on h5 Black or. White?

2. 'Promoted pieces'

As may be guessed, the concern here is with problems of promotion:

- 78 -

Did the Black pawn from b7 promote? If so, is the
promoted piece still on board?
The White pawn from a7 has promoted. What is the
promoted piece?
What White piece is promoted?
Which is the original and which is the promoted
White bishop?

3. 'Arabian Knights'

These are tales of knights, lazy knights (not moved), and knights

who-have changed armour (colour):

Which White knight has not moved?
Is the knight on al Black or White?
Which two knights have changed colour?
Did the White knight on dB capture the Black queen?

4. 'Phantoms'

A phantom is a piece that is invisible. It may be on the board

or off the board:

The White bishop from cl is a phantom bishop. If on
the board, where is it? If off the board, where was
it captured?
The White bishop from cl is, a phantom bishop. It was
not captured on its own square. Where is it, or where
was it captured?

5. 'Genii'

A genie is a piece that should not be on the board. There may,

for example, be three White knights on the board, yet no White pawn

has promoted. (Traditionally, a genie is never a pawn.)

Which White knight should not be there?
Which officer does not belong on the board?
Which of the bishops on h2 and h4 must be unreal
for White to win in 2 moves?

6. 'Queens'

The problems here all deal with promoted queens:

Is the White queen a promoted queen?
Which White queen is promoted?

- 79 -

10.2 Some initial'conditibns

The above section will have given some idea of the type of questions

asked, but what about initial conditions? Are these any different from

those in Smullyan's first volume? The following list is typical:

None of the Royalty has yet moved or been under attack.
Black can castle.
There are no promoted White pieces on board.
A White knight was given as odds.
Both kings have moved only once.
The Black queen was captured on its own row.
Black to move.
No knight has been captured by a pawn.

These conditions are similar to the previous ones, which suggests

that there may be a 'hard core' of basic initial conditions. The

raison d'@tre'or initial conditions, of course, is that they impose

constraints, without which a solution may not be possible.

10.3 Significant events

Now many of these problems are based on SEs? An analysis reveals

that our original SEs are in abundance, and if we tabulate the problems

where recognition of a first SE is critical to the solution then we

arrive at the following table:

A king is in check 8
A pawn has promoted 22
It is possible to determine what pieces
the pawns have captured 10

'Last move known 3

(It is not claimed that RETRO can solve these problems.)

If 'trick' questions are disregarded there are four problems that

do not appear to be amenable to the SE approach, so it is worth

looking at these to see if any pattern emerges.

The first problem asks if a Black pawn has promoted, a suitable

question, one would have thought, for the group of pawn promotion rules

to handle. However, in this case the pawn promotion rules prove inadequate,

- no -

for the problem is solved by reductio ad absurdum; that is, assume

the pawn has not promoted and show that this assumption leads to an

illegal situation. The argument goes something like this:

Assume the Black pawn did not promote.
The Black pawn must have been captured by a certain
White pawn.
An original White officer must have been captured
before the Black pawn was captured.
But no White officer was available to be captured.
The Black pawn must therefore have promoted.

This argument may be expressed in rule form and added to RETRO's list

of pawn promotion rules. It is entirely possible, of course, that

other rules based on reductio ad absurdum may be found.

The next two problems ask similar questions: (a) Which of the

two White bishops is original? (b) Which White rook is not original?

In each case the initial conditions state that a White pawn has promoted.

The solutions to the two problems lie in asking if Black pawn captures

(could be cross-captures) occurred before the White pawn promoted, and,

if so, what did they capture? The answers could lead to constraints

being imposed such that the positions of pieces at each stage are known,

thus being able to solve the problems. . This looks as if another question

must be added to the SE: 'A pawn has promoted'.

'Could opposition pawns have captured before the promotion
took place? '
If so, what did they capture? '

'The last question is, as far as RETRO is concerned, the most

difficult. It is as follows:

Question: Has the White knight from gl moved only once?

Initial conditions: The White king has never moved.
The Black knight from g8 has moved twice.
d7 has never been occupied or traversed
more than once.

The solution to this problem depends on determining the squares

traversed and occupied at different times, thus determining the

- ß1 -

positions of pieces at critical stages. This does not appear to fall

within an SE framework, although a possible solution is given in

Chapter 12.

Cryptarithmetic is another domain in which the concept of

Significant Events appears to play part in formulating a solution.

This is discussed in the next chapter.

r

- 82 -

11.0 CRYPTARITHMETIC

Cryptarithmetic addition problems are like ordinary addition sums

except that each digit is replaced (consistently) by a letter; for

example 123 A 238 = 361 might be changed to ABC + BCD = CEA. The problem

is to find the value of each letter. The rules of the game are as

follows:

1. Each letter corresponds to a digit from 0
to 9 inclusive.

2. Each letter stands for a different digit.

3. A number never starts with a zero.

Cryptarithmetic problems are similar to those of retrograde

analysis in that both are stylised problems, designed to be solved.

In the same way that the majority of chess positions are not amenable

to retrograde analysis, one could undoubtedly formulate cryptarithmetic

problems that either have no solutions or many solutions.

11.1 The problem

In keeping with the spirit of this work, the solution to a particular

problem will be presented by means of a dialogue between Mr. Holmes and

Dr. Watson, who between them will bring some interesting things to light.

At various stages in the dialogue, when a deduction has been made, a table

will appear to clarify the latest situation. The problem being considered

is

SEND + MORE = MONEY

and the initial table is as follows:

- 83 -

Col. 1 2 3 4 5 Possible values of
remaining digits

+
S
M

E
0

N
R

D
E 0,1,2,3,4,5,6,7,8,9

cl
M

c2
0

c3
N

c4
E

c5 I
Y

possible
constraints

Figure 11.0

On the left-hand side of the table ci represents the carry out of

column i into column i-1, the value of each carry ci being either

0 or 1.

The carry cl will of course be 0.

The top right-hand corner will give remaining possible digit values,

whilst the bottom right-hand corner will present any possible constraints

on the values that a particular letter may have; for example, it may

have been deduced that D must be less than 5.

11.1.1 A dialogue

''Now then, Watson, " said Holmes, relaxing in his favourite
chair, and smoking his beloved pipe, "I have explained the
basic rules of cryptarithmetic to you, so what do you
make of this little problem? " On saying this Holmes
scribbled on a piece of paper and passed it across to me.
I looked at it and saw the following:

SEND
}M0RE

I= M0NEY

"You have become quite proficient at retrograde analysis, "
remarked Holmes, "so apply your powers of deductive reasoning
here. " I stared at this problem for some few minutes,
but nothing sprang to mind. "I'm sorry, Holmes, " I said,
"but I can't see anything, I really can't. "

"Is there nothing in the situation that arrests your attention,
Watson? " asked Holmes despairingly, "Remember what I said about
each letter representing a unique digit between 0 and 9. "

"And look, Watson, " Holmes continued, "To give you a little help I
will pencil in the carries out c1-to c5. Remember that a
particular carry out ci must either be zero or 1. "

-84-

I looked again, and then it struck me. "Of course, Holmes, "
I replied, "Now I see it. We know that a number does not
start with a zero, therefore M cannot be zero but must equal
c2. which means that both M and c2 are 1. "

Col. 12 3 4 5 Possible values of
di it remaining g s

S
+M

E
0

N
R

D
E 0,2,3,4,5,6,7,8,9

01
=10

c3
N

c4
E

c5
Y

Figure 11.1

"Very good, Watson, " said Holmes encouragingly, "Now given
that M is 1, what other deductions can you make? "

I looked hard for a while and finally began to see some
glimmer of light. "Well, Holmes, " I replied, "Looking
at column 2I can see that S+1+ c3 must be at least 10
in order to justify a carry out of c2 = 1. Also, even
if S took its maximum possible value of 9, then S+1+ c3
is at most 11. "

"Therefore, " I concluded, "0 must be zero or 1, and since M
has already taken the value 1, then 0 must be zero. "

Col. 12 3 4 5 Possible values of
di it g s remaining

S
1

E
0

N
R

D
E 2,3,4,5,6,7.8,9

01
=10

c3
N

c4
E

c5
Y

S=8orS =9

Figure 11.2

"Well done, Watson, " congratulated Holmes, "but what do
tyou think the next step should be? "

"I think, Holmes, " I replied, "that with a little effort I
may be able to deduce the value of 5, for we now have that
S+1 q" c3 = 10, which means that if c3 =0 then S=9
and if c3 =1 then S must be B. I must now try to eliminate
one of'these possibilities. "

"From column 3, " I continued, "We have E+0+ c4 =N or
E+0+ c4 = 10 +N (depending on whether c3 is 0 or'1).
But the second case is only possible if E is 9, c4 is 1
and N=0... and N cannot be zero because we already know
that the letter 0 represents zero! This means that the
first case must be the right one, which implies that c3 is
zero, and so (remembering what I said a few minutes ago)
S is 9. "

- 85 -

"If we now go back and look at column 3, " I continued,
exhilarated by my own success, "we have E &. c4 = N, and
since E and N cannot be the same, it follows that c4
m-4- 1o 1

.
11

Col. 12 3 4 5 Possible values of
remaining digits

9
+1

E
0

N
R

D
E 2,3,4,5,6,7,8

01
10

0
N

1
E

c5
Y

E+1 N

Figure 11.3

"There are times, Watson, when you quite surprise me, " said
Holmes. "This really is very good. "

"It was elementary, my dear Holmes, " I could not help but
jest, "but do not be too hasty, for I must confess that I

see difficulties ahead. "

"If I may be permitted to make a suggestion, " replied Holmes,
"potential carries are always of significance, and you have
not yet determined whether c5 is zero or 1. It may be politic
to pursue this line of reasoning. "

"Thank you, Holmes, let me see what I can make of it. Now
then, if c5 is zero then N+R= 10 + E, since we have determined
that c4 is 1. On the other hand, if c5 equals 1 then
N+R+1= 10 +E. "

"Good, good, keep gding, " muttered-Holmes, puffing away furiously.

I thought for a few moments, then it came to me. "Of course, "
I said, "we know that E+1=N so we may substitute for N in the
above two equations. If we do this, let me see ... yes, E is
eliminated, giving R=9 for N+R= 10 +E and R=8 for
N 4. R+1= 10 + E. But we have already assigned the digit
9. so R must be 8 and 65 must be 1. "

Col. 12 3 4 5 Possible values of
its di i i g ng rema n

9
+1

E
0

N
8

D
E 2,3,4,5,6,7

01
=10

0
N

1
E

1
Y

E+ 1= N

Figure 11.4

"For a first attempt you really are doing quite well, Watson, "
congratulated Holmes. "Have you any ideas about completing
the problem? "

-©6-

"Well, Holmes, " I replied, "I see that there are four
unknowns left, together with a possible six values.
I suppose I could try a brute force approach and
eventually reach a conclusion, but I would rather take
a leaf out of your book in trying a process of
elimination. "

"Good, Watson, " exclaimed Holmes. "I can see that you
have learned something from me. Please carry on. "

"Looking at E+1=N, " I mused, "the maximum value that N
can have is 7, so this means that E cannot be greater
than 6. In fact, E must lie between 2 and 6 whilst N
lies between 3 and 7. "

I studied the problem for a while longer, but could make
no obvious deductions. Taking up pencil and paper I
quickly realised that with E=5 and N=6 left me with
D -i" 5.10 :"Y, with both D and Y taking up'values from
2,3,4 or 7. It does not take a genius to see that D
misst he 7 nnc1 Y misst he 9_

Col. 12 3 4 5 Possible values of
di it i i rema g s n ng

9
+1

5
0

6
8

7
5

01
10

0
6

1
5

1
2

E-'1=N 2= <E = <6
3 =<N = <7

Figure 11.5

"I can see, Watson, that your experience with retrograde
analysis has paid dividends, " said Holmes. '

11.2 The dialogue - an analysis

The above analysis by Dr. Watson will now be considered in more

detail. The object will be to determine if any aspects of the analysis

stand out, become significant, so to speak. If this is the case then

some generalisation may be possible. For convenience the steps are

numbered.

1. The first step was in the observation that the sum was
longer than the individual parts, thus implying
that M was 1, and since M=1 then obviously c2
must be 1.

2. From Figure 11.1 the next question is: 'What
values are S and 0? '

-07-

3. The value of 0 was determined by looking at column 2
and examining the constraints of (S +1+ c3). It was
shown that the value must be either 10 or 11, making
0 to be zero or 1. However, 1 was already allocated
to M, so by the rules of the game 0 must be zero.

4. Given that 0=0 then from Figure 11.2 follows the
observation that E+0=N. Now since each letter has
a unique value E cannot possibly equal N, so c4
must be 1, with E+1=N.

5. c2 and c4 are both known, but c3 is still to be found.
Assume c3 to be 1. Then E+1= 10 +N or E=9+N,
but N cannot be zero as this value has been allocated
to 0. Therefore c3 must be zero.

6. Since c3 is zero then S must equal 9 (Figure 11.3).

7. The next step is to attempt the determination of
other values. This is done by considering c5,
the only unknown carry, and its effect on column 4.

If c5 =0 then N+R= 10 +E
If c5 =1 then N+R+1 = 10-E

Now it is already known from step 4 that E+1=N,
so E may be eliminated from the above two equations,
giving

If c5=0then R=9
Ifc5=1 then R=8

But the digit 9 has already been assigned to S, so
c5 must be 1 and R must. equal 8 (Figure 11.4).

8. It appears that the carries (ci) are extremely significant
in determining definite values for the given letters.
All carries have now been found, so the next step is to
apply any-possible. constraints to the remaining letters.
This is done by considering E+1=N and the set of
remaining possible values [2,3,4,5,6,7].

The maximum value that N can take is 7, therefore E
cannot exceed 6, so the-following constraints are obtained:

2 _<E=<6
3=<N=<7

9. Some numerical manipulation is now involved, together with
the equation D+E= 10 +Y from column 5. By setting
E=5, then N=6 and it may be quickly seen that D must
be 7, with Y2 (Figure 11.5).

- 88 -

11.3 Cryptarithmetic and Si nificant Events

From the dialogue (11.2) and the above analysis it now becomes

possible to determine what part (if any) the concept of Significant

Events played in effecting a solution. Several questions that proved

to be essential in moving towards a solution may be extracted; these

are as follows:

Question 1

'Is the length of the sum greater than the length of any
component part? '

This question is analogous to knowing which side moved last in RETRO;

a crucial piece of information when available.

The answer to the question is 'Yes', which then triggers another question:

'What does this imply about M and c2? '

The implication of course is that both must have the value 1.

Figure 11.1 shows that two values have now been found in column 2,

which prompts the next question.

Question 2

'What are possible values of 5 and 0? '

The only way to answer this question is to consider both possible

values of the carry-over c3. This is analogous to the reverse-move

generator of RETRO, where all legal reverse moves are generated.

0 was determined by looking at the constraints imposed on column 2.

How to determine S? Once again, look for a carry, this time c4.

Column 3 now reads 'E =- 0= N', but the rules of the game exclude the

possibility of any digit being assigned to more than one letter. Thus

the only way out of the impasse is for c4 to be 1, with 'E +1= N'.

The value of the carries c2 and c4 are now known, with c3 still undecided,

so as before consider both possible values of c3 and see if this leads

to any deductions.

tiq

Assume c3 to be 1. Then from column 3 it is obvious that E must be 9

and N must be zero, but zero has already been assigned to 0. Therefore

c3 must be zero, with S equal to. 9 (from S+1+ c3 = 10) (Figure 11.3).

Figure 11.3 also prompts the next question to be asked.

Question 3

'What can be deduced from column 3? '

Column 3 states that 'E +0= N' and since c4 is 1 then E+1=N, which

gives a constraint.

How best to use this constraint?

The only carry still to be determined is c5, so the previous analysis

suggests that it may be politic to consider its possible values.

Assume c5 = 0. Then column 4 reads IN +R= 10 + E'.

Assume c5 = 1. This time column 4 reads IN +R "' 1= 10 + E'.

Then using 'E +1= N' gives the following:

If c5 =0 then R=9

If c5 =1 then R= 8

But the digit 9 has already been assigned to S, therefore c5 =1 and

R=8 (Figure 11.4).

At this stage all carries have been found and it looks as if numerical

values will have to be tried.

Question 4

'Can any constraints be applied? '

From Figure 11.4 the set of possible remaining values is (2,3,4,5,6,71,

whilst 1E +"1 = N'.

Therefore the maximum value for N is 7, and that of E is 6.

Similarly, the minimum value for E is 2, and that of N is 3.

So 2= <E _ <6 and 3= <N = <7.

Using these constraints the solution is obtained by numerical manipulation.

It can be seen that, as far'as this particular cryptarithmetic problem

- 90 -

is concerned, events occurred that played a significant part in its

solution. These events' correspond to-the first three questions asked,

each of which caused other questions to be asked, in which the roles of

the carries ci proved to be of crucial importance. This is analogous

to the role of SEs in RETRO, in which the triggering of an event caused

questions to be asked.

Questions 2 and 3 may be generalised, so this problem has given rise

to three major SEs.

1. The length of the sum is greater than the length of
any component part.

2. The value of a carry-out of column is is established.
This triggers the question:

'What are values of all the unknown letters in
column i and column i-1? '

3. The value of a letter in column i is established.
This triggers the question:

'What are values of all the unknown letters in
column i of ci and column i -- 1? '

These SEs therefore cause questions to be asked, analogous to the

SEs in RETRO.

As. with pawns in retrograde analysis, the carries in cryptarithmetic

seem to be of vital importance. Often in retrograde analysis, when a

temporary impasse is reached in the steps of the solution, a good strategy

is to try one more reverse move and see what happens. A similar strategy

here would be to assume values for an unknown carry and see if this leads

to any contradictions.

11.4 Summary

In the particular cryptarithmetic problem studied here, it has been

shown that the concept of Significant Events can play a part in arriving

at a solution, although many problems would need to be considered to

-91. -

determine if the concept possesses a general application.

92 -

12 .0 CONCLUSIONS

In this final chapter an assessment is made of what has been

achieved, together with a look towards future developments. First,

however, a word about retro-analysis problems: here the concern has

been with a given board situation and making deductions therefrom,

although it is realised that, starting from the initial position,

there are undoubtedly many games that would have led to the same

situation. The concern has been only in the paths that pieces may

have taken and the order in which events must have happened.

12.1 Review

The major aspects of-an expert system are knowledge representation,

control, knowledge acquisition and explanation; these are now discussed

with particular reference to RETRO.

12.1.1 Knowledge representation

In its knowledge representation lies the heart of any expert system

('In the knowledge lies the power'), this representation varying

according to the domain of application, which may in fact require

more than one type of representation in order to perform its function

efficiently.

The representation used by RETRO is based on the concept of SEs,

Significant Events, that have occurred some time in the past, and whose

significance is that they provide clues to the answering of questions

about the current situation. An SE is akin to a frame, but, instead

of slots containing information and expected values, there are a number

of pertinent questions prompted by the SE, which may solve the given

problem or point to another SE. This concept is capable of solving

a number of retrograde problems of varying types and complexities, but

- 93 -

whilst appearing to be of wide general application - at least as far

as published programs are concerned - it does-not appear to be of

universal application, in that problems have been noted in which the

concept appears to fail (Section 10.3). For most of these problems

it has been possible to suggest modifications to RETRO that would enable

RETRO to seek a solution, but one particular problem presented difficulties

in that it did not appear to conform to the SE concept. What, if anything,

can be done about it?

In answering this question, reference is made to Section 2.5, which

presented a discussion about the way in which doctors make a diagnosis,

the discussion revolving around three modules, A, B and C, where module

A consists of pattern-driven questions and diagnosis, module B is a fixed

sequence of questions, and module C consists of problem-solving rules.

Similarities were found between modules A and B to the way that RETRO P

operates, in that for both cases pattern-driven questions are sought.

Nothing was said, however, as far as RETRO is concerned, about module C,

which comes into operation when a pattern cannot be found, further

questions being asked in the light of evidence so far. RETRO may

benefit from having the equivalent of module C, which would be able to

make suggestions as to what to try next.

12.1.2 Control

The control knowledge for RETRO is based upon the questions asked

by each SE, and is thus represented explicitly, as distinct from being

represented implicitly in inferential knowledge.

After each deduction RETRO checks to determine if this is sufficient

to answer the given question, in the ways described earlier. A feature

of retrograde chess problems is that an illegal situation is always likely

94 -

to be encountered (usually in 'location' type problems), so any program

dealing with these problems must have a method of coping with illegality.

RETRO is able to detect such a situation, thus indicating that it is

on the wrong path and must therefore start again.

In addition, it is important to compare the deductive processes

of RETRO with that of a human expert, for a program that more closely

parallels human reasoning is more likely to be accepted. Although

it is not claimed that the control structure represents exactly the

way that human experts reason, it does appear to possess a certain

validity in that it parallels the way that physicians reach a diagnosis.

The question of control is of course bound up with RETRO's

understanding what it is trying to do and possessing the means of

knowing when it has completed its task. It has been pointed out that

retrograde problems are dependent upon the skill and ingenuity of the

composer, so RETRO is always likely to come across a question,

together with its initial conditions, not so far encountered. A

way to overcome this would be to develop RETRO's parsing process.

A feature of human, expertise is that the expert, when faced with

an apparently insoluble problem, usually has enough knowledge and

experience to make some deductions from the situation, thus enabling

him to give a nod towards the direction in which one must go to seek

a solution. In effect, the human expert will degrade gracefully.

An expert system must be capable of the same. RETRO is able to exploit

its SE capability to make deductions in order to effect this degradation.

'12.1.3 Knowledge acquisition

It has been pointed out that the way in which knowledge may be

represented has been the subject of much research. If it is accepted

that a particular expert system is unlikely to remain static, but will

require regular changes to accommodate new knowledge or modify old

_95 -

knowledge, then the ease and simplicity with which these changes can

be made become a critical factor. Aikins [6] has this to say about

EMYCIN systems:

'One reason often cited for using production rules is
that there is no direct interaction of one rule with
the others, a characteristic which facilitates adding
rules to the knowledge base or modifying existing rules.
In practice, however, the rules are actually highly
interconnected. If we want to add or modify a rule,
we must first identify the set of rules that could
invoke it and also the rules that it invokes in turn,
and then determine whether changes in these rules also
must be made. If we modify one or more of these rules,
then the process repeats. '

RETRO possesses an explicit representation, with its knowledge

base organised into groups of knowledge dealing with particular

situations, so additional rules or new rule groupings may be added simply

without reference to the rest of the knowledge base.

12.1.4 Explanation

Any expert system is unlikely to be accepted by the community

if an adequate explanation of its performance is lacking. In RETRO

the comprehensible control structure permits the explanations to be

generated directly from the performance kmowledge.

12.2 Future work

Several ways have been mentioned in which RETRO may be developed.

Other developments could be:

a. All rules used by RETRO have been derived manually,
by studying a number of problems. Whether any
rule induction procedure could be used is a matter
for consideration.

b. It has been stated that the purpose of initial
conditions is to impose constraints, without which
it would not be possible to solve the given question.
An intriguing variation would be to be given the
question and the answer, then deduce what initial
conditions are necessary for the answer to be true.

96

12.3 Summary

A program, RETRO, has been introduced that is capable of solving

a number of problems in the domain of retrograde-analysis. The

program is based on the concept of SEs, which direct attention to the

questions that must be asked in order to effect a solution, analysis

of published problems indicating that the number of SEs in this domain

is small.

The solution of retrograde chess problems lies in (a) recognising

an SE, (b) knowing what questions are pertinent to that SE, and (c)

realising that there may be interactions between SEs, for the answer

to a question may change the board situation, indicating another SE.

The work here has been concentrated on deriving rules to recognise

SEs, knowing what questions to ask for each SE, and how to answer them.

The rules used to recognise SEs and the rules used by SEs are grouped

according to function, thus facilitating easy amendment and deletion

without the 'knock-on' effect prevalent in EMYCIN type systems.

In particular, everything written is about Version I of RETRO,

not a theoretical Version 'N', which has not been implemented.

I

- 97 -

13.0 REFERENCES

The following abbreviations are used:

ESMA P1ichie, D. (ed.) (1979), Expert Systems in the
Micro-electronic Age, Edinburgh University Press.

HPP (1980), Stanford Heuristic Programming Project.

1. Smullyan, R. (1980), The Chess Mysteries of Sherlock Holmes,
Hutchinson.

2. Smullyan, R. (1983), The Chess Mysteries of the Arabian Knights,
Hutchinson.

3. Dawson, T. R., and Hunsdorfer, W. (1915), Retrograde-Analysis:
A study, Whitehead and Miller.

4. McDermott, D. (1976), 'Artificial Intelligence meets Natural
Stupidity', SIGART Newsletter, No. 57, April 1976.

5. Shortliffe, E. H. (1976), Computer-based Medical Consultations:
MYCIN, New York, American Elsevier North Holland.

6. Aikins, J. S. (1980), 'Prototypes and Production Rules: A knowledge
representation for computer consultations', HPP Memo, HPP-80-17.

7'. Sloman, A. (1979), 'Epistemology and Artificial Intelligence',
ESMA, pp. 235-141.

8. Young, R. '(1979), 'Production Systems for modelling Human Cognition',
ESMA, pp. 35-45. -

9. Davis, R. (1982), 'Expert 'Systems: Where are we? ' And where do we
go from here? ', MIT Artificial Intelligence Laboratory, AI Memo No. 665.

10. Filman, R. (1979), 'The Interaction of Observation and Inference', Ph. D.
Thesis, Stanford University.

11. ' Van Mello, W. (1979), 'A Domain-independent Production Rule System
for Consultation Programs', Proceedings of the Sixth International
Joint Conference on Artificial Intelligence,. Tokyo, Japan, 1979.

12. Feigenbaum, E. A. (1979), 'Themes and Case Studies of Knowledge
Engineering', ESMA, pp. 3-25.

13. Kunz, J. C. et al. (1978), 'A Physiological Rule-based System for
interpreting Pulmonary Function Test Rules', HPP Memo, HPP-78-19.

14. Van Helle, W. et al. (1981), The EMYCIN Manual, Department of
Computer Science, Stanford University, STAN-CS-81-885.

15. Alvey, P. (1983), 'The Problems in designing a Medical Expert
System', Expert Systems '83 - Proceedings of British Computer
Society Expert Systems Group Conference.

98 -

16. Weyhrauch, R. W. (1977), A Users' Manual for FOL, Stanford
Artificial'Intelligence Laboratory, Memo 2351.

17. Marr, D. (1976), 'Artificial Intelligence -A personal view',
MIT Artificial Intelligence Laboratory, AI Memo No. 35.

1B. Bramer, M. (1984), 'A survey and critical review of expert
systems research' in D. Michie (ed.), Introductory Readings
in Expert Systems, pp. 3-29; London, Gordon and Breach.

19. Goldstein, I. P., and Roberts, R. R. (1977), 'NUDGE, A Knowledge-
based Scheduling Program', Proceedings of the Fifth International

-Joint Conference on AI, Cambridge, Mass.

20. Lenat, D. B. (1976), 'AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic Search', STAN-CS-76-570
(AI Memo No. 256), Stanford University, July.

21. Winston, P. H. (1977), Artificial Intelligence, Addison-Wesley.

22. Minsky, M. (1975), 'A framework for representing knowledge' in
P. Winston (ed.), The Psychology of Computer Vision, New York,
McGraw Hill.

23. Polya, G. (1973), How to solve it, Princeton University Press.

24. Bundy, A. (1983), The Automation of Mathematical Reasoning,
Academic Press.

- 99 -

APPENDIX A

PAWN PROMOTION RULES

Rule 1 If the pawns (of one colour) have captured all opposition
pieces that can be captured on board
and these pieces include a pawn that could not have reached
a capture square
then an opposition pawn promoted.

Rule 2 If the pawns (of one colour) have captured S pieces
and an opposition pawn could not have reached a capture square
then an opposition pawn promoted.

Rule 3 If there are more than 2 rooks or more than 2 bishops or
more than 2 knights or more than 1 queen (of one colour)
on board
then a pawn promoted.

Rule 4 If one side has 2 bishops or more travelling on the same
colour square
then a pawn promoted.

Rule 5 If one side has a bishop captured on its home square
and there is a bishop on board travelling on the same colour
then a pawn promoted.

Rule 6 If all pawn captures are on one colour
and these captures include an opposition pawn that could
not have reached a capture square
then a pawn promoted.

Rule 7 If a pawn captured on promoting
and the only piece it could have captured is an opposition pawn
then an opposition pawn promoted.

Rule, 8 If a pawn made N captures from leaving its home square to
capturing on promoting

. and the only pieces available to be captured were N
opposition pawns
then an opposition pawn promoted.

- inn -

APPENDIX B

RULES TO DETERMINE THE LEGALITY OF REVERSE MOVES

Rule 9 If a piece is given in the initial conditions as not moving
then conclude that all moves for this piece are illegal.

Rule 10 If a king is adjacent to king
then conclude that the move is illegal.

Rule 11 If-the opposing king is in check
then conclude that the move is illegal.

(A piece will not move from a checking position.)

Rule 12 If own king is in check and no way found for this to happen
then conclude that the move is illegal.

Rule 13 If, after the reverse move, there are too many pawn captures
then conclude that the move is illegal.

Rule 14 If the number of pieces captured on board is less than
the number of opposition pawn captures
then conclude that the move is illegal.

Rule 15 If no captures are permitted
then conclude that all reverse move pawn captures are illegal.

Rule 16 If a pawn reve rse moves to a home square
and constrains a piece that was captured on board
then conclude that the move is illegal.

I

- 101 -

APPENDIX C

'CASTLE' RULES

Rule 17 If a castle flag is set
and the last move is known
then delete all reverse moves for the possible castle pieces.

Rule 18 If a pawn has promoted on a square that contains a possible
castle piece
then this piece must-have moved.

Rule 19 If the promoted piece is a rook, constrained to its home square,
and the king moved to let. it out
then a castle is not possible.

Rule 20 If the promoted piece is a rook
and this rook is on a home square in a castle position
then a castle is not possible.

Rule 21 If a king moved to let out a rook that was captured on board
then a castle is not possible.

Rule 22 If a pawn promoted
and crossed the last but one rank such that the opposition
king must have been in check
then a castle is not possible.

Rule 23 If an original rook has been captured on its home square
then a castle is not possible.

t

- 102 -

APPENDIX D

RULES TO DETERMINE IF A PROMOTED PIECE IS ON BOARD

Rule 24 If a pawn captured on its first move and could only have
captured one opposing pawn
and this opposing pawn could not have made any captures
and the home square of the capturing pawn is on the same
file as opposing pawn promotion
then the pawn captured before the opposing pawn promoted.

Rule 25 If a pawn captured on its first move
and could only have captured one opposing pawn
and the opposing pawn made N captures in promoting, where
N is the number of pieces constrained by the capturing pawn
on its home square
then the pawn captured before the opposing pawn promoted.

- 103 -

APPPAIf1TY F'

RULES TO DETERMINE THE PROMOTED PIECE

Rule 26 If there are 3-rooks or 3 bishops or 3 knights or 2 queens
on board
then one of these must be promoted.

Rule 27 If there is more than 1 bishop on the same colour square
then one must be promoted.

Rule 28 If there is a bishop on board with its home square
constrained by pawns
then it must be a promoted bishop.

Rule 29 If a piece on board is being considered as a possible
promotion piece
then it must have been able to move from the promotion square.

e

- 104 -

APPFNnTY F

SOME OF THE MORE IMPORTANT FUNCTIONS USED BY RETRO

BAMK Given that a king is in check. If the checking piece is
moved away from the checking line and the same king is still
in check, then a capture is implied. Returns true or false.

CAPSQ On what square did any pawn captures occur?
Returns lists for Black and White, which may be null;
e. g. [[WP h2][g3](f2]JJ.

The White pawn from h2 made captures on g3 and f2.

CPGTOB Returns lists of pieces that were captured on board.

GENCON Returns lists of constrained pieces together with squares
to which constrained:

a. constrained rooks;
b. rooks not constrained if other pieces can move;
c. constrained bishops;
d. constrained queen.

HOMESQ To find the home square of a given piece on xN;
e. g. If WQ then dl

elseif WB then check colour of square xN against cl and fl
elseif WR then use GENCOLA (above)

if [WR all constrained then hl
elseif[WR h1] constrained then al

else nil..

ISKCHK Is a king in check?
If king in check then returns, for example [WK BB b1]
(the White king is in check from the Black bishop on b1)
or if a king is not in check then null
or if 2 kings are in check (illegal position) then false.

KCHECK A suite of programs to determine how a king may have been
placed in check:

CANCHK Can the checking piece be moved to the check
position other than along the checking line?

MOVCHK Could a non-checking piece have moved from
the checking line to discover check then be
captured by the king?

MOVLIN Could a non-checking piece have moved from
the checking line to discover check?

PROM Could a pawn have moved from the checking
line to discover check, then promoted?

- 105 -

MINPWN For Black and White returns lists [X Y Z]
where X is the number of pawn captures

Y is the number of captures on White squares
Z is the number of captures on Black squares.

Also lists of home squares for pawns unaccounted for.

PCMOV Reverse move generator - generates all possible reverse
moves irrespective of legality.

PROMCP If a pawn captured on promoting, can it be deduced that
for each piece captured an opposition pawn promoted?

SCANTB Scan initial and final flags and printing the result of
deduction.
e. g. For a 'castle' problem with two possible castles,

BCFLGX = 2, BCFLG = 2. After applying 'castle'
rules BCFLG will be reduced if any rules have
been triggered.
If BCFLGX > BCFLG and BCFLG =0 then Black cannot
castle;
or if BCFLGX/ 0 and not (BCAS null) then castle
possible with rook in BCAS.

WCAPPN What was captured by pawn PWN on square (x, y)?
Allowance is made for possible pawn promotions, and, for
instance, pieces that place the opposition king in check
and no way found for this to happen.

WHSQPP On what square did a pawn promote?
Returns lists of:

a. possible promotion squares;
b. possible capture squares (if captured on promoting);
c. squares on which the pawn may have crossed the

last but one rank.

The following functions deal exclusively with bishops:

BICOL If 2 bishops captured on board returns [2]
elseif 0 bishops captured on board returns []

elsereturns (X, Y) of bishop on board or (X, Y) of
bishop captured at home.

BCHSQ Returns lists of bishops captured at home.

DBISH Could a bishop have been captured by a pawn on promoting?

LCONS Return list of squares of constrained bishops.

- 106 -

APPENDIX G

THE WORD PARSERS PARS AND PARSEC

The word parser PARS is simple, but it works. PARS comprises
the following suite of programs:

FUNCTION PARS XL;
Vars N;

If MEMB ('LAST', XL) and MEMO ('MOVE', XL) then FNINT (XL). + N;
If N. ISINTEGER then N -º NC; N+ CP; close;

elseif MEMB ('WHAT', XL) and MEMO ('MISSING', XL) then FNLST (XL);
1i MSFLG; 1; MSFLGX;

elseif MEMO ('WHAT', XL) and MEMB ('SQUARE', XL) and MEMB
('CAPTURED", XL) then FNLST (XL); MISPC + CAPPC; 0+ MISPC;

elseif MEMB ('LAST', XL) and MEMO ('MOVES', XL) then FNINT (XL) - N;
If N. ISINTEGER then N+ NC; N; CP; close;

elseif MEMB ('CASTLE', XL) or MEMB ('CASTLING', XL) then FNCAS (XL) " N;
If N= 'B' then lengt (BCAS) + BCFLG; copyall (BCFLG) " BCFLGX;
elseif N= 'W' then lengt (WCAS) " WCFLG; copyall (WCFLG) -º WCFLGX;
else lengt (BCAS) + BCFLG; lengt (WCAS) + WCFLG;

copyall (BCFLG) + BCFLGX; copyall (WCFLG) y WCFLGX;
close;

elseif TWO (XL) then LOCAT (XL);
elseif'MEMO ('PROMOTED', XL) and MEMB ('BOARD', XL) then 1+ PPONB;

copyall (PPONB) " PPONBX;
else NONQ;
close;

end;

FUNCTION MEMB X XL;
COMMENT If x is a. member of XL then true, else false;

If XL. null then false;
elseif X= XL. HD then true;
else MEMB (X, TL (XL)); '
close;

end;

FUNCTION FNCAS XL;
COMMENT possible castling problem - is it black or white or both;

If XL. null then 'U'; return;
elseif XL. HD = 'B' or XL. HD = 'BLACK' then 'B';
elseif XL. HD = 'W' or XL. HD = 'WHITE' then 'W';
else FNCAS (TL (XL));
close;

end;

FUNCTION FNINT XL;
COMMENT Look through XL to see if contains integer;

If XL. null then 'A';
elseif XL. HD. ISINTEGER then XL. HD;
else FNINT (TL (XL));
close;

end;

- 107

FUNCTION FNLST XL;
COMMENT missing piece - find if square given

if square place is MISP(else MISPQ null
if piece place in MISPC else MISPC zero;

Vars YL; XL - YL;

Loop: If YL. null then return;
elseif YL. HD. ISLIST then YL. IID + MISPq;
elseif BRW (YL. HD) then YL. HD - MISPC;
else TL (YL) + YL; goto loop;
close;

end;

FUNCTION BRW X;
COMMENT Find if piece given;

If X= 'BP' or X= 'BB' or X= 'BN' or X= 'BR' or Xc 'BK'
or X= 'BO' or X= 'WP' or X= 'WB' or Xc 'WN' or X 'WR'
or X= 'WK' or X= 'WO'
then true;
else false;
close;

end;

FUNCTION TWO XL;
COMMENT if there are two lists in XL then possible location problem;

Vars YL YLH; nil + PLOC; copyall (XL) ; YL;
loop: If YL. null then goto U;

else dest (YL). + YL + YLH;
If YLH. ISLIST then YLH:: PLOC " PLOC;
close;

goto loop;
close;

Lj: If lengt (PLOC) =2 then true;
else nil + PLOC; false;
close;

end;.

FUNCTION LOCAT XL;
COMMENT location problem determine piece;

Vars YL XLH H1 H2; nil + YL;
loop: If XL. null then false; return;

else dest (XL) + XL + XLH;
If BRW (XLH) then PLOC. HD + H1; PLOC. TL. HD + H2;
XLH:: H1 + H1; XLH:: H2 + H2; H2:: YL + YL; H1:: YL + YL;
YL + PLOC; true; 1+ LOCFLG; 6+ CP; return;
close;

goto loop;
close;

end;

-
100 -

FUNCTION NON(;
nl(1); pr"string ('Unable to parse question, but deductions will be
carried out! '); n1(1);
end;

FUNCTION PARSEC XL;
Comment To parse initial conditions;

If MEMB ('LAST', XL) and MEMB ('MOVE', XL) then LMV (XL);

elseif MEMB ('LAST', XL) and MEMB ('MOVED', XL) then LMV (XL);

elseif MEMB ('CAPTURE', XL) or MEMB ('CAPTURES', XL) then CAPM (XL);

elseif MEMB ('CAN', XL) and MEMB ('CASTLE', XL) then BWCANC (XL);

elseif MEMB ('COLOUR', XL) and MEMB ('MOVED', XL) then COLM (XL);

elseif MEMB ('COLOUR', XL) and MEMB ('MOVE', XL) then COLM (XL);

elseif MEMB ('ODDS', XL) then ODOM (XL);

elseif MEMB ('ORIGINAL', XL) then ORPM (XL);
elseif MEMB ('CHECK', XL) then CHM (XL);
elseif MEMB ('PROMOTED', XL) then 0+ PPOB;
elseif MEMB ('MOVED', XL) and MEMB ('NOT', XL) then MVL (XL);
elseif MEMB ('UNDERPRnMOTIONS', XL) then 0+ UPFLG;
else NONIC;
close;
end;

The functions called perform the following operations:

NONIC Prints 'unable to parse initial conditions'

MVL XL contains pieces that have not moved, locate and place in PNM

BWCANC Given that black or white can castle. Add to pieces not moved
list PNM

ORPM' Given that some pieces on board are original. Add to ORP

ODOM Odds were given. Add to ODG

COLM Piece(s) not moved off own colour. Add to COLLST

LMV Who moved last. Place in LM

CAPM Captures permitted?

- 109 -

APPENDIX H

THE FINAL BOW

Mr. Sherlock Holmes, being a keen solver of retrograde-analysis

problems, graciously allowed himself to be quoted throughout the

course of this work. What is not so well known is that his arch

enemy, Professor Moriarty, is also an expert solver, and is reputed

to have solved the following extremely complex problem in 3-4 minutes:

8

7

6

5

4

3

2

1

abcdefgh

Question: Is there a promoted piece on board?

Initial conditions: White has just castled.

The reader may care to consider the problem. (RETRO, alas, is

not yet able to solve it.)

LL,

ssssssssssss
ssssssssssss
ssssssssssss

sss
sss
sss
sss
sss
sss

sssssssss
sssssssss
sssssssss

sss
sss
sss
sss
sss
sss

ssssssssssss
ssssssssssss
ssssssssssss

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP ppp
PPP PPP
ppp ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
PPP

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEE
EEEEEEEEEEEE

EEE
EEE
EEE
EEE
EEE
EEE

EEEEEEEEEEEEEEE

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT

TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP PPP
PPP PPP
PPP PPP
ppp ppp
ppp ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
ppp
PPP
PPP
PPP

uuu uuu
uuu uuu
uuu uuu
uuu uuu
uuu uuu
uuu uuu
uuu ' uuu
uuu uuu
uuu uuu
uuu uuu
uuu uuu
uuu uuu
UUU UUU
UUU UUU
uuu UUU
UUU UUU
UUU uuu
uuu UUU
uuuuuuuu
UUUUUUUU
uuuuuuuu

uuuuuuu
UUUUUUU
uuuuuuu

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>SETUP. POP. l, created: 28-Mar-83 13: 20: 37, printed: 11-Jun-86 11
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: ll1 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

ALLRULES (RULE001 RULE002 RULE003 RULE004 RULE005 RULE006
RULE007 RULE008 RULE009 RULE010 RULE011 RULE012 RULE013 RULE014
RULE015 RULE016 RULE017 RULE018 RULE019 RULE020 RULE021 RULE022
RULE023 RULE024 RULE025 RULE026 RULE027 RULE028 RULE029]

RULE001 category PROMRULE
RULE001 premise [RULE1]
RULE001 explain [R1EX]

RULE002 category PROMRULE
RULE002 premise (RULE2]
RULE002 explain (R2EX)

RULE003 category PROMRULE
RULE003 premise [RULES]
RULE003 explain (R3EX]

RULE004 category PROMRULE
RULE004 premise [RULE4]
RULE004 explain [R4EX]

RULE005 category PROMRULE
RULE005 premise [RULES]
RULE005 explain (R5EX)

RULE006 category PROMRULE
RULE006 premise (RULE6]
RULE006 explain (R6EX]

RULE007 category PROMRULE
RULE007 premise [RULE7J
RULE007 explain (R7EX]

RULE008 category PROMRULE
RULE008 premise [RULE8J
RULE008 explain (R8EX]

RULE009 category LEGRULE
RULE009 premise [RULE9]
RULE009 explain [R9EX)

RULE010 category LEGRULE
RULE010 premise [RULE10]
RULE010 explain [R10EX]

RULE011 category LEGRULE
RULE011 premise [RULE11)
RULE011 explain (R11EX]

RULE012 category LEGRULE
RULE012 premise [RULE12)
RULE012 explain (R12EXJ

RULE013 category LEGRULE
RULE013 premise [RULE13]
RULE013 explain [R13EX]

RULE014 category LEGRULE
RULE014 premise [RULE14]
RULE014 explain (R14EX]

RULE015 category LEGRULE
RULE015 premise [RULE15]
RULE015 explain [R15EX]

RULE016 category LEGRULE
RULE016 premise [RULE16]
RULE016 explain [R16EX]

RULE017
RULE017
RULE017

RULE018
RULE018
RULE018

RULE019
RULE019
RULEO 19

RULE020
RULE020
RULE020

RULE021
RULE021
RULE021

RULE022
RULE022
RULE022

RULE023
RULE023
RULE023

RULE024
RULE024
RULE024

RULE025
RULE025
RULE025

RULE026
RULE026
RULE026

RULE027
RULE027
RULE027

RULE028
RULE028
RULE028

RULE029
RULE029
RULE029

category CASRULE
premise [RULE17J

explain [R17EX]

category CASRULE
premise [RULE18]

explain [R18EX]

category CASRULE
premise (RULE19]

explain (R19EX)

category CASRULE
premise [RULE20]

explain [R20EX]

category CASRULE
premise [RULE21]

explain [R21EX]

category CASRULE
premise [RULE22]
explain [R22EX]

category CASRULE
premise CRULE23]
explain (R23EX]

category IBPRUL
premise [RULE24]

explain [R24EX]

category IPBRUL
premise (RULE25J

explain (R25EX)

category WPPRUL
premise (RULE26]

explain [R26EX]

category WPPRUL
premise [RULE271
explain [R27EXJ

category WPPRUL
premise (RULE28J

explain (R28EX]

category WPPRUL
premise [RULE29]
explain [R29EX]

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
ppp ppp
PPP PPP
ppp ppp
ppp ppp
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp
ppp
ppp
PPP
ppp
PPP
ppp
ppp
PPP

AAAAAAAAA
AAAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAAAAAAAAAAAAAA
AAAAAAAA AAAAAAA
AAAAAAAAAAAAAAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT

TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
ppp ppp
PPP PPP
PPP PPP
ppp ppp
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
pppppppppppp
PPP
PPP
ppp
ppp
ppp
PPP
PPP
PPP
PPP

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0

File RS: <R. ALDEN>CAT. POP. l, created: 13-Apr-84 13: 02: 55, printed: 11-Jun-86 10: 5

Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO

File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION PRINTLS XL;
vars HL; REV(XL)->XL;

loop: If XL. null then return;
else XL. HD->HL; nl(l); pr(HL. HD); sp(1); pr("from"); sp(l);
pr("("); pr(HL. TL. TL. TL. HD); pr(", "); pr(HL. TL. TL. TL. TL. HD); pr(")");
sp(l); pr("to"); sp(l); pr("("); pr(HL. TL. HD); pr(", "); pr(HL. TL. TL. HD);
pr(")"); nl(l);
close;
TL(XL)->XL; goto loop;

end;

FUNCTION CHKFLG;
COMMENT looks through flags to see what must be deduced

if all flags zero (i. e. nothing more to deduce), returns false;

If BCFLG/=0 Or WCFLG/=O then . CASTLE; close;
If MSFLG=1 then . LKFMP; close;
If PPONB/=O then . ISPPB; close;

If ILLFLG=1 and LOCFLG=l and TRANS=O then copyall(PLOCR)->PLOC;
1->TRANS; copyall(AGC)->AGX; false;. RFLGTAB; return;
elseif LOCFLG=l and TRANS=l and AGC=AGX then false ; return;
elseif ILLFLG=l then false;. RFLGTAB; return;
elseif BCFLG=O and WCFLG=O and MSFLG=O and PPONB=O and LOCFLG=O

and CAPPC=O then false;

else true;
close;.

end;

FUNCTION LKFMP;
COMMENT look for missing piece

first check colour
then try for piece;

. COLMP;. LFMP;

COMMENT if piece found MSFLG set to false;

end;

FUNCTION RFLGTAB;
COMMENT restore original flag table to consider other moves;

COPYALL(BCFLGX)->BCFLG;
COPYALL(WCFLGX)->WCFLG;
COPYALL(PPONBX)->PPONB;

end;
FUNCTION CATPRB;

. RFLGTAB;
COMMENT categorise problem. if last move known

and a cstle situation apply castle rules;

If not(. CHKFLG) and LOCFLG=O then exit;
VARS WC BC ANS ;. SETP; LENGT(BLEFT)->BC; LENGT(WLEFT)->WC;

If CHCAT1 then . CAT1;
else . DPPROM->PRLST;

If not(PRLST. null) then . CAT2;
else ISKCHK(BLIST, WLIST)->CHI->KC;

If not(CHI=false) and not(CHI. null) then CAT3(CHI, KC);

else . CAT4;
close;

close;
close;

END;
FUNCTION CHCAT1;
COMMENT to check SEl is it possible to determine what pieces the

pawns have captured.
assumes all pawns on board.
if (e. g.) n bp captures then n pieces available for capture
on board (deleting doubles from list);

If NPB/=8 or NPW/=8 then false;

elseif WPTT=BTOT and BPTT=WTOT then true;
elseif CHKDB(WPTT, BLEFT) and CHKDB(BPTT, WLEFT) then true;
else false;

close;
END;

FUNCTION CHKDB PCP XL;

vars YL; nil->YL;

loop: If not(XL. null) then XL. HD:: YL->YL; DELT(XL. HD, XL)->XL;
goto loop;

elseif PCP=lengt(YL) then true;
else false;

close;

end;

FUNCTION HOMESO PC HL;
COMMENT is it possible to determine the home square of piece pc

used in catla;

vars P QC BC RU RC;
BORW(PC)->P;

If P="B" then goto L1;
elseif PC="WO" then (4 11;
elseif PC="WB" and CLSQT(HL. TL. HD, HL. TL. TL. HD, 3,1) then (3 1];

elseif PC="WB" then [6 1];
elseif PC="WR" then GENCON("W")->QC->BC->RU->RC;

If RC. null then nil;
elseif equal((WR 1 1], RC. HD. HD) then (8 1];

(WR 8 l]:: RKLIST->RKLIST;
else [1 1]; (WR 1 1]:: RKLIST->RKLIST;
close;

else nil;
close; return;

L1: If PC="BQ" then (4 1;

elseif PC="BB" and CLSQT(HL. TL. HD, HL. TL. TL. HD, 3,8) then [3 8];

elseif PC="BB" then (6 8];
else if PC="BR" then GENCOLA("B")->QC->BC->RU->RC;

If RC. null then nil;
elseif equal([BR 1 8]', RC. HD. HD) then (8 8];
(BR 8 8]:: RKLIST->RKLIST;
else (1 8]; [BR 1 8]:: RKLIST->RKLIST;

close;
else nil;

end;
close;

FUNCTION SETBC XL;
VARS HL HHL;
IF XL. NULL THEN NIL;
ELSE XL. HD->HL; HL. TL->HHL;
[%HL. HD. HD, HHL. HD. HD, HHL. HD. TL. HD, HL. HD. TL. HD, HL. HD. TL. TL. HD%]:: SETBC(TL(XL));
CLOSE;
END;
FUNCTION UPDATEX PL XL YL=>YL;
COMMENT check before performing reverse move if there is a

piece on square, if so, swop;

vars X Y;
PL. TL. TL. TL. HD->X; PL. TL. TL. TL. TL. HD->Y;
If BOARD(X, Y)/="BLANK" then [%BOARD(X, Y), X, Y%]:: YL->YL;

SWOP(X, Y, PL. TL. HD, PL. TL. TL. HD);

else UPDATE(PL, XL);

close;
END;
FUNCTION RESTORX HL YL;
VARS XY ANS;
HL. TL. TL. TL. HD->X; HL. TL. TL. TL. TL. HD->Y; CKMTAB(X, Y, YL)->ANS;

IF NOT(ANS. NULL) THEN SWOP(X, Y, HL. TL. HD, HL. TL. TL. HD); ELSE RESTOR(HL); CLOSE;

END;

FUNCTION SWOP Xl Y1 X2 Y2;
VARS P XXL TMP1 TMP2;
BORW(BOARD(X, Y))->P;
IF P="B" THEN BLIST->XXL; ELSE WLIST->XXL; CLOSE;
BOARD(Xl, Yl)->TMPI; BOARD(X2, Y2)->TMP2; TMP1->BOARD(X2, Y2);

TMP2->BOARD(Xl, Yl); MXYLST(TMP1, X1, Yl, X2, Y2, XXL); MXYLST(TMP2, X2, Y2, Xl, Yl, XXL);

END;
FUNCTION MXYLST PC XX1 XX2 XX3 XX4 XXL;
IF XXL. HD. HD=PC AND XXL. HD. TL. HD=XX1 AND XXL. HD. TL. TL. HD=XX2

THEN XX3->XXL. HD. TL. HD; XX4->XXL. HD. TL. TL. HD;
ELSE MXYLST(PC, XXl, XX2, XX3, XX4, TL(XXL)); CLOSE;
END;
FUNCTION CKMTAB XY YL;
IF YL. NULL THEN NIL;
ELSEIF YL. HD. TL. HD=X AND YL. HD. TL. TL. HD=Y THEN YL. HD;

ELSE CKMTAB(X, Y, TL(YL)); CLOSE;
END;
FUNCTION PWNCPM PN LIS PSQ PPL LFC XHH;
VARS XS XP XL XPC YL HHSQ XXL; (%PPL. HD. TL. HD, PPL. HD. TL. TL. HD%] >HHSQ;

LIS. HD. HD->XS; PSQ. HD->XP;
IF PN="WP" THEN BTOT-WNUM. HD->NCAP; BLEFT->XL; DELT("BP", XL)->YL;

ELSE WTOT-BNUM. HD->NCAP; WLEFT->XL; DELT("WP", XL)->YL; CLOSE;

PCAPRM(PN, LIS, PSQ, PPL, LFC)->XPC;
IF XS=XP AND XS=XHH AND NCAP=O THEN PWNP1(PN);
ELSEIF XS=XP AND XS=XHH AND NOT(NCAP<2) THEN WONWY(LIS, PN)->XXL; PWNP2(PN, XXL);

ELSEIF XS=XP AND XS=XHH AND NCAP<2 THEN PWNPI(PN);
ELSEIF XS=XP AND XS/=XHH THEN WONWY(LIS, PN)->XXL; PWNP2(PN, XXL);

ELSEIF XS/=XP AND XS=XHH AND NOT(NCAP>2) THEN PWNP5(PN, XPC);

ELSEIF XS/=XP AND EQUAL(XPC, YL) THEN WONWY(LIS, PN)->XXL; PWNP4(PN, XXL);

ELSEIF XS/=XP AND NOT(EQUAL(XPC, YL)) THEN WONWY(LIS, PN)->XXL; PWNP3(PN, XXL, XPC); CLOSS;

END;
FUNCTION CHCAT3;
ISKCHK(BLIST, WLIST)->CH->KI;
IF CH=FALSE OR CH. NULL THEN FALSE; ELSE TRUE; CLOSE;
END;
FUNCTION CAT4;
VARS ML CL;
IF LM="U" OR LENGT(MLIST)>1 THEN'GOTO PRIN;

ELSEIF LM="W" THEN PCMOV(WLIST)->ML; ELSE PCMOV(BLIST)->ML; CLOSE;
IF NOT(ML. NULL) THEN GOTO PRIN; CLOSE;
NL(2); PRSTRING('NO FURTHER REVERSE MOVE FOR!); SP(1); PR(LM); SP(l);
PRSTRING('SO!); SP(l); PR(LM); SP(l); PRSTRING('PIECE CAPTURED!); NL(1);

. WPDCAP->CL;
PRSTRING('THE ONLY PIECES THAT COULD CAPTURE THE !); SP(1); PR(LM); SP(1);
PRSTRING('PIECE ARE: -!); NL(l); CL=>; LCAST(CL); RETURN;
PRIN: NL(2); PRSTRING('NO SES FOUND!);
END;
FUNCTION FCAP P;
IF P="W" THEN FORALL I118 IF BOARD(1,7)="BP" AND BOARD(1t6)="BP"
THEN [%1,6%]; CLOSE; CLOSE;
ELSE FORALL I118 IF BOARD(I, 2)="WP" AND BOARD(I, 3)="WP" THEN [%I, 2%);
CLOSE; CLOSE; CLOSE;
END;
FUNCTION LCAT2 PWN=>ANS;
VARS PC X CORD TC N CH; BORW(PWN)->PC;
IF PC-"W" THEN WHTAB. HD->X; LENGTH(BLEFT)->N; WTOT. HD->TC;
ELSE BHTAB. HD->X; LENGTH(WLEFT)->N; BTOT. HD->TC; CLOSE;
FCAP(PC)->CORD; ABBS(CORD. HD-X)->CH;
IF CH>4 OR TC+CH>N THEN FALSE->ANS; ELSE TRUE->ANS; CLOSE;
END;
FUNCTION RVP HL;
VARS PC Rl R2 YL; BORW(HL. HD)->PC;
[%HL. HD, HL. TL. TL. TL. HD, HL. TL. TL. TL. TL. HD, HL. TL. HD, HL. TL. TL. HD%]->YL;
IF PC="B" THEN UPDATE(YL, BLIST); ELSE UPDATE(YL, WLIST); CLOSE;
ISKCHK(BLIST, WLIST)->Rl->R2;
IF R2=KI THEN TRUE; ELSE FALSE; CLOSE; RESTOR(YL);
END;
FUNCTION RETRO;
0->POPCOMMENT;
COMMENT mainline program;
VARS BOARD NPB NPW WHCAP BLCAP WLEFT BLEFT LM CAP CP PLOC SFLAG BWL COLLST CS;
VARS MLIST CLIST NML NC CHI KC CHLIN KL WHTAB. BHTAB BTOT WTOT PNM BLIST WLIST BC;
VARS WCAS BCAS PRLST NCAP HP MML MVL ODG ORP MLT IFLG PSQQ HSQ PPNFLG; O->PPNFLG;
VARS BDC WDC CPB CPW CPBX CPWX XYLIFS WMTAB BMTAB BHTABI WHTABI MISPQ BPPC ;
VARS WPPC UTILITY MISPC WPTT BPTT XCAPW XCAPB PROMXL WCFLG BCFLG ITM ILST ZL;
VARS WHPFLG ILLFLG PLOCHD LOCFLG UPFLG PSQS PPIECE PPAWN PPOB BCFLGX WCFLGX;
vars CAPBRD PPONB PPONBX ISPFLG LIFC R32FLG OMIT33 PPCAP XYLIFX WHSQFL;
vars PHSQ MSPC AGC AGX TRANS PLOCR C3FLAG MSFLG MSFLGX MISCOL PPCOP CAPPC;
vars RKLIST WPPC BPPC;
ve. rs WNJM BNwA *)Pe 6vJ "LTSý%- NSýZST; 'N"its;

COMMENT set up initial variables;

NIL->PNM; O->CP; "U"->LM; NIL->PLOC; NIL->COLLST; NIL->ORP; NIL->ODG;
nil->XYLIFX; nil->MISCOL; O->TRANS; nil->PLOCR; O->AGX; O->AGC; nil->PHSQ;
nil->PPCOP;

COMMENT DDB=dynamic data base. LEGDEL=list of legality check
deleted moves. LEGFLG=flag set in legality checker
If =1 then place deleted moves in DDB

else=0;

vars DDB LEGDEL LEGFLG DDBF ASKXL ;
COMMENT global variables are: -

NPB/NPW no. of b/w pawns on board WHCAP/BLCAP lists of pieces captured
WLEFT/BLEFT lists of pieces captured on board
LM if black moved last then "B", if white then "W" else "U"
CAP captures permitted "Y" or "N"
CP captures permitted for cp moves
TRANS used for location probs. to indicate reverse list being used
AGC used in class. pop counts how many contexts perfirmed
AGX record of AGC when illegality occurs
PLOCR reverse PLOC list
PLOC if location problem contains list of possible locations, else null

SFLAG used in functions UPDATE and RESTOR
COLLST list of pieces not moving off own colour else null
MLIST list of reverse moves
WHTAB/BHTAB vacant pawn home squares
BTOT/WTOT length of lists BLEFT/WLEFT
PNM list of pieces given as not moving else null
BLIST/WLIST list of pieces on board
BNUM/WNUM lists of definite pawn captures
NWLIST/NBLIST copies of BLIST/WLIST for restoring board
WCAS/BCAS pieces in possible castle situationms
PRLST print list of moves
NCAP no of possible captures by promoting pawn
ODG odds given
ORP original pieces still on board
BDC/WDC lists of pawn capture squares
PPCOP if a pawn has captured in promoting, this list of poss. captures
MISCOL missing piece, its colour
MISPQ/MISPC missing piece square and missing piece(if known)
WPTT/BPTT head of lists BNUM/WNUM
PROMXL pawn promotion lists
ASKXL question posed ITM for itemread
ILST list of initial conditions
PLOCHD location problem - variable contains location being considered
UPFLG flag=0 when no underpromotions
LOCFLG flag set if location problem
BCFLG/WCFLG flags set when castle problem
XYLIFS list or squares where promoted pawn crossed last rank but one.
PSQS list of possible pawn promotion squares.
PPIECE list of promoted pieces.
PPAWN promoted pawn "WP"/"BP"
PPOB if promoted piece on board l, else 0
CAPBRD set if a promoted piece was possible captured on board
PPONB set if question "is a promoted piece on board"
ISPFLG set to 1 when a promoted piece found to be on board, else. 0
LIFC list of squares on which a promoted pawn captured
R32FLG set to 0 when rule 33 triggers else 0(see rule 34)
OMIT33 used in rule 33, omit rook on home square(constrained) - rule 32
PPCAP promoted pawn wp or bp or 0- used by rule 7- ppawn can

be overwritten
MSPC on what square was piece MSPC captured
XYLIFX copy of XYLIFS
WHSQFL flag for fn WHSQPP, if set not place result in ddb
PHSQ home square of promoted pawn [x, y)
C3FLAG used in CAT3A to indicate that promotion square known
MSFLG/MSFLX set when missing piece problem
CAPPC: on what square was cappc captured
RKLIST list of rooks captured on home square (catla)
WPPC/BPPC count of pawns promoted
ILLFLG flag set when illegal situation occurs.
WHPFLG flag set if ak

is in check from pc and still in check if
pc moves - implying a capture. set inBAMK;

NIL->DDB; O->ILLFLG; 0->UPFLG; 0->LOCFLG; NIL->LEGDEL; O->WHPFLG; O->LEGFLG;
NIL->PSQQ; nil->LIFC; NIL->XYLIFS; NIL->MISPQ; "Y"->CAP; NIL->WMTAB; NIL->BMTAB; NIL->HS3,;

0->WCFLG; 0->BCFLG; NIL->PSQS; NIL->PPIECE; O->PPAWN; l->PPOB; O->PPONB;
0->CAPBRD; O->C3FLAG; O->MSFLG; O->MSFLGX; O->WHSQFL; O->PPCAP; O->PPONBX;

nil->RKLIST; O->WPPC; 0->BPPC;

. START;
COMMENT set up board;

LOOPY: NEWARRAY((1 81 8], LAMBDA, I, J; "BLANK"; END;)->BOARD;
COMMENT get list of-pieces on board;

nl(l); prstring('Enter black piecesl); nl(1);. listread->BLIST;
nl(2); prstring('Enter white piecesl); nl(l);. listread->WLIST;

COMMENT place pieces on board and display;

. place2;. display;
COMMENT ask if board correct;

nl(1); prstring('is the board correct ? <Y or N> : 1);

. itemread->BC; If BC="N" then goto LOOPY; close;

. SETP;
COMMENT keep copy of original lists;
COPYALL(BLIST)->NBLIST; COPYALL(WLIST)->NWLIST;
COMMENT ask for the question;

nl(l); prstring('what is the questionl); nl(l);

. listread->ASKXL; PARS(ASKXL);

COMMENT ask for initial conditions;
ICP: nl(1); prstring('any initial conditions <Y or N> 1);
IC: . itemread->ITM;

If ITM/="Y" and ITM/="N" then goto IC;
elseif ITM="Y" then nl(l); prstring('please entert); nl(l);

. listread->ILST; PARSEC(ILST);
nl(l); prstring('any more conditions <Y or N>1);
nl(l); goto IC;

close;

1->ILLFLG; If LOCFLG=1 then REV(PLOC)->PLOCR; close;
LOC: If not(PLOC. null) and ILLFLG=1 then PLOC. HD->PLOCHD;

nil->DDB; nil->DDBFX; PLOCB(PLOC)->PLOC;
elseif not(PLOC. null) and ILLFLG=O and TRANS=O then

copyal1(PLOCR)->PLOC; 1->ILLFLG; goto LOC;
elseif not(PLOC. null) and ILLFLG=O and TRANS=1 then PRLOC(PLOCHD);. ASK; rQ4J'Y1
close;
0->ILLFLG;

COMMENT If last move known - form reverse moves, else got to
CATPRB to classify problem (module A);

If LM="B" then PCMOV(BLIST)->MLIST;
elseif LM="W" then PCMOV(WLIST)->MLIST;
else CATPRB;

COMMENT after classification & solution see if another location
to be considered - if no, exit, else reset;

If PLOC. null and LOCFLG=1 then PRLOC(PLOCHD);. ASK; return;
elseif PLOC. NÜLL then . ASK; return;
else COPYALL(NWLIST)->WLIST; COPYALL(NBLIST)->BLIST;. RSTB;

0->PPAWN; nil->PPIECE; O->PPCAP; nil->PRLST;
goto LOC; close;

close;

COMMENT if this is a castle problem delete any possible
rook and king moves from subsequent analysis;

If BCFLG/=O or WCFLG/=O then . CASTLE; close;

COMMENT perform legality check on reverse moves;
[%[MLIST], MLIST, [R44EXJ%]:: DDB->DDB; l->LEGFLG; LEGCHK(CAP, MLIST)->MLIST;
If MLIST. NULL then nl(l); prstring('No moves found!); nl(l);

COPYALL(NWLIST)->WLIST; COPYALL(NBLIST)->BLIST;. RSTB;

else COPYALL(MLIST)->NML; nil->CLIST;
close;

COMMENT NML is copy of move list. CLIST is list of possible reverse moves;
LOOP: If MLIST. null and PLOC. null and LOCFLG=l then PRLOC(PLOCHD);. ASK; return;

elseif MLIST. NULL and PLOC. NULL then . ASK; return;;
elseif MLIST. NULL then goto LOC;

close;
comment find which side moved, save no of captures(CP)

and place move in CLIST, update board;
BORW(MLIST. HD. HD)->BWL; CP->NC; MLIST. HD:: CLIST->CLIST;
nil->DDBF; [%(REVMOVJ, MLIST. HD, [R43EX]%]:: DDB->DDB;

COMMENT update the board and list of piece ,
s. i. e. make reverse move;

If BWL="B" then UPDATE(MLIST. HD, BLIST); else UPDATE(MLIST. HD, WLIST); close;

COMMENT last move known. it is worth looking here for the signifiant
event "is a king in check".
if a king is not in check then classify - module B
if both kings in check restore board and get next move;

LOOP1: ISKCHK(BLIST, WLIST)->CHI->KC;
If NOT(CHI=FALSE) and NOT(CHI. NULL) then [8[RETRO], CHI. HD, [R46EXJ%]:: DDB->DDB; ge(o LIA

elseif CHI. NULL then . CATPRB; close;;
L2: COPYALL(NBLIST)->BLIST; O->WHPFLG; COPYALL(NWLIST)->WLIST;. RSTB; TL(MLIST)->MLI57)
COMMENT a king is in check. how could this happen. reply in KL; u=L->rL: cs-.; SSO
L1: KCHECK1(CHI, KC)->KL;

If not(KL. null) then [%[RETRO], KL, [R47EXI%]:: DDB->DDB; close;
COMMENT if KL. null then no way found, else make moe & see if king

still in check - indicating a capture;
If KL. NULL then [%[KCHECK], nil, [R42EX]%]:: DDB->DDB; goto L2;

elseif WHPFLG=1 then WHPCAP(CHI. HD. TL)->ZL;

If ZL. TL. TL. null then 1->ILLFLG; goto L2; close;
If ILLFLG=1 then goto L2; close;

'close;
KL<>CLIST->CLIST;

NC-1->NC; If LOCFLG=O then(%(KCHECKJ, KL, (R40EXJ%J:: DDB->DDB; close;
If WHPFLG=1 then [8[WHPCAP], ZL, (R45EX]%J:: DDB->DDB; goto L2; close;

COMMENT if all reverse moves made print list;
If NOT(NC>i) then PRINTLS(CLIST); goto L2;
else BORW(KL. HD. HD)->BW;
If BW="B" then UPDATE(KL. HD, BLIST); else UPDATE(KL. HD, WLIST); Close;
goto LOOP1; close;
END;

FUNCTION SCANTS;
COMMENT scan initial and final flags, print result of deduction;

end;

If BCFLGX>BCFLG and BCFLG=O then nl(l); prstring('black cannot castle!);
elseif not(BCAS. null) and BCFLGX/=0 then nl(l); PRSC(BCAS);

close;
If PPONBX>PPONB then nl(l); prstring('the promoted piece is on boardt); nlC')
close;

If WCFLGX>WCFLG and WCFLG=O then nl(l); prstring('white cannot castle!);

elseif not(WCAS. null) and WCFLGX/=O then nl(l); PRSC(WCAS);
close;

If MSFLGX=1 and MSFLG=O then . PRMP; close;

FUNCTION PRSC XL;
COMMENT used by SCANTB prints contents o£ BCAS/WCAS - castle tables;

vars PC HL; BORW(XL. HD. HD. HD)->PC;
nl(l); pr(PC); sp(l); prstring('can possibly castle with the following!);
nl(l); XL. HD. HD->HL; HL=>; nl(1);
If not(XL. TL. null) then XL. TL. HD. HD->HL; HL=>; nl(l); close;

end;
FUNCTION ASK;

vars ITM DDBX HL;
COMMENT print result of deduction;

. SCANTS;
COMMENT ask if explanation required;

nl(2); prstring('explanation required <y or n>1); nl(l);

. itemread->ITM;
If ITM/="Y" then exit;
COPYALL(DDB)->DDBX; REV(DDBX)->DDBX;

loop: If DDBX. null then return;
else dest(DDBX)->DDBX->HL;

HL. TL. HD; apply(valof(HL. TL. TL. HD. HD)).; goto loop;
close;

end;

FUNCTION DPPROM=>CPSQ;
vars AH ALR; l->WHSQFL; NIL->DDBF;
COMMENT Checks through the pawn promotion rules.

If a rule is triggered adds (e. g) [WP XH YH] to CPSQ
where XH, YH are the home coordinates;

nil->CPSQ; COPYALL(ALLRULES)->ALR;
COMMENT SETP sets up position variables;
loop: If NOT(ALR. NULL) then dest(ALR)->ALR->AH;

If category(valof(AH))="PROMRULE" and eval(premise(valof(AH)))
then PROMXL<>CPSQ->CPSQ; close;

goto loop; close;
If not(CPSQ. NULL) then DDBF<>DDB->DDB;
(%(DPPROM], (%CPSQ%], [R52EX]%]:: DDB->DDB; CPSQ. HD. HD->PPAWN;
If PPAWN="BP" then 1->BPPC; O->WPPC;
elseif PPAWN="WP" then 1->WPPC; O->BPPC;
close;
close;
0->WHSQFL;

end;
FUNCTION DRK XL;
IF XL. NULL THEN NIL;
ELSEIF XL. HD. HD="WR" OR XL. HD. HD="BR" OR XL. HD. HD="WK" OR XL. HD. HD="BK"
THEN DRK(TL(XL));
ELSE XL. HD:: DRK(TL(XL)); CLOSE;
END;

FUNCTION PRLOC XL;
nl(1); pr(XL. HD); sp(1); prstring('is on!); sp(l); pr("(");
pr(XL. TL. HD); pr(", "); pr(XL. TL. TL. HD); pr(")"); nl(l);
end;

FUNCTION BAMK KI XL=>NNL;
COMMENT a king is in check. if the checking piece

the same king still in check. if
returns true or false;

' vars PC HHL Rl R2 ANS SF PCK;
BORW(XL. HD. HD)->PC; nil->NNL;

loop: If XL. null then exit;
XL. HD->HHL;
If PC="B" then UPDATE(HHL, BLIST);
else UPDATE(HHL, WLIST);
close;
SFLAG->SF; ISKCHK(BLIST, WLIST)->R1->R2;
If Rl=false then goto L2;

elseif Rl. null then goto°L1;

moves is
so implies capture.

elseif R2=KI and CAP="Y" and RVP(HHL) then 1->WHPFLG;
elseif R2=KI and CAP="N" then goto L2;

close;

L1: HHL:: NNL->NNL;
L2: SF->SFLAG; RESTOR(HHL); XL. TL->XL; goto loop;
end;

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP ppp
PPP PPP
ppp ppp
PPP PPP
ppp ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
ppp
PPP
PPP
ppp
PPP

AAAAAAAAA
AAAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAAAAAAA AAAAAAA
AAAAAAAA AAAAAAA
AAAAAAAAAAAAAAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT
TTTTTTTTTTTTTTT

TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT
TTT

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP PPP
PPP PPP
PPP ppp
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
ppp
PPP
PPP

iii
iii
iii

3.11111
111111
111111

iii
iii
iii
iii
iii
iii
iii
iii
iii
iii
iii
iii

111111111
111111111
111111111

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>CAT1. POP. 1, created: 4-Apr-84 12: 36: 15, printed: 11-Jun-86 10:
Job parameters: Request created: ll-Jun-86 10: 51: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII, Print mode:

FUNCTION CAT1;
COMMENT it is possible to determine what pieces thepawns have captured;

vars IJ WL BL L1 L2 CL LT LX HXL HYL HHL BPR WPR TT BPRE WPRE;
nil->WL; nil->BL; nil->BPR; nil->WPR; nil->BPRE; nil->WPRE;

COMMENT WL/BL contains [[[x, y]]wb wn]J]i. e. pieces captured
by pawns on suare [x, yJ;

loop: If not(CPW. null) then PLINXL(CPW. HD, "WP", WL)->WL; TL(CPW)->CPW;
goto loop;

close;

loopl: If not(CPB. null) then PLINXL(CPB. HD, "BP", BL)->BL; TL(CPB)->CPB;
goto loopl;
close;

COMMENT now have pawn captures on 1st move, look for others;

lengt(BDC)->LT; copyall(BDC)->LX;
FORALL I11 LT LX. HD->HL; HL. HD->HXL; HL. TL->HYL; TL(LX)->LX;
(%HXL. HD, HYL. HD. HD, HYL. HD. TL. HD, HXL. TL. HD, HXL. TL. TL. HD%]->HHL;
UPDATE(HHL, BLIST); HHL:: BPR->BPR;
close;

FORALL I118 FORALL J215 If BOARD(I, J)="BP" and BOARD(I, 7)="BP"
then PLINXL((%I, J%], "BP", BL)->BL; GHSQ(I, J, "BP", BPR, BPRE)->BPRE->

close; close; close;

RESTB(NWLIST, NBLIST);

lengt(WDC)->LT; copyall(WDC)->LX;
FORALL I11 LT LX. HD->HL; HL. HD->HXL; HL. TL->HYL; TL(LX)->LX;
(%HXL. HD, HYL. HD. HD, HYL. HD. TL. HD, HXL. TL. HD, HXL. TL. TL. HD%]->HHL;
UPDATE(HHL, WLIST); HHL:: WPR->WPR;
close;

FORALL I118 FORALL J417 If BOARD(I, J)="WP" and BOARD(I, 2)="WP"
then PLINXL([%I, J8), "WP", WL)->WL;

GHSQ(I, J, "WP", WPR, WPRE)->WPRE->WPR;
close; close; close;

COMMENT assumes at most 2 pawn captures;.

If lengt(WL)=2 then WL. HD. TL. HD->L1; WL. TL. HD. TL. HD->L2;
.

If. lengt(L1)>lengt(L2) then DBL(L1, L2)->WL. HD. TL. HD;
elseif lengt(L2)>lengt(Ll) then DBL(L2, L1)->WL. TL. HD. TL. HD;
close;

close;

If lengt(BL)=2 then BL. HD. TL. HD->Ll; BL. TL. HD. TL. HD->L2;
If lengt(Ll)>lengt(L2) then DBL(Ll, L2)->BL. HD. TL. HD;

elseif lengt(L2)>lengt(Ll) then DBL(L2, Ll)->BL. TL. HD. TL. HD;
close;

close;

[BWL, BL%]->CL; (%[CATIJ, CL, (R100EX]%]:: DDB->DDB; RESTB(NWLIST, NBLIST);
lengt(WL)+lengt(BL)->TT; CATIA(BPR, WPR, BPRE, WPRE, TT, BL, WL);

end;

FUNCTION ADEND X XL=>XL;
COMMENT append x to xl;

XL<>[%X%]->XL;
end;

FUNCTION PLINXL HL PWN XL=>XL;
COMMENT used in catl;

vars ZL FL;
WCAPPN(HL, PWN)->ZL; nil->FL; ZL:: FL->FL; HL:: FL->FL; FL:: XL->XL;

end;

FUNCTION GHSQ IJ PWN PRX PRE=>PRX PRE;
COMMENT all pawns that have captured on their first move

are now on thir home squares. check pawn on (i, j);

vars XL X XH N;
If PWN="WP" then WHTAB1->XL=-1->N; 2->XH;
else BHTAB1->XL; 1->N; 7->XH;

close;

GABS(I, XL)->X; [%PWN, I, J, X, J+N%]:: PRX->PRX;
If I-1/=XH then [%PWN, X, J+N, X, XH%]:: PRX->PRX;

[%PWN, I, J, X, XH%]:: PRE->PRE;
close;

end;

FUNCTION RESTORA HL;
COMMENT modified version of restor (restore reverse move back

to original position)
allow for fact that in catla there may be 2 possible
reverse moves;

vars X Y;
HL. TL. TL. TL. HD->X; HL. TL. TL. TL. TL. HD->Y;
If BOARD(X, Y)/=HL. HD then false;

else true;
close;

end;

FUNCTION CAT1A BR WR BP WP TT BL WL;
COMMENT Called from catl to determine order in which pawns captured;

vars BPR WPR HL BCNT WCNT ML TOTCP POSC WLISTX BLISTX NM
WLE BLE WC Xl X2 Y ZI LT LX HHL I HXL HYL HQ BPRE WPRE YL
TMP TMPW TMPB BFLAG WFLAG LBL BCP WCP BH I;

BR->BPR; WR->WPR; TT->TOTCP; BP->BPRE; WP->WPRE; nil->YL; nil->TMPB; nil->TMPW;
nil->RKLST; O->BFLAG; O->WFLAG;

lengt(BL)->LBL; nil->BCP;
FORALL I11 LBL BL. HD->BH; BH. TL. HD->BH;.

If not(BH. nu11) then BH<>BCP->BCP; close;
TL(BL)->BL; close;

lengt(WL)->LBL; nil->WCP;
FORALL I11 LBL WL. HD->BH; $H. TL. HD->BH;

If not(BH. null) then BH<>WCP->WCP; close;

TL(WL)->WL; close;

COMMENT update board froa all first capture moves;

lengt(BDC)->LT; copyall(BDC)->LX;
FORALL I11 LT LX. HD->HL; HL. HD->HXL; HL. TL->HYL; TL(LX)->LX;
[%HXL. HD, HYL. HD. HD, HYL. HD. TL. HD, HXL. TL. HD, HXL. TL. TL. HD%]->HHL;
UPDATEX(HHL, BLIST, YL)->YL;
close;

lengt(WDC)->LT; copyall(WDC)->LX;
FORALL I11 LT LX. HD->HL; HL. HD->HXL; HL. TL->HYL; TL(LX)->LX;
(%HXL. HD, HYL. HD. HD, HYL. HD. TL. HD, HXL. TL. HD, HXL. TL. TL. HD%J->HHL;
UPDATEX(HHL, WLIST, YL)->YL;
close;

COMMENT all first capture moves now on home squares
check if any other pawns to be added to brp/wrp
and to be placed on home square;

lengt(WPRE)->LT;
FORALL 111 LT UPDATEX(WPRE. HD, WLIST, YL)->YL; TL(WPRE)->WPRE; close;

lengt(BPRE)->LT;
FORALL 111 LT UPDATEX(BPRE. HD, BLIST, YL)->YL; TL(BPRE)->BPRE; close;

COMMENT all pawns now on home suares, keep copy of wlist/blist
to allow resets

copyall(WLIST)->WLISTX; copyall(BLIST)->BLISTX;
lengt(BPR)->BLE; lengt(WPR)->WLE; O->POSC; nil->ML; O->BCNT; O->WCNT;

COMMENT look for possible move order;

L4: BPR. HD->NM; TL(BPR)->BPR; BCNT+1->BCNT;

If BCNT>BLE and POSC=TOTCP then . OUT; return;
elseif BCNT>BLE and POSC/=TOTCP then RESTB(WLISTX, BLISTX);

nil->TMPW; O->BCNT; O->WCNT; nil->ML; O->POSC; ADEND(NM, BPR)->BPR; nil->TMPB;
0->WFLAG; O->BFLAG; goto L9;,

else NM. TL. HD->Xl; NM. TL. TL. TL. HD->X2; NM. TL. TL. HD->Y;
If not(RESTORA(NM)) then BCNT-1->BCNT; ADEND(NM, BPR)->BPR;

goto L4; close;
RESTORX(NM, YL);
If X1=X2 then ADEND(NM, BPR)->BPR; 1->BFLAG; goto L9; close;

CÖMMENT if pawns not capture on first move then cannot
use wleft/bleft as possible captures, instead use bl/wlt

. SETP; If BFLAG then BCP->WLEFT; LENGT(WLEFT)->WTOT; close; WCAPPN((%X1, Y8), ßr"), ýýc

If WC. null then ADEND(NM, BPR)->BPR;

goto L4;
close;

DBL(WC, TMPB)->WC; WC. HD:: TMPB->TMPB; HOMESQ(WC. HD, NM)->HQ;
IF not(HQ. null) then [%WC. HD%]<>HQ->WC;
else [%WC. HD%]->WC;
close;
If CAPPC/=0 and WC. HD=CAPPC then nl(l); prstring('the1); sp(1);
pr(CAPPC); sp(l); prstring('was captured onl); sp(l); pr((%Xl, Y%J);
nl(l);

close;

[%NM%]<>[%WC%]->TMP;
TMP:: ML->ML; 1+POSC->POSC; ADEND(NM, BPR)->BPR;
close;

L9: WPR. HD->NM; TL(WPR)->WPR; WCNT+1->WCNT;
If WCNT>WLE and POSC=TOTCP then . OUT; return;
else if WCNT>WLE and POSC/=TOTCP then RESTB(WLISTX, BLISTX); nil->TMPB;
0->BFLAG; O->WFLAG;
0->BCNT; nil->TMPW; O->WCNT; nil->ML; O->POSC; ADEND(NM, WPR)->WPR; goto L4;

else NM. TL. HD->Xl; NM. TL. TL. TL. HD->X2; NM. TL. TL. HD->Y;
If not(RESTORA(NM)) then WCNT-1->WCNT; ADEND(NM, WPR)->WPR;

goto L9; close;
RESTORX(NM, YL);
If X1=X2 then ADEND(NM, WPR)->WPR; 1->WFLAG; goto L4; close;

. SETP; If WFLAG THEN WCP->BLEFT; LENGT(BLEFT)->BTOT; close; WCAPPN((%X1, Y%], wp)) w
If WC. null then ADEND(NM, WPR)->WPR;

goto L9;
close;

DBL(WC, TMPW)->WC; WC. HD:: TMPW->TMPW; HOMESQ(WC. HD, NM)->HQ;
If not(HQ. null) then [%WC. HD%]<>HQ->WC;
else [%WC. HD%]->WC;
close;

if CAPPC/=0 and WC. HD=CAPPC then nl(l); prstring('thel); sp(l);

pr(CAPPC); sp(l); prstring('was captured onl); sp(l); pr((%Xl, Y8]);

nl(l);
close;

(%NM%]<>(%WC%]->TMP;
TMP:: ML->ML; I+POSC->POSC; ADEND(NM, WPR)->WPR; goto L4;

close;

end;

FUNCTION OUT;

. CHKFLG; (%[CAT1A], ML, [R101EX]%]:: DDB->DDB;
end;

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP PPP
PPP PPP
PPP ppp
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
ppp
PPP

AAAAAAAAA
AAAAAAAAA
AAAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA
AAAAAA

AAA
A AA AAAAAA

AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 coo
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

ssssssssssss
ssssssssssss
ssssssssssss

SO
sss
SO
SO
SO
SO

sssssssss
sssssssss
sssssssss

SO
sss
sss
sss
SO
sss

ssssssssssss
ssssssssssss
ssssssssssss

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP PPP
ppp ppp
ppp ppp
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
ppp
PPP

RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR. RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>CASRUL. POP. 1, created: 4-Apr-84 12: 37: 28, printed: 11-Jun-86 1
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION CASTLE;
COMMENT look through castle rules

if e. g. have to consider 2b castle positions bcflg=2
if rule triggers bcflg-l->bcflg

rule explanation in ddb
rules require: -

PSQS list of possible pawn promotion squares
PPIECE promoted piece [PP) or null
PPAWN promoted pawn "WP" or "BP"
PPOB =0 if promoted piece not on board, else 1
XYLIFS where promoted pawn crossed 7th or 2nd rank;

vars AH ALR;

nil->CASXL; COPYALL(ALLRULES)->ALR;

loop: If not(ALR. null) then dest(ALR)->ALR->AH;
If category(valof(AH))="CASRULE" and eval(premise(valof(AH)))
then [%[CASRULE], CASXL, explain(valof(AH))% :: DDB->DDB;
close;
nil->CASXL; goto loop;

close;
end;

FUNCTION RULE30=>ANS;
COMMENT if a castle flag is set and last move known and blist, wlist

contains possible castle pieces, delete moves for these pieces;
vars XL KL R1 R2 ML MLH HL;
false->ANS;

If LM="B" and BCFLG/=O then BLIST->XL; (BK 5 8J->KL; (BR 1 8J->Rl;
(BR 8 8J->R2;

elseif LM="W" and WCFLG/=O then WLIST->XL; (WK 5 lj->KL; (WR 1 lJ->Rl;
[WR 8 1]->R2;

else return;
close;

If not(membl(KL, XL)) then return;
elseif not(membl(Rl, XL)) and not(membl(R2, XL)) then return;
close;
COPYALL(MLIST)->ML;

loop: If ML. null then return;
else dest(ML)->ML->MLH; [%MLH. HDºMLH. TL. HD, MLH. TL. TL. HD%]->HL;

If equal(KL, HL) or equal(Rl, HL) or equal(R2, HL)
then true->ANS; DELTL(MLH, MLIST)->MLIST; MLH:: CASXL->CASXL;
close;

goto . loop;
close;

end;

FUNCTION RULE31;
COMMENT If a pawn has promoted on a square that contains a castle

piece then this piece must have moved.
PSQS contains list of promotion squares
castle pieces in BCAS/WCAS e. g. [[[WR 1 11[WK 5 1)11;

vars XL PSQX YL PSQH;
If PPAWN=O then false ; return;
elseif not(PPIECE. null) and PPIECE. HD="WR" then false; return;
elseif not(PPIECE. null) and PPIECE. HD="BR" then false; return;
elseif PPAWN="WP" and BCAS. null then false; return;
elseif PPAWN="BP" and WCAS. null then false; return;
elseif PPAWN="WP" then copyall(BCAS)->XL;
else copyall(WCAS)->XL;
close;

COPYALL(PSQS)->PSQX; ni1->YL; XL. HD<>YL->YL;
If not(XL. TL. null) then XL. TL. HD<>YL->YL; close;

loop: If PSQX. null then false; return;
else dest(PSQX)->PSQX->PSQH;

If equal(PSQH, YL. HD. TL) then YL. HD:: CASXL->CASXL; true;. FLG1;
DRCAS(YL. HD); return;

elseif equal(PSQH, YL. TL. HD. TL) then YL. TL. HD:: CASXL->CASXL;
If PPAWN="WP" then nil->WCAS; else nil->BCAS; close;

true;. FLG1; return;
elseif not(YL. TL. TL. null) and equal(PSQH, YL. TL. TL. HD. TL)
then YL. TL. TL. HD:: CASXL->CASXL; true;. FLG1; DRCAS(YL. TL. TL. HD);
return;
close;

goto loop;
close;

end;

FUNCTION RULE32=>ANS;
COMMENT if the promoted piece is a rook, constrained to its home square

and the king moved to let it out, then no castle.
promoted piece in PPIECE;

vacs P RNK XL YL XH QC BC RU RC KL RL RK R1 R2 FLG;
false->ANS; nil->0MIT33; 0->R32FLG; nil->CASXL;
If PPIECE. null or PPOB=O then return;
else BORW(PPIECE. HD)->P;

If P="W" then 2->RNK; "WR"->RK; WLIST->XL; FRMXL(WCAS)->YL; [WK 5 1]"a KL,
(WR 1 l]->R1; [WR 8 1]->R2;

else. 7->R NK; "BR"->RK; BLIST->XL; FRMXL(BCAS)->YL; [BK 5 8]->KL;
[BR 1 8]->Rl; (BR 8 8]->R2;

close;
close;
If membl(R1, YL) and membl(R2, YL) then 1->FLG;

else 0->FLG;

close;

loop: If XL. null then return;
else dest(XL)->XL->XH;

If XH. HD/=RK then goto loop;
elseif XH. TL. TL. HD>RNK and XH. HD="WR" then goto loop;
elseif XH. TL. TL. HD<RNK and' XH. HD="BR" then goto loop;
else GENCON(P)->QC->BC->RU->RC; FRMXL(RU)->RL;

If RU. null then goto loop;
elseif membl(XH, YL) and membl(XH, RL) and membl(KL, RL)
and FLG=l then XH->0MIT33; goto loop;
elseif membl(XH, YL) and membl(XH, RL) and membl(KL, RL)
then DRCAS(XH); true->ANS;. FLG2; XH:: CASXL->CASXL;
1->R32FLG;
elseif membl(KL, RL) and not(membl(XH, YL))
then true->ANS; XH:: CASXL->CASXL;
close;

close;
goto loop;
close;

end;

FUNCTION FRMXL XL=>YL;
COMMENT used by rule32;

nil->YL;
loop: If XL. null then return;

else XL. HD<>YL->YL; TL(XL)->XL; goto loop;

end;
close;

FUNCTION RULE33=>ANS;
COMMENT if the promoted piece is a rook and this rook is on a home

square in a castle position then no castle;

vars P CB RH1 RH2 XL;
false->ANS; nil->CASXL;
If PPIECE. null then return;
elseif R32FLG=1 and PPIECE. HD="WR" and WCFLG>O then return;
elseif R32FLG=1 and PPIECE. HD="BR" and BCFLG>O then return;
else BORW(PPIECE. HD)->P;

If P="W" then COUNTX("WR", PPIECE)->CB; [WR 1 1]->RH1;
[WR 8 1]->RH2; WLIST->XL;

else COUNTX("BR", PPIECE)->CB; (BR 1 8]->RH1; [BR 8 81->RH2;
BLIST->XL;

close;
If CB=O then exit;

close;

If equal(RH1,, OMIT33) then nil->RH1;
elseif equal(RH2, OMIT33) then nil->RH2;
close;

If membl(RH1, XL) and ISRCAS(RH1) and RCCAS(RH1) then RH1:: CASXL->CASXL; true->ANS;. FL42. ý
DRCAS(RH1); close;

If membl(RH2, XL) and ISRCAS(RH2) and RCCAS(RH2) then RH2:: CASXL->CASXL; true->ANS; "rL4 2.
DRCAS(RH2); close;

end;
FUNCTION RULE34=>ANS;
COMMENT if a king moved to let out a rook that was captured on board

then no castle.
if 1 rook cap. on board and"lengt(ru)=2 and k{ru then no castle.
if 1 rook cap. on board and lengt(ru)=1 and k(ru and the rook
in wcas/bcas not have same home square as rook in ru, no castle;

vars XL RK HL CL P CB QC BC RC RU;

If BCFLG/=O then BLEFT->XL; "BR"->RK; (BK 5 81->HL; copyall(BCAS)->CL;
"B"->P, -
else WLEFT->XL; "WR"->RK; [WK 5 l]->HL; copyall(WCAS)->CL; "W"->P;
close;

false->ANS; COUNTX(RK, XL)->CB; GENCON(P)->QC->BC->RU->RC;

If RU. null or CB=O then return;
elseif membl(HL, RU. HD) then goto L1;
elseif not(RU. TL. null) and membl(HL, RU. TL. HD) then goto L1;
else return;
close;

L1: If CB=1 and lengt(RU)=2 THEN true->ANS; HL->CASXL;
elseif CB=1 and lengt(RU)=1 and NTSMR(CL, RU. HD) then true->ANS;
HL->CASXL;
else return;
close;

If BCFLG/=O then BCFLG-1->BCFLG;

el-se WCFLG-1->WCFLG;

close;

If P="B" then nil->BCAS; else nil->WCAS; close;
end;

FUNCTION NTSMR CL RU;
COMMENT cl=bcas/wcas, ru=list of rooks unconstrained but piece to move

to let them out.
if home square of" rookin cl/- home square of rook in ru
then true, else false;

ears XL;
RU. HD. HD->XL;
If not(equal(XL, CL. HD. HD)) then true;
elseif not(CL. TL. null) and not(equal(XL, CL. TL. HD)) then true;
else false;

close;

end;

FUNCTION RULE35=>ANS;
COMMENT if a pawn promoted such that a king was in check then no castle.

list of squares where pawn crosed 2nd or 7th rank in XYLIFS;

false->ANS; ni1->CASXL;

If PPAWN=O then return;
elseif PPAWN="WP" and BCAS. null then return;
elseif PPAWN="BP" and WCAS. null then return;
elseif PPAWN="WP" and membl([4 7], XYLIFS) then true->ANS, -

(4 71:: CASXL->CASXL; BCFLG-1->BCFLG; nil->BCAS;
elseif PPAWN="WP" and membl([6 7], XYLIFS) then true->ANS;

(6 7]:: CASXL->CASXL; BCFLG-1->BCFLG; nil->BCAS;
elseif PPAWN="BP" and membl([4 2], XYLIFS) then true->ANS;

(4 21:: CASXL->CASXL; WCFLG-1->WCFLG; nil->WCAS;
elseif PPAWN="BP" and membl([6 2], XYLIFS) then true->ANS;

[6 2]:: CASXL->CASXL; WCFLG-1->WCFLG; nil->WCAS;
close;

end;

FUNCTION RULE36=>ANS;
COMMENT if a pawn captured a rook on its home square, then no castle

list of rooks captured(from catla) in RKLIST;

vacs XL YL1 YL2 HL HHL P;

copyall(RKLIST)->XL; FRMXL(WCAS)->YL1; FRMXL(BCAS)->YL2; false->ANS;
nil->CASXL;

loop: If XL. null then return;
"else XL. HD->HL;

If membl(HL, YLl) or membl(HL, YL2) then DRCAS(HL);
true->ANS; HL:: CASXL->CASXL; BORW(HL. HD)->P;. FLG2; "

close;
TL(XL)->XL; goto loop;
close;

end;

FUNCTION DRCAS XL;
COMMENT to delete XL ([WR 1 1]) from BCAS/WCAS;

vars PC;
BORW(XL. HD)->PC;

If PC="W" and equal(WCAS. HD. HD, XL) then WCAS. TL->WCAS;

elseif PC="W" then [%WCAS. HD%]->WCAS;
elseif PC="B" and equal(BCAS. HD. HD, XL) then BCAS. TL->BCAS;

elseif PC="B" then [%BCAS. HD%]->BCAS;
close;

end;

FUNCTION FLG1;
If PPAWN="WP" then BCFLG-1->BCFLG;
else WC'FLG-1->WCFLG;
close;
end;

FUNCTION FLG2;
If P="W" then WCFLG-1->WCFLG;
else BCFLG-1->BCFLG;

close;
end;

FUNCTION RCCAS XL;
COMMENT used by rule, 33 to check that the promoting pawn could

actually reach the square;

vars QC BC RU RC P;
BORW(PPIECE. HD)->P; GENCON(P)->QC->BC->RU->RC;

If RC. null then true;
elseif equal(XL, RC. HD. HD) then false;
elseif RC. TL. null then true;

elseif equal(XL, RC. TL. HD. HD) then false;
else true;

end;
close;

FUNCTION ISRCAS XL;
COMMENT to determine if xl ([wr xr yr)) is in the castle table;

vars P CC;
If XL. null then false; return;
else BORW(XL. HD)->P;

If P="W" then copyall(WCAS)->CL;
else copyall(BCAS)->CL;
close;

close;

If CL. null then false; return';
elseif equal(XL, CL. HD. HD) then true;
elseif not(CL. TL. null) and equal(XL, CL. TL. HD. HD) then true;
else false;

close;
end;

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP ppp
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
PPP
ppp
PPP
PPP
PPP

HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HHF!
HHH HHH
HHH HHH
HRH
HHHHHHHH

HHH
fHiHHHHH

HH
HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HHH
HHH HM
HHH HHH
HHH HHH

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEE
EEE
EEE
EEE
EEE
EEE

EEEEEEEEEEEE
EEEEEEEEEEEE
EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>CHECK. POP. l, created: 16-Sep-83 13: 17: 58, printed: 11-Jun-86 10
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1" Spacing: SINGLE File format: ASCII Print mode:

FUNCTION ISKCHK BL WL=>KCH CLIST;
COMMENT is a king in check. if yes returns king in kch and e. g.

([wk bb 2 111 in clist.
if k not in check clist is null.
if 2 kings in check - illegal position - clist false;

VARS CLISTI CLIST2 XBK YBK XWK YWK L1 L2;
FKING(BL, WL)->CLIST1;
CLIST1. HD. HD->XWK;
CLIST1. HD. TL. HD->YWK;
CLISTI. TL. HD. HD->XBK;
CLIST1. TL. HD. TL. HD->YBK;
BL. HD. HD->PC;
IF PC="BP" OR PC="BN" OR PC="BB" OR PC="BO" OR PC="BK" OR PC="BR"
THEN BL->Ll; WL->L2;
ELSE WL->Ll; BL->L2; CLOSE;
CCHECK(L1, "WK", XWK, YWK)->CLIST1; CCHECK(L2, "BK", XBK, YBK)->CLIST2;
NIL->KCH;
IF NOT(NULL(CLIST1)) AND NOT(NULL(CLIST2)) THEN FALSE->CLIST;
ELSEIF NULL(CLIST1) AND NULL(CLIST2) THEN NIL->CLIST;
ELSEIF NOT(NULL(CLIST1)) THEN CLIST1->CLIST;
ELSE CLIST2->CLIST; CLOSE;
IF NOT(CLIST=FALSE) AND NOT(NULL(CLIST)) THEN CLIST. HD. HD->KCH; CLOSE;
END;
FUNCTION CCHECK XL CK X Y=>CLIST;
VARS HED XK YK ANS NLL; NIL->CLIST; X->XK; Y->YK; XL->NLL;
LOOP: IF NULL(NLL) THEN EXIT;
DEST(NLL)->NLL->HED;
CHK(HED, XK, YK)->ANS; IF ANS= FALSE THEN GOTO LOOP;
ELSE [%CK, HED. HD, HED. TL. HD, HED. TL. TL. HD%]:: CLIST->CLIST;
GOTO LOOP; CLOSE;
END;
FUNCTION CHK XL XK YK;
VARS PC, XP, YP; XL. HD->PC; XL. TL. HD->XP; XL. TL. TL. HD->YP;
IF PC="WK" OR PC="BK" THEN FALSE;
ELSEIF PC="BB" OR PC="WB" THEN BISHOP(XP, YP, XK, YK);
ELSEIF PC="WN" OR PC="BN" THEN KNIGHT(XP, YP, XK, YK);
ELSEIF PC="WQ" OR PC="BQ" THEN QUEEN(XP, YP, XK, YK);
ELSEIF PC="WR" OR PC="BR" THEN ROOK(XP, YP, XK, YK);
ELSE PAWN(XP, YP, XK, YK); CLOSE;
END;
FUNCTION BISHOP XB YB XK YK;
IF NOT(XB+YB=XK+YK) AND NOT(YB-XB=YK-XK) THEN FALSE; EXIT;
IF XB+YB=XK+YK THEN GOTO B2; CLOSE;
B1: IF XB>=XK THEN YB-1->YB; XB-1->XB;
ELSE YB+1->YB; XB+1->XB; CLOSE;
IF(XB=XK) AND, (YB=YK) THEN TRUE; RETURN;
ELSEIF NOT(BOARD(XB, YB)="BLANK") THEN FALSE; RETURN;
ELSE GOTO Bl; CLOSE; '
B2: IF XB>=XK THEN YB+1->YB; XB-1->XB;
ELSE YB-1->YB; XB+1->XB; CLOSE;
IF (XB=XK) AND (YB=YK) THEN TRUE; RETURN;
ELSEIF NOT(BOARD(XB, YB)="BLANK") THEN FALSE; RETURN;
ELSE GOTO B2; CLOSE;
END;
FUNCTION ROOK XR YR XK YK;
IF NOT(XR=XK) AND NOT (YR=YK) THEN FALSE; EXIT;
IF XR=XK THEN GOTO R2; CLOSE;
Rl: IF XR<XK THEN XR+1->XR;
ELSE XR-1->XR; CLOSE;
IF (XR=XK) THEN TRUE; RETURN;
ELSEIF NOT(BOARD(XR', YR)="BLANK") THEN FALSE; RETURN;
ELSE GOTO R1; CLOSE;
R2: IF YR<YK THEN YR+1->YR; ELSE YR-1->YR; CLOSE;
IF YR=YK THEN TRUE; RETURN;

ELSEIF NOT(BOARD(XR, YR)="BLANK") THEN FALSE; RETURN;
ELSE GOTO R2; CLOSE;
END;
FUNCTION ABBS X;
IF X>O THEN X; ELSE -X; CLOSE;
END;
FUNCTION KNIGHT XN YN XK YK;
VARS ABI AB2;
ABBS(XN-XK)->ABI; ABBS(YN-YK)->AB2;
IF AB1>=3 OR AB2>=3 THEN FALSE;
ELSEIF AB1=1 AND AB2=2 THEN TRUE;
ELSEIF AB1=2 AND AB2=1 THEN TRUE;
ELSE FALSE; CLOSE;
END;
FUNCTION PAWN XP YP XK YK;
VARS AB; ABBS(XP-XK)->AB;
IF NOT(AB=1) THEN FALSE;
ELSEIF BOARD(XK, YK)="WK" AND (YP-YK)=1 THEN TRUE;
ELSEIF BOARD(XK, YK)="BK" AND (YK-YP)=1 THEN TRUE;
ELSE FALSE; CLOSE;
END;
FUNCTION QUEEN XQ YQ XK YK;
IF ROOK(XQ, YQ, XK, YK)=TRUE OR BISHOP(XQ, YQ, XK, YK)=TRUE THEN TRUE;
ELSE FALSE; CLOSE;
END;
FUNCTION FKING BL WL=>BW;
VARS PC S1 S2; BL. HD. HD->PC; NIL->BW;
IF PC="BP" OR PC ="BN" OR PC="BB" OR PC="BR" OR PC="BQ" OR PC="BK"
THEN GKING(BL, "BK")->S1; S1:: BW->BW; GKING(WL, "WK")->S2; S2 :: BW->BW;
ELSE GKING(WL, "BK")->Sl; S1:: BW->BW; GKING(BL, "WK")->S2; S2 :: BW->BW;
CLOSE;
END;
FUNCTION GKING XL N; "
IF XL. NULL THEN'(%O, O%J;
ELSEIF XL. HD. HD=N THEN (%XL. HD. TL. HD, XL. HD. TL. TL. HD%];
ELSE GKING(TL(XL), N); CLOSE;
END;

FUNCTION CHKLIN XL=>CLIN;
COMMENT a king is in check. function returns squares in checking line;
VARS CL XK YK XP YP HL PK;
NIL->CLIN;
IF XL. NULL THEN EXIT;
FKING(BLIST, WLIST)->CL;
IF XL. HD. HD="BK" THEN CL. TL. HD. HD->XK; CL. TL. HD. TL. HD->YK;
ELSE CL. HD. HD->XK; CL. HD. TL. HD->YK; CLOSE;
LOOP: IF XL. NULL THEN EXIT; DEST(XL)->XL->HL; HL. TL. HD->PC; HL. TL. TL. HD->XP; HL. TL. TL. 7L. [Hb)
IF PC="BB" OR PC ="WB" THEN BICHK(XK, YK, XP, YP); vp
ELSEIF PC ="BR" OR PC = "WR" THEN RKCHK(XK, YK, XP, YP);
ELSEIF PC="BQ" OR PC = "WQ" THEN QUCHK(XK, YK, XP, YP);
ELSE GOTO LOOP; CLOSE;
->PK; PK<>CLIN->CLIN; GOTO LOOP;
END;
FUNCTION BICHK XK YK XP YP=>CL;
NIL->CL; VARS XX; ABBS(XP-XK)-l->XX;
IF XP<XK AND YP<YK THEN FORALL I11 XX (%XP+I, YP+I$J:: CL->CL; CLOSE;
ELSEIF XP>XK AND YP<YK THEN FORALL I11 XX [%XP-I, YP+I%]:: CL->CL; CLOSE;
ELSEIF XP<XK AND YP>YK THEN FORALL I11 XX [%XP+I, YP-I%]:: CL->CL; CLOSE;
ELSE FORALL I11 XX (%XP-I, YP-I%]:: CL->CL; CLOSE; CLOSE;
END;
FUNCTION RKCHK XK YK XP YP=>CL;
NIL->CL; VARS XX YY; ABBS(XP-XK)-1->XX; ABBS(YP-YK)-1->YY;
IF XP<XK THEN FORALL I11 XX; [%XK-I. YK%]:: CL->CL; CLOSE;
ELSEIF XP>XK THEN FORALL 111 XX; (%XK+I, YK%J:: CL->CL; CLOSE;

ELSEIF YP>YK THEN FORALL I11 YY; (%XP, YK+I%J:: CL->CL; CLOSE;
ELSE FORALL I11 YY; (%XP, YK-I%]:: CL->CL; CLOSE; CLOSE;
END;
FUNCTION QUCHK XK YK XP YP=>CL;
IF XP=XK OR YP=YK THEN RKCHK(XK, YK, XP, YP);
ELSE BICHK(XK, YK, XP, YP); CLOSE
->CL;
END;

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP PPP
PPP PPP
PPP ppp
PPP ppp
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
ppp
PPP
PPP
PPP

LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

AAAAAAAAA
AAAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP PPP
ppp ppp
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
PPP
PPP

ssssssssssss
ssssssssssss
ssssssssssss

sss
sss
sss
sss.
sss
sss

sssssssss

sssssssss
sssssssss

sss
sss
sss
sss
sss
sss

ssssssssssss

ssssssssssss
ssssssssssss

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>CLASS. POP. 1, created: 30-Mar-84 13: 19: 59, printed: 11-Jun-86 10
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: lof 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION CAT2;
COMMENT a pawn has promoted - on what square did it promote;

vars PWN HHL XH YH BWL CL HL XL LFL ANS PRLSTX PRL XWLIST XBLIST;
copyall(WLIST)->XWLIST; copyall(BLIST)->XBLIST;
copyall(PPAWN)->PPCAP; nil->PRLSTX; O->AGC; If C3FLAG=1 then goto L1; close;
PRLST. HD->HL; HL. HD->PWN; HL. TL. HD->XH; HL. TL. TL. HD->YH; (%XH, YH%]->PHSQ;
copyall(PRLST)->PRLSTX;

COMMENT questionl on what square did the pawn promote;

WHSQPP(XH, PWN)->XYLIFS->LIFC->PSQS;
1->AGC;

COMMENT check if promoting pawn could actually capture;

. CHCKPN; l+AGC->AGC;
If not(. CHKFLG) then exit;

COMMENT question 2 is the promoted piece on board
if yes set ISPFLG;

. ISPPB; 1+AGC->AGC; If not(. CHKFLG) then exit;

COMMENT question 3 what is the promoted piece;

. WISPP; 1+AGC->AGC; If not(. CHKFLG) then exit;

copyall(XYLIFS)->XYLIFX;
If ISPFLG then goto Ll; close;

COMMENT question 4
it cannot be deduced that the promoted piece is on board

can we find a square on which it was possibly captured;

If PPAWN="WP" and lengt(BDC)=1 then BDC->BWL; FCSQ(BDC)->HHL; BLIST->CL;
elseif PPAWN="WP" and lengt(WDC)=1 then WDC->BWL; FCSQ(WDC)->HHL; WLIST->C Lý

else goto L1; '

close;

[%(IPPRUL], HHL, [R64EX]%]:: DDB->DDB;
nl(2); prstring('assuming the promoted piece is on board!); nl(1);

. SCANTS; nil->PPIECE; PPAWN->PPCAP;
nl(2); prstring('assuming the promoted piece was captured on 1); sp(1);
HHL=>; nl(1);

. RFLGTAB;

BWL. HD->HL;
[%HL. HD. HD, HL. TL. HD. HD, HL. TL. HD. TL. HD, HL. HD. TL. HD, HL. HD. TL. TL. HD%J->XL;
UPDATE(XL, CL);. SETP;

COMMENT question 5
for each square on which the pawn promoted, can it be

deduced that an opposition pawn. promoted;

L1: . DPPROM->PRLST; 1+AGC->AGC;
If not(PRLSTX. null) then DELTL(PRLSTX. HD, PRLST)->PRLST; Ciose;
lengt(PSQS)->LFL; lengt(PRLST)->PRL; If LFL=3 then 2->LFL; close;

If PRL/=LFL then PPCAP->PPAWN;
COMMENT delete any entries from dpprom from ddb;

FORALL I11 PRL TL(DDB)->DDB; close;

. PROMCP->ANS;

close;
If not(ANS) then 1->ILLFLG; false; exit;

[%(DPPROMJ, nil, (R76EXJ%]:: DDB->DDB;
PRLST. HD. HD->PPAWN; PRLST. HD->HL; HL. HD->PWN; HL. TL. HD->XH; HL. TL. TL. HD->YH;
RESTB(XWLIST, XBLIST);. SETP;
WHSQPP(XH, PWN)->XYLIFS->LIFC->PSQS; 1+AGC->AGC;
If not(. CHKFLG) then exit;

end;

FUNCTION CHCKPN;
vars LLFC LIFCX YL;

lengt(LIFC)->LLFC; copyall(LIFC)->LIFCX; nil->LIFC;
If LIFCX. null then exit;
FORALL I11 LLFC WCAPPN(LIFCX. HD, PPAWN)->YL;

If not(YL. null) then LIFCX. HD:: LIFC->LIFC; close;
TL(LIFCX)->LIFCX;
close;

If LIFC. null then 1->ILLFLG;
else (%(CHCKPNJ, YL, [WCAPEX]%]:: DDB->DDB;
close;

end;

FUNCTION CATS CHI KC;
COMMENT category 3

a king is in check. lbok through possible ways this could happen;

vars KLX KLHX;
[%[CAT3], CHI, [R82EX]%]:: DDB->DDB; KCHECK1(CHI, KC)->KLX;

loop: If not(KLX. null) then dest(KLX)->KLX->KLHX;
[$[CAT3], KLHX, [R80EXJ%]:: DDB->DDB; CAT3A(KLHX);. RSTB;

goto loop;
close;

end;
FUNCTION CAT3A HL;
COMMENT slots in k in check frame;

vars XF YF XT YT PN HHL;

HL. HD->PN; HL. TL. HD->XF; HL. TL. TL. TL. HD->XT; HL. TL. TL. TL. TL. HD->YT;
HL. TL. TL. HD->YF;

COMMENT slotl has a pawn promoted;

If PN/="WP" and PN/="BP" then return;
elseif YT/=8 and YT/=1 then return;
close;

COMMENT a pawn has promoted - set up global variables;

(%[%XF, YF%J%]->XYLIFS; [%[%XT, YT%]%]->PSQS;
If XT/=XF then [%(%XT, YT%]%]->LIFC;

else nil->LIFC;
close;

PN->PPAWN;
COMMENT a pawn*has promoted, go to CAT2 control, set flag;

[%[CAT3], nil, (R81EX]%]:: DDB->DDB; 1->C3FLAG;. CAT2;

end;

FUNCTION PROMCP=>ANS;
COMMENT used in CAT2

if a pawn captured on promoting can it be deduced that for each
piece captured an opposition pawn promoted;

vars XY BLI WLI ZL XL HL YLH HHL LPN;

false->ANS;
If LIFC. null then return;
else XYLIFS. HD. HD->X; XYLIFS. HD. TL. HD->Y; [%PPAWN, X, Y%]->ZL;

copyall(BLIST)->BLI; copyall(WLIST)->WLI; copyall(LIFC)->XL;
copyall(PPAWN)->PPN;

If PPAWN="WP" then ZL:: WLIST->WLIST;

else ZL:: BLIST->BLIST;

close;
close;

PPAWN->BOARD(X, Y);. SETP;
COMMENT take each square on which the pawn captured in turn;

loop: If XL. null then true->ANS; goto L1;
else dest(XL)->XL->HL; WCAPPN(HL, PPCAP)->YL;

If YL. null then goto Ll; close;
copyall(YL)->PPCOP;
close;

(%(PROMCPJ, YL, [WCAPEXJ%]:: DDB->DDB;
loopl: If YL. null then goto loop;

else dest(YL)->YL->YLH; YLH:: HL->HHL; YLH->BOARD(HL. HD, HL. TL. HD);
If PPAWN="WP" then HHL:: BLIST->BLIST;
else HHL: WLIST->WLIST;
close;

. DPPROM->PRLST; copyal 1(PPN)->PPAWN;
If not(PRLST. null) then RESTB(WLI, BLI);

goto loopl;
close;

close;

L1: RESTB(NWLIST, NBLIST);. SETP;

end;

FUNCTION COLMP=
COMMENT what is the colour of the missing piece'

given square MISPQ [x y]'try all b/w pieces inturn
if can determine colour, place in MISCOL, else nil
e. g.
if all bp on board then use bleft
elseif 1 bp missing (and promoted) use [bb br bq bn)

deleting those pieces in PPCOP
else return

if a pawn captured in promoting possible captured pieces in
PPCOP
try to eliminate pieces;

vars XL PC HL XM YM R1 R2 XXL BLT WLT;

If MISPQ. null or MISCOL="WHITE" or MISCOL="BLACK" then exit;

MISPQ. HD->XM; MISPQ. TL. HD->YM; nil->MISCOL;
copyall(BLIST)->BLT; copyall(WLIST)->WLT;. RSTBO;

COMMENT try black first;

If NPB=B then BLEFT->XL;
elseif PPCOP. null or NPB<7 then goto L1;
else BORW(PPCOP. HD)->PC;

If PC="W" then goto Ll;
close;

(BB BN BQ BR]->XL; DBL(XL, PPCOP)->XL; copyall(XL)->XXL;
close;

loop: If not(XL. null) then dest(XL)->XL->HL;
[$HL, XM, YM%]:: BLIST->BLIST; HL->BOARD(XM, YM):
ISKCHK(BLIST, WLIST)->Rl->R2:

If not(Rl) then D1(HL, XXL)->XXL;
close;

"BLANK"->BOARD(XM, YM); TL(BLIST)->BLIST; goto loop;
close;

If XXL. null then "WHITE"->MISCOL; goto L2; close;

COMMENT now for white;

L1: If NPW=B then WLEFT->XL;
elseif PPCOP. null or NPW<7 then goto L2;
else BORW(PPCOP. HD)->PC;

If PC="B" then goto L2; close;
[WB WN WQ WR]->XL; DBL(XL, PPCOP)->XL; copyall(XL)->XXL;
close;

loopl: If not(XL. null) then dest(XL)->XL->HL;
(%HL, XM, YM%J:: WLIST->WLIST; HL->BOARD(XM, YM);
ISKCHK(BLIST, WLIST)->Rl->R2;

If not(R1) then Dl(HL, XXL)->XXL;
close;

"BLANK"->BOARD(XM, YM); TL(WLIST)->WLIST; 9otO loopl;

close;

If XXL. null then "BLACK"->MISCOL; close;

COMMENT restore board to what it was on entry to routine;

L2: RESTB(WLT, BLT);
end;

FUNCTION LFMP;
COMMENT look for missing piece - uses rule 90

- MISCOL;

VARS XL TOT YL SQ BI;

If MISPQ. null then return;
elseif MISCOL="WHITE" then BNUM->XL; WTOT->TOT; WLEFT->YL; "WB"->BI;
elseif MISCOL="BLACK" then WNUM->XL; BTOT->TOT; BLEFT->YL; "BB"->BI;

else return;
close;

If XL. HD/=TOT then return;

elseif XL. TL. HD/=O and XL. TL. TL. HD/=O then return;
else BICOL(YL)->SQ;

If SQ. null then return;
elseif SQ. HD=2 then BI->MISPC; O->MSFLG;

(%(LFMPJ, MISPC, [R90EX]%J:: DDB->DDB;
close;

close;

end;

FUNCTION PRMP;
COMMENT the missing piece is found, print it;

nl(1); prstring('the missing piece is a!); sp(1); pr(MISPC); n1(1);
end;

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP ppp
PPP PPP
PPP ppp
PPP PPP
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp
ppp
ppp
PPP
PPP
ppp
ppp
PPP
PPP

000000000
000000000
000000000

000 . 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNNNNN NNN
NNNNNN NNN
NNNNNN NNN
NNN NNN NNN
NNN NNN NNN
NNN NNN NNN
NNN NNNNNN
NNN NNNNNN
NNN NNNNNN
'NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
ppp
PPP

WM www
wq www
www www
www www
www www
www. www
WM www
www www
www www

www www
www www
www www
www WWW www
www www wq
www
wwwww
ww ww

www www
w wwwwww
w w

wwwww

www

w qv
w WW ww

www
WM www
www www

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>CONWP. POP. 1, created: 10-Jun-86 16: 31: 40, printed: 11-Jun-86 11
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION DDBSET CL AH=>DDBF;
COMMENT place entries in dynamic data base DDB.;
(%(PROMRULE], CL. HD, explain(valof(AH))%]:: DDBF->DDBF;
END;

FUNCTION RULE1=>ANS;
COMMENT Pawn promotion rule. If the b/w pawns have captured all

opposition pieces which can be captured on board(which include a paws)
av, d +):. s c could not have reached a capture square;

false->ANS; If PPAWN/=O then exit;
vars CL PSQ;
nil->PSQ;
IF lengt(WLEFTP)=BPTT and NPW<8 then BTOT-WPTT->NCAP;
DRP1(CPBX, WHTAB, 2, "WP")->CL;

CPPROM(CL)->CL;
If not. (CL. null) then CL<>PSQ->PSQ; TRUE->ANS;
DDBSET(CL, AH)->DDBF; close; close;

If lengt(BLEFTP)=WPTT and NPB<8 then WTOT-BPTT->NCAP;
DRP1(CPWX, BHTAB, 7, "BP")->CL; CPPROM(CL)->CL;

If not(CL. null) then CL<>PSQ->PSQ; TRUE->ANS;
DDBSET(CL, AH)->DDBF; close; close;

COMMENT bptt/wptt = totasl pawn captures
wtot/btot = number or pieces captured on board
npw/npb = number of pawns on board
now check that a pawn could actually promote;

If not(PSQ. null) then PSQ->PROMXL; close;
end;

FUNCTION RULE2=>ANS;
COMMENT Pawn promotion rule. If the b/w pawns have captured 8

pieces and an opposition pawn could not have reached
any of the capture squares;

false->ANS; If PPAWN/=O then exit;
vars PSQ CL;
nil->PSQ;
If BPTT=8 then BTOT-WPTT->NCAP; DRP1(CPWX, WHTAB, 2, "WP")->CL; CPPROM(CL)->CL;

If not(CL. null) then CL<>PSQ->PSQ; TRUE->ANS; DDBSET(CL, AH)->DDBF; close; cl',
IF WPTT=8 then WTOT-BPTT->NCAP; DRP1(CPBX, BHTAB, 7. "BP")->CL; CPPROM(CL)->CL;

If not(CL. null) then CL<>PSQ->PSQ; TRUE->ANS; DDBSET(CL, AH)->DDBF; close; clcSs;,
If not(PSQ. NULL) then PSQ->PROMXL; close;
end;

FUNCTION RULE3=>ANS;
COMMENT Pawn promotion rule. If there are >2br/wr or >2wb/bb

Or >2bn/wn or >1 bq/wq;
vars PSQ QCNT, RCNT NCNT CL;
nil->PSQ; FALSE->ANS;
CONTPC("WB")->BCNT; CONTPC("WQ")->QCNT; CONTPC("WR")->RCNT; CONTPC("WN")->NCNT;
If BCNT>2 or QCNT>1 or RCNT>2 or NCNT>2 then (%(%"WP", WHTAB. HD, 2%J%J->CL;

TRUE->ANS; CL<>PSQ->PSQ; DDBSET(CL, AH)->DDBF; close;
CONTPC("BB")->BCNT; CONTPC("BQ")->QCNT; CONTPC("BR")->RCNT; CONTPC("BN")->NCNT;
If BCNT>2 or QCNT>l or RCNT>2 or NCNT>2 then (%(%"BP", BHTAB. HD, 7%]%J->CL;

TRUE->ANS; CL<>PSQ->PSQ; DDBSET(CL, AH)->DDBF; close;
If not(PSQ. NULL) then PSQ->PROMXL; close;
end;

FUNCTION RULE4=>ANS;
COMMENT Pawn promotion rule. if one side has 2 bishops travelling on

the same colour square;
vars XL PSQ LXL CL;
nil->PSQ; FALSE->ANS;
COMMENT obtain locations of all white bishops on board;
RELCB(WLIST)->XL; LENGT(XL)->LXL;

If LXL>l and CLSQT(XL. HD. HD, XL. HD. TL. HD, XL. TL. HD. HD, XL. TL. HD. TL. HD)
then (%[%"WP", WHTAB. HD, 2%]%]->CL; CL<>PSQ->PSQ; TRUE->ANS; DDBSET(CL, AH)->DDßr,, d"

COMMENT repeat for black bishops;
RELCB(BLIST)->XL; LENGT(XL)->LXL;

If LXL>1 and CLSQT(XL. HD. HD, XL. HD. TL. HD, XL. TL. HD. HD, XL. TL. HD. TL. HD)
then (%(%"BP", BHTAB. HD, 7%J%J->CL; CL<>PSQ->PSQ; TRUE->ANS; DDBSET(CL, AH)->DD$f; c t,

If not(PSQ. NULL) then PSQ->PROMXL; close;
end;

FUNCTION RULES=>ANS;
COMMENT Pawn promotion. rule. if one side has a bishop captured on its home

square and there is a bishop on board travelling on the
same colour square;

vars XL YL HL XY PSQ CL;
nil->PSQ; FALSE->ANS;
COMMENT obtain list of white bishops on board and list of white bishops

captured at home;
RELCB(WLIST)->XL; WBHSQ->YL;

If XL. NULL or YL. NULL then goto Ll; close;
COMMENT check if any bishops in XL on same colour square as

squares given in YL;
loop: If XL. NULL then goto L1;

else dest(XL)->XL->HL; HL. HD->X; HL. TL. HD->Y;
If CLSQT(X, Y, YL. HD. HD, YL. HD. TL. HD)
or not(YL. TL. NULL) and CLSQT(X, Y, YL. TL. HD. HD, YL. TL. HD. TL. HD)
then TRUE->ANS; (%(%"WP", WHTAB. HD, 2%]%J->CL; DDBSET(CL, AH)->DDBF; cicS¢.,
CL<>PSQ->PSQ; close;

goto loop; close;
COMMENT repeat for black bishops;

L1: RELCB(BLIST)->XL; BBHSQ->YL;
If XL. NULL or YL. NULL then goto L2; close;

LOOP1: If not(XL. NULL) then dest(XL)->XL->HL;
HL. HD->X; HL. TL. HD->Y;

If CLSQT(X, Y, YL. HD. HD, YL. HD. TL. HD)
or not(YL. TL. NULL) and CLSQT(X, Y, YL. TL. HD. HD, YL. TL. HD. TL. HD)
then TRUE->ANS; (%(%"BP", BHTAB. HD, 7%]%]->CL; CL<>PSQ->PSQ; DDBSET(CL, AIi)

goto loopl; close; (Jose,
0 L2: If not(PSQ. NULL) then PSQ->PROMXL; close;

end;

FUNCTION RULE6=>ANS;
COMMENT pawn promotion rule. if all pawn captures are on one colour

and these captures include an oppostion pawn that could not
have reached a capture square then this pawn promoted;

false->ANS; If PPAWN/=O then exit;
If PPAWN=O then exit;

vars CL SQ X Y;
nil->PSQ;
COMMENT check for wp promotion;

If BNUM. TL. HD/=O and BNUM. TL. TL. HD/=O then goto Ll;
elseif not(membl("WP", WLEFT)) then goto L1;
elseif BNUM. TL. HD=O then 1->X; 1->Y;
else 2->X; 1->Y;
close;
BTOT-WPTT->NCAP;

If BPTT=WTOT then DRP1(CPBX, WHTAB, 2, "WP")->CL; CPPROM(CL)->CL;
If not(CL. null) then CL<>PSQ->PSQ; true->ANS;

DDBSET(CL, AH)->DDBF;
close;

elseif BPTT=WTOT-1 and membl("WB", WLEFT) then BICOL(WLEFT)->SQ;
If not(SQ. null) and SQ. HD/=2 and CLSQT(X, Y, SQ. HD, SQ. TL. HD)
then DRP1(CPBX, WHTAB, 2, "WP")->CL; CPPROM(CL)->CL;

If not(CL. null) then CL<>PSQ->PSQ; true->ANS;
DDBSET(CL, AH)->DDBF;

close;
close;

close;

COMMENT check for bp promotion;
WTOT-BPTT->NCAP;

L1: If WNUM. TL. HD/=O and WNUM. TL. TL. HD/=0 then goto L2;
elseif not(membl("BP", BLEFT)) then return;
elseif WNUM. TL. HD=O then 1->X; 1->Y;
else 2->X; 1->Y;
close;

If WPTT=BTOT then DRP1(CPWX, BHTAB, 7, "BP")->CL; CPPROM(CL)->CL;
If not(CL. null) then CL<>PSQ->PSQ; true->ANS;
DDBSET(CL, AH)->DDBF;
close;

elseif WPTT=BTOT-1 and membl("BB", BLEFT) then BICOL(BLEFT)->SO;
If not(SQ. NULL) and SQ. HD/=2 and CLSQT(X, Y, SQ. HD, SQ. TL. HD)
then DRP1(CPWX, BHTAB, 7, "BP")->CL; CPPROM(CL)->CL;

If not(CL. null) then CL<>PSQ->PSQ; true->ANS;
DDBSET(CL, AH)->DDBF;
close;

close;
close;

L2: If not(PSQ. null) then PSQ->PROMXL; close;

end;

FUNCTION RULE? =>ANS;
COMMENT pawn promotion rule.

if a pawn captured on promoting and the only piece that it could
have captured is an opposition pawn, then an opposing pawn
promoted.

vars CL PSQ ;
nil->PSQ; nil->CL; false->ANS;.
If LIFC. null then return;
elseif PPCAP="WP" then BTOT-WPTT->NCAP;
elseif PPCAP="BP" then WTOT-BPTT->NCAP7
else return;
close;

end;

If PPCAP="WP" and membl("BP", BLEFT) and NCAP=1
THEN DRP1(CPWX, BHTAB, 7, "BP")->CL;

elseif membl("WP", WLEFT) and NCAP=1 then DRP1(CPBX, WHTAB, 2, "WP")->CL;
closet

CPPROM(CL)->CL;
If not(CL. NULL) then CL<>PSQ->PSQ; true->ANS; DDBSET(CL, AH)->DDBF;
close;

If not(PSQ. null) then PSQ->PROMXL; close;

FUNCTION RULEB=>ANS;

COMMENT pawn promotion rule
if a pawn made n captures in moving from its home square to a
capture promotion square and the only pieces available for
captue are n opposition pawns then an opposition pawn promoted;

vars CL PSQ XL YL PN LTAB RNK WB FLAG;

nil->PSQ; nil->CL; false->ANS; O->FLAG;
If LIFC. null then return;
elseif PPCAP="WP" then BLEFT->XL; BTOT->YL; "BP"->PN; lengt(BHTAB)->LTAB;

7->RNK; BHTAB->WB;
elseif PPCAP="BP" then WLEFT->XL; WTOT->YL; "WP"->PN; lengt(WHTAB)->LTAB;

2->RNK; WHTAB->WB;

else return;
close;

FORALL I11 YL If XL. HD/=PN THEN 1->FLAG; close; TL(XL)->XL; close;
If FLAG then exit;

FORALL I11 LTAB ($PN, WB. HD, RNK%]:: CL->CL; TL(WB)->WB; close;
CPPROM(CL)->CL;
If not(CL. null) then CL<>PSQ->PSQ; true->ANS; DDBSET(CL, AH)->DDBF;
close;

If not(PSQ. null) then PSQ->PROMXL; close;

end;

FUNCTION CPPROM XL=>YL;
COMMENT xl contains list of possible promotion pawns

check that they could actually promote;

vars ZL L1 L2 L3 ZLH;
COPYALL(XL)->ZL; nil->YL;

loop: If ZL. null then 0->ILLFLG;
else dest(ZL)->ZL->ZLH; WHSQPP(ZLH. TL. HD, ZLH. HD)->Ll->L2->L3;

If ILLFLG=1 then 0->ILLFLG;

else ZLH:: YL->YL;
close;

goto loop;
close;

end;

FUNCTION DRP1 CPT WHT NM PWN=>CL;
VARS HT REP; NIL->CL; IF CPT. NULL THEN EXIT; WHT->HT;
LOOP: IF HT. NULL THEN RETURN;
ELSE PRO(HT. HD, CPT)=>REP;
IF REP=TRUE THEN [%PWN, HT. HD, NM%]:: CL->CL; CLOSE;
TL(HT)->HT; GOTO LOOP; CLOSE;
END;
FUNCTION CKPPR PS=>PPS;
VARS HL LS LC L; NIL->PPS;
LOOP: IF PS. NULL THEN RETURN;
ELSE DEST(PS)->PS->HL; WHSQPP(HL. TL. HD, HL. HD)->LS->LC->L;
IF NOT(L. NULL) THEN HL:: PPS->PPS; CLOSE;
GOTO LOOP; CLOSE;
END;
FUNCTION GSQ XL=>SQU;
VARS CL; IF P="W" THEN [(WQ 4 1JJ->CL; ELSE ((BQ 4 8JJ->CL; CLOSET
LOOP: IF XL=CL. HD. HD THEN [%CL. HD. TL. HD, CL. HD. TL. TL. HD%]->SQU;
ELSE TL(CL)->CL; GOTO LOOP; CLOSE;
END;
FUNCTION CLSQT XP YP XB YB;

IF ERASE((XB+YB)//2)=ERASE((XP+YP)//2) THEN TRUE; ELSE FALSE; CLOSE;
END;
FUNCTION PRO HL CPT;
VARS XH HHL; GABS(HL, CPT)->XH; ABBS(XH-HL)->HHL;
IF HHL>4 OR HHL>NCAP THEN TRUE; ELSE FALSE; CLOSE;
END;
FUNCTION CSQ1 XL=>OUT;
VARS HL; NIL->OUT;
LOOP: IF XL. NULL THEN EXIT; XL. HD. TL->HL; TL(XL)->XL;
LOOP1: IF HL. NULL THEN GOTO LOOP;
ELSE HL. HD:: OUT->OUT; TL(HL)->HL; GOTO LOOP1; CLOSE;
END;
FUNCTION CSQ XL=>OUT;
VARS HL; NIL->OUT;
LOOP: IF XL. NULL THEN EXIT; XL. HD. TL->HL; TL(XL)->XL;
LOOP1: IF HL. NULL THEN GOTO LOOP;
ELSE HL. HD. HD:: OUT->OUT; TL(HL)->HL; GOTO LOOP1; CLOSE;
END;
FUNCTION DELTL X XL;
IF XL. NULL THEN NIL;
ELSEIF EQUAL(X, XL. HD) THEN DELTL(X, TL(XL));
ELSE XL. HD:: DELTL(X, TL(XL)); CLOSE;
END;
FUNCTION CKPMS PWN LIF LIFC=>LIF LIFC;
VARS BI BSQ LOCB XP YP ML HL ANS HHL XXL PS YL;
IF PWN="BP" THEN "BB"->BI; BBHSQ->BSQ; RELCB(BLIST)->LOCB;
ELSE "WB"->BI; WBHSQ->BSQ; RELCB(WLIST)->LOCB; CLOSE;
MEMLST(PSQQ, BSQ)->ANS; IF LOCB. NULL OR BSQ. NULL OR ANS=TRUE THEN EXIT;
LIF->XXL; LOCB->YL;
LOOP: IF XXL. NULL THEN EXIT; DEST(XXL)->XXL->HL; HL. HD->XP; HL. TL. HD->YP;
[%XP, YP%]->PS; PCMOV([%[%BI, XP, YP%]%])->ML; CLSQT(PSQQ. HD, PSQQ. TL. HD, XP, YP)->ANS;
IF ANS=FALSE OR NOT(ML. NULL) THEN GOTO LOOP; CLOSE;
LOOP1: IF LOCB. NULL THEN YL->LOCB; GOTO LOOP; CLOSE;
DEST(LOCB)->LOCB->HHL; CLSQT(HHL. HD, HHL. TL. HD, XP, YP)->ANS;
IF ANS=TRUE THEN PRCK(PS, PWN); DELTL(PS, LIF)->LIF; DELTL(PS, LIFC)->LIFC; CLOSE;
GOTO LOOP;
END;
FUNCTION WHSQPP XH PWN=>LIF LIFC LIFS;
VARS NX RNK HF PN NC ADD CNT ANS KI REP HL HHL CPL BI XS YS CB ML XN YSQ LFC;

vors LIFSX NCP PPX X1;

NIL->LIF; O->ILLFLG; NIL->LIFC; NIL->LIFS;

IF PWN="BP" THEN 2->RNK; 3->YSQ; WTOT-BNUM. HD->NCAP; WTOT->)tN; yJTP 'T-? - PL "- I; F"
ELSE 7->RNK; 6->YSQ; BTOT-WNUM. HD->NCAP; BTOT->XN; BEEFY->C ýL; "BBB'->BI; B->EiF; "B "->' N"
0->NC; XH->NX; 1->ADD; 0->CNT; LFK (PNM) ->REP;

A. ý'ýt" v' ýI'ýNNý; Cý ': I 7NL c4se
LOOP: IF BOARD(NX, RNK)/=PN AND NCAP=NC THEN . LFK1->ANS;
IF ANS=TRUE THEN [%NX, HF%]:: LIF->LIF; [%NX, RNK%]:: LIFS->LIFS;
ELSE COTO L1; CLOSE;
ELSEIF BOARD(NX, RNK)/=PN AND NC<NCAP THEN . LFK1->ANS;
IF ANS=TRUE THEN [%[%NX-1, HF%], [%NX, HF%), (%NX+1, HF%]$]<>LIF->LIF;
[%[%NX-l, HF%], (%NX+1, HF%]%]<>LIFC->LIFC; (%NX, RNK%]:: LIFS->LIFS; CLOSE;
CLOSE;
1+NC->NC;
L2: IF NOT(NC>NCAP) THEN NX+ADD->NX;
IF NOT(NX>6) AND NOT(NX<1) THEN GOTO LOOP; CLOSE; CLOSE;
L1: 1+CNT->CNT;
IF CNT/=2 AND NCAP/=0 THEN XH->NX; -1->ADD; 1->NC; GOTO L2;
ELSE SHUFF(LIF)->LIF; SHUFF(LIFC)->LIFC; CLOSE;
IF NOT(REP. NULL) THEN DELTL(REP, LIF)->LIF; DELTL(REP, LIFC)->LIFC; CLOSE;

If LIFS. null or LIF. null then 1->ILLFLG; exit;
LIFS. HD. HD->XS; LIFS. HD. TL. HD->YS; CNPWN(BI, CPL)->CB;
PCMOV([%[%PWN, XS, YS%]%])->ML; LEGCHK(CAP, ML)->ML;
DCSQ(ML, LIF, LIFC)->LIFC->LIF; CHKLLC(LIFC, LIF)->LIF->LIFC;

CKPMS(PWN, LIF, LIFC)->LIFC->LIF;

COMMENT if (say) a wp promoted with home square (x, y)
and ith sa been deduced that a bp promoted cossing
the square (x, y) and (x, y) is on the same file as the
bp and the wp could not make any captures
then the bp could not have crossed on this square;

If PPCAP="WP" then BTOT-WPTT->NCP;

elseif PPCAP="BP" then WTOT-BPTT->NCP;
else goto L3;

close;

lengt(LIFS)->LFL; copyall(LIFS)->LIFSX;
loop2: IF LIFSX. null then goto L3;

elseif equal(LIFSX. HD, PHSQ) and NCP<2 then DELTL(LIFSX. HD, LIFS)->LIFS;

close;
TL(LIFSX)->LIFSX; goto loop2;

L3: If LIFS. null or LIF. null then 1->ILLFLG; exit;

COMMENT if lengt(lifs)=l and the pawn promoted in moving to lifs
then add this capture to bnum/wnum;

If lengt(LIFS)=1 then LIFS. HD. HD->Xl;
If PWN="BP" and BOARD(Xl, 3)="WP" then ALTNUM(Xl, 3, BNUM)->BNUM;

elseif BOARD(Xl, 6)="BP" then ALTNUM(Xl, 6, WNUM)->WNUM;

close;
close;

IF NCAP=l AND LENGT(LIFS)=l AND ABBS(XH-LIFS. HD. HD)=1 THEN NIL->LIFC; [%(%LIFS. HD"HD, t
CLOSE; t%b sL 11. Dý{ j/j P LLr

COMMENT place lists in DDB;

If WHSQFL=O then
(%(WHSQPP], (%LIF, LIFC, LIFS%], (R50EX]$]:: DDB->DDB;

close;
COMMENT apply R75EX;

If lengt(LIFS)=l and BOARD(LIFS. HD. HD, YSQ)=PN and not(LIFC. null)
and lengt(CPL)=2 and CPL. HD=BI and CPL. TL. HD=BI

and ABBS(LIFS. HD. HD-XH)=1
then lengt(LIFC)->LFCi(%(WHSQPPJ, LIFC, [R75EXJ%]: DDB->DDB;

FORALL I11 LFC DELTL(LIFC. HD, LIF)->LIF; TL(LIFC)->LIFC; close;
nil->LIFC;

close;

end;
FUNCTION CHKLLC LIFC LIF=>LIFC LIF;
VARS XL HL ANS PC QC BC RU RC CPSQ;
PNM->XL; NIL->CPSQ;
LOOP: IF NOT(XL. NULL) THEN DEST(XL)->XL->HL; TL(HL):: CPSQ->CPSQ; GOTO LOOP; CLOSE;
BORW(PWN)->PC; 'IF PC="W" THEN "B"->PC; ELSE "W""->PC; CLOSE; GENCON(PC) ->QC->BC->RU-> Qc;

LOOP1: IF NOT(RC. NULL) THEN RC. HD. TL->XL;
IF LENGT(XL)=1 THEN XL. HD:: CPSQ->CPSQ; CLOSE;
TL(RC)->RC; GOTO LOOP1; CLOSE;
LOOP2: IF NOT(BC. NULL) THEN BC. HD. TL<>CPSQ->CPSQ; TL(BC)->BC; GOTO LOOP2; CLOSE;
IF NOT(QC. NULL) THEN QC. HD. TL<>CPSQ->CPSQ; CLOSE;
DBLL(LIFC, CPSQ)->LIFC; DBLL(LIF, CPSQ)->LIF;
END;

FUNCTION ALTNUM XY XL=>XL;
COMMENT used in WHSQPP

ADD PAWN CAPTURES TO BNUM/WNUM;

vars ABC;
XL. HD->A; XL. TL. HD->B; XL. TL. TL. HD->C;
1+A->A; If CLSQT(1,1, X, Y) then 1+B->B; else 1+C->C; close;
[%A, B, C%]->XL;

end;

FUNCTION DBLL XXL XL=>YL;
XXL->YL;
LOOP: IF XL. NULL THEN RETURN; ELSE DELTL(XL. HD, YL)->YL;
TL(XL)->XL; GOTO LOOP; CLOSE;
END;
FUNCTION DCSQ ML LIF LIFC=>XF XC;
VARS HL LH XL; LIF->XL; COPYALL(LIF)->XF; COPYALL(LIFC)->XC;
LOOP: IF ML. NULL THEN RETURN;
ELSE ML. HD->HL; IF HL. TL. HD=HL. TL. TL. TL. HD THEN TL(ML)->ML; GOTO LOOP;
ELSE XL->LIF; CLOSE; CLOSE;
LOOP1: IF LIF. NULL THEN TL(ML)->ML; GOTO LOOP; *

ELSE LIF. HD->LH; IF XS/=LH. HD AND CB=2 AND XN=2 THEN DELTL(LH, XF)->XF; DELTL(LH, XC) >; <Cý
ELSEIF XS/=LH. HD AND XN=1 THEN DELTL(LH, XF)->XF; DELTL(LH, XC)->XC; CLOSE;
TL(LIF)->LIF; GOTO LOOPI; CLOSE;
END;
FUNCTION LFK1;
VARS YL; (%NX, RNK%]->YL;
IF REP. NULL THEN TRUE;
ELSEIF EQUAL(YL, HL) OR EQUAL(YL, HHL) THEN FALSE;
ELSE TRUE; CLOSE;
END;
FUNCTION LFK XL;
IF XL. NULL THEN NIL;
ELSEIF XL. HD. HD=KI THEN (%XL. HD. TL. HD, XL. HD. TL. TL. HD%];
ELSE LFK(TL(XL)); CLOSE;
END;
FUNCTION SHUFF XL=>LST;
VARS ANS; NIL->LST; ELI(XL)->XL;
LOOP: IF XL. NULL THEN EXIT; MEMLST(XL. HD, TL(XL))->ANS;
IF ANS=TRUE THEN XL. HD:: LST->LST; CLOSE; TL(XL)->XL; GOTO LOOP;
END;
FUNCTION ELI XL;
IF XL. NULL THEN NIL;
ELSEIF XL. HD. HD>8 OR XL. HD. HD<1 THEN ELI(TL(XL));
ELSE XL. HD:: ELI(TL(XL)); CLOSE;
END;
FUNCTION BICOL XL=>OUT;
VARS CB PC BL, BI; O->CB; COUNTB(XL, CB)->CB;
IF CB=2 THEN [2]->OUT; RETURN; ELSEIF CB=O THEN NIL->OUT; RETURN; CLOSE;
BORW(XL. HD)->PC;
IF PC="B" THEN LFORB(BLIST)->BL; "BB"->BI;
ELSE LFORB(WLIST)->BL; "WB"->BI; CLOSE;
IF BL. NULL THEN LCONS(BI)->OUT;
ELSE BL->OUT; CLOSE;
END;
FUNCTION LCONS BI;
IF BI="BB" AND BOARD(2,7)="BP" AND BOARD(4,7)="BP" THEN [3 8];
ELSEIF BI="BB" AND BOARD(5,7)="BP" AND BOARD(7.7)="BP" THEN (6 8]
ELSEIF BI="WB" AND BOARD(2,2)="WP" AND BOARD(4,2)="WP" THEN (3 1];
ELSEIF BI="WB" AND BOARD(5,2)="WP" AND BOARD(7,2)="WP" THEN [6 1];
ELSE NIL;
CLOSE;
END;

FUNCTION PLACE XL; -
IF NOT(XL. NULL)THEN XL. HD. HD->BOARD(XL. HD. TL. HD, XL. HD. TL. TL. HD);
PLACE(TL(XL));
CLOSE;
END;
FUNCTION DISPLAY; "
VARS ROW COL; 1->COL; 8->ROW; NL(1);
LOOP: PRN(BOARD(COL, ROW));

IF COL<8 THEN COL+1->COL; GOTO LOOP
ELSEIF ROW=1 THEN NL(1);

ELSE 1->COL; ROW-1->ROW; NL(1); GOTO LOOP
CLOSE;

END;
FUNCTION PRN SQUARE;
IF SQUARE="BLANK" THEN SP(2); PR(". ");

ELSE PR(SQUARE); PR(". ");
CLOSE;
END;

FUNCTION EVAL LIST;
VARS FN, X;
VALOF(HD(LIST))->FN;
TL(LIST)->LIST;
REP: IF NULL(LIST) THEN GOTO QUIT CLOSE;
HD(LIST)->X;
TL(LIST)->LIST;
IF ATOM(X) THEN X ELSE EVAL(X) CLOSE;
GOTO REP;
QUIT:
APPLY(FN);
END;

1->FULLERR; 1->NICERR;
MACRO POPEXIT; (EXIT]. POPMESS; END;
MACRO READIN;

VARS FILENAME;

. ITEMREAD->FILENAME;
MACRESULTS([%

"POPMESS", "(", "[", "COMPILE ",
FILENAME,

"POP

END;
[WELCOME TO POP2]=>

KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKKKKK KKK
KKKKKK KKK
KKKKKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK

pppppppppppp
pppppppppppp
pppppppppppp
PPP PPP
ppp ppp
PPP PPP
PPP PPP
PPP ppp
PPP PPP
pppppppppppp
pppppppppppp
pppppppppppp
PPP
PPP
PPP
ppp
ppp
PPP
ppp
PPP
PPP

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 ood
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKKKKKKKK
KKKKKKKKK
KKKKKKKKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK
KKK KKK

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP

-PPP
ppp
ppp
PPP
ppp
PPP
PPP

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>KCK. POP. 1, created: 5-Aug-83 14: 36: 02, printed: 11-Jun-86 11: 0
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION KCHECK1 CHI KC=>PL;
vars ML CX;
If CAP=O then "Y"->CAP; close;
If LM="U" then nil->ML; else MLIST->ML; close;
CHKLIN(CHI)->CX; KCHECK(ML, KC, CX, CHI, BLEFT, WLEFT, CAP)->PL;

end;

FUNCTION KCHECK XL KC CL CHL BC WC CAP=>KLIST;
VARS XXL;
NIL->KLIST;
CANCHK(KC, CHL, CAP)->XXL;
IF NOT(XXL. NULL) THEN XXL<>KLIST->KLIST; CLOSE;
IF CL. NULL THEN EXIT;
MOVCHK(XL, KC, CL, CHL, BC, WC)->XXL;
IF NOT(XXL. NULL) THEN XXL<>KLIST->KLIST; CLOSE;
MOVLIN(KC, CL, CHL)->XXL;
IF NOT(XXL. NULL) THEN XXL<>KLIST->KLIST; CLOSE;
PROM(CL, KC)->XXL; IF NOT(XXL. NULL) THEN XXL<>KLIST->KLIST; CLOSE;

COMMENT look for any looping. see e. g p 145 where a bk ins in check
and only way for htis to happen is for a wn moving from
check line. same k also in check from another piece and only
way for this to happen is for same wn to move;

If not(KLIST. null) then BAMK(KC, KLIST)->KLIST; close;
COMMENT this routine set flag WHPFLG if an oppo piece can

be captured.;
END;
FUNCTION CANCHK KC CHL CAP=>CANLST;

COMMENT can the checking piece be moved to the check position
other than along the checking line;

VARS XL R1 R2 PC CH DH PLIST ML ANS BXX LEGX; COPYALL(MLIST)->ML;
nil->CANLST; [%[%CHL. HD. TL. HD, CHL. HD. TL. TL. HD, CHL. HD. TL. TL. TL. HD%]%]->XL;
COMMENT before using subset of legality checker, save variables;

COPYALL(DDBFX)->BXX; COPYALL(LEGDEL)->LEGX;
PCMOV(XL)->MLIST; COPYALL(MLIST)->PLIST;. RULE13->ANS; COPYALL(ML)->MLIST;

COMMENT restore variables;
BORW(XL. HD. HD)->PC; COPYALL(LEGX)->LEGDEL; COPYALL(BXX)->DDBFX;
If PC="B" then BLIST->CH; WLIST->DH;
else WLIST->CH; BLIST->DH;
close;

LOOP: -If PLIST. null then exit;
COMMENT update board and see. if king in check;

UPDATE(PLIST. HD, CH); ISKCHK(CH, DH)->R1->R2;
If NOT(Rl=FALSE) and (R2=KC) and NOT(Rl. HD. TL. TL. HD=PLIST. HD. TL. TL. TL. HD
and NOT(R1. HD. TL. TL. TL. HD=PLIST. HD. TL. TL. TL. TL. HD) then PLIST. HD:: CANLST >QA . l. Si?
close;
RESTOR(PLIST. HD); TL(PLIST)->PLIST; GOTO LOOP;

END;

FUNCTION MOVCHK XL KC CL CHL BC WC => MLX;
VARS HML CHLOC PC ; NIL->MLX;
COMMENT could a none-checking piece have moved from the checking line

to discover check and then be captured by the king;
DIDKM(XL, KC) -> HML;

COMMENT if the king did not move then exit;
If HML. null then exit;
nil -> CHLOC; CHL. HD. TL. HD -> PC;
(%CL. HD. HD, CL. HD. TL. HD%]:: CHLOC -> CHLOC;
If NOT(NULL(CL. TL)) then [%CL. TL. HD. HD, CL. TL. HD. TL. HD%]:: CHLOC -> CHLOC;

close;
COMMENT goto subroutine, depending on piece;

If PC="BB" or PC="WB" then BCHK(CHLOC, HML, KC, BC, WC) -> MLX;
elseif PC="BR" or PC="WR" then RCHK(CHLOC, HML, KC, BC, WC) -> MLX;
elseif PC="BQ" or PC="WQ" then QCHK(CHLOC, HML, KC, BC, WC) -> MLX;
close;

end;

FUNCTION DIDKM LI KI;
If LI. NULL then NIL;
elseif LI. HD. HD=KI then LI. HD:: DIDKM(TL(LI), KI);
else DIDKM(TL(LI), KI);

close;
end;

FUNCTION BCHK CHLOC HML KC BC WC=>BL;
VARS CAPTAB CP HLK HLC XK YK XC YC, XX;

nil->BL;
If KC="BK" then COPY(WC)->CAPTAB"; [WR WNI->CP;
else [BR BNJ->CP; COPY(BC)->CAPTAB;
close;

LOOP: If HML. NULL then CHKPC(CAPTAB, BL)->BL,; EXIT;
dest(HML)->HML->HLK;
HLK. TL. HD->XK; CHLOC. HD. HD->XC; HLK. TL. TL. HD->YK; CHLOC. HD. TL. HD->YC;
INTOF((YK+YC)/2)->XX;
INTOF((XK+XC)/2)->YY;
If XK=XC AND ABBS(YK-YC)=l then [%CP. HD, XC, YC, XK, YK%]:: BL->BL;
elseif XK=XC and BOARD(XK, XX)="BLANK" then (%CP. HD, XC, YC, XK, YK%):: BL->BLj

elseif YK=YC and BOARD(YY, YC)="BLANK" then [%CP. HD, XC, YC, XK, YK%]:: BL->BL

close;
GENKN(XK, YK, XC, YC, CP, BL)->BL;
If NOT(NULL(CHLOC. TL)) then
CHLOC. TL. HD. HD->XC; CHLOC. TL. HD. TL. HD->YC;
GENKN(XK, YK, XC, YC, CP, BL)->BL;
close;
goto LOOP;

end;

FUNCTION RCHK CHLOC HML KC BCAP WCAP => RL;
VARS HPL CP HLK XK YK XC YC CAPTAB;
NIL -> RL; HML -> HPL;
IF KC="BK" THEN WCAP -> CAPTAB; [WP WN WB] -> CP;
ELSE BCAP -> CAPTAB; (BP BN BB] -> CP; CLOSE;
LOOP: IF HPL. NULL THEN CHKPC(CAPTAB, RL) -> RL; EXIT;
DEST (HPL) -> HPL -> HLK;
HLK. TL. HD -> XK; HLK. TL. TL. HD -> YK; CHLOC. HD. HD -> XC; CHLOC. HD. TL. HD -> YC;
IF CAP="Y" AND CP. HD="BP" AND ABBS(XC-XK)=1 AND (YC-YK)=1
THEN [%CP. HD, XC, YC, XK, YK%]:: RL->RL;
ELSEIF CAP="Y" AND CP. HD="WP" AND ABBS(XK-XC)=1 AND (YK-YC)=1
THEN (%CP. HD, XC, YC, XK, YK%]:: RL->RL; CLOSE;
IF ABBS(XC-XK)=l AND ABBS(YC-YK)=l
THEN [%CP. TL. TL. HD, XC, YC, XK, YK%]:: RL->RL; CLOSE;
GENKN(XK, YK, XC, YC, CP, RL) -> RL;
IF NOT(NULL(CHLOC. TL)) THEN
CHLOC. TL. HD. HD->XC; CHLOC. TL. HD. TL. HD->YC;
GENKN(XK, YK, XC, YC, CP, RL)->RL; CLOSE;
GOTO LOOP;
END;
FUNCTION QCHK CHL HML => QL;
IF HML. HD. TL. TL. TL. HD=CKL. HD. TL. TL. HD
THEN RCHK(CHL, HML, KC, BCAP, WCAP) -> QL;
ELSE BCHK(CHL, HML, KC, BCAP, WCAP) -> QL;
CLOSE;
END;
FUNCTION MOVLIN KC CHLIN CHI=>ML;
COMMENT could a non-checking piece have moved from the

checking line to discover check;
vars XL HL CP CPC BI KN PN MLS;

If KC="BK" then WLIST->XL; "WQ"->QU; "WB"->BI; "WN"->KN; "WP"->PN;
else BLIST->XL; "BQ"->QU; "BB"->BI; "BN"->KN; "BP"->PN;
close;

comment checking piece in CP;
CHI. HD->HL; HL. TL. HD->CP; HL. TL->CPC;

comment if CP is knight then return;
If CP=KN then nil->ML; exit;
PCMOV(XL)->ML; If ML. null then exit;

comment eliminate queen;
ELIMCP(QU, ML)->ML;

comment eliminate checking piece;
ELIMPC(CPC, ML)->ML;

comment If CP is bishop then eliminate other bishop (if any);
If CP=BI then ELIMCP(BI, ML)->ML;
close;

comment eliminate moves not involving check line squares;
ELCHL(ML, CHLIN)->ML;

comment Ilegality check if no caps and king not next to king;
If CAP="N" then NOCAP(ML, PN)->ML; close; NOK(ML, KC)->ML;

end;

FUNCTION ELIMCP PC ML;
IF ML. null then nil;
elseif ML. HD. HD=PC then ELIMCP(PC, TL(ML));
else ML. HD:: ELIMCP(PC, TL(ML));

close;
end;

FUNCTION ELIMPC CPC ML=>XL;
comment eliminate checking pieces from list;
vars HL HHL; nil->XL;
loop: If ML. null then return;

else dest(ML)->ML->HL; [%HL. HD, HL. TL. HD, HL. TL. TL. HD%]->HHL;
If not(equal(CPC, HHL)) then HL:: XL->XL; close;

goto loop;
close;

end;

FUNCTION NOCAP ML PN;
COMMENT if CAP="N" then delete pawn revers move vaptures;

If ML. null then nil;
elseif ML. HD. HD=PN and ML. HD. TL. HD/=ML. HD. TL. TL. HD then NOCAP(TL(ML), PN)'
else ML. HD:: NOCAP(TL(ML), PN);
close;

end;

FUNCTION NOK ML KC=>YL:
comment check king not next to king;
vacs FL XK YK MLH KI;

nil->YL; FKING(BLIST, WLIST)->FL;
If KC="WK" then FL. TL. HD. HD->XK; FL. TL. HD. TL. HD->YK; "BK"->KI;
else FL. HD. HD->XK; FL. HD. TL. HD->YK; "WK"->KI;
close;

loop: If ML. null then return;
else dest(ML)->ML->MLH;
If MLH. HD=KI and ABBS(XK-MLH. TL. TL. TL. HD)>1

and ABBS(YK-MLH. TL. TL. TL. TL. HD)>l
then MLH:: YL->YL;

elseif MLH. HD/=KI then MLH:: YL->YL;

close;
goto loop;
close;

end;

FUNCTION ELCHL ML CL => SL;
VARS HL XL KL SL; CL -> XL; NIL->SL;
LOOP: IF XL. NULL THEN EXIT;
DEST(XL) -> XL -> HL;
DELCL(HL, ML) -> KL; IF NOT(KL. NULL) THEN KL<>SL->SL; CLOSE;

GOTO LOOP;
END;
FUNCTION DELCL HL ML;
IF ML. NULL THEN NIL;
ELSEIF HL. HD=ML. HD. TL. TL. TL. HD AND HL. TL. HD=ML. HD. TL. TL. TL. TL. HD
THEN ML. HD:: DELCL(HL, TL(ML));
ELSE DELCL(HL, TL(ML)); CLOSE;
END;
FUNCTION GENKN XK YK XC YC CP BL=>BL;
IF ABBS(XK-XC)=2 AND ABBS(YK-YC)=1 THEN (%CP. TL. HD, XK, YK, XC, YC%):: BL -> BL;
ELSEIF ABBS(XK-XC)=1 AND ABBS(YK-YC)=2 THEN [%CP. TL. HD, XK, YK, XC, YC%J:: BL -> BL;
END;
FUNCTION CHKPC CP LI;
VARS TF;
IF LI. NULL THEN NIL;
ELSE KDEL(LI. HD. HD, CP)->TF;
IF TF=TRUE THEN LI. HD:: CHKPC(CP, TL(LI));
ELSE CHKPC(CP, TL(LI)); CLOSE; CLOSE;
END;
FUNCTION KDEL PC CP;
IF CP. NULL THEN FALSE;
ELSEIF CP. HD=PC THEN TRUE;
ELSE KDEL(PC, TL(CP)); CLOSE;
END;

FUNCTION PROM CHLIN KC=>PL;
VARS PPL YP PWN NP XL HL XC XH;
NIL->PPL;
IF KC="WK" THEN 2->YP; "BP"->PWN; 1->YH; NPB->NP;
ELSEIF KC="BK" THEN 7->YP; "WP"->PWN; 8->YH; NPW->NP;
ELSE NIL->PL; EXIT; FNSQ(CHLIN, YP)->XL;
IF NP=8 THEN NIL->PL; EXIT; FNSQ(CHLIN, YP)->XL;
LOOP: IF XL. NULL THEN SHUFFLE(PPL)->PPL; LPC(PPL)->PL; EXIT;
DEST(XL)->XL->HL; HL. HD->XC;
IF CAP="N" THEN [%PWN, XC, YP, XC, YH%]:: PPL->PPL;
ELSE [%[%PWN, XC, YP, XC-1, YH%], (%PWN, XC, YP, XC, YH%], [%PWN, XC, YP, XC+1, YH%]%)<>PPL->PIi
CLOSE; GOTO LOOP;
END;
FUNCTION SHUFFLE XL=>ML;
VARS ANS; TAKE(XL)->XL; NIL->ML;
LOOP: IF XL. NULL THEN EXIT;
MEMLST(XL. HD, TL(XL))->ANS; IF ANS=TRUE THEN XL. HD:: ML->ML; CLOSE;
TL(XL)->XL; GOTO LOOP;
END;
FUNCTION TAKE XL=>YL;
VARS XY HL; NIL->YL;
LOOP: IF XL. NULL THEN RETURN;
ELSE DEST(XL)->XL->HL; HL. TL. TL. TL. HD->X; HL. TL. TL. TL. TL. HD->Y;
IF X>8 OR X<1 OR BOARD(X, Y)=KC THEN GOTO LOOP;
ELSE HL:: YL->YL; GOTO LOOP; CLOSE; CLOSE;
END;
FUNCTION LPC PPL=>ML;.
VARS HL HHL XL LH YL; NIL->ML;

LOOP: IF PPL. NULL THEN EXIT;
PPL. HD->HL; (%HL. TL. TL. TL. HD, HL. TL. TL. TL. TL. HD%]->HHL;
IF KC="WK" THEN BLIST->XL; ELSE WLIST->XL; CLOSE;
LOOP1: IF XL. NULL THEN TL(PPL)->PPL; GOTO LOOP;
ELSE [%XL. HD. TL. HD, XL. HD. TL. TL. HD%]->LH;
IF EQUAL(HHL, LH) THEN HL:: ML->ML; CLOSE; CLOSE;
TL(XL)->XL; GOTO LOOPi;
END;
FUNCTION FNSQ CL PPR;
IF CL. NULL THEN NIL;
ELSEIF CL. HD. TL. HD=PPR THEN CL. HD:: FNSQ(TL(CL), PPR);
ELSE FNSQ(TL(CL), PPR); CLOSE;
END;

FUNCTION COUNTS CPT CB;
COMMENT count the number of bishops on board;

If CPT. null then CB;
elseif CPT. HD="WB" or CPT. HD="BB" then CB+1->CB; COTJNTB(TL(CPT), CB);
else COtJNTB(TL(CPT), CB);
close;

end;
FUNCTION WHPCAP HL=>CL;
COMMENT HL=(PC X Y] what was captured by pc on (x, y)

if not underpromotions us bleft/wleft;

vars PC XP YP BW CPT HT CPH CB ANS LIS2 LIS3 CB CPTX FLG;
COMMENT if a piece is not a checking piece. set FLG=1, else FLG=O;

HL. HD->PC; HL. TL. HD->XP; HL. TL. TL. HD->YP; BORW(PC)->BW; nil->LIS2: nil->LIS3;

If BW="B" and UPFLG=O THEN WLEFT->CPT; WHTAB->HT;
elseif BW="B" then (WP WN WR WQ WB]->CPT; WHTAB->HT;

elseif BW="W" and UPFLG=O then BLEFT->CPT; BHTAB->KT;

elseif BW="W" then (BP BN BR BQ BB)->CPT; BHTAB->HT;

close;
0->CB; O->FLG; COUNTB(CPT, CB)->CB;

COMMENT form short list;

SRTLFT(CPT)->CPT; COPYALL(CPT)->CPTX;

loop: If CPT. null then (%CPTX, LIS2, LIS3%]->CL; goto L1;

else dest(CPT)->CPT->CPH;
If CPH="BP" or CPH="WP" then PCH(XP, YP, CPH, HT);

elseif CPH="BB" or CPH="WB" then BCH(CB, CPH, XP, YP);
else GCH(XP, YP, CPH);
close;

goto loop;
close;

L1: If lengt(CPTX)=LENGT(LIS2) and FLG=O then 1->ILLFLG; close;
end;

FUNCTION GCH XYP;
vars MLX RL PC RLH ML ANS;

COPYALL(KL)->RL; nil->ML; BORW(HL. HD)->PC; COPYALL(MLIST)->MLX;
0->LEGFLG;

loop: If RL. null then COPYALL(MLX)->MLIST; (%P%]<>LIS2->LIS2; return;
else dest(RL)->RL->RLH;

If RLH. HD/=HL. HD then (%nil, RLH%J:: LIS3->LIS3; 1->FLG; goto loop;
elseif PC="W" then UPDATE(RLH, WLIST);
else UPDATE(RLH, BLIST);
close;

PCMOV((%(%P, X, Y%]%J)->MLIST;

COMMENT subset of legality checker applied;

. RULE14->ANS;. RULE16->ANS;. RULE17->ANS;. RULE18->ANS; RESTOR(RLH);
COPYALL(MLIST)->ML;
If not(ML. null) then COPYALL(MLX)->MLIST; RLH:: ML->ML; ML:: LIS3->LIS3; retutn,

else goto loop;

close;
close;

end;

FUNCTION PCH XP YP CPH HT;
vars X RNK;

If CPH="BP" then 7->RNK;

else 2->RNK;
close;
GABS(XP, HT)->X;
If ABBS(YP-RNK)<ABBS(X-XP) then [%CPH%]<>LIS2->LIS2;

else GCH(XP, YP, CPH);
close;

end;

FUNCTION BCH CB CPH XP YP;
vars XL BSQ XB YB;

If CB=2 then CCH(XP, YP, CPH); return;
elseif CPH="BB" then BLIST->XL;
else WLIST->XL;
close;
LFORB(XL)->BSQ;

If not(BSQ. null) then BSQ. HD->XB; BSQ. TL. HD->YB;
If CLSQ(XP, YP, XB, YB) or LCONSQ(CPH, XP, YP) then

GCH(XP, YP, CPH);

else [%CPH%]<>LIS2->LIS2;

close;
close;

end;

FUNCTION LFORB XL;
COMMENT look for bishop;

If XL. null then nil;
elseif XL. HD. HD="BB" or XL. HD. HD="WB"

then (%XL. HD. TL. HD, XL. HD. TL. TL. HD%];

else LFORB(TL(XL));
close;

end;

FUNCTION LCONSQ CPH XP YP=>REP;
vars XB YB;
If CPH="BB" and BOARD(2,7)="BP" and BOARD(4,7)="BP" then 3->XB; 8->YB;

elseif CPH="BB" and BOARD(5,7)="BP" and BOARD(7,7)="BP" then 6->XB; 8->YB;
elseif CPH="WB" and BOARD(2,2)="WP" and BOARD(4,2)="WP" then 3->XB; 1->YB;
elseif CPH="WB" and BOARD(5,2)="WP" and BQARD(7,2)="WP" then 6->XB; 1->YB;
close;
CLSQ(XP, YP, XB, YB)->REP;
end;

FUNCTION CLSQ XP YP XB YB;
If ERASE((XB+YB)//2)/=ERASE((XP+YP)//2) then true; else false; close;
end;

FUNCTION SRTLFT XL=>YL;
COMMENT form short list from xl. delete repetitions except for bishops;

vars HL; nil->YL;
loop: If XL. null then return;

else dest(XL)->XL->HL; HL:: YL->YL;
If HL/="BB" and HL/="WB" then DELT(HL, XL)->XL;
close;

goto loop;
close;

end;

LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL

pppppppppppp
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
ppp ppp
PPP PPP
ppp ppp
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
ppp
ppp
PPP
PPP

EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEE
EEEEEEEEEEEE

EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEEEEE

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

GGGGGGGGGGGG
GGGGGGGGGGGG
GGGGGGGGGGGG

GGG
GGG
GGG
GGG
GGG
GGG
GGG
GGG
GGG
GGG GGGGGGGGG
GGG GGGGGGGGG
GGG GGGGGGGGG
GGG GGG
GGG GGG
GGG GGG

GGGGGGGGG
GGGGGGGGG
GGGGGGGGG

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP ppp
PPP ppp
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR" RRR

"111ý

"1ýt1

"týý1

START Job BAGAT Req #751 for O. ENABLEDOP Date 11-Jun-86 10: 53: 58 Monitor: 0
File RS: <R. ALDEN>LEGRUL. POP. 1, created: 13-Apr-84 12: 46: 35, printed: 11-Jun-86 1
Job parameters: Request created: ll-Jun-86 10: 53: 56 Page limit: 225 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION LEGCHK CAP XL=>LLIST;
COMMENT reverse move legality checker;
vars ALR AH ITM HL ANS DDBFX; nil->DDBFX;
comment check if move list empty and whether explanation required

LEGFLG set for explanation;
If XL. null then nil->LLIST; exit;
COPYALL(ALLRULES)->ALR; COPYALL(XL)->MLIST;

COMMENT go through each legality rule in turn;
loop: If not(ALR. null) then dest(ALR)->ALR->AH;

If category(valof(AH))="LEGRULE"
then eval(premise(valof(AH)))->ANS;
close;

goto loop; close;

MLIST->LLIST;
COMMENT if no illegal moves then file null in LEGDEL

providing LEGFLG=l;
If LEGFLG=O then return;
elseif not(LLIST. null) then (%[LIST), LLIST, [R41EX]%]:: DDBFX->DDBFX;
close;
If not(DDBFX. null) and LEGFLG=l then DDBFX<>DDB->DDB; close;
0->LEGFLG;
end;

FUNCTION DSET HL AH=>DDBFX;
COMMENT place entries from rules in data base;

(%[%(LEGRUL], HL, explain(valof(AH))%]%]<>DDBFX->DDBFX;
end;

FUNCTION RULE18=>ANS;
COMMENT no captures permitted - delete all reverse pawn move captures;

vars ML MLH ML;
COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;

loop: If not(CAP="N") then return;
elseif ML. null and LEGDEL. null then return;
elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->MLH; MLH. HD->MLHD;

If MLHD/="WP" and MLHD/="BP" then goto loop;

elseif MLH. TL. HD/=MLH. TL. TL. TL. HD
then DELTL(MLH, MLIST)->MLIST; MLH:: LEGDEL->LEGDEL;

true->ANS;
close;

goto loop;
close;

end;

FUNCTION RULE13=>ANS;
COMMENT legality check. king not adjacent to king;
vars FL P XK YK ML MLH;

COMMENT find present king co-ords, copy MLIST(move list)
reset LEGDEL;

FKING(BLIST, WLIST)->FL; nil->LECDEL; COPYALL(MLIST)->ML; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="W" then FL. TL. HD. HD->XK; FL. TL. HD. TL. HD->YK;
else FL. HD. HD->XK; FL. HD. TL. HD->YK;
close;

close;
COMMENT now check if kings adjacent;

loop: If ML. null and LEGDEL. null then return;
elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->MLH;

If MLH. HD/="BK" and MLH. HD/="WK" then goto loop;

elseif not(ABBS(XK-MLH. TL. TL. TL. HD)>l)
and not(ABBS(YK-MLH. TL. TL. TL. TL. HD)>l)
then DELTL(MLH, MLIST)->MLIST; MLH:: LEGDEL->LEGDEL; true->ANS;
close;

goto loop;
close;

end;

FUNCTION RULE14=>ANS;
COMMENT legality check. opposition king in check;
vars ML P KI HL CHI KC KL;

COMMENT set up variables;

COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="B" then "WK"->KI;
else "BK"->KI;
close;

close;

COMMENT now check for oppo king;
loop: If ML. null and LEGDEL. null then return;

elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->HL;

If P="B" then UPDATE(HL, BLIST); else UPDATE(HL, WLIST);

close;
close;
ISKCHK(BLIST, WLIST)->CHI->KC;

If CHI=false then goto L2;
elseif CHI. null then goto L1;

elseif KC=KI
and equal((%CHI. HD. TL. TL. #3D, CHI. HD. TL. TL. TL. HD%J, (%HL. TL. TL. TL. HD %JL. iL.

then goto L2; T. LT. L iL

else goto L1;
close;

L2: DELTL(HL, MLIST)->MLIST; true->ANS; HL:: LEGDEL->LEGDEL;
L1: RESTOR(HL); goto loop;

end;

FUNCTION RULE15=>ANS;
COMMENT legality check. own king in check and no way found for this

to happen;
vars ML P KI HL CHI KC KL;

COMMENT set up variables;

COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="B" then "BK"->KI;

else "WK"->KI;

close;
close;

COMMENT see if own king in check;

loop: If ML. null and LEGDEL. null then return;
elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return; '
else dest(ML)->ML->HL;

If P="B" then UPDATE(HL, BLIST); else UPDATE(HL, WLIST);
close;

close;
ISKCHK(BLIST, WLIST)->CHI->KC;

If CHI=false then goto L2; '
elseif CHI. null then goto L1;
elseif KC=KI and not(CHPWN(CHI)) then goto L2;
elseif KC=KI then KCHECK1(CHI, KC)->KL;

If not(KL. null) then goto Li; close;
close;

L2: DELTL(HL, MLIST)->MLIST; true->ANS; HL:: LEGDEL->LEGDEL;
L1: RESTOR(HL); goto loop;
end;

FUNCTION RULE16=>ANS;
COMMENT legality check. too many pawn captures;
vars ML P BTO TOT BN WN WH BH PC;

COMMENT set up variables;
COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="B" then WTOT->BTO;
else BTOT->BTO;

close;
close;

COMMENT check possible pawn captures;

loop: If ML. null and LEGDEL. null then return;
elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LECDEL, AH)->DDBFX; return;
else dest(ML)->ML->HL; HL. HD->PC;

If PC="BP" then UPDATE(HL, BLIST);
elseif PC="WP" then UPDATE(HL, WLIST);

else goto loop;
close;

. MINPWN->WH->BH->WN->BN;
If PC="BP" then BN. HD->TOT; else WN. HD->TOT;
close;

comment tot contains total pawn captures;
If HL. TL. HD/=HL. TL. TL. TL. HD and TOT+1>BTO

then true->ANS; HL:: LEGDEL->LEGDEL;
DELTL(HL, MLIST)->MLIST;
close;

RESTOR(HL); goto loop;
close;

end;

FUNCTION RULE17=>ANS;
COMMENT legality check. if no. of pieces captured on board

is less than no. of opposition pawn captures;

vars ML P BX HL WL BL TC;
COMMENT set up variables;

COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="B" then WPTT->BX; else BPTT->BX;

close;
close;

COMMENT check pawn captures;
loop: If ML. null and LEGDEL. null then return;

elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->HL;

If HL. HD="BP" then UPDATE(HL, BLIST);
elseif HL. HD="WP" then UPDATE(HL, WLIST);
else goto loop;
close;

. CPGTOB->WL->BL;

If HL. HD="BP" then LENGT(BL)->TC;
else LENGT(WL)->TC;
close;
If TC<BX then true->ANS; HL:: LEGDEL->LEGDEL;
DELTL(HL, MLIST)->MLIST;
close;

RESTOR(HL); goto loop;
close;

end;

FUNCTION RULE12=>ANS;
COMMENT legality check. piece given as not moving(PNM);
vars ML HL;

COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
loop: If ML. null and LEGDEL. null then return;

elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->HL;

If not(MEMLST((%HL. HD, HL.. TL. HD, HL. TL. TL. HD%J, PNM))
then true->ANS; HL:: LEGDEL->LEGDEL; DELTL(HL, MLIST)->MLIST;
close;

goto loop;
close;

end;

FUNCTION RULE19=>ANS;
COMMENT legality check. a pawn

constrains a
vars ML HL RNK WL BL YL P

COMMENT set up variables;

reverse moves to a home square and
piece that was captured on board;
TOT;

I

COPYALL(MLIST)->ML; nil->LEGDEL; false->ANS;
If ML. null then return;
else BORW(ML. HD. HD)->P;

If P="B" then BTOT->TOT;
else WTOT->TOT;

close;
close;

COMMENT check pawns;

loop: If ML. null and LEGDEL. null then return;
elseif ML. null and LEGFLG=O then return;
elseif ML. null then DSET(LEGDEL, AH)->DDBFX; return;
else dest(ML)->ML->HL; HL. TL. TL. TL. TL. HD->RNK;

If HL. HD="WP" and RNK=2 then UPDATE(HL, WLIST);
elseif HL. HD="BP" and RNK=7 then UPDATE(HL, BLIST);
else goto loop;

close;

. CPGTOB->WL->BL;
If HL. HD="WP" then lengt(WL)->YL;
else lengt(BL)->YL;

close;
If YL/=TOT then true->ANS; HL:: LECDEL->LEGDEL;
DELTL(HL, MLIST)->MLIST;
close;

RESTOR(HL); goto loop;
close;

end;

FUNCTION RESTOR XL;
COMMENT to restore a given move;
vars BBW X1 Yl X2 Y2; BORW(XL. HD)->BBW;
XL. TL. HD->Xl; XL. TL. TL. HD->Y1; XL. TL. TL. TL. HD->X2; XL. TL. TL. TL. TL. HD->Y2;

If EQUAL([%Xl, Yl%], (%X2, Y2%]) then exit;
"BLANK"->BOARD(X2, Y2);

If SFLAG=1 AND BBW="B" then TL(BLIST)->BLIST; "BLANK"->BOARD(Xl, Yl); 0->SFLAG; retur n,
elseif SFLAG=1 AND BBW="W" then TL(WLIST)->WLIST; "BLANK"->BOARD(Xl, Yl); O->SFLAG;
close;
XL. HD->BOARD(Xl, Y1);

If BBW="B" then RSTOR(XL, BLIST); else RSTOR(XL, WLIST);
close;
0 ->SFLAG;

end;

FUNCTION RSTOR XL LI;
If XL. TL. TL. TL. HD=LI. HD. TL. HD and XL. TL. TL. TL. TL. HD=LI. HD. TL. TL. HD
then XL. TL. HD->LI. HD. TL. HD; XL. TL. TL. HD->LI. HD. TL. TL. HD;
else RSTOR(XL, TL(LI));
close;

end;

FUNCTION UPDATE XL LIS;
COMMENT to update board and list of pieces for given move;
VARS PC LIST X1 Yl X2 Y2; 0->SFLAG;
XL. TL. HD->X1; XL. TL. TL. HD->Yl; XL. TL. TL. TL. HD->X2; XL. TL. TL. TL. TL. HD->Y2;

If EQUAL((%Xl, Yl%], (%X2, Y2%J) then exit;
XL. HD->BOARD(X2, Y2); "BLANK"->BOARD(Xl, Yl); RPLACE(XL, LIS);
If SFLAG=O then return;
else [%XL. HD, X2, Y2%]->LIST; BORW(XL. HD)->PC;

If PC="B" then LIST:: BLIST->BLIST;
else LIST:: WLIST->WLIST;
close;

close;
end;
FUNCTION RPLACE XL LI;

If LI. null then 1->SFLAG;
elseif XL. TL. HD=LI. HD. TL. HD and XL. TL. TL. HD=LI. HD. TL. TL. HD

then XL. TL. TL. TL. HD->LI. HD. TL. HD;
XL. TL. TL. TL. TL. HD->LI. HD. TL. TL. HD;

else RPLACE(XL, TL(LI));

close;
end;

FUNCTION LPN JY Y1 Y2 LST=>LST;
COMMENT look up column for pawns;

If BOARD(J, Yl)=PWN then (%J, Y%]:: LST->LST;
elseif BOARD(J, Y2)=PWN then [%J, Yl%]:: LST->LST; (%J, Y%]:: LST->LST;
else 0->FLAG;

end;
close;

FUNCTION LCOL XY PWN=>LST;
vacs FLAG; NIL->LST; 1->FLAC;

If Y=9 then 8->Y; elseif Y=O then 1->Y; close;
If X=l and PWN="WP" then FORALL JX1Y LPN(J, 1,2,3, LST)->LST; close;
Elseif X=8 and PWN="WP" then FORALL JY1X LPN(J, 1,2,3, LST)->LST; close;
Elseif X=l and PWN="BP" then FORALL JX1Y LPN(J, 8,7.6, LST)->LST; close;
Elseif X=8 and PWN="BP" then FORALL JY1X LPN(J, 8,7,6, LST)->LST; close;
Elseif Y=8 and PWN="WP" then FORALL JX1Y LPN(J, 1,2,3, LST)->LST; close;
Elseif Y=8 and PWN="BP" then FORALL JX1Y LPN(J, 8,7,6, LST)->LST; close;
close;
If FLAG=O then NIL->LST; close;

end;
FUNCTION LBROW PWN XXL=>ARU ARC;
COMMENT look along each row;
VARS NC ADD CL BL PXY XX PX PY; NIL->ARU;
XXL. HD->P; XXL. TL. HD->X; XXL. TL. TL. HD->Y;

If X=l then 1->ADD; -1->PX; l->NC; else -1->ADD; 1->PX; 8->NC; close;
If PWN="WP" then 1->PY; else -1->PY; close;

LOOP: IF NC=9 or NC=O then LCOL(1,8, PWN)->ARC; return;
Elseif BOARD(NC, Y)=P then [%P, NC, Y$]->HP; close;
If BOARD(NC, Y)="BLANK" or BOARD (NC, Y)=P then NC+ADD->NC; goto loop;
else [%BOARD(NC, Y), NC, Y%]->BL;
If ADD=1 then NC-1->XX; LCOL(X, XX, PWN)->ARC;
else NC+1->XX; LCOL(XX, X, PWN)->ARC;
close; close;
If ARC. NULL then EXIT; MEMLST(BL, PNM)->CL;
If CL=TRUE and BOARD(NC, Y+PY)=PWN then BL:: ARU->ARU;
elseif CL=TRUE and BOARD(NC+PX, Y+PY)=PWN then BL:: ARU->ARU;
elseif CL=FALSE and BOARD(NC, Y+PY)=PWN then NIL->ARU; return;
elseif CL=FALSE and BOARD(NC+PX, Y+PY)=PWN then NIL->ARU; return;
elseif CL=FALSE and BOARD(NC, Y+PY)/="BLANK" then [%BOARD(NC, Y+PY), NC, PY%]. a6 L"

If MEMLST(BL, PNM)=false then NIL->ARU; return; else BL:: ARU->ARU;
close;

close;
If ADD=l then LCOL(l, NC, PWN)->ARC; else LCOL(NC, 8, PWN)->ARC; close;
If ARC. NULL then return;
else NC+ADD->NC; goto loop;
close;

end;
FUNCTION MEMLST XL1 XL2;
COMMENT if x11 is a member of x12 then false - else true;

If XL2. NULL then true;
elseif equal(XL1, XL2. HD) then false;
else MEMLST(XL1, TL(XL2));
close;

end;

FUNCTION RBRD XXL=>YRC YRU;
COMMENT look for rook constraints;

If XXL. HD="WR" then LBROW("WP", XXL)->YRC->YRU;
else LBROW("BP", XXL)->YRC->YRU;

close;
end;
FUNCTION CPGTOB=>BL WL;
COMMENT returns list of pieces captured on board;
vars RC RU BC QC;

GENCON("W")->QC->BC->RU->RC; GENCON("B")->QC->BC->RU->RC;
BLEFT->BL; WLEFT->WL;

end;

FUNCTION GENCON P=>RC RU BC QC;

vats WH BH XL N BI XQ CB CBH HL K KC CONSQ R1 R2 RU1 RU2 RC1 RC2 PWN RN;
vars NBLIST NWLIST PNMX I;

comment TO RETURN A LIST OF PIECES THAT WERE CAPTURED ON BOARD;
COPYALL(WLIST)->NWLIST; COPYALL(BLIST)->NBLIST; COPYALL(PNM)->PNMX;

nil->QC; nil->BC; nil->RC; nil->RU; nil->CONSQ;
comment GET LISTS OF BISHOPS CAPTURED AT HOME IN WH, BH;

. BCHSQ->WH->BH;

If P="W" then WHCAP->XL; "WP"->PWN; l->RN; "WN"->N; "WB"->BI; WH->X; "WQ"->Q;
[WO 4 1]->HL; [WR 1 1]->R1; [WR 8 1]->R2; "WK"->K; [WK 5 1]->KL;

else BLCAP->XL; "BP"->PN; 8->RN; "BN"->N; "BB"->BI; BH->X; "BQ"->Q; [BQ 4 8]->HL;
"BK"->K; [BR 1 8]->Rl; [BR 8 8]->R2; [BK 5 8]->KL;

close;

COMMENT remove any knights from back row; '

FORALL I118 IF BOARD(I, RN)=N then "BLANK"->BOARD(I, RN); close; close;
comment DELETE BISHOPS CAPTURED AT HOME;

If lengt(X)=1 then D1(BI, XL)->XL;
elseif lengt(X)=2 then "DELT(BI, XL)->XL;
close;

comment GET LIST OF BISHOPS CONSTRAINED TO HOME SQUARE;
LCONSI(BI)->CB;

loop: If not(CB. null) then dest(CB)->CB->CBH; CBH:: PNM->PNM;
(%CBH, CBH. TL%]:: BC->BC; goto loop;

close;

comment NOW LOOK AT QUEEN;
If membl(HL, PNM) then [%HL, HL. TL%]:: QC->QC;

elseif ISBR(Q) and CONST(Q) then HL:: PNM->PNM; [%HL%]<>CONSQ:: QC->QC,

elseif not(ISBR(Q)) and memb(Q, XL) and CONST(Q) then DELT(Q, XL)->XL;

close;

comment NOW FOR KING;
If not(membl(KL, PNM)) and ISBR(K) and not(CONSQ. null)

then KL:: PNM->PNM;
close;

COMMENT look at rook constraints, returned is lists of those

rooks constrained and those that coul escape if certain
pieces moved;

RBRD(R1)->RU1->RC1; RBRD(R2)->RU2->RC2;
PPNM(RU1)->RU1; PPNM(RU2)->RU2;
If not(RU1. nu11) then R1:: RU1->RUl; RU1:: RU->RU; close;
If not(RU2. nu11) then R2:; RU2->RU2; RU2:: RU->RU; Close;
If not(RCl. null) then R1:: RC1->RC1; RC1:: RC->RC; close;
If not(RC2. nu11) then R2:: RC2->RC2; RC2:: RC->RC; close;

If lengt(RC)=1 then D1(R1. HD, XL)->XL;
elseif lengt(RC)=2 then DELT(R1. HD, XL)->XL;

close;

If P="W" then XL->WLEFT; else XL->BLEFT;
close;

COMMENT restore original board position;
COPYALL(NWLIST)->WLIST; COPYALL(NBLIST)->BLIST; COPYALL(PNMX)->PNM;. RSTB;

end;

FUNCTION PPNM XL=>YL;

vars XLH; nil->YL;
COMMENT xl is a list such that a rook is unconstrained if csertain

pieces can move. if theses pieces are in PNM then they
cannot escape from the back row, so delete;

loop: If XL. null then return;
else dest(XL)->XL->XLH;

If not(membl(XLH, PNM)) then XLH:: YL->YL;
close;

goto loop;
close;

end;

FUNCTION ISBR P;
vars XL PC Y;
comment If P is on the back row then true, else false;
BORW(P)->PC;

If PC="B" then 8->Y; BLIST->XL;
else 1->Y; WLIST->XL;
close;

loop: If XL. null then false;
elseif XL. HD. HD=P and Y=XL. HD. TL. TL. HD then true;
else TL(XL)->XL; goto loop;
close;

end;

FUNCTION CONST Q;
vars RNK BL BLl XL KL PN BRNK;
comment IF QUEEN CONSTRAINED RETURN TRUE AND LIST OF CONSTRAINING

SQUARES IN CONSQ;
BORW(Q)->PC;
If PC="W" then 2->RNK; [WB 3 lJ->BL; WH->XL; (WK 5 l]->KL; "WP"->PN;

[WB 6 lJ->BL1; 1->BRNK;
else 7->RNK; [BB 3 8]->BL; BH->XL; [BK 5 8J->KL; "BP"->PN;

[BB 6 8J->BL1; 8->BRNK;
close;

If membl(BL, PNM) and membl(KL, PNM) and FALL(3,5)
then true; FPL(4,4, CONSQ)->CONSQ;
elseif membl(KL, PNM) and FALL(1,5) then true; FPL(l, 4, CONSQ)->CONSQ;
elseif membl(BL, PNM) and membl(BL1, PNM) and FALL(3,6)

then FPL(4,5, CONSQ)->CONSQ; true;
elseif membl(BL, PNM) and FALL(3,8) then FPL(4,8, CONSQ)->CONSQ; true;
elseif membl(BLI, PNM) and FALL(1,6) then FPL(1,5, CONSQ)->CONSQ; true;
elseif FALL(1,8) then FPL(1,7, CONSQ)->CONSQ; true;
else false;
close;

end;

FUNCTION FALL Ni N2;
COMMENT are ther any pawns at home from nl to n2;
loop: If Nl>N2 then true;

elseif BOARD(Nl, RNK)/=PN then false;
else Nl+1->Nl; goto loop;
close;

end;

FUNCTION FPL Ni N2 CL=>CL;
COMMENT place squares in cl;
loop: If Nl>N2 then return;

else [%N1, BRNK%]:: CL->CL; 1+N1->Nl; goto loop;
close;

end;

FUNCTION LCONS1 B=>BCC;
COMMENT return list of bishops constrained at home;

nil->BCC;
If B="BB" and BOARD(3,8)="BB" and BOARD(2,7)="BP" and BOARD(4,7)="BP"

then [BB 3 81:: BCC->BCC; close;
If B="BB" and BOARD(6,8)="BB" and BOARD(5,7)="BP" and BOARD(7,7)="BP"

then (BB 6 8):: BCC->BCC; close;
If 13="WB" and BOARD(3,1)="WB" and BOARD(2,2)="WP" and BOARD(4,2)="WP"

then (WB 3 lJ:: BCC->BCC; close;
If B="WB" and BOARD(6, l)="WB" and BOARD(5,2)="WP" and BOARD(7,2)="WP"

then [WB 6 1):: BCC->BCC; close;
end;

FUNCTION PARS XL;
COMMENT to parse the given question and set flags;

vars N;

end;

NIL->MISPQ; O->MISPC; O->WCFLGX; O->BCFLGX; O->BCFLG; O->WCFLG; O->NC;
nil->MSPC; O->CAPPC;
If MEMB("LAST", XL) AND MEMB("MOVE", XL) then FNINT(XL)->N;

If N. ISINTEGER then N->NC; N->CP; close;
elseif MEMB("WHAT", XL) and MEMB("MISSING", XL)
then FNLST(XL); l->MSFLG; 1->MSFLGX;
elseif MEMB("WHAT", XL) and MEMB("SQUARE", XL) and MEMB("CAPTURED", XLJ

then FNLST(XL); MISPC->CAPPC; O->MISPC;

elseif MEMB("LAST", XL) and MEMB("MOVES", XL) then FNINT(XL)->N;
If N. ISINTEGER THEN N->NC; N->CP; close;

elseif MEMB("CASTLE", XL) or MEMB("CASTLING", XL) then FNCAS(XL)->N;
If N="B" then lengt(BCAS)->BCFLG; COPYALL(BCFLG)->BCFLGX;

elseif N="W" then lengt(WCAS)->WCFLG; COPYALL(WCFLG)->WCFLGX;

else lengt(BCAS)->BCFLG; lengt(WCAS)->WCFLG;

copyall(BCFLG)->BCFLGX; copyall(WCFLG)->WCFLGX;
close;

elseif TWOL(XL) then"LOCAT(XL);
elseif memb("PROMOTED", XL) and MEMB("BOARD", XL) then 1->PPONB;
COPYALL(PPONB)->PPONBX;

else NONQ;
close;

FUNCTION NONQ;
NL(1); prstring('UNABLE TO PARSE QUESTION, BUT DEDUCTIONS WILL BE CARRIED OUT!);
NL(1);
END;

FUNCTION FNCAS XL;
COMMENT possible castling problem - is it black or white or both;

If XL. null then "U"; return;
elseif XL. HD="B" or XL. HD="BLACK" then "B";

elseif XL. HD="W" or XL. HD="WHITE" then "W";

else FNCAS(TL(XL));

close;
end;

FUNCTION MEMB X XL;
COMMENT if x is a member of xl then true else false;

If XL. NULL then false;
elseif X=XL. HD then true;
else MEMB(X, TL(XL));

end;
close;

FUNCTION MEMBL X XL;
COMMENT if list x is a member of list xl then true - else false;

If XL. null then false;
elseif equal(X, XL. HD) then true;

else MEMBL(X, TL(XL));
close;

end;

FUNCTION FNINT XL;
COMMENT look through list xl to see if contains integer;

If XL. null then "A";
elseif XL. HD. ISINTEGER then XL. HD;
else FNINT(TL(XL));
close;

end;

FUNCTION FNLST XL;
COMMENT missing piece - find-if piece or square given

if square place in MISPQ else MISPQ null
if piece place in MISPC else MISPC zero;

vars YL;
XL->YL;

LOOP: If YL. null then return;
elseif YL. HD. ISLIST then YL. HD->MISPQ;
elseif BRW(YL. HD) then YL. HD->MISPC;
else TL(YL)->YL; goto loop;

close;
end;

FUNCTION BRW X;
COMMENT find if piece given;

If X="BP" or X="BB" or X="BN" or X="BR" or X="BK" or X="BQ"

or X="WP" or X="WB" or X="WN" or X="WK" or X="WQ" or X="WR"
then true;

else false;
close;

end;

FUNCTION TWOL XL;
COMMENT if there two lists in xl then possible location problem;

vars YL YLH;
nil->PLOC; COPYALL(XL)->YL;

loop: If YL. NULL then goto L1;
else dest(YL)->YL->YLH;

If YLH. ISLIST then YLH:: PLOC->PLOC;
close;

goto loop;
close;

L1: If lengt(PLOC)=2 then true;
else nil->PLOC; false;
close;

end;

FUNCTION LOCAT XL;
COMMENT location problem determine piece;
vars YL XLH H1 H2;

nil->YL;

loop: If XL. null then false; return;
else dest(XL)->XL->XLH;

If BRW(XLH) then PLOC. HD->Hl; PLOC. TL. HD->H2;
XLH:: H1->Hl; XLH:: H2->H2; H2:: YL->YL;
H1:: YL->YL; YL->PLOC; true; l->LOCFLG; 6->CP; return;

close;
goto loop;
close;

end;

FUNCTION PARSEC XL;
COMMENT to pars initial conditions;

If memb("LAST", XL) and memb("MOVE", XL) then LMV(XL);
elseif memb("LAST", XL) and memb("MOVED", XL) then LMV(XL);
elseif memb("CAPTURE", XL) or memb("CAPTURES", XL) then CAPM(XL);
elseif memb("CAN", XL) and memb("CASTLE", XL) then BWCANC(XL);
elseif memb("COLOUR", XL) and memb("MOVED", XL) then COLM(XL);
elseif memb("COLOUR", XL) and memb("MOVE", XL) then COLM(XL);
elseif memb("ODDS", XL) then ODDM(XL);
elseif memb("ORIGINAL", XL) then ORPM(XL);
elseif memb("CHECK", XL) then CHM(XL);
elseif memb("PROMOTED", XL) then 0->PPOB;

elseif memb("MOVED", XL) and memb("NOT", XL) then MVL(XL);

elseif memb("UNDERPROMOTIONS", XL) then 0->UPFLG;

else NONIC;
close;

end;

FUNCTION NONIC;
nl(l); prstring('unable to parse initial conditions, so will ignore!);
nl(l);
end;

FUNCTION MVL XL;
COMMENT xl contains pieces that have not moved - locate and place in PNM;

vars XXL HP YL;
copyall(XL)->XXL;

loop: If not(XXL. null) and BRW(XXL. HD) then XXL. HD->H;
else TL(XXL)->XXL; goto loop;
close;

BORW(H)->P;

If P="t" then copyall(BLIST)->YL;
else copyal. (WLIST)->YL;

close;

loopl: If YL. null then return;
elseif YL. HD. HD=H then YL. HD:: PNM->PNM;
else TL(YL)->YL; goto loopl;

close;

end;

FUNCTION BWCANC XL;
COMMENT given that b or w can. castle. add to pieces not moved list PNM;

vars HL;
If memb("WHITE", XL) or memb("W", XL) then WCAS->HL;

else BCAS->HL;
close;

HL. HD. TL. HD:: PNM->PNM;
If lengt(HL)=1 then HL. HD. HD:: PNM->PNM; close;

end;

FUNCTION ORPM XL;
COMMENT given that some pieces on board are original;

vars WL BL WHL BHL;
(WQ WB WN WRJ->WL; [BQ BB BN BRJ->BL;

loop: If WL. null then return;
else dest(WL)->WL->WHL; dest(BL)->BL->BHL;

If memb("BOTH", XL) and memb(WHL, XL) then WHL:: ORP->ORP;
WHL:: ORP->ORP;

elseif memb(WHL, XL) then WHL:: ORP->ORP;
close;

If memb("BOTH", XL) and memb(BHL, XL) then BHL:: ORP->ORP;
BHL;: ORP->ORP;

elseif memb(BHL, XL) then BHL:: ORP->ORP;
close;

goto loop;
close;

end;

FUNCTION ODDM XL; COMMENT odds were given;

vars BL WL BLH WLH ;
(BQ BN BB BRJ->BL; [WQ WN WB WRJ->WL;

loop: If BL. null then return;
else dest(BL)->BL->BLH; dest(WL)->WL->WLH;

If memb(BLH, XL) then BLH:: ODG->ODG;
elseif memb(WLH, XL) then WLH:: ODG->ODG;
close;

goto loop;
close;

end;

FUNCTION COLM XL;
COMMENT a piece(sO have not moved off own colour;

If memb("QUEEN", XL) and memb("NEITHER", XL) then (WQ BQ)->COLLST; close;
If memb("WQ", XL) then "WQ":: COLLST->COLLST; close;
If memb("BQ", XL) then "BQ":: COLLST->COLLST; closet

end;

FUNCTION LMV XL;
COMMENT who moved last;

If memb("B", XL) or memb("BLACK", XL) then "B"->LM;

elseif memb("W", XL) or memb("WHITE", XL) then "W"->LM;

else "U"->LM;

close;
end;
FUNCTION CAPM XL;
COMMENT captures permitted;

"N"->CAP; FNINT(XL)->N;
If N. ISINTEGER then N->CP;

else 0->CP;
close;

end;

MMM MMM
MMM MMM
MMM
MMM

MMM
NIMM

MMMMMM
M[mMMM
mmmm M

MMMMMM MMMMMM
MMM MMM MMM
MMM MMM MMM
MMM MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

IIIIIIIII
IIIIIIIII
IIIIIIIII

III
III
III
III
III
III
III
III
III
III
III
III
III
III
III

IIIIIIIII
IIIIIIIII
IIIIIIIII

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN' NNN
NNN NNN
NNNNNN NNN
NNNNNN NNN
NNNN NN NNN
NNN NNN NNN
NNN NNN NNN
NNN NNN NNN
NNN NNNNNN
NNN NNNNNN
NNN NNNNNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN
NNN NNN

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
ppp PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP' PPP
PPP PPP
ppp ppp
PPP PPP
ppp ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
ppp
PPP
PPP
PPP
PPP
PPP

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>MINP. POP,. 1, created: 28-Mar-84 12: 43: 48, printed: 11-Jun-86 11:
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: 111 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGI, E File format: ASCII Print mode:

FUNCTION MINPWN=>BNUM WNUM BHTAB WHTAB;
VARS WHT BHT WN BN;
[80,0,08)->BN; [80,0,08)->WN;
[%1,2,3,4,5,6,7,8%]->BHT; COPY(BHT)->WHT;
ATHOME(BHT, WHT)->BHT->WHT;
DOCORN("BP", 7,6, BN, BHT, -1)->BHT->BN;
DOCORN("WP", 2,3, WN, WHT, 1)->WHT->WN;
GHOME("BP", 7,6, BN, BHT, -1)->BHT->BN; COPYALL(BHT)->BHTABI;
GHOME("WP", 2,3, WN, WHT, 1)->WHT->WN; COPYALL(WHT)->WHTABI;
FFILE("BP", 7, BN, BHT, -1)->BHTAB->BNUM;
FFILE("WP", 2, WN, WHT, 1)->WHTAB->WNUM;

. RSTB;
END;
FUNCTION GHOME PWN RNK NUM NLIST HTAB ADD=>NLIST HTAB;
FORALL I217 IF BOARD(I, RNK)=PWN AND BOARD(I+1, RNK)=PWN AND BOARD(I, NUM)=PWN
THEN DELHOM(I-1, RNK, HTAB, NLIST, 1)->HTAB->NLIST; PLPH(I-1, NUM, I, PWN, RNK);
CLOSE; CLOSE;
FORALL I116 IF BOARD(I, RNK)=PWN AND BOARD(I+1, RNK)=PWN AND BOARD(I+1, NUM)=PWN
THEN DELHOM(I+2, RNK, HTAB, NLIST, 1)->HTAB->NLIST; PLPH(I+2, NUM, I+1, PWN, RNK);
CLOSE; CLOSE;

I+ NU P FORALL I116 IF BOARD(I, RNK)=PWN AND O RD j+ NK f. D
FORALL I1l4 IF AD PwND

QvRD
C

I+
ZsRi

i1rÄArR3; BOARD (I+3 , RhK) =PWiJ
PLPH(I+2, NUM, I+2, PWN, RNK); CLOSýE; LOSE;
FORALL I112 IF BýFRD(ýI K)=P ýND B ARD1I+ NI =g4ýI AND BýAýRD(I+2, RNK)=PWN
BOARD(I+3, NUM)=PWN THEN DELLT f 3,

TAB)
>HTAB; PLPH(I+3, NUM, I+3 PWN, RNK); bý

CLOSE; CLOSE;
END;

FUNCTION RESTB XL YL;
COMMENT to restore board according to XL, YL;

RESET; copyall(XL)->WLIST; copyall(YL)->BLIST;. PLACE2;

end;
FUNCTION RSTB;
RESET; PLACE(BLIST); PLACE(WLIST);
END;

FUNCTION RSTBO;
COMMENT restore original board;

RESET; copyall(NWLIST)->WLIST; copyall(NBLIST)->BLIST;. PLACE2;

end;
FUNCTION PLPH XY X1 PWN RNK;
"BLANK"->BOARD(X1, Y); PWN->BOARD(X, RNK);
END;
FUNCTION CNTBW I LC NUM CN=>NUM;
VARS H;
IF ERASE((I+LC)//2)=O THEN NUM. TL. TL. HD->H; H+CN->NUM. TL. TL. HD;
ELSE NUM. TL. HD->H; H+CN->NUM. TL. HD; CLOSE;
NUM. HD->H; H+CN->NUM. HD;
END;
FUNCTION ATHOME BH WH=>WH BH;
VARS I;
FORALL I118 IF BOARD(I, 2)="WP" THEN DELT(I, WH)->WH; CLOSE; CLOSE;
FORALL I118 IF BOARD(I, 7)="BP" THEN DELT(I, BH)->BH; CLOSE; CLOSE;
END;
FUNCTION DELT X XL;
IF XL. NULL THEN NIL;
ELSEIF XL. HD=X THEN DELT(X, TL(XL));
ELSE XL. HD:: DELT(X, TL(XL)); CLOSE;
END;
FUNCTION DELHOM XN HTAB NLIST CP=>NLIST HTAB;

VARS XL;
DELT(X, HTAB)->HTAB; CNTBW(X, N, NLIST, CP)->NLIST;
END;
FUNCTION DOCORN PWN RNK NUM NNL HTAB ADD=>NNL HTAB;
VARS NNUM XX; NUM->NNUM;
FORALL XX 116 LPAWN1(XX, RNK, NNL, HTAB, PWN, NUM)->HTAB->NNL; NUM+ADD->NUM; CLOSE;
NNUM->NUM;
FORALL XX 318 LPAWN2(XX, RNK, NNL, HTAB, PWN, NUM)->HTAB->NNL; NUM+ADD->NUM; CLOSE;
NNUM->NUM;
FORALL XX 216 LPAWN(XX, RNK, HTAB, PWN, NUM)->HTAB; NUM+ADD->NUM; CLOSE;
NNUM->NUM;
FORALL XX 317 LPAWNO(XX, RNK, HTAB, PWN, NNUM)->HTAB; NNUM+ADD->NNUM; CLOSE;
END;
FUNCTION LPAWNI XX RNK NNL HTAB PWN NUM=>NNL HTAB;
VARS FLAG I; 0->FLAG;
FORALL I11 XX IF NOT(BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND BOARD(1, NUM)=PWN THEN DELHOM(XX+1, RNK, HTAB, NNL, XX)->HTAB->NNL;
PLPH(XX+1, NUM, 1, PWN, RNK); CLOSE;
END;
FUNCTION LPAWN2 XX RNK NNL HTAB PWN NUM=>NNL HTAB;
VARS FLAG SV I; 0->FLAG; 1L-XX->SV;
FORALL I SV 18 IF NOT(BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND BOARD(8, NUM)=PWN THEN DELHOM(SV-1, RNK, HTAB, NNL, XX-2)->HTAB->NNL;
PLPH(SV-1, NUM, 8, PWN, RNK); CLOSE;
END;
FUNCTION LPAWN XX RNK HTAB PWN NUM=>HTAB;
VARS FLAG I; 0->FLAG;
FORALL I21 XX IF NOT (BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND BOARD(1, NUM)=PWN THEN. DELT(1, HTAB)->HTAB; PLPH(1, NUM, 1, PWN, RNK); CLOSE;
END;
FUNCTION LPAWNO XX RNK HTAB PWN NUM=>HTAB;
VARS FLAG SV I; 0->FLAG; 10-XX->SV;
FORALL I SV 17 IF NOT (BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND BOARD(8, NUM)=PWN THEN DELT(8, HTAB)->HTAB; PLPH(8, NUM, 8, PWN, RNK); CLOSE;
END;
FUNCTION FFILE PWN RNK NUM HTAB AD=>NUM HTAB;
VARS RK IJK;
IF HTAB. NULL THEN EXIT;
IF PWN="BP" THEN 6->RK; ELSE 3->RK; CLOSE;
FORALL K118 LUCOL(K, HTAB, PWN, AD, RK, RNK, NUM)->NUM->HTAB; CLOSE;
PLH(HTAB, PWN, RNK, AD)->HTAB;
IF PWN="BP" THEN FORALL I118 FORALL J216 IF BOARD(I, 8-J)="BP"
THEN FNDCAP(PWN, I, 8-J, NUM, HTAB, RNK)->NUM->HTAB; CLOSE; CLOSE; CLOSE;
ELSE FORALL I118 FORALL J317 IF BOARD(I, J)="WP"
THEN FNDCAP(PWN, I, J, NUM, HTAB, RNK)->NUM->HTAB; CLOSE; CLOSE; CLOSE; CLOSE;
END;
FUNCTION LUCOL I HT PN AD RK RNK NUM=>HT NUM;
VARS LC XH CN; RK->LC;
LOOP: LC+AD->LC;
IF LC>7 OR LC<1 THEN RETURN;
ELSEIF NOT(BOARD(I, LC)=PN) THEN GOTO LOOP;
ELSE GABS(I, HT)->X; CLOSE;
IF NOT(ABBS(X-I)=ABBS(LC-RNK)) THEN EXIT;
DELT(X, HT)->HT; PLPH(X, LC, I, PN, RNK); ABBS(X-I)->CN;
CNTBW(I, LC, NUM, CN)->NUM;
END;
FUNCTION PLH HT PN RK AD=>HT;
VARS HL LC XL; COPY(HT)->XL;
LOOP: IF XL. NULL THEN EXIT;
RK->LC; DEST(XL)->XL->HL;
LOOP1: LC+AD->LC;
IF LC>7 OR LC<2 THEN GOTO LOOP;
ELSEIF BOARD(HL, LC)=PN THEN DELT(HL, HT)->HT; PLPH(HL, LC, HL, PN, RK); GOTO LOOP;
ELSE GOTO LOOP1; CLOSE;

END;
FUNCTION FNDCAP PWN I J"NUM HTAB RNK=>HTAB NUM;
VARS CNT XY XX AD AD2; 0->CNT;
GABS(I, HTAB)->X; DELT(X, HTAB)->HTAB; X->XX;
IF X=I THEN RETURN;
ELSEIF PWN="WP" AND X>I THEN -1->AD; 1->AD2; 2->Y;
ELSEIF PWN="WP" AND X<I THEN 1->AD; 1->AD2; 2->Y;
ELSEIF PWN="BP" AND X>I THEN -1->AD; -1->AD2; 7->Y;
ELSE 1->AD; -1->AD2; 7->Y; CLOSE;
LOOP: X+AD->X; Y+AD2->Y; CNT+1->CNT;
IF X=I AND Y=J AND ABBS(X-XX)=ABBS(Y-RNK) T
ELSEIF X=I OR X<1 OR X>8 OR Y<1 OR Y>8 THEN
ELSE GOTO LOOP; CLOSE;
END;
FUNCTION GABS I XXL=>X;

EN CNTBW(I, J, NUM, CNT)->NIIM;
NUM. HD->H; CNT+H->NUM. HD;

If XXL. null then I->X; exit;
VARS XL; COPY(XXL)->XL; XL. HD->X;
LOOP: IF XL. TL. NULL THEN RETURN;
ELSEIF ABBS(I-XL. TL. HD)<ABBS(I-X)THEN XL. TL. HD->X; CLOSE;
TL(XL)->XL; GOTO LOOP;
END;

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP ppp
PPP ppp
PPP ppp
PPP ppp
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
ppp
PPP
PPP

DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD

PPPPPPPPPPPP

. PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP PPP
PPP PPP
PPP ppp
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP

PPP
PPP
PPP
PPP
PPP
PPP
PPP

RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>ODDRUL. POP. 1, created: 7-Mar-84 12: 29: 20, printed: 11-Jun-86 1
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: lll Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION ISPPB;
COMMENT is the promoted piece on board, if yes set global ISPFLG;

vars ANS; O->ISPFLG;

. RULE60->ANS;. RULE61->ANS;

end;

FUNCTION ISPBX;
vars HL;
If PPAWN="WP" then FCSQ(BDC)->HL; else FCSQ(WDC)->HL; close;
If lengt(HL)>1 then false; return;
else [%(IPBRULJ, HL, [R64EXJ%]:: DDB->DDB; true;
close;

end;

FUNCTION FCSQ XL;
If XL. null then nil;
else XL. HD. TL<>FCSQ(TL(XL));
close;

end;

FUNCTION RULE60;
COMMENT IBPRUL. assumes e. g. (wp 1 2] in prlst. hd.

if 1 bp captured on its first move and could only have
captured 1 wp and the wp could not make any captures
and the home square of the bp is on the wp promotion
file then the bp captured before the wp promoted;

vars PWN XHP BX XHC TP;

If PPAWN=O then false; exit;
PRLST. HD. HD->PWN; PRLST. HD. TL. HD->XHP;
If PPAWN="WP" then BDC->BX; WLEFTP->TP; WPTT-BTOT->NCAP;
else WDC->BX; BLEFTP->TP; BPTT-WTOT->NCAP;
close;

If BX. null then false; exit;

BX. HD. HD. TL. HD->XHC;
If lengt(BX)=1 and lengt(TP)=1 and TP. HD=PWN and NCAP=O and XHP=XHC
then true; 0->PPONB; 1->ISPFLG; (%(ISPRUL], nil, (R60EX]8]:: DDB->DDB;
else false;

close;
end;

FUNCTION RULE61;
COMMENT IBPRUL.

If 1 wp captured on its first move and could only have
captured 1 bp and the bp made n captures in promoting, where
n is the number of pieces constrained by the wp on its home
square
then the wp captured before the bp promoted;

vars TM PWN XHP YHP TP PN XHC YHC PL NNL LE CT BL WL;
If PPAWN=O then false; return;
elseif PPAWN="WP" then BDC->BX; WLEFTP->TP;

"BP"->PN; BLIST->PL;
else WDC->BX; BLEFTP->TP; "WP"->PN; WLIST->PL;
close;

If lengt(BX)/=1 or lengt(TP)/=1 or TP. HD/=PPAWN then false; exit;
BX. HD->CT; CT. HD. TL. HD->XHP; CT. HD. TL. TL. HD->YHP;

CT. TL. HD. HD->XHC; CT. TL. HD. TL. HD->YHC;
BOARD(XHP, YHP)->TM; UPDATE((%PN, XHC, YHC, XHP, YHP%J, PL);

. CPGTOB->WL->BL;
If PPAWN="WP" then BL->NNL; else WL->NNL;
close;

COMMENT how many possible captures by promoting pawn;
If lengt(XYLIFS)=1 then ABBS(XYLIFS. HD. HD-PRLST. HD. TL. HD)->NCAP;
else false; return;
close;

lengt(NNL)->LE;
If TM/="BLANK" and not(memlst(TM, NNL)) then LE-1->LE; close;

If NCAP=lengt(TP)-LE then true;
[I[ISPRUL], nil, [R61EX]%]:: DDB->DDB; O->PPONB; 1->ISPFLG;
else false;

close;

COMMENT restore board;
COPYALL(NWLIST)->WLIST; COPYALL(NBLIST)->BLIST;. RSTB; -

end;

FUNCTION WISPP;
COMMENT what is the promoted piece. returns list of possibles

in PPIECE;

vars AH ALR ANS YL;
copyall(ALLRULES)->ALR; ni1->YL;

loop: If not(ALR. null) then dest(ALR)->ALR->AH;
If category(valof(AH))="WPPRUL" and eval(premise(valof(AH)))

then (%[WPPRUL], PPIECE, explain(valof(AH))%]:: YL->YL;
DBL(PPIECE, ORP)->PPIECE;
close;
goto loop;

close;
If PPIECE. null then return;
elseif PPXL then YL<>DDB->DDB;
[$(WPPRUL], PPIECE, [R74EXI%]:: DDB->DDB;
close;

end;
FUNCTION PPXL;

vars XL; PPIECE->XL;
loop: If lengt(XL)=1 then true;

elseif XL. HD/=XL. TL. HD then false;
else TL(XL)->XL; goto loop;

close;
end;

FUNCTION RULE70=>ANS;
COMMENT WIPRUL. what is the promoted piece.

if ther 3r or 3n or 3b or 2q on board then one of thes
must be promoted.

PPIECE is list of possible promoted pieces;

vars RK KN QU BI NP;

false->ANS;
If PPAWN=O then return;
elseif PPAWN="WP" then "WR"->RK; "WN"->KN; "WQ"->QU; "WB"->BI;

else "BR"->RK; "BN"->KN; "BQ"->QU; "BB"->BI;

close;

CONTPC(BI)->NP; If NP>2 then true->ANS; BI:: PPIECE->PPIECE; close;
CONTPC(QU)->NP; If NP>1 then true->ANS; QU:: PPIECE->PPIECE; close;
CONTPC(KN)->NP; If NP>2 then true->ANS; KN:: PPIECE->PPIECE; close;
CONTPC(RK)->NP; If NP>2 then true->ANS; RK:: PPIECE->PPIECE; close;
end;

FUNCTION RULE71=>ANS;
COMMENT WPPRULE. given pawn promotion.

If there >1 bishop on the same colour then one must be

promoted;

vars XL HL LXL BI;
false->ANS;

If PPAWN=O then return;
elseif PPAWN="WP" then RELCB(WLIST)->XL; "WB"->BI;

else RELCB(BLIST)->XL; "BB"->BI;

close;

loop: If XL. null or lengt(XL)<2 then return;
else dest(XL)->XL->HL; lengt(XL)->LXL;
FORALL I11 LXL If CLSQT(HL. HD, HL. TL. HD, XL. HD. HD, XL. HD. TL. HD)

then true->ANS; BI:: PPIECE->PPIECE; close; close;
goto loop;
close;

end;

FUNCTION RULE72=>ANS;
COMMENT WPPRUL.

If there is a bishop on board with its home square constrained
by pawns then it must be a promoted bishop;

vars XL BL BLX HL BLH XY BI XLX;
false->ANS;

If PPAWN=O then return;
elseif PPAWN="WP" then RELCB(WLIST)->XL; WBHSQ->BL; "WB"->BI;

else RELCB(BLIST)->XL; BBHSQ->BL; "BB"->BI;

close;

If BL. null or XL. null then exit;

copyall(XL)->XLX;
loop: If XLX. null then return;

else dest(XLX)->XLX->HL; HL. HD->X; HL. TL. HD->Y; COPYALL(BL)->BLX;

close;

loopl: If BLX. null then goto loop;
else dest(BLX)->BLX->BLH;

If. CLSQT(BLH. HD, BLH. TL. HD, X, Y) then true->ANS;
BI:: PPIECE->PPIECE;

close;
goto loopl;
close;

end;

FUNCTION RULE73=>ANS;
COMMENT WPPRUL.

place all possible pieces on promotion square(s) in PSQS
and see if can move, reject constrained pieces;

vars QC BC RU RC XL RK QU KN BI RN QN NN BN PQ PP PPX HL XY PH
ML P;

false->ANS; nil->PP;
If PPAWN=O then return;
elseif PPAWN="WP" then "WR"->RK; "WQ"->QU; "WN"->KN; "WB"->BI; WLIST->XL;

"W"->P
else "BR"->RK; "BQ"->QU; "BN"->KN; "BB"->BI; BLIST->XL; "B"->P;

close;

GENCON(P)->QC->BC->RU->RC;

COMMENT collect possible. promotion pieces;
CONTPC(RK)->RN; CONTPC(QU)->QN; CONTPC(KN)->NN; CONTPC(BI)->BN;
If RN>lengt(RC) then RK:: PP->PP; close;
If QN>lengt(QC) then QU:: PP->PP; Close;
If BN>lengt(BC) then BI:: PP->PP; close;
If NN>O then KN:: PP->PP; close;

copyall(PSQS)->PQ; copyall(PP)->PPX;
loop: If PQ. null then DELDB(PPIECE)->PPIECE; return;

else dest(PQ)->PQ->HL; HL. HD->X; HL. TL. HD->Y;
close;

loopl: If PPX. null then copyall(PP)->PPX; goto loop;
else dest(PPX)->PPX->PH; PCMOV([%[%PH, X, Y%]%])->ML;

If not(ML. null) and CPC(PH) then PH:: PPIECE->PPIECE;
true->ANS;

close;
goto loopl;

close;

end;

FUNCTION DELDB XL=>CL;
COMMENT delete all doubles from xl ((wn wr wn...));

nil->CL;

loop: If XL. null then return;
else XL. HD:: CL->CL; DELT(XL. HD, XL)->XL;
goto loop;

close;

end;

FUNCTION CPC PH;
COMMENT need check here for bishop only

see if bishop on board is on colour square as promotion
square;

If PH/=BI or BC. null then true;
elseif lengt(BC)=2 then false;
else CLSQT(X, Y, BC. HD. TL. HD. HD, BC. HD. TL. HD. TL. HD);
close;

end;

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP ppp
PPP ppp
ppp ppp
PPP PPP
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
ppp
PPP
PPP

DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDD. DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDD DDD
DDDDDDDDDDDD
DDDDDDDDDDDD
DDDDDDDDDDDD

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
PPP

ssssssssssss
ssssssssssss
ssssssssssss

sss
sss
sss
sss
sss
sss

sssssssss

sssssssss
sssssssss

sss
sss
sss
sss
sss
sss

ssssssssssss
ssssssssssss
ssssssssssss

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>ODDS. POP. 1, created: 4-Apr-84 13: 37: 37, printed: 11-Jun-86 11:
Job parameters: Request created: ll-Jun-86 10: 53! 57 Page limit: 111 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION DBL XXL XL=>YL;
COMMENT deletes all members of list xxl from list xl, where

xxl xl are of form (a bc...];
XXL->YL;
loop: If XL. null then return;

else DELT(XL. HD, YL)->YL; TL(XL)->XL;
goto loop;
close;

end;

FUNCTION PRLST XL;
vars HL; REV(XL)->XL;
loop: If XL. null then return;
else XL. HD->HL; nl(1); pr(HL. HD); sp(l); pr("from"); sp(l);
pr("("); pr(HL. TL. TL. TL. HD); pr(", "); pr(HL. TL. TL. TL. TL. HD); pr(")");
sp(l); pr("to"); sp(1); pr("("); pr(HL. TL. HD); pr(", "); pr(HL. TL. TL. HD);
pr(")"); nl(l);
close;
TL(XL)->XL; goto loop;

end;

FUNCTION BCHSQ=>BL WL;
COMMENT returns lists of bishops captured on their home squares;

nil->BL; nil->WL;
If BOARD(2,7)="BP" and BOARD(4,7)="BP" and BOARD(3,8)/="BB"
then [3 8]:: BL->BL; close;
If BOARD(5,7)="BP" and BOARD(7,7)="BP" and BOARD(6v8)/="BB"
then [6 8]:: BL->BL; close;
If BOARD(5,2)="WP" and BOARD(7,2)="WP" and BOARD(6,1)/="WB"
then [6 1]:: WL->WL; close;
If BOARD(2,2)="WP" and BOARD(4,2)="WP" and BOARD(3, l)/="WB"
then (3 1]:: WL->WL; close;

end;

FUNCTION COUNTX PI XL;
COMMENT to count the number of pi in xl;

vars CB; O->CB;
loop: If XL. null then CB; return;

elseif XL. HD=pi THEN 1+CB->CB;

close;
TL(XL)->XL; goto loop;
end;

FUNCTION CONTPC PC=>CB;
COMMENT to count the number of PC in XL - where PC is "wb" etc

and XL is wlist or blast (pieces on board + locations)
vars XL P;
0->CB; BORW(PC)->P; If P="W" then WLIST->XL; else BLIST->XL; close;
loop: If XL. null then return;
elseif XL. HD. HD=PC then 1+CB->CB; close;

tl(XL)->XL; goto loop;
end;
FUNCTION PCAPRM PWN LLIFS PSQQ PL LLIFC=>YL;
VARS XS YS XH PN YH NX AD HL ;
PL. HD. TL. HD->XH; PL. HD. HD->PN; PL. HD. TL. TL. HD->YH; NIL->YL;
LLIFS. HD. HD->XS; LLIFS. HD. TL. HD->YS; (%XS, YS%J->XYLIFS;
MEMLST(PSQQ, LLIFC)->HL; IF HL=TRUE THEN EXIT;
IF XH>XS THEN 1->NX; ELSEIF XH<XS THEN -1->NX; ELSE 0->NX; CLOSE;
IF PWN="WP" THEN -1->AD; "BP"->PN; ELSE 1->AD; "WP"->PN; CLOSE;
IF BOARD(XS, YS+AD)=PN AND BOARD(XS+NX, YS+AD)=PN THEN (%PN, XS+NX, YS+AD, XS+NX, YS% iNL;.

IF PN="BP" THEN UPDATE (HL, BLIST); ELSE UPDATE (HL, WLIST); CLOSE; C: `/°Pwt4IXS)`! S''Al PNK`*PNM;

. SETP; CLOSE; WCAPPN(PSQQ, PWN)->YL;
END;
FUNCTION LROK RO DXL;

IF DXL. NULL THEN TRUE;
ELSEIF BOARD(DXL. HD. HD, DXL. HD. TL. HD)=RO THEN FALSE;
ELSE LROK(RO, TL(DXL)); CLOSE;
END;

FUNCTION ASKPP PN;
COMMENT used in wcappn. a b/w pawn has promoted, could it have

captured a w/b pawn;

vars XL NCP YL;

If PN="WP" then WHTAB->XL; BTOT-WPTT->NCP; (BK 5 8]->YL;
else BHTAB->XL; WTOT-BPTT->NCP; [WK 1 8]->YL;

close;

If lengt(XL)=l and XL. HD=5 and NCP=O and memb(YL, PNM) then true;
else false;
close;

end;
FUNCTION WCAPPN HL PWN=>YL;
VARS XP YP PN SQ BI ANS CCL P HHL OD RK XS YS NP; ODG->OD; NIL->YL;
VARS RLC RK TOTN DXL RU RC QC BC YYL LYL YH R1 R2 KL BXY YXP YZ BLISTW WLISTW;
HL. HD->XP; HL->HSQ; HL. TL. HD->YP; BORW(PWN)->P;

copyall(BLIST)->BLISTW; copyall(WLIST)->WLISTW;
IF PWN="WP" THEN BLEFT->YL; NPB->NP; BTOT-WNUM. HD->NCAP; BTOT->TOTN; "BR"->RK; "BP" -r�ý; P e'ýgr"
ELSE WLEFT->YL; NPW->NP; WTOT-BNUM. HD->NCAP; WTOT->TOTN; "WR"->RK; "WP"->PN; "WB"->BI;

. w4--> P, CL sC.;
If PWN="WP" and YP=8 then DELT("BP", YL)->YL;

If BPPC or NPB<7 then [BB BN BQ BR]->YL; goto CL; close;
elseif YP=1 then DELT("WP", YL)->YL;

If WPPC or NPW<7 then [WB WN WQ WR]->YL; goto CL; close;
close;

COMMENT check bishops;

BICOL(YL)->SQ;
If not(SQ. Null) and lengt(SQ)=1 then Dl(BI, YL)->YL;
elseif not(SQ. null) and CLSQT(XP, YP, SQ. HD, SQ. TL. HD)

then DELT(BI, YL)->YL;
close;

If YL. null then exit;
CL: COLLST->CCL;
LOOP: IF CCL. NULL THEN GOTO L1;
ELSE BORW(CCL. HD)->P; GSQ(CCL. HD)->HHL;
IF NOT(HHL. NULL) THEN CLSQT(XP, YP, HHL. HD, HHL. TL. HD)->ANS;
IF ANS=FALSE THEN DELT(CCL. HD, YL)->YL; CLOSE; CLOSE; CLOSE;
TL(CCL)->CCL; GOTO LOOP;

COMMENT delete those pieces that place the oppo king in check
and no way found for this to happen;

L1: If YP/=8 and YP/=l then return;
elseif XYLIFS. null then return;
else XYLIFS. HD. HD->XS; XYLIFS. HD. TL. HD->YS;
close;
YL->YYL; nil->YL;

loopl: If not(YYL. null) then dest(YYL)->YYL->YZ; [%YZ, XP, YP%j->YXP; (%BOARD(XP, YP), KP, yp2j
If BXY/="BLANK" then BORW(BXY)->P; (%YZ, XP, YPS)->BXY;

If P="B" then DELTL(BXY, BLIST)->BLIST;
else DELTL(BXY, WLIST)->WLIST;
close;

close;

If PWN="WP" then YXP:: BLIST->BLIST;
else YXP:: WLIST->WLIST;
close;

YZ->BOARD(XP, YP); ISKCHK(BLIST, WLIST)->R1->R2;
If not(R1=false) and not(Rl. null) then KCHECK1(R1, R2)->KL;

If not(KL. null) then YZ:: YL->YL; close
elseif not(Rl=false) then YZ:: YL->YL;

close;

NEWARRAY((1 81 8J, LAMBDA, I, J; "BLANK"; END;)->BOARD;
PLACE(BLISTW); PLACE(WLISTW); copyall(BLISTW)->BLIST; copyall(WLISTW)->WLIST;

goto loopl;

close;

L2: D1(PN, YL)->YL; GENCON(P)->QC->BC->RU->RC;
IF RC. NULL THEN DROOK(YL)->YL; EXIT;
COLSQ(RC)->RLC; MEMLST((%XP, YP%J, RLC)->ANS; LROK(RK, RLC)->DXL;
IF ANS=TRUE AND XP/=XS AND ABBS(HSQ. HD-XS)=TOTN THEN NIL->YL;
ELSEIF DXL=FALSE OR NCAP/=TOTN OR ANS=TRUE THEN RETURN; ELSE [%RK%]->YL; CLOSE;
END;
FUNCTION DROOK YL=>YL;
VARS ANSI ANS2 ANS3 XPS; IF XYLIFS. HD/=1 AND XYLIFS. HD/=5 AND XYLIFS. HD/=8 THEN EXti;
XYLIFS. HD->XPS;
IF PWN="BP" THEN GOTO L1; CLOSE;
MEMLST([BR 1 8], PNM)->ANS1; MEMLST([BK 5 8J, PNM)->ANS2; MEMLST((BR 8 8], PNM)->ANS3i
IF XPS=1 OR XPS=5 AND ANSI=FALSE AND 1NS2=FA SFB

4ý L" "g o'
ýý1D BOaRDýýf-7 "J3P" AD OARD(3,7)""5p"

No oýa Ht t LTC 2"
ELSEIF XPS=8 AND ANS2=FALSE AND ANS3=FALSE AND BO[itcD(ýN) Iýýýý ="BP''
L1: MEMLST([WR 1 1], PNM)->ANS1; MEMLST([WK 5 1], PNM)->ANS2; MEMLST((WR8], BNM)=>ANSS;

IF XPS=1 OR XPS=S AND ANSI=FALSE AAN F NS2Q FALSL ACID $O.
ýARD(2,

P" AD BOARD(3,2). 'uo
ELSEIF XPS=8 AND ANS2=FALSE AND ANS3=FAL E AND BOA(5v 2) ''yýWP''%

AIDý B3A Dýýi 2)="Wt`
END; Tºý'ý'v ý: L; ý"býR`. Yýi 7YI. %Cýosvý
FUNCTION COLSQ RC;
IF RC. NULL THEN NIL;
ELSE RC. HD. TL<>COLSQ(TL(RC)); CLOSE;
END;
FUNCTION CPBECP HT PWN=>CL;
VARS BD WD XL CQ NC CQQ RNK; NIL->CL;

. CAPSQ->BD->WD;
IF PWN="WP" THEN BD->XL; 2->RNK; BTOT-WNUM. HD->NC;
ELSE WD->XL; 7->RNK; WTOT-BNUM. HD->NC; CLOSE;
CSQ(XL)->CQ; COPYALL(CQ)->CQQ;
LOOP1: IF HT. NULL THEN EXIT; COPYALL(CQQ)->CQ;
LOOP: IF CQ. NULL THEN TL(HT)->HT; GOTO LOOP1;
ELSEIF ABBS(HT. HD-CQ. HD)>NC THEN (%PWN, HT. HD, RNK%]:: CL->CL; RETURN; CLOSE;
CQ. TL->CQ; GOTO LOOP;
END;
FUNCTION LENGT XL=>LE;
IF XL. NULL THEN 0->LE; ELSE LENGTH(XL)->LE; CLOSE;
END;
FUNCTION CASQ PN HHL=>CSQ;
VARS HL XL; NIL->CSQ;
IF PN="WP" THEN BCAS->XL; ELSE WCAS->XL; CLOSE;
LOOP: IF XL. NULL THEN MEMLST(HHL, CSQ)->CSQ; EXIT;
XL. HD. HD->HL; [%HL. TL. HD, HL. TL. TL. HD%]:: CSQ->CSQ;
XL. HD. TL. HD->HL; [%HL. TL. HD, HL. TL. TL. HD%]:: CSQ->CSQ;
TL(XL)->XL; GOTO LOOP;
END;
FUNCTION POSCAS=>WC BC;
VARS BL; "BLANK"->BL; NIL->WC; NIL->BC;
IF BOARD(5,8)/="BK" THEN GOTO L1; CLOSE;
IF BOARD(1,8)="BR" AND BOARD(2,8)=BL AND BOARD(3,8)=BL AND BOARD(4,8)=BL

THEN [[BR 1 8J(BK 5 8]J:: BC->BC; CLOSE;
IF BOARD(6,8)=BL AND BOARD(7,8)=BL AND BOARD(8,8)="BR"
THEN ((BR 8 8](BK 5 8]]:: BC->BC; CLOSE;
L1: IF BOARD(5,1)/="WK" THEN EXIT;
IF BOARD(1,1)="WR" AND BOARD(2,1)=BL AND BOARD(3,1)=BL AND BOARD(4,1)=BL
THEN ([WR 1 1](WK 5 1]J:: WC->WC; CLOSE;
IF BOARD(6,1)=BL AND BOARD(7,1)=BL AND BOARD(8,1)="WR"
THEN [(WR 8 1][WK 5 1]]:: WC->WC; CLOSE;
END;
FUNCTION PLACE2;
PLACE(BLIST); PLACE(WLIST);
END;

FUNCTION ADDNUM P;
If P="BP" then BPTT+2->BPTT;
else WPTT+2->WPTT;
close;

end;

FUNCTION SETP;
COMMENT this function sets up position variables;
VARS PC BL WL;
COMMENT castle tables. e. g. (([wr 1 1][wk 5 11](wr 8 1](wk 5 1]JJ;

. POSCAS->BCAS->WCAS;

COMMENT whcap blcap are lists of captured pieces.
wl bl are preliminary lists of pieces captured on board;

. CPLIST->WHCAP->BLCAP;. CPGTOB->WL->BL;

COMMENT whtab/bhtab are lists of available pawn home squars.
wnum/bnum = [x y z] whrer x=total pawn captures

y=captures on white squares, z=captures on black;

. MINPWN->WHTAB->BHTAB->WNUM->BNUM;

COMMENT from pieces captured on board delete those pieces given as odds
resultant lists in wleft/bleft;

IF NOT(ODG. NULL) THEN BORW(ODG. HD)->PC;
IF PC="W" THEN DBL(WL, ODG)->WLEFT; BL->BLEFT; ELSE DBL(BL, ODG)->BLEFT; WL->WLEFT; CL. ;
ELSE BL->BLEFT; WL->WLEFT; CLOSE;

COMMENT if a pawn has promoted delete from possible capture list;

If PPAWN="BP" then Dl("BP", BLEFT)->BLEFT;
elseif PPAWN="WP" then Dl("WP", WLEFT)->WLEFT;
close;

LENGT(WLEFT)->WTOT; LENGT(BLEFT)->BTOT;
COMMENT total no. of pawn captures in wpt/bpt wptt/bptt

need 2- truoble with wpt/bpt;
WNUM. HD->WPT; BNUM. HD->BPT;
WNUM. HD->WPTT; BNUM. HD->BPTT;

COMMENT no. of pawns on board in npb/npw;
NPWN("B")->NPB; NPWN("W")->NPW;

COMMENT find pawn capture squares e. eg. (((wp 8 2](7 3)]((wp 5 2)(6 3)(7 4)(8 5133
place in wdc/bdc;
. CAPSQ->BDC->WDC;

COMMENT look for cross-captures and add to list;

LFXCAP("BP")->XCAPB; LFXCAP("WP")->XCAPW;
IF NOT(XCAPB. NULL) THEN XCAPB<>BDC->BDC; ADDNUM("BP"); CLOSE;
IF NOT(XCAPW. NULL) THEN XCAPW<>WDC->WDC; ADDNUM("WP"); CLOSE;

COMMENT cpbx/cpwx gives x co-ords of capture squares only
cpb /cpw gives capture squares only;

CSQ(BDC)->CPBX; CSQ(WDC)->CPWX; CSQ1(BDC)->CPB; CSQ1(WDC)->CPW;

COMMENT in wleftp/bleftp form
by pawns;

IF CPB. NULL THEN WLEFT->WLEFTP;
ELSEIF BNUM. TL. HD=O OR BNUM. TL. TL. HD=O
ELSE WLEFT->WLEFTP; CLOSE;
IF CPW. NULL THEN BLEFT->BLEFTP;
ELSEIF WNUM. TL. HD=O OR WNUM. TL. TL. HD=O
ELSE BLEFT->BLEFTP; CLOSE;

lists of pieces that could be captured

THEN WCAPPN(CPB. HD, "BP")->WLEFTP;

THEN WCAPPN(CPW. HD, "WP")->BLEFTP;

COMMENT wbhsq/bbhsq are lists of squares of bishops

. BCHSQ->WBHSQ->BBHSQ;
END;
FUNCTION LFXCAP PWN=>XC;
VARS RNK FL; NIL->XC;
IF PWN="BP" THEN 7->RNK; 6->FL; WTOT-BPTT->NCAP;
ELSE 2->RNK; 3->FL; BTOT-WPTT->NCAP; CLOSE;
IF NCAP>l THEN FORALL I117 IF BOARD(I, FL)=PWN AND

then (%[%PWN, I, RNK%], [%I+1, FL%]%J:: XC->XC;
[%(%PWN, I+1, RNK%], (%I, FL%]%]:: XC->XC;

close; close; close;
END;
FUNCTION NPIECES=>BN WN;
CLIST(BLIST)->BN; CLIST(WLIST)->WN;
END;
FUNCTION COPYALL P=>P1;

captured at home;

BOARD(I+1, FL)=PWN

IF P. ISLIST AND P/=NIL THEN CONS(P. HD. COPYALL, P. TL. COPYALL); ELSE P;
CLOSE->P1;
END;
FUNCTION NPWN BW=>CNT;
VARS XL PN; O->CNT;
IF BW="B" THEN BLIST->XL; "BP"->PN;
ELSE WLIST->XL; "WP"->PN; CLOSE;
LOOP: IF XL. NULL THEN RETURN;
ELSEIF XL. HD. HD=PN THEN CNT+1->CNT; CLOSE;
TL(XL)->XL; GOTO LOOP;
END;

FUNCTION CPLIST=>LB LW;
VARS PL;
[BR BR BB BB BN BN BK BQ BP BP BP BP BP BP BP BP]->PL;
DELCAP(PL, BLIST)->LB;
[WR WR WB WB WN WN WK WQ WP WP WP WP WP WP WP WP]->PL;
DELCAP(PL, WLIST)->LW;
END;
FUNCTION DELCAP XL BL=>XL;
VARS HL CL LI ANS; BL->CL;
LOOP: IF CL. NULL THEN RETURN;
ELSE DEST(CL)->CL->HL; CLOSE;
NIL->LI; MEMLST(HL. HD, XL)->ANS; IF ANS=FALSE THEN CAPDEL(XL, HL, LI)->XL; CLOSE;
GOTO LOOP;
END;
FUNCTION CAPDEL XH LI=>LI;
LOOP: IF H. HD=X. HD THEN LI<>TL(X)->LI;
ELSE X. HD:: LI->LI; TL(X)->X; GOTO LOOP; CLOSE;
END;
FUNCTION PLOCB XL=>XL;
VARS PC XP YP HL BW;
XL. HD->HL; HL. HD->PC; HL. TL. HD->XP; HL. TL. TL. HD->YP;
PC->BOARD(XP, YP); TL(XL)->XL;
BORW(PC)->BW; IF BW="W" THEN HL:: WLIST->WLIST; ELSE HL:: BLIST->BLIST; CLOSE;

. SETP;
END;
FUNCTION BORW PC;
IF PC="WP" OR PC="WB" OR PC="WN" OR PC="WQ" OR PC="WK" OR PC="WR"
THEN "W"; ELSE "B"; CLOSE;
END;
FUNCTION CLIST XL;
VARS N; O->N;
L1: IF XL. NULL THEN N; EXIT;
N+1->N; TL(XL)->XL; GOTO L1;
END;
MACRO RESET;
"BLANK"->BLANK;

MACRESULTS((%
"NEWARRAY", "(", "[H, 1,8,1,8, "]", "i",

"LAMBDA", "I", "J", "; ", BLANK,

"; ", "END", "; ", ")", "->", "BOARD", "; "

END;

COMMENT function from legality rules - useful to use by itself;

FUNCTION CHPWN R1;
IF R1. NULL THEN TRUE;
ELSEIF R1. HD. TL. HD="WP" AND R1. HD. TL. TL. HD=2 THEN FALSE;
ELSEIF R1. HD. TL. HD="BP" AND R1. HD. TL. TL. HD=7 THEN FALSE;
ELSE CHPWN(TL(R1)); CLOSE;
END;

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
pppppppppppp
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
PPP ppp
ppp ppp
PPP ppp
ppp ppp
PPP ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
PPP
PPP

cccccccccccc
cccccccccccc
cccccccccccc

ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc
ccc

cccccccccccc
cccccccccccc
cccccccccccc

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

AAAAAAAAA
AAAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAAAAAAA AAAAAAA

AAAAAAA AAAAAAAA

AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA
AAA AAA

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP ppp
PPP PPP
PPP ppp
ppp ppp
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp
ppp
PPP
ppp
PPP
PPP
PPP
PPP
PPP

START Job LISTS1 Req $752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>PCAPSQ. POP. 1, created: 16-Sep-83 13: 18: 15, printed: ll-Jun-86 1
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: 111 Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION CAPSQ=>WDC BDC;
VARS WHT BHT WN BN WDC BDC; NIL->WDC; NIL->BDC;
(80,0,08]->BN; [80,0,08]->WN;
[%1,2,3,4,5,6,7,8%]->BHT; COPY(BHT)->WHT;
ATHOME(BHT, WHT)->BHT->WHT;
DOCRN("BP", 7,6, BN, BHT, -1)->BHT->BN;
DOCRN("WP", 2,3, WN, WHT, 1)->WHT->WN;
GHOME1("BP", 7,6, BN, BHT, -1)->BHT->BN;
GHOME1("WP", 2,3, WN, WHT, 1)->WHT->WN;
FFILE1("BP", 7, BN, BHT, -1);
FFILE1("WP", 2, WN, WHT, 1);

. RSTB;
END;
FUNCTION GHOME1 PWN RNK NUM NLIST HTAB ADD=>NLIST HTAB;
FORALL 12 17 IF BOARD(I, RNK)=PWN AND BOARD(I+1, RNK)=PWN AND BOARD(I, NUM)=PWN
THEN DELHM1(I-1, RNK, HTAB, NLIST, 1)->HTAB->NLIST; PLPH(I-1, NUM, I, PWN, RNK);
CLOSE; CLOSE;
FORALL I116 IF BOARD(I, RNK)=PWN AND BOARD(I+1, RNK)=PWN AND BOARD(I+1, NUM)=PWN
THEN DELHM1(I+2, RNK, HTAB, NLIST, 1)->HTAB->NLIST; PLPH(I+2, NUM, I+1, PWN, RNK);
CLOSE; CLOSE;
END;
FUNCTION CNTBWI I LC NUM CN PWN=>NUM;
VARS H;

IF ERASE((I+LC)//2)=0 THEN NUM. TL. TL. HD->H; H+CN->NUM. TL. TL. HD;
ELSE

.
NUM. TL. HD->H; H+CN->NUM. TL. HD; CLOSE;

NUM. HD->H; H+CN->NUM. HD;
LPCAPS(I, LC, CN, PWN);
END;
FUNCTION DELT X XL;
IF XL. NULL THEN NIL;
ELSEIF XL. HD=X THEN DELT(X, TL(XL));
ELSE XL. HD:: DELT(X, TL(XL)); CLOSE;
END;
FUNCTION DELHMI XN HTAB NLIST CP=>NLIST HTAB;
VARS XL;
DELT(X, HTAB)->HTAB; CNTBW1(X, N, NLIST, CP, PWN)->NLIST;
END;
FUNCTION DOCRN PWN RNK NUM NNL HTAB ADD=>NNL HTAB;
VARS NNUM XX; NUM->NNUM;
FORALL XX 116 LPWN1(XX, RNK, NNL, HTAB, PWN, NUM)->HTAB->NNL; NUM+ADD->NUM; CLOSE;
NNUM->NUM;
FORALL XX 318 LPWN2(XX, RNK, NNL, HTAB, PWN, NUM)->HTAB->NNL; NUM+ADD->NUM; CLOSE;
END;
FUNCTION LPWN1 XX RNK NNL HTAB PWN NUM=>NNL HTAB;
VARS FLAG I; O->FLAG;

FORALL I11 XX IF NOT(BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND. BOARD(1, NUM)=PWN THEN DELHM1(XX+I, RNK, HTAB, NNL, XX)->HTAB->NNL;

PLPH(XX+1, NUM, 1, PWN, RNK); CLOSE;

END;
FUNCTION LPWN2 XX RNK NNL HTAB PWN NUM=>NNL HTAB;
VARS FLAG SV I; O->FLAG; 11-XX->SV;
FORALL I SV 18 IF NOT(BOARD(I, RNK)=PWN) THEN 1->FLAG; CLOSE; CLOSE;
IF FLAG=O AND BOARD(8, NUM)=PWN THEN DELHM1(SV-1, RNK, HTAB, NNL, XX-2)->HTAB->NNL;
PLPH(SV-1, NUM, 8, PWN, RNK); CLOSE;
END;
FUNCTION FFILEI PWN RNK NUM HTAB AD;
VARS RK COPH IJK;
IF HTAB. NULL THEN EXIT;
IF PWN="BP" THEN 6->RK; ELSE 3->RK; CLOSE;
FORALL K118 LUCOL1(K, HTAB, PWN, AD, RK, RNK, NUM)->NUM->HTAB; CLOSE;
COPY(HTAB)->COPH; PLH(HTAB, PWN, RNK, AD)->HTAB;
IF PWN="BP" THEN FORALL I118 FORALL J216 IF BOARD(I, 8-J)="BP"

THEN FNDCP1(PWN, I, 8-J, NUM, HTAB, RNK)->NUM->HTAB; CLOSE; CLOSE; CLOSE;

ELSE FORALL 1118 FORALL J31.7 IF BOARD(I, J)="WP"

THEN FNDCP1(PWN, I, J, NUM, HTAB, RNK)->NUM->HTAB; CLOSE; CLOSE; CLOSE; CLOSE;
COPY(COPH)->HTAB;
END;
FUNCTION LUCOLI I HT PN AD RK RNK NUM=>HT NUM;
VARS LC XH CN; RK->LC;
LOOP: LC+AD->LC;
IF LC>7 OR LC<1 THEN RETURN;
ELSEIF NOT(BOARD(I, LC)=PN) THEN GOTO LOOP;
ELSE GABS(I, HT)->X; CLOSE;
IF NOT(ABBS(X-I)=ABBS(LC-RNK)) THEN EXIT;
ABBS(X-I)->CN; DELHM1(X, RNK, HT, NUM, CN)->HT->NUM; PLPH(X, LC, I, PN, RNK);
END;
FUNCTION FNDCP1 PWN IJ NUM HTAB RNK=>HTAB NUM;
VARS CNT XY XX AD AD2; 0->CNT;
GABS(I, HTAB)->X; DELT(X, HTAB)->HTAB; X->XX;
IF X=I THEN RETURN;
ELSEIF PWN="WP" AND X>I THEN -1->AD; 1->AD2; 2->Y;
ELSEIF PWN="WP" AND X<I THEN 1->AD; 1->AD2; 2->Y;
ELSEIF PWN="BP" AND X>I THEN -1->AD; -1->AD2; 7->Y;
ELSE 1->AD; -1->AD2; 7->Y; CLOSE;
LOOP: X+AD->X; Y+AD2->Y; CNT+1->CNT;
IF X=I AND Y=J AND ABBS(X-XX)=ABBS(Y-RNK). THEN CNTBWI(XX, RNK, NUM, CNT, PWN)->NUM;
ELSEIF X=I OR X<1 OR X>8 OR Y<1 OR Y>8 THEN NUM. HD->H; CNT+H->NUM. HD;
ELSE GOTO LOOP; CLOSE;
END;
FUNCTION LPCAPS XN CP PWN;
VARS XP YP ADD XA PL AD; NIL->PL;
IF PWN="BP" THEN -1->ADD; 1->AD; ELSE 1->ADD; -1->AD; CLOSE;
X+CP->XP; N+(CP*ADD)->YP;
IF XP>8 THEN X-CP->XP;
ELSEIF NOT(BOARD(XP, YP)=PWN) THEN X-CP->XP; CLOSE;
IF XP>X THEN -1->XA; ELSE 1->XA; CLOSE;
LOOP: (%XP, YPS):: PL->PL; YP+AD->YP; XP+XA->XP;
CP-1->CP; IF NOT(CP=O) THEN GOTO LOOP;
ELSE [%PWN, X, N%]:: PL->PL;
IF PWN="BP" THEN PL:: BDC->BDC; ELSE PL:: WDC->WDC; CLOSE; CLOSE;
END;

RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP ppp
ppp ppp
PPP ppp
PPP ppp
PPP ppp
PPP PPP
PPPPPPPPPPPP

PPPPPPPPPPPP

PPPPPPPPPPPP
ppp

PPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

EEE
EEE
EEE

EEE
EEE
EEE

EEEEEEEEEEE&

EEE
EEE
EEE
EEE
EEE
EEE

000000000
000000000
000000000

000 000
. 000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

000000000
000000000
000000000

WV WV
VW WV
vvv WV
WV WV
WV WV

WV WV
WV WV
WV vvv

WV WV
WV WV
vvv WV

WV WV
WV WV
vvv vvv
WV WV

VVV WV

WV vvv
vvv WV

WV
WV
WV

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP ppp
PPP PPP
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp

-PPP
PPP
PPP'
PPP
PPP
PPP
PPP

MMM MMM
MMM MMM
MMM MMM
MMMMMM MMMMMM
MMMMMM MMMMMM
MMMMMM MMMMMM
MMM MMM MMM
MMM MMM MMM
MMM MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM
MMM MMM

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>REVMOV. POP. 1, created: 5-Aug-83 14: 35: 51, printed: 11-Jun-86 1
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: lll Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION PCMOV LIST=>MOVLST;
COMMENT REVERSE MOVE GENERATOR. "LIST" IS THE LIST OF PIECES ON

BOARD TOGETHER WITH THEIR LOCATIONS;
VARS XL HL LI HED PC XP YP; NIL->MOVLST; LIST->XL;
LOOP: IF XL. NULL THEN EXIT;
DEST(XL)->XL->HL;
HL. HD->PC; HL. TL. HD->XP; HL. TL. TL. HD->YP;
IF PC="WR" OR PC="BR" THEN RMOVE(PC, XP, YP);
ELSEIF PC="WB" OR PC="BB" THEN BMOVE(PC, XP, YP);
ELSEIF PC="WN" OR PC="BN". THEN NMOVE(PC, XP, YP);
ELSEIF PC="WQ" OR PC="BQ" THEN QMOVE(PC, XP, YP);
ELSEIF PC="WK" OR PC="BK" THEN KMOVE(PC, XP, YP);
ELSE PMOVE(PC, XP, YP);
CLOSE;

->LI;
IF NOT(NULL(LI)) THEN LI<>MOVLST->MOVLST; CLOSE;
GOTO LOOP;
END;

FUNCTION KMOVE PC XP YP=>LI;
COMMENT KING REVERSE MOVES;
VARS XL HE;
NIL->LI;
[%(%XP-1, YP-1$]r[%XP-1, YP%], (%XP-1, YP+1%1, [%XP, YP-1%], [%XP, YP+1%], (%XP+1, YP-1$]

r[%XP+1, YP%], (%XP+1, YP+1%]%1 >XL;
LOOP: IF NULL(XL) THEN EXIT; DEST(XL)->XL->HE;

IF HE. HD>=1 AND HE. HD=<8 AND HE. TL. HD>=1 AND HE. TL. HD=<8 AND BOARD (HE. HD, HE. TL. H
GOTO LOOP;
END;

FUNCTION NMOVE PC XP YP=>LI;
COMMENT KNIGHT REVERSE MOVES;
VARS XL HL; NIL->LI;
(%(%XP+2, YP+1%], (%XP+2, YP-1%], [%XP+1, YP+2%], (%XP+1, YP-2%]r[%XP-1, YP+2%],
(%XP-2, YP+1%J, (%XP-1, YP-2%], (%XP-2, YP-1%]%]->XL;
LOOP: IF NULL(XL) THEN EXIT;
DEST(XL)->XL->HL;
IF HL. HD>=1 AND HL. HD=<8 AND HL. TL. HD>=1 AND HL. TL. HD=<8 AND BOARD (HL. HD, HL. TL. Hb)s%LAr4k*
GOTO LOOP; "s%AEa i'Y4c. ae, 7Q, r1ý. k9, Ný, fý. pu 1:; LL7Li;

END;

FUNCTION RMOVE PC XP YP=>LI;
COMMENT ROOK REVERSE MOVES;
VARS XS YS;
YP->YS; XP->XS; NIL->LI;
LOOP1: YS+1->YS;
IF YS>8 OR NOT(BOARD(XP, YS)="BLANK")
ELSE [%PC, XP, YP, XP, YS%]:: LI->LI; GOTO
LOOP2: YS-1->YS;
IF YS<l OR NOT(BOARD(XP, YS)="BLANK")
ELSE [%PC, XP, YP, XP, YS%]:: LI->LI; GOTO
LOOP3: XS+1->XS;
IF XS>8 OR NOT(BOARD(XS, YP)="BLANK")
ELSE (%PC, XP, YP, XS, YP%]:: LI->LI; GOTO
LOOP4: XS-1->XS;
IF XS<1 OR NOT(BOARD(XS, YP)="BLANK")
ELSE [%PC, XP, YP, XS, YP%]:: LI->LI; GOTO
END;

THEN YP->YS; GOTO LOOP2;
LOOP1; CLOSE;

THEN YP->YS; GOTO LOOP3;
LOOP2; CLOSE;

THEN XP->XS; GOTO LOOP4;
LOOP3; CLOSE;

THEN RETURN;
LOOP4; CLOSE;

FUNCTION PMOVE PC XP YP=>LI;
COMMENT PAWN REVERSE MOVES;
NIL->LI;
IF PC="WP" AND YP=2 THEN RETURN;
ELSEIF PC="BP" AND YP=7 THEN RETZJRN; CLOSE;

IF PC="WP" AND YP=4 AND BOARD(XP, 2)="BLANK" AND BOARD(XP, 3)="BLANK"
THEN (%PC, XP, YP, XP, 2%J:: LI->LI; CLOSE;
IF PC="WP" AND BOARD(XP, YP-1)="BLANK" THEN (%PC, XP, YP, XP, YP-1%J:: LI->LI; CLOSE;
IF PC="WP" AND (XP-1)>O AND BOARD(XP-1, YP-1)="BLANK" THEN (%PC, XP, YP, XP-I, YP-1%1,: IT7Lt; 4,
IF PC="WP" AND (XP+1)<8 AND BOARD(XP+1, YP-1)="BLANK"THEN (%PC, XP, YP, XP+1, YP-1%J:: Lt . Z; do,
IF PC="BP" AND YP=5 AND BOARD(XP, 7)="BLANK" AND BOARD(XP, 6)="BLANK"
THEN (%PC, XP, YP, XP, 7%]:: LI->LI; CLOSE;
IF PC="BP" AND BOARD(XP, YP+1)="BLANK" THEN [%PC, XP, YP, XP, YP+1%1:: LI->LI; CLOSE;
IF PC="BP" AND (XP-1)>O AND BOARD(XP-1, YP+1)="BLANK" THEN [%PC, XP, YP, XP-1, YP+1%];: Lt 7I. ß.;
IF PC="BP" AND (XP+1)<9 AND BOARD(XP+1, YP+1)="BLANK" sA°se'

THEN (%PC, XP, YP, XP+1, YP+1%]:: LI->LI; CLOSE;
END;

FUNCTION BMOVE PC XP YP=>LI;
COMMENT BISHOP REVERSE MOVES;
VARS XS YS; NIL->LI;

XP->XS; YP->YS;
LOOPI: XS+1->XS; YS+1->YS;
IF XS=<8 AND YS=<8 AND BOARD(XS, YS)="BLANK"
THEN (%PC, XP, YP, XS, YS%]:: LI->LI; GOTO LOOP1; CLOSE;
XP->XS; YP->YS;
LOOP2: XS-1->XS; YS+1->YS;
IF XS>=1 AND YS=<8 AND BOARD(XS, YS)="BLANK"
THEN [%PC, XP, YP, XS, YS%J:: LI->LI; GOTO LOOP2; CLOSE;
XP->XS; YP->YS;
LOOP3: XS-1->XS; YS-1->YS;
IF XS>=1 AND YS>=1 AND BOARD(XS, YS)="BLANK"
THEN [%PC, XP, YP, XS, YS%]:: LI->LI; GOTO LOOP3; CLOSE;
XP->XS; YP->YS;
LOOP4: XS+1->XS; YS-1->YS;
IF XS=<8 AND YS>=1 AND BOARD(XS, YS)="BLANK"
THEN (%PC, XP, YP, XS, YS%]:: LI->LI; GOTO LOOP4; CLOSE;
END;

FUNCTION QMOVE PC XP YP=>LI;
COMMENT QUEEN REVERSE MOVES;
VARS XL;

RMOVE(PC, XP, YP)->XL; XL->LI;
BMOVE(PC, XP, YP)->XL; XL<>LI->LI;
END;

RRRRRRRRRRRR
RRRRRRRRRRRR

RRRRRRRRRRRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRRRRRRRRRRR

RRRRRRRRRRRR
RRRRRRRRRRRR
RRR RRR
RRR RRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
PPP PPP
PPP PPP
PPP PPP
ppp ppp
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
ppp
PPP
PPP
PPP
PPP
PPP
ppp

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE
EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEE
EEEEEEEEEEEE

EEE

EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

000000000
000000000
000000000

000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000.
000 000
000 000

000000000
000000000
000000000

xxx xxx
xxx xxx
xxx xxx
xxx xxx
xxx xxx
xxx xxx

xxx xxx
xxx xxx
xxx xxx

xxx
xxx
xxx

xxx xxx
xxx xxx
xxx xxx

xxx xxx
xxx xxx
xxx xxx
xxx xxx
xxx xxx
xxx xxx

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
ppp PPP
PPP PPP
PPP PPP
ppp PPP
ppp ppp
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
PPP
PPP
PPP
PPP
PPP

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP PPP
ppp PPP
ppp ppp
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
ppp
PPP
PPP
PPP
PPP
ppp
PPP

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:
File RS: <R. ALDEN>REXPL. POP. 2, created: 3-Jun-86 21: 03: 39, printed: 11-Jun-86 11
Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: lll Forms: XERO
File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION WCAPEX XL;
NL(l); prstring('possible captures by the pawn are:!); nl(l); XL=>; nl(l);
end;

FUNCTION RIEX;
NL(l); PRSTRING('IF the pawns have captured all opposition pieces that!);
nl(l); PRSTRING('can be captured on board and these opposition pieces!);
nl(l); prstring('include a pawn that could not have reached a capture square!);
nl(l); prstring('then a pawn promoted. [RULE001]!); NL(l);
END;

FUNCTION R2EX;
nl(1); prstring('If the pawns captured 8 pieces and an opposition pawn!); n1(1);
prstring('could not have reached a capture square then a pawn promoted.!);
nl(1); prstring('[RULE002]1);
end;

FUNCTION R3EX;

NL(l); prstring('If one side has >2 bishops or >2 rooks or >2 knights!);

nl(1); prstring('or >1 queen on the board then a pawn promoted. [RULE003]1);

end;

FUNCTION R4EX;
nl(l); prstring('If one side has 2 bishops travelling on the same colour!);

nl(l); prstring('squares then a pawn promote. [RULE0041!);

end;

FUNCTION R5EX;
nl(l); prstring('If one side has a bishop captured on its home square and!);

nl(l); prstring('there is a bishop on board travelling on the same colour!);

nl(l); prstring('square then a pawn promoted. (RULE00511);

end;

FUNCTION R6EX;
nl(1); prstring('if the pawns-have made all their captures on one colour!);

nl(l); prstring('and among these captures is an opposition pawn that!);

nl(1); prstring('could not have reached a capture square!);

nl(l); prstring('then a pawn promoted. (RULE006]!); nl(l);
end;

FUNCTION R7EX;

nl(l); prstring('if a pawn captured on promoting and the only piece it could!);

nl(l); prstring('have captured is an opposition pawn!); nl(l);
prstring('then an opposition pawn promoted (RULE00711); nl(l);
end;

FUNCTION R8EX;

nl(1); prstring('if a pawn made n captures in moving from its home square to!);
nl(l); prstring('a capture promotion square and the only pieces available!);
nl(l); prstring('for capture are n opposition pawns!);
nl(l); prstring('then an opposing pawn promoted (RULE008] !); nl(l);
end;

FUNCTION R18EX XL;

nl(l); prstring('No captures permitted - the following pawn !); nl(l);
prstring('reverse moves have been deleted1); nl(l); x1=>;
end;

FUNCTION R13EX XL;
nl(1); prstring('King must not be adjacent to king - following deleted!);
nl(l); XL=>;

end;

FUNCTION R14EX XL;
nl(1); prstring('Piece moved from check position - following deleted!);
nl(1); XL=>;

end;

FUNCTION R15EX XL;
nl(1); prstring('Own king in check and no way found for this to happen!);
nl(1); prstring('following deleted!); nl(1); XL=>;
end;

FUNCTION R16EX XL;
nl(1); prstring('Too many pawn captures - following deleted!);
nl(1); XL=>;
end;

FUNCTION R17EX XL;
nl(1); prstring('Number of pieces captured on board less than opposition!);
nl(l); prstring('pawn captures - following deleted!); nl(1); XL=>;
end;

FUNCTION R12EX XL;
nl(1); prstring('pieces given as not moving - following deleted!);
nl(l); XL=>;

end;

FUNCTION R19EX XL;
nl(1); prstring('A pawn revers moves to its home square and constrains!);
nl(1); prstring('a piece that was captured on board!);
nl(1); prstring('following deletedl); nl(1); XL=>;

end;

FUNCTION R30EX XL;

vars PC P;
XL. HD. HD->PC; BORW(PC)->P;
nl(1); prstring('if the king or rook moved then!); sp(1); pr(P); sp(1);
prstring('cannot castle!); nl(1);
prstring('the following moves deleted!); nl(l); XL=>; nl(l);
end;

FUNCTION R31EX XL;

vats TLXL PC P;
XL. HD. HD->PC; XL. HD. TL->TLXL; BORW(PC)->P;
nl(l); prstring('a pawn promoted on!); sp(l); pr(TLXL); sp(l);
prstring('sO the!); sp(l); pr(PC); sp(1); prstring('must have moved!);
nl(l); prstring('so!); sp(1); pr(P); sp(l); prstring('cannot castle on this side!);
nl(1);
end;

FUNCTION R32EX XL;
vars HL YX RK HHL PC KI;
BORW(XL. HD. HD)->PC;
If PC="W" then "WK"->KI;
else "BK"->KI;

close;
loop: If XL. null then return;
else dest(XL)->XL->HL; HL. TL. HD->X; HL. HD->RK; HL. TL. TL. HD->Y; HL. TL->HHL;
nl(l); prstring('if the promoted!); sp(l); pr(RK); sp(l);
prstring('is on!); sp(l); pr(HHL); sp(l); prstring('then the!);
sp(l); pr(KI); sp(l); nl(l); prstring('must have moved to let it reach its square, soJ)
nl(l); ýrýPC); Spc); prý+rýr. 9L'eor. nct c. o9ýk "):

goto loop;
close;
end;

FUNCTION R33EX XL;
vars HL PC RK HHL;.
BORW(XL. HD. HD)->PC;
loop: If XL. null then return;
else dest(XL)->XL->HL; HL. HD->RK; HL. TL->HHL;
nl(l); prstring('if the promoted piece is the!); sp(l); pr(RK);
sp(l); prstring('on!); sp(l); pr(HHL); sp(l); prstring('then!);
sp(l); pr(PC); sp(l); prstring('cannot, castle on this sidel); nl(1);
goto loop;

close;
end;

FUNCTION R34EX XL;

vars KI HL BW RK;
BORW(XL. HD)->BW;
If BW="B" then "BR"->RK;

else "WR"->RK;

close;
XL. HD->KI; XL. TL->HL;
nl(l); prstring('thel); sp(l); pr(KI); sp(l); prstring('on1); sp(l); pr(HL);
sp(l); prstring('moved to let out a1); sp(l); pr(RK); sp(l);
prstring('that was captured on board!); nl(l); prstring('so!);

"sp(l);
pr(BW); sp(l); prstring('cannot castlel); nl(l);
end;

FUNCTION R35EX XL;

vars HL PY PWN KI; XL. HD->HL; HL. TL. HD->Y;
If Y=7 then "WP"->PWN; "BK"->KI; "B"->P;

else "BP"->PWN; "WK"->KI; "W"->P;

close;
nl(1); prstring('the promoting!); sp(1); pr(PWN); sp(l);
prstring('placed the!); sp(l); pr(KI); sp(l); prstring('in check from!); sp(l);

pr(HL); nl(l); prstring('so!); sp(l); pr(P); sp(l); prstring('cannot castle!); nl(1);

end;

FUNCTION R36EX XL;

vars PWN HL HHL;
loop: If XL. null then return;
else XL. HD->HL; [%HL. TL. HD, HL. TL. TL. HD%]->HHL;
If HL. HD="WR" then "BP"->PWN;

else "WP"->PWN;

close;
nl(l); prstring('a!); sp(l); pr(PWN); sp(l); prstring('captured the original!);

sp(l); pr(HL. HD); sp(l); prstring('on!); sp(l); pr(HHL); nl(l);
TL(XL)->XL; gOtO loop;

close;
end;

FUNCTION R40EX XL;
VARS P KI HL PC XF YF XT YT;
BORW(XL. HD. HD)->P;
If P="B" then "WK"->Kl; else "BK"->KI; close;
loop: If XL. null then return;
else dest(XL)->XL->HL; HL. HD->PC; HL. TL. HD->XF; HL. TL. TL. HD->YF;
HL. TL. TL. TL. HD->XT; HL. TL. TL. TL. TL. HD->YT;
nl(l); pr(KI); sp(l); prstring('in check .!); sp(l); pr(PC);
sp(l); prstring('moved froml); sp(l); pr("("); pr(XF); pr(". "); pr(YF); pr(")");
sp(l); prstrinG('tol); sp(1); pr("("); pr(XT); Pr(", "); pr(YT); pr(")");
nl(l);
goto loop;
close;
END;

FUNCTION R41EX XL;

nl(1); prstring('reverse move listl); nl(1); XL=>;
nl(1);
end;

FUNCTION R42EX XL;
nl(1); prstring('king in check and no way found for this to happen!);
nl(1);
end;

FUNCTION R43EX XL;
vars XF YF XT YT;

nl(3);
XL. HD->P; XL. TL. HD->XT; XL. TL. TL. HD->YT; XL. TL. TL. TL. HD->XF;
XL. TL. TL. TL. TL. HD->YF;
nl(1); pr(P); sp(1); prst. ring('moved froml); sp(1); pr("(");
pr(XT); PR(", "); PR(YT); PR(")"); sp(1); prstring('tol); sp(1);
pr("("); pr(XF); pr(", "); pr(YF); pr(")");
nl(1);
end;

FUNCTION R44EX XL;
nl(1); prstring('initial reverse move list!); nl(1); XL=>; nl(1);
end;

FUNCTION R45EX XL;
COMMENT used by WHPCAP;
vars HL HHL;
nl(2); prstring('a king is in check. moving the checking piece leaves!);
nl(l); prstring('the same king still in check - implies capture!);
XL. HD->HL;
nl(2); prstring('possible captures are: -!); nl(l); HL=>;
XL. TL. HD->HL;
loop: If HL. null then goto L1;
else dest(HL)->HL->HHL;
If HHL="BB" or HHL="WB" then nl(2); prstring('bishop not captured - wrong colour sýva+2! ýý

elseif HHL="BP" or HHL="WP" then nl(2); prstring('pawn not captured - could not reÖc capA.,
else nl(2); pr(HHL); sp(l); prstring('not captured, all moves to capture square plac¢SV`");
close;
goto loop;
close;
L1: XL. TL. TL. HD->HL;
loop!: If HL. null then return;
else dest(HL)->HL->HHL;
If HHL. HD. null then nl(2); prstring('checking piece could not have moved last - moae-
exit;
nl(l); prstring('capture piece move!); nl(l); HHL. TL. HD=>;
nl(l); prstring('checking piece move!); nl(l); HHL. HD=>;
goto loop!;

close;
end;

FUNCTION R46EX XL;
COMMENT a king is in check - xl=variable chi;
vacs KPXY;
XL. HD->K; XL. TL. HD->P; XL. TL. TL. HD->X; XL. TL. TL. TL. HD->Y;
nl(2); prstring('the!); sp(l); pr(K); sp(1); prstring('is in check from the!);
sp(1); pr(P); sp(1); prstring('on1); sp(1); pr("("); pr(X); PR(", ");
pr(Y); pr(")");
end;

FUNCTION R47EX XL;

COMMENT a king is in check. xl gives possible ways it could have
happened;

nl(2); prstring('a king is in check. possible ways it could happen as follows!); nl(ý,)", XL 7,

end;

FUNCTION R50EX XL;

vars XA XC XS;
XL. HD->XA; XL. TL. HD->XC; XL. TL. TL. HD->XS;
nl(l); prstring('the pawn promoted on one of the following squares!);
nl(l); XA=>;
If not(XC. null) then nl(l); prstring('on promoting it captured on one of the
following squares!); nl(l); XC=>;

close;
nl(l); prstring('it crossed the 2nd/7th rank on one of the following squares!);
nl(l); XS=>;
nl(l);
end;

FUNCTION R52EX XL;
vars HL PWN X;
XL. HD. HD->HL; HL. HD->PWN; HL. TL->X;
nl(1); prstring('thel); sp(1); pr(PWN); sp(l); prstring('from!);

sp(1); sp(1); pr(X); sp(1); prstring('promoted!); nl(1);
end;

FUNCTION R6OEX'XL;
nl(l); prstring('if 1 pawn captured on its 1st move!); nl(1);

prstring('and could only have captured an opposition pawn!); nl(l);

prstring('and the opposition pawn could not have made any captures!); nl(1);

prstring('and the home square of the capturing pawn is on tht opposition!);

nl(i); prstring('pawn promotion file!); nl(1);
prstring('then the pawn captured before the opposition pawn promoted [RULE024]1)

end;

FUNCTION R61EX XL;
nl(l); prstring('if a pawn captured on its lst movel); nl(l);
prstring('and could only have captured an opposition pawn!); nl(l);
prstring('and the opposition pawn made n captures in promoting, where n is the! ');
nl(l); prstring('number of pieces constrained by the capturing pawn on its!);
nl(l); prstring('home square!); nl(l);
prstring('then the pawn captured before the opposing pawn promoted [RULE 025]1-);
NL(l);

end;

FUNCTION R64EX XL;
nl(l); prstring('the promoted piece is on board or was captured on one of the folýý,,. ý9
nl(1); XL=>; nl(1); !)-o
1->CAPBRD;
end;

FUNCTION R70EX XL;

nl(1); prstring('if there are 3 rooks or 3 knights or 3 bishops or 2 queens!);
nl(1); prstring('on board!); nl(l); prstring('then one of them must b e promoted!);
nl(l); prstring('the following is promoted!); nl(l); XL=>; nl(1);
end;

FUNCTION R71EX XL;

nl(l); prstring('if a side has more than 1 bishop travelling on the same colour!)
nl(1); prstring('then 1 must be promoted!); nl(l);
prstring('the following is promotedl); XL=>; nl(l);
end;

FUNCTION R72EX XL;

nl(l); prstring('if there is a bishop on board with its home square constrained!)
nl(l); prstring('by opposing pawns!); nl(l);
prstring('then it must be a promoted bishop [RULE02811); nl(l);

prstring('the following is promoted!); nl(l); XL=>; nl(l);
end;

FUNCTION R73EX XL;

nl(1); prstring('if all possible promotion pieces are placed on the!); nl(l);
prstring('promoting squares!); nl(l);
prstring('then only the following can move!); nl(l); XL=>; nl(l);
end;

FUNCTION R74EX XL;

nl(1); prstring('the promoted piece is as followsl); nl(1); XL=>; nl(1);
end;

FUNCTION R75EX XL;
nl(l); prstring('if a promoting pawn
nl(l); prstring('it possibly captured
nl(l); prstring('could capture were 2
nl(l); prstring('then it could not ha
nl(l); prstring('the pawn could not h
nl(l); XL=>; nl(l);
end;

captured on moving to the 2nd/7th rank!);
on promoting. if the only pieces it 1);
bishops!);

ve captured on promoting!);
ave promoted on the following squares!);

FUNCTION R76EX HL;
nl(1); prstring('for each square on which the pawn may have promoted!); nl(1);
prstring('or for each piece it may have captured on promoting!); nl(1);
prstring('it has been deduced that an opposition pawn also promoted!); nl(l);
end;

FUNCTION R80EX XL;
vars M1 M2 P;
XL. HD->P; (%XL. TL. HD, XL. TL. TL. HD%]->M1; [%XL. TL. TL. TL. HD, XL. TL. TL. TL. TL. HD%]->M2;
nl(l); prstring('the king was placed in check by the!); sp(l); pr(P); sp(1);
nl(l); prstring('moving from!); sp(1); pr(Ml); sp(l); prstring('to!); sp(l);
pr(M2); nl(l);
end;

FUNCTION R81EX XL;

n1(1); prstring('a pawn has therefore promotedl); nl(1);
end;

FUNCTION R82EX XL;

vars HL KI PC;
loop: If XL. null then return;
else dest(XL)->XL->HL; HL. HD->KI; HL. TL. HD->PC; nl(1);
prstring('the!); sp(l); pr(KI); sp(1); prstring('has been placed in check by the!);
sp(l); pr(PC); sp(l); prstring('onl); sp("1); pr(HL. TL. TL); nl(l);
goto loop;

close;
end;

FUNCTION R90EX XL;

nl(l); prstring('if all pawn captures occurred on one colourl); nl(1);
prstring('and these captures account for all missing piecesl); nl(1);
prstring('and these missing pieces include a bishop that could not have!);
nl(l); prstring('been captured on this colourl); nl(1);
prstring('then the missing piece must be a bishop [RULE 090)1); nl(l);
end;

FUNCTION R100EX XL;
vars WL BL HL;
XL. HD->WL; XL. TL. HD->BL;
loop: If not(WL. null) then WL. HD->HL;
nl(1); prstring('the wp onl); sp(l); pr(HL. HD); sp(l); prstring('captured al);
sp(l); pr(HL. TL. HD); TL(WL)->WL; goto loop;

close;
nl(l);
loopl: If not(BL. null) then BL. HD->HL;
nl(l); prstring('the bp on!); sp(l); pr(HL. HD); sp(1); prstring('captured a!);

sp(l); pr(HL. TL. HD); TL(BL)->BL; goto loopl;
close;
nl(l);
end;

FUNCTION R101EX XL;
vars HL HHL CL DL;
REV(XL)->XL; nl(l); prstring('the pawns captured in the following order:!); nl(2);
loop: If not(XL. null) then XL. HD->HL; HL. HD->CL; HL. TL. HD->DL;
[%CL. TL. HD, CL. TL. TL. HD%]->HHL;
prstring('the!); sp(l); pr(CL. HD); sp(l); prstring('on!); sp(l);
pr(HHL); sp(l); prstring('captured a!); sp(1); pr(DL. HD);
if not(DL. TL. null) then sp(1);
prstring(If rom!); sp(1); pr([%DL. TL. HD, DL. "TL. TL. HD%J

close;
nl(l); TL(XL)->XL; goto loop;

close;
end;

RRRRRRRRRRRR
RRRRRRRRRRRR
RRRRRRRRRRRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR

RRR RRR
RRR RRR

RRRRRRRRRRRR

RRRRRRRRRRRR

RRRRRRRRRRRR
RRR RRR

RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR
RRR RRR

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
ppp ppp
ppp ppp
PPP PPP
PPP PPP
PPP PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
PPP
PPP
PPP
PPP
PPP
PPP
ppp
PPP

uuu uuu
uuu uuu
uuu uuu
UUU UUU
uUU uuu
uuu UUU
uuu uuu
uuu uuu
uuu UUU

UUU UUU
uuu uuu
uuu uuu
uuu uuu
uuu UUU
UUU uuu
uuu uuu
uuu uuu
uuu uuu

UUi1
uuuuuuuuuuuuuuu

000000000
000000000
000000000

000 000
000, 000
000 . 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 '000
000 000
000 000

000000000
000000000
000000000

LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL
LLLLLLLLLLLLLLL

PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
ppp ppp
PPP ppp
ppp ppp
PPP PPP
PPP PPP
ppp PPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPPPPPPPPPPP
PPP
ppp
PPP
PPP
PPP
PPP
ppp
PPP
PPP

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE
EEE
EEE
EEE
EEE
EEE
EEE
EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEE

START Job LISTS1 Req #752 for O. ENABLEDOP Date 11-Jun-86 11: 10: 05 Monitor:

File RS: <R. ALDEN>RULES1. POP. 2, created: 3-Jun-86 20: 01: 19, printed: 11-Jun-86 1

Job parameters: Request created: ll-Jun-86 10: 53: 57 Page limit: 111 Forms: XERO

File parameters: Copy: 1 of 1 Spacing: SINGLE File format: ASCII Print mode:

FUNCTION START;

. setupdb;
end;
function setupdb;
comment SETS UP THE STATIC DATABASE,

INTO RECORDS OF TYPES "PARAM"
IN TABLES. POP INTO RECORDS OF
TABLE, AND CONVERTS LISTS. POP

I. E. CONVERTS THE TRIPLES IN SDB. POP
"CTYP" AND "RULE", CONVERTS THE TABLES

A CLASS SPECIFIED AT THE HEAD OF EACH

INTO NAMED LISTS;

vars RG;
recordfns("rule", (compnd compnd
category->destrule->consrule;
comment A DUMMY RECORD "RG" IS
consrule(nil, nil, nil)->RG;
. conslist;

. consdata;
end;

compnd])->explain->premise->

SET UP;

function conslist;
comment CONVERTS LISTS. POP INTO LISTS;
vars lisread dataread AYQ;
popmess([in LISTS1. POP))->lisread;
incharitem(lisread)->dataread;
loopif (. dataread->A; a/=termin)

then . dataread->q;

. buildl->valof(A);
close;
copy(ALLRULES)->Y;
loopif Y /= nil

then copy(RG)->valof(hd(Y));
tl(Y)->Y;

close;
end;

function consdata;
comment CONVERTS SDB. POP INTO RECORDS;
vars sdbread dataread ABC;
popmess([in RULES1. POP))->sdbread;
incharitem(sdbread)->dataread;
comment SDB. POP IS IN THE FORM OF OBJECT - ATTRIBUTE -

THE OBJECT IS A PARAMETER, CONTEXT TYPE OR RULE
ATTRIBUTE IS THE NAME OF A PROPERTY AND IS A WC
THE VALUE OF THAT PROPERTY AND CAN BE A WORD, I
OTHER DATA TYPE. THE OBJECTS ARE ALL NAMES OF P
ARE THE NAMES OF THE FIELDS OF THESE RECORDS AV
VALUES OF THOSE FIELDS;

VALUE TRIPLES, WHERE
AND IS A WORD, THE

RD AND THE VALUE IS
IST, STRING OR ANY
ECORDS, THE PROPERTIES
D THE VALUES ARE THE

Cvmmeuc inn eJ. z i kwaar; 1L M TU BE READ (ASSIGNED TO THE VARIABLE A) IS
EITHER THE NAME OF A RECORD OR "TERMIN";

loopif (. dataread->A; A /= termin)
then comment THE NEXT TWO ITEMS TO BE READ ARE A PROPERTY AND ITS

VALUE. THESE ARE ASSIGNED TO THE VARIABLES B AND C
RESPECTIVELY;

. dataread-> B; . dataread->C;
comment IF THE VALUE IS A LIST THEN C WILL BE "(", BUT WE NEED

C TO BE THE ENTIRE LIST;
if C= "(" then buildl()->C; close;
comment THE VALUE OF THE COMPONENT IS UPDATED;
C->valof(B)(valof(A));

close;
end;

function buildl=>LL;
comment READS A LIST FROM A PREVIOUSLY SPECIFIED FILE;
vars D;
nil->LL;
loopif (. dataread->D; D

then if D= «[«
then buildl()->D;

close;
LL<>[%D%]->LL;

close;
end;
function DAND LIST => ED;
if TRACE =1 then pr('DAND !); pr(LIST); nl(l); close;
comment THIS IS A TOP-LEVEL FUNCTION WHICH IS CALLED BY THE PREMISE OF ALL

RULES. IT FINDS THE MINIMUM CF RETURNED BY THE CLAUSES FOR USE IN
THE ACTION PART OF THE RULE. RETURNS 0 IF ANY CLAUSE FAILS;

vars T CLAUSE CLAUSELIST;
Copy(LIST)->CLAUSELIST;
loopif CLAUSELIST /= nil

then hd(CLAUSELIST)->CLAUSE;
tl(CLAUSELIST)->CLAUSELIST;

if TRACE =1 then pr('CLAUSE=!); pr(CLAUSE); nl(l); close;

comment THE FIRST CLAUSE IS EVALUATED. IF IT RETURNS FALSE THEN
DAND RETURNS FALSE;

if not(eval(CLAUSE))
then 0->ED; return;

if TRACE =1 then pr('T=!); pr(T); nl(l); close;
close;

close;
1->ED;
end;

function eval LIST;
if TRACE =1 then pr('evall); sp(l); pr(LIST); nl(l); close;
comment ENABLES A PREMISE CLAUSE TO BE INPUT AS A LIST, WHERE THE FIRST

ELEMENT IN THE LIST IS THE FUNCTION TO BE EVALUATED, AND THE OTHER
ELEMENTS ARE ITS ARGUMENTS;

vars FN X;

comment THE FIRST ELEMENT IN THE LIST (A FUNCTION) IS ASSIGNED TO THE
VARIABLE FN;

valof(hd(LIST))->FN;
tl(LIST)->LIST;
loopif LIST /= nil

then valof(hd(LIST));
tl(LIST)->LIST;

close;
comment THE FUNCTION FN IS APPLIED USING ITEMS FROM THE STACK AS ITS

ARGUMENTS;
apply(FN);
end;

