
155

K PARAPIC user manual

MACHINE INTELLIGENCE RESEARCH UNIT

UNIVERSITY OF EDINBURGH

Subject: Parapic language definition

Version 2.1

Author: A. Blake

Date: April, 1982

158

Contents

1. Introduction

2. Image types and type conversion

3. Image input and output

4. Image operators and functions
4.1 Boolean operators
4.2 Grey operators
4.3 Shifting and propagation
4.4 Parallel conditional operator
4.5 Global array measures

Acknowle dgements

References

Appendix

A. PARAPIC under UNIX with an array processor emulator.

B. Summary of operators and functions.

157

1 Introduction

PARAPIC is a language for image processing, with two important
features. First, it is for processing pictures in parallel; each primitive of

the language consists of a sequence of the basic operations that are avail-

able in parallel array processors like the CLIP (Duff 1978) and the DAP

(Marks 1980). The basic operations of the CLIP have been thoroughly
analysed by Jelinek (1979). Secondly, it is a high level language, an exten-
sion of POP-2 (Burstall et al. 1971). PARAPIC bears some resemblance to

APL (Iverson), in that there are array data-types and that arithmetic opera-
tors, applied to array variables, perform array operations. It is, however,

more specifically tailored to image processing, and in that sense has design

principles similar to those of PIXAL (Levialdi (1981)) and those in (Bruha

1977). PARAPIC has been implemented, running under UNDIt on PDP-11 mini-

computers. It drives a parallel array processor emulator, whose design has

evolved from the work of Armstrong (1978), Zdrahal and Blake (1980) and

Blake and Ruttledge (1980).

There are two components of the PARAPIC extension to POP-2. The

image data type is introduced and a number of new operators and functions
are added. An image variable is a square array which takes one of three
forms:

boolean image - an array whose cells contain truth values

grey image - an array whose cells contain 8-bit signed integers
double image - a double precision grey image, whose cells contain 16

bit signed integers
Of the new operators and functions, some are entirely new (for instance
array shift) and some are arithmetic operators or functions, extended to

act over arrays (for instance + - * /).

As an example of an arithmetic operation over arrays, the + operator
acts as follows:

In C=A+B, the array C has components each of which is the sum of

corresponding components in A and B The expression above is equivalent,

in component form to

for all i, j C;j = Av +BV

tUNIX is a Trademark of Bell Laboratories.

158

and x - / and other arithmetic operations are similarly defined for grey and

double arrays. For boolean arrays there is a set of boolean or logical opera-

tions, for instance & (AND) I (OR), and they are defined over array com-

ponents, similarly to the arithmetic operations. An important operator for

arrays, which is not an extended arithmetic operation, is the shift operator

(>. In the expression C=A I>d, C denotes the array A shifted in direction d.

For instance, when d is North,

C=A I >(North) means: for all ij C = Ac-1,j if i>1
0 otherwise

Other operations available in PARAPIC include

- parallel array conditional expression; this is simply an extension to

arrays of the ? operator, in which C=B? (X,Y) means IF (B) THEN C=X

ELSE C=Y. B must be boolean valued and X,Y must, in the array opera-

tion, share the same type.

- global measurements over boolean and grey arrays

- image input/output

- start and stop functions for the underlying image processing machine

These operations are specified in more detail in chapter 4.

The PARAPIC language is specified without reference to a particular
target parallel array processor. However the choice of operations is con-

strained by the notion of a parallel array machine. All the operations in the

language extension can be succinctly expressed in terms of the basic

operations of the CLIP4 and the DAP. PARAPIC provides, therefore, a natural
programming environment for the development of image processing pro-

grams which make good use of the high processing capacity of parallel
array machines.

The PARAPIC language, as specified here, has been implemented by the

Author, under the UNIX operating system, driving a software emulator of a

parallel array processor. A sample session is shown in appendix A Software

based on PARAPIC (Reynolds 1981) has been written which uses the CLIP4

machine although it is not possible, using interpreted POP-2 on the PDP-11

(Clocksin 1979), to drive the CLIP4 at its full speed.

159

Summary

The PARAPIC image processing language consists of the POP-2 high
level language with an extension for image processing. The extension is
composed of a data-type - the image - which may be integer or boolean
valued, and a substantial set of image operators and functions. PARAPIC
embodies the constraints imposed by the structure of the parallel array
processor and facilitates the development of image processing programs,
within those constraints, and in a high level language environment.

160

2 Image types and type conversion

Three image types are available: boolean, grey and double precision,
which are arrays of truth values, eight bit signed integers and sixteen bit
signed integers, respectively. The arrays are square and of a size deter-
mined by the underlying parallel array machine or software emulator. In

the Unix implementation of PARAPIC (described in the appendix), for

instance, a parallel array emulator is started up by the PARAPIC command

: start (size) ;

where size is the length of the sides of the square arrays.

Initialised image are obtained by calling the functions initb, initg and

initd For instance:

initb(true) returns a boolean image array of cells set to true (1).

initg(0) returns a grey image array of cells set to 0.

initd (-4000) returns a double precision array of cells set to -4000.

Functions are provided for conversion between types. The function

extend converts a grey image to a double image with each cell having the

same value (including sign) as the corresponding cell in the grey image. The

functions upper and lower yield, from a double image, a grey image consist-

ing of the most or least significant bytes, respectively, from the cells of the

double image. Conversion from grey or double to boolean is achieved by

arithmetic comparisons (> = etc.) described later on. Conversion from
boolean to grey or double is done by the ? operator, also described below.

The POP-2/PARAPIC prompt is'.'.

181

3 Image input and output

Several functions and operators are provided for image input and out-
put, both for transfer to and from files on the host machine, and for com-

munication with other image processing processes - these will often be
processes for image capture or display. In all cases the result of input is a

grey image, and any picture submitted to PARAPIC for input must be the
same size as the image arrays. Any required windowing or magnification

must be performed by external processes, invoked from PARAPIC, as part of

the picture input/output command. Pictures for output are 8 bit grey and
of the same dimensions as the PARAPIC image arrays. A grey image may

therefore be submitted unchanged for output, whereas a boolean image is

first converted to grey (with one grey level representing true and another
representing false - system constants), and a double image is converted to

grey by the function upper before display. t
The input/output operators are:

<< ' fename' and >> ;filename'

respectively, where the single quoted string is the name of a file on the host

computer Also:

<<I' command' and >>r command'

perform input and output respectively, where the single quoted string is a

name for a process (this assumes a multi process operating environment on

the host machine). Under UNIX for instance, command is a shell command
which executes a process whose input/output is piped to/from PARAPIC.

The view and display operators

<<* and >>*

perform piped input and output of pictures, as described above, but the
process called in each case is chosen in advance by executing

: setview (' command ')

t It is intended, in the future, to adopt a picture file format which allows boolean, double pre-
cision and unsigned images, in which case these conversions will be unnecessary.

182

and

setdisp (' command ')

respectively.

4 Image operators and functions

This section describes the image processing operators and functions

available in PARAPIC, and the image types to which they may be applied.

4.1 Boolean operators

The unary operator - inverts a boolean image - all true cells become false

and vice versa. The binary operators I & -1 1- -& &- ©_= produce a

boolean image, from two boolean image arguments The logical or and are

performed over all the array cells by the operators I & ; the operators
-& &-' also include an inversion, for instance:

a Irb ° a I ("'b)

and

a-&b = (-tz)&b

The exclusive or operator, ®, is defined by:

aft = (a&(-b)) I ((-a)&b).

The equivalence operator, ==, is defined by:

a==b = -(a@b).

4.2 Grey and double operators

Operations on grey and double images are either arithmetic, yielding

grey or double images, or comparisions, which yield boolean images. For

the arithmetic operations with one argument, allowed types are:

grey -> grey

double -> double

and with two arguments:

183

(grey,integer) -> grey

(grey,grey) -> grey

(integer,grey) -> grey

(integer, double) -> double

(double,double) -> double

(double, integer) -> double

The unary operator -, performs ones complementation throughout the

grey or double array. The binary operators + * - / perform addition, multi-
plication, subtraction, signed integer division and remainder. The first four
of these operators are already used in POP-2 for arithmetic, so that the

allowed types specified above are in addition to the types already allowed in
POP-2. The function abs(a) and its alias mod(a) - modulus and the func-

tions ma-* a, b) and min(a, b) - maximum and minimum - have been
incorporated. The POP-2 functions logand(a, b), logor(a, b) and log-

shift(a, b) which perform bitwise and, or, shift on integers, are extended
for grey and double images Note that the right shift for pictures does

include sign extension. The POP-2 function sign(a) has also been extended
for grey, double images.

Coimpari -wns

The operators > >_ < _< are extended from the POP-2 definition

to yield boolean images from grey/double. The allowed types of arguments
are the same as for the arithmetic operations, with two arguments, above.

4.3 Shifting and propagation

The array shift is a basic parallel array processor function, arising

from the connections between neighbouring cells in the processor array.
Thus, shifting an array from the North (Northwards shift means shift from
the North as in "North wind") each cell takes on the value of the cell

immediately to its North. Cells along the Northern border of the array,
assume the value 0. The shift operator, 1>, in PARAPIC, is applied to a

boolean, grey or double image, p:

p > dir

in direction dir, which must be in the range 1..4. Directions 1,2,3,4 are
North, East, South, West. The resulting image has the same type asp.

164

Some operations which can be synthesised from the shift are available
in PARAPIC. The expand and shrink operators, and --, are defined by:

,...a = aI(aI>1)I(aJ>2)I(aI>3)I(aI>4)

and

/^a = a&(a >1)&(a J>2)&(a J>3)&(a 1>4)

The propagation function

prop(a, b, dirstring)

propagates a boolean image b, inside a boolean image a, in the directions
specified in dirstring. We define

dir ::= 1121314

dirstring ::= ' dir *'

The function prop may be defined recursively as:

prop(a, b, dirstring) =

IF there exists dir in dirstring such that
(bl>dir)&a

is not everywhere (throughout the array) identical to a THEN

prop (a, (bl>dir)&a,dirstring)
ELSE

b

In the case, for instance, that

dirstring = '1234'

the effect of prop is to produce a boolean image which contains true at any

cell that is joined by an unbroken path of true cells in a, to some true cell

in b, sometimes referred to as 'labelling' a with b or as the 'reconstruction'
of b in a.

The function

frame(dirstring)

185

returns a boolean image which contains true cells along those array edge

specified in dirstring and false elsewhere. Thus

frame(' 1234')

returns an array with true cells around all four edges and false everywhere

else.

Finally the function

ramp(dir)

which can also be synthesised using shift, produces a grey image containing

a grey level ramp. It has 0's along the edge specified in dir and the cell con-

tents increase by one grey level per pixel, towards the opposite edge. For

instance:

: ramp (1) -> a;

produces an array whose components are:

For aLl j ow =i -1.

4.4 Parallel conditional expression

The ternary parallel conditional operator, ?, combines a boolean image

with grey/double arguments to produce a grey/double image. Executing:

b?(d,e) -> c;

produces an image c which, in component form, is:

du if bti j (=true) c;j = etij otherwise

The argument b must be a boolean image and allowed types for d,e are

exactly as for the arguments of a binary arithmetic operator (see section

4.2) and with the same type for the returned value.

168

4.5 Global array measures

The image operations described so far all produce images as their
result. The global array measures described here, however, operate on an
image but return boolean (as opposed to boolean image), integer or real
results. For instance, the predicates everywhere, somewhere and nowhere,

applied to a boolean image, b, return true if
everywhere(b): all cells in b are true
somewhere(b): there exists a true cell in b

nowhere(b): all cells in b are false

and false otherwise The function area returns the number of true cells in a

boolean image. The function greymax, greyminand greyav return the max-

imum, minimum and average, respectively, of all the cells in a grey or dou-

ble array.

Acknowledgements

The author wishes to acknowledge the considerable contribution made
to the design and implementation of PARAPIC by Hugh Ruttledge, who sug-

gested writing a parallel image processing language, and wrote much of the
software for a prototype.

The author acknowledges the contribution of W.Clocksin, in the form of

his POP-2 system for Unix.

This research was conducted with the aid of a grant from the SERC to

Professor Donald Michie for work on a versatile programmable industrial
image processor. The author is also indebted to the University of Edinburgh
for the provision of facilities.

167

References

Armstrong,J.L. (1978). Programming a parallel computer for robot vision.

Computer Journal, 21, 215-218.

Bruha,I. (1977). The CLIP language, Research memorandum MIP-R-120,

MIRU, Edinburgh University, Edinburgh.

Blake,A. and Ruttledge,H. (1980). CAP 4 assembler and driver for CLIP4

emulator Machine Intelligence Research Unit, University of Edinburgh.

Burstall,R.M., Collins,J.S. and Popplestone,R.J. (1971). Programming in

POP-2. University Press, Edinburgh.

Clocksin,W. (1979). The Unix POP-2 system. Documentation, Department of

Artificial Intelligence, University of Edinburgh. Edinburgh.

Duff,M.J.B (1978). Review of the CLIP image processing system, National
Computer Conference 1978, 1011 - 1060.

Iverson,K. (). A Programming Language.

Jelinek (1979). An algebraic theory for parallel processor design. computer

Journal, 22 (4), 363-375

Levialdi,S., Maggiolo-Schettini,A., Napoli,M. and Uccella,G. (1981). PIXAL: a

high level language for image processing. Real Time / Parallel Computing,

Onoe,M., Preston,K. and Rosenfeld,A., Plenum Press, New York

Marks,P. (1980). Low-level vision using an array processor Computer Graph-

ics and Image Processing, 14, 281 - 292.

Reynolds,D. (1981). POPX user manual, Image Processing Group, University

College, London

Zdrahal,Z. and Blake,A (1980). A simple emulator of a parallel processor:

user guide. Machine Intelligence Research Unit, Edinburgh

188

Appendices

A. PARAPIC under Unix, with an array processor emulator.

To enter PARAPIC, type

parapic <RETURN>

and the usual POP-2 prompt : appears. To start the emulator, working with
64 x 64 arrays.

: start(64);

The arraysize must be a multiple of 16, between 16 and 128 inclusive. Now

try some commands:

: ramp(4) -> g;

puts a grey level ramp into g.

: (g >= 16) & (g < 48) -> b;

makes a boolean image, b, with a central vertical stripe of true, 32 pixels

wide.

displays b. Now use b to mask off the parts of g which lie outside the stripe,
to produce h.

: b?(g,0) -> h;

169

The result can be saved on a file called masked-ramp, by executing:

: h>> 'masked ramp' ;

Typing control-Z stops the emulator, and exits from the PARAPIC system,
returning to the shell. On a future occasion,

parapic

start(64)

<<'masked.ramp' -> g ;

retrieves the masked ramp, for further processing.

170

B. Summary of operators and functions.

Operator Precedence Description

<< <<I <<* 1 Picture input

2 Invert / 1's complement

I> 3 shift, expand, shrink

4 arithmetic

+- 5 arithmetic

6 comparisons

I& I--I 7 boolean operations

8 parallel conditional

>> >>I >>* 9 output

Note that precedences follow POP-2 conventions. In an expression the
operator with lowest precedence is evaluated first.

171

Function

setview setdisp dump

start stop

initb initg initd

logor logand logshift

sign abs(mod) max min

upper lower extend

prop frame

ramp

area somewhere nowhere everywhere

greymax greymin greyav a

description

picture input/output

image processor control

image initialisation

arithmetic

double /grey conversion

propagation, boolean frame

grey ramp

global boolean measures

global grey measures

0 not yet implemented.

