An Introduction to Programming in Simula

Rob Pooley

This document, including all parts below hyperlinked directly to it, is copyright Rob Pooley (rjp@dcs.ed.ac.uk). You are
free to use it for your own non-commercial purposes, but may not copy it or reproduce all or part of it without including
this paragraph. If you wish to use it for gain in any manner, you should contact Rob Pooley for terms appropriate to that
use. Teachers in publicly funded schools, universities and colleges are free to use it in their normal teaching. Anyone,
including vendors of commercial products, may include links to it in any documentation they distribute, so long as the
link is to this page, not any sub-part.

This is an .pdf version of the book originally published by Blackwell Scientific Publications. The copyright of that book
also belongs to Rob Pooley.

REMARK: This document is reassembled from the HTML version found on the web:
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/

Oslo 20. March 2018
@ystein Myhre Andersen

https://web.archive.org/web/20040919031218/http://www.cee.hw.ac.uk/home/rjp
https://web.archive.org/web/20040919031218/mailto:rjp@cee.hw.ac.uk

Table of Contents

Chapter 1 - Begin at the beginning
Basics

Chapter 2 - And end at the end
Syntax and semantics of basic elements

Chapter 3 - Type cast actors
Basic arithmetic and other simple types

Chapter 4 - If only
Conditional statements

Chapter 5 - Would you mind repeating that?
Texts and while loops

Chapter 6 - Correct Procedures
Building blocks

Chapter 7 - File FOR future reference
Simple input and output using InFile, OutFile and PrintFile

Chapter 8 - Item by Item
Item oriented reading and writing and for loops

Chapter 9 - Classes as Records

Chapter 10 - Make me a list
Lists 1 - Arrays and simple linked lists
Reference comparison

Chapter 11 - Like parent like child
Sub-classes and complex Boolean expressions

Chapter 12 - A Language with Character
Character handling, switches and jumps

Chapter 13 - Let Us See what We Can See
Inspection and Remote Accessing

Chapter 14 - Side by Side
Coroutines

Chapter 15 - File For Immediate Use
Direct and Byte Files

Chapter 16 - With All My Worldly Goods...
Prefixed Blocks And Separate Compilation

Chapter 17 - Add To The List
More Complex List Structures - SimSet

Chapter 18 - Virtually Anything Is Possible
A More Formal Definition Of Scope; Virtual, Hidden and Protected

Chapter 19 - Class Simulation
SIMULA and simulation

Chapter 20 - Tying Up Loose Ends
The Complete Environment and Where to Go From Here

Appendix A - Arithmetic expressions
Appendix B - Arithmetic types
Appendix C - Alternative number bases
Appendix D - Conditional expressions

https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendd.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendc.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendb.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/appenda.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap20.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap19.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap18.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap17.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap16.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap15.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap14.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap13.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap12.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap11.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap10.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap09.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap07.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap06.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap05.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap04.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap03.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap02.html
https://web.archive.org/web/20040919031218/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap01.html

Chapter 1

begin at the beginning......

What is a computer program?

A computer program (program is always spelt in the American way) is a series of instructions which
contains all the information necessary for a computer to perform some task. It is similar to a knitting
pattern, a recipe or a musical score. Like all of these it uses a special shorthand, known in this case
as a programming language.

This book describes how to write and understand programs written in the language SIMULA. The
definition used is the 1985 SIMULA Standard, which extends and clarifies the language previously
known as SIMULA 67. The 67 stood for 1967, the year in which this earlier version was first
defined.

These should not be confused with the older language known as SIMULA 1, which is an ancestor of
SIMULA 67 and thus of today's SIMULA.

A few old references to SIMULA (notably a 1966 article in CACM) will mean SIMULA 1. More
often SIMULA 67 is intended. Many implementations of SIMULA will not yet have all the features
given in the 1984 standard, although they will probably have more than those defined in 1967.
Wherever sensible this book tries to warn its readers of features which may not be universally
available. In addition, it is usually a good idea to check the documentation for the particular
SIMULA system to be used, in case it has any peculiarities of its own. SIMULA is highly
standardised, but differences may still be found.

You may already be familiar with other programming languages such as Fortran, Basic or Pascal.
Even so you will find this introduction essential, since SIMULA views the world rather differently
in some ways. In particular SIMULA expects you to organise or structure your program carefully. It
also allows you to describe actions as if they were happening simultaneously or in parallel.

If the next paragraph seems confusing, read it now and see how much you can understand, then
come back after each chapter until it makes complete sense. Do the same for any other parts of this
book which are not clear at first reading. Remember that in learning a new computer language you
are trying to take in many concepts which only make sense together, so that often several re-
readings of what will later seem obvious points are necessary.

A SIMULA program is made up of sequences of instructions known as blocks, which act
independently to varying degrees, but which are combined to produce the desired overall effect. The
simplest programs contain only one block, known as the program block. All other blocks follow the
same basic rules, so let us have a look at the single block program, example 1.1. Example 1.1: A
simple example
begin
integer Intl;
comment The first SIMULA program written for this book;
Intl:=3;
OutInt (Intl,4);
OutImage
end

This is not the simplest possible program. We could have written

begin end

and had a complete program block. This tells us the first rule about all blocks. A block always
begins with the word begin and ends with the word end.

beginand end are called "keywords", since they are reserved for special purposes and may not be
used for anything else.

A note on letters and ""cases'.

Although the programs shown in this book use bothcapital letters, which are known to computer
programmers as "upper case" characters, and small, "lower case", letters. You are free to use
whichever case you prefer. A SIMULA program is interpreted as if all its letters, which are not
enclosed in double quotes, were first converted to upper case. You can even write BegIN or eNd.

The right ingredients
So we have to put begin and end. What about the text in between?

This is made up of instructions to the SIMULA system, which are of two types; DECLARATIONS
and STATEMENTS. There are also pieces of the text which are ignored by the SIMULA system and
which simply help any human who reads the program to follow what is happening. These are called
comments.

Declarations

In example 1.1, the first instruction after the word begin is a declaration:

integer Intl;

Declarations in a block show how much of the computer's memory is going to be needed by that
block. They also show into how many sections it is to be divided , how big each is to be and to what
sort of use each will be put. Each of these sections is given a name, by which the program will refer
to it.

The program block in example 1.1 has only one declaration. It starts with the "type"
keyword integer, followed by a name or "identifier", Intl.

The type (integer in this example) says what the section of memory will be used for. In example 1.1
it will be used to hold a whole number, which is called an integer in SIMULA. Once a section of
memory has been given its type in this way, it may not be used to hold something of a different

type.

Since this location will hold an integer its required size will also be known to the SIMULA system.
All items of the same type require the same amount of space in memory to hold them.

The identifier Intl is now the name of the space reserved in this way. We may sometimes refer to
the value held in this space as Intl also. This is a useful shorthand, especially when we are not
aware what the current contents are.

If we want to use more locations, we can declare them in the same way, being careful to give the
correct type to each. Thus we might write
begin
integer Intl;

real Reall;
etc.

Which gives us a location of type real and called Reall, which we can use in this block. The
possible types and their uses are explained more fully in chapter 3.

If we want to have more than one location which can hold a whole number, then we can declare a
second integer, with a different identifier. We might do this by writing
begin
integer Intl;

integer Count;
etc.

or, alternatively, by writing

begin
integer Intl, Count;
etc.

which many people find neater. This style is called a declaration list, with a series of identifiers of
locations with the same type separated by commas.

Comments

The next line is a comment. It begins with the keyword comment, is followed by some text and ends
in a semi-colon.

comment The first SIMULA program written for this book;

It has no effect on what the program does, but it contains some information on what the program is
or does. In example 1.1 it tells us which version of the program we are looking at. This is often very
useful.

As well as forming lines on their own, comments can also be used in certain places within
instructions or combined on the same line as them. This will be shown in the next chapter.

When you are writing programs in independent sections, as we will be, you may not look back at a
"working" component for some time. It is also possible that someone else may need to change what
you have written. The design of the overall system should tell him what the component is supposed
to do, but the details of how it works may not be obvious. To help everyone understand your
programs, you should include comments in them.

Statements

The other instructions in our example are all statements. They tell the SIMULA system what it is to
do.

We shall be looking at the different sorts of statements which exist in SIMULA in detail later. For
the moment, let us look briefly at those in the example to get a flavour of the possibilities.

The first one is an "assignment" statement. It tells the system to place something in one of the
locations declared for use by this block. In this case the value three is to be stored in the integer
location declared as Intl. Since this value is of a type which matches that declared for the location
the statement is legal SIMULA.

The next statement uses something called Outlnt, which is a "procedure" and is available in all
SIMULA systems. Outlnt will write out the first number in the parentheses - ordinary brackets -
after it. It writes it as a whole number at the end of the line, or "image", which is currently being
created. The second number is used to tell the system how much space to use on the line, when
writing out the first number.

The final statement uses Outlmage. Like Outlnt, Outlmage is a procedure and is available in all
SIMULA systems. Such standard procedures are known as "system procedures". They are not
keywords, since you may declare a different meaning for them within a block if you wish.

Outlmage causes the line which is currently being created - the current image - to be written to the
printer or terminal and a new line to be started. You have probably noticed that it does not have any
parentheses or numbers after it. These numbers, known as "parameters", are only present when the
procedure needs information from the program to carry out its task.

What do we do with our program?

So now we have what we think is a legal SIMULA program. Unfortunately it is on paper and whilst
we know what it should cause to happen, the SIMULA system cannot read from the page. How then
do we get the SIMULA system to obey our program?

The first step is to write our program, known in full as the "source program", in some medium
which the computer housing the SIMULA system can manipulate. Older machines may require you
to punch the text on paper tape or cards, but today most machines will handle text files. These are
stored in the computer's memory on some magnetic medium such as a disk or tape. You can usually
create them by typing them into the system using a text editor. You will need to check the
documentation for the computer that you intend to use, especially the SIMULA user's guide or
programmer's reference manual.

Once you have created this "machine readable" version of the source program, the part of the
SIMULA system known as the "compiler" must be used to read the source and create a sequence of
"machine instructions", which tell the computer what the SIMULA program wants to do. This is
known as "compiling" the program.

Machine instructions are different on different types of computer. If you want to move a SIMULA
program from one computer to another type of computer, you must re-process the source, with the
compiler of the SIMULA system on the second machine. This is sometimes referred to as
recompiling the program on the second machine.

Once you have compiled the program, you may have to "link" the file of machine instructions
which has been generated by the compiler. Not all computers require this step. The file produced by
the compiler is known as the object file and the translation of your source program which it holds is
known as the "object program".

Linking - sometimes called linkage editing - merges the object program version of your program
with the standard programs already available in the SIMULA system - the "runtime system" or
"runtime library". These allow reading and writing, standard maths functions and so forth to be
used; Outlnt is made available in this way. Where linking is not necessary, these standard
procedures are found by the command which runs the program.

Details of how to compile and, if necessary, link your program should be available to you in the
user's guide or programmer's reference manual for your SIMULA system. Where on-line "help"
information is available on your computer, this may provide a useful summary. Where you have
access to professional advisers or more experienced SIMULA users, you may be able to save a lot
of time by asking them for help, but you should still read the documentation carefully, since not
everyone uses all the features of a large programming language like SIMULA.

The final product of compilation and linking is a translation of your original SIMULA source into
instructions which your computer can obey. You can now "run" the file containing these and see
your program work. Again you should consult the documentation for your computer for details of
how to do this.

Note: The ability to compile and run SIMULA programs depends on having access to a computer
with a SIMULA system. If your computer currently does not, you may be able to buy one, but they
are not available for all computers. The suppliers of those systems known to the author are listed at
the back of this book. If your computer is not listed, write to SIMULA A.S., who may be able to
help. Their address is given in the list. Readers in the United Kingdom might wish to contact the
author.

Summary

Each chapter will end with a brief summary of what the author thinks you should have learned from
it.

In this chapter we have looked informally at what a program and a block are. We used a very simple
program, made up of only one block to illustrate this.

We discovered that a block is a series of instructions, preceded by the keyword begin and followed
by the keyword end.

Instructions are either declarations, which reserve and name locations, in which information of one
particular type may be kept, or statements, which tell the SIMULA system to perform some action.

Lastly we looked at how to compile and run our program on a computer.

Exercises

When the author was learning to write programs, he was told the most important rule, "There is no
such thing as an armchair programmer". The simplest exercise can often teach even an experienced
programmer something new. Avoid the temptation to miss out examples as they will often lead on to
the material covered in the next chapter.

This chapter has introduced a lot of ideas. You may feel completely bewildered. Do not despair. By
using the ideas in successive chapters and examples you will soon become familiar with them. To
start with try three fundamental, but by no means unimportant, exercises.

1.1 Using this chapter and the documentation for your SIMULA system, compile and run our
example. Note carefully the printed output from the compiler and what files are produced by it.

1.2 Nearly all compilers allow you to produce a printed listing of your program when it is being
compiled. Most will allow you to specify things about the appearance of this listing, for instance
whether the lines will be numbered for you and whether a cross referenced index of identifiers is to
be appended. Try producing listings using any options available on your SIMULA system.

1.3 Try exercise 1.1 again changing the source program by:

1.leaving out each line in turn,

2.leaving out one of the semi-colons,

3.adding in the extra declarations shown in this chapter.

4.swapping lines around, especially moving begin, end and the declaration of Intl.

Note carefully the differences in messages from the compiler and when running the program in each
case. See if the listing is different when messages are printed by the compiler.

Chapter 2

- and end at the end

The nature of correct programs

Rules and penalties

Chapter one gave an example of a correct program. When you altered it as you were asked to in
exercise 1.3 and recompiled it, some of the results will have been incorrect programs. (If you have
not yet completed the exercises in chapter 1, you should do so now. It will be much easier for you to
follow this chapter.)

The compiler will have printed error messages for some of these variations. It may also have printed
warnings. Sometimes, though probably not in any of your attempts at 1.3, the compiler will report
success in producing the machine instruction version, but the part of the SIMULA system which
runs the program, which we call the runtime system, will print an error message or warning during
the execution of the program.

Clearly there are rules to be followed in writing programs. In chapter 1 some were mentioned in
passing, but only two were spelt out. One was that every block starts with the keyword begin and
finishes with the keyword end; the other was that the rest of a program is made up of declarations
and statements.

To be correct a program must follow all the rules of SIMULA. Sometimes the compiler can detect
mistakes; sometimes they only show up when we run the program; sometimes, but very rarely, the
compiler and runtime system both fail to detect an error, with unpredictable results.

Even when a program compiles and runs without producing error messages, the program is only
correct if the actions performed are those intended. In this case we have written a correct SIMULA
program, but not the correct program to perform the task required. This book will teach you to write
correct SIMULA programs. It can only guide you towards writing programs which perform
correctly. The rest is up to plain common sense, planning and persistence - the three Ps of
programming.

When it comes to writing correct SIMULA programs, there are two sets of rules. Although it is not
always sensible to separate them, the error messages from the compiler may refer to mistakes in this
way and so we will look at them briefly now.

Syntax rules

The commonest errors reported by a compiler are those which do not obey the grammar or "syntax"
of the language. Often they are the result of typing errors. If you still have not managed exercise
1.1, this is probably because of a syntax error caused by mistyping.

The rule that a program block must start with begin and finish with end is a syntax rule.

Syntax of declarations

The declarations

integer Intl;

and

integer Intl,Count;

both follow the syntax rules for declarations. A declaration has to be a keyword giving the type,
followed by an identifier list. An identifier list is either a single identifier or a series of identifiers,
separated by commas, with the option of as many spaces as desired either side of the commas.

The syntax rules for SIMULA, like those for most programming languages, are very strict. You
cannot omit the space which indicates the end of the keyword integer, without breaking the syntax
rules for a declaration.

Sometimes breaking the rules for one sequence, will produce a syntactically correct piece of
SIMULA, with a different meaning. For instance, if we had mistyped the comma in the second
declaration above, hitting the semi-colon key instead, we would have got the following

integer Intl;Count;

which clearly violates the syntax rules for a declaration.

As we shall see later, this sequence could still be correct SIMULA, meaning the declaration of an
integer called Intl, followed by a call on a procedure called Count. The grammar of the sequence is
correct, but its meaning is now different and wrong. In this case the compiler would still probably
report the error, but as one of the second category of compiler detected errors, which are dealt with
below.

Before considering this second category, let us look at some more syntax rules. These still deal with
our earlier examples and will probably answer some questions which have occurred to you already.

Syntax of identifiers

We have used the word identifier as the technical term for the name given to something in our
programs. So far we have not considered what an identifier must look like.

The identifiers which we have used so far are

Intl
Count
OutInt
OutImage
Reall

Notice that procedure names are identifiers and follow the same rules. Keywords have the same
syntax as identifiers, but they are not available for the programmer to define or redefine.

The meaning of an identifier is defined by a declaration. System identifiers,
like OutInt and Outlmage, are already defined outside the program, but can be redefined inside it.
This, however, is straying into our second category of rules. The syntax rules are as follow.

An identifier is a sequence of letters, numbers and underline characters (the last are known
sometimes as break characters). An identifier must start with a letter.

Some systems set a limit on the number of characters in an identifier. Others allow long identifiers,
but only look at the first so many characters. You should consult the documentation for any system
before using it, especially when moving a program from one system to another.

Letters are often called "alphabetic characters", numbers "numeric characters" or "digits". Mixtures
of these two types are called "alphanumeric characters".

The following are valid identifiers

TOTAL

Al
NEW4SUB6
MAX SIZE
G43

I

Syntax of blocks

We have already looked at the syntax of blocks informally, now let us be a little more formal. The
rules for a block are as follow.

A block starts with the keyword begin, which, like all keywords, must have at least one space
following it or be the last word on a line.

This keyword is followed by a list of declarations or a list of statements or a list of declarations
followed by a list of statements. Statements and declarations are separated by semi-colons or
keywords. All declarations must come before any statements in a block.

A block ends with the keyword end.

The following are valid blocks

Example 2.1
begin
integer I
end

Example 2.2
begin
Result := 4
end

Example 2.3

begin
integer I;
real Arc;
I :=5;
Arc := 3.2;
OQutInt (I, 3);
OutImage

end

Although all these blocks are syntactically correct, 2.1 will not result in any actions, since it
contains no statements. 2.2 will cause an error to be reported, since there is no declaration to set
aside space and define a type for Result before it is used in the statement.

Exercises

You are probably getting rather impatient with all these rules. Let us try out a few of them. In each
of the following program blocks, find and correct the syntax errors.

1. begin
integer I1.12;

I1 := 3;
I2 := I1
OutInt (I2,4);
OutImage
end
2. begin
Res := 4;

integer Res;
OutInt (Res, 6);
OutImage

end

3. begin
OutInt (609;6);
OutImage
end

4. begin
Outtext ("LINE ONE");
OutImage;
Outtext"LINE TWO";
OutImage
end

You should also go back to the error messages you got in chapter 1 and see if you can understand
them better now.

What about statements?

The only major component of our program blocks for which we have not given proper syntax rules
is the statement. In fact statements can have many different forms and we need only concern
ourselves with a few at a time. We have used two forms of statement so far - procedure calls and
assignments - and we can give some rules about these. In addition we can note that a block can be
used in place of a simple statement. In this case it is called a "sub-block" or a block which is "local"
to the program block. The reason for such local blocks will become apparent later, but their use is a
major feature of SIMULA.

A procedure call is an identifier (the name of the procedure) followed in some cases by a parameter
list which is enclosed in brackets. The parameter list is a list of identifiers, constants and
expressions, separated by commas.

We have already defined identifiers. We shall define constants properly in the next chapter.
Expressions are sequences of SIMULA which give values. They are dealt with briefly when we
consider assignments below and more fully in mathematical appendix A. Those of us who are not
interested in mathematics should only need an informal understanding of expressions and can omit
this appendix without missing anything.

https://web.archive.org/web/20040923042428/http://www.macs.hw.ac.uk/~rjp/bookhtml/appenda.html
https://web.archive.org/web/20040923042428/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap01.html

Examples 2.4: Procedure calls.

Outlmage No parameters. Moves output to next line.

One parameter, a text, which is printed on the current line. In this example a text

Outtext("HI" .
uttex() constant is used as the parameter.

Two parameters, both integers, separated by a comma. Prints out the first integer on
the current line, padding on the left with spaces if this produces fewer figures than
the second integer. Either or both the integer constants given as parameters in the
example could have been replaced with identifiers or expressions.

Outlnt(643,3)

Assignment statements have an identifier followed by optional spaces, followed by the assignment
"operator", followed by optional spaces, followed by an expression. The assignment operator is the
sequence colon followed by equal-sign, :=. Before giving an informal description of expressions, it
is probably best to consider the examples of assignment statements given as 2.5.

Examples 2.5: Assignment statements.

Res := 3

Count := Last

Count := Last + 1

Message := "PLEASE TYPE YOUR NAME"
Next 1= Average*Number + 2

The use of spaces before and after the assignment operator has no effect on the correctness of the
statement. This applies to all "operators" in SIMULA.

Expressions

Several kinds of expressions are shown to the right of the assignment operator in these examples.
The simplest of these is a constant, such as 3 or "PLEASE TYPE YOUR NAME". These are
explained more fully in the next chapter.

An expression can also be a single identifier, such as Last in the second example.

The remaining examples show identifiers and constants separated by operators. Thus

Last + 1

is the identifier Last followed by the addition operator followed by the constant 1.

Average*Number + 2

is the identifier Average followed by the multiplication operator followed by the identifier Number
followed by the addition operator followed by the constant 2. We shall not attempt a complete
definition of expressions, but explain them as we need to use them. These examples should give a
feel of what is meant.

A note on operators

The commonest arithmetic operators are given below. For a complete outline of mathematical
operators, see appendix A.

+ Addition

- Subtraction

* Multiplication

/ Division with non-whole numbers (reals)
/ Division with whole numbers (integers)

I~

Assignment

Saying what you mean

As we looked at the rules for writing parts of SIMULA programs, we found that it was possible to
write SIMULA whose syntax was correct but which was still illegal. There are extra rules to be
obeyed. These spell out the meaning of a sequence of SIMULA. When the way we write the parts
of such a sequence is correct, it is still possible that we have put these parts together in a way which
has an illegal meaning. These rules of meaning are sometimes called the semantic rules or, more
simply,semantics of the language.

English has syntax and semantics in the same way, although they are far more complex than those
for SIMULA. Let us look at an example in English of a sentence whose syntax (or grammar) is
correct, but whose semantics (or meaning) is nonsense.

"The dish ran away with the spoon."

This sentence obeys the normal rules of English grammar. The reason that it would be rejected as
nonsense is that the nouns, "dish" and "spoon", are defined in such a way that they do not fit the
verb, "ran away". By changing the nouns or the verb we can produce a sentence with the same
syntax, but with a sensible meaning, such as

"The dish belonged with the spoon."

In SIMULA we could produce the same effect in the following program block.

begin
text T1;
Tl := 3
end
Here the operator ":=" acts like the verb and "T1" and "3" act like nouns. "T1" and "3" represent

types which cannot be assigned to one another. The statement "T1 := 3" is nonsense because the
meaning of "T1" is wrong. Let us take one more example from English, before we spell out the
most important rules for the SIMULA building blocks we have used so far.

"Come to my arms my beamish boy."

Lewis Carroll delighted in writing syntactically correct nonsense, like Jabberwocky. The sentence
above illustrates a favourite device. The only word that makes this nonsense is "beamish". From its
position in the sentence we know that this must be an adjective describing "boy", but there is no
such adjective. It has no known meaning. Our minds may be able to infer some meaning (this is a
large part of the fun of nonsense poetry) but that does not make unambiguous sense out of
nonsense.

The following SIMULA program block contains a similar use of a meaningless concept, i.e. one
which has no properly defined meaning.
begin
Tl := 3
end

This time we have not defined T1 as having a type which fails to match "3". T1 has not had any
type defined for it at all. It has not been declared before being used and therefore no space has been
reserved for it and no type has been allocated to it.

So, a few rules about how we must write SIMULA to avoid semantic errors.

Semantics of declarations

The same identifier cannot be declared twice in a block.

The identifier is used to name a space in the computer's memory which is large enough to hold a
value of the type specified. Whenever the identifier is used subsequently, it refers to this space and
this type of value.

Semantics of procedure calls

A procedure call must have the correct number of parameters.
Each parameter must be of the correct type. This is explained in more detail in the next chapter.

The actions of the procedure are performed, using the parameters to provide information for the
procedure if necessary.

Semantics of assignments

The type of the expression to the right of the assignment operator must be
"compatible" with the type of the identifier on the left.

The value of the expression on the right will be stored in the location reserved for the identifier on
the left.

Semantics of expressions

The types of the quantities in an expression must be compatible. The type
associated with the value of an expression is determined by the types of the
quantities in it, except when the division operators are used. In this case the type
is the same as the operator, i.e. integer for '"//" and real for "/".

The working out of an expression by the SIMULA system, known as its "evaluation", is done in the
following order:

Working from left to right all multiplications and divisions are performed;
Working from left to right all additions and subtractions are performed.

This is explained more fully in appendix A.

Semantics of blocks
Any identifier used in a statement in a block must already have been declared.

The statements in the block are performed in the order indicated.

Syntax and semantics of a comment

A comment is a special sequence in SIMULA which is treated as a space by the
compiler. It contains a message which explains what is going on around it in
human terms. Its syntax is quite simple.

A comment is:

The keyword comment, followed by any sequence of characters ending at the first semi-colon, ;.
or

the character !, followed by any sequence of characters ending at the first semicolon.

or

Any sequence of characters following the keyword end, ending at the first occurence of the
keyword end, else, when or otherwise or a semi-colon or the end of the program.

Example 2.6 shows a program which uses all of these forms. It is very fully commented. In practice
you will probably not need this sort of detail, but better too many comments than too few. In our
worked examples I shall include comments, partly to help you understand things and partly to get
you into the habit of using them. They will help you see what is going on, but only in the important
places.

A word of warning is needed here. Be very careful to end your comments properly. If you forget a
semi-colon or keyword, as appropriate, you will lose some of the following program, since it will be
treated as part of the comment. In particular, remember that the end of a line does not end a
comment, as the first instance in example 2.6 shows.

To be consistent we need the semantic rules for comments. Comments have no meaning in the
program.

Example 2.6: The use of comments.
begin

comment Double space removal program,
first version, Rob Pooley, March 1984;

text T; ! Holds the text to be processed;
InImage; ! Reads the text into SysIn.Image;
inspect SysIn do ! Refer to SysIn not SysOut;
begin
T :- Blanks (Image.Length); ! See the next chapter;
:=Image; ! Copies the characters into T;
end;
if T.GetChar=' ' then ! First character is a space?;
begin
if T.GetChar=' ' then ! Second character is also?;
T:=T.Sub(2,T.Length-1); ! Remove first character;
end;

comment Now write out the text;
OutText (T) ;
OutImage

end Double space remover

Summary

This has been a longer chapter and has introduced a lot of important ideas. You should not worry if
you do not see the point of some of it yet. Whenever we come to look at a new feature in SIMULA
you will see how the concepts of syntax and semantics help define the ways in which the feature
can be used. Within a few chapters you will find that you are using words like syntax without
noticing. In the meantime, you may need to refer to this chapter while reading some of the
following chapters, until you feel confident.

We have looked in this chapter at the rules that tell you how you must write your program for the
compiler to be able to make sense of it. These are called the "syntax" of SIMULA.

We have defined the syntax of comments, identifiers, declarations, some types of statements and
blocks. We have looked at, but not given any definite rules for, expressions.

We have looked at how meaningless programs can be written, even when the individual parts of the
program are correct. The rules that define the meaning of the program are called the "semantics" of
SIMULA.

We have seen the important semantic rules for those parts of SIMULA whose syntax we had
described earlier.

We have looked at the rules for comments, which have no meaning, only syntax.

Exercises

Correct the errors in the following program blocks.

1. begin
integer First;
First := 3;
Second := First
end

2. begin
integer Next;
Next := 4;
OutText (Next) ;
OutImage
end

3. begin
text Line;
Line := "MESSAGE ONE";
OutImage (Line)
end

4. begin
integer I;
I := n3n;
OoutInt (I+2,4);
OutInt(I-4,I,3);
OutImage
end

5. begin
integer One, Zero;

One := 1;

Zero := 0;

One := One // Zero
end

What is different about 5?

Chapter 3

Type Cast Actors

The importance of types

So far we have seen three types: integer, real and text. The only one we have looked at in any detail
is integer. In fact SIMULA contains several other types as keywords or combinations of keywords.
In addition it is possible for you to create combinations of these simple types and give them names,
by using the class mechanism. In this chapter we will look at the simple types which are already
defined in SIMULA.

Types in assignments

A type is given in a declaration so that the SIMULA system knows how much space to allow for the
declared quantity. The system checks whenever a new value is stored into this location that the
value is of the same type. If the types are different then the system may do one of two things.

1.It may "convert" the quantity being stored to that of the location. This is only possible
between the types integer and real and their short and long variants.

2.If conversion between the types is not specified in SIMULA, the system will report a
semantic error.

SIMULA will only convert one type to another where this has a clear meaning. In practice this is
only the case for arithmetic values, i.e. types which represent numbers. Even there it may need
clarification. Unlike some languages, it is not enough that the two types take up the same amount of
space in the computer. Try examples 3.1 and 3.2 to see how your SIMULA system handles such
situations.

Example 3.1: A legal assignment of one type to another.

begin
integer Intval;
real RealVal;

Realval := 3.2;
IntVal := RealVal;
OutlInt (IntVal,4);
OutImage

end

Example 3.2: An illegal assignment of one type to another.

begin
character CharVal;
integer IntVval;

Charval := '3.2"';
IntVal = CharvVval;
OutlInt (IntVval,4);
OutImage

end

Clearly we must be very careful how we use types. Even where we are allowed to mix types, we
must be careful that we understand what will happen when a value of one type is converted into a

value of another type. For instance, what would happen in Example 3.1 if the value assigned to
RealVal was 3.5 or 3.9? Is it rounded up or down?

Allowing the system to convert things in this way is sometimes known as "implicit conversion".
SIMULA also provides procedures which can be used to carry out type conversion in a controlled
way. In general it is safer to use these "explicit conversion" procedures, so that it is obvious when
reading the program what is happening. We shall look at the rules used in implicit conversion at the
end of this chapter.

Types in expressions

The rules about mixing types in assignments also apply in expressions. For instance, we are not
allowed to add together an integer and a text.

Example 3.3: A legal mixing of types in an expression.

begin
integer IntVval;
real RealVal;

IntvVal := 2;
RealVal := 69.54;
RealVal := IntVal + RealVal - 4;
OQutFix (Realval,?2,6);
OutImage
end

Example 3.4: An illegal mixing of types in an expression.

begin
character CharVal;
real RealVal;

Charval := '2';
RealvVal := 69.54;
RealVal := CharVal + RealVal - "4";
OutFix (RealVal, 2,6);
OutImage
end

Again you should try compiling and running examples 3.3 and 3.4. To complete this brief look at
types in expressions, here are some rules of thumb about what happens when you mix arithmetic
types in expressions and implicit conversion is performed.

Where real and integer values are mixed in an expression, they are all converted to real values.

Where the real division operator, /, is used in an expression all values in the expression are
converted to real values.

Where the integer division operator, //, is used in an expression, the values must be integer or an
error is reported.

This subject is covered in more detail in the mathematical appendix B.

Types of parameters

Exactly the same rules apply where values are passed as parameters as apply when they are
assigned. In effect the parameter given is assigned to a location with the type specified for that
parameter. This will be discussed further in chapter 5.

Standard types

We shall now look at each of the simple types provided in SIMULA. For those who wish to use
SIMULA for mathematical programming, appendix B contains more information on the use of
arithmetic types.

integer

As we have seen, values are of type integer if they are whole numbers. They may be positive,
negative or zero.

On any particular SIMULA system there will be a largest positive and a smallest negative number
which can be held in an integer location. The documentation for a particular system will tell you
what these limits are. There are system constants which contain them and these may be used in your
programs to check that your values do not exceed them. They are called MaxInt and MinInt
respectively and are described in chapter 20. Such limits do not normally cause problems.

In our programs we have used integer constants to represent values being assigned to our integer
locations. An integer constant is a whole number written as a sequence of decimal digits, i.e. any
digit in the range 0-9. This may be preceded by a minus or, less commonly, a plus sign. A minus
sign indicates a negative value; a plus sign has no effect.

Example 3.3: integer constants

2
45678231
-432

+ 1245

Spaces after the plus or minus are ignored. Spaces between digits are not allowed.

It is also possible to give integer constants in other number bases. This is described in mathematical
appendix C.

real

A real value is a number which is not necessarily whole. It is held in a form which allows it to
contain a fractional part. In common speech it is what is known as a 'decimal' number or decimal
fraction, i.e. it is written with a decimal point separating the whole and fractional parts of the
number.

A real value is restricted both by a largest/lowest range and by the number of significant decimal
places which can be held. Again this will be explained in detail in the documentation for your
SIMULA system. There are two system real constants, Maxreal and MInReal, which may be used to
check them in your programs. These are described in chapter 20. Again they will not cause
problems for most users.

Most of us are used to writing decimal numbers (decimal fractions) in what is technically known as
"fixed point" notation. The examples of decimal constants used in examples so far are in this form.
It can be described as two strings of decimal digits (in the range 0-9) separated by a full stop or
period. Like integers they may be preceded by a minus or plus sign.

Example 3.4: Legal fixed point real constants.

5.7

236.0
3246.8096
-45.87

+ 46.876

https://web.archive.org/web/20040923043159/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap20.html

The use of spaces is not allowed between digits or between a digit and the decimal point.

Mathematicians often use another notation to write decimal values, especially where these are very
large or very small. This way of writing them is known as "floating point" and is also allowed for
writing real constants in SIMULA. It is described in mathematical appendix B, since most
programmers will never use it.

character

A character holds a value which represents a single character. SIMULA allows you to use any of the
characters in the "character set" of the computer that you are using plus the characters defined by
the International Standards Organisation (ISO) character set standard. (This is sometimes known as
the ASCII character set.) More details on character sets are given in chapter 12.

It is important to stress that a character has a different type from a text (see below).

We normally think of a character as something written on a page. In the computing world this sort
of character is often referred to as a "printing character". It is probably easy enough for us to accept
that a space is also a printing character. It is rather harder to grasp that a character can produce other
effects, such as making the printer start a new line or a new page. These are non-printing "control
characters". Some of these character values produce very complex effects in certain printers or
terminals and no effects or different effects in others.

In general terms the values held in character locations are those which are sent as instructions to
printers, terminals and other hardware devices. Most of these instructions control the printing and
formatting of written information. The simplest merely instruct the device to print a visible
character.

Character constants are normally written as single characters, enlosed in single quotes. Note
carefully that a single character enclosed in double quotes is a text constant and may not be used as
a character.

Control characters cannot be written in this way. They use their internal integer value (see chapter
12), written as an integer constant and enclosed in exclamation marks, inside single quotes. This
notation can also be used to write printing characters, but is very clumsy.

Example 3.5: Legal character constants
\l A \l
\l b \l
] 4]

1o
o

L} L}

ERCH Control character, enclosed in exclamation marks.
Note that case, i.e. the difference between capital and small letters, is significant in character

constants. Thus 'A' and 'a' are not equivalent.

Note also how a single quote is represented as a character constant.

Boolean
A Boolean quantity can only have two values. These are True and False.

The use of Boolean quantities may not be intuitively obvious and we merely mention them here.
They will be considered in more detail when we look at conditional statements and loops.

A Boolean can be assigned the value of any conditional expression and can be used wherever a
conditional expression might be used, e.g. in an if statement or a while loop.

https://web.archive.org/web/20040923043159/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap12.html
https://web.archive.org/web/20040923043159/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendixb.html

Boolean constants can only be represented by the keywords True and False.

text

A text variable is used to refer to and manipulate sequences of characters. A sequence of characters
is often known as a "string". In the examples using text variables so far we have often assigned
strings as the values to be placed in locations declared as type text. From this it might seem that a
text and a string are the same thing. In fact a text is more complex than a string and we shall spend
most of chapters 5 and 8 looking at what a text really holds.

Text constants are strings, i.e. sequences of characters, surrounded by double quotes. Each character
in a string can be any of those in the ASCII (ISO) standard set.

A character in a string can also be represented by its internal integer value enclosed in exclamation
marks. See chapter 12 for details of internal representation.

When a string is too long to fit onto a single line of your SIMULA program it can be continued on
the following line by typing a double quote at the end of the first line and again at the start of the
second line. These quote characters are ignored and the value of the constant is the string on the
first line followed by the string on the second line.

Example 3.6: Legal text constants.

"The cat sat on the mat"

"34.56"

no
]

"This string is typed on two lines, but will be treated as if it "
"was on a single line, without the second and third double quotes."

"This string has a control character !10! embedded"

Note that the last string shown in 3.6 will contain only one double quote. When you want to have a
text constant which contains one double quote you must type two, so that the compiler knows that it
is not the end of the string. Another example showing this is:

"This string contains only one "", but we must type two."

Note also that the single character text constants "%" and """" are not the same as the character
constants '%' and '""'. They have different types.

Initial values

An identifier of a certain type, which is not declared as a constant (see later in this chapter), is often
referred to as a "variable" of that type, since, unlike a constant of the same type, its value can be
changed by assigning to it. When we declare such variable, the SIMULA system places an initial
value in the location identified. This value is the same on all SIMULA systems on all computers for
all variables of a given type.

Thus it is quite legal, and meaningful, in SIMULA to write

begin
integer IntVval;
OutlInt (IntVval,d);
OutImage

end

https://web.archive.org/web/20040923043159/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap12.html

since the initial value placed in the location identified by IntVal will be printed. This will be the
value initially given to all integer locations.

The values placed in each type of location are given below.

integer 0
short integer 0
real 0.0
long real 0.0
character The ISO NULL character, which is 'invisible'.
Boolean False
text NoText, the empty text, referring to an empty string.

Equivalent to "".

Implicit conversion of reals and integers

When a real value is assigned to an integer location or vice versa we have said that the value will be
converted to one with the type of the location. When integers are converted to reals, no problems
are involved in understanding what will happen. The values 3 and 3.0 are usually thought of as
identical and such a conversion presents no ambiguities.

On the other hand, when reals are converted to integers, the result depends on how we deal with the
fractional part of the real value. How do we get get rid of the figures to the right of the decimal
point?

If we go back to our earlier examples we might use them to produce example 3.7. Running this
would show the outcome of implicit conversion of reals to integers.

Example 3.7: Implicit conversion and rounding.

begin
integer I1, I2, I3;
I1 := 3.2;
I2 := 3.9;
I3 := 3.5;

OutInt (I1l,4);
OutInt(I2,4);
OutInt (I3,4);
OutImage
end
Clearly more than one outcome is possible.

If all reals are rounded up the output will be
4 4 4

if down

and if to the nearest integer value
3 4 4

or

the last two depending on whether 3.5 is regarded as nearer to 3 or 4.

Since no armchair programmers are allowed you should now try compiling and running the
program and see for yourself what happens. What happened? It was clear enough, I hope. When

implicit conversion is relied upon, SIMULA converts reals to integers by rounding to the nearest
integer value. 3.5 is rounded up.

There is more on this subject in mathematical appendix B.

Constant declarations

Constant declarations were introduced into SIMULA very late on and are still regarded as
controversial by older Simula programmers. They should be used with some restraint if you want to
move your programs to other systems. Older SIMULA systems will not have constant declarations.

A constant declaration allows an identifier to be assigned a value in its declaration. This identifier
may not then be assigned another value. This can be very useful when using the same value
frequently in a program, especially when the value is easily mistyped or has no obvious meaning.

Example 3.8 shows the use of a real constant declaration to represent Pi in a program which
calculates the area and circumference of a circle whose radius is typed in.

Any declaration of an identifier of the types in this chapter followed by an equals sign followed by a
constant of matching type is a legal constant declaration.

It is also legal to use an expression containing constants and identifiers from earlier constant
declarations as the right hand side of such declarations. This can aid readability by showing the way
in which some named constants are used to derive others.

Example 3.8: Constant declaration.

begin
real Pi = 3.14159; ! A constant declaration;
real Radius; ! A variable declaration;
Radius := InReal; ! Read in the radius;

OutText ("Radius = ") ;
OutFix (Radius, 6,12);
OutText ("Area = ");

OQutFix (Pi* (Radius**2),6,12); ! Area=Pi times radius squared;
OutImage;

OutText ("Circumference = ");

OutFix (2*Pi*Radius, 6,12); ! 2 times Pi times Radius;
OutImage

end..of..program

Summary

We have looked in some detail at the importance of the type associated with a value. In particular,
we have noted that values can only be stored in locations of the same type. Attempts to store them
in locations of a different type will result in implicit conversion to the type of the location or an
error being reported.

We have seen that mixing of types in an expression is restricted in a similar way. So is the use of
types of parameters.

We have looked at the standard types in SIMULA, namely integer, real, Boolean, character and text,
defining them and looking at how constants of each type are written.

We have looked at the rules controlling implicit conversions between reals and integers.
We have seen the initial values given to locations of each standard type.

We have seen how constant identifiers may be declared.

Exercises

Correct the following programs.

1. begin
integer IntVval;
Intval := '3"
end

2. begin
character LETTER;
LETTER := "J"
end

3. begin
OutInt ("34",2);
OutImage
end

4. begin
OutText ('There's many a slip');
OutImage
end

5. begin
OutText ("She whispered,"I love you."");
OutImage
end

What will be the value printed by each of the following? Compile and run them to check.

6. begin
integer IntVval;
Intval := 5.2 + 3.5;
OutInt (Intval,4);
OutImage
end
7. begin
real RealVal;
Realval := 3 / 2;
OutFix (RealVal, 2,6);
OutImage
end
8. begin
real RealVal;
Realval := 3 // 2;
OutFix (Realval,?2,6);
OutImage
end

If you do not enjoy mathematical examples, please try these anyway. This is the last time I shall ask
you to try any exercises of this kind, unless you are reading the mathematical appendices. From
now on only the simplest of arithmetic will be used and only to help us do more interesting things.

CHAPTER 4 - if only

Conditional statements

What do computers do?

It may seem a little late in this book to ask such a question, but we have really taken for granted
what computers are and what they can do. if we are to use them as fully as possible, we need to
understand exactly what they are capable of.

Most people probably used to think of computers as giant, superfast calculating machines. More
recently the idea of very small micro-computers has changed that Image somewhat. More
importantly, the use of computers in word processing and graphics (particularly computer games)
has introduced many more people to the use of computers in information processing and decision
making.

As programmers we can consider computers as performing three sets of functions, which can be
combined in our programs to achieve a wide range of tasks.

1.Movement of information - reading a magnetic tape and printing on a lineprinter; reading
the input from a keyboard and storing in random access memory; reading the input from a
"joystick" and moving a picture on a screen.

2.Arithmetic calculations - we have seen some examples of this already.

3.Comparison of information and choice of actions depending on the result - this chapter
will look at the basic mechanisms for this.

Conditions and choices

The ability that makes computers more than calculators or fancy typewriters is the ability to
perform different actions according to some condition or conditions, which it can determine to be
either true or false. Computers can be told, "Check this condition. If it is true then do the following,
otherwise do this other thing". In some cases the other thing is nothing. Put crudely, computers can
make choices.

What they cannot do, or, at least, as far as the author is aware, not yet, is decide which condition to
test, or whether the actions which follow are really sensible. They must be told these things and
programming languages have mechanisms for doing so.

In SIMULA, the most important construction for making choices is the "conditional statement" or,
as it is often known, the if statement.

What is an if statement?

Example 4.1: Simple use of an if statement.

begin
integer Intl;
Intl:=InInt;
if Intl=2 then OutText ("YES");
OutImage
end

This program will read in a whole number and compare its value against 2. If it is equal to 2 then
the program will print YES, otherwise a blank line will be printed. Compile and run it to make sure.

From this example we can see the syntax of an if statement.

An if statement starts with the keyword if, followed by a condition, followed by the keyword then,
followed by a statement.

The semantics are probably obvious to you as well.

The program checks the condition. If it is true, the statement is executed (or carried out, if you
prefer), but if it is false, the statement is skipped. The next statement, if there is one, is then
executed.

An if statement may be used wherever a simple statement may be used.

The if-then-else statement
Consider example 4.2 which uses if statements.

Example 4.2: Un-combined if statements.

begin
integer Intl;
Intl := InInt;

if Intl=2 then OutText ("YES");
if Intl ne 2 then OutText ("NO");
OutImage

end

Here we have added a second if statement to our first example, but all that it does is check the
opposite condition to the first. ne is the symbol for "not equal" in SIMULA. This program will print
out YES if the number read in is 2 otherwise it will print out NO. Again, try it and see.

This might seem a useful device, but it is wasteful since the program makes the same check - is the
number equal to 2 - twice and decides its actions on the basis of whether the outcome is true or
false. In practice this combination is so useful that SIMULA provides a less wasteful means of
achieving the same result. Rewriting our example using this concept we get example 4.3.

Example 4.3: The if-then-else statement.

begin
integer Intl;
Intl:=InInt;
if Intl=2 then OutText ("YES")
else OutText ("NO");
OutImage
end

A "real" program

So far we have used only trivial examples to demonstrate features of SIMULA. None of them has
had a purpose apart from that. Although writing and correcting such programs is interesting for a
while, it soon becomes boring. We are now going to begin to construct a series of programs which
have a very real and very practical purpose. If you complete this book you will have built the basis
of a suite of word processing programs, which will allow simple editing and formatting of text files.
You may then extend these to provide some very powerful tools. We shall also look at some simple
database tools, which will allow you to store and retrieve information efficiently.

The important thing about writing large programs which perform complex functions is to break the
design into sections which perform sub-tasks and which are simple enough to write easily. Our next
examples introduce simple programs, although ones which are more complex than those we have
seen so far. On its own each is not very useful, but later on we will use it as a building block in our
much more powerful programs.

A "'top down'"' design

Soometimes, in explaining the programs we wish to write, we start from simple components and
work towards the whole system. This approach is known as "bottom up" design, for fairly obvious
reasons. Where we are only designing a small part of our "grand design" this approach is sufficient.
There are not too many components to hold in our heads as we build up the program.

When the system we are designing gets bigger, this approach is not good enough. It would be very
difficult to write down now all the parts of our formatting and editing system in this kind of detail,
especially as we have not said exactly what we want the system to do. It is much more sensible to
start at the highest level, with our overall system, and break this down step by step until we reach
components which are simple enough to write in SIMULA in detail. This approach is called "top
down" design.

Here is a quick sketch of the design of our total system, concentrating on the line formatting
programs we are about to write. This shows a major advantage of top down design: since the low
level components are designed to operate as independently as possible, we can write and test them
separately and then build up our overall system by combining tested units. The only important parts
of each component are its function - what it does - and how it receives and passes on information
from and to other components - its "interface".

Figure 4.1: Overall top down design of Formatter/Editor

EDITOR/FORMATTER
I
EDITOR FORMATTER
I
CONTENTS PREFACE CHAPTERS INDEX
I
TITLE PAGES
I
HEADING PARAGRAPHS NUMBERING
I
INDENTING LINES

CLEANING LEFT MARGIN LENGTH RIGHT JUSTIFYING SPACING

This type of design allows us to begin work now, without losing sight of the overall plan. It is also
possible to design components now and improve on them later if we discover better ways of
implementing them. Most importantly this form of design makes it easier to change parts of the
system without upsetting other parts, since the degree of interdependence of components can be
seen easily.

We shall fill in other branches as we learn more of SIMULA's capabilities. In fact we shall not
finish the system. No piece of software is ever so good that extra or better features might not
improve it. You should be able to add such refinements for yourself before we finish.

One last point about top down designs: in reality it is impossible to start with a complete plan, along
the lines shown, and write the final program from it. The process of implementing the program in
SIMULA will show errors in it and suggest better solutions to some problems. Thus, we can change
the design in the light of experience, but we should never change the program without making the
same changes in the design. It is surprising how quickly you can forget what the program really
does if you have not got a clear description of it. It is even worse if someone else has to look after a
program written by you. Since we are writing "real" programs, we must do the job properly.

Some simple starting points

We are going to write some programs now which can be extended to perform some of the functions
associated with components in our plan. In fact they may prove useful in other places in the system
as well. There are two that are simple to write using if statements and if-then-else statements. One

will check if a text starts with a double blank and remove one blank if it does. The other will check

Double blank removal

This problem is easy to describe in English. We have a text variable, which may contain any
number of printing characters (we assume no non-printing characters are present). If the first two of
these are spaces (ISO blank characters) we want to remove one of them, to leave a shorter text.

A good way of writing programs is to write them in SIMULA as far as we can at the moment and to
describe any parts which are missing in English. The program in example 4.4 shows this, with the
genuine SIMULA parts in normal letters and the informal English descriptions in italics.

Example 4.4: Informal description of double space remover.

begin
text T;
read in a line of text and place it in T;
if first character in T =' ' then
begin
if next character in T =' ' then
remove the first character from T
end;
OutText (T) ;
OutImage
end

Example 4.5: More complete version of double space remover.

begin
text T;
InImage; ! Read into SysIn.Image;
inspect SysIn do ! To use SysIn.Image, not SysOut.Image;
begin
T :- Blanks (Image.Length); ! Create a text of the required length;
T := Image; ! Copy in the contents of SysIn.Image;
end;
if first character in T =' ' then
begin
if next character in T =' ' then

remove the first character from T
end;

OutText (T) ;
OutImage
end

We shall use italics in programs in this way from now on.

There is one thing about the use of if statements which this program shows, even in this unfinished
form. The then in an if statement must be followed by a statement. The syntax of SIMULA states
that this following statement must not be a second if statement and so the second test is made by
an if statement enclosed in a begin-end pair. In other words the statement following the then is a
compound statement containing a single if statement. Any sequence of one or more statements, not
containing declarations, and enclosed in the keywords begin and end is a compound statement and
may be used, amongst other things, to hide a second if statement, following a then. Compound
statements are explained more fully at the end of this chapter.

The condition in the second if statement is only checked if the condition in the first if statement is
true. Thus we only check if the second character is a space after we have found that the first one is.

This can be extended so that the statement following the second then is an compound statement
containing a single if statement, allowing us to check for triple spaces or any combination of three
characters we chose. By further extension of this we can check four or any other number of
conditions, where each is only checked if all those which precede it are true. This is often referred
to as "nesting" if statements inside one another.

Let us start to fill in the non-SIMULA parts of the program. As we are going to look at texts in
some detail in the next chapter we shall have to cheat by learning some information about them
early. We shall also have to use some facts about reading and writing in SIMULA which we will not
cover in detail until chapter 7.

Firstly we need to read in a line from the program's input. We will assume that all input is coming
from a terminal, but if you are using a different system the same program will work, taking its input
from the batch input stream. The default input is referred to as SysIn. This will be looked at in detail
in chapter 7.

To read in from the normal input all we need to do is use a system procedure called Inlmage, which
matches our output procedure Outlmage. This reads in the next line (sometimes called the next
"record") and places its characters in a special text location called Image. This is predefined, like
system procedures, and does not need to be declared. We can then copy Image into T.

As Image is inside SysIn, we enclose references to it in an inspect statement, which specifies SysIn
as the place to find it. If we did not do this the Image contained in SysOut, the default output, would
be taken.

Now our program, as shown in example 4.4, is looking a bit healthier.

Using :=, we are not allowed to assign more characters to a text than it already contains. The use of
the line

T :- Blanks (Image.Length)

fills T with the same number of space characters as the total number of characters in Image,
allowing the assignment of the actual contents of Image. Blanks is explained in detail in the next
chapter, but for the moment we will use it without further comment.

Now we need to check the first character in T. To do this we will use a procedure which gives the
next character in a text as a character value. Each time it does so it moves along the text, without
changing the characters in the text. It is called GetChar and is a part of the text itself. When we first
looked at texts I said that they contained more than just the characters assigned to them. One thing
every text contains is a set of procedures of its own.

https://web.archive.org/web/20040923043816/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap07.html

GetChar is different from the procedures we have seen so far in two ways. Firstly, unlike system
procedures, it is part of a text rather than of the whole program. Secondly, when it is called it
"returns a value" of type text. This means that it can be used to assign a text value. In fact the
procedure Inlnt also returned a value, of type integer, in an earlier example in this chapter, but we
did not investigate it fully. The whole subject of procedures will be considered in detail in chapter 6.
For the moment the use of GetChar in this example should be clear enough.

To call a procedure which is inside an object like a text, we use the name of the object, T, followed
by a dot, followed by the procedure's name, GetChar. Image.Length is another example of accessing
an attribute inside a text.

Now our program, as shown in example 4.6, is nearing completion.

Finally we need to find a way to remove the first character from T. To do this we will use two more
procedures which are found inside each fext object, Length and Sub. The first returns an integer
value, which is the number of characters currently held in the text. The second is a procedure which
returns a text which is a section of the characters in the original text.

Length has no parameters, but Sub takes two, both integers. The first is the number of the first
character in the text to be included in the text returned. The second is the number of characters from
the original text to be included. Thus T.Sub(1,4) returns a text containing the first four characters of
T. Combining Length and Sub we can finish our program, or at least produce one that will work for
most cases.

Example 4.6: Almost complete double space remover.

begin
text T;
InImage;
inspect SysIn do
begin
T :- Blanks (Image.Length);
T := Image
end;
if T.GetChar=' ' then ! Is the first character a space?;
begin
if T.GetChar=' ' then ! ITs the next character a space?;
Remove the first character from T
end;
OutText (T) ;
OutImage
end

Example 4.7: Complete double space remover.

begin
comment Double space removal program,
first version, Rob Pooley, March 1984;

text T; ! Holds the text to be processed;
InImage; ! Reads the text into SysIn.Image;
inspect SysIn do ! Refer to SysIn not SysOut;
begin
T :- Blanks (Image.Length); ! See the next chapter;
:=Image; ! Copies the characters into T;
end;
if T.GetChar=' ' then ! First character is a space?;
begin
if T.GetChar=' ' then ! Second character is also?;
T:=T.Sub(2,T.Length-1); ! Remove first character;

end;

comment Now write out the text;
OutText (T) ;
OutImage

end Double space remover

Do not worry too much if this is not completely clear at first. With a little study you should get an
idea of what is happening. An even better idea is to try compiling and running this program. Try
various combinations of spaces at the start of the input you use.

Exercises

4.1 Try compiling and running the program below.

begin
text T;
T :- Blanks (1l);
T (=" "; ! Single space;
if T.GetChar=' ' then
begin
if T.GetChar=' ' then
T := T.Sub(2,T.Length)
end;
OutText (T) ;
OutImage
end

Change this program so that whatever value is assigned to T it will not cause a runtime error.

4.2 What happens if the value assigned to T is NoText or ""? If your program does not cater for this
case, change it.

4.3 Write a version of our original program which replaces three blanks at the start of a text with a
single space.

4.4 Write a version of our original program which replaces two or three spaces with one.

4.5 Could we write a program which looks along the whole of a text and replaces all occurences of
double blanks? This may or may not be possible with our present knowledge of SIMULA. What
facilities would make it possible and/or easier?

4.6 The following program was intended to write a greeting, but it only prints a blank line. Fix it.

begin
comment This program is supposed to say hello
OutText ("Hello™)
comment But all it does is print blank lines;
OutImage

end of greeting

Line breaker

Our second example breaks lines at a length of 60 characters. It is rather crude, but we can improve
it. This is another development technique which is widely used - stepwise refinement. Stepwise
refinement works by getting part of the job working and moving, one step at a time, towards a
complete solution.

Again we start with an informal half SIMULA description, in example 4.8.

Example 4.8: Outline of a line breaker.

begin

text T;
InImage;
inspect SysIn do
begin
T :- Blanks (Image.Length);
T:=Image
end;

if T.Length>60 then ! Line too long;
Break T into two lines and print them
else OutText (T); ! Otherwise write it out unchanged;
OutImage
end

This time we have filled in more of the program to start with. As you become more familiar with
SIMULA, you will be able to write large parts of a program straight away. Do not be tempted to fill
in more than the most routine parts, however, as you may need to revise your design as you go.

You have probably noticed that the program uses an if-then-else statement. This is because the
statement following the else is not used if the statement following the if'is executed. T will not be
printed if it is split.

You have probably also noticed the comparison and the new symbol it uses, >. This replaces the =
and ne symbols that we have used before. It means "is greater than", as you may have guessed from
its use. At the end of this chapter is a full list of the comparison operators or "relational operators"
as they are known.

We are left to fill in the actions when the length of the line is greater than 60 characters. One
immediate problem is that more than one action is required, yet only a single statement is allowed in
this place in the if~then-else statement. Fortunately, we have already seen the answer.

Compound statements and blocks as statements

If you think back I mentioned that a block in SIMULA can be used as a statement. More generally,
we can use a sequence of statements enclosed in begin and end wherever we can use a simple
statement.

In fact SIMULA uses the term "compound statement" for such a sequence if it contains only
statements and the term block where it contains its own declarations. Let us rewrite our program
using each in turn to see this. First with a compound statement in example 4.9. Note that we have
used two new variables, which are only needed within the compound statement. We can rewrite this
using a block and declaring these where they are used. This prevents accidental assignment to them
elsewhere, since variables declared inside a sub-block are not visible outside of it. They are,
however, visible inside sub-blocks which it encloses. In general it is safest to declare variables as
close to the point where they are used as is possible.

Example 4.9: Line breaker with a compound statement.

begin
text T, First, Second; ! Two new text variables used;
InImage;
inspect SysIn do
begin
T :- Blanks (Image.Length);
T:=Image
end;

if T.Length>60 then ! Line too long;

begin ! Break into two add print separately;
First :- Blanks(60); Second :- Blanks(T.Length-60);
First:=T.Sub(l1,60); ! First 60 characters;

Second:=T.Sub (61, T.Length-60); !Second part;
OutText (First) ;

OutImage; ! To separate the lines;
OutText (Second)
end else OutText (T); ! Print unchanged;
OutImage

end

Example 4.10: Line breaker with a block as a statement.

begin

text T; ! No new text variables here;

InImage;

inspect SysIn do

begin
T :- Blanks (Image.Length);
T := Image

end;

if T.Length>60 then ! Line too long;

begin
text First,Second; ! Declare the variables here;
First :- Blanks (60); Second :- Blanks(T.Length-60);
First := T.Sub(l,60); ! First 60 characters;
Second := T.Sub(61,T.Length); ! Rest of text;

OutText (First); OutlImage;
OutText (Second)
end else OutText (T); ! Print unchanged;
OutImage
end

Table 4.1: Relational operators.

Here, as promised is a list of the simple relational operators in SIMULA.

Symbol Alternative Meaning

= eq is equal to

<> ne is not equal to

> gt is greater than

< 1t is less than

>= ge is greater than or equal to

<= le is less than or equal to
Summary

We have seen the use of if and if-then-else statements to enable choices within our programs.

We have seen how top down design works and begun to outline the software that we shall build as
our practical work in this book. Using if and if-then-else statements we have written programs
which will form the basis for some parts of our system - double blank removal and line breaking.

We have seen the concept of stepwise refinement.

We have seen how to replace simple statements with compound statements and blocks.

Exercises
4.7 Extend our line breaking program to cope with lines longer than 120 characters.

4.8 Could we extend the program to cope with lines even longer than this? How does this fit in with
the problem in 4.5?

Chapter 5 - Would you mind repeating that?

Texts and while loops

Don't stop until I tell you

In the last chapter we twice considered the question of how to extend programs which assumed a
maximum number of repeated tests, so that any number could be dealt with, as the data required. I
hope you managed to deal with triple spaces and triple length lines without too much trouble.
Obviously it would be more of the same to cope with four spaces or lines longer than 180 characters
and so on. But how can we cope with any number of repetitions?

This situation is obviously going to crop up in most real programs. To deal with it SIMULA has a
statement known as a while loop. Example 5.1 shows it in use.

Example 5.1: A while loop.

begin
comment Read and Total a stream of Positive numbers,
ending when a negative number is found;
integer Total,Next;

Next := InInt; ! Read in an integer;
while Next>=0 do ! Only perform the next statement if
condition is true;
begin
Total := Total + Next; ! Update total;
Next := InInt; ! Read in the Next integer;

1
1
end; ! Go back to the start of the while loop;
OQutInt (Total, 8); ! When the condition fails, print the total;
OutImage
end

This is a simple program and it is explained by its comments. Let us look at the syntax of
the while loop statement, which may be used wherever any simple statement may be used.

A while loop is the keyword while, followed by a condition, followed by the keyword do, followed
by a statement.

In our example the statement following the do is a compound statement, but any kind of statement
may be used.

This is very similar to the if statement, with while instead of if and do instead of then. The real
difference is in the meaning - the semantics.

The condition is tested and, like an if statement, if it is not true, the rest of the while loop is skipped
and the program continues after the while statement.

If, on the other hand, the condition is true, the remainder of the while statement, i.e. the statement
following do, is executed, again like an if statement. When this statement has been completed,
however, the program moves back to the while and tests the condition again. Thus the statement
following the do is executed repeatedly for as long as the condition remains true.

To see this more clearly, let us consider some possible streams of input.

The simplest is where the first number is negative. In this case the condition Next>=0 is false the
first time it is tested and the statement following the do is never executed. If we had used
an if statement the effect would have been the same.

Another possible stream is one positive number followed by a negative number. Here the condition
is true the first time and the number is added to Total. When the next number has been read the
program moves back to while. This time the condition is false and so the statement after do is
skipped this time and the total will be the value of the first number.

Exercise

5.1 Work through the case where two positive numbers are input, followed by a negative one. It is
known as "dry checking" when you try the program "by hand" in this way.

Compile and run the program to make sure you were right.

Line breaker revisited

We can now extend our line breaker to deal with any length of line. Let us write it out informally, to
get our design right.

The important things to consider when writing programs using while loops are:

1.What condition is to be tested?

2.Have all values used in the test been set the first time the test is carried out?

3.Are all the possible cases covered?

4.Are at least some of the values used in the condition potentially updated within the loop
before each subsequent test?

Bearing this in mind let us start with the program in example 5.2.

Example 5.2: General outline of a program using a while loop.

begin
Set up initial values;
while condition do
begin
Actions;
Update values tested in condition
end;
Final actions
end

The initial values are set by reading the line into Image as before and assigning its Length to an
integer, LenLeft. The condition to be tested is that the unprinted part of Image is longer than 60
characters. Once this length is 60 characters or less, we want to print the remainder of Image as a
separate line and this makes up the final actions.

This gives us example 5.3.

Example 5.3: Linebreaker 1.

begin
integer LenLeft;
inspect SysIn do
begin
InImage;
LenLeft:=Image.Length;
while LenLeft>60 do
begin
Actions;
Update tested variables
end;
OutText (Image.Sub (1, LenLeft));
OutImage

end..of..inspect..SysIn
end

Which leaves the actions and updating within the loop to be filled in. The actions are to print the
current first 60 characters of Image as a separate line. The updating must reduce LenLeft, otherwise
the loop will go on indefinitely. The simplest solution is to remove the first 60 characters from
Image and subtract 60 from LenLeft.

Thus our complete program is example 5.4.

Example 5.4: Linebreaker 2.

begin
integer LenLeft;
inspect SysIn do
begin
InImage;
LenLeft:=Image.Length;
while LenLeft>60 do

begin
OutText (Image.Sub (1,60));
OutlImage;
LenLeft := LenLeft - 60;
Image:=Image.Sub (61, Lenleft)
end;
OutText (Image) ;
OutImage
end..of..inspect..SysIn

end

This time I have used a more concise way of printing the first 60 characters and, since Image takes
the place of Second in the examples in chapter four, no extra text variables are used.

Exercise

5.2 Are there any line lengths which are not catered for? If you can think of any, modify the
program to cater for them.

What is a text?

In the last chapter we saw some properties of zext, which make it a much more complex type
than integer, for example. Let us consider further what exactly a text is and what properties it has. In
fact it is so complex that we shall only look at half of its properties here and leave the rest

until chapter 8.

So far we have seen that a text has a string of characters. This may be of any length from zero to
some very large number. The maximum length is system dependent and you should consult the
User's Guide or Programmer's Reference Manual for the SIMULA system you are using. It is
unlikely to be too small for you.

We have also seen that a text contains procedures, which are inside it or "local to it", to use the
technical term. In fact a text variable is not quite what it seems.

Strictly speaking the location reserved for the text variable holds a reference to a sequence of
characters. These characters are known as a text frame. A text reference contains a pointer to its text
frame plus related variables and procedures. The use of these will, hopefully, soon become clear.

https://web.archive.org/web/20040923044236/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html

A text reference

The variables inside a text reference are not visible outside it. They are used by the procedures
which form the visible attributes of a text, along with the text frame.

Here are the major parts of a text, with examples of their use.

Text frame

The value part of a text is the string of characters to which its reference variable points. This is
known as the text frame referenced by that variable. It is a location in the computer's memory
holding a sequence of characters and has a fixed length.

Two text frames may overlap and share some part or all of the same sequence of characters and, by
implication, of the same location.

Length

The length of the string of characters in the text frame is held in a hidden integer in the text
reference variable. Its value can be obtained by calling the local integer procedure Length. We have
used this in some earlier examples to find the length of a line of input.

Example 5.5: Use of Length

begin
integer Length;
InImage;
inspect SysIn do Length := Image.Length;
OutInt (Length, 8) ;
OutImage
end

Note that the name given to the integer is irrelevant to the call of Image.Length. I have called it
Length to demonstrate that the procedure Image.Length is different from any use of Length on its
own, in the program itself.

Pos

The position of the character which will be read next in the text frame is held in another hidden
integer variable within the text reference. It can be read by calling the integer procedure Pos. When
a text object is first created Pos will give the value 1. After calling GetChar for the first time it will
give 2 and so on.

Example 5.6: Use of Pos.

begin
InImage;
inspect SysIn do
begin
OutInt (Image.Pos, 4);
OutImage;
Image.GetChar;
OutInt (Image.Pos, 4);
OutImage
end
end

You should get

as output when you run this.

More

More tells you when you have reached the end of a text. It returns either true or false, i.e. it is a
Boolean procedure.

More gives the value true as long as the value given by Pos is between 1 and the value given by
Length. Thus, once the last character has been read, More returns the value false.

Example 5.7: Use of More.

begin
InImage;
inspect SysIn do
while Image.More do
begin
OutInt (Image.Pos,4); Image.GetChar;
OutImage
end;
end

When you run 5.7 you should get output of the following form.

1
2
3
4
etc. until Image.Length

Constant

Boolean procedure Constant is a late addition to the definition of text. It returns the value false
unless the text frame for its text reference is non-writeable, in which case it returns true. Only text
frames generated by reference assignment of a constant string (see below) or sub-texts generated
from these will cause Constant to return True. Any attempt to alter the contents of a text frame
whose reference returns true for Constant will cause a runtime error to be reported.

As a very new feature, Constant will not be recognised by many older systems.

Example 5.8: Use of Constant.

begin
text T;
T :- "Constant frame";
if T.Constant then OutText ("Correct") else OutText ("Wrong");
T :- Copy("Writeable");
if T.Constant then OutText ("Wrong") else OutText ("Correct");
end

Sub and Start

We have already used Sub. Sub returns a reference to a text frame made up of a sequence of
characters which are part of the original text. It has two integer parameters. The first specifies the
number of the character in the original text frame which will be the start of the subtext. The second
specifies the number of characters which will be in the subtext.

Example 5.9 will print out the following:

Miser
cord
Mire

Make sure you understand why. Try running it for yourself.

Note that Sub does not copy the characters from the original text. It merely creates a text reference
to part of the same location.

Example 5.9: The use of Sub.

begin
text T;
T:-"Misericordia";
OutText (T.Sub(1,5));
OutImage;
OutText (T.Sub(7,4));
OutlImage;
OutText (T.Sub(1,2));
OutText (T.Sub (5,1));
OutText (T.Sub(4,1));
OutImage

end

Recently, integer procedure Start has been added to the definition of text. It is used in conjunction
with Sub, to keep track of where the current text frame starts within the original text frame of which
it forms part. Only text frames generated by calls on Sub can cause Start to return anything but 1.

When a new text reference is generated by Sub, the value of Start in the new reference will be the
value of Start for the text passed to Sub plus the offset within this of the text frame of the sub-text,
1.e. the firstt parameter of Sub minus 1. Start reflects the cumulative effects of any Sub calls which
have produced the text frame of the current text reference.

Older systems will have Sub but not Start.
Example 5.10: Use of Start.

begin
text T1, T2, T3;
Tl :- "123456789";
T2 := T1.Sub(3,7);
T3 := T2.35ub(3,5);
OutInt (Tl.Start,4); 1,
OutInt (T2.Start,4); I 1+3-1=3;
OutInt (T3.Start,4); I 3+3-1=5;
OutImage

end

Text assignments

The oddest thing about texts is that there are two different kinds of assignment statement, using two
different assignment operators. We have already used both, but now we can explain their
differences.

There are text reference assignments and text value assignments. Examples are:

T :- Blanks (60); ! Reference assignment;
T := "Hello" ; ! Value assignment;

The difference is very simple, but very important.

A text reference assignment will replace the pointer in the text reference location, which originally

points to one text frame,

with a different reference, which may or may not point to a different text

frame. All the parts of the original text reference, including its current Pos, Length etc. are replaced
by the corresponding parts of the new text reference. Thus calls on T.Length and T.Pos may give
different values before and after a reference assignment to T.

A text value assignment

will only replace the characters held in the text frame. None of the other

parts are replaced and so calls on T.Length or T.Pos will return the same values before and after a

value assignment to T.

Since a value assignment leaves the Length unchanged we must be careful that the number of new
characters being assigned is not greater than Length. In fact three cases are possible.

1.The number of characters being assigned is the same as Length. In this case the new
characters simply overwrite the old contents of the text.

2.The number of characers being assigned is less than Length. In this case the leftmost

characters in the

text are overwritten by the new characters and the remainder by spaces. The

value of Left.Length is unchanged in example 5.11b.

3.The number of characters being assigned is greater than Length. This will be a runtime
error. The program will compile successfully, but at runtime will report an error.

Note that text value assignment to a constant text frame is always illegal.

Examples 5.11: Possible cases of text value assignment.

a) Equal length texts.

begin
text Left,Right;
Left :- Copy("FRED"); ! Length of Left becomes 4;
Right :- Copy("DAVE"); ! Length of Right becomes 4;

Left:=Right;
OutText (Left);OutImage;
OutInt (Left.Length) ;OutImage

end
b) Left hand text longer than right.
begin
text Left,Right;
Left :- Copy("FRED"); ! Length of Left becomes 4;
Right :- Copy("JIM"); ! Length of Right becomes 3;

end

Left:=Right;
OutText (Left);OutImage;
OutInt (Left.Length) ;OutImage

c) Left hand text shorter than right.

beg

end

in

text Left,Right;

Left :- Copy("FRED"); ! Length of Left becomes 4;
Right :- Copy ("CHARLIE"); ! Length of Right becomes 7;
Left:=Right; ! Causes a runtime error;

OutText (Left) ;OutlImage;
OutInt (Left.Length) ;OutImage

NoText

When you create a text variable it is set to point to NoText. NoText is an imaginary text frame with
no characters. Thus it has a Length of zero and any value assignment to it will fail, except when the
value is the empty text value, "". This is the reason we had to use Blanks in our early examples, to
make what you should now recognise as a text reference assignment to any text variable, before any
value assignments were made to it.

Creating text objects

In general, we must make a reference assignment to a text variable before we use it for almost
anything else. This points it at a text frame and sets the values for Pos, Length etc., but where does
this object come from in the first place? In fact we have used several methods of text object
generation already, without explaining them in detail. Here is a more detailed look.

Blanks

The standard procedure Blanks creates a new text object containing only spaces. It has one integer
parameter, which specifies the number of space characters it is to contain and, thus, sets its Length.
Start and Pos will initially be 1. More will be true. Constant will be false.

Example 5.12: Use of Blanks for text generation.

begin
text Empty;
Empty :- Blanks (60);

comment Point Empty at a text frame containing 60 spaces;
OutInt (Empty.Length,4);
OutImage

end

Reference assignment of text constants

We have seen how text constants, or strings, are represented. When a text reference assignment,
whose right hand side is such a constant, is made, a text frame is created containing the characters
in the string.

One important property of the text frame created in this way is that it is regarded as constant or
"read only". Any attempt to overwrite its characters will cause a runtime error.

The value of Length will be the number of characters in the string. Start and Pos will be 1. More
will be true. Constant will be true.

The text frame generated for each text constant in a program is regarded as occupying a unique
location. This is important when we come to "reference comparison" of texts. The only exception is
an occurence of the empty string, "", which is always assumed to generate a reference to the
imaginary location of NoText.

Example 5.13: Text constant reference assignment.

begin
text Full;
Full:-"Any old string you like";
OutInt (Full.Length,4);
OutImage
end

Copy

In older SIMULA systems, this reference assignment of text constants was not allowed. If you are
using such a system you will have to use the standard procedure Copy to do the same thing. Copy
will still work on newer systems, so if you may need to move your programs around a lot it might
be safer to use it from the start.

Copy differs from constant text reference assignment in that the text frame created is alterable or
"writeable". It is possible to overwrite its characters. Thus Copy may be used for many purposes
where text reference assignment of constants would not be suitable, even on newer systems.

Copy can also be used to generate a reference to a copy of the text frame of another text reference,
not just a string. The second use of Copy in 5.14 shows this.

Rewriting example 5.13 using Copy, we get the first part of example 5.14. This should have exactly
the same effects, except that attempts to overwrite Full would now be successful.

In the reference generated by Copy, Length is the length of the string or of the text frame being
copied. Start and Pos are 1. More is true. Constant is false.

Example 5.14: Text generation using Copy.

begin
text Full, NewFrame;
Full :- Copy("Any old string you like");
OutInt (Full.Length,4);
OutImage;
NewFrame :- Copy (Full);
OutInt (NewFrame.Length, 4);
OutImage
end

Line breaker again

Using the facts about reference assignment of text variables that we have just seen, it is possible to
write our line breaking program more neatly. It should now be obvious why we used the integer
LenLeft to hold the length of Image which remained. It is now possible to use Image.Length
instead.

This version has another advantage, which probably is not apparent. In the version using value
assignment, the Length of Image remains unchanged throughout, with more space characters
following the visible characters after each assignment of Image.Sub. These characters are not
present after the reference assignments in the new version. Since some output devices make a
printing movement even for a space, their presence may slow down output. They also take up space
in the computer's memory which is freed in the new version.

Example 5.15: Linebreaker using reference assignment of texts.

begin
InImage;
inspect SysIn do
begin
while Image.Length>60 do
begin
OutText (Image.Sub (1,60));
OutImage;
Image :- Image.Sub (61, Image.Length-60);
comment Note the use of reference assignment which
updates Image.Length, unlike value assignment;
end;
OutText (Image) ;

OutImage
end
end

Exercises

We have had quite a lot to absorb recently, so here are some examples to help your digestion. Then
we will have another look at space removal and a final look, for the moment, at text objects.

5.2 Write a program to draw a Christmas tree, like the one below.

*
* kK
* Kk Kk kK
* k *
* ok Kk kK
* ok Kk kkkk
* Kk ok kK kk kK
* Kk ok kK
* ok Kk kkkk
*kkkk Kk Kk kK
*k Kk hkkkhkkkhk
*
*

5.3 Write a program to count the number of characters before the first space in a text.

5.4 Write a program to count the number of words in a text, assuming that only spaces separate
words.

5.5 Write a program to calculate the cost of sending a telegram, assuming that the whole message is
contained in a single text. Assume that each word costs 10 pence.

5.6 Rewrite the last program assuming that words longer than 5 characters cost double and that the
minimum charge is 50 pence.

5.7 Use Sub to write the message

Merry Christmas

using parts of the string "May Charlie stay for curry?".

5.8 Is it possible to rewrite the word counting program to allow full stops (periods) and commas to
be word separators? What extra SIMULA facility would be useful for this?

Double blank remover, mark two

The problem with our double blank removing program is that it will only work when the double
blank is at the start of the text. What we really need is a program to read along the whole of a text
and remove any double blanks. Even better, it should remove treble and other multiple blanks as
well.

Using our informal SIMULA description method, we can start with the program in example 5.16.

Example 5.16: Informal description of multiple space remover.

begin
text T1;
character Char;
InImage;
inspect SysIn do
begin

Tl :- Image;
while T1.More do

begin
Char := Tl.GetChar;
if multiple space then replace with single space
end;
Remove trailing spaces;
OutText (T1) ;
OutImage
end

end

The problems to be solved are how to detect multiple blanks and how to replace them with a single
space character. The first of these is fairly easy.

If the current character is a space, check to see if the next one is also. If it is not, carry on around the
loop. If it is, check whether the next character is also a space and so on. When a non-space is found,
move the remainder of the text to the left until only one space remains. Clearly the scanning along
multiple spaces is another while loop. Let us write out the program so far, in example 5.17.

Example 5.17: Second stage of multiple space remover.

begin
text T1;
character Charl, Char2;
InTmage;
inspect SysIn do
begin
Tl :- Image;
while T1.More do
begin
Charl := Tl.GetChar;
if Charl=' ' then
begin
integer Positionl, Position2;
if T1l.More then
begin
Positionl := Tl.Pos; ! Remember current position;
Char2 := Tl.GetChar; ! Check Next character;
while Char2=' ' do
if Tl1l.More then Char2 := Tl.GetChar else
begin
Char2 := "#';
Reset Pos to Positionl
end;
Position2 := T1.Pos; ! Remember final position;
if Positionl ne Position2 then move the rest left;
Reset Pos to first character after blank
end
end
end;
Remove trailing spaces);
OutText (T1) ;
OutImage
end
end

This is getting rather complicated, so let us have a look at what is going on in the case where a
blank is encountered. It is always sensible to "dry check" new parts of your program when they
become more than trivial extensions.

First we check that this is not the end of the line, by using T.More. If we try to use GetChar when
we are already at the end, it will cause a runtime error to be reported.

If there is more to read, we note the current position in Position]. This is the position of the first
character after the space and so we remove any spaces from here to the next non-space character.

We now read the Next character into Char2 and begin our blank removal loop. As long as Char2 is a
space we read on, checking that we have not reached the end of the text. If we have reached the end,
we do not need to trouble with this sequence of blanks, since they are at the end of the text. We shall
see how to deal with such "trailing blanks" in a moment.

If we do reach the end of the text while skipping through a sequence of blanks, we want to leave the
loop and avoid further processing of this text. To achieve this we set a dummy value in Char2,
which is not a space character, thus ending the while loop. Since we are not interested in removing
any blanks, we reset our position to Positionl.

Having completed the while loop, we check to see if Position2 is still the same as Positionl. If it is
then we have either not found any spaces following the first one or the current sequence of spaces is
at the end of the text. In both these cases no spaces need be removed. If Position?2 is different, we
have skipped over some spaces in the while loop and want to remove them.

Having removed any extra spaces, we reset our position to that immediately following the single
space, i.e. to Positionl, and continue reading through the text looking for the next space, in the
outer while loop.

Try following some texts through the program on paper. In particular try to think of all the different
cases which might occur. The choice of test data for your programs is very important. If you forget
a case then your program will almost certainly fail the first time it is used in earnest.

We still have two parts of the program to fill in. Before we can do so we must look at some more
properties of text objects.

GetChar and PutChar

We have seen how GetChar works, but let us quickly define exactly what it does. GetChar returns
the character at the current position in a text and increments the position counter by one. Thus
successive calls on GetChar will scan through a text character by character.

PutChar overwrites the character at the current position in a text with the value passed to it as a
parameter. It has a single character parameter. It increments the position counter by one each time it
is called.

In example 5.18 the program joins the character contents of two texts together. This is sometimes
referred to as concatenating them.

Example 5.18: Text concatenation using GetChar and PutChar.

begin

text T1, T2, T3;

InImage;

inspect SysIn do

begin
Tl :- Copy(Image.Strip); ! Strip is explained next;,
InImage;
T2 :- Copy(Image.Strip);
T3 :- Blanks (Tl.Length + T2.Length),; ! Create enough space;

while T1.More do T3.PutChar(Tl.GetChar) ;
comment T3.Pos is now Tl1.Length + 1;
while T2.More do T3.PutChar(T2.GetChar) ;
OutText (T3) ;

OutImage

end
end

SetPos

One of our problems in our space removal program is solved immediately by the procedure SetPos.
This takes one integer parameter. SetPos resets the current position in a text to the value passed to it
as a parameter. Using this we can rewrite our text concatenation program more simply.

Example 5.19: Text concatenation with SetPos.

begin
text T1, T2, T3;
InImage;
inspect SysIn do
begin
Tl :- Copy(Image.Strip);
InImage;
T2 :- Copy(Image.Strip);
T3 :- Blanks (T1l.Length + TZ2.Length)
T3 := T1;
T3.SetPos (T1.Length + 1);
while T2.More do T3.PutChar (T2.GetChar) ;
OutText (T3) ;
OutImage
end
end

Strip

Another small problem is solved by the procedure Strip. This returns a text reference to the original
text with any trailing spaces, i.e. any spaces at the right hand end of the text, removed. Try the
program in example 5.20 to see this at work.

Example 5.20: Use of Strip.

begin
text T;
T :-= Blanks (60);
T := "FOUR";
OutInt (T.Length);
T :- T.Strip;
OutInt (T.Length);
OutImage

end

Main
The last part of a text object that we need to consider at this point is the procedure Main.

When a text variable is pointed at a subtext, by using Sub or Strip, the result is that the text variable
points at a new text frame. This shares some of the characters in the original, main text, but has its
own local Pos, Length and other attributes. Pos will be 1 and Length will be the length of the
subtext.

It is still possible to refer to the main text from the subtext, however, by using the attribute Main.

This procedure returns a reference to the text frame of which the sub-text forms a part. For a text
reference whose text frame is is not a subtext of a larger one, Main points to that frame itself.

The reference generated by Main has Pos and Start equal to 1 and Length equal to the Length of the
main text frame.
Example 5.21 should produce the following output:

is the time for ever

Now is the time for every good man
the time for ever

Now is the time for every good man

Example 5.21: The use of Main.

begin
text T1, T2, T3;
Tl :- "Now is the time for every good man";
T2 :- T1.Sub(5,20);
T3 :- T2.Sub(4,17);
OutText (T2) ;
OutlImage;

OutText (T2.Main) ;
OutText (T3) ;
OutlImage;,
OutText (T3.Main) ;
OutImage

end

Example 5.22: Adding SetPos and Strip to multiple space deletion.

begin
text T1;
InImage;
inspect SysIn do
begin
Tl :- Image;
while T1.More do
begin
character Charl, Char2;
Charl := Tl1.GetChar;
if Charl=' ' then
begin
if Tl.More then
begin
integer Positionl, PositionZ2;
Positionl := T1.Pos;
Char2 := Tl.GetChar;
while Char2=' ' do
if Tl.More then Char2 := Tl.GetChar else
begin
Char2 := '"#'; ! Force loop to end;
T1.SetPos (Positionl); ! Ignore spaces;
end;
Position2 := T1.Pos;
if Positionl ne PositionZ then remove spaces;
T1.SetPos (Positionl)
end
end
end;
Tl :- Tl1.Strip;
OutText (T1) ;
OutImage
end
end

Multiple spaces finally removed

First consider example 5.22, where SetPos and Strip are added to our program. We have now
catered for everything except the actual deletion process.

Example 5.23 adds the final stage,the removal of those blanks. Watch closely, as we are going to
use a very powerful property of text reference assignment.

Example 5.23: The complete multiple space remover.

begin
text TI1;
InImage;
inspect SysIn do
begin
Tl :- Image;
while T1.More do
begin
character Charl, CharZ2;
Charl := Tl1.GetChar;,;
if Charl=' ' then
begin
if Tl.More then
begin
text T2,
integer Positionl, PositionZ2;
Positionl := T1.Pos;
T2 :- T1,; ! T2 holds current Pos, Length etc.;
Char2 := Tl.GetChar;
while Char2=' ' do
if Tl.More then Char2 := Tl.GetChar else
begin
Char2 := "#';
Tl.SetPos (Positionl)
end;
Position2 := Tl.Pos;
i1f Positionl ne PositionZ2 then
begin
T2.PutChar (Char2) ;
while T1.More do TZ2.PutChar(T1.GetChar) ;
while T2.More do TZ2.PutChar(' ');
T1 := T2
end;
Tl.SetPos (Positionl)
end
end
end;
Tl :- T1.Strip;
OutText (T1) ;
OutImage
end
end

The point to note is that when the text variable T2 is pointed at the text frame already pointed to by
T, the effect is that a new reference is created with all its current values the same as T. As in a
subtext, some of the characters are shared by both frames; in this case it is all the characters which
are shared. When T.GetChar is used, it is only the Pos of T that is affected. That of T2 is unaffected.

When we are shuffling the characters to the left to remove unwanted spaces, we are able to pretend
that T and T2 are entirely different texts. If we did not do this, we would have to copy into another
text frame and then back again. This way of manipulating the characters in a text is very powerful,
but must be fully understood and used with great care. It is only when the part of the text that we are
copying from is ahead of the part that we are copying to that this method will work.

Summary
We are now writing programs which really do things.

In this chapter we have seen the while loop and how it can allow an action or sequence of actions
to be repeated as often as necessary.

We have used informal SIMULA descriptions to allow us to develop our programs in stages.

We have learned some of the attributes of a text object - Length, Pos, Sub, Start, Constant, Main,
Strip, GetChar, PutChar and SetPos.

We have learned the difference between a text variable and the text frame it points to.
We have learned the difference between text value assignment and text reference assignment.

We have seen how text objects are generated by Blanks, Copy or reference assignment of a text
constant, noting that those generated by reference assignment of a constant may not be overwritten.

We have seen how two text variables pointing at the same sequence of characters can have different
current positions.

Exercises

5.9 A computer fault has changed some small letter a's into ampersands, '&'. Write a program to
scan a text and correct this.

5.10 A similar fault has changed every occurence of the word "and" to the word "boe". Write a
program to correct texts which have suffered this fate.

CHAPTER 6 - Correct Procedures

Building blocks

We have written some programs which do real work, but at the moment they have to be run
separately, with the input provided for each run. It is not obvious how we can use such separate
programs to build a large, flexible piece of software.

One method would be to combine all the small programs that we write into one large program,
using each program in the right order. We could use our multiple space removing program, followed
by our line breaking program and so on. This is fine for programs that only need to be used in one
place, but if the same function is required in several places we will need to duplicate the instructions
each time. This is inefficient, making our programs much longer than they need to be. It can also
make it tedious to follow the overall working of a large program, since a mass of detailed
instructions tend to obscure the important features of the design.

As an example of a program which could be used in many places in our package, we might take the
text concatenation program. In fact this is such a useful thing to be able to do that we might wish
that a language feature existed for it. In fact, such a facility is now provided as part of SIMULA.
Unfortunately, it is not yet available in most systems. We shall see it in chapter 8. Fortunately, we
are able to define our own procedures, which we can then use wherever we like inside the block
where we declare them. In fact we can even build a library of our favourite procedures and use it in
all our programs.

Declaring procedures

It is clearly not enough to declare a procedure in the way we declare an integer. The declaration

procedure Concatenate

cannot magically tell the SIMULA system what we want Concatenate to do. We must also supply
the actions to match the name. Here is a valid procedure declaration:

procedure PrintName;
OutText ("Alice") ;

The syntax of the simplest procedure declaration is the keyword procedure, followed by the
identifier to be used for the procedure, followed by a semi-colon, followed by a statement.

The statement following the semi-colon is known as the procedure body and specifies what is to be
done each time the procedure is invoked or "called" in the subsequent program. Calling the
procedure is done by using its identifier as a statement in the program, exactly as we call system
procedures.

Example 6.1 shows the use of our procedure, PrintName.
Example 6.1: Simple procedure use.

begin

procedure PrintName;
OutText ("Alice");

Concatenate;
OutImage
end

Note the use of blank lines to make it easier to see where the procedure begins and ends. These are
not compulsory, but make the program more readable to humans.

We would normally want to have more than one statement in our procedure body. We can achieve
this by using a compound statement or a block. Example 6.2 is our Concatenate program from
chapter 5 used as a procedure.

Example 6.2: Concatenate as a procedure.

begin
procedure Concatenate;
begin
text T1,T2,T3;
InTImage;
inspect SysIn do
begin
Tl:-Copy (Image.Strip);
InTmage;

T2:-Copy (Image.Strip);
T3:-Blanks (Tl.Length + T2.Length);
T3:=T1; T3.SetPos(Tl.Length+l);
while T2.More do T3.PutChar (T2.GetChar);
end--of--inspect--SysIn;
OutText (T3) ;
OutImage
end;
Concatenate
end

Parameters to procedures

This Concatenate procedure only joins texts which are read in by it. Having done so, it merely
prints out the result. This would be much more useful if we could use it to combine any two texts in
our programs and to assign the result to any text we chose. This can be done by specifying
parameters in the declaration.

We have already seen how parameters can be used to pass values to system procedures. Example
6.3 shows how to declare two texts as parameters to the Concatenate procedure.

Example 6.3: Concatenate with parameters.

begin
procedure Concatenate (T1,T2); text T1,T2;
begin
text T3;
T3:-Blanks (Tl.Length+T2.Length) ;
T3:=T1;

T3.SetPos (Tl.Length+1);
while T2.More do T3.PutChar (T2.GetChar);
OutText (T3) ;
OutImage

end;

text Textl,Text2;

Textl:-"Fred";

Text2:-"Smith";

Concatenate (Textl, Text2)

end

This passes in our texts, T1 and T2, which are now used as parameters to the procedure. The
identifier given for the procedure in its declaration is followed by a list of all the parameters to be
used, enclosed in parentheses and separated by commas. The declaration

text T1, T2;

following the semi-colon and before the begin is known as the type specifier and gives the type of
each of the parameters.

Where more than one type of parameter is to be used, more than one type declaration must be given.
6.4 is an example, using one text and one integer parameter.

Example 6.4: A procedure with more than one type of parameter.

begin
procedure TextAndInt (T, I); text T; integer I;
begin
OutText (T) ;
OoutInt (I);
OutImage
end;
TextAndInt ("NUMBER", 10)
end

When execution of a procedure is complete all quantities declared inside it are lost. This includes
the final values of its parameters. The remaining question is how to get back the text containing the
concatenated texts once Concatenate is complete. There are two ways of doing this in SIMULA and
the first of these uses a different sort of parameter.

Parameter modes

The way of specifying parameters that we have used so far will always work for passing values into
a procedure. If we want to get information out, we may have to add a mode specifier for some
parameters.

This sounds confusing, but is easy to follow in practice. Here is a final version of Concatenate.

Example 6.5: Using a name parameter to return a result.

begin
procedure Concatenate (T1,T2,T3);
name T3; text T1,T2,T3;

begin
T3:-Blanks (Tl.Length + T2.Length);
T3:=T1;

T3.SetPos(Tl.Length + 1);
while T2.More do T3.PutChar (T2.GetChar) ;
end;
text Textl,Text2,Text3;
Textl:-"Fred";
Text2:-"Smith";
Concatenate (Textl, Text2, Text3) ;
OutText (Text3) ;
OutImage
end

Notice that, as well as specifying that T3 is of type text, we have specified that it is name. name is
not a type but a mode. When a parameter is defined as of name mode, any assignments to it alter the
value of the variable actually passed in the call, rather than a local copy, as would have happened
with the other parameters, which are passed by value.

In fact there are three modes; value, reference and name.

Where a mode specifier is not given for a parameter, a mode of value or reference is assumed,
depending on its type. Some modes are illegal for certain types. Table 6.1 is a complete table of the
assumed (usually referred to as default), legal and illegal modes for parameters to procedures.

Mode
Type Value Reference Name
Simple type Default Illegal Legal
text Legal Default Legal
Object reference Illegal Default Legal
Simple type array Legal Default Legal
Reference type array | Illegal Default Legal
procedure Illegal Default Legal
type procedure Illegal Default Legal
label [llegal Default Legal
switch Illegal Default Legal

Table 6.1: Modes of transmission for parameter types.

A simple type is integer, real, character or Boolean and any long or short variants of them.

Now we can see that name is always legal and reference is the default for all but simple types. Do
not worry about the meaning of those types which are new. We shall consider their use when we
encounter them.

Value parameters

A value parameter to a procedure acts as if it were a variable of that type declared in the body of the
procedure. The value passed to it when the procedure is called is copied into it as part of the call
statement. Since values declared inside a block cannot be used outside that block, the value of this
mode of parameter is lost on returning from the procedure.

When calling a procedure, any value of the correct type may be passed to a value mode parameter.
Thus constants, expressions and variables are all allowed.

To see the effect of passing a parameter by value, consider example 6.6.

Example 6.6: Passing parameters by value.

begin

procedure P(Val); integer Val;
begin

OutInt (Val);

OutImage;

Val := Val - 1;

OutInt (Val);

OutImage
end..of..P;

integer OuterVal;
Outerval := 4;
P (Outerval) ;

OutInt (Outerval) ;
OutImage
end

The value in OuterVal, 4, is copied into the parameter Val's location when P is called. Thus the first
number printed will be 4.

When 1 is subtracted from Val, OuterVal is not changed. Thus the second number printed is 3, but
the third is 4.

When a text is passed by value to a procedure (N.B. this is not the default) it has the effect of
creating reference to a local text frame with the same length as the text passed, into which the
characters from the latter text are copied. Consider example 6.7.

OutLine is actually quite a useful procedure. Note that in order to pass our text parameter by value
we have to give a mode specification for it, using the keyword value.

When the procedure is called, the parameter T is initialised as if the following statements had been
executed.

T :- Blanks (OuterT.Length);
T := OuterT

Example 6.7: Text parameter passed by value.

begin
text OuterT;

procedure OutLine (T); wvalue (T); text(T);
begin

OutText (T.Strip);

OutImage
end..of..OutLine;

OQuterT:-"Here's a line";
OutLine (OuterT)
end

Reference parameters

When a parameter is passed by reference, the local parameter points at the location holding the
object passed, rather as if the :- reference assignment operator had been used. No local copy is made
of the contents of the object.

For every reference parameter type except text, this explanation is sufficient and should be
reconsidered for its meaning when those types are encountered.

As we have seen, when a text is assigned by reference new copies of Pos, Length etc. are made, but
the same actual text frame is referenced. Pos, Length etc. will have the same values as those for the
original reference, but will not change if the originals do.

As far as the passing of text parameters by reference is concerned the following effects occur:

1.The characters in the frame referenced by the parameter may be changed by the procedure.
Since this is the same actual location as the frame of the reference which was copied, the
contents of the frame remain changed when execution of the procedure is complete.

2.The other attributes have local versions created, with the same values as those current for
the parameter. When those other attributes are changed for the parameter, they remain
unchanged for the original. Thus, any changes to these is lost when execution of the
procedure is complete.

Try rewriting the Concatenate procedure with all the parameters passed by reference. What would
be the effect on running the program using it now?

You should find that it fails since the Length of Text3 cannot be changed by manipulating T3 inside
the procedure. The only way to get this program to work would be to set the length of Text3 before
calling the procedure, as shown in example 6.8.

Note that as reference mode is the default for all types where it is legal, it is never necessary to give
a mode specification for reference parameters. Thus there is no keyword reference to
match value and name.

Example 6.8: Concatenate using only reference mode parameters.

begin

procedure Concatenate (T1l, T2, T3); text T1, T2, T3;
begin

T3 := T1;

T3.SetPos(Tl.Length + 1);

while T2.More do T3.PutChar (T2.GetChar);
end**of**Concatenate**by**reference;

text Textl, Text2, Text3;

Textl :- "Fred";
Text2 := " Smith";
Text3 :- Blanks (Textl.Length+Text2.Length);

Concatenate (Textl, Text2, Text3);
OutText (Text3);
OutImage

end

Name parameters

Name parameters are very powerful, but complex. It is sometimes possible to make serious errors
using them, through failing to consider all possile outcomes of their use.

When a variable is passed by name, its use within the procedure has the same effect as when that
variable is used outside the procedure. Thus any actions on the parameter inside the procedure
directly affect the variable passed in the call. This is obviously a suitable mode for getting values
back from a procedure, as we have seen.

This contrasts with the use of reference mode, where the contents of what a variable points at are
changed, but the variable still points at the same location. If a reference assignment is made to a
name parameter, it is actually made to the variable passed originally, not a local copy.

Example 6.5 returned the concatenated texts in the name parameter T3. When the procedure was
called, the variable Text3 was passed as this parameter and when the statement following the call
was executed, Text3 contained the combined texts. There is one statement missing from this
Concatenate. It is needed because the Pos, Length and other attributes of Text3 will be changed by
the procedure, when it manipulates T3.

What is this missing line? See if you can work out what it is before reading the polished version
below.

Example 6.9 is the version of Concatenate which we can use in all our programs.
Example 6.9: Finished version of Concatenate.

begin

procedure Concatenate (T1l, T2, T3);

name T3; text T1, T2, T3;

begin
T3 :- Blanks(Tl.Length + T2.Length);
T3 := T1;

T3.SetPos (Tl.Length + 1);

while T2.More do T3.PutChar (T2.GetChar);

T3.SetPos(l); ! Did you get this right?;
end**of**Concatenate;

text Textl, Text2, Text3;

Textl :- "Fred";
Text2 :— " Smith";
Concatenate (Textl, Text2, Text3);
OutText (Text3) ;
OutImage

end

The missing statement must reset the position within T3 to the start of the characters it now
contains, since it is left pointing to their end.

Note that, since name mode is never a default for any type, the mode specifier name must be used in
a mode specification for any parameters which are to be used in this way.

It is worth mentioning that all parameters passed by name are re-evaluated each time they are used
inside the procedure. This is important in some cases since actions inside the procedure may change
the value of an expression passed in this way, while expressions passed by value or reference are
evaluated and their values copied into the local variables specifying those parameters, once and for
all, at the call. Try compiling and running example 6.10 to see the difference.

Note also that while it is legal to pass expressions by name in this way, an attempt to assign to a
name parameter when an arithmetic expression like those in 6.10 or anything else which is not a
valid left hand side has been passed will cause a runtime error. The general rule is that the exact text
of what is passed replaces each occurence of the name parameter within the procedure.

Example 6.10: Expressions by name and by value.

begin

procedure Use Name (Vall, Val2); name Val2; integer Vall, Val2;

begin
Outerval := 3;
OutInt(vVall,4);
OutInt (Val2,4)
OutImage

end..of..Use Name;

’

integer OuterVal;
Outerval := 5;

Use Name (OuterVal+3,OuterVal+3)
end++of++program

Exercises

6.1 Write a program which uses a procedure to find the larger of two numbers and returns it in a
name parameter.

6.2 Write a program which uses our multiple space removal program as a procedure. Devise a series
of tests to cover all the cases you can think of which this procedure might have to cope with and try

them. Do not use lots of tests which all check the same thing, but try to use one good test for each
possibility.

6.3 Write and test a procedure which takes two text parameters and Concatenates them, returning
the result in the first one.

6.4 Write and test a procedure which takes two characters and moves the value in the first into the
second and the value in the second into the first.

6.5 Write and test a procedure which counts the number of non-space characters in a text.

Functions

There is another way to return values from procedures to the calling block. We have already seen
examples of system procedures which use this mechanism in GetChar and InInt. Now let us see
how to write procedures for ourselves.

Example 6.11 is an example of such a procedure which adds two numbers together and returns the
result. Such a procedure is usually referred to as a "type procedure" or, most commonly, a
"function".

This is a very simple example, but it shows how to declare and use such a procedure. The
declaration is just like that of any non-type procedure, except that a type specifier, integer in this
case, is given before the keyword procedure. This is the type of the value that is to be returned by a
call on this procedure.

Within the procedure body the name of the procedure may be used as a variable of the type
specified for the procedure, but only on the left hand side of assignment statements. If you use it
anywhere else it is regarded as a further call on the procedure by itself. This idea of "recursive"
calling is looked at later in this chapter. When the program returns from a call to the procedure, the
last value assigned to the procedure identifier is the value returned. This value may be assigned to a
variable (as in example 6.11), used as a parameter or used as a value in an expression.

In example 6.11 there is only one statement in the procedure body and this assigns the total of the
two parameters to the procedure identifier. The normal type rules apply. The result of the procedure
call will be this value, which is here assigned to the variable Result as part of the calling statement
in the main program.

If no assignment is made to the procedure identifier, the initial value for the type of the procedure,
as defined in chapter 3, is returned.

A type procedure may be called as if it was a typeless procedure and its returned value ignored. This
is often the case with Open, a system procedure described later.

Example 6.12 is Concatenate as a text procedure and used as a parameter to OutText.
Example 6.11: A simple type procedure or function.

begin

integer procedure Add(Vall, Val2);
integer Vall, Val2z;
Add := Vall + Valz;

integer Result;

Result := Add(2,3):
OutInt (Result);
OutImage

end

https://web.archive.org/web/20040923044743/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap03

Example 6.12: Concatenate as a text procedure.

begin

text procedure Concatenate(T1l, T2); text T1l, T2;
begin

text LocalText;
LocalText :- Blanks(Tl.Length+T2.Length);
LocalText:= T1;
LocalText.SetPos (Tl.Length + 1);
while LocalText.More do
LocalText.PutChar (T2.GetChar) ;
LocalText.SetPos (1) ;
Concatenate :- LocalText; ! Now assign text as the result;

end--of--Concatenate--as--a--function;

OutText (Concatenate ("PART ONE"," PART TWO")) ;
OutImage

end

Exercises

6.6 Write and test a function which returns the amount of tax payable on an income and which takes
three parameters - the tax free allowance, the rate of taxation and the amount earned.

6.7 Use the function to write a program which calculates the tax on a person's income, assuming the
following rates.

Tax
Tax
Tax
Tax
TAX
Tax

free
free
rate
rate
rate
rate

allowance for single person = #2000
allowance for married person= #3500

for first #10000 = 30%
for next #5000 = 45%
for next #5000 = 60%
above this = 75%

What is the smallest set of test data needed to test this fully?

6.8 Write and test a program to find the occurence of the sequence "and" in a text. Extend this to
provide a function to search for any given sequence, returning the position in the text where it is

found.

6.9 Using the procedure from 6.8, write a program to replace the next occurrence of a sequence with
any other given sequence.

6.10 Using 6.8 and 6.9 to provide procedures to locate and replace sequences in texts, write a
simple editor which does the following.

*Reads in a text.
*Reads in and performs the following commands:

F/sequence/ - find a sequence in the text and report success
or failure.

R/sequence2/ - replace the sequence just located with a new
one.

S - move back to the start of the text.
E - end further command processing and print the final text.

Recursive procedures

A procedure must be declared inside a block. Like any other declared item program, it may be used
anywhere within that block. This includes using it within blocks and procedures which are also
within that block. In a block which has more than one procedure declared within it, any one of these
procedures may be called inside any or all of the others, even those which are declared before itself.
This is known as the scope of such a declaration.

This has one rather important implication. A procedure may make a call on itself. This as known as
a "recursive" call. 6.13 is an example of a program which uses a recursive procedure call.

When this happens each call creates a new incarnation of the procedure. Thus each has its own
versions of the parameters and declared items for that procedure. In each, these items start with the
value passed to them, for parameters, or at the initialisation value for their type (see chapter 3), not
the value of their equivalent in the calling procedure.

Example 6.13: A recursive procedure call.

begin
integer procedure Non Blank (Textl); text Textl;
begin
if Textl.GetChar NE ' ' then Non Blank := Textl.POS - 1
else Non Blank := Non Blank(Textl);
end OF Non Blank;
integer New Start;
InImage;
T :- SysIn.Image;
New Start := Non Blank(T);
T :- T.Sub(New Start, T.Length-New Start);
OutText (T) ;
OutImage
end

Example 6.13 shows the use of recursion and emphasises why the procedure identifier of a function
has a different meaning when used as the left hand side of an assignment than in any other use. This
program removes the blanks at the start of a text, but uses recursion instead of a while loop. Here is
a quick "walkthrough" of Non Blank.

First note that this is an integer procedure. It will return the position of the first non-space character
in the text passed to it as a parameter. Next note that the parameter is passed by reference, the
default for text. These are the things to check in any procedure when you are trying to work out its
use.

When Non_Blank is called it reads the next character of the text and compares it with the space
character. If it is not a space then the first non-space character is the one just read. Thus the required
result is the current Pos of the text parameter minus one, since we have gone one character past it by
calling GetChar.

If the character read is a space, Non_ Blank is called again and the text is passed again. Since the
mode is reference, the current Pos, Length etc are passed on, so that on this call Non_Blank starts
from the character after that just read. Thus Non Blank calls itself, updating the position in the text
by one each time, until a call finds a non-space character. This call returns the position of this
character, as we have seen. Each preceding call passes the value returned back as its result through
the assignment

Non Blank := Non Blank (Textl)

https://web.archive.org/web/20040923044743/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap03.html

showing clearly the two uses of Non_Blank as left side of an assignment, returning the value for the
function, and as recursive call, with parameter.

Try working through for yourself using texts with various numbers of spaces at their start. Once you
have seen how it works for a couple of examples you should get the idea.

Text function results and recursion

A text procedure returns a text reference. Thus only reference assignments to the procedure
identifier, witthin the procedure body assign a new result. Value assignments merelyalter the
contents of the text frame of the currently assigned reference.

When the procedure identifier occurs on the right hand side of an assignment the effect is
independent of whether it is a reference or value assignment. Such an occurence is always taken as
a recursive call.

Dangers of recursion

It is not necessary to have a type procedure to use recursion. There are many instances when non-
type procedures can use recursion. It is a vey powerful device. Example 6.14 uses a non-type
procedure . It shows the power of recursion and the possible problems of using it without proper
thought.

Example 6.14: The danger of non-terminating recursion.

begin

procedure Numbr (Tex, Num); Text TEX; integer Num;
begin

OutText (TEX) ;

OutInt (Num) ;

OutImage;

Numbr (Tex, Num + 1)
end OF Numbr;

Numbr ("Line no ",1)
end

Can you spot the problem? For once I am not going to suggest that you try running the program,
especially if you are running on a batch machine. This sort of mistake can cost a lot of paper.

If you are not sure what is wrong, look carefully at the call on Numbr inside the body of Numbr.
Now try following through the working of the program. When will recursive calls stop being made?
In the Non_Blank procedure in example 6.13, recursive calls stopped when a non-space character
was found. More importantly they only happened when a space was found. Just like while loops,
recursive calls must stop at the right point. They must not go on for ever.

In general, recursive calls must only be made as part of an if statement or an if-then-else statement
and the condition for their being called must become false at some point. This requires some care,
but is no more of a problem than writing while loops which stop at the desired point. In fact
recursive calls and while loops are very similar.

Summary
We have seen how to declare and call simple procedures, with and without parameters.
We have seen how to specify the types of any parameters to a procedure.

We have seen the meaning of the modes of parameter transmission and how to specify these.

We have learned the default modes for all the possible types of parameters to procedures.
We have learned how to declare and use type procedures or functions.

We have learned how to use simple recursion.

Exercises

6.11 Use a recursive procedure to write a program which scans a text for a occurences of a sequence
of characters and replaces them with another.

6.12 Use a recursive procedure to write a program which reads in lines of text and prints them out
with a line number. Set the program to stop when the line

.end

is found.

CHAPTER 7 - File FOR future reference

Simple input and output using InFile, OutFile and PrintFile

Storing and retrieving information

So far we have been limited in what our programs can do by the need to read everything in from the
terminal or batch input stream and write everything out to the terminal or batch printer. This means
that our SIMULA programs have not been able to use information already held on the computer or
to leave information on the computer for other programs to use. This chapter will show how
SIMULA provides very powerful mechanisms for this purpose.

You are probably used to the fact that computers keep permanent information in collections called
files. Some systems use other names such as data sets, but they are essentially the same thing. These
files have names by which you can identify them to the computer. Programs can read from these
collections of information and write to them.

SIMULA has objects called Files as well. When you want to read from or write to a file on your
computer, you must use a SIMULA File object to stand for the external file and tell the computer
which external file you want. The exact way that this works may vary slightly from one computer to
another, but the important points are the same.

In fact a SIMULA File can stand for any source of or destination for information. A printer can also
be written to by using a File object to represent it in your programs. A magnetic tape reader can be
used as a source of input in the same way.

In fact you have already been using two File objects without being told that that was what you were
doing. These are the standard input File, SysIn, and the standard output File, SysOut. Whenever you
have used InInt, Outlmage and any other input/output instructions you have been using File
attributes.

Simple input

To read information from the computer we normally use a type of File object known as an InFile. In
fact InFile is a sub-class of the object type or class called File. This means that all the properties of
File are properties of InFile or are redefined in InFile, but that InFile has some extra ones of its
own. In fact all types of File objects are sub-classes of File. InFile is not a direct sub-class of File,
however; there is another level between them, called ImageFile.

Put more simply, class File defines a type of object with a number of attributes used to access
sources of and destinations for information on a computer, such as files, printers, terminals and tape
readers.

File class ImageFile is a sub-class of File. It has all the attributes of its parent class File, some of
which it redefines, and in addition some extra attributes used to handle information in certain ways.

ImageFile class InFile is a sub-class of ImageFile. It has all the attributes of both File and ImageFile
plus extra ones for reading information using the ways suited to ImageFile's attributes.

This probably sounds far from simple on first reading, but the idea of thinking of objects as classes
and sub-classes is central to SIMULA and so we use it to describe formally the relationships of the
various sub-types of File.

Example 7.1 is a program using an InFile to provide its information. Notice the familiar names used
for the same purposes, but now prefixed with a File name.

Example 7.1: Simple input using InFile.
begin

ref (InFile) Inf;
text T1;

Inf :- new InFile ("MYRECORDS") ;
Inf.Open (Blanks (80));
Inf.InImage;
T :- Inf.Image;
OutText (T) ;
OutImage;
OoutInt (Inf.InInt);
OutlImage;
Inf.Close
end

There are a few new concepts in this program. Let us look at them one by one.

Firstly, we have a new type of declaration. It declares Inf to be a ref variable, but has the word
InFile in parentheses between the keyword ref and the identifier Inf. A ref variable is a pointer to an
object of a complex type. The class which defines that type is given in parentheses after the
keyword ref. Thus Inf'is a location which can be used to hold a pointer to an object which is of type
InFile. It is initially pointed at an imaginary object called None, just as text variables initially
reference NoText.

Inf is pointed at a real object by making a reference assignment to it, using the reference assignment
operator, :-. Value assignments are not possible since Inf can only hold a pointer to an object, not
the object itself.

In our program Inf is pointed at a new object of the required type by using an object generator as the
right hand side of a reference assignment to it. The statement

Inf :- new InFile ("MYRECORDS")

thus creates a new InFile type object and points Inf at it. When an object is created in this way one
or more parameters may be passed to it, depending on its type.

InFile demands a text value parameter. In fact this parameter is demanded by the grandparent class
File and must be given to all new objects whose type is a sub-class of File. This parameter provides
the link between the SIMULA InFile object and the file or device on the actual computer which it
will represent inside the program. The exact way in which this text is interpreted on any particular
computer and its meaning to that computer varies considerably and you should consult the Users'
Guide or Programmer's Reference Manual for the system you are using.

In principle the statement is saying that an InFile object which is initially pointed at (or referenced)
by Inf will be used in this program to represent some source of input on the computer where the
program is to run. The string "MYRECORDS" identifies to that computer the actual source to be
used in a way which that computer can understand.

Having created the InFile object the program then prepares it for use by calling the procedure Open,
which is an attribute of InFile and so is specified by the prefix "Inf.". This also takes a parameter, in
this case a text reference parameter, which must reference a variable text frame. This text frame will
be used to hold the input read from the source. The parameter is reference assigned to a text
attribute of ImageFile called Image.

Most of the rest of the program should be familiar, except for the prefixing of Inlmage and InInt by
Inf. This tells the SIMULA system to read from the source associated with Inf rather than the
standard input, as in our previous programs.

The final statement calls the procedure Close, to tell the SIMULA system that this File is not
required until Open is called for it again.

Simple output

Corresponding to InFile, but used for output of information, is the class OutFile. This is also a sub-
class of ImageFile.

Example 7.2 is a simple example of the use of OutFile. It corresponds to the InFile example fairly
closely and so no further explanation is given yet.

Example 7.2: Simple output using OutFile.
begin

ref (OutFile) Outf;

Outf :- new OutFile ("MYSTORAGE") ;
Outf.Open (Blanks (132));

Outf.OutText ("This goes to a File");
Outf.OutImage;
Outf.OutInt (43,3);
Outf.OutlImage;
Outf.Close
end

Exercises

The information you have about output to files should now be sufficient to allow some simple
attempts at reading and writing to files. This is mainly intended to familiarise you with the way in
which your particular computer and SIMULA system treat the File objects in SIMULA programs.
You should read the documentation for your system carefully at this point.

7.1 Write a program which prints the integer values 1, 2, 3 and 4 to an OutFile. Check what sort of
File your system has created on the computer. See if you are able to examine its contents and list
them to a printer.

7.2 Write a program which reads the contents of the File produced in 7.1, using an InFile, and writes
it to the terminal or batch output stream.

ImageFile class InFile

Having seen informally how input and output are handled in SIMULA, let us now consider three of
the four sub-classes of ImageFile and what they do, starting with InFile. We shall not consider all
the attributes of class InFile here. Some will be dealt with in chapter 8. The remaining sub-class will
be dealt with in Chapter 15.

Image

All ImageFile derived File objects use a text in their reading or writing. This represents the current
input/output line or record. Files using this mechanism are called "record oriented". This means that
a whole record is read into the Image text or written from it at a time. Most attributes of an
ImageFile object operate on the copy in Image, not the actual File or device it stands for.

Image is a text variable within the ImageFile object. In an InFile, the parameter passed to Open is
used initially as its Image, i.e. is assigned by reference to Image. This is usually an anonymous text

https://web.archive.org/web/20040923045026/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap15
https://web.archive.org/web/20040923045026/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08

created by giving the text generator Blanks as the parameter to Open. The number given as
parameter to Blanks determines the length of Image and should match the record or line length of
the external file or device. Where the external record length is not fixed, the length of Image should
be the maximum record length possible or expected.

Open

Open is actually a Boolean procedure. If the attempt by the SIMULA runtime system to find and
access the external file specified is unsuccessful, Open will return the value False. This can happen
if the external file does not exist, is not permitted to you or for a number of reasons which are
system dependent. Any attempt to read from the File subsequently will result in a runtime error.

Older systems will have Open as a type-less procedure and attempting to open a file which is not
available will cause a runtime error on these systems.

If Open succeeds, it will reserve the file or device for future use as a source of input by the program.
It is not possible to write to an InFile.

Open also assigns its text reference parameter to Image, creating a "buffer" text into which all
records from the external file or device will be read. It is possible to assign a new text as Image later
in the program.

A successful call on Open will return the value True.

IsOpen

IsOpen is a Boolean procedure. It returns false if the File is not currently open, i.e. no call of Open
has yet been made or the File has been closed. Open sets IsOpen to true. Close sets IsOpen to false.

Older systems may not have IsOpen as a File attribute.

SetAccess

Modern SIMULA systems allow programs to specify certain modes for open files. The exact
meaning of these will depend on the physical file system of the computer. Each file used will have
initial properties, some of which are defined in the SIMULA standard. These will be found in the
documentation for the system you are using. A summary is given in table 7.1.

All SIMULA systems which meet the current standard will allow files with the following
properties.

Shared:
Values can be: shared/noshared. Decides whether use of the file by this program excludes its
use by others.

Append:
Values can be: append/noappend. Decides whether output to this file will overwrite its
existing contents or is appended to it.

Create:
Values can be: create/anycreate/nocreate. At call of Open physical file must not exist/ will be
created if it does not exist/ must already exist.

Readwrite:
Values can be: readonly/writeonly/readwrite. Decides whether reading or writing is allowed to
this File. Only relevant for DirectFiles. (See chapter 15.)

Bytesize:
Values can be: any positive integer within a range allowed by that system. Tells the system
how many bits are in a byte on this machine. Only relevant for ByteFiles. (See chapter 15.)

Rewind:
Values can be: rewind/norewind. Decides whether the file is to be reset in some way when
Close is called.

Purge:
Values can be: purge/nopurge. Decides whether the physical is to be deleted when Close is
called.

SetAccess is a Boolean procedure with a single text parameter, which must be one of the values
given above or bytesize: followed by an integer. This is used to reset the appropriate mode value in
the File. Where the mode is unrecognised or inappropriate for the type of file, SetAccess returns
False. Otherwise it returns true.

Mode File type is Affects
In- Out- Direct-
Shared shared noshared noshared Open
Append N/A noappend | noappend Open
Create N/A anycreate nocreate Open
Readwrite N/A N/A readwrite Open
Bytesize:n * * * Open
Rewind norewind | norewind N/A Open/Close
Purge nopurge nopurge nopurge Close
Table 7.1: Default modes for file types.
InImage

The procedure Inlmage copies the next record from the external file or device into Image. This is
equivalent to a text value assignment. If the external record is shorter than Image.Length then it is
copied into the leftmost character locations in Image and the remaining character Positions are filled
with spaces. If the external record is longer than Image.Length, calling Inlmage causes a runtime
error to be reported.

InRecord

Newer SIMULA systems will also have Boolean procedure InRecord. This works in the same way
as Inlmage, except where the record being read is either shorter or longer than Image.Length.

In the first case InRecord copies it into the start of Image, but leaves the rest of Image's text frame
unchanged. Image.Pos will be set to the point to the first unchanged character. In this case InRecord
returns false.

Where the external record is longer than Image, only enough is read in to fill Image. In this case
InRecord returns true, indicating that a further call will read in the missing part of the current
Image, not a new record.

Where the lengths are the same InRecord acts exactly as Inlmage, but returns false.

Close

Boolean procedure Close tells the SIMULA system that the external file or device represented by
this File object is no longer required by it. This means that it can be used by another File object.
Thus, once an InFile has been closed, it can be reopened as an OutFile. Once an external file or
device has been released in this way it may also be claimed by other programs and users. If an
attempt is then made to reopen it using the original File object, a runtime error may result.

If Close is unable to perform its task, it returns false. Otherwise it returns true. Older systems will
only have Close as a type-less procedure.

If a File is left open at the end of a program, it will be closed by the runtime system, with a warning
in most systems. It is safer to close files in the program.

SetPos

This procedure is equivalent to Image.SetPos.

Pos

This integer procedure returns Image.Pos.

More

This integer procedure returns Image.More.

Length

This integer procedure returns Image.Length.

EndFile

This is a Boolean procedure. When the last character of the last record in the external file has been
read it returns the value True, otherwise it returns the value False.

Example 7.3 shows of the use of EndFile to read and print the whole of a record structured File.

Once the last record of the real file is read in by InImage, a further call will assign the ISO end of
file character, 125!, as the first character of Image. EndFile now returns the value True. Example 7.3
uses the new keyword not, which reverses the condition being tested. Thus the while loop is
performed as long as Inf.EndFile is not True.

Example 7.3: Use of EndFile.
begin

ref (InFile) Inf;

Inf :- new InFile("Source");
if Inf.Open(Blanks(80)) then ! Assumes no records longer than 80;
begin ! Use Open as a Boolean procedure in case File not there;
while not Inf.EndFile do
begin

Inf.InImage;
OutText (Inf.Image);
OutImage

end;

Inf.Close

end

end

Lastltem

Lastltem is a Boolean procedure, rather like EndFile. It returns False as long as there are any non-
space characters left in the File. It will skip any spaces, updating Image and Pos, until it finds a non-
space or the end of the File. If it has reached the end, it returns True; if it finds non-space characters,
it returns False.

Example 7.4 is a word counting program which uses LastItem.

Example 7.4: Use of Lastltem in word counting.

begin

ref (InFile) Words;
integer WordCount;

text ThisWord;

Boolean ThisisFirstSpace;
character Item;

Words :- new InFile ("LATESTPAPER") ;

Words.Open (Blanks (132)); ! Assume line length of 132;
ThisisFirstSpace := True;

ThisWord :- Blanks (132);

while not Words.LastItem do
begin
while Words.More do
begin
Item := Words.Image.GetChar;
if Item ne ' ' then
begin
ThisisFirstSpace := True;
ThisWord.PutChar (Item) ;
end else
if ThisisFirstSpace then
begin
ThisisFirstSpace := False;
OutText (ThisWord.Strip) ;
ThisWord :- Blanks (132);
OutText (" ");
WordCount := WordCount + 1
end--of--a--word;
end--of--a--line;
if ThisisFirstSpace then

begin
WordCount := WordCount + 1;
OutText (ThisWord) ;
ThisWord :- Blanks (132)
end;

OutImage;

OutText (" ### Words so far = ");

OutInt (WordCount, 6) ;

OutlImage;
end--of--word--counting--loop;
OutText ("Total word count is ");
OutInt (WordCount, 6) ;

OutImage;

Words.Close

end
begin

Item oriented input

Some procedures read in the sequence of characters in the real file as an item of a certain type. Most
are described in chapter 8, but here are two useful ones.

InChar

InChar is almost the same as Image.GetChar. It is a character procedure which returns the next
character in the File. If the end of the current Image has been reached, i.e. Image.More returns
False, InImage will be called and the first character in the new Image read.

Since SIMULA specifies that a call on Inlmage once the last record of the real File has been read
will place the ISO end of file character, 25!, as the first in Image. A call on InChar once the last
character of the real file has been read will return this non-printing character and EndFile will then
return True. If the end of the File has been reached, i.e. EndFile returns True, a call on Inlmage will
cause a runtime error. We can rewrite our word counting program, using InChar to replace
Image.GetChar, as shown in example 7.5.

Example 7.5: Lastltem and InChar in word counting.

begin

ref (InFile) Words;
integer WordCount;

text ThisWord;

Boolean ThisisFirstSpace;
character Item;

Words :- new InFile ("LATESTPAPER") ;

Words.Open (Blanks (132)); ! Assume line length of 132;
ThisisFirstSpace := True;

ThisWord :- Blanks (132);

while not Words.LastItem do

begin
while Words.More do
begin
Item := Words.InChar;
if Item ne ' ' then
begin
ThisisFirstSpace := True;
ThisWord.PutChar (Item) ;
end else
if ThisisFirstSpace then
begin
ThisisFirstSpace := False;
OutText (ThisWord.Strip) ;
ThisWord :- Blanks (132);
OutText (" ");
WordCount := WordCount + 1

end--of--a--word;
end--of--a--line;
if ThisisFirstSpace then
begin

WordCount := WordCount + 1;

OutText (ThisWord) ;

ThisWord :- Blanks (132)

https://web.archive.org/web/20040923045026/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html

end;

OutlImage;
OutText (" ### Words so far = ");
OutInt (WordCount, 6) ;
OutlImage;
end--of--word--counting--loop;
OutText ("Total word count is ");
OutInt (WordCount, 6) ;
OutlImage;
Words.Close
end
begin

InText

InText is a text procedure, with a single, integer value parameter. Its result is a text containing the
next N characters in the real file, where N is the value of its integer parameter. It may include
characters from more than one record in the real file, calling Inlmage as necessary.

Example 7.6 is a new line splitting program, using InText. Note that it assumes an input file with
lines 132 characters long. Note also that it does not deal with blanks at the end of Image.

Example 7.6: Line splitting with InText.

begin
ref (InFile) OldLines;
OldLines:- new InFile ("MANUSCRIPT") ;
OldLines.Open (Blanks (132));
while not OldLines.EndFile do
begin
OutText (OldLines.InText (80));
OutImage
end;
OldLines.Close
end

ImageFile class OutFile

OutFile is the output equivalent of InFile and so has some similar attributes and some which are the
output equivalents of InFile's input attributes. Again, some will be left until chapter 8. EndFile and
Lastltem do not exist for OutFile, since they would have no meaning.

Image

The Image text of an OutFile is set up in the same way as that of an InFile. It is used to accumulate
items which are to be output, until a call of Outlmage or OutRecord writes the current line or record
to the real file or device.

Open

Boolean procedure Open works in approximately the same way as for InFile, except that the real
file or device is reserved for output, not input, and the real file may be created if it does not exist
already. The text reference parameter is used as the initial Image, as in InFile.

IsOpen

IsOpen works in exactly the same way as it does in InFile.

https://web.archive.org/web/20040923045026/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html

SetAccess

SetAccess works in exactly the way as it does in InFile.

Outlmage

When Outlmage is called either, explicitly, from the program or, implicitly, by one of the item
output routines like OutChar, the current contents of Image are written as a new record to the file or
device connected to this OutFile.
Image is then filled with spaces as if by

Image :- Blanks (Image.Length);

OutRecord

Procedure OutRecord works in a similar way to Outlmage, but only writes out those characters
preceding Pos in Image. Thus OutRecord can be used to create files with variable length records,
where the operating system supports this.

Older systems will not have OutRecord.

BreakOutlmage

Procedure BreakOutlmage writes out the contents of Image in the same way as OutRecord, except
that it does not produce any implicit line terminator. Thus successive calls of BreakOutImage will
write a series of Images to the same line.

It is intended to allow prompts to be displayed on interactive terminals, in a manner that allows
input to be typed on the same line.

Where an operating system does not support output without line terminators, BreakOutlmage is
exactly equivalent to OutRecord. Older systems will not have BreakOutlmage.

Close

This procedure is the same as for InFile, except that, if the Image is non-empty at close, i.e.
Image.Pos is not 1, there remain some unwritten characters. In this case, Open calls Outlmage to
write out the remaining record.

Again, files will be closed automatically at the end of the program, although it is tidier and safer to
close them in the program.

This means that the programs 7.7 a, b and c are equivalent.

It is much safer to call Outlmage and Close explicitly, when they are needed. Consider the effect of
extending the program to do further writing to Outl, if you are depending on the end of the program
to output the Image containing "SUCCESS".

CheckPoint

Boolean procedure CheckPoint is used to safeguard any output done so far. If it is called, the
operating system is requested to complete all writing to the external file which may have been
buffered or delayed before returning. If this is successful, CheckPoint returns true. If it fails or the
operating system does not allow checkpointing, false is returned.

Example 7.7a.

begin
ref (QutFile) Outl;
Outl:- new OutFile ("DESTINATION") ;
if Outl.Open (Blanks (132)) then
begin
Outl.OutText ("SUCCESS");
Outl.OutImage;
Outl.Close
end else
begin
OutText ("File DESTINATION could not be opened");
OutImage
end
end

Example 7.7b.

begin
ref (OutFile)Outl;
Outl:-new OutFile ("DESTINATION") ;
if Outl.Open(Blanks (132)) then
begin
Outl.OutText ("SUCCESS") ;
Outl.OutImage ;
COMMENT do not call Outl.Close;
end else
begin
OutText ("File DESTINATION could not be opened");
OutImage
end
end

Example 7.7c.

begin
ref (OQutFile)Outl;
Outl:-new OutFile ("DESTINATION") ;
if Outl.Open (Blanks (132)) then
begin
Outl.OutText ("SUCCESS") ;
COMMENT do not call Outl.OutImage
or Outl.Close;
end else
begin
OutText ("File DESTINATION could not be opened");
COMMENT do not call OutImage;
end
end

SetPos, Pos, More and Length

These are all exactly as for InFile, i.e. equivalent to Image.SetPos, Image.Pos, Image.More and
Image.Length.

Item oriented output

Several attributes of OutFile are procedures which write out items of various types. Most are dealt
with in chapter 8 , but here are the two which match those given for InFile.

https://web.archive.org/web/20040923045026/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html

OutChar

This procedure takes a single character value parameter. It writes this to the File. If there is space in
the current Image, i.e. Image.More returns True, it is written by Image.PutChar, otherwise
Outlmage is first called and the character is then written as the first in the next record.

OutText

This takes a single text value parameter. As with OutChar, if there is insufficient space in Image,
Outlmage is first called. The characters of the text are copied into Image as if by successive
OutChar calls. Pos is thus increased. If the length of the text is greater than Image.Length a runtime
eITor OCCurs.

Exercises

7.3 Write a program to remove double spaces from a whole file, producing a new file. Extend this to
place a double space after each full stop.

7.4 Write a program to remove blank lines from a file, producing a new file.

7.5 Write a program which reads a file with no blank lines and produces a double spaced copy, i.e. a
file with a blank line between each line of its contents.

7.6 Write a program which asks for the following information:

input file;

output file;

line spacing (double/single);
multiple space removal required?;
word count wanted?;

number of spaces after full stop;
number of spaces after comma;

and then copies the input file to the output file in the required format.

OutFile class PrintFile

The third sub-class of ImageFile is actually a sub-sub-class, being an extension of OutFile. A
PrintFile has all the attributes of an OutFile, plus some extra facilities. It is designed for use when
output is to go to a printer.

The attributes of PrintFile are designed for output with a maximum number of lines on each page.
The length of each line will depend on Image.Length. Printing of lines can be set to be double or
multiple spaced.

Some of the attributes of OutFile are redefined to allow for this page oriented output. It is a feature
of classes in SIMULA, that an attribute of a class can be redeclared with a different meaning in a
sub-class. The meaning in the sub-class is then used for objects which are referred to as being of the
sub-class.

Only those attributes of PrintFile which are not in OutFile or which are redefined in PrintFile are
listed here. All the other attributes of OutFile exist for PrintFile.

Open

Open operates exactly as for OutFile, but also instructs the printer to move to the start of the first
line of a new page.

Close

Close also performs all the tasks of Close in OutFile. In addition it moves the printer to the end of
the page and resets the Spacing, LinesPerPage and Line attributes to 1, system default and zero
respectively.

Outlmage and OutRecord
OutIlmage and OutRecord operate exactly as for OutFile, but in addition:

1.Before Image is printed, check to ensure that the last line on the curent page, defined by
LinesPerPage, has not been passed. If it has, the printer is instructed to move to the start of
the next page.

2.Skip one or more lines if Spacing has been set to produce double or multiple spaced
output.

3.Update a counter indicating how many lines have been output to the current page .

LinesPerPage

The PrintFile initially assumes that some standard number of lines are allowed on a page. This
number is different for different systems and you should consult the Users' Guide or Programmer's
Reference Manual for your system to find what it is.

During execution of a program, this number can be reset to fit the printer or paper being used, by
calling the procedure LinesPerPage, which has a single integer value parameter. The value of the
parameter sets a new maximum number of lines per page.

A value of zero resets the default. A negative value indicates continous printing without page
breaks. A positive value is the new number of lines per page.

Example 7.8 writes pages containing only ten lines. Try it and see the effect when you list the
output to a printer. (Not all terminals behave like printers and so the effect may not show up if you
use one as your output device). In recent SIMULA systems LinesPerPage is an integer procedure
returning the value prior to this call. Older will have it as a type-less procedure.

Example 7.8: Small pages using a PrintFile.

begin
ref (PrintFile) Printer;
ref (InFile) Source;
Printer:- new PrintFile ("LP23");
Source:- new InFile ("MYTEXT");

Printer.Open (Blanks (80)); ! Sets line length;
Source.Open (Blanks (80));
Printer.LinesPerPage (10);
while not Source.EndFile do
begin
Source.InlImage;
Printer.OutText (SOURCE.Image) ;
Printer.OutImage
end;
Printer.Close;
Source.Close
end

Line

The PrintFile keeps a count of how many lines it has printed on the current page. Line is an integer
procedure with no parameters which returns the number of the next line on the page. When the last
Outlmage has filled the current page, Line will return a value greater than that set by LinesPerPage.

When the File is not open, Line returns zero.

Spacing

The procedure Spacing has a single integer value parameter. This controls the number of blank lines
output after each Outlmage, i.e. the amount by which Line will have increased. Spacing is called by
the system with 1 as a parameter when the PrintFile object is generated and again by Close.

Example 7.9 shows the effect of Spacing.

Example 7.9: The effect of Spacing in PrintFile.

begin

ref (PrintFile)

Prntl
Prntl

Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
Prntl
end

Eject

Procedure Eject has a single integer value parameter. It moves the printer to a line determined by

:— new PrintFile
.Open (Blanks (132));

.OutText ("LINE
.OutImage;
.OutText ("LINE
.OutImage;
.Spacing (2);
.OutText ("LINE
.OutImage;
.Spacing (3);
.OutText ("LINE
.OutImage;
.OutText ("LINE
.OutImage;
.Close

the value of this parameter, as follows:

Value zero or negative,
report a runtime error.

Prntl;

("Outl") ;

1m);

2") ;

3");

4 ;

5");

Value greater than number of lines allowed per page,
move to first line of next page.

Value greater than current value returned by Line, but less than maximum allowed per page,

move forward on current page to that line number.

Value less than or equal to current value returned by Line,

move to that line number on next page.

Try program 7.10 which demonstrates the legal alternatives described above.

Example 7.10: Legal variations of Eject in PrintFile.

begin
ref (PrintFile) Prnt2;

Prnt2:- new PrintFile ("OUT2");
Prnt2.0pen (Blanks (132));
Prnt2.LinesPerPage (20);
Prnt2.0utText ("LINE 1");
Prnt2.0utImage;
Prnt2.Eject (10); ! Greater than current Line;
Prnt2.0utText ("LINE 2");
Prnt2.0utImage;
Prnt2.Eject (6); ! Less than current Line;
Prnt2.0utText ("LINE 3");
Prnt2.0utImage;
Prnt2.Eject (7); ! Equal to current line;
Prnt2.0utText ("LINE 4");
Prnt2.0utImage;
Prnt2.Eject (30); ! Greater than LinesPerPage;
Prnt2.0utText ("LINE 5");
Prnt2.0utImage;
Prnt2.Close
end

A useful shorthand

It is rather tedious writing

Prnt2.0utImage;
Prnt2.Eject (30)

etc. when the prefixing name is always Prnt2. SIMULA allows a shorthand, known as
an inspect statement. This may not be used for prefixes which are text identifiers, however, since
text is not defined as a class, but is a special type on its own.

The following statements are equivalent for the purposes described here.

Prnt2.0utImage

inspect Prnt2 do OutImage

Obviously, the new form is longer for this simple case, but consider the syntax of
this inspect statement. There is the keyword inspect, followed by an identifier referencing an object,
followed by the keyword do, followed by a statement.

The semantic rule for an inspect statement is that any use of an attribute of the referenced object
(i.e. the one whose identifier appears between inspect and do) inside the statement following do is
not required to be prefixed by the identifier and a dot.

If we use a compound statement or block as the statement following do, we can save a lot of tedious
writing. Thus, programs 7.11 a and b are exactly equivalent.

Where we want to use more than one object we are allowed to use nested inspect statements. In
other words we can use another inspect statement as the statement following the do. This is shown
by example 7.12.

Examples 7.11: Use of simple inspect. 7.11a.

begin
ref (PrintFile) P1;
Pl:- new PrintFile ("OUT");
P1l.0Open (Blanks (80));
P1.0OutText ("Message");
P1.0OutInt (2,3);
Pl.OutImage;
P1.Close
end
7.11b.
begin
ref (PrintFile) P1;
Pl:- new PrintFile ("OUT");
inspect P1 do
begin
Open (Blanks (80));
OutText ("Message");
OutInt (2,3);
OutlImage;
Close
end
end
Example 7.12: Nested inspect statements.
begin
ref (PrintFile) P1;
ref (InFile) I1;
Pl:-new PrintFile ("OUT");
Il:-new InFile ("IN1");
inspect P1 do
inspect Il do
begin
Pl.0Open (Blanks (132)); ! Needs P1l;
Open (Blanks (80)); ! refers to Il;
InImage; ! Can only refer to I1;
OutText (Image); ! OutText is Pl, Image is I1;
OutImage; ! Can only be P1l;
Close; ! refers to Il;
Pl1.Close; ! Needs P1;

end*of*inspect*Il;
end

Notice that all attributes are taken to be of I1, which is the innermost object inspected, if they might
be of P1 as well. Thus, when P1 is opened, we must use P1.Open explicitly, whereas I1 only
requires Open, with no prefix. Where an attribute only exists in one of the objects there is no
ambiguity. For instance, Outlmage does not exist for the InFile, I1, but does exist for the PrintFile,

P1.

SysIn and SysQOut

If no prefixing object is used for OutText, Inlmage etc., we have seen that the SIMULA system
assumes that they refer to the standard input and output devices for the system. These may be the
screen and the keyboard of a terminal, the job stream and journal of a batch system or whatever is
appropriate for the particular computer.

The default input device is accessed through a system InFile referred to as SysIn. The default output
device is accessed through a system PrintFile referred to as SysOut.

The program block of a SIMULA program acts as if it were inside a nested inspect statement. This
would look as follows:
inspect SysIn do
inspect SysOut do
begin

SysOut is defined, not as a ref(PrintFile) variable, but as a ref(PrintFile) procedure.

This means that you cannot assign another File to be SysOut during your programs. Similarly, Sysln
is defined as a ref(InFile) procedure.

This is not as complex as it may sound. The implications are roughly as follow:

1.The real devices referred to by SysIn and SysOut are determined by the SIMULA system
and cannot be changed during a program.

2.Any use of an attribute of InFile or PrintFile in a SIMULA program, which does not have
an appropriate object defined for it by the dot notation or by an enclosing inspect statement,
is assumed to refer to Sysln or SysOut.

3.Since SysOut is the inner object inspected, any attribute found in both InFile and PrintFile
is assumed to belong to SyOut. Others are assumed to belong to the appropriate one of Sysln
and SysOut.

4.To refer to attributes of SysIn which also occur in PrintFile, the attributes must be prefixed
by SyslIn or inside an inspect Sysln statement, as we saw in several earlier examples.

Summary

We have seen how sub-classes of File are used by SIMULA to allow programs to access real files or
input/output devices on a computer.

We have looked especially at "record oriented" input and output, based on File class ImageFile.
We have seen the idea of a class and a sub-class.

We have looked at the attributes of three sub-classes of ImageFile, namely InFile, OutFile and
PrintFile.

We have seen the use of inspect statements as an alternative to dot notation for accessing attributes
of objects, when the object is not a text.

We have seen the way in which SysIn and SysOut provide default input and output devices.

CHAPTER 8 - Item by Item

Item oriented reading and writing and for loops

Reading and writing numbers

This chapter will consider the mechanisms in SIMULA for translating numbers into sequences of
characters within texts and for translating sequences of characters within texts into numbers. This is
clearly a useful thing to be able to do. In fact, we have already used some of these features to make
our programs possible. Now we will look in detail at the attributes of text and File which are used
for this purpose.

Essentially, this is an extension of the "item oriented" concept used in describing InChar, OutChar,
InText and OutText. Instead of considering a sequence of characters as just part of the text in which
they occur, we are going to interpret them as integers or reals. Instead of adding to a text some
sequence of characters from another text, we are going to write an integer or a real value as such a
sequence.

Adding numbers to a text

There are four procedures which are attributes of text and can be used to add sequences of
characters, which represent numbers, to the text. In each the number is converted to a sequence of
characters, representing its value as the appropriate type. Apart from decimal points where
appropriate, there are no spaces, commas or other separators in such sequences, except when using
PutFrac. If the number is negative, a minus sign precedes the first digit, with no intervening space.

This sequence of characters is added to the text, so that the last character is in the rightmost position
in the text. If the sequence added is shorter than the text being used, characters in front of the first
character added are filled with spaces.

If the text refers to NoText, the attempt to add the sequence causes a runtime error. If the number of
characters in the text is smaller than the length of the sequence to be added, the value is not written.
Instead the remainder of the text is filled with asterisk characters.

The current position is moved to the end of the text.

Putlnt

PutInt has a single integer value parameter. It converts this value to a sequence of digits
representing it as a whole number and adds it to the text as described above.

Example 8.1: The use of Putlnt.

begin
text T1;
Tl :- Copy("1234"™);
OutText (T1) ;
OutImage;
T1l.PutInt (4321);
OutText (T1) ;
OutImage

end

PutFix

Oddly, SIMULA uses the name PutFix for the more natural of the two procedures in text which add
numbers as reals in texts. As we have seen earlier with OutFix, numbers which are represented as
fixed point real numbers consist of a sequence of digits, representing the integer part of the number,
followed, if necessary, by a decimal point and a sequence of digits, representing the fractional part
of the number.

PutFix has two parameters, a real value one, which holds the value to be added to the text, and an
integer value one, which contains the number of places of decimals to be printed. When the value is
converted to a sequence of characters, it is rounded to give the required number of digits after the
decimal point. If the required number of decimal places is zero, no decimal point is printed and
PutFix acts like PutInt. If the number of significant digits after the decimal point is too small, zeros
are added to give the required number.

Example 8.2: The use of PutFix.

begin
text T2;
T2 :- Blanks (80);

T2.Sub(1,6) .PutFix (3.2438,4); ! Prints all the significant figures;
T2.Sub(8,8) .PutFix (432.45678,3); ! Prints rounded to 3 places;
T2.Sub(16,8) .PutFix (21.93,4); ! Prints with two trailing zeros;
T2.Sub (25,4) .PutFix(367.487,0); ! Prints as a whole number;
OutText (T2) ;
OutImage

end

PutReal

PutReal represents real values in floating point form. This is useful to scientists, engineers and
mathematicians, since it allows very large or very small numbers to be represented. PutReal is
described in appendix B.

PutFrac

SIMULA allows integers to be represented as "grouped items". This is occasionally useful, when
representing such things as amounts of money. It also allows orders of magnitude to be assessed at a
glance.

A grouped item is a string of digits, separated into groups of three by spaces. There may also be a
decimal point as a separator, somewhere in the sequence.

Where there is no decimal point, the sequence is broken into groups starting at the right, as shown
in examples 8.3. Where the number of digits is not an exact multiple of three, the leftmost group
will have less then three digits.

Example 8.3: Grouped items without a decimal point.

416 379 408
16 063
9 327 524

Where there is a decimal point, the sequence to the left of the decimal point is as described above.
The sequence to the right is divided into groups working from the decimal point towards the right.
Thus the rightmost group after a decimal point may contain less than three digits.

https://web.archive.org/web/20040923043726/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendixb.html

Example 8.4: Grouped items with a decimal point.

287 901.386 974 203
12 592.769 23
32 006.641 974 05

PutFrac has two integer value parameters. The first of these is the number to be represented as a
grouped item. The second is the number of places which it should occupy after the decimal point.

Example 8.5: Use of PutFrac.

begin
text T5;
T5 :- Blanks (80);

T5.PutFrac(23478912,4); ! Should give 2 347.891 2;
OutText (T5) ;
OutImage

end

Exercises

8.1 Use PutFrac in a program to calculate a weekly wage, where the first forty hours are paid at
#2.30 per hour and subsequent overtime at the normal rate plus half. The program should read in the
hours worked and print out the wages for normal working, overtime and as a total.

8.2 What would the representation of the following calls be? Write a program to check your
answers.

. PutInt (965)

PutFix (43.2,2)
PutFrac(492871409217,5)

PutFix (43.2056,2)

PutFrac (492871409217, 6)

PutFix (43.2049,2)

PutFrac (492871409217, 4)

PutInt (96.7)

. T :-= Blanks(4); T.PutInt(721964)

O 00 Jo U Wb

Reading numbers from texts

Corresponding to the procedures for adding numbers to texts as sequences of characters, there are
attributes of text which are procedures for interpreting the next sequence of characters, which must
have the format used to represent the type required, as a number of that type.

In all the following procedures, reading always starts at the first character of the text being scanned.
The value of Pos is ignored.

Any spaces and tabs at the start of the text are skipped. Any other characters before the start of the
numeric item cause a runtime error to be reported. The sequence translated is the longest one that
fits the format for the appropriate type. If the sequence ends without fully matching the required
format, a runtime error is reported.

The current position in the text is moved one character past the item read. If the text is a constant
this change is lost immediately.

Getlnt

Getlnt is an integer procedure. It takes a sequence of digits and interprets them as an integer value,
returning this value. The sequence is deemed to end at the first non-digit or at the end of the text.
Only spaces at the start of the sequence are skipped.

In example 8.6, you should note the need to use Sub to identify the sub-text remaining after each
Getlnt. This is because scanning always starts at the first character of the text and so repeated calls
of GetInt on the same text will always return the first sequence matching an integer in the text.
GetChar, however, starts from the current Pos and so Sub is not needed when it is called.

Example 8.6: Use of Getlnt.

begin
text T6;
T6 :- Copy("12 345.678 12");
OutText ("FIRST ITEM");

OutInt (T6.GetInt,4); 112,
OutText ("SECOND ITEM") ;
T6 :- T6.Sub(T6.Pos,T6.Length-T6.Pos+1) ;
OQutInt (T6.GetInt,4); ! 345;
OutText ("THIRD ITEM") ;
OutChar (T6.GetChar) ; [
OutText ("FOURTH ITEM") ;
T6 :- T6.Sub(T6.Pos,T6.Length-T6.Pos+l);
OutInt (T6.GetInt,4); ! 678;
OutText ("FIFTH ITEM");
T6 :- T6.Sub(T6.Pos,T6.Length-T6.Pos+l);
OutInt (T6.GetInt,4); 12,
OutImage
end
GetReal

Real procedure GetReal is the only way of reading items as reals. It accepts either the format used
by PutFix or that used by PutReal. In either case the sequence must be complete. For the fixed point
format, which we are considering here, this means that the sequence must be:

1. A simple sequence of digits, as for an integer;
2. A sequence of digits, followed by a decimal point and a further sequence of digits;
3. A decimal point followed by a sequence of digits;

A sequence of digits, followed by a decimal point, but with no further digits is not legal.
For floating point representations allowed, see appendix B.

Example 8.7: Use of GetReal.

begin
text T7;
real R1;
T7 :— Copy("12 345.678 12");
OutText ("FIRST ITEM");
Rl := T7.GetReal;
OutFix (R1,3,8); 1 12;
OutText ("SECOND ITEM") ;
T7 := T7.5ub(T7.Pos,T7.Length-T7.Pos+1l);
R1 := T7.GetReal;
OutFix (R1,3,8); ! 345.678;
OutText ("THIRD ITEM") ;
T7 := T7.Sub(T7.Pos,T7.Length-T7.Pos+1);
Rl := T7.GetReal;
OutFix (R1,3,8); 1 12;

https://web.archive.org/web/20040923043726/http://www.macs.hw.ac.uk/~rjp/bookhtml/appendixb.html

OutImage
end

GetFrac

Grouped items, as described for PutFrac, are read in by GetFrac. This is an integer procedure, which
returns the value of the grouped item as if it were an integer, ignoring any spaces or the decimal
point if it is present.

Example 8.8: Use of GetFrac.

begin
text T8;
integer I8;
T8 :- Copy("12 345.678 12");
I8 := T8.GetFrac;
OutText ("ONLY ITEM");
OutInt(I8,12); 1 1234567812;
OutlImage;
OutFrac(I18,5,20);
OutImage

end

Exercises

8.3 Write a program to read a sequence of real numbers, ending with a negative number, and write
them as suitably grouped items. The decimal point should be in the correct place.

8.4 Write a program to read the marks obtained in examinations in English, Mathematics, History
and French, in that order, for a class of thirty students. The marks will be given as integers,
separated with commas between each subject and with full stops at the end of each student's marks.
You may assume that each student's marks are on a new line. Extend your program to write out the
results in six columns, with appropriate headings. The first four should give the marks for each
subject. The fifth should contain the student's total. The last should contain the student's average, to
two decimal places.

Fixed repetition

The problem in exercise 8.4 shows a different type of loop to those that we have used before. Your
solution will probably have used the while loop that we learned in chapter 5. The while loop is very
powerful, allowing us to write loops which continue for as many repetitions as are necessary to
complete the task. Yet in exercise 8.4 we usually knew the number of times that we wanted to repeat
the loop. This meant using a counter to keep track of how many times the loop had been performed.

There is nothing wrong with such a solution, but SIMULA allows us to write the same loops more
concisely, using the for loop. Here is the reading part of exercise 8.4, using a while loop and then
using a for loop.

Example 8.9: Fixed repetitions using while.

begin
character Charl;
integer Cl1, C2, Val;
Cl := 1;
inspect SysIn do
while C1 le 30 do
begin
text T1;

InImage;

Tl :- Image;

C2 := 1;

while C2 < 4 do

begin
Val := T1l.GetInt;
Charl := " ';
while Charl ne ',' do Charl := Tl.GetChar;
Tl :- T1.Sub(Tl.Pos,Tl.Length-T1.Pos+1l);
C2 :=C2 + 1;

end;

Val := T1l.GetInt;

Cl :=Cl1l + 1;

end
end

Example 8.10: Fixed repetitions using for.

begin
character Charl;
integer C1,C2,Val;
inspect SysIn do
for Cl:=1 step 1 until 30 do
begin
text T1;
InTmage;
Tl :- Image;
for C2:=1 step 1 until 3 do
begin
Val:=T1.GetInt;
Charl:=T1.GetChar;
while Charl ne ',' do Charl:=Tl.GetChar;
Tl :- T1.Sub(Tl.Pos,Tl.Length-T1.Pos+l);
end;
Val := Tl.GetlInt
end
end

Note the structure of the for loop. The keyword for is followed by a sequence known as a for clause,
which is in turn followed by the keyword do and a statement. Thus, the while and condition of
the while loop statement are replaced by a for and a for clause.

The for clause specifies a variable and a series of values which are to be assigned to it. The values
are assigned in turn and the statement following the do is performed once after each of these
assignments.

There are two commonly used forms of the for clause. Example 8.10 uses the step-until form. This
specifies:

*a starting value, which follows the assignment operator, :=,

*an amount to be added to the variable next and each succeeding time, which follows the
keyword step,

sthe upper (or lower) limit for the value of the variable, which follows the keyword unfil.

The variable to which the values are assigned is known as the "controlled variable". Its value,
compared to the limit value, controls the number of times that the loop will be executed.

Consider what will happen in the outer for loop in example 8.10. When the line containing
for Cl:=1 step 1 until 30 do

is first reached, the value 1 is assigned to the controlled variable, integer C1. The statement
following the keyword do, which is a compound statement in this example, is then performed.

The value in C1 is then compared with the limit value, and if C1 is the greater, the for loop is
complete and the statement following for is skipped.

When all the actions of the compound statement are complete, the program comes back to the
keyword for and adds the value following step, 1 in this example, to the value in the controlled
variable, C1. C1 now contains the value 2. If this is now greater than the limit, the rest of

the for loop is skipped and the program moves to the next statement or, in this case, the end of the
block or compound statement containing the for loop.

In this example the program will cause the value of C1 to be set to 1 and increased by 1 twenty nine
times, reaching 30. After each change in C1, the statement following do will be performed. Thus
this statement will be performed thirty times.

The first value does not have to be 1, neither does the step value. They may even be negative. The
statement in example 8.11 uses a negative step to copy the characters from one text to another in
reverse.

When the step value is negative, the controlled variable decreases each time round the loop and the
check made is that it is not yet less than the limit value.

Example 8.11: Negative steps in a for loop.

begin
integer C1l;
text T1,T2;
T2:-Blanks (12);
T1l:-Copy ("ABCDEFGHIJKL");
for Cl:=12 step -1 until 1 do
begin
Tl.SetPos(Cl);
T2 .PutChar (Tl.GetChar)
end;
OutText (T1);
OutImage;
OutText (T2);
OutImage
end

It is also possible to use a real variable as the controlled variable and to use variables or expressions
of the appropriate type for any of the values. Examples of some of the many possible variations are
given in 8.12.

Example 8.12: Variations on the for clause.

a: Using real values.

begin
real R1;
for R1:=0.1 step 0.3 until 1.0 do OutFix (R1l, 2, 4);
OutImage

end

b: Using variables as step and limit values.

begin
integer I1, 12, I3, I4;
12:=4;
I13:=6;
14:=28;

for I1:=I2 step I3 until I4 do OutInt (I1, 3);

OutImage
end

A word of caution

The three values obtained from the expressions in the step-until sort of for clause are checked each
time round the loop. It is possible to assign to them inside the loop, which will disturb the normal
sequence of values. In fact some very "clever" programs have been written to exploit this. It is,
however, a very unsafe practice and you should normally be very careful not to change the values
except in the for clause itself. If you use type procedures in these expressions you may produce
unexpected side effects too. Keep your programs simple if you want them to work.

for clauses using lists of values.

The step-until for clause is very useful when we want to increase or decrease the value of the
controlled variable by some constant amount. By using a variable as the step value and altering the
value of this during the statement following the do, the change in the controlled variable can be
varied, but this is rather dangerous and rarely useful. A simpler means of assigning a series of
values, which are not obtainable by repeated additions or subtractions of a step value, is to use a list
as the for clause. Consider example 8.13.

Example 8.13: for clause with a simple list.
begin
text T;
character C;
T:-Blanks (5) ;
for C:='B', 'E', 'G', 'I', 'N' do
begin
T.PutChar (C) ;
OutText (T) ;
OutImage
end
end

This program will assign the characters in the list to C in the order they are given. After each
assignment the compound statement following do will be performed. If you compile and run the
program your output should be

B

BE

BEG

BEGI
BEGIN

which is fairly self explanatory. One important point is that non-arithmetic values may be used,
such as characters and texts. This is not possible in the step-until form.

Steps in lists

The permutations allowed in the for clause are often only of academic interest. We do not need to
consider most of them here. If you are really keen to explore them, I suggest that you refer to the
SIMULA Standard [1]. It may be useful to note that a step-untilcontruction may be used as one
element in a list in a for clause. This is shown in example 8.14. Try it and see the effect.

Example 8.14: Mixing steps and lists.

begin
integer I;
for I:=4 step 1 until 6, 3, 8 step 2 until 20 do
begin
OutInt (I,3):;
OutImage
end
end

Exercises
8.5 Rewrite exercise 8.4 using for loops where possible.

8.6 Write a program to print out the multiplication tables from two to twelve, in the following
format

2 3 4 5 etc.
1x2 = 2 1x3 = 3 1x4 = 4 1x5 = 5
2x2 = 4 2X3 = 6 2x4 = 8 2x5 =10

etc.

8.7 Write a program which reads in a series of words and prints them five to a line, with a blank line
after every six lines.

8.8 Extend your answer to 8.7 to print successively the letters a, b, ¢, d, e, f before the lines in each
block and to number the blocks.

Item oriented I/O with Files.

Matching the item oriented procedures for reading and writing in a text are procedures for reading
and writing sequences of characters which represent numbers in Files. Those for output are local to
OutFile, and thus PrintFile, while those for input are local to InFile.

Output of numeric items

The numeric item procedures in OutFile output are Outlnt, OutFix, OutReal and OutFrac. Each has
the same parameters as its Put equivalent, plus an additional width parameter, which is an integer
and comes after the others.

Basically each procedure creates a sequence of characters in the Image of the OutFile, starting at the
current position. These are of the same forms as for the corresponding Put procedures, but their
positioning is controlled by the width parameter.

The meaning of the width parameter

The width parameter specifies how many characters in the Image will be used by the numeric item.
If the actual item is shorter than this width, space characters are added on the left of the item to
achieve the required length. Thus the items are said to be "right aligned" within the length of text
specified by their width fields, since their last character always fills the rightmost space specified by
the width parameter.

If the actual item is longer than the width specified, it is not output. Instead a sequence of asterisks
of the specified length is printed. This is known as an editing overflow and many SIMULA systems
will report the number of such overflows at the end of the program. By not allowing more than the
specified number of characters to be output, the alignment of columns of figures is preserved. By

printing asterisks, the user is warned that insufficient space was allowed for printing the required
values.

Before writing an item, the SIMULA runtime system will check that there is sufficient space left in
the current Image. If not, an Outlmage is performed to copy the current Image to the actual File or
output device, and the item is written at the start of the new Image. If the item is longer than
Image.Length, a runtime error is reported.

Example 8.15 shows the use of some of the output procedures. It shows an overflow and an implicit
Outlmage.

Example 8.15: Item oriented output to a File.

begin
ref (OutFile) OutPut;

OutPut:-new OutFile ("TABLES");

inspect OutPut do

begin
Open (Blanks (40)) ;
OutInt (203, 10); !3 characters in 10 spaces;
OutFix (283.42, 5, 10); !8 characters in 10 spaces;
OQutFrac (10348215, 3, 10); 110 characters in 10 spaces;
OutInt (9654, 5); '4 characters in 5 spaces;
OutInt (103694, 4); !'6 characters in 4 spaces->overflow;
OoutInt (3, 2); INot enough space left in Image->implicit OutImage;
OutImage;
Close

end*of*inspect

end
Exercises

8.9 Rewrite your answer from 8.6 using Outlnt.

8.10 Write a program which reads and prints the name, age in years and weight of a given number
of people. The program should:

1.ask for and read the number of people to be dealt with.
2.ask for each item in turn for each person.
3.print out each person's details on a separate line, with the columns correctly aligned.

Input of numeric items.

The input of numeric items is done by InInt, InReal and InFrac. No parameters are required. Each is
a procedure of the appropriate type.

Thus InInt reads the next sequence in the current Image as an integer, returning its value. InReal
reads it as a real, returning its value. InFrac reads it as a grouped item, returning the corresponding
integer value.

As with the Get procedures in a text, any spaces are skipped. If the first sequence of non-spaces
encountered is not in the correct form for the required type, a runtime error is reported.

The end of the current Image ends the item. If no non-space character is found before the end of the
current Image, an Inlmage is performed and the search continues.

Example 8.16 shows the input procedures in use.

If a number is read which is larger than the largest positive value or smaller than the smallest
negative value of the appropriate type which can be held on a particular computer, a runtime error,
either integer overflow or floating point overflow, should be reported. If a real value which is too
near to zero is read a runtime error, floating point underflow, should be reported. The limits for each
SIMULA system are given in the appropriate Programmer's Reference Manual or User Guide.

Text concatenation

As we have now completed the attributes of text, a word on the recently introduced text
concatenation operator is perhaps appropriate. This operator, &, combines two text frames,
producing a reference to a new text frame.

The combined text has a frame consisting of a copy of the characters from the text to the left of the
operator, followed by a copy of the characters from the text to the right. Example 8.17 shows the
use of the concatenation operator. Only up to date SIMULA systems will have this feature.

Example 8.16: Item oriented input from a File.

begin
ref (InFile) InPut;
real R1l; integer I1;
InPut:-new InFile ("SOURCE") ;

inspect InPut do

begin
Open (Blanks (80)) ;
OutInt (InInt, 4); ! Output goes to SysOut;
Rl:=InReal;
Il:=InFrac;
Close

end*of*inspect*input;

OutImage

end

Example 8.17: Text concatenation operator.

begin
text T1, T2, T3;
Tl := "Left";
T2 :- "Right";
T3 := T1&T2;
OutText (T3) ;
OutImage

end

Exercise

8.11 Rewrite the exam result question using all the new features which are appropriate.

Summary

We have extended the idea of item oriented input and output to cover the reading and writing of
sequences of characters which represent arithmetic values in texts.

We have seen the attributes of text which allow such operations on integer, real and grouped items.

We have seen how to write for loops, which allow us to perform a task a certain number of times or
once for each member of a list of values. We have also noted certain dangers with this.

We have seen the equivalents of the text item oriented attributes which exist for InFile and OutFile.

The text concatenation operator has been described.

CHAPTER 9 - classes as Records

A simple example

One very common use for computers in offices today is for printing self-adhesive labels for
envelopes. Consider a program which reads in a name and address followed by the number of labels
required. We will simplify things by printing our labels underneath one another, one at a time.

Using our knowledge of SIMULA so far, we might write the program shown in example 9.1.

Example 9.1: Simple labels program without classes.

begin
integer NumLabs,I;
text Nam, Street, Town, County, Code;

procedure OutLine (T); text T;
begin

OutText (T) ;

OutImage
end*of*OutlLine;

text procedure InLine;
begin

InImage;

inspect SysIn do InLine:-Copy(Image.Strip)
end*of*InLine;

OutLine ("Name?") ;
Nam:-InLine;
OutLine ("Street?");

Street:- InLine;
OutLine ("Town?") ;
Town:- InLine;
OutLine ("County?") ;
County:- InLine;
OutLine ("Code?") ;
Code:- InLine;
OutLine ("How many copies?");
InTmage;
NumLabs:=InInt;
Eject (1)
for I:=1 step 1 until NumLabs do
begin
OutLine (Nam) ;
OQutLine (Street) ;

OutLine (County) ;
OutLine (Code)
end
end

(

(
OutLine (Town) ;

(

(

This example may not be the neatest SIMULA writeable with our current knowledge, but it does the
job. It also shows that, within the program, a label is a sequence of five text values, which are first
read in and then printed out. What we are really doing, in a clumsy way, is using an object which
has five text variables as attributes.

SIMULA allows us to use complex objects, made up of attributes which are already defined. These
attributes may be of the standard SIMULA types or may reference types defined by the user, i.e. one
user defined type may use others as attributes.

The construction in SIMULA which can be used to declare a complex type is the class. We have
already seen predefined system classes when we looked at File and its sub-classes. Now let us
declare a class Lab for use in our program. Example 9.2 shows 9.1 reworked using such a class.

Example 9.2: Simple labels program with classes.

begin
integer NumLabs, I;

procedure OutLine(T); text T;
begin

OutText (T) ;

OutImage
end;

text procedure InLine;
begin

InImage;

inspect SysIn do InLine:- Copy(Image.Strip)
end;

class Lab;
begin

text Nam, Street, Town, County, Code;
end--of--class—--Lab;

ref (Lab) Labell;! Declare a pointer to a Lab object;
Labell:- new Lab;! Create a Lab object and point Labell at it;
comment Remote access through dot notation;
Labell.Nam:- InLine;
Labell.Street:- InLine;
Labell.Town:-InLine;
Labell.County:- InLine;
Labell.Code:- InLine;
InImage;
NumLabs:= InInt;
comment Now connected access through inspect;
inspect Labell do
begin

for I:=1 step 1 until NumLabs do

begin

OutLine (Nam) ;
OutlLine (Street) ;
OutLine (Town) ;
OutLine (County) ;
OutLine (Code)
end

end

end

This example may seem longer and more complicated than 9.1. It is certainly true that, for very
simple purposes, using classes may offer little advantage. For any but the simplest programs,
however, classes can make things much simpler. By the end of this chapter, we shall see this with
our labels program.

Let us look at the new features used here. First there is the class declaration. This provides a
description for a class of objects which all have the same attributes. In this case we define Lab
(label 1s a SIMULA keyword and may not be used as an identifier). In general, a class declaration is
very like a procedure declaration, with the keyword class instead of procedure. We shall look at the
precise syntax later.

The declaration of Lab specifies the name of the complex type being defined as the identifier
following the keyword class. This identifier is followed by a semi-colon. The attributes of the class
are defined in a statement, known as the class body, which follows. Thus Lab has five attributes, all
of type text.

Having defined the attributes of our new type, we can now create an object, or as many objects as
we like, with those attributes. This is done by using an object generator.

An object generator can be used as a statement on its own or as a reference expression, i.e. on the
right hand side of a reference assignment or as a reference parameter. Examples of all these are
shown in 9.3.

Examples 9.3: Valid occurences of object generators.

As a complete statement:
new Printer

As the right hand side of a class reference assignment:
OutF :- new OutFile

As a class reference parameter:
Queue Up(new Passenger)

Other cases are also possible, as we shall see shortly, but these are the main ones.

Our labels program uses the commonest and most easily grasped of these, the reference assignment.
A variable is first declared, whose type is ref{Lab). This means that it identifies a location where a
pointer to an object of the type defined by class Lab may be stored. This variable is used first as the
left hand side (destination) of a reference assignment statement.

The effect of this statement is that a new object containing the attributes of Lab is created. Since
Labell is assigned a pointer to this object (references it), the object's attributes can be accessed
through the variable Labell. As we have seen with objects which were of types InFile and OutFile,
there are two ways of doing this. Both are shown in example 9.2.

"Remote accessing" of a class object is done by using the identifier of a reference variable which
currently contains a pointer to the object, Labell in our example. A ref(Lab) procedure could also
be used, as we have seen with SysIn and SysOut. This reference is followed by a dot, followed by
the name of a visible attribute of the class which defines the type of the object being accessed.

This method of accessing attributes may be used for both text objects and class objects. This
distinction is important, since the type "text" is not defined by a class.

The other way of accessing the attributes of an object is by "connecting" it first. To connect an
object we must use an inspect statement. The syntax of a simple inspect statement was described

in chapter 8. In the statement which follows the keyword do, the use of any identifier which has a
declaration in the class defining the type of the connected object is assumed to refer to this attribute.
If no matching declaration is found in this class or its prefixes, the identifier is assumed to belong
outside the object.

Thus, within the inspect statement in example 9.2, the occurences of Nam, Street, Town, County
and Code are taken to refer to attributes of the object Labell, since declarations for them are found
in class Lab.

A full description of remote accessing is given in chapter 13.

https://web.archive.org/web/20040923044248/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap13.html
https://web.archive.org/web/20040923044248/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap08.html

Exercises

9.1 Rewrite the labels program, adding an integer attribute to class Lab. Extend the program so that
it will:
1.read a label from SysIn, prompting for each attribute in turn, including the integer
attribute;
2.Copy labels from an InFile, holding any number of labels, to a printfile;
3.insert the new label in the correct place as it writes them, assuming the labels to be in
numerical order, defined by the integer attribute.

Devise suitable test data and check that your program copes with all possible cases.

9.2 A company wishes to computerise its personnel records. Each record contains the following
information:

Name

Age

Date of birth

Works number

Job

Salary

Marital status

Devise a program which will:

l.read in a new record, prompting for input, and add this record to the existing file of
records, held in order of works number;

2.request the user to type in the service required and then perform it, initially only
performing (a) above;

3.add an additional service to find a record according to its works number;

4.add another service to print out all records where a specified attribute has a specified
value, e.g. Name=F.Jones;

5.add another service to find a record and update any or all of its attributes and write an
updated file.

Making classes work for themselves

Classes are objects containing attributes. These may be of any type visible in the block where the
class is declared. As we have seen this can allow us to create objects which match the natural
groupings of data that we wish to process in our program. This approach is usually called "object
oriented" programming.

We also saw, when we considered class File and its sub-classes, that it is not just data attributes that
a class object can contain. The power of the class concept as a way of representing objects in our
programs is considerably increased by the ability to define procedures as attributes of classes.

Consider our labels program. In example 9.2, we read in each attribute, one at a time, and wrote it
out in the same piecemeal way. In the extended version of exercise 9.1, which inserts a new label in
the correct place in a file of labels, all with the same structure, this piecemeal reading will have to
occur in several places in the program. We have used the action of copying a single line into a text,
repeated five times, to read five lines of label data into the five text attributes of a Lab object. This
is really one action on an object of type Lab, so far as our object oriented view of labels is
concerned, just as addition is an action on two arithmetic objects.

Example 9.4 shows the labels program again, but this time the reading and writing of the contents
of a Lab object are made into procedures local to class Lab. The actions allowed on the object are
now included in its definition.

Note how indentation and the use of comments after each end makes the structure of the program
much easier to follow.

Example 9.4: Labels program using procedures as attributes of a class

begin
integer NumLabs, I;

procedure OutLine (T); text T;
begin

OutText (T) ;

OutImage
end--of--OutLine;

text procedure InLine;
begin

InImage;

inspect SysIn do InLine :- Copy(Image.Strip)
end--of--InLine;

class Lab;
begin

text Nam, Street, Town, County, Code;

procedure ReadLabel;

begin
Nam :- InLine;
Street :- InLine;
Town :- InLine;
County :- InLine;
Code :- InLine

end++of++ReadLabel;

procedure WriteLabel;
begin
OutLine (Nam) ;
OutlLine (Street) ;
OutLine (Town) ;
OutLine (County) ;
OutLine (Code)
end++of++WritelLabel;

end--of--Lab;

ref (Lab) Labell;

Labell :- new Lab;

Labell.ReadLabel;

InImage;

NumLabs := InInt;

for I := 1 step 1 until NumLabs do Labell.WriteLabel

end..of..program

One major advantage of this approach is that, given a sensible choice of names, we will have a
much more readable program. Complicated detail is moved from the main part of the program to
the procedure attributes of the class and replaced by meaningful procedure names.

By designing the data structure and the operations to be performed on that structure together, as a
class declaration, we make the writing of the main program much simpler. We are freed from detail
and can think in high level terms. The essence of object oriented programming is to use good design
of class declarations to make the rest of our task easier. Once we had defined ReadLabel as an

attribute of Lab, for instance, we no longer had to worry how to read in the data each time it was
needed. Any program using our Lab class objects can rely on a standard reading procedure call.

Example 9.4 shows a solution to exercise 9.1 using procedures as attributes of Lab. I think it is
much clearer than any solution without them, including that given at the back of this book.

You will probably have noticed that in these examples the procedures InLine and OutLine have not
been declared inside the class body of Lab, although they are used only there. This is because they
do not refer directly to the data structure which Lab represents. They refer to the more general data
structure defined by text and so are declared at the most general level, the program block. This
leaves them free for use anywhere in the program that they are useful. ReadLabel and WriteLabel
are only useful as part of Lab.

Example 9.4 uses File objects to allow label lists to be accessed and created. Note carefully the use
of MyInput and MyOutput, which allows input and output to be switched between the default Files,
SysIn and SysOut, and the user defined ones, using the same procedures.

Example 9.5: Inserting a numbered label using procedure attributes.

begin
Comment***
* MyInput and MyOutput replace SysIn and SysOut. *

* They can be redefined as necessary. *
**,-

ref (InFile) MyInput;
ref (OutFile) MyOutput;

Comment***************************

* Variables used by main program *
**********************************,-

text Request, Source, Output;
Boolean Unwritten;

integer Count;

ref (Lab) NewLabel, NextLabel;

Comment**

* Utility procedures, used throughout the program *
***;

procedure OutLine(T); text T;
begin
inspect MyOutput do
begin
OutText (T) ;
OutImage
end
end--of--OutLine;

text procedure InlLine;
begin
text Tem;
inspect MyInput do
begin
InImage;
InLine :- Copy(Image.Strip)
end
end--of--InLine;

Comment*******************************

* Basic label class definition - Lab *
**************************************,-

class Lab;
begin

comment * Data attributes of Lab * ;

text Nam, Street, Town, County, Code;
integer Sequence No;

comment * procedures operating on objects of type Lab * ;

procedure WriteLabel;
begin
MyOutput.OutInt (Sequence No,10);
MyOutput.OutImage;
OutLine (Nam) ;
OutLine (Street) ;
OutLine (Town) ;
OutLine (County) ;
OutLine (Code)
end++of++WritelLabel;

Boolean procedure ReadLabel;

begin

text First;

First :- InLine;

if First ne ".end" then

begin
Sequence No := First.GetInt;
Nam :- InLine;
Street :- InLine;
Town :-— InLine;
County :- InLine;
Code :- InLine;
ReadLabel := True;

end

end++of++ReadLabel;

end--of--Lab;

Comment*********************

* Main program starts here *
****************************,-

MyInput :- SysIn;
MyOutput :- SysOut;
OutLine ("Please type name of file holding labels");
Source :- InLine; ! Read old label file from SysIn;
Output :- Blanks (Source.Length+l);
Output := Source;
Output.PutInt (Count) ; ! New list in file Output;
OutLine ("Do you wish to add another label? Please type Yes or No");
Request :- InLine;
while Request="Yes" do
begin

UnWritten := True;

NewLabel :- new Lab;

OutLine ("Type the new label, using a new line for each item");
if not NewLabel.ReadLabel then OutLine ("No new label?");
MyInput :- new InFile(Source); ! Read old list from Source;
MyOutput :- new OutFile (Output); ! Write new list to Output;
MyInput.Open (Blanks (80));

MyOutput.Open (Blanks (80)) ;

NextLabel :- new Lab;

while NextLabel.ReadLabel do
begin
comment Copy old to new, checking sequence nos.;
if NextLabel.Sequence No>NewLabel.Sequence No then
begin
if Unwritten then
begin
NewLabel.WriteLabel;
Unwritten := False; ! Prevent further copies;
end
end;
NextLabel.WriteLabel
end*of*copying*file*to*file;
OutLine (".end");
MyInput.Close;
MyOutput.Close;

Count := Count + 1;

Source :- Copy(Output); ! Use Output as input for next addition;
Output.SetPos (Output.Length-1);

Output.PutInt (Count); ! Name of next Output file;

MyInput :- SysIn;

MyOutput :- SysOut;

OutLine ("Do you wish to add another label? Type Yes or No.");
Request :- InLine

end*of*while*"Yes";

MyOutput.OutText ("New label list written in file ");

OutLine (Source) ; ! Name of last Output file used;
end*of*program

Making classes work even harder

Procedures as attributes make it possible to embed sequences of actions inside classes. This
removes the need for tedious reprogramming of these sequences every time they are used in the
main program. Having designed and implemented the class attributes, their internal details can be
forgotten. Another mechanism can save even more tedious work.

Often the first actions performed on a new object of a particular class follow the same pattern each
time one is created. Typically they involve setting the initial values of the data attributes of the
object. In class Lab we made this much easier by writing ReadLabel in the definition of the class.
This meant that creating and initialising the data in a Lab object required only two statements. By
using a simple extension of the class declaration of Lab, we can do it in one.

Consider example 9.6. Here we have a sequence of statements at the end of the class body of Lab.
These read in the values of its various attributes. Such a sequence will be executed whenever a new
object of this class is generated by new.

Another novel feature is the use of a parameter in the class declaration. Here it is a Boolean, used to
indicate whether the new object should prompt for input or merely read without prompting. This
can allow interactive input to be treated differently from input from a file. The value of the
parameter must be supplied in the object generator.

For the moment we shall treat parameters to classes rather informally, but the following points are
important:

1.Parameters may not be in Name mode. Only the default mode for the type may be used
with classes.

2.0nce an object has been generated by new, at which point matches for all the parameters in
the declaration must be supplied, these parameters can be treated as normal attributes of the
object. They may be accessed by remote accessing via dot notation or connection.

3.Procedures and labels may not be used as parameters to classes.

The value of Prompt in 9.6 is set to True, so that input is prompted for. If we rewrote example 9.5
using this version of Lab, the value given would be True for NewLabel and False for NextLabel, to
avoid prompting when reading from a file.

Example 9.6: Parameters and initialisation Code in classes.

begin
procedure OutLine(T); text T;
begin
OutText (T) ;
OutImage
end--of--Outline;

text procedure InLine;
begin

InImage;

inspect SysIn do InLine :- Copy(Image.Strip);
end--of--InlLine;

class Lab (Prompt); Boolean Prompt;
begin
integer Sequence No;
text Nam, Street, Town, County, Code;

procedure Writelabel;
begin
OutInt (Sequence No,10);
OutImage;
OutLine (Nam) ;
OutLine (Street);
OutLine (Town) ;
OutLine (County) ;
OutLine (Code)
end++of++WritelLabel;

procedure ReadLabel;

begin
Sequence No := InInt;
Nam :- InLine;
Street :- InLine;
Town :- InLine;
County :- InLine;
Code :- InLine

end++of++ReadLabel;

comment These actions are performed each time a Lab object
is generated;

if Prompt then
begin
OutLine ("Type, on separate lines, sequence number, Name, "
"Street, Town, County and Code.")
end**of**prompting**if**requested;

ReadLabel
end--of--Lab;

ref (Lab) Labell;
Labell :- new Lab(True); ! Use prompting;

Labell.WriteLabel
end..of..program

Summary

In this chapter we have seen how a programmer can define his or her own complex object types,
using structures composed of simpler types. The SIMULA feature which is used for this is the class.

We have seen that procedures may also be attributes of classes.

The means of creating an object of a type defined by a class using the object generator new has been
explained.

The two methods of remote accessing of attributes of a class object, dot notation and connection
by inspect, have been revised.

The concepts of object oriented programming have been explained and we have seen some of the
benefits of this approach. We have noted particularly how the use of procedure attributes to
manipulate data attributes can simplify the rest of a program.

The inclusion of actions in the definition of classes has been described. Their use in setting initial
values for the data attributes has been shown.

Lastly we have seen the use of parameters to classes. The types and modes allowed have been listed
and the need to specify them in the object generator has been explained.

Exercises

9.3 Extend the definition of a label object to describe a letter to someone. Data should include name
and address of both sender and recipient, text of the letter, date and method of sending, e.g. surface
or air mail. You may assume any suitable maximum number of lines for the text. Write a program
which reads in a letter and prints it along with a label for mailing it.

What problems would occur if the letter had to be able to contain a large and unspecified number of
lines?

9.4 Rewrite your answers to 9.1 and 9.2 using the new features introduced since then. What are the
problems when adding several new records, which cannot be assumed to be in order themselves, to
an ordered set like those in our labels file? Think especially of a system where the amount of

storage space on the computer is limited. What extra features in SIMULA can you think of to help?

‘ H Mode

‘ Type H Value HReferenceH Name
‘Simple type HDefault H Illegal HIllegal
‘text HIllegal H Default HIllegal

‘Simple type array HIllegal H Default HIllegal

‘Reference type array HIllegal H Default HIllegal

|
|
|
|
‘Object reference HIllegal H Default HIllegal ‘
|
|
|
|
|

h)rocedure HIllegal H [llegal HIllegal
‘type procedure HIllegal H [llegal HIllegal
‘label HIllegal H [llegal HIllegal
‘switch HIllegal H [llegal HIllegal ‘

Table 9.1: Modes of transmission to classses for parameter types.

Chapter 10 - Make me a list

Lists 1 - Arrays and simple linked lists

Storing lists

In setting exercises 9.3 and 9.4, I hoped to focus your attention on the need to hold lists in ways
which are easy to access. Many programs need to read, update and write out long series of data
items. These items are the objects which we wish to manipulate. It is rarely worthwhile to use a
computer to process one or two items. Even our program which wrote only a few copies of one
label used an object with a list of data items within it.

The use of files allows us to read lists from outside the program and to store them at its end.
Unfortunately, as our updating programs show, it is not a good idea to create a new file, external to
the program, each time we add, delete or modify an item in a list. We soon end up with a multitude
of out of date files.

The use of objects defined by classes allows us to hide a number of basic items inside larger, more
complex items. It does not solve the problem of how to refer conveniently to a long list of items in
succession. The need to declare and use a separate identifier for each possible line of a letter, for
instance, makes long letters unwieldy to process and those of indefinite length almost impossible.

This chapter is the first of three dealing with the handling of lists. It provides simple but elegant
mechanisms for solving most of the problems mentioned above. Let us start with the problem of
holding a long list of items, which are all of the same type.

The letter program revisited

The text of a letter can be represented as a list of SIMULA text objects, with a maximum number of
characters in each. So far, the only way we have seen to hold them is as a list of text declarations,
one for each line. This leads to a very long winded program and you probably confined your answer
to exercise 9.3 to letters with only a few lines. A much simpler and more concise way of
representing the same thing is to declare a single identifier, representing a numbered list of text
references. Such an identifier represents an object known as an array of texts.

Example 10.1 shows the use of an array in a much simplified letter program, where no addresses are
allowed for, only the text and the name of the sender.

First look at the array declaration in class Leter. (The mispelling is deliberate since there is a system
Boolean procedure called Letter, which we might well wish to use in the same program. This is
described in chapter 12.)

Example 10.1: Letter program using a text array.

begin
class Leter;
begin
text Sender;
text array Line (1:60);
integer Len;

procedure ReadlLetter;
begin
InImage;
inspect SysIn do
while Image.Strip ne ".end" do

https://web.archive.org/web/20040923044556/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap12.html

begin

Len := Len + 1;
Line (Len) :- Copy(Image.Strip);
InImage

end

end++of++ReadLetter;

procedure Writeletter;
begin
integer Current;
for Current := 1 step 1 until Len do
begin
OutText (Line (Current)) ;
OutImage
end;
OutText (" Yours faithfully,"):;
OutImage;
OutText (" ")
OutText (Sender) ;
OutImage
end++of++WriteLetter;

OutText ("Type your letter, ending with '.end' on a line by itself");
OutImage;

ReadLetter;

OutText ("Now type your name on a single line");

OutImage;

InTmage;

inspect SysIn do Sender :- Copy(Image.Strip)

end--of--class--Leter;
new Leter.WritelLetter

end**of**program

Simple array declarations

The syntax of an array declaration is the type specifier of the items in the list (integer, ref(Leter)
etc.), followed by the keyword array, followed by an identifier, followed by the "bounds" of the list,
enclosed in parentheses. Spaces (or ends of line) are used to separate keywords and identifiers as
usual. They are not required between the identifier and the left parenthesis, but may be used if you
wish.

It is legal to omit the type specifier, in which case the array is asumed to be of type real.

The syntax has not included the form of the bounds. In the commonest case we wish to declare a
simple numbered list. The bounds then are two arithmetic values, which are converted to integers if
necessary, separated by a colon. In example 10.1 the constant integers 1 and 60 are the bounds. This
definition is only the simplest variant, but it covers most uses of arrays for the moment.

The semantics of such a declaration produce information telling the system to reserve space for a
list of items of the specified type. This list is to be numbered consecutively, starting with the value
before the colon and ending with the value after the colon. This also defines the number of elements
in the list.

This list as a whole is referred to by its identifier. Thus a whole array can be passed as a parameter
to a class or procedure, by giving just the identifier. Individual items in the list can be referred to by
the identifier followed by an arithmetic value enclosed in parentheses, giving the number of the
element to be accessed, within the list.

Thus the declaration in example 10.1 tells the SIMULA system to reserve space for a list of sixty
text variables. These are to be declared to be numbered from one to sixty. The list will be referred to
in the program by the identifier Line.

Note that the value of the first bound does not have to be 1. The bounds can have any values, even
negative ones, as long as the first bound is less than the second or equal to it. The first bound is
usually referred to as the lower bound and the second as the upper.

Note also that the values of the bounds may be given as real values. In this case they are converted
to integers in the same way as for assignments. The values can be arithmetic expressions as well as
constants. The normal rules for evaluating expressions apply.

Using array elements

The items in an array list are often called its "elements". Example 10.1 shows how an individual
element of Line can be accessed. This is known as a subscripted variable. The value within the
parentheses is called the subscript or the index.

Item number Len of the list is accessed in ReadLetter. It is referred to as Line(Len). Since Len is
increased by one before each Image is copied to Line(Len) the effect is to copy successive lines of
input into successive elements of the text array Line.

The syntax of a simple subscripted variable is an identifier followed by an arithmetic value enclosed
in parentheses. The arithmetic value may be a constant, a variable or a more complicated
expression, including a call on an arithmetic type procedure. Where necessary the value will be
converted to an integer, following the normal rules.

The semantics are also simple. The value of the subscript gives the number used as an index to the
elements of the array.

Note that the value of the lower bound is important in determining which element this refers to. A
subscript of six will only refer to the sixth element if the lower bound was one. If the lower bound
was four, indexing by six gives the third element.

A subscripted variable may be used wherever a simple variable of the same type may be used.

The value of the subscript, converted to an integer if necessary, must lie between the values of the
lower and upper bounds, inclusive. If it is outwith this range a runtime error will be reported.

Notes on differences amongst SIMULA systems

Some older SIMULA systems may require square brackets, [and], instead of parentheses, (and).
Programs written for such machines may require changes to compile on up to date systems and vice
versa. Some compilers will accept either form, which requires even greater care when moving
programs.

The lowest permitted value for the lower bound, the highest permitted value for the upper bound
and the maximum total number of items permitted in an array are all likely to be different on
different systems. The maximum number of elements in an array of one type may also be different
from that of another type, even on the same system. Check the Programmers' Reference Manual or
Users' Guide for the system you are using.

Variable length lists

Clearly the use of arrays allows large amounts of data to be held in locations declared within our
programs, without the continual need to access files and without declaring long lists of identifiers.
The use of loops, especially for loops, allows us to handle arrays in concise and clear ways.

One problem with the use of arrays is that we must tell the system in their declarations how many
elements they contain and what their bounds are. Often this may not be known until runtime. This
means that example 10.1 can only cope with letters of up to sixty lines. If someone wanted to use
the program for a longer letter, they would have to alter the source and recompile it.

Although the array is not always the best solution when there is no way of knowing in advance how
long the list will be, it can be made more generally useful by specifying the bounds in other ways.

We have defined the bounds as any expressions giving arithmetic values. This includes constants, as
used in 10.1, but also variables and expressions involving operators and type procedures. The only
restriction is that any variables used must already have their values fixed before entering the block
in which the array is declared. This means that the bounds can changed each time a block is entered.

This idea is not necessarily obvious at first, so take a while to get it straight in your mind. The
SIMULA system allocates the space used by each block only when that block is entered. Thus it
does not need to know how big an array is until then. If a variable used in the bounds of an array
has been declared in an outer block, this variable can have its value set in that outer block before the
array's space is allocated in the inner block. The variable must not be declared in the same block as
the array, since the system may allocate the block's arrays before its other variables and, anyway,
these variables could only have their initial zero values, since no statements may come in front of
declarations in a block.

As a consequence, the only block which cannot use variables in array bounds is the program block.
This is the outermost block and must use constants in all its array bounds.

All sub-blocks, procedures and classes used in a program are free to use variables in array bounds
so long as these are declared in an enclosing block or, for classes and procedures, are parameters.
Remotely accessed variables may also be used.

The simple examples in 10.2, 10.3 and 10.4 show how "dynamic bounds", as this mechanism is
known, may be used for sub-blocks, procedures and classes respectively. These trival examples
demonstrate a very powerful facility.

One important point to note is that when the parameters of a procedure or class are used in bounds
for arrays declared in that procedure or class body, they are treated as outside that body. This is the
only case where any distinction is made between parameters and other locally declared variables
inside the procedure or class body. It is very important that this be allowed.

Example 10.2: Dynamic array bounds in a sub-block.

begin
integer I11,1I2; ! Declared at the outermost block level;
11 := 2; ! Sets a non-zero value in Il;
12 := 3; ! Sets a non-zero value in I2;
begin

comment Start a sub-block which can only be entered after
I1 and I2 have had their values set;

integer array Al (I1l:1I2); ! Declare with Il and I2 as bounds;
Al (2) := 6;
end--of--sub-block;
comment Array no longer accessible;
end

Example 10.3: Dynamic array bounds in a procedure.
begin
procedure Bounder (Lowest); integer Lowest;

begin
comment Parameters may be used as bounds inside a procedure body;

character array Cl (Lowest:4*Lowest); ! Use an expression containing
Lowest as upper bound;

Cl (Lowest*2+1) := '&'; ! Use an expression in the subscript too;

OutChar (C1(5)); ! Null unless Lowest is 2;

OutImage

end--of--procedure--Bounder;

Bounder (2) ; ! Should print &;
end**of**program

Example 10.4: Dynamic array bounds in a class.

begin
integer Lower;
class Cl1l (Upper); integer Upper;

begin
Boolean array BoolArr (Lower:Upper); ! Use a mixture of enclosing
block's declarations and parameters to set
bounds;
BoolArr (Lower+3) := True
end--of--class--Cl1;
ref (C1l1l) CllRef;
Lower := 4; ! Sets lower bound before object generation;
CllRef :- new Cl1(7); ! Passes upper bound as a parameter;
if CllRef.BoolArr(5) then OutText ("True") else OutText ("False");
OutImage
end**of**program

A more practical use of dynamic arrays

Let us return to our general text processing system. It has been some time since we looked at it, but
I hope the features introduced since then have been suggesting solutions to the problems we were
facing. In particular, I hope the use of classes and object oriented programming has seemed
relevant.

This section shows how the combination of class objects and arrays can help the design of the Book
level of our program. What we are going to try to do is to design a class Book, with the necessary
data structures and procedures for manipulating them. Consider example 10.5.

The Book is represented as a class. It is assumed to have a title page, a contents, a preface, a
sequence of chapters and an index. The different data structures of each of these are represented in
turn by classes. Since each may only exist as a part of a book, they are declared inside the body of
Book (or "local to" Book).

A single ref variable is declared for each of these classes, except for Chapter. The number of
chapters in a book can vary considerably and so an array of ref{Chapter) variables is declared. Its
lower bound is 1 and its upper bound is a parameter of Book. The actual number of chapters can be
specified when the Book object is generated in the main program block. We use

new Book (InInt)

so that the number is read in and passed, in one statement.

Example 10.5: Class Book and the accompanying program block.
begin

class Book (Num_of Chaps); integer Num Of Chaps;
begin

text Title, Author;

ref (chapter) array Chaps (1:Num Of Chaps);

ref (Contents) Cont;

ref (Preface) Pref;

ref (Index) Ind;

integer Count;

procedure Title Page;
begin
Eject (10);
OutText (Title) ;
OutImage;
OutText (" by™) ;
OutlImage;
OutText (Author) ;
OutImage;
Eject (0);
end++of++Title++Page;

Pref :- new Preface;

for Count := 1 step 1 until Num Of Chaps do
Chaps (Count) :- new Chapter (Count);

Cont :- new Contents (Pref,Chaps);

Ind :- new Index(Chaps);

Cont.PrintContents;
Pref.PrintPreface;
for Count := 1 step 1 until Num Of Chaps do
Chaps (Count) .PrintChap;
Ind.PrintIndex
end--of--Book;

class Chapter (Numbr); integer Numbr;
begin
procedure PrintChap;
begin comment Print out this chapter in appropriate format;

end++of++PrintChap;

end--of-Chapter;

classContents (Pref,Chaps); ref (Preface) Pref; ref (Chapter) array Chaps;
begin

procedure PrintContents;

begin comment Print a contents page for Pref and Chaps;

end++of++PrintContents;

end--of--Contents;

class Preface;
begin
procedure PrintPreface;
begin comment Print a preface in appropriate format;

end++of++PrintPreface;

end--of--Preface;

class Index(Chaps,Num Chaps); ref (Chapter) array Chaps;
integer Num Chaps;
begin
procedure PrintIndex;
begin comment Print an index for Chaps;

end++of++PrintIndex;

end--of--Index;

comment This is the main program;

OutText ("How many chapters?");

OutImage;

new Book (InInt)
end**of**main**program

Top down again

Example 10.5 shows how object oriented programming makes top down design easier. Only the
skeletons of the components of Book are provided, yet its own actions can be fully defined in terms
of these. Actions to be performed on one component can be made into local procedures within the
class corresponding to that component. The detail of how such procedures will work can be left
until that class is itself considered in detail.

This leads to the following description of top down, object oriented design.

The visible properties of each component are defined by the operation of the object of which it
forms part. Properties which are not externally visible can be left undefined until the component
itself is implemented in detail.

Even simpler is,

Don't clutter up your program with unnecessary detail until you need it.

Exercises

10.1 Write a program which reads the names of a group of students and creates an array of pupil
records, holding name, age, address and marks in maths, English and physics. Allow student details
to be filled in in any order, copying the details into the correct entry in the array. Print out the
contents in the order in which the list of names was first given.

10.2 Extend 10.1 to sort the names into alphabetical order as it first reads them and to print the
records in this order.

10.3 Further extend your program to calculate each student's average mark and to print separate lists
ordered alphabetically, by order of marks in each subject and by overall average mark.

Rearranging lists

An array is an ordered list. Each item in the list is numbered and can be accessed by this number
combined with the name of the array. This is very useful where the order is fixed or is irrelevant.

Exercise 10.2 shows that it is often useful to be able to rearrange the order in which the items of a
list are held. Exercise 10.3 takes this further and shows that the same items may need to be thought
as being on several different lists, held in different orders. The array can only do this by clumsy
rearrangement of its elements or by copying the same elements into a number of different arrays.

Even an apparently trivial operation, like adding a new item to a list which is already in order is not
easy. Consider example 10.6.

Once the correct position in the list has been found it is necessary to move all the labels after this up
by one in the array, unless the new label happens to belong at the end. This is potentially very time
consuming. Another problem is that the array may not be large enough. If we want to allow for a list
of unknown length, with any number of new labels, arrays are not likely to be useful.

Fortunately, SIMULA allows us to create much more flexible lists, tailored to the needs of a
program. These use the ability of class objects to contain pointers or links, in the form of reference
variables, to other objects. Lists can be formed in this way, known as "linked lists".

Reading into a linked list

Diagram 10.1 shows how a new object is added to a linked list. Each object of class Linked Lab
contains an attribute called Next, which is of type ref(Linked Lab). The corresponding program is
shown in example 10.7.

New objects are added to the end of this list. Pointers to the current first and last members of the list
are held in the ref(Linked Lab) variables List Head and List End.

The concept of adding to a list by manipulating pointers is very powerful. It is worth spending some
time getting 10.7 clear in your mind.

Example 10.6: Adding an item to an ordered list in an array.

begin
ref (InFile) MyInput;

class Lab;
begin
procedure ReadlLabel;
begin
integer I;
inspect MyInput do

begin
SegNo := InInt;
InTmage;
for I := 1 step 1 until 5 do
begin
Address (I) :- Copy(Image.Strip);
InImage
end
end

end--of--ReadLabel;
text array Address (1:6);
integer SeqgNo;

end++of++Lab;

integer Countl, Count2, I;

ref (InFile) Source;
ref (Lab) array Labs (1:100);
ref (Lab) NewLab;

Source :- new InFile("Labels");
inspect Source do
begin
Open (Blanks (20)) ;
MyInput :- Source;
while not EndFile do
begin
comment Assume labels in Source already in order of SeqNo;
Countl := Countl + 1;
Labs (Countl) :- new Lab; ! Read in successive labels;
Labs (Countl) .ReadLabel
end..of..reading ..source..into..Labs;
Close

end%%0f%$%sinspecting%$%$Source;

MyInput :- SysIn;
NewLab :- new Lab;
NewLab.ReadLabel;
Count2 := 1;
while Count2<=Countl do
begin
if Labs (Count2) .SegNo>NewLab.SegNo then
begin
comment New label goes before Labs (Count2) so make room;
for I := Countl step -1 until Count2 do Labs(I+1l) :- Labs(I);
Labs (Count2) :- NewlLab;
Count2 := Countl + 2; ! Force end of while loop;
end--of--adding--new--label;
Count2 := Count2 + 1;

end..of..while..loop;
if Count2=Countl+l then Labs (Count2) :- NewLab; ! Goes at the end;

comment Check the sequence;
for I := 1 step 1 until Countl + 1 do OutInt (Labs(I).SegNo, 3)

end**of**program

Example 10.7: Building the linked list in Diagram 10.1.

begin
class Linked Lab;
begin
ref (Linked Lab) Next;
integer SegNo;
comment Simplified version of Lab;
SegNo := Inint;
end--of--Linked--Lab;

ref (Linked Lab) List Head, List End, Temp;

! a) List Head and List End are both None;

! b); List Head :- List End :- new Linked Lab;
! ¢); List End.Next :- new Linked Lab;
List End :- List End.Next;

comment Now print the SegNo of each item in the list;

Temp :- List Head;
while Temp=/=None do

begin
OutInt (Temp.SegNo, 3) ;
Temp :- Temp.Next

end..of..printing..list

end**of**program

Class reference comparison

The final while loop of example 10.7 contained a class object reference comparison. This used the
operator =/=, which means "does not reference" or "does not point at". Formally, it tests for
reference inequality. It is similar to the text reference comparator.

There is also a positive equivalent, ==, meaning "does reference", which tests for reference equality.
Thus

if P1==P2 then OutlInt (3, 3)

would print 3 if the class object reference variables P1 and P2 pointed to the same object.

None

The same comparison also used None as one of the reference variables. None is a reference to no
object. Any reference variable initially references None. Any reference variable can be pointed back
to None.

Reference variables of any type can be pointed at None. It is the initial value of reference variables,
regardless of their type.

Exercises
10.4 Extend example 10.7 to build a list of five objects.

10.5 Write a program to add items to the start of a linked list, rather than the end, and which builds a
list of four such items.

Generalising simple linked lists

In exercises 10.4 and 10.5 you will have noticed that for all items except the first, adding a new
item to a linked list requires the same sequence of statements. There is a clear case for using
procedures for such tasks.

If we think further, a linked list is a data structure with attributes unique to itself. Each list has a
head and a tail (although it is possible to use just a head). Furthermore, our proposed procedures for
adding items at the beginning and end of a list operate only on attributes of a list object. It is
sensible to define a class embodying these attributes for use in processing linked lists. Example 10.8
shows how this might be implemented.

10.8 also shows how a new item can be added to the middle of a list without needing to update all
the items which follow. The mechanism used is illustrated in diagram 10.2. Only two reference
assignments are needed to achieve it.

Example 10.8: Class Label List.

begin
class Linked Label;

begin
ref (Linked Label) Next;
integer SegNo;
SegNo := InInt
end--of--Linked--Label;

class Label List;
begin
ref (Linked Label) Head, Tail;

procedure AddtoEnd (Lab);ref (Linked Label) Lab;

begin
if Head==None then
begin
comment Special case when list is empty;
Head :- Tail :- Lab

end else begin
comment Normal case;
Tail.Next :- Lab;
Tail :- Lab
end
end++of++AddtoEnd;

procedure AddtoFront (Lab);ref (Linked Label) Lab;

begin
if Head==None then
begin
comment Special case when list is empty;
Head :- Tail :- Lab

end else begin
comment Normal case;
Lab.Next :- Head;
Head :- Lab
end
end++of++AddtoFront;

end--of--Label--List;

ref (Label List) Labs;
ref (Linked Label) New Lab, Temp;
integer Count;

comment Create an initial list of 4 items;
Labs :- new Label List;
for Count := 1 step 1 until 4 do Labs.AddtoEnd(new Linked Label);

comment Add a new label to the front;
Labs.AddtoFront (New Linked Label);

comment Add a new label between existing nos. 2 and 3;
New Lab :- new Linked Label;

Temp :- Labs.Head;

Temp :—- Temp.Next;

comment Temp now points to item 2 on list;

New Lab.Next :- Temp.Next; ! Step b) in diagram 10.2;
Temp.Next :- New Lab; ! Step ¢) in diagram 10.2;

Temp :- Labs.Head;
while Temp=/=None do
begin
OutInt (Temp.SeqgNo, 3);
Temp :- Temp.Next
end;
OutImage
end**of**program

Exercises
10.6 Write a program which locates and removes an item in a linked list.

10.7 Add local procedures to class Linked Lab, one of which inserts a label object after a given
member of the list and one of which removes a label from the list.

10.8 Rewrite your answers to 10.2 and 10.3 using linked lists instead of arrays. Remember that an
object can have as many ref attributes as you like and so can be on as many linked lists
simultaneously as you wish.

Arrays versus linked lists

We have seen that arrays are a very convenient way of storing simple values and references to more
complex class objects in an ordered list. We have seen that rearranging such lists is very
inconvenient. Although the use of dynamic bounds allows greater flexibility, the need to specify the
overall size and bounds of an array at the start of the block in which it is declared still imposes quite
strict limits to the usefulness of arrays.

Linked lists are much easier to rearrange and to extend. We do not need to fix an upper limit to the
number of elements in them. The same object can exist on several such lists at once. On the other

hand, if we wish to find item number six, say, on a linked list, we must chain through, counting as
we go. In an array accessing item number six is trivial.

There are strengths and weaknesses in both these list structures. It is a question of picking the more
appropriate one for your purposes. As we shall see later, linked lists can be even more flexible than
those we have used so far and some of their limitations can be reduced. For certain very common
purposes, however, arrays remain the best choice.

Summary

We have seen how simple, ordered lists can be held in arrays. The means for declaring and
accessing arrays have been learned, especially how to use subscripted variables to treat any item of
an array as a simple variable of the same type.

The use of dynamic bounds to allow variable sized arrays has been shown
We have considered briefly the use of simple linked lists and noted their advantages over arrays.

Finally we have compared the merits of arrays and linked lists and concluded that each structure is
better suited to certain applications.

CHAPTER 11 - Like parent like child

Sub-classes and complex Boolean expressions

Building on what you have

One of the important ways we have of making sense of the world is to classify things. We put them
into categories or classes. SIMULA allows us to reflect this very natural way of thinking in the way
we write programs.

When classifying things we first group them either very generally, e.g. as animal, vegetable or
mineral, or very specifically, e.g. as bees or roses, depending on circumstances. These approaches
correspond to the programming techniques known as "top down" and "bottom up" design,
respectively.

In practice, it is fairly easy to classify things in general terms, but appearances can be deceptive
when it comes to detail. Things which look alike may actually have very different origins. Thus the
hedgehog and the spiny anteater look remarkably similar and live very similar lives, yet,
genetically, they are not closely related at all.

SIMULA takes the top down approach as the safest, just as natural science has tended to. It allows
us to define a CLASS, as we have seen, to represent a general type of object. This may then be
extended, to reflect the special characteristics of sub-types by defining sub-classes of the original.
These retain some or all of the characteristics of the parent type, but include characteristics which
are only found in certain objects of this type.

It is important to notice that sub-types in SIMULA extend and refine the range of characteristics of
the parent type. The more general the class of objects described, the fewer characteristics that are
given to it.

One example of the use of such sub-types, that we have already seen, is the Class File and its sub-
classes. If you look back at chapter 7, you will see that special purpose files are represented by
adding to the attributes of first File, then ImageFile and, for PrintFile, Outfile. We can show this as
a tree; a family tree. Diagram 11.1 is the File family tree as we have seen it so far.

Diagram 11.1 - Family tree of class File

class File

ImageFile class Infile ImageFile class DirectFile ImageFile class OutFile

|
Outfile class PrintFile

The syntax of a sub-class declaration is very simple. The keyword class is preceded by the name of
the parent class. Otherwise the declaration is the same as for a simple class. The new class is said to
be "prefixed" by the parent.

A word processing example

We can consider a chapter in a book as a sequence of pages. This sequence can, as we have seen, be
represented as an array or as a linked list. In either case we want all the pages to be of the same
type. If they are not, they cannot be held together. All items in an array must be of the same type.
All items in a linked list are joined by pointers declared as ref{type) variables, with type the same
for all. Thus we need a basic class Page.

Each Page will contain printed blocks. The first Page in each Chapter will have a title block,
followed by a sequence of other blocks. The other blocks could contain text or diagrams. A linked
list of Print_Block objects can represent the contents of a Page.

Example 11.1 shows the outline of such a set of classes. The parent class for blocks on a page is
Print Block. It contains a link in the form of ref{Print_Block) Next. It also contains an array of text
variables, Contents, representing the lines in the block. Parameters Width and Length are integers
representing line length and number of lines in the block, respectively. Each member of the text
array is filled with blanks, initially.

Example 11.1: Representing pages as Print_Block objects.

begin
class Page;
begin

class Print Block (Width, Length);integer Width, Length;
begin

ref (Print Block)Next;

text array Contents(l:Length);

integer Count;

for Count:=1 step 1 until Length do Contents (Count) :-Blanks (Width)
end--of--Print Block;

Print Block class Title Block(Title);text Title;
begin

Contents (Length//2) :=Title
end--of--Title Block;

Print Block class Text Block;

begin
for Count:=1 step 1 until Length do
begin
InImage;
Contents (Count) :=Intext (Width)
end

end--of--Text Block;

Print Block class Diagram(Title); text Title;
begin

Contents (1) :=Title
end--of--Diagram;

ref (Print Block) Head, Tail, New Block;
text Directive;

integer Len;

procedure Add(NewBlock); ref (Print Block) NewBlock;

begin
if Head==None then Head :- NewBlock;
if Tail=/=None then Tail.Next :- NewBlock;
Tail :- NewBlock

end++of++Add;

Directive :- InText (2);
while Directive NE "SE" do

begin
if Directive= "$B" then
begin
Len := InInt;
InImage;
Add(new Title Block (80,Len, InText (80)))
end

else 1f Directive="S$C" then
Add (new Text Block(80,InInt))
else begin

Len := InInt;
InImage;
Add (new Diagram(80,Len,InText (80)))
end;
Directive :- InText (2)
end
end. .of..Page;
new Page;

end

This parent class is used to prefix the three classes representing different types of block on a page.
Each contains additional attributes, actions or both. Two contain parameters. Note that these also are
additional to those in the parent class.

A few properties of sub-classes
The program shows some important features of sub-classes.

1.The attributes of the prefixing class are normally visible in its sub-classes. As we shall see
later there is a way of "hiding" the parent's attributes. Note that this visibility of local
quantities is unlike any other type of block, such as a sub-block or procedure body.

2.The parameters of the prefixing class must still be given when generating a new object of
one of its sub-classes. Thus, the generation of a new Title Block requires three parameters,

the two declared for parent Print_Block followed by the additional one for Title Block. The
prefixing class parameters always come before the sub-class parameters.

3.The actions specified for the prefixing class are performed, before those of the sub-class,
when a new sub-class object is generated. Thus the for-loop which sets the elements of
Contents to blank filled texts of the desired Width, takes place before any of the actions of
Title Block, Text Block or Diagram.

4.A reference variable which points to objects of the prefixing class can also point to objects
of its sub-classes. Variables which are declared as ref to a sub-class cannot point to a parent
object, however. Thus the use of ref(Print_Block) variables for all the links in the list of
blocks means that objects of type Print_Block, Title Block, Text Block and Diagram can all
fit onto the same list. They are all "qualified" by the type Print_ Block. On the other hand,
objects created by the generator new Print_Block, would not be allowed on a list linked by
pointers declared as ref{Text Block).

What the program does

The program reads text from SysIn. This text is assumed to end with a line starting with the
characters "$E", meaning end of page. The character '$' followed by a sequence of letters and
numbers is assumed to be a directive, telling the program what the next sequence represents. Lines
of 80 characters are assumed.

The directive "$B" means that a Title Block is required. The number of, mostly blank, lines to be
used, is given as an integer following the $B directive. The text for the title parameter is on the
following line. The title is copied into the middle line of the block by the actions of a new

Title Block.

The directive "$C" means that a new Text Block is required. The number of eighty character lines
in this block is given as an integer following the directive and is used as a dynamic upper bound to
Contents. The contents of the block are on the following lines. The actions of a new Text Block
copy this into Contents.

The directive "$D" means that a space for a diagram should be left. Again the number of lines to be
left follows and the next line is the text to be used for the title of the diagram. This is copied into the
first text elememt of Contents by the actions of a new Diagram object.

Exercises

11.1 Add a printing procedure to class Print Block and use the program to process a source in the
required format.

11.2 By using a linked list to hold lines, remove the need to specify the number of lines in a
Text Block. Use a line breaker to avoid splitting words at the ends of a line.

Example 11.2: Concatenation .. sub-sub-classes

begin

class OuterMost (First); text First;

begin
text OuterText;
OuterText :- Copy("Outermost=first on prefix chain");
OutText (OuterText) ;
OutImage;
OutText (First) ;
OutImage

end--of--OuterMost;

OuterMost class Middle (Second); text Second;
begin
text MiddleText;
MiddleText :- Copy ("Middle=second on prefix chain");
OutText (MiddleText) ;
OutlImage;
OutText (First) ;
OutText (Second) ;
OutImage
end--of--Middle;

Middle class InnerMost (Third); text Third;
begin
text InnerText;
InnerText :- Copy("Inner=last on prefix chain");
OutText (InnerText) ;
Outimage;
OutText (First);
OutText (Second) ;
OutText (Third) ;
OutImage
end--of--InnerMost;

new OuterMost ("One");
new Middle ("One", "Two") ;
new InnerMost ("One","Two", "Three")

end**of**program

Sub-sub-classes

As is clear from the File family tree, a sub-class can prefix its own extensions. The rules given
above still apply, except that the parameters, local variables and actions of all three classes are
combined in the grandchild, in the order grandparent, parent, grandchild.

Example 11.2 shows this in a trivial example. Try compiling and running it to see the eftects for
yourself.

There is no limit to the number of levels of such prefixing which you may use. The same rules
apply with each extension. The combining of attributes and actions in the correct order is called the
"concatenation" of the prefixing classes and the final extension.

The sequence class, sub-class, sub-sub-class etc. is called a "prefix chain".

In more technical descriptions the first class on the prefix chain is called the "outermost" and the
final one the "innermost". A sub-class is "inner" to its parent, grandparent etc. A class is "outer" to
its sub-classes, their sub-classes etc.

Name conflicts in sub-classes

It is quite legal to declare identifiers in a sub-class with the same name as those declared in its
parent or another outer class. This is shown in example 11.3. The effects are simple to describe, but
can sometimes be confusing to grasp. It is perhaps worth running 11.3 before reading on, to give
you a practical experience of the concepts.

In a parent class the use of the identifier always refers to the declaration of that identifier inside that
class.

In a sub-class the use of the identifier always refers to the declaration of that identifier inside the
sub-class.

That is fairly straightforward. The formal description is that the use of an identifier within the class
body where a declaration exists for it, always refers to the location associated with that declaration.
If no declaration exists for it inside the class body where it is used, it is said to be "uncommitted" at
that prefix level. It is then assumed to refer to the innermost prefixing class containing such a
declaration. If there is no class on the prefix chain outer to the class in which the identifier is used
which contains a declaration for it, the identifier is looked for outside the class and is not an
attribute of it.

Example 11.3: Name conflicts in prefix chains.

begin

class Grandad;

begin
text T;
T :- Copy("Grandad"); ! Always refers to the preceding declaration;
OutText (T) ; ! Should always print Grandad;
OutImage

end--of--Grandad;

Grandad class NolSon;

begin
text T; ! Conflicts with declaration in Grandad;
T :- Copy("NolSon"); ! Refers to T immediately above;
OutText (T) ; ! Should always print NolSon;
OutImage

end--of--NolSon;

Grandad class No2Son;

begin
OutText (T) ; ! Should always print Grandad, no conflict;
OutImage

end--of--No2Son;

NolSon class GrandDaughter;

begin
OutText (T) ; ! Should use T from NolSon, print NolSon;
OutImage

end--of--GrandDaughter;

new Grandad; ! Prints Grandad;
new NolSon; ! Prints Grandad
NolSon;
new No2Son; ! Prints Grandad
Grandad;
new GrandDaughter; ! Prints Grandad
NolSon
NolSon;

end**of**program

Example 11.4: The use of inner.
begin

class Parent;

begin
OutText ("Before inner");
OutImage;
Inner;
OutText ("After inner");
OutImage

end--of--Parent;

Parent class Child;

begin
OutText ("In the inner class");
OutImage

end--of--Child;

new Parent;
new Child
end**of**program

Top and tailing - the use of inner

The use of actions within classes should be familiar by now. The ability to build on these in suitably
different ways in sub-classes is used in the three sub-classes of Print Block in example 11.1. This is
a very powerful feature of SIMULA.

The usefulness of sub-class actions is increased still further by the inner statement. This allows a
parent class to specify one set of actions to be performed before those of its sub-classes and another
to be performed after them. Consider example 11.4.

The class Parent contains a statement consisting of the keyword inner and nothing else. When an
object is generated from Parent itself this statement is ignored.

The class Child is prefixed by Parent. If the inner statement was not in Parent all the actions of
Parent would be performed before any actions of Child, whenever an object was generated from
Child. The effect of the inner statement is to alter this sequence.

The two statements of Parent before the inner are executed first. The actions of sub-class Child are
performed when the inner is reached. The remaining statements of Parent are only performed when
those of Child are complete.

This allows the outer class to define both a prologue and an epilogue to the actions of the inner one.
When an object of such an outer class is generated rather than of the inner class, the inner statement
is ignored.

Only one inner statement can appear in a class body, since it can only have one inner class whose
statements it will perform.

A sub-class may contain an inner statement, in which the actions of any sub-sub-classes will be
performed when it is reached, and so on along the prefix chain. Practical uses of this feature,
especially in conjunction with prefixed blocks, will be demonstrated later in this book.

Exercises

11.3 Use an inner statement in class Print Block to write the number of lines created for that block
when processing of it is complete. Write it to a different file from the one used for the actual text.

11.4 Study the following program. What would its output be? Try running it to check your answer.

begin

class Outer;

begin
text T;
T :— Copy ("ABC");
OutText (T) ;
inner;
OutImage

end--of--Outer;

Outer class Middle;
begin
text T;
T :- Copy ("DEF");
OutText (T) ;
inner;
OutText (T) ;
OutImage
end--of--Middle;

Outer class Centre;
begin
text T1;
Tl :- Copy("DEEF");
OutText (T) ;
OutImage
end--of--Centre;

Middle class Inner;
begin

text T1;

Tl :- Copy ("GHI");

OutText (T) ;

T := T1;
end--of--Inner;

new Outer;
new Middle;
new Centre;
new Inner
end**of**program

The types of class objects

We have seen in example 11.1 some of the rules governing the types or qualifications of class
objects. Here we will consider these further and more systematically. We shall also see how to
check the qualification of a class object.

When a class object is generated it posesses all the attributes of the class whose name is given in the
object generator. This includes any visible attributes from classes on its prefix chain, following the
rules given above concerning name clashes.

The type of such an object is the class specified and this is called its qualification. It can also be
thought of as being qualified by the classes on its prefix chain, except that not all the attributes of
these may be visible.

A variable which is declared as a ref'to a class which is the qualification of an object or is on the
prefix chain of its qualifying class may be used to access that object. The type of the reference
variable used controls how much of the prefix chain may be so accessed.

It is only legal to treat an object which is being remotely accessed as if it was qualified by the class
of the referencing variable. Thus, in example 11.1, when New Block is set to denote a new

Text Block only the attributes declared in Print Block, which prefixes Text Block, may be
accessed through New_ Block. This is because New Block is declared as a ref{Print_Block) not

a ref(Text_Block) variable. This means that the statement

NewBlock.Count := 3

would be illegal.

Breaking any of these rules will cause the SIMULA system to report an error, either during
compilation or at runtime. Some extra features of SIMULA can be used to circumvent these
restrictions, as we shall see later, but these checks provide an important safeguard against serious
errors which could occur otherwise.

Checking the qualification of an object

In addition to checking whether or not two reference variables point to the same object (reference
equality and inequality), SIMULA also allows us to check the qualification of any referenced
object. To do this we use the reference comparators is and in.

The operator is checks whether an object is qualified by a particular class. It will only give the value
True when the object's innermost class matches that with which it is compared. Thus

Obj is ThisClass

will only give True if the object referenced by Obj was generated by

new ThisClass.

The operator in makes a less strict check. It will give True if the object is either of the specified
class or has that class on its prefix chain. The use of is and in is shown in example 11.5.

Example 11.5: Use of is and in.

begin
class A;
begin
integer I;
end--of--A;

A class Al;

begin
integer K;

end--of--Al;

A class A2;

begin
integer L;

end--of--A2;

ref (A) Objl,0bj2,0b33,0bj4;

Objl :- new A;

Obj2 :- new Al;

Obj3 :- new A2;

for Obj4 :- 0Obj1,0bj2,0b]j3 do
begin

if Obj4 is A then OutText ("Object is A") else
if Obj4 in A then
begin
OutText ("Object in A");
if Obj4 is Al then OutText (" and is Al")
else OutText (" and is A2")
end else OutText ("Object is not A and is not in A");
OutImage
end
end**of**program

Exercise

11.6 Rewrite the text processing program so that it recognises the directive $A. This is followed by
a text sequence which is to be printed after all the other blocks. In every other way it is treated as a
Text Block. Use is to test the blocks and print them in the correct order.

Some extra features for Boolean expressions

As we have often seen, comparisons are what make it possible to write most of our useful programs.
You will probably have begun to realise that making the right test in the right place is vital to
success in programming. To help with this, SIMULA provides facilities for making more than one
comparison in a single begin statement, while loop or whatever. These facilities allow us to write
neater, more compact code. At the same time they make it even more important to check when we
use them that the right tests are being applied.

A comparison is more formally called a "simple Boolean expression", giving the value True or
False. The keywords True and False are themselves simple Boolean expressions, with a constant
value. Boolean variables and Boolean procedures, like Lastltem in a text, are also simple Boolean
expressions.

Thus a Boolean expression is a sequence of SIMULA which can be evaluated to True or False.

not

The simplest extension to a simple Boolean expression is the Boolean operator not. The
keyword not reverses the value of the Boolean expression which follows immediately after it. The
Boolean expression

3 =2

has the value False, and so the expression
not 3 = 2

has the value true.

and

When two Boolean expressions are linked by the operator and, the value of the combined Boolean
expression is False unless both the linked expressions have the value True.

The expression
3 =2 and 4 = 4

has the value False, since one of its sub-expressions has the value False. The examples in 11.6 show
the other possibilities.

Examples 11.6: The use of and.

a) 4=4 and 7=7; ! Value is True
b) 2=2 and 6=8; ! Value is False
c) 10=1 and 2<0; ! Value is False

Examples 11.7: The use of or.

3=2 or 4=4; ! Value is True
4=4 or 7=7; ! Value is True
2=2 or 6=8; ! Value is True
10=1 or 2<0; ! Value is False

0 Q 0w

Examples 11.8: The use of eqv

3=2 eqv 4=4; ! Value is False
4=4 eqv 7=7; ! Value is True
2=2 eqv 6=8; ! Value is False
|

)
)
)
) 10=1 eqv 2<0; Value 1is True

0 Q0 0w

Examples 11.9: The use of imp.

3=2 imp 4=4; ! Value 1is True
4=4 imp 7=7; ! Value is True
2=2 imp 6=8; ! Value is False
10=2 imp 2<0; ! Value is True

0. Q0 0w

or

Two Boolean expressions linked by the operator or form a combined Boolean expression which has
the value True if either of the sub-expressions has the value True. Only where both have the value
False does the combined expression have the value False.

It is easy to confuse the operator and with the operator or in ordinary speech, since we often use
these words very loosely. You should take great care to get your meanings precise in SIMULA.

The examples in 11.7 show the possible combinations.

eqv

Two Boolean expressions linked by the operator eqv form a combined Boolean expression which
has the value True if both sub-expressions have the same value and has the value False if the sub-
expressions have different values. eqv is an abbreviation for "equivalent to".

The examples in 11.8 show the possible combinations.

imp
imp 1s also used to link two Boolean expressions to form a combined expression. Its

meaning is only of interest to formal mathematicians, but I include it for
completeness. The possible combinations using it are given in examples 11.8.

imp 1s an abbreviation for "implies".

Summarising Boolean operators

Table 11.1 show a summary of the effects of the various Boolean operators. B1 represents the first
Boolean sub-expression, B2 the second. This sort of table is often called a "truth table".

Bl = TRUE TRUE FALSE FALSE
B2 = TRUE FALSE TRUE FALSE
| |
B1 AND B2 = TRUE FALSE FALSE FALSE
B1 AND THEN B2 = TRUE FALSE FALSE FALSE
Bl OR B2 = TRUE TRUE TRUE FALSE
BIORELSEB2= TRUE TRUE TRUE FALSE
B1 EQV B2 = TRUE FALSE TRUE FALSE
B1 IMP B2 = TRUE FALSE TRUE TRUE
NOTBI = FALSE FALSE TRUE TRUE
NOT B2 = FALSE TRUE FALSE TRUE

Table 11.1: Effects of Boolean operators.

Combining Boolean operators

Boolean operators can be combined to form more complicated expressions. The rules for evaluating
Boolean expressions are then as follow. All working out is done from left to right.

1.All the comparisons are performed and the values True or False put in their places.
2.All not operations are carried out.
3.All and operations are carried out.

4.All or operations are carried out.

5.All imp operations are carried out.
6.All eqv operations are carried out.

Example 11.10 shows this sequence for an unusually complicated sequence.

Bracketing

Parentheses may be placed around any sub-expression. This has the effect of forcing the value of
that sub-expression to be fully evaluated before the rest of the main expression and so can override
the order given above. This is equivalent to the use of parentheses in arithmetic expressions.

Example 11.11 shows the effects of bracketing on parts of 11.10. Note that the innermost brackets'
contents are evaluated first and so on.

Example 11.10: Evaluation of complex Boolean expressions.
3=2 or 7=7 and 9<10 egv 7>4 imp not 23=23

False or True and True eqv True imp not True
False or True and True eqv True imp False
False or True eqv True imp False

True eqv True imp False

True eqv False

False

o U1 W N

Example 11.11: Evaluation of complex Boolean expression with bracketing.
3=2 or (7=7 and (9<10 eqv 7>4)) imp not 23=23

False or (True and (True eqv True)) imp not 23=23
False or (True and (True)) imp not True

False or (True) imp not True

False or True imp False

True imp False

False

o U1 W N

Hints on using Boolean operators

The use of and and or in particular can make programs shorter and easier to read. The sequence

if I=J then
begin
if K>L then

can nearly always be replaced by
if (I=J) and (K>L) then

which seems a lot clearer, to me at least. (The reason for saying "nearly always" will be explained
below.)

The use of parentheses, even when, as above, they are not strictly necessary, can also make it easier
to see which sub-expressions are linked by which operators. It is not always easy to remember
which of and and or will be evaluated first, but it is easy to remember that bracketed expressions
are evaluated before others. The expressions

I=J and K<L or I<L and K=J

and
(I=J and K<L) or (I<L and K=J)

have exactly the same value, but the second is much clearer.

Finally, a warning; do not try to be "clever" in your use of Boolean expressions. Keep them as
straightforward and clear as possible. Sometimes it may be better to use two

nested begin statements rather than a convoluted Boolean expression, keeping the program's
meaning clear at the cost of making it slightly longer.

Side effects and how to avoid them

I hope I am not over emphasising Boolean expressions. They are often the key to a successful
program. They are certainly the cause of many errors in programs which may be very difficult to
locate if we do not take great care to use them sensibly. Most of us will find and, or and not very
useful and it is worth looking at one problem with the first two which is rare, but very hard to find
when it does occur.

In addition to or and and, SIMULA has operators or else and and then. These produce the same
value as their simpler counterparts, as table 11.1 shows. They are included to allow programs to be
written which run faster, at the expense of introducing the possibility of unpredictable side effects
from procedure calls. In most cases and then is interchangeable with and, while or else is
interchangeable with or.

The difference is that when two sub-expressions are linked by and or by or, both are evaluated,
regardless of the value of the first. Yet, with and, when the value of the first sub-expression is False,
we know without having to evaluate the second that the value of the two anded together must be
False. Similarly with or, if the first sub-expression gives True, the overall value will always be True.
The evaluation of the second sub-expression is unnecessary in these cases.

The use of and then prevents the evaluation of the second sub-expression if the first is False. The
use of or else prevents it if the first is True. This may make the program run faster. It also prevents
any procedures which form part of the second sub-expression being called.

It is the second effect which can cause problems. If the calling of a type procedure in the second
sub-expression affects values which are used elsewhere in the program, the effect of skipping its
evaluation could be disastrous. If you must write such programs, you must use the simpler forms,
even though they will result in slower running.

Example 11.12 shows a program with side effects. Running it and supplying first a sequence not
containing 99 and then one which does contain it demonstrates the problem. It may seem "smart" to
write like this. It is certainly an interesting technique. It is even more certainly a very unsafe one.

Exercise
11.8 What are the values of the following expressions?

1.4=3 or 0>2 and 3=3
2.(4=3 or 0>2) and 3=3
3.4=3 or (0>2 and 3=3)

Summary
This chapter has dealt with sub-classes, qualification and Boolean operators.

We have seen how to use classes as prefixes to form families of sub-classes, which extend their
parent's attributes.

We have learned the rules governing this concatenation, including the order of execution of actions.

We have seen how the qualification of a class object and its prefix chain control both the objects
which may be pointed to by references of particular class types and the attributes which may be
accessed remotely using such references.

The use of inner to allow epilogues of actions in prefixing classes has been demonstrated.

The use of Boolean operators to extend the power of Boolean expressions has been shown, along
with some dangers associated with their use.

Example 11.12: Unsafe side effects in a complex Boolean expression.

begin
integer I,J,K;

Boolean procedure SideSwipe;

begin
J :=J + 1; ! J is updated here;
SideSwipe := I>0

end..of..SideSwipe;

K := InInt;
while J<K do
begin
I := InInt;
comment The first test could interfere with the updating of J;
if I NE 99 and then SideSwipe then OutText ("Greater")
else OutText ("Less")
end;

OutImage
end**of**program

CHAPTER 12 - A Language with Character

Character handling, switches and jumps

Working with texts

Most of our examples have been concerned with some sort of manipulation of characters in the
form of texts. Occasionally we have used GetChar and PutChar to manipulate the individual
characters in them. At other times we have used Getint, PutFix etc. to manipulate groups of
characters within texts. Any text processing or editing programs are heavily dependent on the
manipulation of individual characters as well as their combinations. This chapter shows those
features of SIMULA designed to help in this.

Most of these features are system procedures. We start with two simple ones, shown in example
12.1. This shows a program which finds all the numbers in a text containing a mixture of digits and
letters. It is assumed that no other characters will be present.

Procedures Letter and Digit

SIMULA provides two Boolean procedures, Letter and Digit, both taking a single, character
parameter. If this parameter is one of a-z or A-Z the procedure Letter will return the value True,
otherwise it will return the value False.

If its parameter is one of 0-9, Digit will return True, otherwise False.
Example 12.1 shows both.

Example 12.1 : Sorting letters and numbers.

begin
text Input, LettersOut, NumbersOut;
character Next;

InImage;
Input:-SysIn.Image;
LettersOut :- Blanks (80);
NumbersOut :- Blanks (80);
while Input.More do
begin

Next:=Input.GetChar;
if Letter (Next) then LettersOut.PutChar (Next) else
if Digit (Next) then NumbersOut.PutChar (Next)
end;
OutText (Input);
OutlImage;
OutText (LettersOut) ;
OutImage;
OutText (NumbersOut) ;
OutImage
end

Representing characters

Computers store characters in their memory as numbers. Each character is represented by a
different integer value.

Unfortunately there is no single system for this. The numbers representing each character can vary
from machine to machine. In practice most machines use either the EBCDIC system or the
International Standards Organisation (ISO) system. The ISO system is often called by its earlier
name, ASCII. The two systems are shown in tables 12.1 and 12.2. These tables are known as the
collating sequences for the two systems.

Using the internal values

It is sometimes useful to be able to find the internal number representing a character or to be able to
convert a number into the corresponding character. SIMULA provides procedures for both of these.

Example 12.2 shows a program which converts characters in a text which uses ISO characters into
an equivalent zext containing EBCDIC characters. This is often necessary when reading files
transferred from another computer.

Rank

System integer procedure Rank takes a single character value parameter and returns the number
representing the character.

In 12.2, the characters inside ISOText are in the ISO form and so the call
Rank (ISOText.GetChar)

will return the internal number of the next ISO character in the text, following table 12.1.

Example 12.2 : Character set conversion.

begin
integer Count, ISONumber, EBCDICNumber;
character ISO, EBCDIC;
text ISOText, EBCDICText;
integer array EBCDICChar (0:255);
for EBCDICNumber := 0,
1, 2, 3, 55, 45, 46, 47, 22, 5, 37,
11, 12, 13, 14, 15, 16, 17, 18, 19, 60,
ol, 50, 38, 24, 25, 63, 39, 28, 29, 30,
31, o4, 79, 127, 123, 91, 108, 80, 125, 77,
93, 92, 78, 107, 96, 75, 97, 240, 241, 242,
243, 244, 245, 246, 247, 248, 249, 122, 94, 76,
126, 110, 111, 124, 193, 194, 195, 196, 197, 198,
199, 200, 201, 209, 210, 211, 212, 213, 214, 215,
216, 217, 226, 227, 228, 229, 230, 231, 232, 233,

74, 224, 90, 95, 109, 121, 129, 130, 131, 132,
133, 134, 135, 136, 137, 145, 146, 147, 148, 149,
150, 151, 152, 153, 162, 163, 164, 165, 166, 167,

168, 169, 192, 106, 208, 161, 7, 32, 33, 34,
35, 36, 21, 6, 23, 40, 41, 42, 43, 44,
9, 10, 217, 48, 49, 26, 51, 52, 53, 54,
8, 56, 57, 58, 59, 4, 20, 62, 225, 65,

66, 67, 68, 69, 70, 71, 72, 73, 81, 82,

83, 84, 85, 86, 87, 88, 89, 98, 99, 100,
101, 102, 103, 104, 105, 112, 113, 114, 115, 116,
117, 118, 119, 120, 128, 138, 139, 140, 141, 142,
143, 144, 154, 155, 156, 157, 158, 159, 160, 170,
171, 172, 173, 174, 175, 17¢, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 202, 203, 204, 205, 206, 207, 218, 219, 220,
221, 222, 223, 234, 235, 236, 237, 238, 239, 250,
251, 252, 253, 254, 255 do

begin

EBCDICChar (Count) := EBCDICNumber;
Count := Count + 1

end;

InTmage;

ISOText:-SysIn.Image;

EBCDICText:-Blanks (Image.Length);

while ISOText.More do

begin
I1S0:=IS0Text.GetChar;
ISONumber:=Rank (ISO) ;
EBCDICNumber :=EBCDICChar (ISONumber) ;
EBCDIC:=Char (EBCDICNumber) ;
EBCDICText.PutChar (EBCDIC)

end

end

The integer array EBCDICChar has one hundred and twenty seven characters, corresponding to the
ordinary control and printing characters in the two character sets used. Each element of the array is
set so that its value is the internal EBCDIC representation of the character whose ISO
representation is the number of the index to that element.

As an example, the internal representation of a space character is 64 in EBCDIC and 32 in ISO.
Thus element 32 of the array is set to 64.

To convert the ISO values returned by Rank above into EBCDIC, the value returned is used to
index the array in a subscripted variable and the value of this will be the EBCDIC representation of
the same character.

Using the same example, if Rank (ISOText.GetChar) returns 32, having found a space in the text,
this is used to index EBCDICChar, i.e. EBCDICChar(32). The value of element 32 is 64, the
EBCDIC representation of a space.

Thus the use of GetChar, Rank and indexing of the array EBCDICChar has found the value of the
EBCDIC representation of an ISO character in our text. Now we need to convert this into a
character.

Char

System character procedure Char takes a single integer value parameter, whose value must be legal
as the internal representation of a character on that system. (This range should be specified in the
documentation for the SIMULA system you are using). Char returns a character whose internal
representation is the number passed as a parameter.

It is important to note that Rank and Char do not concern themselves with which character set is
being used, only with moving a number, held in some form such as a binary number, from a
location reserved for a character to one reserved for an integer or vice versa. Char objects only if the
integer is too large to fit into the, usually, smaller space used for a character. Interpreting characters
according to ISO, EBCDIC or whatever is only done by some reading and writing procedures.

Thus, in the example, the EBCDIC representation of the character obtained from ISOText, is passed
to Char, which returns a character with this as its internal representation. This can then be written as
the EBCDIC translation into EBCDICText, using PutChar.

Avoiding character set problems

When writing character handling programs to run on any computer, it is very inconvenient to have
to allow for the possible character sets on each particular machine. This makes it nearly impossible,

in fact, to write truly portable programs using the procedures Char and Rank. Fortunately SIMULA
has a way of avoiding this.

On any but the oldest SIMULA systems, two more system procedures are supplied. They are called
ISOChar and ISORank. They match Char and Rank exactly except that they work entirely in terms
of the ISO character set.

For ISORank, this means that the value returned is converted from the internal representation of the
character parameter in the machine's own character set, to the ISO internal representation.

For ISOChar, it means that when the integer parameter is converted into a character, it is first
converted into the internal representation of the character that it would represent in the ISO set.

If we take our space character on a machine using EBCDIC as its internal character set, we would
find the following results with ISOChar and ISORank.

Eample 12.3 : Lower to upper case conversion using ISORank and ISOChar

begin
text Buffer, Update;
integer Convert, Factor;
character Next;
Buffer:- Copy("This little piggy was Fred");
Update:- Buffer;

Factor := ISORank('A') - ISORank('a');
while Buffer.More do
begin

Next:= Buffer.GetChar;
Convert:= ISORank (Next) ;
if Convert GE ISORank('a') and Convert LE ISORank('z') then
begin
Convert:= Convert + Factor;
Next:= ISOChar (Convert)
end;
Update.PutChar (Next)
end;
OutText (Buffer);
OutlImage;
OutText (Update) ;
OutImage
end

If we call Rank (' '), we get 64 returned, which is the local, EDCDIC, internal representation of a
space. A call of ISORank ('), on the other hand, will return us 32, the ISO equivalent.

Conversely, to get Char to return a space, we need to call Char(64), but using ISOChar we must call
ISOChar(32).

Using these procedures we can write totally portable character handling programs. Example 12.3
shows how to write a portable program to convert all the lower case characters in a text into upper
case. This is sometimes called "folding" the text into upper case.

The difference between ISORank('A'") and ISORank('a') is the same as the difference between the
internal representations of each upper case character and its corresponding lower case character, in
the ISO character set. Thus the value assigned to Factor will enable us to convert any lower case
character's ISORank to that of its upper case equivalent.

The program checks each character to find if it is a lower case letter. Lower case letters in the ISO
sequence are represented by consecutive numbers, starting with 'a' and ending with 'Z'. This makes it
easy to check whether the Rank of each character is within this range. (This would not work with
EBCDIC. See table 12.2.)

Note how useful and is in these checks. We can use a single if statement, instead of two nested ones.
Checking that a number lies within a certain range is a very common use of and.

When the program finds a lower case letter it adds Factor to its ISORank, putting the result in
Convert.

The program uses the technique, seen earlier, of creating two references to the same text frame. By
reading through one reference and writing through the other, at an equal rate and left to right, we
update the text frame without the need to copy into another and back again.

Note that this program would not work for the EBCDIC character set, if Char and Rank replaced
ISOChar and ISORank. This demonstrates the usefulness of the ISO procedures in writing portable
programs rather neatly.

Exercises

12.1 Because of hardware problems, a file has been corrupted. It now contains a number of
unprintable characters. Assuming that letters, digits, spaces, full stops, commas, colons and semi-
colons are the only characters which should be present, write a program which will remove the
others.

12.2 Write a program which converts all upper case letters to lower and all lower to upper in a file.

12.3 Go back to exercise 7.8. Using this add the capability to your editor to change the case of the
next letter from its current position.

Making quick decisions

When writing our text formatting program in chapter eleven, we were forced to use more and more
deeply nested if statements to check which directive was being read. This becomes rather clumsy
and difficult to read when more than a few choices are possible. It is also slow to run when lots of
checks must be made before a course of action is selected.

The help with this sort of situation, SIMULA contains a feature called a switch. To see how this
works, consider example 12.4. This is example 11.1 rewritten with a switch.

Example 12.4 : The use of a switch

begin
class Page;
begin

class Print Block (Width, Length);integer Width, Length;
begin

ref (Print Block)Next;

text array Contents(l:Length);

integer Count;

for Count:=1 step 1 until Length do Contents (Count) :-Blanks (Width)
end--of--Print Block;

Print Block class Title Block(Title);text Title;
begin

Contents (Length//2) :=Title
end--of--Title Block;

Print Block class Text Block;
begin
for Count:=1 step 1 until Length do
begin
InTmage;
Contents (Count) :=InText (Width)

end
end--of--Text Block;

Print Block class Diagram(Title); text Title;
begin

Contents (1) :=Title
end--of--Diagram;

ref (Print Block) Head, Tail, New Block;
text Directive;

integer Len;

procedure Add(NewBlock); ref (Print Block) NewBlock;

begin
if Head==None then Head :- NewBlock;
if Tail=/=None then Tail.Next :- NewBlock;
Tail :- NewBlock

end++of++Add;

switch Action := TitleB, TextB, DiagB;

Character ActionCode;

Directive :- InText (2);
while Directive ne "S$SE" do
begin
Directive.SetPos (2);
ActionCode := Directive.GetChar;
go to Action (ISORank (ActionCode) - ISORank('A'));
TitleB : ! Directive = $B - New banner;
Len := InInt;
InImage;

Add (New Title Block(80,Len, InText (80)));
go to Repeat;
TextB : ! Directive = $C - New content;
Add (new Text Block (80,Inint));
go to Repeat;

DiagB : ! Directive = $D - New diagram;
Len := InInt;
InImage;

Add (new Diagram (80, Len, InText (80)));
go to Repeat;
Repeat:
Directive :- InText (2)
end.of.while.loop
end--of--Page;
new Page
end.of.program

The letters in the directives are in alphabetic sequence starting with 'B'. Thus they follow the ISO
collating sequence. Thus, by subtracting ISORank ('A') from the ISORank of each directive's letter,
we can obtain a value between one and three, inclusive. Each integer value so obtained represents
one of the three directives.

switch declarations

The switch declaration is unusual, in that it contains the value assignment operator, :=, as well as
identifiers. The syntax of such a declaration is the keyword switch, followed by an identifier giving
the name of the switch, followed by the value assignment operator, followed by a list of so called
"designational expressions".

Designational expressions can take a number of forms. In the example they all have the commonest
form, a simple identifier.

The identifiers used in such a list specify places in the program to which a "jump" may be made. If
you look at the example, three identifiers are listed. (The minimum is one and the maximum will be
different on different SIMULA systems.) Further on in the program, each of these identifiers occurs
again, followed by a colon. This second occurence is called a label.

Label declarations

An identifier followed by a colon is a declaration of a label for the following statement. Such a
declaration is different from those of any other type, since it can occur in the middle of a sequence
of statements, rather than before any statements. The example contains four label declarations. The
first three, TitleB, TextB and DiagB are used to label the next statement. The fourth, Repeat,
appears to label the keyword, end. end is not a statement and so to preserve the rule that label
declarations always precede statements, there is said to be an imaginary statement between the
colon and end.

go to statements with switches

The switch, Action, is used in a statement starting with the keywords go fo. In fact these can be
written as a single keyword goto, if you prefer. This is the only combination of keywords where this
is allowed.

A go to statement is the keyword(s) go to followed by a designational expression. In the example
the switch identifier, Action followed by an integer value in parentheses is used. This is the other
form of designational expression that we shall use. This integer value is an index to the list of
designational expressions in the switch declaration above. Thus it can be used to identify a label
declaration and through this the next statement to be executed.

In the example, we have seen that the value generated when we evaluate
ISORank (Action Code) - ISORank('A')

should be an integer in the range 1-3. The designational expressions in a switch declaration are
assumed to be numbered consecutively starting with 1. Thus, if the directive $C is found, the index
to Action in the go to statement will be 2, and so the second label in the declaration of Action,
TextB, will mark the next instruction to be executed.

This leads us to the meaning of a go to statement. It causes the program to move to the statement
whose label is identified by the designational expression in the go fo statement. No other statements
are executed before this jump. After the jump the program continues with the statement following
the label. Such a jump may be forwards, as in all the cases shown, or backwards.

To see this, consider again the $C directive. The first go to is followed by
Action (ISORank (Action Code) - ISORank('A'")),

which, as we have seen, will equal 2. This means that the label to use is identified by the second
item in the list of designational expressions in the declaration of Action. This is the identifier TextB,
which is the name of a label. The label TextB is further on in the program. The program therefore
misses the intervening statements and continues from the statement

New Text-Block (80,InInt).

If the directive $D is encountered, the program jumps to the third label in the switch declaration,
DiagB. If $B is encountered it jumps to the first. Check the logic of this for yourself.

go to statements with labels

A go to statement makes the program jump to a label specified by a designational expression. A
subscripted switch variable is one form of designational expression, but we have seen a simpler one.
This is a simple label identifier.

In the example three statements have the form of go fo followed by an identifier. As it happens, the
identifier is the same in each case. The effect is again to jump to the statement labelled with the
identifier found from the designational expression. In the case of a simple identifier this is very
straightforward.

These three statements all cause the program to jump to the statement labelled by Repeat. This takes
the program to the Inlmage at the end of the compound statement of the while loop. In other words,
once the actions for that directive are complete, the program jumps to start processing the next line,
which is assumed to contain the next directive.

Exercises

12.4 By extending the list for the switch declaration, moving the position of Repeat and adding a
new label declaration, rewrite example 12.4 without the while loop.

12.5 What would happen in example 12.4 if the go fo Repeat statements were missing? Try
removing them to check. Note the effect carefully.

Notes and warnings

Some people write very intricate programs, which use lots of go fo statements. In certain, rather
limited, programming languages this is necessary. In SIMULA it is almost never needed.

The use of too many go to statements makes programs very hard to read and understand. They
should only be used when absolutely necessary or in the sort of situation shown in example 12.4,
where a switch can simplify a program and make it easier to extend.

It is important in a program using a switch to provide label declarations to match all the
designational expressions in the switch declaration. It is not illegal to declare a switch which leads
to non-existent labels. It is a runtime error to try to jump to one. In fact it is often best to check
before the go fo statement that the value of the expression used in the subscripted switch variable is
not too large for the list in the declaration and to print an error message or warning if necessary.

A very special jump

A rather new feature in SIMULA, which may not exist in some older systems, is the system
procedure Terminate Program. This causes a jump to the very end of the program, regardless of the
current position. This can be useful in providing warnings of disastrous errors and then stopping the
program.

Terminate Program is the only way for a program using a prefixing separately compiled class
containing an @i(inner) statement (see chapter 16), to stop itself without executing the instructions
following that @i(inner). It is the only way to stop a program dead from anywhere within it and
guarantee that no further actions will be carried out.

Switches and labels as parameters

It is possible to pass switches and labels as parameters to procedures. The default mode is reference
and name is also legal.

Using such a parameter, or a switch or label from a block enclosing the one the program is currently
in, it is possible to jump out of a block. The normal rules for ending the appropriate type of block
will apply.

Summary

We have looked at how characters are represented by numbers and seen the procedures which allow
us to use this.

We have seen the use of switches and labels, in go to statements and as parameters.
We have learned the benefits and, most importantly, the dangers of go to statements.
We have seen the system procedure Terminate Program.

Table 12.1: ISO character set - printing characters.

0 nul 1 soh 2 stx 3 etx 4 eot 5 eng

6 ack 7 bel 8 bs 9 ht 10 1f 11 vt
12 ff 13 cr 14 SO 15 si 16 dle 17 dcl
18 dc?2 19 dc3 20 dc4 21 nak 22 syn 23 etb
24 can 25 em 26 sub 27 esc 28 fs 29 gs
30 rs 31 us 32 space 33 ! 34 " 35 #
36 S 37 % 38 & 39 ! 40 (41)
42 * 43 + 44 , 45 - 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5
54 6 55 7 56 8 57 9 58 : 59 ;
60 < 61 = 62 > 63 ? 64 @ 65 A
66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M
78 N 79 ¢} 80 P 81 0 82 R 83 S
84 T 85 U 86 Y, 87 W 88 X 89 Y
90 Z 91 [92 \ 93] 94 ~ 95 _
96 : 97 a 98 b 99 c 100 d 101 e
102 f 103 g 104 h 105 i 106 3107 k
108 1 109 m 110 n 111 o 112 p 113 q
114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 }
126 ~ 127 del 128 ctl 129 ctl 130 ctl 131 ctl
132 ctl 133 ctl 134 ctl 135 ctl 136 ctl 137 ctl

138 ctl 139 ctl 140 ctl 141 ctl 142 ctl 143 ctl
144 ctl 145 ctl 146 ctl 147 ctl 148 ctl 149 ctl
150 ctl 151 ctl 152 ctl 153 ctl 154 ctl 155 ctl
156 ctl 157 ctl 158 ctl 159 ctl 160 ctl 161 ctl
162 ctl 163 ctl 164 ctl 165 ctl 166 ctl 167 ctl
168 ctl 169 ctl 170 ctl 171 ctl 172 ctl 173 ctl
174 ctl 175 ctl 176 ctl 177 ctl 178 ctl 179 ctl
180 ctl 181 ctl 182 ctl 183 ctl 184 ctl 185 ctl
186 ctl 187 ctl 188 ctl 189 ctl 190 ctl 191 ctl
192 ctl 193 ctl 194 ctl 195 ctl 196 ctl 197 ctl
198 ctl 199 ctl 200 ctl 201 ctl 202 ctl 203 ctl
204 ctl 205 ctl 206 ctl 207 ctl 208 ctl 209 ctl
210 ctl 211 ctl 212 ctl 213 ctl 214 ctl 215 ctl
216 ctl 217 ctl 218 ctl 219 ctl 220 ctl 221 ctl
222 ctl 223 ctl 224 ctl 225 ctl 226 ctl 227 ctl
228 ctl 229 ctl 230 ctl 231 ctl 232 ctl 233 ctl
234 ctl 235 ctl 236 ctl 237 ctl 238 ctl 239 ctl
240 ctl 241 ctl 242 ctl 243 ctl 244 ctl 245 ctl
246 ctl 247 ctl 248 ctl 249 ctl 250 ctl 251 ctl

N.b. Ranks less than 32 and greater than 126 are not visible printing characters. Where appropriate
the standard control meaning is supplied. Ranks greater than 127 are normally used for graphics or
alternative character fonts.

Table 12.2: EBCDIC character set - printing characters.

0 nul 1 soh 2 stx 3 etx 4 5 ht
6 7 del 8 9 10 11 vt
12 ff 13 cr 14 fe) 15 si 16 dle 17 dcl
18 dc2 19 dc2 20 21 22 bsp 23
24 can 25 em 26 27 28 fs 29 gs
30 rs 31 VS 32 33 34 35
36 37 1f 38 etb 39 esc 40 41
42 43 44 45 enqg 46 ack 47 bel
48 49 50 syn 51 52 53
54 55 eot 56 57 58 59
60 dc4 61 nak 62 63 sub 64 space 65
66 67 68 69 70 71
72 73 74 75 . 76 < 77 (
78 + 79 | 80 & 81 82 83
84 85 86 87 88 89
90 ! 91 S 92 * 93) 94 ; 95 ~
96 - 97 / 98 99 100 101
102 103 104 105 106 | 107 ,
108 % 109 110 > 111 ? 112 113
114 115 116 117 118 119
120 121 o122 : 123 # 124 @ 125 !
126 = 127 " 128 129 a 130 b 131 c
132 d 133 e 134 f 135 g 136 h 137 i
138 139 140 141 142 143
144 145 J 146 k 147 1 148 m 149 n
150 o 151 p 152 g 153 r 154 ~ 155
156 157 158 159 160 1ol ~
162 s 163 t 164 u 165 v 166 w 167 X
168 y 169 z 170 171 172 173 [
174 175 176 177 178 179
180 181 182 ~ 183 184 185
186 187 188 189] 190 191
192 { 193 A 194 B 195 C 196 D 197 E
198 F 199 G 200 H 201 I 202 203
204 205 206 207 208 } 209 J
210 K 211 L 212 M 213 N 214 O 215 P
216 o 217 R 218 219 220 221
222 223 224 \ 225 226 S 227 T
228 U 229 v 230 W 231 X 232 Y 233 Z
234 235 236 237 238 239
240 0 241 1 242 2 243 3 244 4 245 5
246 6 247 7 248 8 249 9 250 251
252 253 254 255

N.b. EBCDIC character sets vary from machine to machine. This table is only one variant, example
12.2 uses an alternative mapping between EBCDIC and ISO to allow a complete conversion.

Chapter 13 - Let Us See what We Can See

Inspection and Remote Accessing

Recap

So far we have treated inspection and dot notation accessing as the same thing. In most simple cases
they are. In other situations they may be used to do rather different things. In particular
the inspect statement can be used for much more than just a convenient shorthand.

Essentially we have seen that the dot notation form of remote accessing allows us to use the
attributes of a class object from outside it. It is also used to access the attributes of text objects,
which are not class objects.

The inspect statement has allowed us to assume that any identifiers used in the statement following
the keyword do are possibly attributes of the class object being inspected. Thus the programs in
examples 13.1 can be treated as identical. A text object may not be inspected in this way.

Example 13.1b shows the situation where an identifier inside the class is the same as an identifier in
the main program. When Int is used inside the class, it refers to the declaration inside the class.
When Int is used outside the class, it normally refers to the declaration in the main program block.
When it is used inside an inspect statement it is always taken to refer to the declaration in the class
inspected.

The rule is that the statement following the do in an inspect statement is treated as if it were inside
the body of the class being inspected.

This can cause confusion when there is a name conflict, like the one in example 13.1b. It is often
clearer to use dot notation in such cases. A better solution, of course, is to avoid name conflicts
where possible.

Examples 13.1: Remote accessing.

a) Dot notation.

begin
integer Int;

class Example (Ch); character Ch;
begin

integer Int;

text Txt;

procedure Proc; OutText ("Called");
end--of--Example;

ref (Example) Ex1;

Ex]l :- new Example('?');

OutChar (Ex1.Ch) ;

Ex1.Proc;

for Int := Ex1.Int step 2 until 6 do Ex1.Txt := "Txt"
end

b) inspect statement.

begin
integer Int;

class Example (Ch); character Ch;
begin

integer Int;

text Txt;

procedure Proc; OutText ("Called");
end--of--Example;

ref (Example) Ex1;

Exl :- new Example('?');

inspect Ex1l do

begin
OutChar (Ch) ;
Proc;
comment Note that the first Int in the next statement now refers to

the attribute of Ex1, not the declaration in the main program;

for Int := Int step 2 until 6 do Txt := "Txt"

end

end

Limitations of dot notation

The most important limitation on dot notation occurs with an object qualified by a class which itself
has classes declared within its body or within the body of a prefixing class. This is shown in
example 13.2a.

Class Outside contains a class declaration for Inside and other attributes. The main program
contains a variable Outsider which references an object of class Outside. Using dot notation we
cannot access any of the attributes of Outsider from the main program block.

Similarly, the class Outside2 is a subclass of Outside. The ref(Outside2) object, Outsider2 has
attributes in addition to those of Outside, but none of these may be accessed by dot notation because
the prefix Outside has a local class declaration.

N.b. the restriction refers to class declarations, not reference variable declarations.

In order to access these attributes from the main program block we must use an inspect statement as
shown in example 13.2b.

Examples 13.2: Limitations of dot notation.
a) An illegal use of dot notation.

begin

class Outside;
begin
class Inside;
begin
text InsideText;
end..of..Inside;

integer Intl;
text Textl;

end--of--Outside;

Outside class Outside?2;

begin
integer Int2;
text Text2;
end;

ref (Outside) Outsider;
ref (Outside2) Outsider?2;

Outsider :- new Outside;

Outsider?2 :- new Outside2;

Outsider.Textl :- Copy("Illegal");

Outsider2.Int2 := 4
end++oft++program

b) A legal version of the same program using inspect.
begin

class Outside;
begin

class Inside;
begin

text InsideText;
end..of..Inside;

integer Intl;
text Textl;

end--of--Outside;

Outside class Outside?2;
begin

integer Int2;

text Text2;
end;

ref (Outside) Outsider;
ref (Outside2) Outsider?2;

Outsider :- new Outside;

Outsider2 :- new Outside2;

inspect Outsider do Textl :- Copy("Legal");

inspect Outsider2 do Int2 := 4
endt++of++program

Extending inspect

The simple inspect statement that we have used so far is useful so long as we know the type or
qualification of the object being inspected. This may not always be sufficient.

We saw in chapter 11 that it is possible to reference all objects which are subclasses of one parent
class using a variable declared as a ref to the parent. This enabled us to form a linked list of objects
of different subclasses, for instance. At the same time we saw the limitation of this, in that the
subclass attributes could not be accessed through these variables, only the attributes of the parents.
Neither dot notation nor simple inspect statements can get around this problem.

Another problem with remote accessing is that it is clearly nonsense to use a reference variable
before it has been pointed at an object (assigned a reference). Such an attempt is in fact illegal and
will cause a runtime error to be signalled.

To get around these problems we can use extensions of the inspect statement.

inspect plus otherwise

The simplest extension allows us to detect the use of references which currently do not point to a
class object. Such references are said to point to an imaginary object, with no attributes, called
None. This is the only object that any reference, regardless of its type, can point at.

Consider examples 13.3. The first program would simply ignore some elements of the array
References, since not all the reference variables in this array have been pointed at objects of class
Example. The second program, on the other hand, will detect such variables and report which they
are. It does this by adding an otherwise clause to its inspect statement.

The syntax of our extended inspect statement is now the keyword inspect, followed by a reference
to a class object, followed by the keyword do, followed by a statement, optionally followed by
an otherwise clause.

The syntax of an otherwise clause is the keyword otherwise followed by a statement.

The reason for choosing inspect as the keyword for this type of statement is perhaps a little clearer
now. The meaning of an inspect statement makes it a suitable choice. The class object is first
inspected to see if it is None. If not, it is used to provide the class which is assumed to be remotely
accessed in the statement following the keyword do, which is then executed. If it is None, the
statement following the keyword otherwise is executed, where present. If there is

no otherwise clause, the use of None will cause the statement following do to be skipped.

Notice that we have used the phrase "reference to a class object", for what comes

between inspect and do. This is usually an indentifier of ref to class type, possibly subscripted, but
could be any expression yielding a ref to class result. An example of an alternative could be a type
procedure, whose type is ref to a class and which returns a reference to a class object, like SysIn and
SysOut. Chapter 17 will make a lot of use of such type procedures.

The statement following do acts as if it were inside the class object being inspected. All identifiers
are first matched against declarations within the class and its prefixing classes. In technical terms,
the qualification of this statement is the same as the class inspected.

This extension to the inspect statement is quite useful, but it does not allow us to do anything that
was not already possible. Example 13.3c shows the same program written without the otherwise,
but still checking for None. To see the real power of the inspect concept, we must extend the
definition still further.

Examples 13.3: Detecting None with otherwise.
a) A program which fails to check for None.

begin

class Example;

begin
text Message;
Message :—- Copy("Legal")

end. .of..Example;

ref (Example) array References(0:10);
integer Counter;

comment Only every other element assigned to;

for Counter := 0 step 2 until 10 do

comment Every element inspected;

for Counter := 0 step 1 until 10 do
inspect References (Counter) do
begin
OutText (Message) ;
OutImage

end--of--inspecting--element

end++of++program

References (Counter)

b) The same program using otherwise to check for None.

begin

class Example;

begin
text Message;
Message :- Copy("Legal")

end..of..Example;

ref (Example) array References(0:10);
integer Counter;

for Counter := 0 step 2 until 10 do References (Counter)

comment Still inspect every element,

for Counter := 0 step 1 until 10 do
inspect References (Counter) do
begin

OutText (Message) ;

OutImage
end--of--the--connection--block
otherwise
begin

OutText ("Illegal");

OutImage

end--of--the--othrwise--clause
end++of++program
c¢) The same program without inspect.
begin

class Example;

begin
text Message;
Message :- Copy("Legal")

end..of..Example;

ref (Example) array References(0:10);
integer Counter;

:— new Example;

:— new Example;

but use otherwise to report nones;

for Counter := 0 step 2 until 10 do References (Counter)

comment Use direct checking and dot notation;

for Counter := 0 step 1 until 10 do
begin

if References (Counter)=/=None then

begin

OutText (References (Counter) .Message) ;

OutImage

:— new Example;

end--of--legal--reference--case
else
begin
OutText ("Illegal");
OutImage
end--of--the--None--case
end**of**for**loop

end++of++program

The use of inspect plus when

The inspect statement used so far allows us to treat None and one particular type of class object
differently. By adding a feature called the when clause, we can treat a class object according to its
actual type, out of a range of possible alternatives.

Example 13.4 shows the use of an inspect statement with when clauses to process a linked list. All
the objects on the list belong to classes sharing a common prefix. They are linked by variables
declared as ref to this common prefix.

When we come to process each object, we wish to treat it differently according to its innermost
type. In fact we need not select the innermost, but we are restricted to the level of qualification that
we choose, so that attributes at inner levels would be invisible within the when clause.

This extension's syntax replaces the single keyword do with one or more when clauses.
The otherwise clause remains optional, but its meaning changes slightly.

Each when clause consists of the keyword when, followed by the name of a class, followed by the
keyword do, followed by a statement. Each occurrence of the keyword when marks the beginning of
a new when clause.

The when clause contains an identifier matching a class declared in the program and visible to

the inspect statement. The execution of an extended inspect statement tries to match the
qualification of the inspected object or one of its prefixing classes to the class identifiers in

each when clause in turn. Once a match is found, the statement following the do in that when clause
is executed.

The statement following the do in a when clause is treated as if it were declared inside the class
whose identifier is used in that clause. Thus, in example 13.4, when the objects on the list are
inspected this determines which prefix level the declaration of procedure Print is taken from.
Although the objects from the list can only be accessed as ref(A) objects, within each when clause
the attributes of the appropriate sub-classes can be used.

Note the order of the when clauses. Inner classes must be tested for before outer, if we wish them to
be distinguished. This is an important consequence of the rules given above.

If no match is found, the statement is skipped unless it contains an otherwise clause, in which case
that is executed.

Within the extended inspect statement the otherwise clause, where present, is executed if the
referenced object is None, as before, and also if its qualification fails to match any of

the when clauses. In programs which are still being developed this can be used to handle currently
missing cases, by printing out a suitable warning. It can also catch those cases which you have
forgotten to deal with!

Example 13.4: Mixed list processing using when.

begin

class A;
begin

ref (A) Link;

procedure Print; OutText ("Class A");
end..of..A;

A class B;
begin

procedure Print; OutText ("Class B");
end..of..B;

A class C;
begin

procedure Print; OutText ("Class C");
end..of..C;

B class D;
begin

procedure Print; OutText ("Class D");
end;

C class E;
begin

procedure Print; OutText ("Class E");
end..of..E;

ref (A) Head, NextA;

for NextA :- new B, new C, new D, new E do
begin

NextA.Link :- Head;

Head :- NextA

end--of--building--mixed--1list;

while NextA=/=None do
begin
NextA.Print; ! Always prints "Class A";
inspect NextA
when E do Print
when D do Print
when C do Print
when B do Print
when A do Print
otherwise OutText ("Not a predicted subclass of A");
OutImage;
NextA :- NextA.Link
end--of--while--loop

endt++of++program

A practical example - simple sorting and merging

Example 13.5 shows the use of a when clause to help in processing records which are read in
unsorted. The records are of four types and are marked by the contents of their first line. The first
character of this line is 'M' for a male and 'F' for a female. The second character is 'A' for an
accountant and 'D' for a dancer.

Input is terminated by a line containing ".end" as its start.

The program first reads each record into an object of one of four classes designed to hold their
particular data. All four of these classes are prefixed by class Linker, which contains pointers to
allow linked lists to be built up. At first a single list of all the objects is constructed using the first
pointer variable in Linker.

This list is then processed, with the aid of a when clause, and the objects placed on one from each of
two pairs of lists, using the other two pointers in Linker.

Finally these lists are written out separately.

The two complementary actions of sorting and merging lists are fundamental to many uses of
computers. The addition of facilities to insert new items in a list and to modify existing items gives
a powerful basic set of tools for manipulating data. We are now in a position to build such tools and
extend them as the need arises.

Example 13.5: Merging and sorting using inspect.
begin

class Linker;

begin
ref (Linker) Next, Sex, Employment;
text ID;

end--of--Linker;

Linker class Male Dancer;
begin

! Should contain full details;
end--of--Male--Dancer;

Linker class Female Dancer;
begin

! Should contain full details;
end--of--Female--Dancer;

Linker class Male Accountant;
begin

! Should contain full details;
end--of--Male--Accountant;

Linker class Female Accountant;
begin

! Should contain full details;
end--of--Female--Accountant;

procedure Onto_ List (Entry,Gender,Occupation);
name Gender,Occupation;
ref (Linker) Entry,Gender,Occupation;
begin
Entry.Sex :- Gender;
Gender :- Entry;
Entry.Employment :- Occupation;
Occupation :- Entry
end--of--Onto--List;

procedure Write List (Heading, ListHead); text Heading;
ref (Linker) ListHead;
begin
Boolean SexList;
SexList := (ListHead==Males or ListHead==Females) ;
OutlImage;
OutText (Heading) ;
OutImage;
OutlImage;
while ListHead=/=None do
begin
OutText (ListHead.ID) ;
OutImage;
if SexList then ListHead :- ListHead.Sex
else ListHead :- ListHead.Employment
end
end--of--Write--List;

text Line;
ref (Linker) NextEntry,List,Males,Females,Dancers,Accountants;

comment First read the input onto a single list;

InImage;
Line :- Blanks(80);
while SysIn.Image.Strip ne ".end" do
begin
Line.SetPos (1) ;
Line := SysIn.Image;
if Line.GetChar='F' then
begin
if Line.GetChar='D' then NextEntry :- new Female Dancer
else NextEntry :- new Female Accountant
end else begin
if Line.GetChar="'A' then NextEntry :- new Male Accountant
else NextEntry :- new Male Dancer
end;
InImage;
NextEntry.ID :- Copy(SysIn.Image);
InTImage;
NextEntry.Next :- List;
List :- NextEntry
end;

comment Now process the main list, forming threaded lists;

NextEntry :- List;
while NextEntry=/=None do
begin

inspect NextEntry
when Male Dancer do Onto List (NextEntry,Males, Dancers)
when Female Dancer do Onto List (NextEntry,Females, Dancers)
when Male Accountant do Onto List (NextEntry,Males,Accountants)
when Female Accountant do Onto List (NextEntry,Females,Accountants);

NextEntry :- NextEntry.Next
end;

comment Now write out by lists;

if Females=/=None then Write List ("Females",Females);

if Males=/=None then Write List ("Males",Males);

if Dancers=/=None then Write List ("Dancers",Dancers);

if Accountants=/=None then Write List ("Accountants",Accountants)

end++of++program

Exercise

13.1 A theatrical agent has a file of records of different kinds of artists. He also has a file of records
of requests for artists to be sent for audition. Assume that there are artists who are actors, musicians,
singers and comedians and that requests may be for any of these. Further, assume that requests may
specify the sex of the required artist and the age, with the age given as child, youth, mature or
elderly. Write a program, based on the techniques used in example 13.5, to match requests and
artists and print lists of all suitable artists for each request and all suitable requests for each artist.

Getting round the qualification rules

SIMULA goes to great lengths to force you to respect the type of a reference to a class object. In
general a reference to such an object can only be used to access those attributes visible at the
qualification level of the reference.

The restriction means that in a program containing declarations of class A, A class B and B class C,
a variable declared as ref(B) can normally only be used as follows:

1.It cannot reference objects of class A.

2.1t can reference objects of class B. Through it all the attributes declared in B and all the
attributes declared in A whose names are not reused in declarations in B can be accessed
remotely.

3.1t can reference objects of class C, but only attributes declared in A or B can be accessed.
Even if the name of an attribute declared in A or B is redeclared in C, the use of a reference
whose qualification is B prevents the use of the meaning given in C.

One method of overcoming these restrictions is the use of the when clause form
of inspect statement. We have seen that this can allow us to identify inner classes and access their
attributes.

An alternative to this is known as "instantaneous" qualification. It does not allow a series of
choices, like the full inspect statement with when clauses. Nor does it allow us to avoid references
pointing to None. In these ways it is less powerful than inspection. On the other hand, it can be used
to restrict as well as extend the levels of attributes which may be used.

The feature used is based on the keyword qua and example 13.6 show two ways of using it.

13.6a shows it used rather like a when clause. It allows legal access to a class object at a level inner
to that at which it is being referenced.

13.6b shows its power in the reverse direction. It is used to access the procedure POuter declared in
class A, through a reference to A class B, even though POuter is redeclared as an integer inside B.

13.6¢ shows an illegal use of qua. An attempt is made to access an inner level when the object
referenced is not of the inner type. This would produce a runtime error.

Example 13.6: Uses of qua.
begin

class A;
begin

integer I,J;
end--of--A;

A class B;
begin

text I,J;
end--of--B;

ref (A) ARefl, ARef2;
ref (B) BRef;

ARefl :- new B;
BRef :— new B;
ARef2 :- new A;
' a); ARefl qua B.I :- Copy("Getting inside");
' b); BRef qua A.I := 4;
' ¢); ARef2 qua B.I :- Copy("No inside to get to")
end++oft++program

Syntax and semantics of reference expressions using qua

The use of qua is in expressions giving a reference to a class object. Its syntax is any reference to a
class object, followed by the keyword gua, followed by the name of a class.

This group is still a reference to the class object, but it is accessed at the prefix level defined by the
class specified. Only the attributes of this class and any prefixes to it may be accessed.

Referencing yourself

This chapter has introduced some very powerful concepts, but the usefulness of them is not always
immediately apparent. It is only when you have to write quite complex programs that you may
appreciate qua, for instance.

One very useful but much simpler feature in SIMULA is the ability of an object to reference itself.
It is achieved by using the keyword this. Example 13.7 shows the use of this.

Formally the keyword #his, followed by a name of a class is a reference to the class object
containing it. The class name must be the one qualifying that object or on its prefix chain.

To make this clearer, consider example 13.7. Here the generation of a new object of class Linker, or
prefixed by it, automatically inserts that object in the list whose head is passed as a parameter to it.
Without the use of #his, it would be impossible to perform such an action.

Using this many more actions can be included as local procedure attributes or local statements in
the definition of a class. This is very important to the idea of object oriented programming.

Example 13.7: Using this in 13.5.
begin

class Linker;

begin
ref (Linker) Next, Sex, Employment;
text ID;

procedure Add to List (LHead); name LHead; ref(Linker) LHead;

begin
Next :- LHead;
LHead :- this Linker

end..of..Add..to..List;

procedure Onto_ Lists (Gender,Occupation);
name Gender,Occupation;
ref (Linker) Gender,Occupation;

begin
Sex :- Gender;
Employment :- Occupation;
Gender :- Occupation :- this Linker

end..of..Onto..Lists;

InImage;

ID :- Copy(SysIn.Image);

InImage;
end--of--Linker;

Linker class Male Dancer;
begin

! Should contain full details;
end--of--Male--Dancer;

Linker class Female Dancer;
begin

! Should contain full details;
end--of--Female--Dancer;

Linker class Male Accountant;
begin

! Should contain full details;
end--of--Male--Accountant;

Linker class Female Accountant;
begin

! Should contain full details;
end--of--Female--Accountant;

procedure Write List (Heading, ListHead); text Heading;
ref (Linker) ListHead;

begin
Boolean SexList;
SexList := (ListHead==Males or ListHead==Females):;
OutImage;

OutText (Heading) ;

OutImage;
OutlImage;
while ListHead=/=None do
begin

OutText (ListHead.ID) ;

OutlImage;

if SexList then ListHead :- ListHead.Sex

else ListHead :- ListHead.Employment
end
end--of--Write--List;

ref (Linker) NextEntry,List,Males,Females,Dancers,Accountants;
text Line;

comment First read the input onto a single list;

InImage;
Line :- Blanks(80);
while SysIn.Image.Strip ne ".end" do
begin
Line.SetPos (1) ;
Line := SysIn.Image;
if Line.GetChar='F' then
begin
if Line.GetChar='D' then NextEntry :- new Female Dancer
else NextEntry :- new Female Accountant
end else begin
if Line.GetChar='A' then NextEntry :- new Male Accountant
else NextEntry :- new Male Dancer;
end;
NextEntry.Add to List (List)
end;

comment Now process the main list, forming threaded lists;

NextEntry :- List;
while NextEntry=/=None do
begin

inspect NextEntry
when Male Dancer do Onto Lists(Males,Dancers)
when Female Dancer do Onto Lists (Females,Dancers)
when Male Accountant do Onto Lists(Males,Accountants)
when Female Accountant do Onto Lists (Females,Accountants);

NextEntry :- NextEntry.Next
end;

comment Now write out by lists;

if Females=/=None then Write List ("Females",Females);

if Males=/=None then Write List ("Males",Males);

if Dancers=/=None then Write List ("Dancers",Dancers);

if Accountants=/=None then Write List ("Accountants",Accountants)

end++oft++program

this in inspect statements

It is important to remember that the statement following the keyword do in a simple inspect and the
statements in the when clauses of the extended inspect are treated as if they were inside the body of
the object inspected. It is therefore possible to use this in these statements to refer to the inspected
object.

Reference parameters

We have used references to objects as parameters without really considering the implications. We
shall do so briefly here.

References to class objects may be declared and passed as parameters to both procedures and
classes. They are passed to both by reference as a default. They may be passed by name to
procedures but not to classes. They may never be passed by value. (See tables 6.1and 9.1.)

The actual reference passed when the procedure is called or the class object is generated, must be
compatible with the class specified in the declaration. This means that its qualification must be
equal or inner to the declared class, just as in a reference assignment.

Exercises

13.2 Rewrite example 13.7. Add a procedure Into to class linker. This takes one parameter which is
a ref(Header). When Into is called it should insert the Linker object into the list of the Header
passed. What mode should be used for the parameter?

13.3 Extend Into in 13.2, giving it a second parameter which is a ref to Linker. When called it
should now insert the object through which it is accessed into the list after the object referenced by
its second parameter. Beware of None. What modes should be used here?

Summary

We have examined the uses, advantages and limitations of the dot notation for remote accessing.
We have seen the full use of the inspect statement in both its simple and extended forms.

We have used the otherwise clause to cope with cases of references to None.

We have used the when clause to differentiate subclasses referenced through a common prefix. This
has allowed us to access attributes which were not available through this prefixing class. Otherwise
allowed us to cater for unwanted subclasses along with None.

The use of qua has been shown to allow us both to extend to inner prefix levels and restrict to outer
prefix levels the qualification of class object references.

We have examined ways in which ¢his can be exploited, allowing objects to reference themselves
and statements inspecting objects to reference those objects.

A summary of the use of references to class objects as parameters has been presented.

https://web.archive.org/web/20040923043932/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap09.html
https://web.archive.org/web/20040923043932/http://www.macs.hw.ac.uk/~rjp/bookhtml/chap06.html

CHAPTER 14 - Side by Side

Coroutines

Masters and slaves or equal partners?

Even if you had never programmed before starting this book, the use of procedures should be
becoming second nature to you by now. The ability to call on a handy sequence of instructions
whenever it is needed is one of the most useful aids to programming offered by high level
languages like SIMULA. Most people have a set of useful procedures which they like to use in just
about all the programs they write. In fact most of us extend the SIMULA language with new
features, many of which are procedures.

Although procedures are very useful, they are only one way of using independent pieces of code.

The distinctive feature of procedures is that they are activated by being called from some point in
the program and that when they have completed their instructions they return to that calling point.
They are the slaves and the calling code is their master.

In the real world similar relationships exist. If we consider an office, the manager may need to write
a report. To do this he will perhaps dictate it into a dictaphone and send the recording to the typing
pool. For him the typing pool acts like a procedure. He passes it a recording of his report, like a
parameter, and receives a typed version of it, like the result of that procedure.

If we broaden the scope of our view of the office, the manager may be one of several within his
firm. He might be preparing his report as part of a monthly review process. This might involve all
the managers preparing their own reports.

If we think of the managers as objects of class Manager, this preparing of reports would be the
sequence of instructions within the class body of Manager. The facts on which the report is based
would be given a parameters when the Manager is generated and the final report would be an
externally visible attribute of Manager. Obviously specific managers might have extended
definitions as subclasses of Manager.

Example 14.1 shows a pseudo-SIMULA program for this situation. Clearly this is not a program
which could replace the managers in a real firm, but it does describe the operation of the firm. This
is the use of SIMULA as a system description language. If you find th