
SIMULA Standard

As defined by the SIMULA Standards Group,
25th August 1986.

REMARK: This is an unofficial version of Simula Standard.

This document is reassembled from various sources, mainly from the archive after Simula as.

It is manually checked against several printed versions.

If you need an official version please check this document:

Swedish Standard: SS636114

 Oslo 22. october 2018

 Øystein Myhre Andersen

https://portablesimula.github.io/github.io/doc/SS636114.pdf

Table of Contents

0 General Introduction
0.1 Introduction
0.2 Scope and field of application
0.3 References
0.4 Definitions
0.5 Conformity
0.6 Tests
0.7 Appendices

1 Lexical Tokens
1.1 Directive lines
1.2 The character set
1.3 Special symbols
1.4 Identifiers
1.5 Numbers
1.6 Strings
1.7 Character constants
1.8 Corument convention
1.9 Token separators
1.10 Prograrn interchange and lexical alternatives

2 Types, values and references
2.1 Arithrnetic types
2.2 The type Boolean
2.3 The type character
2.4 Object reference
2.5 The type text
2.6 Type conversion

3 Expressions
3.1 Variables
3.2 Boolean expressions
3.3 Relations
3.4 The logical operators
3.5 Arithhlietic expressions
3.6 Character expressions
3.7 Text expressions
3.8 Object expressions
3.9 Designational expressions

4 Statements
4.1 Assignement statement
4.2 Conditional statement
4.3 While statement
4.4 For statement
4.5 Goto statement
4.6 Procedure statement
4.7 Object generator statement
4.8 Connection statement
4.9 Compound statement
4.10 Blocks
4.11 Dummy statement

https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_0.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_4.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_3.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_2.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_1.htm

5 Declarations
5.1 Simple variable declaration
5.2 Array declaration
5.3 Switch declaration
5.4 Procedure declaration
5.5 Class declaration
5.6 Scope and visibility rules
5.7 Initialisation
5.8 Constant declarations

6 Program modules
6.1 External declarations
6.2 The main program
6.3 External procedure declaration
6.4 External class declaration
6.5 Module identification

7 Sequencing
7.1 Block instances and states of execution
7.2 Quasi-parallel systems
7.3 Quasi-parallel sequencing
7.4 Annotated example

8 Attributes of text
8.1 "constant", "start", "length" and "main"
8.2 Character access
8.3 Text generation
8.4 Subtexts
8.5 Numeric text values
8.6 "De-editing" procedures
8.7 Editing procedures

9 The class environment
9.1 Basic operations
9.2 Text utilities
9.3 Scheduling
9.4 Mathematical ifinctions
9.5 Extremum functions
9.6 Environmental enquiries
9.7 Error control
9.8 Array quantities
9.9 Random drawing
9.10 Calendar and tiining utilities
9.11 Miscellaneous
9.12 Standard system classes

10 Input - Output
10.1 The class "file"
10.2 Structure of file subclasses
10.3 Imagefiles
10.4 The class "infile"
10.5 The class "outfile"
10.6 The class "directfile"
10.7 The class "printlile"
10.8 Bytefiles
10.9 The class "inbytefle"

https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_10.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_9.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_8.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_7.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_6.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_5.htm

10.10 The class "outbytefile"
10.11 The class "directbytefile"

11 Class Simset
11.1 Class "linkage"
11.2 Class link
11.3 Class head

12 Class Simulation
12.1 Class process
12.2 Activation statement
12.3 Procedure ACTIVATE
12.4 Sequencing procedures
12.5 The main (simlulation)
12.6 The procedure ACCUM

App. A: SIMULA Syntax
App. B: Implementation aspects
App. C: Index of Syntactic Meta-symbols
App. D: Statutes of the SIMULA Standards Group

https://portablesimula.github.io/github.io/doc/SimulaStandard86/App_D.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/App_C.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/App_B.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/App_A.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_12.htm
https://portablesimula.github.io/github.io/doc/SimulaStandard86/chap_11.htm

Chapter 0

General Introduction

0. General Introduction

SIMULA is a general purpose programming language. It inherits the algorithmic properties of
ALGOL 60 and introduces methods for structuring data. The main characteristic of SIMULA is that
it is easily modelled towards specialized problem areas, and hence can be used as a basis for Special
Application Languages.

In this Standard the name SIMULA is considered synonymous with SIMULA 67. Although there
exists a predecessor, SIMULA I, this latter language has achieved limited use. It is recommended
that the language defined in this Standard be referred to as "Standard SIMULA".

SIMULA includes most of the ALGOL 60 language. Wherever ALGOL is used in this Standard it
relates to the STANDARD ALGOL 60 definition (ISO 1538).

0.2 Scope and field of application

This Standard establishes the definition of the programming language SIMULA and specifies
conformity rules to related products, such as programs and processors. Its purpose is to facilitate
interchange and promote portability of SIMULA programs between data processing systems.

This Standard specifies:

a.The syntax, semantics and representation of SIMULA,
b.Characteristics of processors (see 4.2.1) and their accompanying documents, and of
SIMULA programs, required for conformity to this Standard,
c.What is left to the discretion of the implementor, or to be specified for each
implementation.

This Standard does not specify:

a.Results or issues that are explicitly left undefined or said to be undefined,
b.How non-valid programs are to be rejected and how this will be reported,
c.The relationship of the hypothetical computer, used to explain the actions which constitute
the elaboration of a program, to an actual data processing system.

0.3 REFERENCES

ISO 646-1973: The 7-bit coded character set for information processing interchange.
ISO 1538-1984: Programming languages - ALGOL 60
ISO 2022-1982: ISO 7-bit and 8-bit coded character sets

"Common Base Language" by O.-J. Dahl, B. Myhrhaug and K. Nygaard Norwegian Computing
Center 1984. (ISBN 82-539-0225-5)

0.4 DEFINITIONS

For the purpose of this Standard the following definitions apply.

Note: Several terms used in this Standard are explained at the appropriate place in Part II
(Description of the language). For convenience some of these have been included here too,
at times with a simplified definition. It is understood, however, that no difference of
meaning is considered to exist, and all definitions of a term are equivalent.

0.4.1 SIMULA Program

0.4.1.1 Potential program:

A text, that is a sequence of characters or typographical marks, meant to be a sequence of tokens
constituting a SIMULA program.

0.4.1.2 Valid program:

A potential program that is a program according to the rules in this Standard.

0.4.1.3 Non-valid program:

A potential program that is not a program but can be turned into one by deleting or inserting a
number of symbols.

0.4.1.4 Elaboration of a program:

A sequence of actions specified by the semantics to be carried out.

0.4.1.5 SIMULA program:

A valid program whose elaboration is defined by this Standard for an indicated class of input data.

0.4.2 SIMULA Processors

0.4.2.1 Processor:

A compiler, translator or interpreter, in combination with a data processing system, that accepts a
potential program, transcribed in a form that can be processed by that data processing system,
reports whether the potential program is valid or not, and if so requested is able to execute it, if it
has not rejected it.

0.4.3 SIMULA Implementations

0.4.3.1 Implementation:

A well-documented processor is said to establish an implementation of the language SIMULA.

0.4.3.2 Implemented language:

The version of the language defined by the implementation.

0.4.3.3 Extension:

A rule in the implemented language that

a.is not given in this Standard
b.does not cause any ambiguity when added to this Standard (but may serve to remove a
restriction)
c.is within the scope of this Standard.

0.4.3.4 Implementation-defined:

What is to be specified for each implementation.

0.4.3.5 Implementation-dependent:

What is left to the discretion of the implementor.

0.5 CONFORMITY

0.5.1 Requirements

0.5.1.1 Conforming programs

Conformity to this Standard requires for a program that

a.it shall be a SIMULA program
b.a set of input data shall be given for which it has a defined meaning.

0.5.1.2. Conforming processors

Conformity to this Standard requires for a processor that

a.it shall accept valid programs as being valid,
b.it shall reject non-valid programs as being non-valid,
c.it shall not elaborate a SIMULA program differently from what is defined in this Standard,
d.it shall be accompanied by documents complying with the requirements below.

0.5.1.3. Documentation

It is required for the documents accompanying a conforming processor that these shall describe
clearly

•its purpose, the name of the implemented language, if not SIMULA, and the environment
(hardware and software) in which it will work,
•its intended properties, including

• the actions taken when results or issues occur, left undefined in this Standard,
• conventions for issues said to be implementation-defined,
• what is provided for issues declared to be implementation dependent,

•all differences between the implemented language and the language defined in Part II of
this Standard,
•its logical structure,
•the way to put it into use.

0.5.1.4. Conforming implementations

A conforming implementation shall comply with the above requirements for a processor and its
accompanying documents.

0.5.2 Quantitative restrictions

The requirements specified in 4.1 shall allow for quantitative restrictions to rules stated or implied
as having no such restriction in this Standard, but only if they are fully described in the documents

with the implementation. These restrictions are to be considered implementation-defined in as far as
they are not dependent of any momentary resource restraint during execution of a program.

0.5.3 Extensions

An implementation that allows for extensions in the implemented language is considered to
conform to this Standard, notwithstanding 4.1 if

a.it would be conforming when the extensions were omitted,
b.those extensions are clearly described with the implementation,
c.while accepting programs that are non-valid according to the rules given in Part II of this
Standard, it provides means for indicating which part, or parts, of a program would have led
to its rejection, had no extensions been allowed (cf. Part II, ch. 16),
d.the implemented language is a super-language of SIMULA.

Extensions are allowed only if the following conditions are fulfilled:

a.The implementor provides a translator program, which takes any program accepted by that
implementation and translates it into a valid program. The resulting program may contain a
minimum of calls to non-SIMULA procedures in cases where this is absolutely necessary
due to a lack of facilities in the language.
b.Each implementation has a switch which must be set to make the compiler accept
programs with extensions.

An implementation which allows extensions, shall give warning messages for the use of such
extensions.

Valid programs using extensions shall be described as "conforming to the SIMULA Standard but for
the following indicated parts".

0.5.4. Subsets

This Standard does not include subsets.

0.6 TESTS

Whether an implementation is a conforming implementation may possibly be detected by a suite of
test programs. If there is any uncertainty or doubt regarding acceptance of these programs then the
conclusion drawn from the actual behavior of the processor will prevail over those derived from its
accompanying documents.

0.7 APPENDICES

Appendices contained within this document are not part of this Standard.

Chapter 1

LEXICAL TOKENS

DEFINITIONAL CONVENTIONS

The meta language used in this standard to specify the syntax of the constructs is based on the
Backus-Naur Form. The meanings of the various meta symbols are listed in the table below. Further
(semantic) specifications of the constructs are given in prose and, in some cases, by equivalent
program fragments. In such program fragments some identifiers introduced by declarations are
printed in upper case. The use of upper case letters signifies that the identifier in question represents
some quantity which is inaccessible to a program. An example of this convention is the identifier
EVENT_NOTICE of chapter 12. Any other identifier that is defined elsewhere in the standard will
denote the corresponding entity by its occurrence in such a program fragment.

Note: The use of program fragments as described above, as well as the description of standard
facilities (see chapters 8-12) by algorithmic means should be taken as definitive only as far
as their effect is concerned. An actual implementation should seek to produce these effects
in as efficient a manner as practicable. Furthermore, when arithmetic of real type is
concerned, even the effects must be regarded as defined with only a finite degree of
accuracy (see 3.5.3).

Metalanguage Symbols

 Metasymbol Meaning

 = is defined to be
 ! alternatively
 [x] 0 or 1 instance of x
 { x } 0 or more instances of x
 (x | y) grouping: either x or y
 xyz the terminal symbol xyz
 meta-identifier a non-terminal symbol
 ... see below

A meta-identifier is a sequence of letters, digits and hyphens beginning with a letter. The identifier
has intentionally been chosen to convey a hint of its meaning to the reader. The exact meaning is,
however, defined by its (single) occurrence on the left hand side of a production. When used outside
productions these identifiers are generally written with spaces instead of hyphens, except in cases
where possible ambiguities might result.

A few productions contain the ellipsis (...) as a right hand side. In such cases a prose explanation is
given immediately below the production.

A sequence of terminal and non-terminal symbols in a production implies concatenation of the text
that they ultimately represent. Within chapter 1 this concatenation is direct; no characters may
intervene. In the remainder of the Standard the concatenation is in accordance with the rules set out
in this chapter.

The characters required to form SIMULA programs are those explicitly classified as "basic" in the
table given in section 1.2. Additional characters of that table may be employed as described in that
section.

A SIMULA source module consists of directive lines and program lines. Apart from 1.1 this
standard is not concerned with directive lines. The lexical tokens used to construct program lines

are classified into special symbols, identifiers, unsigned numbers, simple strings and character
constants.

No lexical token may consist of more than 72 characters.

 letter
 = A | B | C | D | E | F | G | H | I
 | J | K | L | M | N | O | P | Q | R
 | S | T | U | V | W | X | Y | Z
 | a | b | c | d | e | f | g | h | i
 | j | k | l | m | n | o | p | q | r
 | s | t | u | v | w | x | y | z

The representation of any letter (upper or lower case, differences in font, etc.) occurring anywhere
other than in a simple string or a character constant has no significance in that occurrence for the
meaning of the program.

 digit
 = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 space
 = SP

SP is the space (blank) character (ISO 646 code 2/0).

1.1 Directive lines

If the first character of a line is "%" (percent) the line as a whole is a directive line.

A directive line serves to communicate information to the processor and consequently its meaning is
entirely implementation-dependent, with the following single exception. If the second character is a
space, the line has no significance; it may be used for annotation purposes.

Note: The interpretation of a directive line takes precedence over the treatment of subsequent
lines.
The interpretation by the processor may cause inclusion of lines not present in the module,
or deletion of some lines actually following the directive in question.

The language defined in the following defines the resulting program text after all directive lines
have been interpreted and thereafter deleted.

1.2 The character set

The standard presupposes an 8-bit internal representation of characters. ISO 2022). Thus the
isocode facility allows for inclusion of characters with "isorank" value greater than 127 in simple
strings and character constants. An implementation may restrict this possibility as well as the
character set given below, as long as the "basic" characters of the table are included.

The standard character set is defined by the table below. For each character its "isorank" (see 9.2),
name or printable representation and the classification of the character as a program text constituent
are given.

 basic: Significant in all contexts.
 skip: Skipped in all contexts.
 graphic: Significant inside comments, inside simple strings, and inside
 character constants; illegal outside these constructs.
 national: Reserved for national alphabet extension; treated as "graphic".
 format: Format effector, see 1.9.

 0 NUL skip 32 SP basic 64 national 96 national
 1 SOH illegal 33 ! basic 65 A basic 97 a basic
 2 STX illegal 34 " basic 66 B basic 98 b basic
 3 ETX illegal 35 # graphic 67 C basic 99 c basic
 4 EOT illegal 36 $ graphic 68 D basic 100 d basic
 5 ENQ illegal 37 % graphic 69 E basic 101 e basic
 6 ACK illegal 38 & basic 70 F basic 102 f basic
 7 BEL illegal 39 ' basic 71 G basic 103 g basic

 8 BS format 40 (basic 72 H basic 104 h basic
 9 HT format 41) basic 73 I basic 105 i basic
 10 LF format 42 * basic 74 J basic 106 j basic
 11 VT format 43 + basic 75 K basic 107 k basic
 12 FF format 44 , basic 76 L basic 108 l basic
 13 CR format 45 - basic 77 M basic 109 m basic
 14 SO illegal 46 . basic 78 N basic 110 n basic
 15 SI illegal 47 / basic 79 O basic 111 o basic

 16 DLE illegal 48 0 basic 80 P basic 112 p basic
 17 DC1 illegal 49 1 basic 81 Q basic 113 q basic
 18 DC2 illegal 50 2 basic 82 R basic 114 r basic
 19 DC3 illegal 51 3 basic 83 S basic 115 s basic
 20 DC4 illegal 52 4 basic 84 T basic 116 t basic
 21 NAK illegal 53 5 basic 85 U basic 117 u basic
 22 SYN illegal 54 6 basic 86 V basic 118 v basic
 23 ETB illegal 55 7 basic 87 W basic 119 w basic

 24 CAN illegal 56 8 basic 88 X basic 120 x basic
 25 EM illegal 57 9 basic 89 Y basic 121 y basic
 26 SUB illegal 58 : basic 90 Z basic 122 z basic
 27 ESC illegal 59 ; basic 91 national 123 national
 28 FS illegal 60 < basic 92 national 124 national
 29 GS illegal 61 = basic 93 national 125 national
 30 RS illegal 62 > basic 94 national 126 national
 31 US illegal 63 ? graphic 95 _ basic 127 DEL skip

Table 1.1. Standard character set (International Reference Version)

1.3 Special symbols

 + - * / // ** Arithmetic operators
 & Text concatenation operator, or exp. mark
 && Exponent mark in long real numbers
 := :- Assignment operators
 < <= = >= > <> Value relational operators
 == =/= Reference relational operators
 ' Character quote
 " "" String quote ("" only within strings)
 ! Code quote, or comment
 ; Statement separator, or
 declaration or specification delimiter
 : Array bounds separator, or
 label definition or virtual delimiter
 () Parameter, array bounds grouping, or expr.
 . Remote indicator ("dot"), or decimal mark
 , Parameter, array bounds pair or expression
 separator

Table 1.2. Special symbols, excluding key words

Normally the syntax of the language assumes that all syntactic units are recognised as being the
largest possible string of characters which fits the syntax of a symbol. However, in an array
declaration the symbol ":" is always a bounds separator, even if it is immediately followed by a
minus.

 activate else if none short
 after end imp not step
 and eq in notext switch
 array eqv inner
 at external inspect or text
 integer otherwise then
 before false is this
 begin for prior to
 boolean label procedure true
 ge le protected
 character go long until
 class goto lt qua
 comment gt value
 name reactivate virtual
 delay hidden ne real
 do new ref when
 while

Table 1.3. SIMULA key words

Note: For typographical reasons, the standard key words may, within this Standard, be printed as
indicated in table 1.3. Within a program, the key words are printed as identifiers (cfr. letter
production above).

1.4 Identifiers

 identifier
 = letter { letter | digit | _ }

No identifier can have the same spelling as any key word. Apart from this, identifiers may be
chosen freely. They have no inherent meaning, but serve for the identification of language quantities
i.e. simple variables, arrays, texts, labels, switches, procedures, classes and class attributes. Within a
procedure declaration identifiers also act as formal parameters, in which capacity they may
represent a literal value or any language quantity except a class. All constituent characters are
significant in distinguishing between identifiers.

1.5 Numbers

 unsigned-number
 = decimal-number [exponent-part]
 | exponent-part

 decimal-number
 = unsigned-integer [decimal-fraction]
 | decimal-fraction

 decimal-fraction
 = . unsigned-integer

 exponent-part
 = (& | &&) [+ | -] unsigned-integer

 unsigned-integer
 = digit { digit | _ }
 | radix R radix-digit { radix-digit | _ }

 radix
 = 2 | 4 | 8 | 16

 radix-digit
 = digit | A | B | C | D | E | F

Decimal numbers have their conventional meaning. The exponent part is a scale factor expressed as
an integral power of 10.

Unsigned integers are normally expressed in decimal digits. Unsigned integers of radix 2, 4, 8, or 16
may be expressed as shown. The radix digits A through F express radix 16 digits 10 through 15
(decimal). The radix determines the legality and the interpretation of a radix digit in an obvious
manner.

An unsigned number which is an unsigned integer is of type integer. Otherwise, if an unsigned
number contains an exponent part with a double ampersand (&&) it is of type long real, else it is of
type real.

Examples

 2&1 2.0&+1 .2&2 20.0 200&-1 - represent same real value (20.0)
 2.345_678&&0 - long real value (2.345678)

1.6 Strings

 string
 = simple-string { string-separator simple-string }

 string-separator
 = token-separator { token-separator }

 simple-string
 = " { ISO-code | non-quote-character | "" } "

 ISO-code
 = ! digit [digit] [digit] !

 non-quote-character
 = ...

A non-quote-character is any printing character (incl. space) except the string qoute ". Such a
character represents itself.

A simple string must be contained within a single program line. Long strings are included as a
sequence of simple strings separated by token separators.

In order to include a complete 8-bit coded character set, any character may be represented within a
string by an integer, its isocode, corresponding to its bit combination. An isocode cannot consist of
more than three digits, and it must be less than 256. If these conditions are not satisfied, the
construction is interpreted as a character sequence. The string quote may, however, also be
represented in simple strings by two consecutive quotes (see the last example below). Observe that,
as a consequence of the definitional conventions given earlier in this chapter, no spaces may
intervene between such a pair of string quotes.

Examples

 The string: represents:

 "Ab" "cde" Abcde
 "AB" "CDE" ABCDE
 "!2!ABCDE!3!" ABCDE enclosed by STX and ETX
 "!2" "!ABCDE!" "3!" !2!ABCDE!3!
 "AB"" C""DE" AB" C"DE

1.7 Character constants

 character-constant
 = ' character-designator '

 character-designator
 = ISO-code
 | non-quote-character
 | "

A character constant is either a single printing character or it is an ISO-code - in both cases
surrounded by character quotes (' - ISO 646 code 2/7).

Within the data processing system, characters are represented by values according to some
implementation-defined code. This code also defines the collating sequence used when comparing
character (and text) values by means of relational operators.

1.8 Comment convention

For the purpose of annotating the program proper comments may be included in a program. The
substitution of end for an end-comment, or a space for a direct comment does not alter the meaning
of a program.

Note: As a consequence of 1.8.1 and 1.8.2 comments cannot be nested. It is understood that the
comment structure encountered first in a program when reading from left to right has
precedence in being replaced over later structures contained by the sequence.

1.8.1 End comment

The key word end may be followed by any sequence of characters and separation of lines not
containing any of the special symbols end, else, when, otherwise, or ";". This sequence (excluding
the delimiting special symbol, but including the initial end) constitutes an end-comment.

1.8.2 Direct comment

The special symbol "!" (exclamation mark) followed by any sequence of characters or separation of
lines not containing ";" (semicolon), and delimited by semicolon, is treated as a comment if the
exclamation mark does not occur within a character constant or a simple string (in which cases it
may either represent itself or act as a code quote), or within a comment.

Note: The delimiting semicolon is considered part of a direct comment and thus takes part in the
substitution.

Example

 if B then begin ... end !then; else ...

is not valid since the ! is part of an end-comment. Thus ";" will act as a statement separator (and no
statement can start with else).

1.9 Token separators

 format-effector
 = BS | HT | LF | VT | FF | CR

BS, HT, LF, VT, FF, and CR represent the characters thus named in table 1.3. A format effector in
general acts as a space. In addition, an implementation may define some additional action to be
taken (such as tabulation when listing the program); such action has no significance for the meaning
of the program.

 token-separator
 = ...

A token-separator is

• a direct comment, or
• a space (except in simple strings and character constants), or
• a format effector (except as noted for spaces), or
• the separation of consecutive lines.

Zero or more token separators may occur between any two consecutive tokens, or before the first
token of a program text. At least one token separator must occur between any pair of consecutive
tokens made up of identifiers, key words, simple strings or unsigned numbers. No token separators
may occur within tokens.

1.10 Program interchange and lexical alternatives

In order to ease portability of SIMULA programs, a common representation has been adopted for
the language. This representation is used throughout this standard except for the following
conventions adopted for typographical reasons:

• In order to emphasise the use of the language keywords, these are printed in a special
 manner.

• Identifiers printed in upper case within this document represent quantities which are
 inaccessible to the user. Such identifiers are used for definitional purposes, they may
 or may not have actual counterparts in an implementation of the language.

• Program fragments may contain the ellipsis (...) instead of valid constructs, where it is
 either obvious from the context what the construct should be or the intended meaning
 cannot be expressed in a simple manner within the language.

1.10.1 Alternate representation of some symbols

The representation for lexical tokens and separators given in 1.2 to 1.9 constitutes a standard
representation for these tokens and separators. This standard representation is recommended for
program interchange.

For historical reasons the following alternatives have been defined. All processors that have the
required characters in their character set must provide both the standard and the alternate
representations, and there is no distinction made between corresponding tokens or separators.

The alternate representations for the tokens are

 standard token alternative representation

 < lt
 <= le
 = eq
 >= ge
 > gt
 <> ne
 ! comment

Chapter 2

TYPES, VALUES AND REFERENCES

 type
 = value-type
 | reference-type

 value-type
 = arithmetic-type
 | boolean
 | character

 arithmetic-type
 = integer-type
 | real-type

 integer-type
 = [short] integer

 real-type
 = [long] real

 reference-type
 = object-reference-type
 | text

 object-reference-type
 = ref "(" qualification ")"

 qualification
 = class-identifier

The various types basically denote properties of values. A value is a piece of information interpreted
at run time to represent itself. A "reference" is a piece of information which identifies a value, called
the "referenced" value. The distinction between a reference and its referenced value is determined
by context.

A value is primarily a number, a logical value, a program point, an object, a single character or an
ordered sequence of characters (a string).

The values of expressions and their constituents are defined in chapter 3.

Value types are characterized by being directly associated with a set of possible values (the "value
range" of the type). With the exception of type Boolean these associated values for each value type
constitute an ordered set.

The reference concept corresponds to the intuitive notion of a name or a "pointer". It provides a
mechanism for referencing values. It also reflects the addressing possibilities of the machine. In
certain simple cases a reference could be implemented as the memory address of a stored value.
There are two reference types, object reference type and text reference.

Note: There is no reference concept associated with value types.

2.1 Arithmetic types

Arithmetic types are used for representing numerical values. The types are integer type and real
type. The integer type is either integer or short integer. The real type is either real or long

2.1.1. The type short integer

The type short integer serves to represent integer values whose value range may be a sub range of
that of integer. Apart from this, short integer and integer are fully compatible in this language
definition.

An implementation may choose to implement short integer exactly as integer, i.e. ignoring the
keyword short

Note: All arithmetic operations upon integer type values are performed as

2.1.2. The type long real

Type long real serves to represent real values capable of retaining a higher precision than that of the
type real. The relative value range of the respective types is implementation-defined. Apart from
this, long real and real are fully compatible in this language definition.

An implementation may choose to implement long real exactly as real, i.e. ignoring the
keyword long and the extra "&" in an exponent part.

2.2 The type Boolean

The type Boolean represents logical values. The range of values consists of the
values true and false.

2.3 The type character

The type character is used to represent single characters. Such a value is an instance of an "internal
character". For any given implementation there is a one-to-one mapping between a subset of
internal characters and external ("printable") characters. The internal character set is
implementation-defined. The external character set is defined in 1.2.

2.4 Object reference

Associated with a class object there is a unique "object reference" which identifies the object, and
for any class C there is an associated object reference type ref (C). A quantity of that type is said to
be qualified by the class C. Its value is either an object, or the special value none which represents
"no object". The qualification restricts the range of values to objects of classes included in the
qualifying class. The range of values includes the value none regardless of the qualification.

2.4.1.Qualification

The qualification of an object reference is a class identifier and is thus subject to the scope and
visibility rules of identifiers given in 5.6.

The qualification is associated with an instance of the block in which the class declaration referred
to is local. This implies that certain validity checks on the qualification cannot be performed on the
basis of the program text alone. Such tests must then be made during the execution of the program.

Consider the following example.

Example

 class a; begin class b; ; end *** class a;

 a class aa; begin ref (b) aaxb; end *** class aa;

 ref (a) a1; ref (aa) a2;

 a1 :- a2 :- new aa;
 if inint=2 then a1:- new a; | - or: a2:- new aa;
 inspect a2 do
 inspect a1 do aaxb:- new b;

The reference assignment in the last line is valid only if the qualification of "aaxb" is the same as
that of "new b". This is the case only when the then-branch of the conditional statement is not taken.
Thus a qualification check must be performed during execution.

2.4.2. Subordinate types

An object reference type is said to be "subordinate" to a second object reference type if the
qualification of the former is a subclass of the class which qualifies the latter.

A proper procedure is said to be of a universal type. Any type is subordinate to the universal type
(cf. 4.6.1 and 5.5.3).

2.5 The type text

The type text serves to declare or specify a text variable quantity.

A text value is a string, i.e. an ordered sequence (possibly empty) of characters. The number of
characters is called the "length" of the text value.

A text frame is a memory device which contains a nonempty text value. A text frame has a fixed
length and can only contain text values of this length. A text frame may be "alterable" or "constant".
A constant frame always contains the same text value. An alterable text frame may have its contents
modified. The maximum length of a text frame is implementation-defined.

A text reference identifies a text frame. The reference is said to possess a value, which is the
contents of the identified frame. The special text reference notext identifies "no frame". The value
of notext is the empty text value.

2.5.1. Text objects

A "text object" is conceptually an instance of the following class declaration (cf. 5.5):

 class TEXTOBJ(SIZE,CONST);
 integer SIZE; Boolean CONST;
 begin character array MAIN(1:SIZE); end;

2.5.2. Text frames

Any non-empty sequence of consecutive elements of the array attribute MAIN constitutes a text
frame. More specifically, any text frame is completely identified by the following information:

1. a reference to the text object containing the frame,
2. the start position of the frame, being an ordinal number less than or equal to SIZE,
3. the length of the frame.

A frame which is completely contained by another frame is called a "subframe" of that frame. The
text frame associated with the entire array attribute MAIN is called the "main frame" of the text
object. All frames of the text object are subframes of the main frame.

Note: A main frame is a subframe of no frame except itself.

The frames of a text object are either all constant or all variable, as indicated by the attribute
CONST. The value of this attribute remains fixed throughout the lifetime of the text object. A
constant main frame always corresponds to a string (see 1.6).

The attribute SIZE is always positive and remains fixed throughout the lifetime of a text object.

Note: The identifier TEXTOBJ and its three attribute identifiers are not accessible to the user.
Instead, properties of a text object are accessible through text variables, using the dot notation.

2.5 Type conversion

Values may in some cases be converted from one type to another.

Implicit conversion between arithmetic type values follows the rules described elsewhere (see 3.3.1,
3.5.1, 4.1.1). In addition, the procedure "entier", used to convert values of real type to integer, is
described in 9.1.

Conversion between text and arithmetic type values is described in 8.6 and 8.7 (text attributes
"getint", "putint", "getreal", "putreal", "putfix", "getfrac" and "putfrac").

Conversion between character and text values is described in 8.3 (text attributes "getchar",
"putchar").

Conversion between character and integer values is described in 9.2 ("isorank", "rank", "isochar",
"char").

Chapter 3

EXPRESSIONS

 expression
 = value-expression
 | reference-expression
 | designational-expression

 value-expression
 = arithmetic-expression
 | Boolean-expression
 | character-expression

 reference-expression
 = object-expression
 | text-expression

The primary constituents of programs describing algorithmic processes are expressions.
Constituents of these expressions, except for certain delimiters, are constants, variables, function
designators, labels, class and attribute identifiers, switch designators and elementary operators.
Since the syntactic definition of both variables and function designators (see below) contain
expressions, the definition of expressions and their constituents is necessarily recursive.

A value expression is a rule for obtaining a value.

An object expression is a rule for obtaining an object reference.

A text expression is a rule for obtaining an identification of a text variable (and thereby a text
reference).

A designational expression is a rule for obtaining a reference to a program point.

Any value expression or reference expression has an associated type, which is textually defined.

3.1 Variables

 variable
 = simple-variable-1
 | subscripted-variable

 simple-variable-1
 = identifier-1

 subscripted-variable
 = array-identifier-1 "(" subscript-list ")"

 array-identifier-1
 = identifier-1

 subscript-list
 = subscript-expression { , subscript-expression }

 subscript-expression
 = arithmetic-expression

A variable local to a block instance is a memory device whose "contents" are either a value or a
reference, according to the type of the variable. The contents of a variable may be changed by an
appropriate assignment operation, see 4.1. A reference is a piece of information which identifies a
value, called the "referenced" value. The distinction between a reference and the referenced value is
determined by context.

Variables are of two kinds, corresponding to the values being represented, namely value type
variables and reference type variables.

A value type variable has a value which is the contents of the variable. A reference type variable is
said to have a value which is the one referenced by the contents of the variable.

The value of an array identifier is the ordered set of values of the corresponding array of subscripted
variables.

Examples

 delta
 a17
 q(7,2)
 x(sin(n*pi/2),q(3,n,4))

3.1.1. Simple variables

A simple-variable-1 is any variable which is not a subscripted variable. The corresponding values
are described in chapter 2.

Note: Certain syntax classes (such as simple-variable-1) are marked with a "-1". The corresponding
program terms may contain a remote identifier (see 5.5.6).

Value type variables have values of integer type, real type, Boolean or character.

An object reference variable has an object as its value (or the value none). Text variables are
described below.

3.1.2. Text variables

A text variable is conceptually an instance of a composite structure with four constituent
components (attributes):

 ref (TEXTOBJ) OBJ;
 integer START, LENGTH, POS;

Let X be a text variable. Then X.OBJ, X.START, X.LENGTH and X.POS denote the components of
X, respectively. These four components are not directly accessible to the user. Instead, certain
properties of a text variable are represented by procedures accessible through the dot notation.
These procedures are described in chapter 8.

The components OBJ, START and LENGTH constitute the text reference part of the variable. They
identify the frame referenced (see 2.5.1). POS is used for accessing the individual characters of the
frame referenced (see 9.2).

The components of a text variable always satisfy one of the following two sets of conditions:

 1) OBJ =/= none
 START >= 1
 LENGTH >= 1
 START + LENGTH <= OBJ.SIZE + 1
 1 <= POS <= LENGTH + 1

 2) OBJ == none
 START = 1
 LENGTH = 0
 POS = 1

The latter alternative defines the contents of a variable which references no frame. Note that this
alternative thereby defines the special text reference notext.

3.1.3. Array elements

Subscripted variables designate values which are components of multi- dimensional arrays. Each
arithmetic expression of the subscript list occupies one subscript position of the subscripted variable
and is called a subscript. The complete list of subscripts is enclosed by the subscript parentheses () .
The array component referred to by a subscripted variable is specified by the actual value of its
subscripts.

Each subscript position acts like a variable of type integer and the evaluation of the subscript is
understood to be equivalent to an assignment to this fictitious variable. The value of the subscripted
variable is defined only if the actual integer value of each subscript expression is within the
associated subscript bounds of the array. A subscript expression value outside its associated bounds
causes a run time error.

3.1.4. Function designators

 function-designator
 = procedure-identifier-1 [actual-parameter-part]

 procedure-identifier-1
 = identifier-1

 actual-parameter-part
 = "(" actual-parameter { , actual-parameter } ")"

 actual-parameter
 = expression
 | array-identifier-1
 | switch-identifier
 | procedure-identifier-1

A function designator defines a value which results through the application of a given set of rules
defined by a procedure declaration (see 5.4) to a fixed set of actual parameters. The rules governing
specification of actual parameters are given in 4.6.

Note: Not every procedure declaration defines rules for determining the value of a function
designator (cf. 5.4.1).

Examples

 sin(a-b)

 j(v+s,n)
 r
 ss(s-5, !Temperature; T, !Pressure; P)
 compile ("(:=)", !Stack; q)

3.1.5. Remote identifiers

 identifier-1
 = identifier
 | remote-identifier

 remote-identifier
 = simple-object-expression . attribute-identifier
 | text-primary . attribute-identifier

 attribute-identifier
 = identifier

Let X be a simple object expression qualified by the class C, and let A be an appropriate attribute
identifier. Then the remote identifier "X.A", if valid, is an attribute identification whose object is the
value X and whose qualification is C (cf. 5.5.6).

The remote identifier X.A is valid if the following conditions are satisfied:

1.The value X is different from none.
2.The object referenced by X has no class attribute declared at any prefix level equal or
outer to that of C.

Note: Condition 1 corresponds to a check which causes an error if the value of X is none.
Condition 2 is an ad hoc rule intended to simplify the language and its implementations.

A remote identifier of the form

 text-primary.attribute-identifier

identifies an attribute of the text variable identified by evaluating the text primary, provided that the
attribute identifier is one of the procedure identifiers defined in chapter 8.

Note: Even if the text primary references notext, the attribute access is legal (in contrast to object
expressions).

Example

Let P1 and P2 be variables declared and initialized as in example 2 of 4.1.4. Then the value of the
expression

 P1.plus (P2)

is a new "point" object which represents the vector sum of P1 and P2. The value of the
expression

 P1 qua polar.plus (P2)

is a new "polar" object representing the same vector sum.

3.2 Boolean expressions

 Boolean-expression
 = simple-Boolean-expression
 | if-clause simple-Boolean-expression else Boolean-expression

 simple-Boolean-expression
 = Boolean-tertiary { or else Boolean-tertiary }

 Boolean-tertiary
 = equivalence { and then equivalence }

 equivalence
 = implication { eqv implication }

 implication
 = Boolean-term { imp Boolean-term }

 Boolean-term
 = Boolean-factor { or Boolean-factor }

 Boolean-factor
 = Boolean-secondary { and Boolean-secondary }

 Boolean-secondary
 = [not] Boolean-primary

 Boolean-primary
 = logical-value
 | variable
 | function-designator
 | relation
 | "(" Boolean-expression ")"

A Boolean expression is of type Boolean. It is a rule for computing a logical value. Except for the
operators and then and or else (see 3.4) the semantics are entirely analogous to those given for
arithmetic expressions.

Variables and function designators entered as Boolean primaries must be of type Boolean.

Examples

 x = -2
 Y>v or z<q
 a+b> -5 and z-d>q**2
 p and not q or x<>y
 t.more and then t.getchar
 x == none or else x.a>0
 if k<1 then s>w else h<=c
 if if if a then b else c
 then d else f
 then g else h<k

3.3 Relations

 relation
 = arithmetic-relation
 | character-relation
 | text-value-relation
 | object-relation
 | object-reference-relation
 | text-reference-relation

 value-relational-operator
 = < | <= | = | >= | > | <>

 reference-comparator
 = == | =/=

The value relational operators have the conventional meaning. Their specific interpretation is
described below in connection to the respective types. The reference comparators have the same
priority level as the relational operators.

3.3.1. Arithmetic relations

 arithmetic-relation
 = simple-arithmetic-expression
 value-relational-operator simple-arithmetic-expression

The relational operators <, <=, =, >=, > and <> have their conventional meaning (less than, less
than or equal to, equal to, greater than or equal to, greater than, not equal to). Arithmetic relations
assume the value true whenever the corresponding relation is satisfied for the expressions involved,
otherwise false. If the two constituent expressions are of different arithmetic types conversion to the
type with maximum value range is assumed. Consequently overflow cannot occur during the
evaluation.

3.3.2. Character relations

 character-relation
 = simple-character-expression
 value-relational-operator simple-character-expression

Character values may be compared for equality and inequality and ranked with respect to the
collating sequence. Let X and Y be simple character expressions, and let rel be any value relational
operator. Then the relation "X rel Y" has the same Boolean value as the relation "rank(X) rel
rank(Y)".

Note: Because of variations in collating sequences the value of a character relation (and by
implication that of a text relation, see below) is implementation-defined. Implementation-
independent comparison of character values is obtained by using the procedure "isorank".

3.3.3. Text value relations

 text-value-relation
 = simple-text-expression
 value-relational-operator simple-text-expression

Two text values are equal if they are both empty, or if they are both instances of the same character
sequence, otherwise they are unequal.

A text value T ranks lower than a text value U if and only if they are unequal and one of the
following conditions is fulfilled:

1. T is empty.
2. U is equal to T followed by one or more characters.
3. When comparing T and U from left to right the first non-matching character in T ranks
lower than the corresponding character in U.

3.3.4. Object relations

 object-relation
 = simple-object-expression is class-identifier
 | simple-object-expression in class-identifier

The operators is and in may be used to test the class membership of an object.

The relation "X is C" has the value true if X refers to an object belonging to the class C, otherwise
the value is false.

The relation "X in C" has the value true if X refers to an object belonging to a class C or a class
inner to C, otherwise the value is false.

3.3.5. Object reference relations

 object-reference-relation
 = simple-object-expression
 reference-comparator simple-object-expression

The reference comparators == and =/= may be used for the comparison of references (as distinct
from the corresponding referenced values). Two object references X and Y are said to be "identical"
if they refer to the same object or if they both are none. In that event the relation "X==Y" has the
value true, otherwise the value is false.

The value of the relation "X=/=Y" is the negation of that of "X==Y".

3.3.6. Text reference relations

 text-reference-relation
 = simple-text-expression
 reference-comparator simple-text-expression

Let T and U be text variables. The relation "T==U" is equivalent to

 T.OBJ == U.OBJ and T.START = U.START and T.LENGTH = U.LENGTH

Note: The POS components are ignored. Also observe that the relations "T=/=U" and "T=U" may
both have the value true. (T and U reference different text frames which contain the same text
value.)

The following relations are all true (cf. 2.5)

 T = notext eqv T == notext
 "" == notext
 "ABC" =/= "ABC" (different occurrences)

Example

 class C; begin text T; T:- "ABC" end;

The relation "new C.T == new C.T" is true here.

3.4 The logical operators

The meaning of the logical operators not, and, or, imp, and eqv is given by the following function
table:

 b1 false false true true
 b2 false true false true

 not b1 true true false false
 b1 and b2 false false false true
 b1 or b2 false true true true
 b1 imp b2 true true false true
 b1 eqv b2 true false false true
 --

The operation "b1 and then b2" denotes "conditional and". If the value of b1 is false the operation
yields the result false, otherwise it yields the result of evaluating b2.

The operation "b1 or else b2" denotes "conditional or". If the value of b1 is true the operator yields
the result true, otherwise it yields the result of evaluating b2.

Note: The value of "b1 and then b2" is given by textual substitution of the Boolean expression
"(if b1 then b2 else false)". Similarly, the operation "b1 or else b2" is defined by substitution of
"(if b1 then true else b2)". These definitions imply that the evaluation of the second operand is
suppressed when the evaluation result is already evident from the value of the first operand alone.

3.4.1. Precedence of Boolean operators

The sequence of operations within one expression is generally from left to right, with the following
additional rules.

According to the syntax given in 3.2 the following rules of precedence hold:

 first: non-Boolean expressions
 second: < <= = >= > <> == =/= is in
 third: not
 fourth: and
 fifth: or
 sixth: imp
 seventh: eqv
 eighth: and then
 nineth: or else

The use of parentheses is interpreted in the sense given in 3.5.2.

3.5 Arithmetic expressions

 arithmetic-expression
 = simple-arithmetic-expression
 | if-clause simple-arithmetic-expression
 else arithmetic-expression

 simple-arithmetic-expression
 = [+ | -] term { (+ | -) term }

 term
 = factor { (* | / | //) factor }

 factor
 = primary { ** primary }

 primary
 = unsigned-number
 | variable
 | function-designator
 | "(" arithmetic-expression ")"

An arithmetic expression is a rule for computing a numerical value. In the case of simple arithmetic
expressions this value is obtained by executing the indicated arithmetic operations on the actual
numerical values of the primaries of the expression, as explained in detail in 3.5.1 below. The value
of a primary is obvious in the case of numbers. For variables it is the current value (assigned last in
the dynamic sense), and for function designators it is the value arising from the computing rules
defining the procedure when applied to the current values of the procedure parameters given in the
expression. Finally, for arithmetic expressions enclosed by parentheses the value must through a
recursive analysis be expressed in terms of the values of primaries of the other three kinds.

In the more general arithmetic expressions, which include if-clauses, one out of several simple
arithmetic expressions is selected on the basis of the actual values of the Boolean expressions (see
3.2). This selection is made as follows: The Boolean expressions of the if-clauses are evaluated one
by one in sequence from left to right until one having the value true is found. The value of the
arithmetic expression is then the value of the first arithmetic expression following this Boolean (the
longest arithmetic expression found in this position is understood). If none of the Boolean
expressions has the value true, then the value of the arithmetic expression is the value of the
expression following the final else.

In evaluating an arithmetic expression, all primaries within that expression are evaluated with the
following exceptions:

• Primaries that occur within any expression governed by an if-clause but not selected by it.
• Primaries that occur within a Boolean expression

1. after the operator or else when the evaluation of a preceding Boolean tertiary
 results in false, or
2. after the operator and then when the evaluation of a preceding equivalence
 results in false.

• Primaries that occur after a function designator, and the evaluation of the function
terminates with a goto-statement. In this case the evaluation of the arithmetic expression is
abandoned.

Primaries are always evaluated in strict lexical order.

Examples:

 Primaries: 7.394_604&-8
 sum
 w(i + 2,8)
 cos(y + z*3.141_592_653_589_793_324&&0)
 (a - 3/y + vu**8)

 Factors: omega
 sum ** cos(y + z*3)
 7.394&-8 ** w(i + 2,8) ** (a - 3/y + vu ** 8)

 Terms: u
 omega * sum ** cos(y + z*3)/7.394&-8 ** (a - 3/y + vu**8)

 Simple arithmetic expression:
 u - yu + omega*sum**cos(y+z*3)/7.394&-8 **(a-3/y+vu**8)

 Arithmetic expressions:
 w*u - q(s+cu)**2
 if q>0 then s+3*q//a else 2*s+3*q
 if a<0 then u+v else if a*b>17 then u/v
 else if k >= y then v/u else 0
 0.57&12 * a(n*(n-1)//2 ,0)
 (a*arctan(y)+z) ** (7+Q)
 if q then n-1 else n

3.5.1. Operators and types

Apart from the Boolean expressions of if-clauses, the constituents of arithmetic expressions must be
of arithmetic types. The meaning of the basic operators and the types of the expressions to which
they lead are given by the following rules, where "i" and "j" are of integer type, "r" of real type, and
"x" is any arithmetic type:

• The operators +, -, and * have their conventional meaning.
• The operator / denotes real division. Any operand of integer type is converted before the
operation. Division by zero constitutes an error.
• The operator // denotes integer division. It is valid only for integer type operands (no
implicit conversion). The meaning of "i//j" is defined by:

 integer procedure DIV(i, j); integer i, j;
 if j=0 then error("..." !div by zero;)
 else begin integer m, n;
 m:= 0; n:= abs(i);
 for n:= n - abs(j) while n>=0 do m:= m + 1;
 DIV:= if i<0 eqv j>0 then -m else m
 end DIV;

• The operator ** denotes exponentiation. The value and type of the operation depends upon
the types of the operands as follows:

 x**r: <type of r> procedure EXPR(x,r); x; r;
 if x<0 or (x=0 and r<=0.0)
 then error("..." !EXPR undefined;);
 else EXPR := if x>0 then exp(r*ln(x)) else 0.0;

•

 i**j: integer procedure EXPI(i,j); integer i,j;
 if j<0 or i=0 and j=0 then error("..." !EXPI undefined;)
 else begin integer k,result;
 result:= 1;
 for k:= 1 step 1 until j do result:= result*i;
 EXPI:= result
 end EXPI

 r**i: <type of r> procedure EXPN(r, i); r; integer i;
 if i=0 and r=0.0 then error("..." !EXPN undefined;)
 else begin result; integer n;
 result:= 1.0;
 for n:= abs(i) step -1 until 1 do result := result*r;
 EXPN:= if i<0 then 1.0/result else result
 end EXPN;

It is understood that the finite deviations of using the exponentiation operator may be different from
those of using the procedures EXPR and EXPN.

If the operands of an arithmetic operator are of different types, or both short integer, an appropriate
type conversion function is understood to be automatically invoked, except as explicitly noted
above, before the operation is evaluated as follows:

If one operand is of type long real the other is converted to long real, else if one operand is of
type real the other is converted to real, else short integer operands are converted to integer.

Note: The result of evaluating an arithmetic expression can never be of type short integer.

Conversion from short integer to integer is always exact. Conversion from an integer type to a real
type is exact within an implementation-defined range which includes zero. Conversion
from real to long real is exact within an implementation-defined range which includes zero.

The type of the operation (and by repeated application also the type of the arithmetic expression) is
a consequence of the type conversion rule as follows:

 SI I R LR

 SI I I R LR SI: short integer
 I I I R LR I: integer
 R R R R LR R: real
 LR LR LR LR LR LR: long real

The rule also determines the type of a conditional expression, i.e. an arithmetic expression of the
form

"if B then SAE else AE":

The expression is of type long real if either SAE or AE is long real. Otherwise, if either
SAE or AE is of type real, the type of the expression is real, else the type is integer.

Note: The type of a conditional expression is independent of the actual value of the Boolean
expression, i.e. it is completely determined by the program text.

3.5.2. Precedence of arithmetic operators

The sequence of operations within one expression is generally from left to right, with the following
additional rules:

According to the syntax given in 3.3.1 the following rules of precedence hold:

 first: **
 second: * / //
 third: + -

The expression between a left parentheses and the matching right parenthesis is evaluated by itself
and this value is used in subsequent calculations. Consequently the desired order of execution of
operations within an expression can always be arranged by appropriate positioning of parentheses.

Note: The order of evaluation of the primaries is not influenced by the use of parenthesis.

3.5.3. Arithmetics of real quantities

Numbers and variables of real type must be interpreted in the sense of numerical analysis, i.e. as
entities defined inherently with only a finite accuracy. Similarly, the possibility of the occurrence of
a finite deviation from the mathematically defined result in any arithmetic expression is explicitly
understood. No exact arithmetic will be specified, however, and it is indeed understood that,
different implementations may evaluate arithmetic expressions differently. The control of the
possible consequences of such differences must be carried out by the methods of numerical
analysis. This control must be considered a part of the process to be described, and is therefore
expressed in terms of the language itself.

3.6 Character expressions

 character-expression
 = simple-character-expression
 | if-clause simple-character-expression
 else character-expression

 simple-character-expression
 = character-constant
 | variable
 | function-designator
 | "(" character-expression ")"

A character expression is of type character. It is a rule for obtaining a character value (see 2.1.3).
Apart from possible if-clauses, all constituents of a character expression must be of type character.

3.7 Text expressions

 text-expression
 = simple-text-expression
 | if-clause simple-text-expression else text-expression

 simple-text-expression
 = text-primary { & text-primary }

 text-primary
 = notext
 | string
 | variable
 | function-designator
 | "(" text-expression ")"

A text expression is of type text. It is a rule for obtaining an identification of a text variable. Apart
from possible if-clauses, all constituents of a text expression must be of type text.

Each textual occurrence of a non-empty string corresponds to a unique constant main text frame. A
given occurrence always references that same frame, while different occurrences of the same non-
empty string always reference different text frames.

The empty string ("") is textually equivalent to notext.

3.7.1. Text concatenation

The operator & permits text concatenation. The simple text expression "TP1 & TP2 & ... & TPn",
where TPi is a text primary (1<=i<=n), references a new alterable main frame whose contents is
formed by concatenating copies of the frames referenced by TP1, TP2, ... , TPn (in that order). The
expression is equivalent to CONCATENATE_n(T1,T2,...,Tn) defined by

 text procedure CONCATENATE_ _n(T1,T2,...,Tn); text T1,T2,...,Tn;
 begin text temp;
 CONCATENATE_ _n :- temp :- blanks(T1.length+T2.length+ ... +Tn.length);
 temp.sub(1,t1.length) := T1;
 temp.sub(1+T1.length,T2.length) := T2;
 ...
 temp.sub(1+T1.length+T2.length+... ,Tn.length) := Tn;
 end;

Note: It follows that the text primary constituents of a simple text expression are evaluated in strict
lexical order. The evaluation of Ti may influence the result of evaluating Tj, if i<j (due to the
specified "by reference" transmission of parameters to the procedures CONCATENATE_n).
Observe further that it follows from the syntax (cfr. 3.1.5) that . is evaluated before &, thus the two
expressions "T1 & T2.sub(1,2) & T3.main" and "T1 & (T2.sub(1,2)) & (T3.main)" are equivalent.

3.7.2. Text expression evaluation

The result of evaluating

• notext, or an empty string, identifies an anonymous text variable whose contents are
defined by (2) of 3.1.2.
• a non-empty string identifies an anonymous text variable which references a constant text
frame whose value is the internal representation of the external character sequence. This
frame is always a main frame. The POS component of the anonymous variable equals 1.
• a text variable identifies the variable itself.
• a text function designator identifies an anonymous text variable which contains a copy of
the final contents of the text variable associated with the procedure identifier during the
execution of the procedure in question.
• a text expression enclosed by parentheses identifies an anonymous text variable which
contains a copy of (the contents of) the text variable identified when evaluating the same
expression without parentheses.
• a conditional text expression identifies an anonymous text variable which contains a copy
of (the contents of) the text variable identified by the branch which was selected for
evaluation.

For further information on the text concept, see chapter 8.

3.8 Object expressions

 object-expression
 = simple-object-expression
 | if-clause simple-object-expression else object-expression

 simple-object-expression
 = none
 | variable
 | function-designator
 | object-generator
 | local-object
 | qualified-object
 | "(" object-expression ")"

 object-generator
 = new class-identifier [actual-parameter-part]

 local-object
 = this class-identifier

 qualified-object
 = simple-object-expression qua class-identifier

An object expression is of type ref(qualification). It is a rule for obtaining a reference to an object.
The value of the expression is the referenced object or none. Apart from a possible if-clause all
constituents must be of object reference type.

3.8.1. Qualification

The qualification of an object expression is defined by the following rules:

1. The expression none is qualified by a fictitious class which is inner to all declared classes.
2. A variable or function designator is qualified as stated in the declaration (or specification,
see below) of the variable or array or procedure in question.
3. An object generator, local object or qualified object is qualified by the class of the
identifier following the symbol new, this or qua respectively.
4. A conditional object expression is qualified by the innermost class which includes the
qualifications of both alternatives. If there is no such class, the expression is illegal.
5. Any formal parameter of object reference type is qualified according to its specification
regardless of the qualification of the corresponding actual parameter.
6. The qualification of a function designator whose procedure identifier is that of a virtual
quantity depends on the access level (see 5.5.5). The qualification is that of the matching
declaration, if any, occurring at the innermost prefix level equal or outer to the access level,
or, if no such match exists, it is that of the virtual specification.

3.8.2 Object generator

The value of an object generator is the object generated as the result of its evaluation. See 4.7.

3.8.3 Local objects

A local object "this C" is valid provided that the expression is used within

1. the class body of C or that of any subclass of C, or
2. a connection block whose block qualification is C or a subclass of C (see 4.8).

The value of a local object in a given context is the object which is, or is connected by, the smallest
textually enclosing block instance in which the local object is valid. If there is no such block the
local object is illegal (in the given context). For an instance of a procedure or a class body,
"textually enclosing" means containing its declaration.

3.8.4 Instantaneous qualification

Let X represent any simple reference expression, and let C and D be class identifiers such that D is
the qualification of X. The qualified object "X qua C" is then a legal object expression, provided
that C is outer to or equal to D or is a subclass of D. Otherwise, since C and D belong to disjoint
prefix sequences, the expression is illegal.

If the value of X is none or is an object belonging to a class outer to C, the evaluation of X qua C
constitutes a run-time error. Otherwise, the value of X qua C is that of X. Instantaneous
qualification restricts or extends the visibility of attributes of a concatenated class object accessible
through inspection or remote accessing (cf. 3.1.5 and 4.8).

3.9 Designational expressions

 designational-expression
 = simple-designational-expression
 | if-clause simple-designational-expression
 else designational-expression

 simple-designational-expression
 = label
 | switch-designator
 | "(" designational-expression ")"

 switch-designator
 = switch-identifier "(" subscript-expression ")"

 switch-identifier
 = identifier

 label
 = identifier

A designational expression is a rule for obtaining a reference to a program point. The principle of
the evaluation is entirely analogous to that of arithmetic expressions. In the general case the
Boolean expressions of the if-clauses select a simple designational expression. If this is a label the
desired result is already found. A switch designator refers to the corresponding switch declaration
and by the actual numerical value of its subscript expression selects one of the designational
expressions listed in the switch declaration by counting these from left to right. Since the expression
thus selected may again be a switch designator this evaluation is obviously a recursive process.

The evaluation of the subscript expression is analogous to that of subscripted variables. The value
of a switch designator is defined only if the subscript expression assumes one of the values 1, 2, ... ,
n, where n is the number of entries in the switch list. A value outside this range causes a run time
error.

Note: It is a consequence of the syntax that class attributes which are labels or switches cannot be
accessed by the dot notation.

Chapter 4:

STATEMENTS

 statement
 = { label : } unconditional-statement
 | { label : } conditional-statement
 | { label : } for-statement

 unconditional-statement
 = assignment-statement
 | while-statement
 | goto-statement
 | procedure-statement
 | object-generator
 | connection-statement
 | compound-statement
 | block
 | dummy-statement
 | activation-statement

The units of operation within the language are called statements. They are normally executed
consecutively as written. The sequence of operations may for instance be broken by goto-
statements, which define their successor explicitly, or by sequencing procedure calls, which define
their successor implicitly. It may be shortened by conditional statements, which may cause certain
statements to be skipped. It may be lengthened by for-statements and while-statements which cause
certain statements to be repeated.

In order to make it possible to define an explicit dynamic succession, statements may be provided
with labels.

Since sequences of statements may be grouped together into compound statements and blocks the
definition of statement must necessarily be recursive. Also since declarations, described in chapter
5, enter fundamentally into the syntactic structure, the syntactic definition of statements must
suppose declarations to be already defined.

4.1 Assignment statements

 assignment-statement
 = value-assignment
 | reference-assignment

 value-assignment
 = value-left-part := value-right-part

 value-left-part
 = destination
 | simple-text-expression

 value-right-part
 = value-expression
 | text-expression
 | value-assignment

 destination
 = variable
 | procedure-identifier

 reference-assignment
 = reference-left-part :- reference-right-part

 reference-left-part
 = destination

 reference-right-part
 = reference-expression
 | reference-assignment

Assignment statements serve for assigning the value of an expression to one or several destinations.
Assignment to a procedure identifier may only occur within the body of a procedure defining the
value of the function designator denoted by that identifier. If assignment is made to a subscripted
variable, the values of all the subscripts must lie within the appropriate subscript bounds, otherwise
a run-time error will result.

The operator := (read: "becomes") indicates the assignment of a value to the value type variable or
value type procedure identifier which is the left part of the value assignment or the assignment of a
text value to the text frame referenced by the left part.

The operator :- (read: "denotes") indicates the assignment of a reference to the reference type
variable or reference type procedure identifier which is the left part of the reference assignment.

A procedure identifier in this context designates a memory device local to the procedure instance.
This memory device is initialised upon procedure entry following the rules given in 5.7. The type
associated with a procedure identifier is given as the first symbol of the corresponding procedure
declaration.

The value or reference assigned is a (suitably converted) representation of the one obtained by
evaluating the right part of the assignment. If the right part is itself an assignment, the value or
reference obtained is a copy of its constituent left part after that assignment operation has been
completed.

The process is in the general case understood to take place in three steps as follows:

a. Any expression which is, or is part of, the left part of an assignment is evaluated prior to
the evaluation of the right part. Within a particular left part, constituent expressions such as
subscript expressions are evaluated in sequence from left to right.

b. The expression of the ultimate right part is evaluated.

c. The value or reference of this expression is assigned to its immediately preceding left part.
If the left part is itself part of an assignment, the resulting value or reference is assigned to

its immediately preceding left part. The process is repeated until the left part list is
exhausted. All assignments are performed with any left part expression having values as
evaluated in (a).

Note: It is not required that, in multiple assignments, all left parts are of the same type, as long as
the appropriate type conversion functions are defined.

If the destination is of type Boolean or character, the value right part must likewise be of
type Boolean or character, respectively.

For the description of the text value assignment, see 4.1.2. There is no value assignment operation
for objects.

The type of the value or reference obtained by evaluating the right part must coincide with or be
subordinate to the type of the left part, with the exceptions mentioned in the following sections.

If a destination is a formal parameter called by name, and the type of the corresponding actual
parameter does not coincide with that of the formal specification, then the assignment operation is
carried out in two steps.

1. An assignment is made to a fictitious variable of the type specified for the formal
parameter.
2. An assignment statement is executed whose left part is the actual parameter and whose
right part is the fictitious variable.

The value or reference obtained by evaluating the assignment is, in this case, that of the fictitious
variable.

4.1.1 Arithmetic assignment

If the type of the arithmetic expression differs from that associated with the destinations, an
appropriate conversion function is understood to be automatically invoked. For transfer from real to
integer type the conversion function is understood to yield a result which is the largest integral
quantity not exceeding E + 0.5 in the mathematical sense (i.e. without rounding error) where E is
the value of the expression.

Conversion from integer to short integer is exact within the value range of short integer; outside
it constitutes a run-time error. Conversion from long real to real is performed with correct
rounding. If the value range of long real exceeds that of real a run-time error may result.

Conversions not mentioned above are performed according to the rules given in 3.5.1.

Note: The value of a real type expression is defined with only finite accuracy.

Note: Consider the statement "X:= i:= Y:= F:= 3.14" where X and Y are real variables, i is
an integer variable, and F is a formal parameter called by name and specified real. If the actual
parameter for F is a real variable, then X, i, Y and F are given the values 3, 3, 3.14 and 3.14
respectively. If the actual parameter is an integer variable, the respective values are 3, 3, 3.14 and 3.

4.1.2 Text value assignment

Let X be the text variable identified as the result of evaluating the left part (see 3.7) of a text value
assignment, and let Y denote the text variable identified by evaluating the corresponding right part.
If X references a constant text frame, or X.LENGTH < Y.LENGTH, then the assignment constitutes
an error. Otherwise, the value of Y is conceptually extended to the right by X.LENGTH -
Y.LENGTH blank characters, and the resulting text value is assigned as the new contents of the text
frame referenced by X.

Note: If X==notext, the assignment is legal if and only if Y==notext. The effect on X of the
assignment "X := Y" is equivalent to that of "X := copy(Y)", regardless of whether or not X and Y
overlap.

The position indicators of the left and the right parts are ignored and remain unchanged.

If X and Y are non-overlapping texts of the same length then, after the evaluation of the value
assignment "X:= Y", the relation "X=Y" is true.

A text procedure identifier occurring as a value left part within the procedure body is interpreted as
a text variable. The corresponding assignment statement thus implies an assignment to the local
procedure identifier.

4.1.3 Text reference assignment

Let X be the text variable which constitutes the left part of a text reference assignment, and let Y
denote the variable identified by evaluating the corresponding right part. The effect of the
assignment is defined as the four component assignments:

 X.OBJ :- Y.OBJ; X.START := Y.START;
 X.LENGTH := Y.LENGTH; X.POS := Y.POS;

4.1.4 Object reference assignment

Let the left part of an object reference assignment be qualified by the class Cl, and let the right part
be qualified by Cr. If the right part is itself a reference assignment, Cr is defined as the qualification
of its constituent left part. Let V be the value obtained by evaluating the right part. The legality and
effect of the reference assignment depend on relationships between Cr, Cl and V.

Case 1.
Cl is the class Cr or outer to Cr: The reference assignment is legal and the assignment
operation is carried out.

Case 2.
Cl is inner to Cr: The reference assignment is legal. The assignment operation is carried out if
V is none or is an object belonging to the class Cl or a class inner to Cl. If not, the execution
of the reference assignment constitutes a run-time error.

Case 3.
Cl and Cr satisfy neither of these relations: The reference assignment is illegal.

Similar rules apply to reference assignments implicit in for-clauses and the transmission of
parameters.

Example

Let "point" and "polar" be the classes declared in the example of 5.5.2.

 ref (point) p1, p2; ref (polar) p3;
 p1:- new polar (3,4); p2:- new point (5,6);

Now the statement "p3:-p1" assigns to p3 a reference to the "polar" object which is the value of p1.
The statement "p3:-p2" would cause a run-time error.

4.2 Conditional statement

 conditional-statement
 = if-clause { label : } unconditional-statement
 [else statement]
 | if-clause { label : } for-statement

 if-clause
 = if Boolean-expression then

Conditional statements cause certain statements to be executed or skipped depending on the running
values of specified Boolean expressions.

Three forms of the conditional statement exist. Let B be a Boolean expression, Su an unconditional
statement, Sfor a for-statement and S a statement. Then, in execution of a statement of the form
"if B then Su", B is evaluated. If the result is true, Su is executed. If the result is false, Su is not
executed. If Su is labelled, and a goto-statement leads to the label, then B is not evaluated, and the
computation continues with execution of the labelled statement.

The two remaining forms are explained in terms of the above, as follows.

The conditional statement: is equivalent to:

if B then Sfor if B then begin Sfor end

if B if B
then Su then begin Su; goto GAMMA end;
else S S;
 GAMMA: ...

If Su, Sfor or S are labelled they are labelled in the equivalent construct.

Note: The effect of a goto-statement leading into a conditional statement follows directly from the
above explanation of the execution of a conditional statement.

Examples

 if x>0 then n:=n+1

 if false then abort: terminate_program
 else if s<0 or p<q then
 else if v>s then a := v-q
 else if v<s-1 then goto abort

4.3 While-statement

 while-statement
 = while Boolean-expression do statement

A while-statement causes a statement to be executed zero or more times.

The evaluation of "while BE do S" is equivalent to

 ALFA: if BE then begin S; goto ALFA end

4.4 For-statement

 for-statement
 = for-clause statement

 for-clause
 = for simple-variable for-right-part do

 simple-variable
 = identifier

 for-right-part
 = := value-for-list-element
 { , value-for-list-element }
 | :- reference-for-list-element
 { , reference-for-list-element }

 value-for-list-element
 = value-expression [while Boolean-expression]
 | text-expression
 | arithmetic-expression step arithmetic-expression
 until arithmetic-expression

 reference-for-list-element
 = reference-expression
 [while Boolean-expression]

The simple variable of the for-clause is called "the controlled variable". The statement following is
called "the controlled statement".

A for-clause causes the controlled statement to be executed repeatedly zero or more times. Each
execution of the controlled statement is preceded by an assignment to the controlled variable and a
test to determine whether this particular for list element is exhausted.

Assignments may change the value of the controlled variable during execution of the controlled
statement. Upon exit from the for-statement, the controlled variable has the value given to it by the
last (explicit or implicit) assignment operation.

4.4.1 For list elements

The for list elements are considered in the order in which they are written. When one for list
element is exhausted, control proceeds to the next, until the last for list element in the list has been
exhausted. Execution then continues after the controlled statement.

The effect of each type of for list element is defined below using the following notation:

C: controlled variable

V: value expression

R: reference expression

A: arithmetic expression

B: Boolean expression

S: controlled statement

The effect of the occurrence of expressions as for list elements may be established by textual
replacement in the definitions. ALFA and DELTA are considered local to the fictitious block (4.4.3).
DELTA is of the same type as A2.

 1. V (value expression) C := V;
 S;
 ... next for list element

 2. A1 step A2 until A3 C := A1;
 DELTA := A2;
 while DELTA*(C-A3) <= 0
 do begin
 S;
 DELTA := A2;
 C := C + DELTA;
 end while;
 ... next for list element

 3. V while B ALFA: C:= V;
 if B then begin
 S;
 goto ALFA; end;
 ... next for list element

 4. R (reference expression) C :- R;
 S;
 ... next for list element

 5. R while B ALFA: C :- R;
 if B then begin
 S;
 goto ALFA; end;
 ... next for list element

4.4.2 The controlled variable

The controlled variable cannot be a formal parameter called by name, or a procedure identifier.

To be valid, all for list elements in a for-statement (defined by textual substitution, see 4.4.1) must
be semantically and syntactically valid. In particular each implied reference assignment in cases 4
and 5 of 4.4.1 is subject to the rules of 4.1.4 and 4.1.3, and each text value assignment in cases 1
and 3 of 4.4.1 is subject to the rules of 4.1.2.

4.4.3 The controlled statement

The controlled statement always acts as if it were a block, whether it takes this form or not. Hence,
labels on or defined within the controlled statement are invisible outside that statement.

4.5 Goto-statement

 goto-statement
 = (goto | go to) designational-expression

A goto-statement interrupts the normal sequence of operations, by defining its successor explicitly
by the value of a designational expression (i.e. a program point). Thus the next statement to be
executed is the one at this program point.

The program point referenced by the designational expression must be visible at the goto-statement
(cfr. 5.6.2).

See also 7.3.5.

Examples

 goto L8
 goto exit(n+1)
 go to Town(if y<0 then N else N+1)
 goto if Ab<c then L17
 else q(if w<0 then 2 else n)

4.6 Procedure statement

 procedure-statement
 = procedure-identifier-1 [actual-parameter-part]

A procedure statement interrupts the normal sequence of operations by invoking (calling for) the
execution of a procedure body. Conceptually this may be described in the following terms.

If the procedure has parameters an additional block embracing the procedure body block (cf. 5.4) is
created. All formal parameters correspond to variables declared in this (fictitious) block with types
as given in the corresponding specifications. Thus formal parameters are non-local to the procedure
body, but local to this block. The evaluation of the procedure statement now proceeds as described
in 4.6.5.

4.6.1 Actual-formal parameter correspondence

The correspondence between the actual parameters of the procedure statement and the formal
parameters of the procedure heading is established as follows. The actual parameter list of the
procedure statement must have the same number of entries as the formal parameter list of the
procedure declaration heading. The correspondence is obtained by taking the entries of these two
lists in the same order.

The type correspondence of formal and actual parameters is governed by the following rules:

• exact type correspondence is required for parameters of type text, character or Boolean as
well as for all array parameters, irrespective of transmission mode

• an actual parameter corresponding to a formal parameter of arithmetic type which is not an
array or procedure can have any arithmetic type. The conversion follows the assignment
statement rules for parameters called by value and by reference and 5.4.3 for parameters
called by name
• a type procedure can correspond to a formal parameter specified as a proper procedure
• the type of an actual parameter corresponding to a formal parameter of object reference
type must coincide with or be surordinate to the formal type (see 2.4.2).

4.6.2 Value parameter replacement (call by value)

A formal parameter called by value designates initially a local copy of the value (or array) obtained
by evaluating the corresponding actual parameter.

All formal parameters quoted in the value part of the procedure heading as well as value type
parameters not quoted in the name part are assigned the values of the corresponding actual
parameters, these assignments being considered as performed explicitly before entering the
procedure body. The effect is as though an additional block embracing the procedure body were
created in which these assignments were made to variables local to this fictitious block with types
as given in the corresponding specifications (cf. 4.6.5). As a consequence, variables called by value
are to be considered as non-local to the body of the procedure, but local to the fictitious block.

Note: Parameters transmitted by value are evaluated once only, before entry of the procedure body.

A text parameter called by value is a local variable initialised by the statement "FP :- copy(AP)"
where FP is the formal parameter, and AP is the variable identified by evaluating the actual
parameter. (:- is defined in 4.1.3, and "copy" in 8.3).

Value specification is redundant for a parameter of value type.

There is no call by value option for object reference type parameters and reference type array
parameters.

4.6.3 Default parameter replacement (call by reference)

Any formal parameter which is not of value type and which is not quoted in the mode part is said to
be called by reference.

A formal parameter called by reference is initially assigned a local copy of the reference obtained
by evaluating the corresponding actual parameter. Such assignments are entirely analogous to those
described under call by value.

Note: Parameters transmitted by reference are evaluated once before entry of the procedure body.

A reference type formal parameter is a local variable initialised by a reference assignment "FP:-
AP" where FP is the formal parameter and AP is the reference obtained by evaluating the actual
parameter. The reference assignment is subject to the rules of 4.1.3 and 4.1.4. Since in this case the
formal parameter is a reference type variable, its contents may be changed by reference assignments
within the procedure body.

Although array, procedure, label and switch identifiers do not designate references to values, there
is a strong analogy between references in the strict sense and references to entities such as arrays,
procedures (i.e. procedure declarations), program points and switches. Therefore a call by reference
mechanism is defined in these cases.

An array, procedure, label or switch parameter called by reference cannot be changed from within
the procedure or class body. It thus references the same entity throughout its scope. However, the
contents of an array called by reference may well be changed through appropriate assignments to its
elements.

For a procedure parameter called by reference, the type associated with the actual parameter must
coincide with or be subordinate to that of the formal specification.

4.6.4 Name parameter replacement (call by name)

Call by name is an optional transmission mode available only for parameters to procedures.

Each occurrence of a formal parameter called by name within the procedure body invokes an
evaluation of the actual parameter. This evaluation takes place in the context of the procedure
statement, i.e. no identifier conflicts can occur (since the procedure body and its variables are
invisible).

If the actual and formal parameters are of different arithmetic types, then the appropriate type
conversion must take place, irrespective of the context of use of the parameter.

For an expression within a procedure body which is

1. a formal parameter called by name,
2. a subscripted variable whose array identifier is a formal parameter called by name, or
3. a function designator whose procedure identifier is a formal parameter called by name,

the following rules apply:

1. Its type is that prescribed by the corresponding formal specification.
2. If the type of the actual parameter does not coincide with that of the formal specification,
then an evaluation of the expression is followed by an assignment of the value or reference
obtained to a fictitious variable of the latter type. This assignment is subject to the rules of
4.1. The value or reference obtained by the evaluation is the contents of the fictitious
variable.

Also, for a formal text parameter called by name, the following rule applies:

If the actual parameter is constant (i.e. CONST is _true_), then all occurrences of the formal
parameter evaluate to the same text frame (see 3.7).

Section 4.1 defines the meaning of an assignment to a variable which is a formal parameter called
by name, or is a subscripted variable whose array identifier is a formal parameter called by name, if
the type of the actual parameter does not coincide with that of the formal specification.

Assignment to a procedure identifier which is a formal parameter is illegal, regardless of its
transmission mode.

Note: Each dynamic occurrence of a formal parameter called by name, regardless of its kind, may
invoke the execution of a non-trivial expression, e.g. if its actual parameter is a remote identifier,
since the actual parameter is evaluated at each occurrence.

4.6.5 Body execution

The execution of a procedure call proceeds in the following steps, where 1 and 2 are performed only
if the procedure has parameters.

1. The formal parameter block instance is created.
2. Actual parameters corresponding to call by value or call by reference are evaluated as
described above and the results are assigned to the corresponding variables of the formal
block instance, following the rules in 4.1. Actual parameters corresponding to call by name
are treated as described in 4.6.4.
3. The procedure body is instantiated and starts executing.

The execution of the final statement of the procedure body, unless this statement is itself a goto-
statement, concludes with the execution of an implicit goto-statement to the program point
immediately following the procedure statement.

4.6.6 Restrictions

For a procedure statement to be defined it is evidently necessary that the operations on the
procedure body defined in section 4.6.5 lead to a correct statement. This imposes the restriction on
any procedure statement that the kind and type of each actual parameter be compatible with the kind
and type of the corresponding formal parameter. The following are some important particular cases
of this general rule, and some additional restrictions.

A formal parameter which occurs as a destination within the procedure body and which is called by
name can only correspond to an actual parameter which is an identification of a variable (special
case of expression).

A formal parameter which is used within the procedure body as an array identifier can only
correspond to an actual parameter which identifies an array of the same number of dimensions. In
addition if the formal parameter is called by value the local array created during the call has the
same subscript bounds as the actual array. Similarly the number, kind and type of any parameters of
a formal procedure parameter must be compatible with those of the actual parameter.

Note: The rules stated above are applicable only where formal arrays or procedure calls are actually
evaluated during the execution of the procedure body.

4.7 Object generator statement

An object generator invokes the generation and execution of an object belonging to the identified
class. The object is a new instance of the corresponding (concatenated) class body. The evaluation
of an object generator consists of the following actions:

1. The object is generated and the actual parameters, if any, of the object generator are
evaluated. The parameter values and/or references are transmitted.
2. Control enters the object through its initial begin whereby it becomes operating in the
"attached" state (see chapter 7). The evaluation of the object generator is completed:

case a:
whenever the basic attribute procedure "detach" of the generated object is executed
(see 7.1), or

case b:
upon exit through the final end of the object .

The state of the object after the evaluation is either "detached" (a) or "terminated" (b). Cf. chapter 7.

4.7.1 Parameter replacement

In general the correspondence between actual and formal parameters is the same for classes as for
procedures.

The call by name option is not available for classes. Procedure, label and switch parameters cannot
be transferred to classes.

For further information on the parameter transmission modes, see 5.5.5.

4.8 Connection statement

 connection-statement
 = inspect object-expression
 when-clause { when-clause } [otherwise-clause]
 | inspect object-expression
 do connection-block-2 [otherwise-clause]

 when-clause
 = when class-identifier do connection-block-1

 otherwise-clause
 = otherwise statement

 connection-block-1
 = statement

 connection-block-2
 = statement

A connection block may itself be or contain a connection statement. This "inner" connection
statement is then the largest possible connection statement. Consider the following:

 inspect A when A1 do
 inspect B when B1 do S1 *
 when B2 do S2 *
 otherwise S3; *

The inner connection statement includes the lines that are marked with an asterisk.

The purpose of the connection mechanism is to provide implicit definitions to items 1 and 2 in 5.5.6
for certain attribute identifications within connection blocks.

The execution of a connection statement may be described as follows:

1. The object expression of the connection statement is evaluated. Let its value be X.
2. If when-clauses are present they are considered from left to right. If X is an object
belonging to a class equal or inner to the one identified by a when-clause, the connection-
block-1 of this when-clause is executed, and subsequent when-clauses are skipped.
Otherwise, the when-clause is skipped.
3. If a connection-block-2 is present it is executed, unless X is none in which case the
connection block is skipped.
4. The statement of an otherwise-clause is executed if X is none, or if X is an object not
belonging to a class inner to the one identified by any when-clause. Otherwise it is skipped.

A statement which is a connection-block-1 or a connection- block-2 acts as a block, whether it takes
the form of a block or not. It further acts as if enclosed by a second fictitious block, called a
"connection block". During the execution of a connection block the object X is said to be
"connected". A connection block has an associated "block qualification", which is the preceding
class identifier for a connection-block-1 and the qualification of the preceding object expression for
a connection-block-2.

Let the block qualification of a given connection block be C and let A be an attribute identifier,
which is not a label or switch identifier, defined at any prefix level of C. Then any uncommitted
occurrence of A within the connection block is given the local significance of being an attribute
identification. Its item 1 is the connected object, its item 2 is the block qualification C. It follows
that a connection block acts as if its local quantities are those attributes (excluding labels and
switches) of the connected object which are defined at prefix levels outer to and including that of C.

(Name conflicts between attributes defined at different prefix levels of C are resolved by selecting
the one defined at the innermost prefix level.)

Example

Let "Polar" be the class declared in the example of 5.5.2. Then within the connection-block-2 of the
connection statement

 inspect new Polar(4,5) do begin ... end

a procedure "plus" is available for vector addition.

4.9 Compound statement

 compound-statement
 = begin compound-tail

 compound-tail
 = statement { ; statement } end

This syntax may be illustrated as follows: Denoting arbitrary statements and labels, by the letters S
and L, respectively, the syntactic unit takes the form:

 L: L: ... begin S; S; ... S; S end

Note: Each of the statements S may be a complete compound statement or block.

Example

 begin x:=0;
 for y:=1 step 1 until n do x := x + a(y);
 if x>q then goto stop
 else if x>w-2 then goto s;
 aw: st: w:=x+bob
 end

4.10 Blocks

 block
 = subblock
 | prefixed-block

 subblock
 = block-head ; compound-tail

 block-head
 = begin declaration { ; declaration }

This syntax may be illustrated as follows: Denoting arbitrary statements, declarations, and labels, by
the letters S, D, and L, respectively, the syntactic unit takes the form:

 L: L: ... begin D; D; ... D; S; S; ... S; S end

Note: Each of the statements S may be a complete compound statement or block.

Every block automatically introduces a new level of nomenclature. This is realised as follows. Any
identifier occurring within the block may through a suitable declaration be specified to be local to
the block in question. This means that

a. the entity represented by this identifier inside the block has no existence outside it, and
b. any entity represented by this identifier outside the block is invisible inside the block,
unless made visible by connection or remote access.

Identifiers (except those representing labels) occurring within a block and not being declared to this
block will be non-local to it, i.e. will represent the same entity inside the block and in the level

immediately outside it. A label separated by a colon from a statement, i.e. labelling that statement,
behaves as though declared in the head of the smallest embracing block.

A label is said to be implicitly declared in this block head. In this context, a procedure body, the
statement following a for-clause, or a connection block must be considered as if it were enclosed
by begin and end and treated as a block, this block being nested within the fictitious block of 4.6.1
in the case of a procedure with parameters. A label that is not within any block of the program (nor
within a procedure body, the statement following a for-clause, or a connection block) is implicitly
declared in the implied connection block embracing the program.

Note: System-defined class identifiers used as prefixes within the block as well as identifiers
introduced as part of an external head are in this respect treated in the same manner as labels.

Since a statement of a block may itself be a block the concepts local and non-local to a block must
be understood recursively. Thus an identifier which is non-local to a block A may or may not be
non-local to the block B in which A is a statement. See also 5.6.

Example

 Q: begin integer i, k; real w;
 for i:=1 step -1 until m do
 for k:=i+1 step 1 until m do begin
 w := A(i,k);
 A(i,k) := A(k,i);
 A(k,i) := w
 end for i and k
 end block Q

4.10.1 Prefixed blocks

 prefixed-block
 = block-prefix main-block

 block-prefix
 = class-identifier [actual-parameter-part]

 main-block
 = block
 | compound-statement

An instance of a prefixed block is a compound object whose prefix part is an object of the class
identified by the block prefix, and whose main part is an instance of the main block. The formal
parameters of the former are initialised as indicated by the actual parameters of the block prefix.
The concatenation is defined by rules similar to those of 5.5.2.

The following restrictions must be observed:

1. A class in which reference is made to the class itself through use of this is an illegal block
prefix.
2. The class identifier of a block prefix must refer to a class local to the smallest block
enclosing the prefixed block (for system-defined class identifiers, see (2) of 5.5.1).

A program is enclosed by a prefixed block (cf. chapter 10).

Example

Let "hashing" be the class declared in the example of 5.5.3. Then within the prefixed block

 hashing(64) begin
 integer procedure hash(T); text T;
 ... ;
 ...
 end

a "lookup" procedure is available which makes use of the "hash" procedure declared within the
main block.

4.11 Dummy statement

 dummy-statement
 = empty

A dummy statement executes no operation. It may serve to place a label.

Example

 L: begin statements; John: end

Chapter 5

DECLARATIONS

 declaration
 = simple-variable-declaration
 | array-declaration
 | switch-declaration
 | procedure-declaration
 | class-declaration
 | external-declaration

For external declarations, see chapter 6.

Declarations serve to define certain properties of the quantities used in the program, and to associate
them with identifiers. A declaration of an identifier is valid within a certain region of the program
called its "scope". Outside the scope the particular identifier may be used for other purposes.

Within its scope the identifier declaration may be either "visible" or "invisible". If visible an
occurrence of the identifier references this declaration. A declaration is invisible (within its scope)
either because the associated identifier has been redefined or because its visibility has been
explicitly restricted (see 5.5.4) or because connection or remote access is necessary to make it
visible.

Dynamically this implies that at the time of entry into a block instance all identifiers declared for
the block assume the significance implied by the nature of the declarations given. If these identifiers
are defined outside they are, for the time being, given a new significance. Identifiers which are not
declared for the block, on the other hand, retain their old meaning.

Apart from labels (see 4.10), formal parameters of procedure and class declarations, possible
identifiers introduced implicitly by external declarations, and identifiers declared in the program
prefix, each identifier appearing in a program must be explicitly defined within the program.

No identifier may be declared either explicitly or implicitly more than once in any one block head.

More precise scope and visiblity rules are given in 5.6.

5.1 Simple variable declarations

 simple-variable-declaration
 = type type-list

 type-list
 = type-list-element { , type-list-element }

 type-list-element
 = identifier
 | constant-element

Type declarations serve to declare certain identifiers to represent simple variables of a given type
(see 3.1.1 and 3.1.2).

For constant element, see 5.8.

5.1.1 Value type variables

Real type variables may assume positive and negative values including zero.

Integer type variables may assume positive and negative integral values including zero.

Boolean variables may assume the values true and false.

character variables may assume the implementation-defined character values of the internal
character set (cf. 1.2).

5.2 Array declaration

 array-declaration
 = [type] array array-segment { , array-segment }

 array-segment
 = array-identifier { , array-identifier }
 "(" bound-pair-list ")"

 array-identifier
 = identifier

 bound-pair-list
 = bound-pair { , bound-pair }

 bound-pair
 = arithmetic-expression : arithmetic-expression

An array declaration declares one or several identifiers to represent multi-dimensional arrays of
subscripted variables and gives the dimensions of the arrays, the bounds of the subscripts, and the
type of the variables.

The subscript bounds for any array are given in the first subscript brackets following the identifier
of this array in the form of a bound pair list. Each bound pair gives the lower bound of a subscript
followed by : followed by the upper bound. The bound pair list gives the bounds of all subscripts
taken in order from left to right.

Note: An initial "-" in upper bound may follow : directly (cf. 1.3).

The dimension is given as the number of entries in the bound pair lists.

All arrays declared in one declaration are of the same quoted type. If no type declarator is given the
type real is understood.

The expressions are evaluated in the same way as subscript expressions. This evaluation takes place
once at each entrance into the block through the block head. The expressions cannot include any
identifier that is declared, either explicitly or implicitly, in the same block head as the array in
question.

An array has elements only when the values of all upper bounds are not smaller than those of the
corresponding lower bounds. If any lower bound value is greater than the corresponding upper
bound value, the array has no elements. An attempt to access an element of an empty array leads to
a run-time error. The array may, however, be created at block entry and it may be passed as a
parameter.

The value of an array identifier is the ordered set of values of the corresponding array of subscripted
variables.

Examples

 integer array a(2:20) ! 19 elements;
 real array q(-7:if c<0 then 2 else 1) ! 10 or 9 elements;
 array a,b,c(7:n,2:m), s(-2:10) ! any value of n or m legal;

5.3 Switch declaration

 switch-declaration
 = switch switch-identifier := switch-list

 switch-list
 = designational-expression { , designational-expression }

A switch declaration defines the set of values of the corresponding switch designators. These values
are given one by one as the values of the designational expressions entered in the switch list. With
each of these designational expressions there is associated an ordinal number (1,2, ...) obtained by
counting the items in the list from left to right. The value of the switch designator corresponding to

a given value of the subscript expression is the value of the designational expression in the switch
list having this given value as its associated integer.

An expression in the switch list is evaluated every time the item of the list in which the expression
occurs is referred to, using the current values of all variables involved. This evaluation takes place
in the context of the switch declaration.

Examples

 switch s := s1,s2,q(m), if v>-5 then s3 else s4
 switch q := p1,w

5.4 Procedure declaration

 procedure-declaration
 = [type] procedure procedure-heading ; procedure-body

 procedure-heading
 = procedure-identifier
 [formal-parameter-part ; [mode-part]
 specification-part]

 procedure-body
 = statement

 procedure-identifier
 = identifier

A procedure declaration serves to define the procedure associated with a procedure identifier. The
principal constituent of a procedure declaration is a statement, the procedure body, which through
the use of procedure statements and/or function designators may be activated within those parts of
the program in which the procedure declaration is visible.

Associated with the body is a heading, which specifies certain identifiers occurring within the body
to represent formal parameters. Formal parameters in the procedure body are, whenever the
procedure is activated, assigned the values of or replaced by actual parameters. Identifiers in the
procedure body which are not formal are either local or non-local to the body depending on whether
they are declared within the body or not. Those of them which are non-local to the body may well
be local to the block in the head of which the procedure declaration appears.

The procedure body always acts like a block, whether it has the form of one or not. Consequently
the scope of any label labelling a statement within the body or the body itself can never extend
beyond the procedure body.

In addition, a procedure with parameters in certain respects acts as if a fictitious block embraced the
procedure body. The formal parameters then correspond to variables declared local to this fictitious
block. Thus, if the identifier of a formal parameter is declared anew within the procedure body, it is
thereby given a local significance and actual parameters which correspond to it are invisible
throughout the scope of this inner local quantity.

No identifier may appear more than once in any one formal parameter list, nor may a formal
parameter list contain the procedure identifier of the same procedure heading.

See also 4.6.

Examples:

 procedure transpose(a,n);
 array a; integer n;
 begin real w; integer i,k;
 for i:=1 step 1 until n do
 for k:=1+i step 1 until n do
 begin w:=a(i,k);
 a(i,k):=a(k,i);
 a(k,i):=w
 end

 end transpose;

 integer procedure factorial(n); integer n;
 factorial:= if n=0 then 1 else n*factorial(n-1);

 procedure absmax(a,n,m,y,i,k);
 name i, k, y ; array a; integer n,m,i,k; real y;
 comment The absolute greatest element of the matrix a, of size n by m
 is transferred to y, and the subscripts of this element to
 i and k;
 begin integer p,q;
 y:=0; i:=k:=1;
 for p:=1 step 1 until n do
 for q:=1 step 1 until m do
 if abs(a(p,q))>y then begin y:=abs(a(p,q));
 i:=p; k:=q
 end
 end absmax;

 procedure innerproduct(a,b,k,p,y); name p,y,a,b;
 integer k,p; real y,a,b;
 begin real s; integer pp;
 s:=0;
 for pp:=1 step 1 until k do
 begin p:= pp; s:=s+a*b; end;
 y:=s
 end innerproduct;

 text procedure mystrip(t); text t;
 mystrip:- if t.sub(t.length,1)=" "
 then mystrip(t.sub(1,t.length-1)) else t;

5.4.1 Values of function designators

For a procedure declaration to define the value of a function designator, the type associated with the
procedure identifier must be declared through the appearance of a type declarator as the very first
symbol of the procedure declaration. This identifier is implicitly assigned an initial value (see 5.7).
The identifier may, in addition, occur (one or more times) as a destination within the procedure
body.

The (dynamically) last value so assigned is used to continue the evaluation of the expression in
which the function designator occurs. Any visible occurrence of the procedure identifier within the
body of the procedure other than as a destination in an assignment statement denotes (recursive)
activation of the procedure.

If a goto-statement within the procedure, or within any other procedure activated by it, leads to an
exit from the procedure, other than through its end, then the execution of all statements that have
been started but not yet completed and which do not contain the label to which the goto-statement
leads, is abandoned. The values of all variables that still have significance remain as they were
immediately before execution of the goto-statement (cf. 7.3.5).

If a function designator is used as a procedure statement, then the resulting value is discarded, but
such a statement may be used, if desired, for the purpose of invoking side effects.

5.4.2 Parameter specification

 formal-parameter-part
 = "(" formal-parameter { , formal-parameter } ")"

 formal-parameter
 = identifier

 specification-part
 = specifier identifier-list { ; specifier identifier-list }

 specifier
 = type [array | procedure]
 | label
 | switch

The procedure heading may include a specification part, giving information about the kinds and
types of the formal parameters. In this part no formal parameter may occur more than once.

5.4.3 Parameter transmission modes

 mode-part
 = name-part [value-part]
 | value-part [name-part]

 name-part
 = name identifier-list ;

 value-part
 = value identifier-list ;

 identifier-list
 = identifier { , identifier }

There are three modes of parameter transmission: "call by value", "call by reference" and "call by
name".

The default transmission mode is call by value for value type parameters and call by reference for
all other kinds of parameters.

The available transmission modes are shown in fig. 5.1 for the different kinds of parameters to
procedures.

 --
 | | Transmission modes |
 | Parameter | - - - - - - - - - - - - - - - - - - -|
 | | by value | by reference | by name |
 |--|
 | value type | D | I | O |
 | object ref. type | I | D | O |
 | text | O | D | O |
 | value type array | O | D | O |
 | reference type array| I | D | O |
 | procedure | I | D | O |
 | type procedure | I | D | O |
 | label | I | D | O |
 | switch | I | D | O |
 --

 D: default mode O: optional mode I: illegal

 fig. 5.1 Transmission modes for procedures

5.5 Class declaration

 class-declaration
 = [prefix] main-part

 prefix
 = class-identifier

 main-part
 = class class-identifier
 [formal-parameter-part ; [value-part]
 specification-part] ;
 [protection-part ;]
 [virtual-part ;]
 class-body

 class-identifier
 = identifier

 class-body
 = statement
 | split-body

 split-body
 = initial-operations inner-part final-operations

 initial-operations
 = (begin | block-head ;) { statement ; }

 inner-part
 = { label : } inner

 final-operations
 = end
 | ; compound-tail

A class declaration serves to define the class associated with a class identifier. The class consists of
"objects" each of which is a dynamic instance of the class body.

An object is generated as the result of evaluating an object generator, which is analogous to the
evaluation (call) of a function designator, see 3.8.2 or 4.7.

A class body acts like a block whether it takes that form or not. A split body acts as a block in which
the symbol inner represents a dummy statement.

For a given object the formal parameters, the quantities specified in the virtual part, and the
quantities declared local to the class body are called the "attributes" of the object. A declaration or
specification of an attribute is called an "attribute definition".

Specification (in the specification part) is necessary for each formal parameter. The parameters are
treated as variables local to the class body. They are initialized according to the rules of parameter
transmission, (see 5.5.5 below). The following specifiers are accepted:

 <type> , array, and <type> array.

Note: Call by name is not available for parameters of class declarations.

Attributes defined in the virtual part are called "virtual quantities". They do not occur in the formal
parameter list. The virtual quantities have some properties which resemble formal parameters called
by name. However, for a given object the environment of the corresponding "actual parameters" is
the object itself, rather than that of the generating call. See 5.5.3.

Identifier conflicts between formal parameters and other attributes defined in a class declaration are
illegal.

The declaration of an array attribute may in a constituent subscript bound expression make
reference to the formal parameters of the class declaration, but subscript bound expressions which
refer to attributes other than the formal parameters of the class declaration (or its prefixes, see 5.5.2)
are illegal.

5.5.1 Subclasses

A class declaration with the prefix "C" and the class identifier "D" defines a subclass D of the class
C. An object belonging to the subclass consists of a "prefix part", which is itself an object of the
class C, and a "main part" described by the main part of the class declaration. The two parts are
"concatenated" to form one compound object. The class C may itself have a prefix.

The following restrictions must be observed in the use of prefixes:

1. A class must not occur in its own prefix sequence (see below).
2. A class can be used as prefix only at the block level at which it is declared. A system class
used as a prefix is, together with all classes of its prefix chain, considered to be declared in
the smallest block enclosing its textual occurrence. Thus redeclarations may occur at inner
block levels of a program. An implementation may restrict the number of different block
levels at which such prefixes may be used (see chapters 6, 10, 11 and 12).

Let C1, C2, ... , Cn be classes such that C1 has no prefix and Ck has the prefix Ck-1 (k = 2,3,...,n).
Then C1, C2, ... , Ck-1 is called the "prefix sequence" of Ck (k = 2,3,...,n). The subscript k of Ck (k
= 1,2,...,n) is called the "prefix level" of the class. Ci is said to "include" Cj if i <= j, and Ci is called
a "subclass" of Cj if i > j (i, j = 1,2,...,n). The prefix level of a class D is said to be inner to that of a
class C if D is a subclass of C, and "outer" to that of C if C is a subclass of D.

Example

Figure 5.2 depicts a class hierarchy consisting of five classes, A, B, C, D and E:

 class A;
 A class B;
 B class C;
 B class D;
 A class E;

A capital letter denotes a class. The corresponding lower case letter represents the attributes of the
main part of an object belonging to that class. In an implementation of the language, the object
structures shown in fig. 5.3 indicate the allocation in memory of the values of those attributes which
are simple variables.

 A class A
 . - includes: A,B,C,D,E
 . . - outer to: B,C,D,E
 . .
 . .
 class B B E
 - includes: B,C,D . .
 - outer to: C,D . .
 - inner to: A . .
 . .
 C D

 Fig. 5.2

 Objects of classes A, B, C, D and E respectively:

 .-------. .-------. .-------. .-------. .-------.

 . a . . a . . a . . a . . a .

 ------- .-------. .-------. .-------. .-------.

 . b . . b . . b . . e .

 ------- .-------. .-------. -------

 . c . . d .

 ------- -------

 Fig. 5.3

5.5.2 Concatenation

Let Cn be a class with the prefix sequence C1, C2, ... , Cn-1, and let X be an object belonging to Cn.
Informally, the concatenation mechanism has the following consequences.

1. X has a set of attributes which is the union of those defined in C1, C2, ... , Cn. An
attribute defined in Ck (1 <= k <= n) is said to be defined at prefix level k.
2. X has an "operation rule" consisting of statements from the bodies of these classes in a
prescribed order. A statement from Ck is said to belong to prefix level k of X.
3. A statement at prefix level k of X has access to all attributes of X defined at prefix levels
equal to or outer to k, but not directly to attributes made invisible by conflicting definitions
at levels < k. (These invisible attributes may nevertheless be accessed, for example through
use of procedures or this.)
4. A statement at prefix level k of X has no immediate access to attributes of X defined at
prefix levels inner to k, except through virtual quantities. (See 5.5.3.)
5. In a split body at prefix level k, the symbol inner represents those statements in the
operation rule of X which belong to prefix levels inner to k, or a dummy statement if k = n.
If none of C1, ... , Cn-1 has a split body the statements in the operation rule of X are ordered
according to ascending prefix levels.

A compound object could be described formally by a "concatenated" class declaration. The process
of concatenation is considered to take place prior to program execution. In order to give a precise
description of that process, we need the following definition.

An occurrence of an identifier which is part of a given block is said to be an "uncommitted
occurrence in that block", except if it is the attribute identifier of a remote identifier (see 5.5.6), or is
part of an inner block in which it is given a local significance. In this context a "block" may be a
class declaration not including its prefix and class identifier, or a procedure declaration not
including its procedure identifier.

Note: An uncommitted identifier occurrence in a block may well have a local significance in that
block.

The class declarations of a given class hierarchy are processed in an order of ascending prefix
levels. A class declaration with a non-empty prefix is replaced by a concatenated class declaration
obtained by first modifying the given one in two steps.

1. If the prefix refers to a concatenated class declaration, in which identifier substitutions
have been carried out, then the same substitutions are effected for uncommitted identifier
occurrences within the main part.
2. If now identifiers of attributes defined within the main part have uncommitted
occurrences within the prefix class, then all uncommitted occurrences of these identifiers
within the main part are systematically changed to avoid name conflicts. Identifiers
corresponding to virtual quantities defined in the prefix class are not changed.

The concatenated class declaration is defined in terms of the given declaration, modified as above,
and the concatenated declaration of the prefix class.

1. Its formal parameter list consists of that of the prefix class followed by that of the main
part.
2. Its value part, specification part, and virtual part are the unions (in an informal but
obvious sense) of those of the prefix class and those of the main part. If the resulting virtual
part contains more than one occurrence of some identifier, the virtual part of the given class
declaration is illegal.
3. Its class body is obtained from that of the main part in the following way, assuming the
body of the prefix class is a split body. The begin of the block head is replaced by a copy of
the block head of the prefix body, a copy of the initial operations of the prefix body is
inserted after the block head of the main part and the end of the compound tail of the main
part is replaced by a copy of the compound tail of the prefix body. If the prefix class body is
not a split body, it is interpreted as if the symbols ";inner" were inserted in front of
the end of its compound tail.

If in the resulting class body two matching declarations for a virtual quantity are given (see
5.5.3), the one copied from the prefix class body is deleted.

Example

 class point(x,y); real x,y;
 begin ref (point) procedure plus(P); ref (point) P;
 plus:- new point(x+P.x, y+P.y); end point;

An object of the class point is a representation of a point in a cartesian plane. Its attributes are x, y
and plus, where plus represents the operation of vector addition.

 point class polar;
 begin real r,v;
 ref (polar) procedure plus(P); ref (point) P;
 plus :- new polar(x+P.y, y+P.y);

 r:= sqrt(x**2 + y**2); v:= arctan(x,y); end polar;

An object of the class polar is a "point" object with the additional attributes r, v and a redefined
"plus" operation. The values of r and v are computed and assigned at the time of object generation.

5.5.3 Virtual quantities

 virtual-part
 = virtual : virtual-spec ; { virtual-spec ; }

 virtual-spec
 = specifier identifier-list
 | procedure procedure-identifier procedure-specification

Virtual quantities serve a double purpose:

1. to give access at one prefix level of an object to attributes declared at inner prefix levels,
and
2. to permit attribute redeclarations at one prefix level valid at outer prefix levels.

The following specifiers are accepted in a virtual part:

 label, switch, procedure and <type> procedure.

A virtual procedure may optionally be specified with respect to its type, and the type, kind, and
transmission mode of its parameters (if any) (see 6.3).

A virtual quantity of an object is either "unmatched" or is identified with a "matching" attribute,
which is an attribute whose identifier coincides with that of the virtual quantity, declared at the
prefix level of the virtual quantity or at an inner one. The matching attribute must be of the same
kind as the virtual quantity.

A virtual procedure quantity that contains a procedure specification, can only be matched by a
procedure of the same type, and with the same procedure heading as that of the procedure
specification. Otherwise, the type of the matching quantity (at a given prefix level) must coincide
with or be subordinate to (see 2.4) that of the virtual specification and that of any matching quantity
declared at any outer prefix level.

At any given prefix level PL inner or equal to that of a virtual specification, and in the abscence of a
procedure specification, the type of the virtual quantity is

• if there is no match at prefix levels outer or equal to PL, then that given in the virtual
specification,
• if there is a match at a prefix level outer or equal to PL, then that of the match at the
innermost prefix level outer or equal to PL.

It is a consequence of the concatenation mechanism that a virtual quantity of a given object can
have at most one matching attribute. If matching declarations have been given at more than one
prefix level of the class hierarchy, then the one is valid which is given at the innermost prefix level
outer or equal to that of the main part of the object. The match is valid at all prefix levels of the
object equal or inner to that of the virtual specification.

Example

The following class expresses a notion of "hashing", in which the "hash" algorithm itself is a
"replaceable part".

 class hashing (n); integer n;
 virtual: integer procedure hash;
 begin integer procedure hash(t); text t;
 begin integer i;
 while t.more do i:= i + rank(t.getchar);
 hash:= mod(i,n);
 end hash;
 text array table (0:n-1); integer entries;
 integer procedure lookup (t,old);
 name old; Boolean old; text t;
 begin integer i,istart; Boolean entered;
 i:= istart:= hash(t);
 while not entered do
 begin if table(i)==notext then
 begin table(i):- copy(t);
 entries:= entries + 1;
 entered:= true;
 old:=false
 end else if table(i) = t
 then old:= entered:= true
 else begin i:= i + 1;
 if i=n then i:=0;
 if i=istart then error("Table full.")
 end
 end;
 lookup:= i;
 end lookup;
 end hashing;

 hashing class ALGOL_hash;
 begin integer procedure hash(T); text T;
 begin integer i; character c;
 T.setpos(1);
 while T.more do begin c:= T.getchar;
 if c <> ' ' then i:= i + rank(c)
 end;
 hash:= mod(i,n);
 end hash;
 end ALGOL_hash;

5.5.4 Attribute protection

 protection-part
 = protection-specification { ; protection-specification }

 protection-specification
 = hidden identifier-list
 | protected identifier-list
 | hidden protected identifier-list
 | protected hidden identifier-list

The protection specification makes it possible to restrict the visibility of class attribute identifiers.

A class attribute, X, which is specified protected in class C is only visible:

1. within the body of C or its subclasses
2. within blocks prefixed by C or any subclass of C.

In any other context the meaning of the identifier X is as if the attribute definition of X were absent.

Access to a protected attribute is, subject to the restriction above, legal by remote accessing.

A class attribute may be specified protected only at the prefix level of its definition. Note that a
virtual attribute may only be specified protected in the class heading in which the virtual
specification occurs.

Attributes of the classes Simset and Simulation are protected.

A visible class attribute, X, specified hidden in class C is not visible within subclasses of C or
blocks prefixed by C or any subclass of C. In this context the meaning of the identifier X is as if the
attribute definition of X were absent.

Only a protected attribute may be specified hidden. However, this specification may occur at a
prefix level inner to the protected specification.

The effect of specifying an attribute hidden protected or protected hidden is identical to that of
specifying it as both protected and hidden.

Conflicting or illegal hidden and/or protected specifications constitute a error.

Note: Specifying a virtual quantity hidden effectively disables further matching at inner levels.
If in the prefix sequence there are several attributes with the same identifier as that of a hidden
specification, and these are previously protected, but not hidden, the innermost accessible attribute
is hidden.

5.5.5 Parameter transmission modes

There are two modes of parameter transmission available for classes: "call by value" and "call by
reference".

The default transmission mode is call by value for value type parameters and call by reference for
all other kinds of parameters.

The available transmission modes are shown in fig. 5.4 for parameters of class declarations.

 --
 | | Transmission modes |
 | Parameter | - - - - - - - - - - - - -|
 | | by value | by reference |
 |--|
 | value type | D | I |
 | object ref. type | I | D |
 | text | O | D |
 | value type array | O | D |
 | reference type array| I | D |
 --

 D: default mode O: optional mode I: illegal

 fig. 5.4. Parameter transmission modes for classes

For further details on parameter transmission modes, see 4.6.

5.5.6 Remote accessing

An attribute of an object is identified completely by the following items of information:

1. the object,
2. a class which is outer to or equal to that of the object, and
3. an attribute identifier defined in that class or in any class belonging to its prefix sequence.

Item 2 is textually defined for any attribute identification. The prefix level of the class is called the
"access level" of the attribute identification.

Consider an attribute identification whose item 2 is the class C. Its attribute identifier, item 3, is
subjected to the same identifier substitutions as those which would be applied to an uncommitted
occurrence of that identifier within the main part of C, at the time of concatenation. In that way,
name conflicts between attributes declared at different prefix levels of an object are resolved by
selecting the one defined at the innermost prefix level not inner to the access level of the attribute
identification.

An uncommitted occurrence within a given object of the identifier of an attribute of the object is
itself a complete attribute identification. In this case items 1 and 2 are implicitly defined as,
respectively, the given object and the class associated with the prefix level of the identifier
occurrence.

If such an identifier occurrence is located in the body of a procedure declaration (which is part of
the object), then, for any dynamic instance of the procedure, the occurrence serves to identify an
attribute of the given object, regardless of the context in which the procedure was invoked.

Remote accessing of attributes, i.e. access from outside the object, is either through the mechanism
of "remote identifiers" ("dot notation") or through "connection".

A text variable is (itself) a compound structure in the sense that it has attributes accessible through
the dot notation.

5.5.7 Fictituous outermost prefix

Any class that has no (textually given) prefix is by definition prefixed by a fictitious class whose
only attribute is:

 procedure detach; ... ; (see 7.3.1)

Thus every class object or instance of a prefixed block has this attribute.

5.6 Scope and visibility rules

This section contains the scope and visibility rules governing the identifiers introduced in the
program.

An identifier is introduced either implicitly (through a definition in one of the system classes
ENVIRONMENT and BASICIO, or as text attribute), or explicitly

1. By its occurrence as a class attribute either in the formal parameter part or in the head of
the class body. This is called an "attribute definition".
2. By its occurrence as a class attribute in the virtual part, but not in the head of the class
body. This is called an "unmatched virtual definition".
3. By its occurrence in a formal parameter part of a procedure. This is called a "formal
parameter definition".
4. By being declared in the head of a subblock or prefixed block. This is called a "local
declaration".
5. By its occurrence as a label. In this case an implicit declaration is inserted in the local
block. If this block is a class body, the label definition is called a "label attribute definition",
otherwise it is considered a special case of one of 3 or 4 above.
6. By its occurrence in an external declaration which is part of an external head of a module.
This is called a "head definition".

The occurrence of a system-defined class identifier as a prefix (see 5.5.1(2)) within some block
leads to insertion of implicit declarations both of the referenced class and of all classes in its prefix
chain (if any) in the head of the local block. Within any block such declarations are inserted only
once. These declarations are then considered special cases of either rule 1 or 4 above.

Use of such an identifier other than as a prefix refers to either such an inserted declaration, or to the
definition within ENVIRONMENT or BASICIO.

The "local block" of an identifier definition is the textually closest embracing block (subblock,
prefixed block, or procedure or class body), including the fictitious blocks surrounding the
controlled statement of a for- statement, a procedure or class declaration, a connection block etc.
The identifier (and its definition) is said to be local within this block.

A distinction is made between the "scope" and the "visibility" of an identifier definition and its
associated identifier as follows. The scope of an identifier definition is that part of the program text
in which it may have an effect. An identifier definition is said to be visible at (or from) a given
point in the program text when an occurrence of the identifier at this point can refer to the quantity
of the declaration in question.

The same identifier may be defined in several places in the program and may consequently be
associated with different quantities. The scopes of such definitions of the same identifier may thus
overlap, for instance in the case of an identifier redeclared in an inner block.

At a particular point in the program text where a given identifier is visible there can be at most one
definition associated with that identifier, e.g. in the case of redeclaration as mentioned only one of
the definitions is visible at any given point within the union of their scopes.

The exact meaning of these terms will be defined in the sequel for each kind of definition.

5.6.1 Scope of identifier definitions

1. The scope of an attribute definition is the same as that of the class declaration in which
the definition occurs.
2. The scope of an unmatched virtual declaration is the same as that of the class declaration
in which the definition occurs.
3. The scope of a formal parameter definition is the procedure body.

4. The scope of a local declaration is the textual extent of its local block, i.e. from
the begin of the block in question to the matching end.
5. The scope of a label or switch attribute definition is the protection part, the virtual part,
and the body of the class in which the definition occurs, extended by the protection part and
body of all its subclasses.
6. The scope of a head definition is the source module in which it occurs. If the head is
followed by a class or procedure declaration the scope is extended by the scope of that
declaration.
7. The scope of a separately compiled declaration is the definition itself, extended with the
scopes of all external declarations that reference the definition in question.
8. The scopes of attributes of system classes extend over all source modules.

5.6.2 Visibility of identifiers

Identifier definitions can only be visible within their scope. The visibility of a particular definition
may within its scope be restricted by

a. the occurrence of an identifier definition with the same identifier (a "redefinition" of the
identifier) within some construct enclosed by the local block of the former definition. Within
their common scope only the innermost of such redefinitions are visible.
b. the occurrence of a redefinition at some inner prefix level.
c. remote access, which may cause some identifier definitions to become invisible within the
inspection block or dot notation.
d. use of this or qua which may cause one or more redefinitions (of type b) to be
temporarily suspended.
e. a protection part of the class declaration to which the definition is local (see 5.5.4).

Redefinition of an identifier is not allowed at the head of its local block.

Note: This prohibits the occurrence of two definitions of the same identifier in the same block. A
formal procedure parameter may, however, be redefined in the head of the procedure body
belonging to its procedure declaration. Such a redeclaration effectively restricts the visibility of the
formal parameter to its associated value part, name part and specification part. Thus the only effect
of such a parameter is the possible side effects resulting from its evaluation.

In the detailed visibility rules given below the word "visible" means "visible but for possible effects
of redefinitions or other restrictions as stated above".

1. An attribute definition is visible within the protection part and the body of its class, and
within all classes or blocks prefixed by that class identifier.
Formal parameters of the class are, in addition, visible within the value part and the
specification part of the class declaration. Attributes which are not formal parameters are in
addition visible within the virtual parts of its class and of all its subclasses. Note: The
visibility of an attribute definition may be restricted or extended as noted under c)-e) above.
2. An unmatched virtual definition has the same visibility as an attribute definition which is
not a formal parameter of the class.
3. A formal parameter definition is visible within the value part, name part, specification
part, and within the body of the procedure in which it occurs.
4. A local declaration is visible within its scope.
5. A label or switch attribute definition is visible within its scope.
6. A head definition is visible within its scope.
7. A separately compiled definition is visible, together with all external definitions of its
external head (if any), within the scope of an external declaration which refers to the
definition.

Note: If an external procedure declaration is given with a procedure binding, the declaration
defines two identifiers, occurring textually before and after is. The scope and visibility of the
definition given by the procedure binding follows the rules stated above, while the identifier
given in the external item is invisible elsewhere.

A possible kind identifier of an external procedure declaration is invisible elsewhere.

5.6.3 Dynamic aspects of scope and visibility rules

Apart from the static rules given in the preceding sections, all occurrences of an identifier (except
within its definition) have a dynamic aspect. Such an identifier refers not only to its static definition
but also to some object generated from the declaration to which the definition is local. Thus, for
example, the occurrence of a formal parameter identifier within a procedure or class declaration
references some instantiated object of the procedure or class.

See also 2.4.1 and 3.8.1.

5.7 Initialization

Any declared variable is initialized at the time of entry into the block to which the variable is local.
The initial contents depend on the type of the variable:

 real-type 0.0
 integer-type 0
 Boolean false
 character '!0!'
 object ref. type none
 text notext

5.8 Constant declarations

 constant-element
 = identifier "=" value-expression
 | identifier "=" text-expression

An identifier which is declared by means of a constant element has a fixed value. Any attempt to
assign to or otherwise alter the value of such an identifier constitutes an error. The evaluation of the
expression takes place in the same manner as the evaluation of the bounds of an array. Thus any
variables referenced in this expression contribute their values at the time of their evaluation, and
any subsequent change does not affect the constant.

If the identifier is of arithmetic type then the value expression must also be of arithmetic type. Type
conversion may be invoked following the rules given for arithmetic assignment (see 4.1.1).
Otherwise, strict type correspondence is required between the type of the declaration and the type of
the expression.

The constant element is subject to the following exception from the normal rules governing the
occurrence of expressions in declarations.

Any occurrence within the expression of an identifier declared in the same block head must
refer to a constant declaration, which must occur textually before the referencing constant
element.

The constant element of a block head are evaluated from left to right.

Chapter 6

PROGRAM MODULES

 SIMULA-source-module
 = [external-head]
 (program | procedure-declaration | class-declaration)

Program modules constitute compilable programs, procedure declarations, and class declarations.

Example:

 external class b, c; ! external head of class e;
 b class e(f); ref (c)f;
 begin
 external class d;
 external procedure aproc;
 ref (d) dref;
 dref :- new d;
 aproc(dref);
 end class e;

6.1 External declarations

 external-head
 = external-declaration ; { external-declaration ; }

 external-declaration
 = external-procedure-declaration | external-class-declaration

An external declaration is a substitute for a complete introduction of the corresponding source
module referred to, including its external head. In the case where multiple but identical external
declarations occur as a consequence of this rule, this declaration will be incorporated only once.

Note: An uncommitted occurrence of a standard identifier within a source module refers to the
declaration of that identifier within the class ENVIRONMENT or BASICIO, implicitly enclosing
the main program (see chapters 9 and 10), with the exception of class identifiers (see 5.5.1).
If a class identifier is referenced before the body of a separately compiled procedure or class
declaration, or in a program block prefix, then this identifier must be declared in the external head.

6.2 The main program

 program
 = statement

The statement of the main program is implicitly enclosed in a prefixed block as described in chapter
10.

6.3 External procedure declaration

 external-procedure-declaration
 = external [kind] [type] procedure external-list
 | external kind procedure external-item procedure-specification

 kind
 = identifier

 procedure-specification
 = is procedure-declaration

The kind of an external procedure declaration may indicate the source language in which the
separately compiled procedure is written (e.g assembly, Cobol, Fortran, PL1 etc.). The kind must be
empty if this language is Simula. The interpretation of kind (if given) is implementation-dependent.

If an external procedure declaration contains a procedure specification, the procedure body of the
procedure declaration must be empty. This specifies a procedure whose actual body, which
embodies the algorithm required, is supplied in a separate (non-Simula) module. The procedure
heading of the procedure declaration will determine the procedure identifier (function designator) to
be used within the source module in which the external declaration occurs, as well as the type,
order, and transmission mode of the parameters.

A non-Simula procedure cannot be used as an actual parameter corresponding to a formal
procedure.

6.4 External class declaration

 external-class-declaration
 = external class external-list

An implementation may restrict the number of block levels at which an external class declaration
may occur.

Note: As a consequence of 5.5.1 all classes belonging to the prefix chain of a separately compiled
class must be declared in the same block as this class. However, this need not be done explicitly; an
external declaration of a separately compiled class implicitly declares all classes in its prefix chain
(since these will be declared in the external head of the class in question).

6.5 Module identification

 external-list
 = external-item { , external-item }

 external-item
 = identifier [= external-identification]

 external-identification
 = string

The identifier of an external item must be identical to the identifier of the corresponding separately
compiled class or Simula procedure.

An external item may introduce an external identification to identify the separately compiled
module with respect to the environment. The interpretation of the external identification string is
implementation-dependent, as is the identification of the module in question in case no external
identification is given.

Chapter 7

SEQUENCING

7.1 Block instances and states of execution

The constituent parts of a program execution are dynamic instances of blocks, i.e. subblocks,
prefixed blocks, connection blocks and class bodies. A block instance is said to be "local to" the one
which (directly) contains its describing text. For instance an object of a given class is local to the
block instance which contains the class declaration. The instance of the outermost block (see
chapter 11) is local to no block instance.

At any time, the "program sequence control", PSC, refers to that program point within a block
instance which is currently being executed; the PSC is "positioned" at the program point and is
"contained" by the block instance.

The entry into any block invokes the generation of an instance of that block, whereupon the PSC
enters the block instance at its first executable statement. If and when the PSC reaches the
final end of a non-class block instance (i.e. an instance of a prefixed block, a subblock, a procedure
body or a connection block) the PSC returns to the program point immediately following the
statement or expression which caused the generation of the block instance. For sequencing of class
objects see 7.2 and 7.3.

A block instance is at any time in one of four states of execution: "attached", "detached", "resumed"
or "terminated".

A non-class block instance is always in the attached state. The instance is said to be "attached to"
the block instance which caused its generation. Thus, an instance of a procedure body is attached to
the block instance containing the corresponding procedure statement or function designator. A non-
class, non-procedure block instance is attached to the block instance to which it is local. The
outermost block instance (see chapter 11) is attached to no block instance. If and when the PSC
leaves a non-class block instance through its final end, or through a goto-statement, the block
instance ceases to exist.

A class object is initially in the attached state and said to be attached to the block instance
containing the corresponding object generator. It may enter the detached state through the execution
of a "detach statement" (see 7.3.1). The object may reenter the attached state through the execution
of a call statement (see 7.3.2), whereby it becomes attached to the block instance containing the call
statement. A detached object may enter the resumed state through the execution of a resume
statement (see 7.3.3). If and when the PSC leaves the object through its final end or through a goto
statement, the object enters the terminated state. No block instance is attached to a terminated class
object.

The execution of a program which makes no use of detach, call or resume statements is a simple
nested structure of attached block instances.

Whenever a block instance ceases to exist, all block instances local or attached to it also cease to
exist. The dynamic scope of an object is thus limited by that of its class declaration. The dynamic
scope of an array declaration may extend beyond that of the block instance containing the
declaration, since the call by reference parameter transmission mode is applicable to arrays.

7.2 Quasi-parallel systems

A quasi-parallel system is identified by any instance of a subblock or a prefixed block, containing a
local class declaration. The block instance which identifies a system is called the "system head".

The outermost block instance (see chapter 11) identifies a system referred to as the "outermost
system".

A quasi-parallel system consists of "components". In each system one of the components is referred
to as the "main component" of the system. The other components are called "object components".

A component is a nested structure of block instances one of which, called the "component head",
identifies the component. The head of the main component of a system coincides with the system
head. The heads of the object components of a system are exactly those detached or resumed
objects which are local to the system head.

At any time exactly one of the components of a system is said to be "operative". A non-operative
component has an associated "reactivation point" which identifies the program point where
execution will continue if and when the component is activated.

The head of an object component is in the resumed state if and only if the component is operative.
Note that the head of the main component of a system is always in the attached state.

In addition to system components, a program execution may contain "independent object
components" which belong to no particular system. The head of any such component is a detached
object which is local to a class object or an instance of a procedure body, i.e. which is not local to a
system head. By definition, independent components are always non-operative.

The sequencing of components is governed by the detach, call and resume statements, defined in
7.3. All three statements operate with respect to an explicitly or implicitly specified object. The
following two sections serve as an informal outline of the effects of these statements.

7.2.1 Semi-symmetric sequencing: detach - call

In this section the concept of a quasi-parallel system is irrelevant. Thus, only object components are
considered, and no distinction is made between components which belong to a system and those
which are independent.

An object component is created through the execution of a detach statement with respect to an
attached object, whereby the PSC returns to the block instance to which the object is attached. The
object enters the detached state and becomes the head of a new non-operative component whose
reactivation point is positioned immediately after the detach statement.

The component may be reactivated through the execution of a call statement with respect to its
detached head, whereby the PSC is moved to its reactivation point. The head reenters the attached
state and becomes attached to the block instance containing the call statement. Formally, the
component thereby loses its status as such.

7.2.2 Symmetric component sequencing: detach - resume

In this section, only components which belong to a quasi-parallel system are considered.

Initially, i.e. upon the generation of a system head, the main component is the operative and only
component of the system.

Non-operative object components of the system are created as described in the previous section, i.e.
by detach statements with respect to attached objects local to the system head.

Non-operative object components of the system may be activated by call-statements, whereby they
lose their component status, as described in the previous section.

A non-operative object component of the system may also be reactivated through the execution of a
resume statement with respect to its detached head, whereby the PSC is moved to its reactivation
point. The head of the component enters the resumed state and the component becomes operative.
The previously operative component of the system becomes non-operative and its reactivation point
is positioned immediately after the resume statement. If this component is an object component its
head enters the detached state.

The main component of the system regains operative status through the execution of a detach
statement with respect to the resumed head of the currently operative object component, whereby
the PSC is moved to the reactivation point of the main component. The previously operative

component becomes non-operative, its reactivation point positioned immediately after the detach
statement. The head of this component enters the detached state.

Observe the symmetric relationship between a resumer and its resumee, in contrast to that between
a caller and its callee.

7.2.3 Dynamic enclosure and the operating chain

A block instance X is said to be "dynamically enclosed" by a block instance Y if and only if there
exists a sequence of block instances

 X = Z0, Z1,, Zn = Y (n>=0)

such that for i= 1,2,...,n:

• Zi-1 is attached to Zi, or
• Zi-1 is a resumed object whose associated system head is attached to Zi.

Note that a terminated or detached object is dynamically enclosed by no block instance except
itself.

The sequence of block instances dynamically enclosing the block instance currently containing the
PSC is called the "operating chain". A block instance on the operating chain is said to be
"operating". The outermost block instance is always operating.

A component is said to be operating if the component head is operating.

A system is said to be operating if one of its components is operating. At any time, at most one of
the components of a system can be operating. Note that the head of an operating system may be
non-operating.

An operating component is always operative. If the operative component of a system is non-
operating, then the system is also non-operating. In such a system, the operative component is that
component which was operating at the time when the system became non-operating, and the one
which will be operating if and when the system again becomes operating.

Consider a non-operative component C whose reactivation point is contained by the block instance
X. Then the following is true:

• X is dynamically enclosed by the head of C.
• X dynamically encloses no block instance other than itself.

The sequence of block instances dynamically enclosed by the head of C is referred to as the
"reactivation chain" of C. All component heads on this chain, except the head of C, identify
operative (non-operating) components. If and when C becomes operating, all block instances on its
reactivation chain also become operating.

See detailed example in 7.4.

7.3 Quasi-parallel sequencing

A quasi-parallel system is created through the entry into a subblock or a prefixed block, which
contains a local class declaration, whereby the generated instance becomes the head of the new
system. Initially, the main component is the operative and only component of the system.

7.3.1 Detach

Consider a call of the detach attribute of a block instance X.

If X is an instance of a prefixed block the detach statement has no effect. Assume that X is a class
object. The following cases arise:

1) X is an attached object.
 If X is not operating the detach statement constitutes an error. Assume X is operating.
 The effect of the detach statement is:

• X becomes detached and thereby (the head of) a new non-operative object
component, its reactivation point positioned immediately after the detach statement.
As a consequence, that part of the operating chain which is dynamically enclosed by
X becomes the (non-operating) reactivation chain of X.

• The PSC returns to the block instance to which X was attached and execution
continues immediately after the associated object generator or call statement (see
7.3.2).

 If X is local to a system head, the new component becomes a member of the associated
 system. It is a consequence of the language definition that, prior to the execution of the
 detach statement, X was dynamically enclosed by the head of the operative component
 of this system. The operative component remains operative.

2) X is a detached object.
 The detach statement then constitutes an error.

3) X is a resumed object.
 X is then (the head of) an operative system component. Let S be the associated system.
 It is a consequence of the language definition that X must be operating. The effect of
 the detach statement is:

• X enters the detached state and becomes non-operative, its reactivation point
positioned immediately after the detach statement. As a consequence, that part of the
operating chain which is dynamically enclosed by X becomes the (non-operating)
reactivation chain of X.
• The PSC is moved to the current reactivation point of the main component of S,
whereby this main component becomes operative and operating. As a consequence,
all block instances on the reactivation chain of the main component also become
operating.

4) X is a terminated object.
 The detach statement then constitutes an error.

7.3.2 Call

"call" is formally a procedure with one object reference parameter qualified by a fictitious class
including all classes. Let Y denote the object referenced by a call statement.

If Y is terminated, attached or resumed, or Y == none, the call statement constitutes an error.

Assume Y is a detached object. The effect of the call statement is:

• Y becomes attached to the block instance containing the call statement, whereby Y loses its
status as a component head. As a consequence the system to which Y belongs (if any) loses
the associated component.

• The PSC is moved to the (former) reactivation point of Y. As a consequence, all block
instances on the reactivation chain of Y become operating.

7.3.3 Resume

"resume" is formally a procedure with one object reference parameter qualified by a fictitious class
including all classes. Let Y denote the object referenced by a resume statement.

If Y is not local to a system head, i.e. if Y is local to a class object or an instance of a procedure
body, the resume statement constitutes an error.

If Y is terminated or attached, or Y==none, the resume statement constitutes an error.

If Y is a resumed object, the resume statement has no effect (it is a consequence of the language
definition that Y must then be operating.)

Assume Y is a detached object being (the head of) a non-operative system component. Let S be the
associated system and let X denote (the head of) the current operative component of S. It is a
consequence of the language definition that X must be operating, and that X is either the main
component of S or local to the head of S. The effect of the resume statement is:

• X becomes non-operative, its reactivation point positioned immediately after the resume
statement. As a consequence, that part of the operating chain which is dynamically enclosed
by X becomes the (non-operating) reactivation chain of X. If X is an object component its
head enters the detached state.

• The PSC is moved to the reactivation point of Y, whereby Y enters the resumed state and
becomes operative and operating. As a consequence, all block instances on the reactivation
chain of Y also become operating.

7.3.4 Object end

The effect of the PSC passing through the final end of a class object is the same as that of a detach
with respect to that object, except that the object becomes terminated, not detached. As a
consequence it attains no reactivation point and loses its status as a component head (if it has such
status).

7.3.5 Goto statements

A designational expression defines a program point within a block instance.

Let P denote the program point identified by evaluating the designational expression of a goto-
statement, and let X be the block instance containing P. Consider the execution of the goto-
statement:

1. Let Y denote the block instance currently containing the PSC.
2. If X equals Y the PSC is moved to P.
3. Otherwise, if Y is the outermost block instance the goto- statement constitutes an error.
4. Otherwise, the effect is that of the PSC passing through the final end of Y (see 7.3.4) after
which the process is immediately repeated from 1).

See also 4.5.

7.4 Annotated example

 1 begin comment S1;
 2 ref(C1) X1;
 3 class C1;
 4 begin procedure P1; detach;
 5 P1
 6 end C1;
 7 ref(C2) X2;
 8 class C2;
 9 begin procedure P2;
 10 begin detach;
 11 ! - see fig. 7.7;
 12 end P2;
 13 begin comment system S2;
 14 ref(C3) X3;
 15 class C3;
 16 begin detach;
 17 P2
 18 end C3;
 19 X3:- new C3;
 20 resume(X3)
 21 end S2
 22 end C2;
 23 X1:- new C1;
 24 X2:- new C2;
 25 call(X2)
 26 end S1;

The execution of this program is explained below. In the figures, system heads are indicated by
squares and other block instances by parentheses. Vertical bars connect the component heads of a
system, and left arrows indicate attachment.

Just before, and just after the execution of the detach statement in line 4, the situations are:

 Fig. 7.1 ---
 | S1| <-- (X1) <-- (P1) <-- PSC

 Fig. 7.2 ---
 | S1| <-- PSC

 |
 (X1) <-- (P1) <-- Reactivation point (RP) of X1

Before and after the detach in line 16:

 Fig. 7.3 --- ---
 | S1| <-- (X2) <-- | S2| <-- (X3) <-- PSC
 --- ---
 |
 (X1) <-- (P1) <-- RP of X1

 Fig. 7.4 --- ---
 | S1| <-- (X2) <-- | S2| <-- PSC
 --- ---
 | |
 | (X3) <-- RP of X3
 |
 (X1) <-- (P1) <-- RP of X1

Fig. 7.4 also shows the situation before the resume in line 20. After this resume:

 Fig. 7.5 --- ---
 | S1| <-- (X2) <-- | S2| <-- RP of main component of S2
 --- ---
 | |
 | (X3) <-- PSC
 |
 (X1) <-- (P1) <-- RP of X1

Before and after the detach in line 10:

 Fig. 7.6 --- ---
 | S1| <-- (X2) <-- | S2| <-- RP of main component of S2
 --- ---
 | |
 | (X3) <-- (P2) <-- PSC
 |
 (X1) <-- (P1) <-- RP of X1

 Fig. 7.7 ---
 | S1| <-- PSC

 |
 (X1) <-- (P1) <-- RP of X1
 |
 | ---
 (X2) <-- | S2| <-- RP of main component of S2

 |
 (X3) <-- (P2) <-- RP of X2

Note that X3 is still the operative component of S2 and does not have a reactivation point of its
own. Fig. 7.7 also shows the situation before the call in line 25. After this call, the situation in fig.
7.6 is reestablished. If, however, the call in line 25 is replaced by a "resume(X2)" the following
situation arises:

 Fig. 7.8 ---
 | S1| <-- RP of main component of S1

 |
 (X1) <-- (P1) <-- RP of X1
 |
 | ---
 (X2) <-- | S2| <-- RP of main component of S2

 |
 (X3) <-- (P2) <-- PSC

If now a "resume(X1)" is executed at * in line 11, the PSC is moved to the "RP of X1" in fig. 7.8,
leaving an "RP of X2" at the former PSC. If instead a "detach" is executed, fig. 7.8 leads back to
fig. 7.7.

Chapter 8

ATTRIBUTES OF TEXT

A text object is conceptually an instance of

 class TEXTOBJ(SIZE, CONST); integer SIZE; boolean CONST;
 begin character array MAIN(1:SIZE); end;

Any text value processed by the program is contained within a text frame, i.e. a non-empty segment
of the MAIN attribute of some TEXTOBJ instance, or it is empty (i.e. notext). See 2.5.

A text variable is conceptually an instance of a composite structure

 ref(TEXTOBJ) OBJ; integer START, LENGTH, POS;

It references (and has as its value the contents of) some text frame defined by the three first
components. POS identifies the current character. See 3.1.2.

See also 3.3.3 and 3.3.6 (text relations), 3.7 (text expressions), 4.1.2 and 4.1.3 (text assignments).

This chapter defines all procedure attributes of any text variable. They may be accessed by remote
identifiers of the form

 simple-text-expression . procedure-identifier

The attributes are

 boolean procedure constant; 8.1;
 integer procedure start; 8.1;
 integer procedure length; 8.1;
 text procedure main; 8.1;
 integer procedure pos; 8.2;
 procedure setpos(i); integer i; 8.2;
 boolean procedure more; 8.2;
 character procedure getchar; 8.2;
 procedure putchar(c); character c; 8.2;
 text procedure sub(i,n); integer i,n; 8.4;
 text procedure strip; 8.4;
 integer procedure getint; 8.6;
 long real procedure getreal; 8.6;
 integer procedure getfrac; 8.6;
 procedure putint(i); integer i; 8.7;
 procedure putfix(i,n); integer i,n; 8.7;
 procedure putreal(r,n); long real r; integer n; 8.7;
 procedure putfrac(i,n); integer i,n; 8.7;

In the following "X" denotes a text variable unless otherwise specified.

8.1 "constant", "start", "length" and "main"

 CONSTANT boolean procedure constant;
 constant:= OBJ == none or else OBJ.CONST;

 START integer procedure start; start := START;

 LENGTH integer procedure length; length := LENGTH;

 MAIN text procedure main;
 if OBJ =/= none then
 begin text T;
 T.OBJ :- OBJ;
 T.START := 1;
 T.LENGTH := OBJ.SIZE;
 T.POS := 1;
 main :- T;
 end main;

 "X.main" is a reference to the main frame which contains the
 frame referenced by X.

The following relations are true for any text variable X:

 X.main.length >= X.length
 X.main.main == X.main

In addition,

 notext.main == notext
 "ABC".main = "ABC" (but "ABC".main =/= "ABC")

Examples

 boolean procedure overlapping(X,Y); text X,Y;
 overlapping := X.main == Y.main and then
 (if X.start <= Y.start
 then X.start + X.length > Y.start
 else Y.start + Y.length > X.start);

"overlapping(X,Y)" is true if and only if X and Y reference text frames which overlap each other.

 boolean procedure subtext(X,Y); text X,Y;
 subtext := X.main == Y.main
 and then X.start >= Y.start
 and then X.start + X.length <= Y.start + Y.length;

"subtext(X,Y)" is true if and only if X references a subframe of Y, or if both reference notext.

8.2 Character access

The characters of a text are accessible one at a time. Any text variable contains a "position
indicator" POS, which identifies the currently accessible character, if any, of the referenced text
frame. The position indicator of a given text variable X is an integer in the range (1,X.length+1).

The position indicator of a given text variable may be altered by the procedures "setpos", "getchar",
and "putchar" of the text variable. Also any of the procedures defined in 8.6 and 8.7 may alter the
position indicator of the text variable of which the procedure is an attribute.

Position indicators are ignored and left unaltered by text reference relations, text value relations and
text value assignments.

The following procedures are facilities available for character accessing. They are oriented towards
sequential access.

Note: The implicit modification of POS is lost immediately if "setpos", "getchar" or "putchar" is
successfully applied to a text expression which is not a variable (see 3.7).

 POS integer procedure pos; pos := POS;

 SETPOS procedure setpos(i); integer i;
 POS := if i < 1 or i > LENGTH + 1 then LENGTH + 1 else i;

 MORE boolean procedure more; more := POS <= LENGTH;

 GETCHAR character procedure getchar;
 if POS > LENGTH then error("..." ! Pos out of range;)
 else begin
 getchar:= OBJ.MAIN(START + POS - 1); POS:= POS + 1
 end getchar;

 PUTCHAR procedure putchar(c); character c;
 if OBJ == none or else OBJ.CONST or else POS>LENGTH
 then error("...")
 else begin
 OBJ.MAIN(START + POS - 1):= c; POS:= POS + 1
 end putchar;

8.3 Text generation

The following standard procedures are available for text frame generation:

 BLANKS text procedure blanks(n); integer n;
 if n < 0 then error("..." ! Parm. to blanks < 0;)
 else if n > 0
 then begin text T;
 T.OBJ :- new TEXTOBJ(n,false);
 T.START := 1;
 T.LENGTH := n;
 T.POS := 1;
 T := notext; ! blank-fill, see 4.1.2;
 blanks :- T
 end blanks;

 "blanks(n)", with n > 0, references a new alterable main frame of
 length n, containing only blank characters. "blanks(0)" references notext.

 COPY text procedure copy(T); text T;
 if T =/= notext
 then begin text U;
 U.OBJ :- new TEXTOBJ(T.LENGTH,false);
 U.START := 1;
 U.LENGTH := T.LENGTH;
 U.POS := 1;
 U := T;
 copy :- U
 end copy;

 "copy(T)", with T =/= notext, references a new alterable main
 frame which contains a text value identical to that of T.

Text frame generation is also performed by the text concatenation operator (see 3.7.1) and by the
standard procedure "datetime" (see 9.10).

8.4 Subtexts

Two procedures are available for referencing subtexts (subframes).

 SUB text procedure sub(i,n); integer i,n;
 if i < 0 or n < 0 or i + n > LENGTH + 1
 then error("..." ! Sub out of frame;)
 else if n > 0
 then begin text T;
 T.OBJ :- OBJ;
 T.START := START + i - 1;
 T.LENGTH := n;
 T.POS := 1;
 sub :- T
 end;

 If legal, "X.sub(i,n)" references that subframe of X whose first
 character is character number i of X, and which contains n
 consecutive characters. The POS attribute of the expression
 defines a local numbering of the characters within the subframe.
 If n = 0, the expression references notext.

 If legal, the following Boolean expressions are true for any text
 variable X:

 X.sub(i,n).sub(j,m) == X.sub(i+j-1,m)

 n <> 0 imp X.main == X.sub(i,n).main

 X.main.sub(X.start,X.length) == X

 STRIP text procedure strip; ... ;

 The expression "X.strip" is equivalent to "X.sub(1,n)", where n
 indicates the position of the last non-blank character in X. If X
 does not contain any non-blank character, notext is returned.

 Let X and Y be text variables. Then after the value assignment
 "X:=Y", if legal, the relation "X.strip = Y.strip" has the value
 true, while "X = Y" is true only if X.length = Y.length.

8.5 Numeric text values

The names of the syntactic units in this section are in upper case to indicate that these rules concern
syntax for data and not for program text.

The syntax applies to sequences of characters, i.e. to text values.

 NUMERIC-ITEM = REAL-ITEM | GROUPED-ITEM

 REAL-ITEM = DECIMAL-ITEM [EXPONENT]
 | SIGN-PART EXPONENT

 GROUPED-ITEM = SIGN-PART GROUPS [DECIMAL-MARK GROUPS]
 | SIGN-PART DECIMAL-MARK GROUPS

 DECIMAL-ITEM = INTEGER-ITEM [FRACTION]
 | SIGN-PART FRACTION

 INTEGER-ITEM = SIGN-PART DIGITS

 FRACTION = DECIMAL-MARK DIGITS

 SIGN-PART = BLANKS [SIGN] BLANKS

 EXPONENT = LOWTEN-CHARACTER INTEGER-ITEM

 GROUPS = DIGITS { BLANK DIGITS }

 SIGN = + | -

 DIGITS = DIGIT { DIGIT }

 DIGIT = 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

 LOWTEN-CHARACTER = & | ...

 DECIMAL-MARK = . | ,

 BLANKS = { BLANK | TAB }

BLANK and TAB are the characters space and horisontal tabulation respectively.

The default representations of LOWTEN CHARACTER and DECIMAL MARK are & and .,
respectively. These values may, however, be changed by appropriate procedure calls, see 9.2.

A numeric item is a character sequence which may be derived from NUMERIC ITEM. "Editing"
and "de-editing" procedures are available for the conversion between arithmetic values and text
values which are numeric items, and vice versa.

The editing and de-editing procedures are oriented towards "fixed field" text manipulation.

Note: Both the editing and the de-editing procedures are understood to operate on text values
represented in the internal character set.

8.6 "De-editing" procedures

A de-editing procedure of a given text variable X operates in the following way:

1. The longest numeric item, if any, of a given form, which is contained by X and which
contains the first character of X is located. (Note that leading blanks and tabs are accepted as
part of any numeric item.)

2. If no such numeric item is found, a run-time error occurs.

3. Otherwise, the numeric item is interpreted as a number.

4. If that number is outside a relevant implementation-defined range, a run-time error occurs.

5. Otherwise, an arithmetic value is computed, which is equal to or approximates to that
number.

6. The position indicator of X is made one greater than the position of the last character of
the numeric item. Note that this increment is lost immediately if X does not correspond to a
variable (see 3.7).

The following de-editing procedures are available.

 GETINT integer procedure getint; ... ;

 The procedure locates an INTEGER ITEM. The function value is
 equal to the corresponding integer.

 GETREAL long real procedure getreal; ... ;

 The procedure locates a REAL ITEM. The function value is equal
 to or approximates to the corresponding number. An INTEGER ITEM
 exceeding a certain implementation-defined range may lose
 precision when converted to long real.

 Note: No distinction is made between real and long real items.
 In order to preserve precision the procedure assumes long real
 precision.

 GETFRAC integer procedure getfrac; ... ;

 The procedure locates a GROUPED ITEM. The function value is
 equal to the resulting integer. The digits of a GROUPED ITEM
 may be interspersed with BLANKS and a single DECIMAL MARK which
 are ignored by the procedure.

Note: "getfrac" is thus able to de-edit more general patterns than those generated by "putfrac".

8.7 Editing procedures

Editing procedures of a given text variable X serve to convert arithmetic values to numeric items.
After an editing operation, the numeric item obtained, if any, is right-adjusted in the text frame
referenced by X and preceded by as many blanks as necessary to fill the text frame. The final value
of the position indicator of X is X.length+1. Note that this increment is lost immediately if X does
not correspond to a variable, (see 3.7).

A positive number is edited without a sign. A negative number is edited with a minus sign
immediately preceding the most significant character. Leading non-significant zeros are suppressed,
except possibly in an EXPONENT.

If X references a constant text frame or notext, an error results. Otherwise, if the text frame is too
short to contain the resulting numeric item, the text frame into which the number was to be edited is
filled with asterisks. If the parameters to "putfix" and "putreal" are such that some of the printed
digits will be without significance, zeros are substituted for these digits (and no error condition is
raised).

In "putfix" and "putreal", the numeric item designates that number of the specified form which
differs by the smallest possible amount from the value of "r" or from the approximation to the value
of "r".

 PUTINT procedure putint(i); integer i; ... ;

 The value of the parameter is converted to an INTEGER ITEM which
 designates an integer equal to that value.

 PUTFIX procedure putfix(r,n); r; integer n; ... ;

 The resulting numeric item is an INTEGER ITEM if n=0 or a DECIMAL
 ITEM with a FRACTION of n digits if n>0. It designates a number
 equal to the value of r or an approximation to the value of r,
 correctly rounded to n decimal places. If n<0, a run-time error
 is caused.

 PUTREAL procedure putreal(r,n); r; integer n; ... ;

 The resulting numeric item is a REAL ITEM containing an EXPONENT
 with a fixed implementation-defined number of characters. The
 EXPONENT is preceded by a SIGN PART if n=0, or by an INTEGER ITEM
 with one digit if n=1, or if n>1, by a DECIMAL ITEM with an
 INTEGER ITEM of 1 digit only, and a fraction of n-1 digits. If
 n<0 a runtime error is caused.

 PUTFRAC procedure putfrac(i,n); integer i,n; ... ;

 The resulting numeric item is a GROUPED ITEM with no DECIMAL MARK
 if n<=0, and with a DECIMAL MARK followed by total of n digits if
 n>0. Each digit group consists of 3 digits, except possibly the
 first one, and possibly the last one following a DECIMAL MARK. The
 numeric item is an exact representation of the number i * 10**(-n).

Examples

 procedure compact(T); text T;
 begin text U; character c;
 T.setpos(1); U:- T;
 while U.more do begin
 c:=U.getchar; if c <> ' ' then T.putchar(c)
 end;
 while T.more do T.putchar(' ')
 end compact;

The procedure rearranges the characters of the text frame referenced by its parameter. The non-
blank characters are collected in the leftmost part of the text frame and the remainder, if any, is
filled with blank characters. Since the parameter is called by reference, its position indicator is not
altered.

 begin
 text tr, type, amount, price, payment;
 integer pay, total;
 tr :- blanks(80);
 type :- tr.sub(1,5);
 amount :- tr.sub(20,5);
 price :- tr.sub(30,6);
 payment :- tr.sub(40,10);
 ... ; ! ***;
 if type = "order" then begin
 pay := amount.getint * price.getfrac;
 total := total + pay;
 payment.putfrac(pay,2)
 end
 end

If tr at *** holds the text

 "order 1200 155.75 ..."

it will after editing contain

 "order 1200 155.75 18 690.00 ...".

Chapter 9

THE CLASS "ENVIRONMENT"

The purpose of the environmental class is to encapsulate all constants, procedures and classes which
are accessible to all source modules. It contains procedures for mathematical functions, text
generation, random drawing, etc.

The general structure of ENVIRONMENT is

 class ENVIRONMENT;
 begin character CURRENTLOWTEN, CURRENTDECIMALMARK;

 Basic operations .. 9.1
 Procedures mod, rem, abs, sign, entier,
 addepsilon, subepsilon.
 Text utilities .. 9.2
 Procedures copy, blanks, char, isochar, rank, isorank,
 digit, letter, lowten, decimalmark, upcase, lowcase.
 Scheduling .. 9.3
 Procedures call (7.3.2), resume (7.3.3).
 Mathematical functions 9.4
 Procedures sqrt, sin, cos, tan, cotan, arcsin, arccos,
 arctan, arctan2, sinh, cosh, tanh, ln, log10, exp.
 Extremum functions 9.5
 Procedures max, min.
 Environmental enquiries 9.6
 Procedure sourceline.
 Constants maxrank, maxint, minint, maxreal, minreal,
 maxlongreal, minlongreal, simulaid.
 Error control ... 9.7
 Procedure error.
 Array quantities .. 9.8
 Procedures upperbound, lowerbound.
 Random drawing .. 9.9
 Procedures draw, randint, uniform, normal, negexp,
 Poisson, Erlang, discrete, linear, histd.
 Calendar and timing utilities 9.10
 Procedures datetime, cputime, clocktime.
 Miscellaneous utilities 9.11
 Procedure histo.
 Standard system classes 9.12
 Classes simset (ch. 11), simulation (ch. 12).

 CURRENTDECIMALMARK := '.';
 CURRENTLOWTEN := '&'

 end ENVIRONMENT;

9.1 Basic operations

 MOD integer procedure mod(i,j); integer i,j;
 begin integer res;
 res := i - (i//j)*j;
 mod := if res = 0 then 0
 else if sign(res) <> sign(j) then res+j
 else res
 end mod;

 The result is the mathematical modulo value of the parameters.

 REM integer procedure rem(i,j); integer i,j;
 rem := i - (i//j)*j;

 The result is the remainder of an integer division.

 ABS <type of e> procedure abs(e); <arithmetic-type> e;
 abs := if e >= 0 then e else -e;

 The result is the absolute value of the parameter.

 SIGN integer procedure sign(e); <arithmetic-type> e;
 sign := if e > 0 then 1
 else if e < 0 then -1 else 0;

 The result is zero if the parameter is zero, one if the
 parameter is positive, and minus one otherwise.

 ENTIER integer procedure entier(r); <real-type> r;
 begin integer j;
 j := r; ! implied conversion of "r" to integer ;
 entier:= if j > r ! implied conversion of "j" to real ;
 then j-1 else j
 end entier;

 The result is the integer "floor" of a real type item, the value
 always being less than or equal to the parameter. Thus,
 entier(1.8) returns the value 1, while entier(-1.8) returns -2.

 ADDEPSILON <type of e> procedure addepsilon(e); <real-type> e;
 addepsilon := e + ... ; ! see below;

 SUBEPSILON <type of e> procedure subepsilon(e); <real-type> e;
 subepsilon := e - ... ; ! see below;

 The result type is that of the parameter. The result is the
 value of the parameter incremented (addepsilon) or decremented
 (subepsilon) by the smallest positive value, such that the
 result is not equal to the parameter within the precision of
 the implementation. Thus, for all positive values of "eps",

 E-eps <= subepsilon(E) < E < addepsilon(E) <= E+eps

9.2 Text utilities

 COPY See 8.3.
 BLANKS See 8.3.

 CHAR character procedure char(i); integer i;
 char := ... ;

 The result is the character obtained by converting the parameter
 according to the implementation-defined coding of characters.
 The parameter must be in the range 0..maxrank.

 ISOCHAR character procedure isochar(i); integer i;
 isochar := ... ;

 The result is the character obtained by converting the parameter
 according to the ISO 2022 standard character code.
 The parameter must be in the range 0..255.

 RANK integer procedure rank(c); character c;
 rank := ... ;

 The result is the integer obtained by converting the parameter
 according to the implementation-defined character code.

 ISORANK integer procedure isorank(c); character c;
 isorank := ... ;

 The result is the integer obtained by converting the parameter
 according to the ISO 2022 standard character code.

 DIGIT Boolean procedure digit(c); character c;
 digit := ... ;

 The result is true if the parameter is a decimal digit.

 LETTER Boolean procedure letter(c); character c;
 letter := ... ;

 The result is true if the parameter is a letter of the English
 alphabet ('a' ... 'z', 'A' ... 'Z').

 LOWTEN character procedure lowten(c); character c;
 if ... ! c is illegal as lowten;
 then error("..." ! Lowten error ;)
 else begin
 lowten:= CURRENTLOWTEN; CURRENTLOWTEN:= c
 end lowten;

 Changes the value of the current lowten character to that of the
 parameter. The previous value is returned. Illegal parameters are

 digits, plus ("+"), minus ("-"), dot ("."), comma (","),
 control characters (i.e. ISO code<32), DEL (ISO code 127),
 and all characters with ISO code greater than 127.

 DECIMALMARK character procedure decimalmark(c); character c;
 if c <> '.' and then c <> ','
 then error("..." ! Decimalmark error ;)
 else begin
 decimalmark:= CURRENTDECIMALMARK; CURRENTDECIMALMARK:= c
 end decimalmark;

 Changes the value of the decimal point character used by the text
 (de)editing procedures (cf. 8.7 and 8.8). The previous value is
 returned. The only legal parameter values are dot and comma.

 UPCASE text procedure upcase(t); text t;
 begin t.setpos(1); upcase:- t; ... end;

 Convert the letters in the text parameter to their upper case
 representation. Only letters of the English alphabet are
 converted. The result is a reference to the parameter.

 LOWCASE text procedure lowcase(t); text t;
 begin t.setpos(1); lowcase:- t; ... end;

 Convert the letters in the text parameter to their lower case
 representation. Only letters of the English alphabet are
 converted. The result is a reference to the parameter.

9.3 Scheduling

 CALL See 7.3.2.
 RESUME See 7.3.3.

In addition the procedure "detach" (7.3.1) is an attribute of any class.

9.4 Mathematical functions

These procedures return long real results whenever a parameter is of this type. Otherwise
a real type result is returned (cf. 3.3.1).

All procedures return real type approximations to the associated mathematical functions. Their
exact definitions (concerning precision, allowed parameter values etc.) are implementation-defined.
The procedures return best possible approximations to the exact mathematical results.

The trigonometric functions deal with angles expressed in radians.

 SQRT <real-type> procedure sqrt(r); <real-type> r;

 SIN <real-type> procedure sin(r); <real-type> r;

 COS <real-type> procedure cos(r); <real-type> r;

 TAN <real-type> procedure tan(r); <real-type> r;

 COTAN <real-type> procedure cotan(r); <real-type> r;

 ARCSIN <real-type> procedure arcsin(r); <real-type> r;

 ARCCOS <real-type> procedure arccos(r); <real-type> r;

 ARCTAN <real-type> procedure arctan(r); <real-type> r;

 The result is in the range (0,pi/2) for non-negative parameters and
 in the range (-pi/2,0) for negative parameters.

 ARCTAN2 <real-type> procedure arctan2(y,x); <real-type> y,x;

 The result is in the range(-pi,pi) and a negative value is returned
 whenever y is negative. Positive y values always result in a
 positive result, while a zero value returns zero if x is positive
 and pi if x is negative. If both y and x are zero, a runtime error
 occurs.

 SINH <real-type> procedure sinh(r); <real-type> r;

 COSH <real-type> procedure cosh(r); <real-type> r;

 TANH <real-type> procedure tanh(r); <real-type> r;

 LN <real-type> procedure ln(r); <real-type> r;

 LOG10 <real-type> procedure log10(r); <real-type> r;

 EXP <real-type> procedure exp(r); <real-type> r;

9.5 Extremum functions

 MAX <type> procedure max(i1,i2); <type> i1; <type> i2;

 MIN <type> procedure min(i1,i2); <type> i1; <type> i2;

The value is the greater (MAX) or lesser (MIN) of the two parameter values. Legal parameter types
are text, character, real type and integer type. The type of the result conforms to the rules of 3.3.1.

9.6 Environmental enquiries

 SOURCELINE integer procedure sourceline;

 The value indicates the line on which the procedure call occurs.
 The interpretation of this number is implementation-defined.

 MAXLONGREAL long real maxlongreal = ... ,
 MINLONGREAL minlongreal = ... ;

 MAXREAL real maxreal = ... ,
 MINREAL minreal = ... ;

 MAXRANK integer maxrank = ... , !the largest legal argument to char;
 MAXINT maxint = ... ,
 MININT minint = ... ;

 These constants define some of the implementation
 characteristics. The "max..." ("min...") constants have the
 largest (smallest) values possible for their type.

 SIMULAID text simulaid = ... ; ! See below ;

The value of "simulaid" is an implementation defined string of the following general format:

 <simid>!!!<siteid>!!!<OS>!!!<CPU>!!!<user>!!!<job>!!!<acc>!!!<prog>

 <simid>: Identification of the SIMULA system (name, version etc.)
 <siteid>: Identification of the installation (e.g. organisation name)
 <OS>: Operating system identification (name, version, etc.)
 <CPU>: Host system identification (manufacturer, name, number, etc.)
 <user>: User identification
 <job>: Job identification (session number)
 <acc>: Account identification
 <prog>: Identification of the executing task or program

9.7 Error control

 ERROR procedure error(t); text t;
 begin ... display text "t" and stop program...
 end error;

The procedure "error" stops the execution of the program as if a runtime error has occurred and
presents the contents of the text parameter on the diagnostic channel (normally the controlling
terminal).

9.8 Array quantities

 LOWERBOUND integer procedure lowerbound(a,i);
 <type> array a; integer i;

 UPPERBOUND integer procedure upperbound(a,i);
 <type> array a; integer i;

The procedure "lowerbound" ("upperbound") returns the lower (upper) bound of the dimension of
the given array corresponding to the given index. The first dimension has index one, the next two,
etc. An index less than one or greater than the number of dimensions of the given array constitutes a
run time error.

9.9 Random drawing

All random drawing procedures of SIMULA are based on the technique of obtaining "basic
drawings" from the uniform distribution in the interval <0,1>.

9.9.1 Pseudo-random number streams

A basic drawing replaces the value of a specified integer variable, say U, by a new value according
to an implementation-defined algorithm.

As an example, the following algorithm may be suitable for binary computers:

 U(i+1) = remainder ((U(i) * 5**(2*p+1)) // 2**n)

where U(i) is the i'th value of U, n is an integer related to the size of a computer word
and p is a positive integer. It can be proved that, if U(0) is a positive odd integer, the
same is true for all U(i) and the sequence U(0), U(1), U(2), ... is cyclic with period
2**n-2. (The last two bits of U remain constant, while the other n-2 take on all possible
combinations). Thus there are two sequences - one in the range (1:2**n-3) and the other
in (3:2**n-1).

It is a property of this algorithm that any successor to a stream number U(i), e.g.
U(i+m), can be computed using modular arithmetic in log2(m) steps.

The real numbers u(i) = U(i) * 2**(-n) are fractions in the range <0,1>. The sequence
u(1), u(2), ... is called a "stream" of pseudo- random numbers, and u(i) (i = l,2, ...) is the
result of the i'th basic drawing in the stream U. A stream is completely determined by
the initial value U(0) of the corresponding integer variable. Nevertheless, it is a "good
approximation" to a sequence of truly random drawings.

By reversing the sign of the non-zero initial value U(0) of a stream variable, the antithetic drawings
1-u(1), 1-u(2), ... should be obtained. In certain situations it can be proved that means obtained from
samples based on antithetic drawings have a smaller variance than those obtained from uncorrelated
streams. This can be used to reduce the sample size required to obtain reliable estimates.

9.9.2 Random drawing procedures

The following procedures all perform a random drawing of some kind. "Normal", "draw", "randint",
"uniform", "negexp", "discrete", "linear" and "histd" always perform the operation by means of one
single basic drawing, i.e. the procedure has the side effect of advancing the specified stream by one
step. The necessary type conversions are effected for the actual parameters, with the exception of
the last one. The latter must always be an integer variable specifying a pseudo-random number
stream. Note, that it must not be a procedure parameter transferred by name.

 DRAW Boolean procedure draw (a,U);
 name U; long real a; integer U;

 The value is true with the probability a, false with the
 probability 1 - a. It is always true if a >= 1 and always
 false if a <= 0.

 RANDINT integer procedure randint (a,b,U);
 name U; integer a,b,U;

 The value is one of the integers a, a+1, ..., b-1, b with equal
 probability. If b < a, the call constitutes an error.

 UNIFORM long real procedure uniform (a,b,U);
 name U; long real a,b; integer U;

 The value is uniformly distributed in the interval a <= u < b.
 If b < a, the call constitutes an error.

 NORMAL long real procedure normal (a,b,U);
 name U; long real a,b; integer U;

 The value is normally distributed with mean a and standard
 deviation b. An approximation formula may be used for the normal
 distribution function.

 NEGEXP long real procedure negexp (a,U);
 name U; long real a; integer U;

 The value is a drawing from the negative exponential distribution
 with mean 1/a, defined by -ln(u)/a, where u is a basic drawing.
 This is the same as a random "waiting time" in a Poisson
 distributed arrival pattern with expected number of arrivals per
 time unit equal to a. If a is non-positive, a runtime error
 occurs.

 POISSON integer procedure Poisson (a,U);
 name U; long real a; integer U;

 The value is a drawing from the Poisson distribution with
 parameter a. It is obtained by n+1 basic drawings, u(i), where n
 is the function value. n is defined as the smallest non-negative
 integer for which
 u(0) * u(1) * ... * u(n) < e**(-a)

 The validity of the formula follows from the equivalent condition
 -ln(u(0)) - ln(u(1)) - ... - ln(u(n)) > 1
 where the left hand side is seen to be a sum of "waiting times"
 drawn from the corresponding negative exponential distribution.

 When the parameter a is greater than some implementation-defined
 value, for instance 20.0, the value may be approximated by
 entier(normal(a,sqrt(a),U) + 0.5) or, when this is negative, by
 zero.

 ERLANG long real procedure Erlang (a,b,U);
 name U; long real a,b; integer U;

 The value is a drawing from the Erlang distribution with mean 1/a
 and standard deviation 1/(a*sqrt(b)). It is defined by b basic
 drawings u(i), if b is an integer value,

 - (ln(u(1)) + ln(u(2)) + ... + ln(u(b))) / (a*b)

 and by c+1 basic drawings u(i) otherwise, where c is equal to
 entier(b),

 - (ln(u(1)) + ... + ln(u(c)) + (b-c)*ln(u(c+1))) / (a*b)

 Both a and b must be greater than zero.

 The last formula represents an approximation.

 DISCRETE integer procedure discrete (A,U);
 name U; <real-type> array A; integer U;

 The one-dimensional array A, augmented by the element 1 to the
 right, is interpreted as a step function of the subscript,
 defining a discrete (cumulative) distribution function.

 The function value satisfies
 lowerbound(A,1) <= discrete(A,U) <= upperbound(A,1)+1.

 It is defined as the smallest i such that A(i) > u, where u is a
 basic drawing and A(upperbound(A,1)+1) = 1.

 LINEAR long real procedure linear (A,B,U);
 name U; <real-type> array A,B; integer U;

 The value is a drawing from a (cumulative) distribution function
 F, which is obtained by linear interpolation in a non-equidistant
 table defined by A and B, such that A(i) = F(B(i)).

 It is assumed that A and B are one-dimensional arrays of the
 same length, that the first and last elements of A are equal
 to 0 and 1 respectively and that A(i) >= A(j) and B(i) > B(j)
 for i>j. If any of these conditions are not satisfied, the effect
 is implementation-defined.

 The steps in the function evaluation are:

 l. draw a uniform <0,1> random number, u.

 2. determine the lowest value of i, for which

 A(i-1) <= u <= A(i)

 3. compute D = A(i) - A(i-1)

 4. if D = 0: linear = B(i-1)
 if D <> 0: linear = B(i-1) + (B(i) - B(i-1))*(u-A(i-1))/D

 HISTD integer procedure histd (A,U);
 name U; <real-type> array A; integer U;

 The value is an integer in the range (lsb,usb), where lsb and
 usb are the lower and upper subscript bounds of the
 one-dimensional array A. The latter is interpreted as a
 histogram defining the relative frequencies of the values.

9.10 Calendar and timing utilities

 DATETIME: text procedure datetime; datetime :- Copy("...");

 The value is a text frame containing the current date and time
 in the form YYYY-MM-DD HH:MM:SS.sss.... The number of
 decimals in the field for seconds is implementation-defined.

 CPUTIME: long real procedure cputime;

 The value is the number of processor seconds spent by the
 calling program.

 CLOCKTIME: long real procedure clocktime;

 The value is the number of seconds since midnight.

9.11 Miscellaneous utilities

 HISTO: procedure histo(A,B,c,d);
 real array A,B; real c,d;

Procedure statement "histo(A,B,c,d)" updates a histogram defined by the one-dimensional arrays A
and B according to the observation c with the weight d. A(lba+i) is increased by d, where i is the
smallest integer such that c <= B(lbb+i) and lba and lbb are the lower bounds of A and B
respectively. If the length of A is not one greater than that of B the effect is implementation-defined.
The last element of A corresponds to those observations which are greater than all elements of B.

9.12 Standard system classes

The standard system classes are "simset", "simulation" and the I/O classes. They are available at
any block level of a program (cfr. 5.5.1).

Class "simset" contains facilities for list (set) manipulation, see chapter 11.

Simset class "simulation" contains facilities for discrete event simulation, see chapter 12.

The I/O classes ("file" and its subclasses) are defined in class BASICIO, see chapter 10.

Chapter 10

INPUT-OUTPUT

The semantics of SIMULA I/O facilities rely on the intuitive notion of "files" ("data sets"), i.e.
collections of data external to the the program, organized for sequential or random access. In the
language, sequential access files are called "sequential files" and random access files "direct files".
When it is necessary to distinguish between the file concept of the language and the underlying files
of the environment the latter are called external files.

Actually a file may in practice be any kind of external device with communication capabilities, such
as a terminal, a sensory device, etc.

Examples of sequential files are:

• a series of printed lines
• input from a keyboard
• data on a tape.

An example of a direct file is a collection of data items on a disk, with each item identified by a
unique integer.

The standard I/O facilities are contained by a class called "BASICIO". They are available to the
program through block prefixing as described below.

Note: The use of upper case letters indicates that this identifier is inaccessible to the user program
(cf 1.10).

The user's main program acts as if it were embedded as follows:

 BASICIO (inlength, outlength) Note ! prefixed block;
 inspect SYSIN do
 inspect SYSOUT do
 begin <external-head> <program> end
 end prefixed block

In any program execution the unique instance of this prefixed block constitutes the system head of
the outermost quasi-parallel system (see 7.2).

The values of inlength and outlength are implementation-defined; they normally depend upon the
actual device(s) associated with SYSIN and SYSOUT (the standard input and output files).

SYSIN and SYSOUT may represent the input and output features of an interactive terminal, in
which case inlength and outlength are probably equal. In other cases, for example batch runs,
SYSIN may represent record-oriented input and SYSOUT may represent line printer oriented
output. Typical values of inlength and outlength would then be 80 and 132, resp.

A program may refer to the corresponding file objects through sysin and sysout respectively. Most
attributes of these file objects are directly available as the result of the connection blocks enclosing
the program.

Note: Within this chapter the term "file object" refers to an instance of one of the classes
"in(byte)file", "out(byte)file" and "direct(byte)file" or of a subclass of one of these.

The overall organization of "BASICIO" is as follows:

 ENVIRONMENT class BASICIO (INPUT_LINELENGTH, OUTPUT_LINELENGTH);
 integer INPUT_LINELENGTH, OUTPUT_LINELENGTH;
 begin ref (infile) SYSIN; ref (printfile) SYSOUT;
 ref (infile) procedure sysin; sysin :- SYSIN;
 ref (printfile) procedure sysout; sysout :- SYSOUT;

 procedure terminate_program;
 begin ... ; goto STOP end terminate_program;

 class file 10.1 ;
 file class imagefile 10.3 ;
 file class bytefile 10.8 ;
 imagefile class infile 10.4 ;
 imagefile class outfile 10.5 ;
 imagefile class directfile 10.6 ;
 outfile class printfile 10.7 ;
 bytefile class inbytefile 10.9 ;
 bytefile class outbytefile 10.10 ;
 bytefile class directbytefile 10.11 ;

 SYSIN :- new infile("..."); ! Implementation-defined
 SYSOUT :- new printfile("..."); ! files names;
 SYSIN.open(blanks(INPUT_LINELENGTH));
 SYSOUT.open(blanks(OUTPUT_LINELENGTH));
 inner;
 STOP: SYSIN.close;
 SYSOUT.close
 end BASICIO;

Note: The files SYSIN and SYSOUT are opened and (if not done explicitly prior to program
termination) closed within "BASICIO", i.e. outside the program itself.

The class file and its predefined subclasses are available at any block level of a program (but see (2)
of 5.5.1). An implementation may restrict, in any way, the use of these classes for class or block
prefixing. An implementation may provide additional subclasses of class file.

Within a program, an object of a subclass of file may represent an external file. The effect of several
such file objects representing the same external file is implementation-defined.

The procedure "terminate_program" terminates program execution. It closes SYSIN and SYSOUT.
It is implementation-dependent with respect to whether or not other open files are also closed.

10.1 The class file

 class file(FILENAME); value FILENAME; text FILENAME;
 begin Boolean OPEN;
 text procedure filename; filename :- copy(FILENAME);
 Boolean procedure isopen; isopen := OPEN;
 Boolean procedure setaccess(mode); text mode; ... 10.1.1;

 if FILENAME = notext then error("...");
 end file;

"File" is the common prefix class for all input/output classes.

A file is either open or inaccessible as indicated by the variable "OPEN". The procedure "isopen"
returns the current value of "OPEN". A file is initially inaccessible (e.g. closed).

Each file object has a text attribute FILENAME. This text value must at "open" identify an external
file which, through an implementation-defined mechanism, becomes associated with the file object.
If the parameter value is notext, a run-time error occurs.

The procedure "filename" retrieves the value of FILENAME.

10.1.1 External file access control

Certain attributes (not specified in the file outline) control the access to the external file. The values
of these attributes are set when the file object is opened or closed, from a set of default values
possibly modified by successive calls to the procedure "setaccess".

The standard attribute modes are SHARED, APPEND, CREATE, READWRITE, BYTESIZE,
REWIND and PURGE.

 SHARED: If the value is "shared", the external file may be shared
 by other programs. The value "noshared" implies that the
 file must be exclusively assigned to this program.

 APPEND: If the value is "append", output to the file is added to
 the existing contents of the file. The value "noappend" implies
 for a sequential file that, after "close", the external file will
 contain only the output produced while the file was open. The
 mode is not relevant for in(byte)files. For direct files
 "append" prohibits output before "lastloc". For out(byte)files,
 the value "append" implies that SHARED has the value
 "noshared".

 CREATE: If the value is "create", the external file associated with
 FILENAME must not exist at "open" (if it does, "open" returns
 false); a new file is created by the environment. If the
 value is "nocreate", the associated file must exist at "open".
 The value "anycreate" implies that if the file does exist at "open"
 the file is opened, otherwise a new file is created.

 READWRITE: If the value is "readonly", output operations cannot be
 performed. If the value is "writeonly", input operations cannot
 be performed. The value "readwrite" enables both input and
 output. This mode is relevant only for direct files.

 BYTESIZE: The value of this mode is a positive integer specifying the
 size of bytes, measured in bits. This mode is relevant only
 for bytefiles. An implementation may restrict the possible
 values in any way. If not set explicitly the value is
 implementation-defined.

 REWIND: The value "rewind" indicates that some resetting of the
 external file occurs at "close" (e.g. rewind of a magnetic tape).
 The value "norewind" implies no such reset.

 PURGE: The value "purge" implies that the external file may be deleted
 by the environment when it is closed (in the sense that it
 becomes inaccessible to further program access). The value
 "nopurge" implies no such deletion.

Additional values and modes may be defined by an implementation.

The parameter "mode" to procedure "setaccess" contains one of the standard values as given above,
namely "shared", "noshared", "append", "noappend", "create", "nocreate", "anycreate", "readonly",
"writeonly", "readwrite", "bytesize:X" (where X is a positive integer), "rewind", "norewind",
"purge" and "nopurge". It is recommended that implementation-defined parameter values have the
percent character % as the first character of the text.

The parameter "bytesize:0" (zero) specifies the (implementation-defined) default byte size for
bytefiles.

Only one mode may be specified in each "setaccess" call, the case of the individual letters of the
parameter being insignificant. Unrecognized modes are ignored and "setaccess" then returns the
value false. The value is true otherwise. A specific mode is interpreted either at next "open" or next
"close". A mode which is set after "open" or "close" has no effect until the next "close" or "open"
respectively.

The default values of the access modes are given in table 10.1, where "NA" means "not applicable"
(i.e. ignored for this file kind) and "*" means that the value is implementation-defined.

 Files of kind
 Mode: In- Out- Direct- Takes effect at

 SHARED shared noshared noshared open
 APPEND NA noappend noappend open
 CREATE NA anycreate nocreate open
 READWRITE NA NA readwrite open
 BYTESIZE:x * * * open
 REWIND norewind norewind NA open,close
 PURGE nopurge nopurge nopurge close

 Table 10.1. Default values of file access modes.

10.1.2 Open and close

Most subclasses of "file" defined in BASICIO contain these procedures.

Procedure "open" establishes the association with an external file (as identified by FILENAME),
checks the access modes and causes corresponding opening actions on the external file. If the
external file is closed, it is opened.

Procedure "close" causes closing actions on the external file, as specified by the access modes. In
addition, the association between the file object and the external file is dissolved. If possible, the
external file is closed.

The details of these procedures are subclass- and implementation-defined. All versions conform,
however, to the following patterns.

 OPEN Boolean procedure open ... ;
 if not OPEN
 and ... ! FILENAME association is established;
 and ... ! access modes compatible with external file;
 and ... ! external file is opened;
 then begin
 ... ; ! implementation-defined and access mode
 specified actions on external file, followed by
 subclass dependent actions;
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin
 ... ; ! implementation-defined and access
 mode specified actions on external file;
 ... ; ! subclass dependent actions;
 OPEN := false;
 close := true;
 end close;

These patterns will not be repeated in detail for each subclass; a short comment will serve to remind
the reader of these general actions of the procedures.

10.2 Structure of file subclasses

There are two predefined subclasses of class file:

 "imagefile" - image (record) oriented files
 "bytefile" - character (stream) oriented files

These subclasses each have three subclasses defining the direction of data transfer and the file
organisation: input-oriented sequential files (i.e. in(byte)files), output-oriented sequential files (i.e.
out(byte)files) and bidirectional direct files (i.e. direct(byte)files).

 |imagefile subclass | bytefile subclass |
 -----------------+-------------------+-------------------|
 |sequential input | infile | inbytefile |
 |-----------------+-------------------+-------------------|
 |sequential output| outfile | outbytefile |
 |-----------------+-------------------+-------------------|
 |direct file | directfile | directbytefile |

 Table 10.2. Subclasses of class "file".

In addition, a standard subclass for line printer oriented output, outfile class printfile, is defined.

10.2.1 Procedure "checkpoint"

All files producing output (sequential output or direct files) contain a Boolean procedure
"checkpoint". The procedure causes the environment to attempt to secure the output produced so
far. Depending on the nature of the associated external device, this causes completion of output
transfer (i.e. intermediate buffer contents are transferred). If this is not possible or meaningful,
"checkpoint" is a dummy operation in which case the value false is returned.

10.2.2 Direct file locking

Direct files contain the following variable and procedures for control of simultaneous access to the
external file (cf. access mode SHARED).

 Boolean LOCKED;

 LOCKED Boolean procedure locked; locked:= LOCKED;

 LOCK integer procedure lock(timelimit,loc1,loc2);
 real timelimit; integer loc1,loc2;
 begin
 lock := -1;
 if timelimit>0.0 then begin
 if LOCKED then unlock;
 ... ! try to lock indicated part of file, see below;
 if !success; then begin LOCKED := true; lock := 0 end
 end
 end lock;

 UNLOCK Boolean procedure unlock;
 begin
 unlock := checkpoint;
 if LOCKED then begin !release file; LOCKED := false end
 end unlock;

The variable "LOCKED" indicates whether the file is currently locked by the executing program.
The procedure "locked" returns the current value.

Procedure "lock" enables the program to get exclusive access to all or part of the file. The effect of a
"lock" call while the file is locked ("LOCKED" is true) is that the previous lock is immediately
released (prior to the new locking attempt).

The parameter "timelimit" is the (clock) time in seconds that is the maximum waiting time for the
resource. If "timelimit" is less than or equal to zero, the procedure returns immediately without
performing any actions upon the file.

The parameters "loc1" and "loc2" identify the part of the file to be locked, by giving the ordinal
numbers of two external images (bytes). The program is given exclusive access to a part of the file
which includes the requested region. If the two parameters are both zero, this implies locking the
whole file. Otherwise, the size of the part of the file that is actually locked, is implementation-
dependent; it may even include the entire file.

A return value of zero indicates a successful "lock" operation. The value -1 indicates that
"timelimit" was exceeded (or was zero or negative). A negative value less than -1 indicates "lock"
failure and its interpretation is implementation-defined.

The Boolean procedure "unlock" eliminates the effect of any preceding "lock" call. The Boolean
procedure "checkpoint" is called initially. The returned value is that returned by the "checkpoint"
call.

10.3 Imagefiles

The (file) class "imagefile" defines the common attributes for all image- oriented files.

 file class imagefile;
 begin text image;
 procedure setpos(i); integer i; image.setpos(i);
 integer procedure pos; pos := image.pos;
 Boolean procedure more; more := image.more;
 integer procedure length; length := image.length;
 end imagefile;

The individual logical unit of an external file associated with an imagefile is called an "external
image". Each external image is an an ordered sequence of characters.

The variable "image" is used to reference a text frame which acts as a buffer, in the sense that it
contains the external image currently being processed.

The procedures "setpos", "pos", "more" and "length" are introduced for reasons of convenience.

The three standard subclasses of imagefile are "infile" (sequential input file), "outfile" (sequential
output file) and "directfile" (bidirectional direct file). In addition, "printfile", a standard subclass
of class outfile, is available. It represents a line printer oriented file.

10.4 The class "infile"

 imagefile class infile;
 begin Boolean ENDFILE;
 Boolean procedure endfile; endfile:= ENDFILE;
 Boolean procedure open(fileimage); text fileimage; ... 10.4.1;
 Boolean procedure close; 10.4.1;
 procedure inimage; 10.4.2;
 Boolean procedure inrecord; 10.4.2;
 character procedure inchar; 10.4.3;
 Boolean procedure lastitem; 10.4.4;
 text procedure intext(w); integer w; 10.4.5;
 integer procedure inint; 10.4.6;
 long real procedure inreal; 10.4.6;
 integer procedure infrac; 10.4.6;

 ENDFILE:= true
 ...
 end infile;

An object of the class "infile" is used to represent an image-oriented sequential input file.

The variable ENDFILE is true whenever the file object is closed or the external file is exhausted
(i.e. "end of file" has been encountered). The procedure "endfile" gives access to the value of
ENDFILE.

10.4.1 Open and close

 OPEN Boolean procedure open(fileimage); text fileimage;
 if ... then begin ... ! see 10.1.2;
 ENDFILE := false;
 image :- fileimage;
 image := notext;
 setpos(length+1);
 open := OPEN := true;
 end open;

If successful, "open" returns true and sets ENDFILE false. In addition, "image" references the
parameter "fileimage" which is space-filled.

 CLOSE Boolean procedure close;
 if OPEN then
 begin ... ; ! perform closing actions, see 10.1.2;
 image :- notext;
 OPEN := false;
 close := ENDFILE := true
 end close;

If successful, "close" returns true. In addition, OPEN is false, ENDFILE is true and "image"
references notext.

10.4.2 Inimage and inrecord

 INIMAGE procedure inimage;
 if not OPEN or ENDFILE then error("...")
 else begin
 ... ; ! attempt to transfer external image to "image";
 if ... ! "image" too short; then error("...")
 else if ... ! there was no more to read;
 then begin
 ENDFILE := true;
 image :- "!25!" end
 else ... ; ! pad "image" with space(s);
 setpos(1)
 end inimage;

The procedure "inimage" performs the transfer of an external file image into "image". A run-time
error occurs if "image" is notext or too short to contain the external image. If it is longer than the
external image, the latter is left-adjusted within "image" and the remainder of the text is filled with
spaces. The position indicator is set to one.

 INRECORD Boolean procedure inrecord;
 if not OPEN or ENDFILE then error("...")
 else begin
 ... ; ! transfer external image to "image" (no space-filling);
 if ... ! no more to read;
 then begin
 ENDFILE := true;
 setpos(1);
 image.putchar('!25!') end Note - POS = 2 now
 else begin
 setpos(... !number of characters transferred + 1;);
 inrecord:= not ...! whole external image received?;
 end if
 end inrecord;

The procedure "inrecord" is similar to "inimage" with the following exceptions. Whenever the
number of characters accessible in the external image is less than "length", the rest of "image" is left
unchanged. The part of the "image" that was changed is from pos 1 upto (but not including) the
resulting value of POS. Moreover, if the external image is too long, only the "length" first
characters are input. The value returned by the procedure is true and the remaining characters may
be input through subsequent "inrecord" (or possibly "inimage") statements. Otherwise, if the input
of the external image was completed, the value false is returned.

Note: If an "end of file" is encountered, EM ('!25!') is generated as a single character external
image, and the variable ENDFILE is given the value true. A call on "inimage" or "inrecord" when
ENDFILE already has the value true constitutes a run-time error.

10.4.3 Inchar

 INCHAR character procedure inchar;
 begin
 if not more then inimage;
 inchar:= image.getchar
 end inchar;

The procedure "inchar" gives access to and scans past the next character. Note: The result may be
the "EOF-character" EM (ISOrank 25).

10.4.4 Lastitem

 LASTITEM Boolean procedure lastitem;
 begin character c;

 c := ' ';
 while not ENDFILE and then (c=' ' or else c='!9!')
 do c := inchar;
 lastitem := ENDFILE;
 if c <> ' ' then setpos(pos-1)
 end lastitem;

The purpose of the procedure "lastitem" is to skip past all SP and HT characters (ISOrank 32 and 9
respectively). The process of scanning may involve the transfer of several successive external
images. If the file contains no further non-space, non-tab characters the value true is returned.

10.4.5 Intext

 INTEXT text procedure intext(w); integer w;
 begin text t;
 intext :- t :- blanks(w);
 while t.more do t.putchar(inchar)
 end intext;

The expression "intext(w)" where "w" is a positive integer is a reference to a new alterable main
frame of length w containing a copy of the next w characters of the file. POS is set to the following
character. The expression "intext(0)" references notext. In contrast to the item-oriented procedures
(see below), "intext" operates on a continuous stream of characters, reading several images if
necessary.

Note: The result may be a reference to an "EOF-image" (cf. 10.4.2).

10.4.6 Item-oriented input

 ININT integer procedure inint;
 if lastitem then error("..." ! Inint: End of file ;)
 else begin text t;
 t :- image.sub(pos,length-pos+1);
 inint := t.getint;
 setpos(pos+t.pos-1)
 end inint;

 INREAL long real procedure inreal;
 if lastitem then error("..." ! Inreal: End of file;)
 else begin text t;
 t :- image.sub(pos,length-pos+1);
 inreal := t.getreal;
 setpos(pos+t.pos-1)
 end inreal;

 INFRAC integer procedure infrac;
 if lastitem then error("..." ! Infrac: End of file;)
 else begin text t;
 t :- image.sub(pos,length-pos+1);
 infrac := t.getfrac;
 setpos(pos+t.pos-1)
 end infrac;

The procedures "inint", "inreal" and "infrac" are defined in terms of the corresponding de-editing
procedures of "image". These three procedures, starting at the current "pos", skip spaces and tab's,
and then scan past and convert a numeric item.

10.5 The class "outfile"
 file class outfile;
 begin
 Boolean procedure open(fileimage); text fileimage; ... 10.5.1;
 Boolean procedure close; 10.5.1;
 procedure outimage; 10.5.2;
 procedure outrecord; 10.5.3;
 procedure breakoutimage; 10.5.4;
 Boolean procedure checkpoint; 10.2.1;
 procedure outchar(c); character c; 10.5.6;
 procedure outtext(t); text t; 10.5.7;
 text procedure FIELD(w); integer w; 10.5.8;
 procedure outint(i,w); integer i,w; 10.5.8;
 procedure outfix(r,n,w); long real r; integer n,w; 10.5.8;
 procedure outreal(r,n,w); long real r; integer n,w; ... 10.5.8;
 procedure outfrac(i,n,w); integer i,n,w; 10.5.8;

 ... ;
 end outfile;

An object of the class "outfile" is used to represent an image-oriented sequential output file.

Note: See 10.7 for a special property of procedures "open", "close", "outimage" and "outrecord".

10.5.1 Open and close

 OPEN Boolean procedure open(fileimage); text fileimage;
 if ... then begin ... ! see 10.1.2;
 image :- fileimage;
 setpos(1);
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 if pos <> 1 then outimage;
 image :- notext;
 ... ; ! perform closing actions on external file;
 OPEN := false;
 close := true;
 end close;

The procedure "close" calls "outimage" if the position indicator is not equal to 1.

10.5.2 Outimage

 OUTIMAGE procedure outimage;
 if not OPEN then error("..." ! file closed;)
 else begin
 ... ; ! transfer "image" to external image;
 image := notext;
 setpos(1)
 end outimage;

The transfer of an image from the text "image" to the file is performed by the procedure
"outimage". The procedure reacts in an implementation-defined way if the "image" length is not
appropriate for the external file. (Depending on file type and host system, the external file does not
necessarily record trailing blanks from the "image".) After the transfer, "image" is cleared to blanks
and the position indicator is set to 1.

10.5.3 Outrecord

 OUTRECORD procedure outrecord;
 if not OPEN then error("..." ! file closed;)
 else begin
 ... ; ! transfer image.sub(1,pos-1);
 ! Note: no blanking of "image";
 setpos(1)
 end outrecord;

The procedure "outrecord" transfers to the file only that part of "image" which precedes POS. The
contents are not blanked after the transfer, although POS is set to one.

10.5.4 Breakoutimage

 BREAKOUTIMAGE
 procedure breakoutimage;
 if not OPEN then error("..." ! file closed;)
 else begin
 ... ; ! output image.sub(1,pos-1);
 image := notext;
 setpos(1)
 end breakoutimage;

The procedure "breakoutimage" outputs the part of "image" that precedes POS. The output is
performed as a partial output of an external image, in the sense that implicit line terminators are
suppressed. On some external files this operation is not possible. It then has an effect identical to
"outrecord".

After transfer the "image" is blanked and POS is set to one.

One use of "breakoutimage" is to allow input from a terminal display on the same line as one on
which output (e.g. a prompt) has already been written.

10.5.5 Checkpoint

The procedure "checkpoint" is described in 10.2.1.

10.5.6 Outchar

 OUTCHAR procedure outchar(c); character c;
 begin
 if not more then outimage;
 image.putchar(c)
 end outchar;

The procedure "outchar" stores a character in the POS position of "image". If "more" is false,
"outimage" is called first.

10.5.7 Outtext

 OUTTEXT procedure outtext(t); text t;
 begin
 if pos>1 and then t.length>length-pos+1 then outimage;
 t.setpos(1);
 while t.more do outchar(t.getchar);
 end outtext;

Procedure "outtext" always transfers the complete contents of the text parameter to the file.

10.5.8 Item-oriented output

 text procedure FIELD(w); integer w;
 if w>length then error("..." ! Item too long;)
 else begin
 if pos+w-1 > length then outimage;
 FIELD :- image.sub(pos,w);
 setpos(pos+w)
 end FIELD;

 OUTINT procedure outint(i,w); integer i,w;
 if w = 0 then FIELD(...).putint(i) ! see below;
 else if w < 0
 then begin text f;
 f :- FIELD(-w);
 f := notext;
 f.sub(1,...).putint(i) end
 else FIELD(w).putint(i);

 OUTFIX procedure outfix(r,n,w); long real r; integer n,w;
 ... ; ! as body of outint, with "putfix" substituted for "putint";

 OUTREAL procedure outreal(r,n,w); long real r; integer n,w;
 ... ; ! as body of outint, with "putreal" substituted for "putint";

 OUTFRAC procedure outfrac(i,n,w); integer i,n,w;
 ... ; ! as body of outint, with "putfrac" substituted for "putint";

The procedures "outint", "outfix", "outreal" and "outfrac" are defined in terms of the corresponding
editing procedures of "image". They provide facilities for "item-oriented" output. Each item is
edited into a "field" (subtext of "image") normally starting at the current accessible character. POS
is advanced correspondingly. If the remainder of "image" is too short to contain the item,
"outimage" is called implicitly prior to the editing operation. The field is space-filled before the
editing operation.

A run-time error occurs if a field cannot be contained within the full length of "image".

Parameter "w" determines both the length of this field and the adjustment of the item within it, as
follows.

 w > 0 The field length is w, the item is right-adjusted.

 w < 0 The field length is abs(w), the item is left-adjusted.

 w = 0 The field length is the exact number of characters needed
 to contain the item (i.e. no leading or trailing spaces).

10.6 The class "directfile"
 imagefile class directfile;
 begin integer LOC, MAXLOC; Boolean ENDFILE, LOCKED;
 integer procedure location; location:= LOC;
 Boolean procedure endfile; endfile := ENDFILE;
 Boolean procedure locked; locked := LOCKED;
 Boolean procedure open(fileimage); text fileimage; 10.6.1;
 Boolean procedure close; 10.6.1;
 integer procedure lastloc; 10.6.2;
 integer procedure maxloc; 10.6.2;
 procedure locate(i); integer i; 10.6.2;
 procedure inimage; 10.6.3;
 procedure outimage; 10.6.4;
 Boolean procedure deleteimage; 10.6.5;
 character procedure inchar; 10.6.6;
 integer procedure lock(t,i,j); real t; integer i,j; 10.6.7;
 Boolean procedure unlock; 10.6.7;
 Boolean procedure checkpoint; 10.2.1;
 Boolean procedure lastitem; 10.4.4;
 text procedure intext; 10.4.5;
 integer procedure inint; 10.4.6;
 long real procedure inreal; 10.4.6;
 integer procedure infrac; 10.4.6;
 procedure outchar(c); character c; 10.5.6;
 procedure outtext(t); text t; 10.5.7;
 text procedure FIELD(w); integer w; 10.5.8;
 procedure outint(i,w); integer i,w; 10.5.8;
 procedure outfix(r,n,w); long real r; integer n,w; 10.5.8;
 procedure outreal(r,n,w); long real r; integer n,w; 10.5.8;
 procedure outfrac(i,n,w); integer i,n,w; 10.5.8;

 ENDFILE:= true
 ...
 end directfile;

An object of the class "directfile" is used to represent an image-oriented direct file in which the
individual images are addressable by ordinal numbers.

The variable LOC contains the current ordinal number. When the file is closed, the value of LOC is
set to zero. The procedure "location" gives access to the current value of LOC.

The variable ENDFILE is true when the file is closed or when an image with location greater than
"lastloc" has been input (through "inimage"). It is set after each "inimage" statement. The procedure
"endfile" returns the current value.

The variable MAXLOC indicates the highest permitted value of LOC. On some systems this value
corresponds to the size of a preallocated file while, on other systems which allow the file to be
dynamically extended, this variable is assigned the value "maxint"-1.

10.6.1 Open and close

 OPEN Boolean procedure open(fileimage); text fileimage;
 if ... then begin ... ! see 10.1.2;
 MAXLOC := ... ; ! See below;
 image :- fileimage;
 setpos(1);
 locate(1);
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 image :- notext;
 if LOCKED then unlock;
 LOC := MAXLOC := 0;
 ... ;
 OPEN := false;
 close := ENDFILE := true;
 end close;

The procedure "open" locates the first image of the file. The length of "image" must, at all
"inimage" and "outimage" statements, be identical to the length of "image" at the "open" call. The
value assigned to MAXLOC at "open" is either a maximum length determined from the external
file, or it is "maxint"-1 if no such length exists.

10.6.2 Locate, lastloc, and maxloc

 LOCATE procedure locate(i); integer i;
 if i<1 or i>MAXLOC then error("..." ! Parameter out of range;)
 else begin
 LOC:= i;
 ... ;
 end locate;

 LASTLOC integer procedure lastloc;
 if not OPEN then error("..." ! file closed;)
 else lastloc := ... ;

 MAXLOC integer procedure maxloc;
 if not OPEN then error("..." ! file closed;)
 else maxloc := MAXLOC;

Procedure "locate" may be used to assign a given value to the variable LOC. This assignment may
be accompanied by implementation-defined checks and (possibly asynchronous) instructions to an
external memory device associated with the file; no transfer to/from "image" is, however,
performed. A parameter to "locate" less than one or greater than MAXLOC constitutes a run-time
error.

The procedure "lastloc" indicates the largest location of any written image. For a new file the value
returned is zero.

10.6.3 Inimage

 INIMAGE procedure inimage;
 if not OPEN then error("..." !file closed;)
 else begin
 setpos(1);
 ENDFILE:= LOC > lastloc;
 if ENDFILE then image:= "!25!" else
 if ... ! external written image at LOC exists ; then
 ... ! transfer to "image";...
 else begin
 while more do image.putchar('!0!')
 ! Note: now pos = length+1;
 end not written;
 locate(LOC+1) ! Location for *next* image;
 end inimage;

The procedure "inimage" transfers into the text "image" a copy of the external image as currently
identified by the variable LOC. If the file does not contain an image with an ordinal number equal
to the value of LOC, the effect of the procedure "inimage" is as follows. If the location indicated is
greater than "lastloc", then ENDFILE is set to true and the end of file text ("!25!") is assigned to
"image". Otherwise, if the image is a non-written image but there exists at least one written image
whose LOC is greater than current LOC, then the "image" is filled with NUL ('!0!') characters and
the position indicator is set to "length"+1 (i.e. "more" becomes false). Finally the value of LOC is
incremented by one through a "locate" call.

10.6.4 Outimage

 OUTIMAGE procedure outimage;
 if not OPEN then error("..." !file closed;)
 else if LOC > MAXLOC then error("..." ! file overflow;);
 else begin
 ... ; ! output "image" to external image at LOC;
 locate(LOC+1);
 image := notext;
 setpos(1)
 end outimage;

The procedure "outimage" transfers a copy of the text value "image" to the external image, thereby
storing in the file an external image whose ordinal number is equal to the current value of LOC. If
the file contains another image with the same ordinal number, that image is overwritten. The value
of LOC is then incremented by one through a "locate" call.

10.6.5 Deleteimage

 DELETEIMAGE
 Boolean procedure deleteimage;
 if OPEN and then ... ! image LOC was written;
 then begin
 ... ; ! attempt to delete image;
 if ... ! delete operation successful;
 then begin
 deleteimage := true;
 locate(LOC+1);
 end successful
 end deleteimage;

The Boolean procedure "deleteimage" makes the image identified by the current value of LOC
effectively un-written. Irrespective of any physical differences on the external medium between
never-written images and deleted ones, there is no difference from the program's point of view. Note
that this means that "deleteimage" may decrement the value returned by "lastloc" (in case LOC was
equal to "lastloc").

Note: Outputting a NUL-filled image at location "lastloc" in the file does not necessarily decrement
the "lastloc" value; explicit writing (outimage) of such images should be avoided.

10.6.6 Inchar

 INCHAR character procedure inchar;
 begin
 while not more do inimage;
 inchar:= image.getchar
 end inchar;

Note: Inchar skips all unwritten images.

10.6.7 Lock and Unlock

The procedures "lock" and "unlock" (see 10.2.2) provide locking mechanisms. The last two
parameters of "lock" indicate the minimum range of locations to be locked (inclusive).

10.6.8 Item-oriented input/output

The remaining procedures ("lastitem" to "intext" and "outchar" to "outtext") are defined in
accordance with the corresponding procedures of "infile" and "outfile" respectively, i.e. their
definitional algorithms are exact copies of those given in these two classes.

10.7 The class "printfile"

The class "printfile" defines a class for line printer oriented output.

 outfile class printfile;
 begin integer LINE, LINES_PER_PAGE, SPACING, PAGE;
 integer procedure line; line := LINE;
 integer procedure page; page := PAGE;
 Boolean procedure open(fileimage); text fileimage; 10.7.1;
 Boolean procedure close; 10.7.1;
 procedure linesperpage(n); integer n; 10.7.2;
 procedure spacing(n); integer n; 10.7.3;
 procedure eject(n); integer n; 10.7.4;
 procedure outimage; 10.7.5;
 procedure outrecord; 10.7.5;

 SPACING := 1;
 LINES_PER_PAGE := ... ;
 ...
 end printfile;

An object of the class "printfile" is used to represent a line printer oriented output file. The class is a
subclass of "outfile". A file image normally represents a line on a printed page.

It is a property of this class that "outfile" attributes, which are redeclared at "printfile" level, are not
accessible to the user's program through explicit qualification (qua). Thus these "outfile"
procedures ("open", "close", "outimage", "outrecord") may be envisaged as including the following
initial code:

 procedure X...;
 inspect this outfile
 when printfile do X...
 otherwise ...;

Note: Consequently, possible implicit calls of outimage from outchar, close and the item-oriented
output procedures are understood to invoke "printfile.outimage".

The variable LINE indicates the ordinal number of the next line to be printed (on the current page),
provided that no implicit or explicit "eject" statement occurs. Its value is accessible through the
procedure "line". Note that the value of LINE may be greater than LINES_PER_PAGE (see 10.7.5).

The variable PAGE indicates the ordinal number of the current page. Its value may be retrieved by
means of procedure "page".

10.7.1 Open and close

 OPEN Boolean procedure open(fileimage); text fileimage;
 if ... then begin ... ! see 10.1.2;
 image :- fileimage;
 PAGE := 0;
 LINE := 1;
 setpos(1);
 eject(1);
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 if pos <> 1 then outimage;
 eject(LINES_PER_PAGE);
 LINE := 0;
 SPACING := 1;
 LINES_PER_PAGE:= ... ;
 image :- notext;
 ... ;
 OPEN := false;
 close := true;
 end close;

The procedures "open" and "close" conform to the rules of 10.2. In addition, "close" outputs the
current value of "image" if POS is not equal to 1 and set LINE to zero.

10.7.2 Lines per page

 LINESPERPAGE
 integer procedure linesperpage(n); integer n;
 begin
 linesperpage := LINES_PER_PAGE;
 LINES_PER_PAGE:= if n > 0 then n
 else if n < 0 then maxint
 else ... ; ! default value;

The variable LINES_PER_PAGE indicates the maximum number of physical lines that may be
printed on each page, including intervening blank lines. An implementation-defined value is
assigned to the variable at the time of object generation, and when the printfile is closed. The value
of the variable may be retreived by a call on "linesperpage"; in addition the variable is givan a new
value as follows.

If the parameter to "linesperpage" is zero, LINES_PER_PAGE is reset to the original value
(assigned at object generation). A parameter value less than zero may be used to indicate an
"infinite" value of LINES_PER_PAGE, thus avoiding any automatic calls on "eject".

10.7.3 Spacing

 SPACING procedure spacing(n); integer n;
 if 0<=n and n<=LINES_PER_PAGE then SPACING := n
 else error("..." ! Parameter out of range;);

The variable SPACING represents the value by which the variable LINE is incremented after the
next printing operation. Its value may be changed by the procedure "spacing". A call on the
procedure "spacing" with a parameter less than zero or greater than LINES_PER_PAGE constitutes
an error. The effect of a a parameter to "spacing" which is equal to zero may be defined as forcing
successive printing operations on the same physical line. Note, however, that on some physical

media this may not be possible, in which case spacing(0) has the same effect as spacing(1) (i.e. no
overprinting).

10.7.4 Eject

 EJECT procedure eject(n); integer n;
 if not OPEN then error("..." ! file closed;)
 else if n <= 0 then error("..." ! Parameter out of range;)
 else begin
 if n > LINES_PER_PAGE then n := 1;
 if n <= LINE then
 begin
 ... ; ! change to new page on external file;
 PAGE := PAGE + 1
 end;
 ... ; ! move to line "n" on current (external) page;
 LINE := n
 end eject;

The procedure "eject" is used to position to a certain line identified by the parameter, n. The
variable "PAGE" is incremented by one each time an explicit or implicit "eject" implies a new page.

The following cases can be distinguished:

 n <= 0 : ERROR
 n > LINES_PER_PAGE : Equivalent to eject (1)
 n <= LINE : Position to line number n on the next page
 n > LINE : Position to line number n on the current page

The tests above are performed in the given sequence.

10.7.5 Outimage and outrecord

 OUTIMAGE procedure outimage;
 if not OPEN then error("..." ! file closed;)
 else begin
 if LINE > LINES_PER_PAGE then eject(1);
 ... ; ! output the image on the line indicated by LINE;
 LINE := LINE + SPACING;
 image := notext;
 setpos(1)
 end outimage;

 OUTRECORD procedure outrecord;
 if not OPEN then error("..." ! file closed;)
 else begin
 if LINE > LINES_PER_PAGE then eject(1);
 ... ; ! output image.sub(1,pos-1) on the line indicated by LINE;
 LINE := LINE + SPACING;
 setpos(1)
 end outrecord;

The procedures "outimage" and "outrecord" operate according to the rules of 10.2.3. In addition,
they update the variable LINE (and possibly PAGE).

Note: In addition, the procedure "breakoutimage" is inherited from the class prefix "outfile". This
procedure does not update LINE or PAGE.

10.8 Bytefiles

The class bytefile is the common prefix class for all byte-oriented files.

 file class bytefile;
 begin short integer BYTESIZE;
 short integer procedure bytesize; bytesize := BYTESIZE;

 end bytefile;

Bytefiles read and write files as continuous streams of bytes. The variable BYTESIZE defines the
range of the byte values transferred. Byte values are integers in the range (0:2**BYTESIZE-1). The
BYTESIZE value of the file object is accessible through procedure "bytesize".

Note: "Bytesize" returns zero before first "open" of the bytefile.

There are three standard subclasses of "bytefile":

 "inbytefile" representing a sequential file for which input
 operations are available.

 "outbytefile" representing a sequential file for which output
 operations are available.

 "directbytefile" representing a direct file with facilities for
 both input and output.

10.9 The class "inbytefile"

 bytefile class inbytefile;
 begin Boolean ENDFILE;
 Boolean procedure endfile; endfile:= ENDFILE;
 Boolean procedure open; 10.9.1;
 Boolean procedure close; 10.9.1;
 short integer procedure inbyte; 10.9.2;
 text procedure intext(t); text t; 10.9.3;

 ENDFILE:= true;
 ...
 end inbytefile;

An object of the class "inbytefile" is used to represent a byte-oriented sequential input file.

Variable "ENDFILE" is true if there are no more bytes to read. The procedure "endfile" returns the
value of ENDFILE.

10.9.1 Open and close

 OPEN Boolean procedure open;
 if ... then begin ... ! see 10.1.2;
 ENDFILE := false;
 BYTESIZE := ... ! value of access mode BYTESIZE;
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 ... ;
 OPEN := false;
 close := ENDFILE := true;
 end close;

10.9.2 Inbyte

 INBYTE short integer procedure inbyte;
 if ENDFILE then error("..." ! End of file ;)
 else if ... ! no more bytes to read;
 then ENDFILE := true ! inbyte returns zero;
 else inbyte := ...! next byte of size BYTESIZE;

The procedure "inbyte" returns the short integer value corresponding to the input byte. If there are
no more bytes to read, a zero result is returned. If prior to an "inbyte" call ENDFILE is true, a run-
time error occurs.

10.9.3 Intext

 INTEXT text procedure intext(t); text t;
 begin
 t.setpos(1);
 while t.more and not ENDFILE do t.putchar(char(inbyte));
 if ENDFILE then t.setpos(t.pos-1);
 intext:- t.sub(1,t.pos-1)
 end intext;

The procedure "intext" fills the frame of the parameter "t" with successive input bytes.

10.10 The class "outbytefile"

 bytefile class outbytefile;
 begin
 Boolean procedure open; 10.10.1;
 Boolean procedure close; 10.10.1;
 procedure outbyte(x); short integer x; 10.10.2;
 procedure outtext(t); text t; 10.10.3;
 Boolean procedure checkpoint; 10.2.1;

 end outbytefile;

An object of the class "outbytefile" is used to represent a sequential output file of bytes.

10.10.1 Open and close

 OPEN Boolean procedure open;
 if ... then begin ... ! see 10.1.2;
 BYTESIZE := ... ! value of access mode BYTESIZE;
 open := OPEN:= true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 OPEN := false;
 close := true;
 end close;

10.10.2 Outbyte

 OUTBYTE procedure outbyte(x); short integer x;
 if not OPEN then error("..." ! file closed;)
 else if x < 0 or else x >= 2**BYTESIZE
 then error("..." ! Outbyte, illegal byte value ;)
 else ... ; ! output of x;

The procedure "outbyte" outputs a byte corresponding to the parameter value. If the parameter
value is less than zero or exceeds the maximum permitted value, as defined by BYTESIZE, a run-
time error occurs. If the file is not open, a run-time error occurs.

10.10.3 Outtext

 OUTTEXT procedure outtext(t); text t;
 begin
 t.setpos(1);
 while t.more do outbyte(rank(t.getchar))
 end outtext;

The procedure "outtext" outputs all characters in the parameter "t" as bytes.

10.11 The class "directbytefile"

The class "directbytefile" defines a byte-oriented direct file.

 bytefile class directbytefile;
 begin integer LOC, MAXLOC; Boolean LOCKED;
 Boolean procedure endfile; endfile:=OPEN and then LOC>lastloc;
 integer procedure location; location := LOC;
 integer procedure maxloc; maxloc := MAXLOC;
 Boolean procedure locked; locked := LOCKED;
 Boolean procedure open; 10.11.1;
 Boolean procedure close; 10.11.1;
 integer procedure lastloc; 10.11.2;
 procedure locate(i); integer i; 10.11.2;
 short integer procedure inbyte; 10.11.3;
 procedure outbyte(x); short integer x; 10.11.3;
 Boolean procedure checkpoint; 10.2.1;
 integer procedure lock(t,i,j); real t; integer i,j; ... 10.11.4;
 Boolean procedure unlock; 10.11.4;
 procedure intext(t); text t; 10.9.3;
 procedure outtext(t); text t; 10.10.3;
 ...
 end directbytefile;

An object of the class "directbytefile" is used to represent an external file in which the individual
bytes are addressable by ordinal numbers. The variable LOC is defined to represent such ordinal
numbers. When the file is closed, the value of LOC is zero.

The variable MAXLOC indicates the maximum possible location on the external file. If this is not
meaningful MAXLOC has the value of "maxint"-1. The procedure "maxloc" gives access to the
current MAXLOC value.

The procedure "endfile" returns true whenever LOC indicates an address greater than "lastloc".

The procedures "intext" and "outtext" conform to the pattern for "inbytefile" and "outbytefile",
respectively.

10.11.1 Open and close

 OPEN Boolean procedure open;
 if ... then begin ... ! see 10.1.2;
 LOC := 1;
 MAXLOC := ...; ! fixed size, or maxint-1;
 BYTESIZE := ... ! value of access mode BYTESIZE;
 open := OPEN := true;
 end open;

 CLOSE Boolean procedure close;
 if OPEN then begin ... ! see 10.1.2;
 MAXLOC := 0;
 OPEN := false;
 close := true;
 end close;

10.11.2 Locate and lastloc

 LOCATE procedure locate(p); integer p;
 if p < 1 or p > MAXLOC
 then error("..." ! Parameter out of range;)
 else LOC := p;

 LASTLOC integer procedure lastloc;
 if not OPEN then error("..." ! file closed;)
 else lastloc := ...;

The current last written location is returned by the procedure "lastloc". The procedure "location"
returns the current value of LOC. The procedure "locate" may be used to assign a given value to the
variable. A parameter value to "locate" which is less than one or greater than MAXLOC constitutes
a run-time error.

10.11.3 Inbyte and outbyte

 INBYTE short integer procedure inbyte;
 if not OPEN then error("..." !file closed;)
 else if LOC <= lastloc
 then begin
 inbyte := ... ! next byte of size BYTESIZE;...;
 LOC := LOC+1
 end inbyte;

 OUTBYTE procedure outbyte(x); short integer x;
 if not OPEN then error("..." !file closed;)
 else if x < 0 or else x >= 2**BYTESIZE
 then error("..." ! Outbyte, illegal byte value ;);
 else if LOC > MAXLOC then error("..." !file overflow;)
 else begin
 ... ! output of x;
 LOC := LOC + 1
 end outbyte;

The procedure "inbyte" reads one byte, returning its integer value. The result of "inbyte" from an
unwritten LOC is zero (cf. 10.3.2).

The procedure "outbyte" outputs a byte according to the given parameter value (cf. 10.3.3).

10.11.4 Lock and Unlock

The procedures "lock" and "unlock" (see 10.2.2) provide locking mechanisms. The last two
parameters of "lock" indicate the minimum range of (byte) locations to be locked (inclusive).

Chapter 11

CLASS SIMSET

The class "simset" contains facilities for the manipulation of circular two-way lists, called "sets".

 class simset;
 begin
 class linkage;11.1 ;
 linkage class link;11.2 ;
 linkage class head;11.3 ;
 end simset;

The reference variables and procedures necessary for set handling are introduced in standard classes
declared within the class "simset". Using these classes as prefixes, their relevant data and other
properties are made parts of the object themselves.

Both sets and objects which may acquire set membership have references to a successor and a
predecessor. Consequently they are made subclasses of the "linkage" class.

The sets are represented by objects belonging to a subclass "head" of "linkage". Objects which may
be set members belong to subclasses of "link" which is itself another subclass of "linkage".

11.1 Class "linkage"

 class linkage;
 begin ref (linkage) SUC, PRED;
 ref (link) procedure suc;
 suc:- if SUC in link then SUC else none;
 ref (link) procedure pred;
 pred:- if PRED in link then PRED else none;
 ref (linkage) procedure prev; prev:- PRED;

 end linkage;

The class "linkage" is the common denominator for set heads and set members.

SUC is a reference to the successor of this linkage object in the set, PRED is a reference to the
predecessor.

The value of SUC and PRED may be obtained through the procedures "suc" and "pred". These
procedures give the value none if the designated object is not a set member, i.e. of class "link" or a
subclass of "link".

The attributes SUC and PRED may only be modified through the use of procedures defined within
"link" and "head". This protects the user against certain kinds of programming errors.

The procedure "prev" enables a user to access a set head from its first member.

11.2 Class "link"

 linkage class link;
 begin
 procedure out;
 if SUC=/=none then begin
 SUC.PRED :- PRED;
 PRED.SUC :- SUC;
 SUC :- PRED :- none
 end out;

 procedure follow(ptr); ref (linkage) ptr;
 begin out;
 if ptr=/=none and then ptr.SUC=/=none then begin
 PRED :- ptr;
 SUC :- ptr.SUC;
 SUC.PRED :- ptr.SUC :- this linkage end
 end follow;

 procedure precede(ptr); ref (linkage) ptr;
 begin out;
 if ptr=/=none and then ptr.SUC=/=none then begin
 SUC :- ptr;
 PRED :- ptr.PRED;
 PRED.SUC :- ptr.PRED :- this linkage end if
 end precede;

 procedure into(S); ref (head) S; precede(S);

 end link;

Objects belonging to subclasses of the class "link" may acquire set membership. An object may
only be a member of one set at a given instant.

In addition to the procedures "suc" and "pred", there are four procedures associated with each "link"
object: "out", "follow", "precede" and "into".

The procedure "out" removes the object from the set (if any) of which it is a member. The procedure
call has no effect if the object has no set membership.

The procedures "follow" and "precede" remove the object from the set (if any) of which it is a
member and insert it in a set at a given position. The set and the position are indicated by a
parameter which is inner to "linkage". The procedure call has the same effect as "out" (except for
possible side effects from evaluation of the parameter) if the parameter is none or if it has no set
membership and is not a set head. Otherwise the object is inserted immediately after ("follow") or
before ("precede") the "linkage" object designated by the parameter.

The procedure "into" removes the object from the set (if any) of which it is a member and inserts it
as the last member of the set designated by the parameter. The procedure call has the same effect as
"out" if the parameter has the value none (except for possible side effects from evaluating the actual
parameter).

11.3 Class "head"

 linkage class head;
 begin
 ref (link) procedure first; first :- suc;
 ref (link) procedure last; last :- pred;
 Boolean procedure empty; empty := SUC == this linkage;

 integer procedure cardinal;
 begin integer i;
 ref (link) ptr;
 ptr :- first;
 while ptr =/= none do begin
 i := i+1;
 ptr :- ptr.suc
 end while;
 cardinal := i
 end cardinal;

 procedure clear; while first =/= none do first.out;

 SUC :- PRED :- this linkage
 end head;

An object of the class "head", or a subclass of "head" is used to represent a set. "head" objects may
not acquire set membership. Thus, a unique "head" is defined for each set.

The procedure "first" may be used to obtain a reference to the first member of the set, while the
procedure "last" may be used to obtain a reference to the last member.

The Boolean procedure "empty" gives the value true only if the set has no members.

The integer procedure "cardinal" counts the number of members in a set.

The procedure "clear" removes all members from the set.

The references SUC and PRED initially point to the "head" itself, which thereby represents an
empty set.

Chapter 12

CLASS SIMULATION

The system class "simulation" may be considered an "application package" oriented towards
simulation problems. It has the class "simset" as prefix, and set-handling facilities are thus
immediately available.

The concepts defined in "simulation" are explained with respect to a prefixed block, whose prefix
part is an instance of the body of "simulation" or of a subclass. The prefixed block instance acts as
the head of a quasi-parallel system which may represent a "discrete event" simulation model.

 simset class simulation;
 begin ref (head) SQS;
 link class EVENT_NOTICE (EVTIME, PROC);
 long real EVTIME; ref (process) PROC;
 begin
 ref (EVENT_NOTICE) procedure suc;
 suc:- if SUC is EVENT_NOTICE then SUC else none;

 ref (EVENT_NOTICE) procedure pred; pred:- PRED;

 procedure RANK_IN_SQS (afore); Boolean afore;
 begin ref (EVENT_NOTICE) evt;
 evt:- SQS.last;
 while evt.EVTIME > EVTIME do evt :- evt.pred;
 if afore then
 while evt.EVTIME = EVTIME do evt :- evt.pred;
 follow(evt)
 end RANK_IN_SQS;
 end EVENT_NOTICE;

 ref (MAIN_PROGRAM) main;

 ref (EVENT_NOTICE) procedure FIRSTEV; FIRSTEV :- SQS.first;
 ref (process) procedure current; current :- FIRSTEV.PROC;
 long real procedure time; time := FIRSTEV.EVTIME;

 link class process; 12.1;
 procedure ACTIVAT 12.3;
 procedure hold 12.4;
 procedure passivate 12.4;
 procedure wait 12.4;
 procedure cancel 12.4;
 process class MAIN_PROGRAM 12.5;
 procedure accum 12.6;

 SQS :- new head;
 main :- new MAIN_PROGRAM;
 main.EVENT :- new EVENT_NOTICE(0,main);
 main.EVENT.into(SQS)
 end simulation;

When used as a prefix to a block or a class, "simulation" introduces simulation-oriented features
through the class "process" and associated procedures.

The variable SQS refers to a set which is called the "sequencing set", and serves to represent the
system time axis. The members of the sequencing set are event notices ranked according to
increasing value of the attribute "EVTIME". An event notice refers through its attribute PROC to a
"process" object and represents an event which is the next active phase of that object, scheduled to

take place at system time EVTIME. There may be at most one event notice referencing any given
process object.

The event notice at the lower end of the sequencing set refers to the currently active process object.
The object can be referenced through the procedure "current". The value of EVTIME for this event
notice is identified as the current value of system time. It may be accessed through the procedure
"time".

Note: Since the statements and procedures introduced by "simulation" make implicit use of the
sequencing procedures (detach, call and resume) explicit sequencing by these procedures should be
done with care.

12.1 Class "process"

 link class process;
 begin ref (EVENT_NOTICE) EVENT;
 Boolean TERMINATED;
 Boolean procedure idle; idle := EVENT==none;
 Boolean procedure terminated; terminated := TERMINATED;

 long real procedure evtime;
 if idle then error("..." ! No Evtime for idle process)
 else evtime := EVENT.EVTIME;

 ref (process) procedure nextev;
 nextev :- if idle or else EVENT.suc == none then none
 else EVENT.suc.PROC;

 detach;
 inner;
 TERMINATED:= true;
 passivate;
 error("..." ! Terminated process;)
 end process;

An object of a class prefixed by "process" is called a process object. A process object has the
properties of "link" and, in addition, the capability to be represented in the sequencing set and to be
manipulated by certain sequencing statements which may modify its "process state". The possible
process states are: active, suspended, passive and terminated.

When a process object is generated it immediately becomes detached and its reactivation point
positioned in front of the first statement of its user- defined operation rule. The process object
remains detached throughout its dynamic scope.

The procedure "idle" has the value true if the process object is not currently represented in the
sequencing set. It is said to be in the passive or terminated state depending on the value of the
procedure "terminated". An idle process object is passive if its reactivation point is at a user-defined
prefix level. If and when the PSC passes through the final end of the user-defined part of the body,
it proceeds to the final operations at the prefix level of the class "process", and the value of the
procedure "terminated" becomes true. (Although the process state "terminated" is not strictly
equivalent to the corresponding basic concept defined in chapter 7, an implementation may treat a
terminated process object as terminated in the strict sense). A process object currently represented in
the sequencing set is said to be "suspended", unless it is represented by the event notice at the lower
end of the sequencing set. In the latter case it is active. A suspended process is scheduled to become
active at the system time indicated by the attribute EVTIME of its event notice. This time value
may be accessed through the procedure "evtime". The procedure "nextev" references the process
object, if any, represented by the next event notice in the sequencing set.

12.2 Activation statement

 activation-statement
 = activation-clause [scheduling-clause]

 activation-clause
 = activator object-expression

 activator
 = activate
 | reactivate

 scheduling-clause
 = timing-clause
 | (before | after) object-expression

 timing-clause
 = simple-timing-clause [prior]

 simple-timing-clause
 = (at | delay) arithmetic-expression

An activation statement is only valid within an object of a class included in "simulation", or within
a prefixed block whose prefix part is such an object.

The effect of an activation statement is defined as being that of a call on the sequencing procedure
ACTIVAT local to "simulation", see 12.3.

The actual parameter list is determined from the form of the activation statement, by the following
rules:

1. The actual parameter corresponding to REAC is true if the activator
 is reactivate, false otherwise.

2. The actual parameter corresponding to X is the object expression of the activation clause.

3. The actual parameter corresponding to T is the arithmetic expression of the simple timing
 clause if present, otherwise it is zero.

4. The actual parameter corresponding to PRIO is true if prior is in the timing
 clause, false if it is not used or there is no timing clause.

5. The actual parameter corresponding to Y is the object expression of the scheduling clause
 if present, otherwise it is none.

6. The actual parameter corresponding to CODE is defined from the scheduling clause as

 follows:

 scheduling clause actual text parameter

 - absent - "direct"
 at arithmetic expression at
 delay arithmetic expression delay
 before object expression before
 after object expression after

12.3 Procedure ACTIVAT

 procedure ACTIVAT(REAC, X, CODE, T, Y, PRIO);
 value CODE; ref (process) X, Y; Boolean REAC, PRIO;
 text CODE; long real T;
 inspect X do if not TERMINATED then
 begin ref (process) z; ref (EVENT_NOTICE) EV;
 if REAC then EV:- EVENT
 else if EVENT =/= none then goto exit;
 z:- current;
 if CODE = "direct" then
 direct: begin EVENT:- new EVENT_NOTICE(time,X);
 EVENT.precede(FIRSTEV) end direct

 else if CODE = delay then
 begin T:= T + time;
 goto at_ end delay
 else if CODE = at then
 at_: begin if T < time then T:= time;
 if T = time and PRIO then goto direct;
 EVENT:- new EVENT_NOTICE(T, X);
 EVENT.RANK_IN_SQS(PRIO) end at

 else if Y == none or else Y.EVENT == none
 then EVENT :- none
 else begin
 if X == Y then goto exit;
 comment reactivate X before/after X;
 EVENT:- new EVENT_NOTICE(Y.EVENT.EVTIME, X);
 if CODE = before then EVENT.precede(Y.EVENT)
 else EVENT.follow(Y.EVENT)
 end before or after;
 if EV =/= none
 then begin EV.out; if SQS.empty then error("...") end;
 if z =/= current then resume(current);
 exit:
 end ACTIVAT;

The procedure ACTIVAT represents an activation statement, as described in 12.2. The effects of a
call on the procedure are described in terms of the corresponding activation statement. The purpose
of an activation statement is to schedule an active phase of a process object.

Let X be the value of the object expression of the activation clause. If the activator is activate the
statement has no effect (beyond that of evaluating its constituent expressions) unless the X is a
passive process object. If the activator is reactivate and X is a suspended or active process object,
the corresponding event notice is deleted (after the subsequent scheduling operation) and, in the
latter case, the current active phase is terminated. The statement otherwise operates as
an activate statement.

The scheduling takes place by generating an event notice for X and inserting it into the sequencing
set. The type of scheduling is determined by the scheduling clause.

An empty scheduling clause indicates direct activation, whereby an active phase of X is initiated
immediately. The event notice is inserted in front of the one currently at the lower end of the
sequencing set and X becomes active.The system time remains unchanged. The formerly active
process object becomes suspended.

A timing clause may be used to specify the system time of the scheduled active phase. The clause
"delay T", where T is an arithmetic expression, is equivalent to "at time + T". The event notice is
inserted into the sequencing set using the specified system time as the ranking criterion. It is
normally inserted after any event notice with the same system time. The symbol "prior" may,
however, be used to specify insertion in front of any event notice with the same system time.

Let Y be a reference to an active or suspended process object. Then the clause "before Y" or
"after Y" may be used to insert the event notice in a position defined relation to (before or after) the
event notice of Y. The generated event notice is given the same system time as that of Y. If Y is not
an active or suspended process object, no scheduling takes place.

Example

The statements

 activate X
 activate X before current
 activate X delay 0 prior
 activate X at time prior

are equivalent. They all specify direct activation.

The statement

 reactivate current delay T

is equivalent to "hold(T)".

12.4 Sequencing procedures

 HOLD procedure hold(T); long real T;
 inspect FIRSTEV do begin
 if T > 0 then EVTIME:= EVTIME + T;
 if suc =/= none and then suc.EVTIME <= EVTIME
 then begin out; RANK_IN_SQS(false);
 resume(current)
 end if
 end hold;

 PASSIVATE procedure passivate;
 begin
 inspect current do begin EVENT.out; EVENT :- none end;
 if SQS.empty then error("...") else resume(current)
 end passivate;

 WAIT procedure wait(S); ref (head) S;
 begin current.into(S); passivate end wait;

 CANCEL procedure cancel(X); ref (process) X;
 if X == current then passivate
 else inspect X do
 if EVENT =/= none
 then begin EVENT.out; EVENT :- none
 end cancel;

The sequencing procedures serve to organize the quasi-parallel operation of process objects in a
simulation model. Explicit use of the basic sequencing facilities (call, detach, resume) should be
made only after thorough consideration of its effects.

The statement "hold(T)", where T is a long real number greater than or equal to zero, halts the
active phase of the currently active process object, and schedules its next active phase at the system
time "time + T". The statement thus represents an inactive period of duration T. During the inactive
period the reactivation point is positioned within the "hold" statement. The process object becomes
suspended.

The statement "passivate" stops the active phase of the currently active process object and deletes
its event notice. The process object becomes passive. Its next active phase must be scheduled from
outside the process object. The statement thus represents an inactive period of indefinite duration.
The reactivation point of the process object is positioned within the "passivate" statement.

The procedure "wait" includes the currently active process object in a referenced set, and then calls
the procedure "passivate".

The statement "cancel(X)", where X is a reference to a process object, deletes the corresponding
event notice, if any. If the process object is currently active or suspended, it becomes passive.
Otherwise, the statement has no effect. The statement "cancel(current)" is equivalent to "passivate".

12.5 The main (simulation) program

 process class MAIN_PROGRAM;
 begin
 while true do detach
 end MAIN PROGRAM;

It is desirable that the main component of a simulation model, i.e. the "simulation" block instance,
should respond to the sequencing procedures of 12.4 as if it were itself a process object. This is

accomplished by having a process object of the class MAIN_PROGRAM as a permanent
component of the quasi-parallel system.

The process object represents the main component with respect to the sequencing procedures.
Whenever it becomes operative, the PSC (and OSC) immediately enter the main component as a
result of the "detach" statement (cf. 7.3.1). The procedure "current" references this process object
whenever the main component is active.

A simulation model is initialized by generating the MAIN_PROGRAM object and scheduling an
active phase for it at system time zero. Then the PSC proceeds to the first user-defined statement of
the "simulation" block.

12.6 The procedure "accum"

 ACCUM procedure accum (a,b,c,d); name a,b,c; long real a,b,c,d;
 begin
 a:= a+c * (time-b); b:= time; c:= c + d
 end accum;

A statement of the form "accum (A,B,C,D)" may be used to accumulate the "system time integral"
of the variable C, interpreted as a step function of system time. The integral is accumulated in the
variable A. The variable B contains the system time at which the variables were last updated. The
value of D is the current increment of the step function.

APPENDIX A

SIMULA Syntax

Chapter 1: Lexical tokens

 letter
 = a | b | c | d | e | f | g | h | i
 | j | k | l | m | n | o | p | q | r
 | s | t | u | v | w | x | y | z
 | A | B | C | D | E | F | G | H | I
 | J | K | L | M | N | O | P | Q | R
 | S | T | U | V | W | X | Y | Z
 digit
 = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 space
 = SP
 identifier
 = letter { letter | digit | _ }
 unsigned-number
 = decimal-number [exponent-part]
 | exponent-part
 decimal-number
 = unsigned-integer [decimal-fraction]
 | decimal-fraction
 decimal-fraction
 = . unsigned-integer
 exponent-part
 = (& | &&) [+ | -] unsigned-integer
 unsigned-integer
 = digit { digit | _ }
 | radix R radix-digit { radix-digit | _ }
 radix
 = 2 | 4 | 8 | 16
 radix-digit
 = digit | A | B | C | D | E | F
 string
 = simple-string { string-separator simple-string }
 string-separator
 = token-separator { token-separator }
 simple-string
 = " { ISO-code | non-quote-character | "" } "
 ISO-code
 = ! digit [digit] [digit] !
 non-quote-character
 = any printing character (incl. space) except the string qoute ".
 character-constant
 = ' character-designator '
 character-designator
 = ISO-code
 | non-quote-character
 | "
 format-effector
 = BS | HT | LF | VT | FF | CR
 token-separator
 = a direct comment
 | a space (except in simple strings and character constants)
 | a format effector (except as noted for spaces)
 | the separation of consecutive lines

Chapter 2: Types and values

 type

 = value-type
 | reference-type
 value-type
 = arithmetic-type
 | boolean
 | character
 arithmetic-type
 = integer-type
 | real-type
 integer-type
 = [short] integer
 real-type
 = [long] real
 reference-type
 = object-reference-type
 | text
 object-reference-type
 = ref "(" qualification ")"
 qualification
 = class-identifier

Chapter 3: Expressions

 expression
 = value-expression
 | reference-expression
 | designational-expression
 value-expression
 = arithmetic-expression
 | Boolean-expression
 | character-expression
 reference-expression
 = object-expression
 | text-expression
 variable
 = simple-variable-1
 | subscripted-variable
 simple-variable-1
 = identifier-1
 subscripted-variable
 = array-identifier-1 "(" subscript-list ")"
 array-identifier-1
 = identifier-1
 subscript-list
 = subscript-expression { , subscript-expression }
 subscript-expression
 = arithmetic-expression
 function-designator
 = procedure-identifier-1 [actual-parameter-part]
 procedure-identifier-1
 = identifier-1
 actual-parameter-part
 = "(" actual-parameter { , actual-parameter } ")"
 actual-parameter
 = expression
 | array-identifier-1
 | switch-identifier
 | procedure-identifier-1

 identifier-1
 = identifier
 | remote-identifier
 remote-identifier
 = simple-object-expression . attribute-identifier
 | text-primary . attribute-identifier
 attribute-identifier
 = identifier
 Boolean-expression
 = simple-Boolean-expression
 | if-clause simple-Boolean-expression else Boolean-expression
 simple-Boolean-expression
 = Boolean-tertiary { or else Boolean-tertiary }
 Boolean-tertiary
 = equivalence { and then equivalence }
 equivalence
 = implication { eqv implication }
 implication
 = Boolean-term { imp Boolean-term }
 Boolean-term
 = Boolean-factor { or Boolean-factor }
 Boolean-factor
 = Boolean-secondary { and Boolean-secondary }
 Boolean-secondary
 = [not] Boolean-primary
 Boolean-primary
 = logical-value
 | variable
 | function-designator
 | relation
 | "(" Boolean-expression ")"
 relation
 = arithmetic-relation
 | character-relation
 | text-value-relation
 | object-relation
 | object-reference-relation
 | text-reference-relation
 value-relational-operator
 = < | <= | = | >= | > | <>
 reference-comparator
 = == | =/=
 arithmetic-relation
 = simple-arithmetic-expression
 value-relational-operator simple-arithmetic-expression
 character-relation
 = simple-character-expression
 value-relational-operator simple-character-expression
 text-value-relation
 = simple-text-expression
 value-relational-operator simple-text-expression
 object-relation
 = simple-object-expression is class-identifier
 | simple-object-expression in class-identifier
 object-reference-relation
 = simple-object-expression
 reference-comparator simple-object-expression
 text-reference-relation
 = simple-text-expression
 reference-comparator simple-text-expression
 arithmetic-expression
 = simple-arithmetic-expression
 | if-clause simple-arithmetic-expression
 else arithmetic-expression
 simple-arithmetic-expression
 = [+ | -] term { (+ | -) term }
 term
 = factor { (* | / | //) factor }
 factor

 = primary { ** primary }
 primary
 = unsigned-number
 | variable
 | function-designator
 | "(" arithmetic-expression ")"
 character-expression
 = simple-character-expression
 | if-clause simple-character-expression
 else character-expression
 simple-character-expression
 = character-constant
 | variable
 | function-designator
 | "(" character-expression ")"
 text-expression
 = simple-text-expression
 | if-clause simple-text-expression else text-expression
 simple-text-expression
 = text-primary { & text-primary }
 text-primary
 = notext
 | string
 | variable
 | function-designator
 | "(" text-expression ")"
 object-expression
 = simple-object-expression
 | if-clause simple-object-expression else object-expression
 simple-object-expression
 = none
 | variable
 | function-designator
 | object-generator
 | local-object
 | qualified-object
 | "(" object-expression ")"
 object-generator
 = new class-identifier [actual-parameter-part]
 local-object
 = this class-identifier
 qualified-object
 = simple-object-expression qua class-identifier
 designational-expression
 = simple-designational-expression
 | if-clause simple-designational-expression
 else designational-expression
 simple-designational-expression
 = label
 | switch-designator
 | "(" designational-expression ")"
 switch-designator
 = switch-identifier "(" subscript-expression ")"
 switch-identifier
 = identifier
 label
 = identifier

Chapter 4: Statements

 statement
 = { label : } unconditional-statement
 | { label : } conditional-statement
 | { label : } for-statement
 unconditional-statement
 = assignment-statement
 | while-statement
 | goto-statement

 | procedure-statement
 | object-generator
 | connection-statement
 | compound-statement
 | block
 | dummy-statement
 | activation-statement
 assignment-statement
 = value-assignment
 | reference-assignment
 value-assignment
 = value-left-part := value-right-part
 value-left-part
 = destination
 | simple-text-expression
 value-right-part
 = value-expression
 | text-expression
 | value-assignment
 destination
 = variable
 | procedure-identifier
 reference-assignment
 = reference-left-part :- reference-right-part
 reference-left-part
 = destination
 reference-right-part
 = reference-expression
 | reference-assignment
 conditional-statement
 = if-clause { label : } unconditional-statement [else statement]
 | if-clause { label : } for-statement
 if-clause
 = if Boolean-expression then
 while-statement
 = while Boolean-expression do statement
 for-statement
 = for-clause statement
 for-clause
 = for simple-variable for-right-part do
 simple-variable
 = identifier
 for-right-part
 = := value-for-list-element { , value-for-list-element }
 = :- reference-for-list-element { , reference-for-list-element }
 value-for-list-element
 = value-expression [while Boolean-expression]
 | text-expression
 | arithmetic-expression
 step arithmetic-expression until arithmetic-expression
 reference-for-list-element
 = reference-expression [while Boolean-expression]
 goto-statement
 = (goto | go to) designational-expression
 procedure-statement
 = procedure-identifier-1 [actual-parameter-part]
 connection-statement
 = inspect object-expression when-clause { when-clause }
 [otherwise-clause]
 | inspect object-expression do connection-block-2
 [otherwise-clause]
 when-clause
 = when class-identifier do connection-block-1
 otherwise-clause
 = otherwise statement
 connection-block-1
 = statement
 connection-block-2
 = statement

 compound-statement
 = begin compound-tail
 compound-tail
 = statement { ; statement } end
 block
 = subblock
 | prefixed-block
 subblock
 = block-head ; compound-tail
 block-head
 = begin declaration { ; declaration }
 prefixed-block
 = block-prefix main-block
 block-prefix
 = class-identifier [actual-parameter-part]
 main-block
 = block
 | compound-statement
 dummy-statement
 = empty

Chapter 5: Declarations

 declaration
 = simple-variable-declaration
 | array-declaration
 | switch-declaration
 | procedure-declaration
 | class-declaration
 | external-declaration
 simple-variable-declaration
 = type type-list
 type-list
 = type-list-element { , type-list-element }
 type-list-element
 = identifier
 | constant-element
 array-declaration
 = [type] array array-segment { , array-segment }
 array-segment
 = array-identifier { , array-identifier }
 "(" bound-pair-list ")"
 array-identifier
 = identifier
 bound-pair-list
 = bound-pair { , bound-pair }
 bound-pair
 = arithmetic-expression : arithmetic-expression
 switch-declaration
 = switch switch-identifier := switch-list
 switch-list
 = designational-expression { , designational-expression }
 procedure-declaration
 = [type] procedure procedure-heading ; procedure-body
 procedure-heading
 = procedure-identifier
 [formal-parameter-part ; [mode-part] specification-part]
 procedure-body
 = statement
 procedure-identifier
 = identifier
 formal-parameter-part
 = "(" formal-parameter { , formal-parameter } ")"
 formal-parameter
 = identifier
 specification-part
 = specifier identifier-list ; { specifier identifier-list ; }
 specifier

 = type [array | procedure]
 | label
 | switch
 mode-part
 = name-part [value-part]
 | value-part [name-part]
 name-part
 = name identifier-list ;
 value-part
 = value identifier-list ;
 identifier-list
 = identifier { , identifier }
 class-declaration
 = [prefix] main-part
 prefix
 = class-identifier
 main-part
 = class class-identifier
 [formal-parameter-part ; [value-part]
 specification-part] ;
 [protection-part ;] [virtual-part ;]
 class-body
 class-identifier
 = identifier
 class-body
 = statement
 | split-body
 split-body
 = initial-operations inner-part final-operations
 initial-operations
 = (begin | block-head ;) { statement ; }
 inner-part
 = { label : } inner
 final-operations
 = end
 | ; compound-tail
 virtual-part
 = virtual : virtual-spec ; { virtual-spec ; }
 virtual-spec
 = specifier identifier-list
 | procedure procedure-identifier procedure-specification
 protection-part
 = protection-specification { ; protection-specification }

 protection-specification
 = hidden identifier-list
 | protected identifier-list
 | hidden protected identifier-list
 | protected hidden identifier-list
 constant-element
 = identifier = value-expression
 | identifier = string

Chapter 6: Program modules

 SIMULA-source-module
 = [external-head]
 (program | procedure-declaration | class-declaration)
 external-head
 = external-declaration ; { external-declaration ; }
 external-declaration
 = external-procedure-declaration
 | external-class-declaration
 program
 = statement
 external-procedure-declaration
 = external [kind] [type] procedure external-list
 | external kind procedure external-item procedure-specification
 kind
 = identifier
 procedure-specification
 = is procedure-declaration
 external-class-declaration
 = external class external-list
 external-list
 = external-item { , external-item }
 external-item
 = identifier [= external-identification]
 external-identification
 = string

Chapter 12: Class Simulation

 activation-statement
 = activation-clause [scheduling-clause]
 activation-clause
 = activator object-expression
 activator
 = activate
 | reactivate
 scheduling-clause
 = timing-clause
 | (before | after) object-expression
 timing-clause
 = simple-timing-clause [prior]
 simple-timing-clause
 = (at | delay) arithmetic-expression

APPENDIX B

Implementation Aspects

According to Part I (section 5.1.3) of the Standard, an implementation of the language must
document all implementation-dependent and -defined issues. This appendix summarises all
characteristics of the language which in some manner depend upon the particular implementation of
the language. It may thus be used as a checklist to be filled out for any given implementation.

It can also be a useful guide when preparing programs that potentially may be transferred to other
manufacturers equipment. Keeping these points in mind when preparing a program may spare a
programmer many a painful hour of debugging a program that behaves abnormally on some other
host computer, while executing perfectly correct on his own system (or vice versa).

B.1 LANGUAGE EXTENSIONS

Extensions are allowed only if the following conditions are fulfilled:

a.The implementor provides a translator program, which takes any program accepted by that
implementation and translates it into a valid program. The resulting program may contain a
minimum of calls to non-SIMULA procedures in cases where this is absolutely necessary
due to a lack of facilities in the language.

b.Each implementation has a switch which must be set to make the compiler accept
programs with extensions.

An implementation which allows extensions, shall give warning messages for the use of
such extensions.

c.All such extensions should be reported to the SIMULA Standards Group, which will send
such reports to the SSG members for comments. Responses from SSG members will be sent
to the originator through the SSG.

Additional file access modes and access mode values to those defined in 10.1.1 may be defined by
an implementation.

An implementation may provide additional subclasses of class file.

B.2 ALLOWED IMPLEMENTATION RESTRICTIONS

It is recognised that all language processing systems have some restrictions due to e.g. limited
capacity of the underlying hardware. Such restrictions are not mentioned here.

An implementation may restrict the value range of the ISO-code construct, and the character set
defined in table 1.1, as long as the "basic" characters of the table are included.

An implementation may restrict the number of different block levels at which a system class may be
used as a prefix.

An implementation may restrict, in any way, the use of "file" and its subclasses for prefixing or
block prefixing.

The type short integer is allowed to be unsupported by an implementation in the sense that it must
then be mapped unto integer (i.e. the key word short is ignored).

The type long real is allowed to be unsupported by an implementation in the sense that it must then
be mapped unto real (i.e. the key word long is ignored, and the special symbol "&&" is treated as
"&").

An implementation may restrict the use of the standard access modes and their possible standard
values; in that case the procedure "setaccess" must treat such values as unrecognised, and
return false.

An implementation may restrict the number of block levels at which an external class declaration
may occur.

An implementation may restrict the possible values of access mode BYTESIZE in any way.

B.3 IMPLEMENTATION DEPENDENT CHARACTERISTICS

Whether or not the procedure "terminate_program" will close open external files (except those
associated with sysin and sysout), is implementation-defined.

The effect of a parameter to printfile.spacing with value zero, may be device and implementation
dependent, if the standard effect of "overprint" cannot be achieved.

The interpretation of directive lines (apart from the "% "-convention) is implementation dependent.

The interpretation of "kind" and of the external identification string in an external procedure
declaration is implementation dependent, as is the identification of a separately compiled module if
no external identification is given.

The size of the part of the file that is actually locked after a call to procedure "lock", is
implementation dependent.

B.4 IMPLEMENTATION DEFINED CHARACTERISTICS

The internal character set is implementation defined. An implementation is required to document
the translation between the internal character set and the standard character set (as defined by ISO
646).

Note: The collating sequence of character (and text) values is decided by the internal character set.
Thus the values of character and text relations are implementation-defined.

The values of "inlength" and "outlength" (see ch. 10) are implementation- defined.

The actual external files connected to SYSIN and SYSOUT are implementation- defined.

An implementation may define the actions to be taken when format effectors are included in the
program (see 1.9).

The relative value range of real and long real is implementation- defined.

The ranges in which conversions from an integer type to a real type, or from real to long real, are
exact, are implementation-defined.

The range of a numeric item in a de-editing procedure is implementation defined.

If the REAL ITEM located by text procedure "getreal" is an integer within an implementation
defined range, the conversion is exact.

The EXPONENT of the numeric item resulting from "putreal" has a fixed, implementation-defined
number of characters.

The function values of "char" and "rank" are implementation-defined.

The exact definitions of the standard mathematical functions are implementation-defined.

The values of the environmental enquiries are implementation-defined.

The association between a file object and an external file is implementation defined.

The effect of several file objects representing the same (external) file is implementation defined.

The details of procedures "open" and "close" are implementation-defined.

The interpretation of a function value of "lock" less than -1 is implementation-defined.

Directfile.outimage reacts in an implementation-defined way if the length of the internal image is
incompatible with the format of the external file.

Directfile.locate may invoke implementation defined checks and possibly instructions to an external
memory device.

Printfile.LINES_PER_PAGE: the value at object generation and after close is implementation
defined.

The "basic drawing" algorithm is implementation defined.

The effect of the conditions demanded for the parameters to "linear" not being fulfilled, is
implementation defined.

The number of decimals in the field for seconds of the function "datetime" is implementation-
defined.

The effect of the parameters to "histo" not fulfilling the condition: length of A = length of B +1, is
implementation defined.

The default BYTESIZE for bytefiles is implementation defined.

Evaluation of arithmetic expressions may give different results for different implementations.

APPENDIX C

Index of Syntactic Meta-symbols

 Symbol Defined in: Referenced in:

 activation-clause 12.2 12.2
 activation-statement 12.2 4.
 actual-parameter 3.1.4 3.1.4
 actual-parameter-part 3.1.4 3.1.4, 3.8, 4.6, 4.10.1
 arithmetic-expression 3.5 3., 3.1, 3.5, 4.4, 5.2, 12.2
 arithmetic-relation 3.3.1 3.3
 arithmetic-type 2. 2.
 array-declaration 5.2 5.
 array-identifier 5.2 5.2
 array-identifier-1 3.1 3.1, 3.1.4
 array-segment 5.2 5.2
 assignment-statement 4.1 4.
 attribute-identifier 3.1.5 3.1.5

 block 4.10 4., 4.10.1
 block-head 4.10 4.10, 5.5
 block-prefix 4.10.1 4.10.1
 Boolean-expression 3.2 3., 3.2, 4.2, 4.3, 4.4
 Boolean-factor 3.2 3.2
 Boolean-primary 3.2 3.2
 Boolean-secondary 3.2 3.2
 Boolean-term 3.2 3.2
 Boolean-tertiary 3.2 3.2
 bound-pair 5.2 5.2
 bound-pair-list 5.2 5.2

 character-constant 1.7 3.6
 character-designator 1.7 1.7
 character-expression 3.6 3., 3.6
 character-relation 3.3.2 3.3
 class-body 5.5 5.5
 class-declaration 5.5 5., 6.
 class-identifier 5.5 2., 3.3.4, 3.8, 4.8, 4.10.1, 5.5
 compound-statement 4.9 4.
 compound-tail 4.9 4.9, 4.10, 5.5
 conditional-statement 4.2 4.
 connection-block-1 4.8 4.8
 connection-block-2 4.8 4.8
 connection-statement 4.8 4.
 constant-element 5.8 5.1

 decimal-fraction 1.5 1.5
 decimal-number 1.5 1.5
 declaration 5. 4.10
 designational-expression 3.9 3., 3.9, 4.5, 5.3
 destination 4.1 4.1
 digit 1. 1.4, 1.5, 1.6
 dummy-statement 4.11 4.

 equivalence 3.2 3.2
 exponent-part 1.5 1.5
 expression 3. 3.1.4
 external-class-declaration 6.4 6.1
 external-declaration 6.1 5., 6.1
 external-head 6.1 6.
 external-identification 6.5 6.5
 external-item 6.5 6.3, 6.5

 external-list 6.5 6.3, 6.4
 external-procedure-declaration 6.3 6.1

 factor 3.5 3.5
 final-operations 5.5 5.5
 for-clause 4.4 4.4
 formal-parameter 5.4.2 5.4.2
 formal-parameter-part 5.4.2 5.4, 5.5
 format-effektor 1.9 1.9
 for-right-part 4.4 4.4
 for-statement 4.4 4., 4.2
 function-designator 3.1.4 3.2, 3.5, 3.6, 3.7, 3.8

 goto-statement 4.5 4.

 identifier 1.4 3.1.5, 3.9, 4.4, 5.1, 5.2, 5.4,
 5.4.2, 5.4.3, 5.5, 5.8, 6.3, 6.5
 identifier-1 3.1.5 3.1, 3.1.4
 identifier-list 5.4.3 5.4.2, 5.4.3, 5.5.3, 5.5.4
 if-clause 4.2 3.2, 3.5, 3.6, 3.7, 3.8, 3.9, 4.2
 implication 3.2 3.2
 initial-operations 5.5 5.5
 inner-part 5.5 5.5
 integer-type 2. 2.
 ISO-code 1.6 1.6, 1.7

 kind 6.3 6.3

 label 3.9 3.9, 4., 4.2, 5.5
 letter 1. 1.4
 local-object 3.8 3.8

 main-block 4.10.1 4.10.1
 main-part 5.5 5.5
 mode-part 5.4.3 5.4

 name-part 5.4.3 5.4.3
 non-quote-character 1.6 1.6, 1.7

 object-expression 3.8 3., 3.8, 4.8, 12.2
 object-generator 3.8 3.8, 4.
 object-reference-type 2. 2.
 object-reference-relation 3.3.5 3.3
 object-relation 3.3.4 3.3
 otherwise-clause 4.8 4.8

 prefix 5.5 5.5
 prefixed-block 4.10.1 4.10
 primary 3.5 3.5
 procedure-body 5.4 5.4
 procedure-declaration 5.4 5., 6., 6.3
 procedure-heading 5.4 5.4
 procedure-identifier 5.4 4.1, 5.4, 5.5.3
 procedure-identifier-1 3.1.4 3.1.4, 4.6
 procedure-specification 6.3 5.5.3, 6.3
 procedure-statement 4.6 4.
 program 6.2 6.
 protection-part 5.5.4 5.5
 protection-specification 5.5.4 5.5.4

 qualification 2. 2.
 qualified-object 3.8 3.8

 radix 1.5 1.5
 radix-digit 1.5 1.5
 real-type 2. 2.
 reference-assignment 4.1 4.1
 reference-comparator 3.3 3.3.5, 3.3.6
 reference-expression 3. 3., 4.1, 4.4

 reference-for-list-element 4.4 4.4
 reference-left-part 4.1 4.1
 reference-relation 3.2.1 3.2.1
 reference-right-part 4.1 4.1
 reference-type 2. 2.
 relation 3.3 3.2
 remote-identifier 3.1.5 3.1.5

 scheduling-clause 12.2 12.2
 simple-arithmetic-expression 3.5 3.3.1, 3.5
 simple-Boolean-expression 3.2 3.2
 simple-character-expression 3.6 3.3.2, 3.6
 simple-designational-expression 3.9 3.9
 simple-object-expression 3.8 3.1.5, 3.3.4, 3.3.5, 3.8
 simple-string 1.6 1.6
 simple-text-expression 3.7 3.3.3, 3.3.6, 3.7, 4.1
 simple-timing-clause 12.2 12.2
 simple-variable 4.4 4.4
 simple-variable-1 3.1 3.1
 simple-variable-declaration 5.1 5.
 SIMULA-source-module 6.
 space 1. 1.9
 specification-part 5.4.2 5.4, 5.5
 specifier 5.4.2 5.4.2, 5.5.3
 split-body 5.5 5.5
 statement 4. 4.2, 4.3, 4.4, 4.8, 4.9, 5.4,
 5.5, 6.2
 string 1.6 3.7, 5.8, 6.5
 string-separator 1.6 1.6
 subblock 4.10 4.10
 subscripted-variable 3.1 3.1
 subscript-expression 3.1 3.1, 3.9
 subscript-list 3.1 3.1
 switch-declaration 5.3 5.
 switch-designator 3.9 3.9
 switch-identifier 3.9 3.1.4, 3.9, 5.3
 switch-list 5.3 5.3
 term 3.5 3.5
 text-expression 3.7 3., 3.7, 4.1, 4.4
 text-primary 3.7 3.1.5, 3.7
 text-value-relation 3.3.3 3.3
 text-reference-relation 3.3.6 3.3
 timing-clause 12.2 12.2
 token-separator 1.9 1.6
 type 2. 5.1, 5.2, 5.4, 5.4.2, 6.3
 type-list 5.1 5.1
 type-list-element 5.1 5.1

 unconditional-statement 4. 4., 4.2
 unsigned-integer 1.5 1.5
 unsigned-number 1.5 3.5

 value-assignment 4.1 4.1
 value-expression 3. 3., 4.1, 4.4, 5.8
 value-for-list-element 4.4 4.4
 value-left-part 4.1 4.1
 value-part 5.4.3 5.4.3, 5.5
 value-relational-operator 3.3 3.3.1, 3.3.2, 3.3.3
 value-right-part 4.1 4.1
 value-type 2. 2.
 variable 3.1 3.2, 3.5, 3.6, 3.7, 3.8, 4.1
 virtual-part 5.5.3 5.5
 virtual-spec 5.5.3 5.5.3

 when-clause 4.8 4.8
 while-statement 4.3 4.

APPENDIX D

Statutes of the SIMULA Standards Group (SSG)

Article 1. Objectives

The SIMULA Standards Group (SSG) is an organisation which at all times shall: 1.1 be the final
arbiter in the interpretation of the SIMULA language definition and be a centre for custody of this
formal definition. 1.2 standardise the SIMULA language by minimizing its changes and preventing
occurrence of SIMULA translators violating the language definition. 1.3 provide a forum for
discussion and exchange of information relating to the use of the SIMULA language and its support.

Article 2. Membership

2.1 The SSG offers both full and extraordinary membership. Only full members have voting rights.
2.2 Full membership is open to organisations and firms responsible for the maintenance and support
of a SIMULA system. It is required that each such SIMULA system is in active use. Any such
organisation may apply for and be voted a full SSG member. 2.3 The Norwegian Computing Center
(NCC), Oslo, Norway is ex officio a full member of the SSG. In addition, the SIMULA
Development Group (SDG) Chairman and the Association of SIMULA Users (ASU) Chairman are
also full members of the SSG. 2.4 The SSG can offer extraordinary membership to individuals in
recognition of their contribution to the SSG work. 2.5 Once granted an SSG membership lasts until:
- it is resigned by a particular member - it is revoked by the SSG because the conditions under
which it was granted cease to exist or the member acts against the objectives of the SSG. 2.6 There
is no fee for SSG membership.

Article 3. Representation, Voting and Meetings

3.1 All SSG members shall appoint one person to be its representative in the SSG. The duration of
this person's appointment is determined by the member. 3.2 The SSG shall meet once every
calendar year for an Annual Meeting. This meeting will, in addition to eventual matters of an
administrative character, handle proposals related to the SIMULA language definition as described
in the Formal Rules of the SSG operation. The Annual Meeting shall also elect one of the full
member's representatives as SSG Chairman. In addition to the Annual Meeting the SSG may have
extraordinary meetings when this is approved by a majority of the members. Decisions can only be
taken regarding matters on the agenda presented to the members at least 3 weeks before the
meeting, unless all members agree otherwise. 3.3 To constitute a quorum, all members of the SSG
shall be notified of the Meeting and at least one more than a half of the member representatives
shall be present or give their votes by mail. 3.4 Decisions by SSG are made by a majority vote
among the representatives taking part in the vote. Changes to the SSG Statutes or a decision to
dissolve the SSG, require 4/5 majority, as well as the consent of the NCC. 3.5 The SSG meetings
are open to non-members who wish to aattend. Such non-members will be granted observer status
by the SSG. Observers have no voting rights and must apply to the SSG for each meeting they wish
to attend.

Formal rules of the SSG operation

1. The main task of the SSG is the maintenance of the SIMULA language definition (Common
Base) which consists of: a) a clarification of obscure parts of the definition. b) removal of possible
conflicts in the definition. c) alteration of the definition in line with the approved changes in the
language.

2. The following types of language changes can be directly considered by the SSG: a) obvious
oversights that have occurred in the text of the language definition during editing/printing. b)
removal of language restrictions that are proved obsolete for language consistency and
implementation. c) trivial extensions to the existing concepts that are felt relevant for continued use
of the language in changing environment. All other changes must first be handled by the SDG and
passed over in the form of a formal recommendation.

3. All proposals for language changes conforming to the above rules must be formulated in
writing in a concise manner and submitted to the SSG secretariat. Any SIMULA user may submit
such a proposal.

4. It is the responsibility of the SSG Chairman to notify receipt of each proposal, to register it
and schedule its processing at one of the SSG meetings. Alternatively the SSG Chairman may point
out any inadequacies in a proposal to its submitter. In either case the proposal will be announced at
the next SSG meeting which may approve or revoke the Chairman's decision related to this
proposal. Complete material related to a particular proposal will only be submitted to SSG members
when the proposal is to be processed at the next meeting or on specific request.

5. In its final form every proposal will be an updating text to the Common Base. It will further
indicate the original submitter, date of submission and its motivation. Alternative forms of the
proposal and reasons for their rejection are valuable parts of the document. An example of a suitable
form is attached to these rules. The logical consistency of the text, its clarity and conciseness are of
utmost importance. To this aim the SSG or its Chairman may allocate one particular SSG member
to bring the proposal into the required shape if this is deemed necessary.

6. It is the responsibility of the SSG Chairman to notify the submitter of a proposal about the
result of its processing by the SSG if this is not otherwise obvious. It is also his/her responsibility to
minimize the time spent on each proposal.

7. The final text of the proposals will be available from the SSG secratariat as a supplement to
the Common Base until they are incorporated into this at its next revision. To simplify this process,
at its approval a proposal will be assigned a number reflecting both the Common Base version it
applies to and its chronological order.

 Reg. No.: Accepted as SIMULA Standard Change No.:

 Title :

 Submitter :

 Date :

 Affected section(s):

 Proposal:

 Motivation:

 SSG decision on the above proposal:

	SIMULA Standard
	As defined by the SIMULA Standards Group, 25th August 1986.
	Table of Contents

	Chapter 0
	General Introduction
	0. General Introduction
	0.2 Scope and field of application
	0.3 REFERENCES
	0.4 DEFINITIONS
	0.4.1 SIMULA Program
	0.4.1.1 Potential program:
	0.4.1.2 Valid program:
	0.4.1.3 Non-valid program:
	0.4.1.4 Elaboration of a program:
	0.4.1.5 SIMULA program:

	0.4.2 SIMULA Processors
	0.4.2.1 Processor:

	0.4.3 SIMULA Implementations
	0.4.3.1 Implementation:
	0.4.3.2 Implemented language:
	0.4.3.3 Extension:
	0.4.3.4 Implementation-defined:
	0.4.3.5 Implementation-dependent:

	0.5 CONFORMITY
	0.5.1 Requirements
	0.5.1.1 Conforming programs
	0.5.1.2. Conforming processors
	0.5.1.3. Documentation
	0.5.1.4. Conforming implementations

	0.5.2 Quantitative restrictions
	0.5.3 Extensions
	0.5.4. Subsets

	0.6 TESTS
	0.7 APPENDICES

	Chapter 1
	LEXICAL TOKENS
	DEFINITIONAL CONVENTIONS
	Metalanguage Symbols

	1.1 Directive lines
	1.2 The character set
	1.3 Special symbols
	1.4 Identifiers
	1.5 Numbers
	1.6 Strings
	1.7 Character constants
	1.8 Comment convention
	1.8.1 End comment
	1.8.2 Direct comment

	1.9 Token separators
	1.10 Program interchange and lexical alternatives
	1.10.1 Alternate representation of some symbols

	Chapter 2
	TYPES, VALUES AND REFERENCES
	2.1 Arithmetic types
	2.1.1. The type short integer
	2.1.2. The type long real

	2.2 The type Boolean
	2.3 The type character
	2.4 Object reference
	2.4.1.Qualification
	Example

	2.4.2. Subordinate types

	2.5 The type text
	2.5.1. Text objects
	2.5.2. Text frames

	2.5 Type conversion

	Chapter 3
	EXPRESSIONS
	3.1 Variables
	3.1.1. Simple variables
	3.1.2. Text variables
	3.1.3. Array elements
	3.1.4. Function designators

	3.2 Boolean expressions
	3.3 Relations
	3.3.1. Arithmetic relations
	3.3.2. Character relations
	3.3.3. Text value relations
	3.3.4. Object relations
	3.3.5. Object reference relations
	3.3.6. Text reference relations

	3.4 The logical operators
	3.4.1. Precedence of Boolean operators

	3.5 Arithmetic expressions
	3.5.1. Operators and types
	3.5.2. Precedence of arithmetic operators
	3.5.3. Arithmetics of real quantities

	3.6 Character expressions
	3.7 Text expressions
	3.7.1. Text concatenation
	3.7.2. Text expression evaluation

	3.8 Object expressions
	3.8.1. Qualification
	3.8.2 Object generator
	3.8.3 Local objects
	3.8.4 Instantaneous qualification

	3.9 Designational expressions

	Chapter 4:
	STATEMENTS
	4.1 Assignment statements
	4.1.1 Arithmetic assignment
	4.1.2 Text value assignment
	4.1.3 Text reference assignment
	4.1.4 Object reference assignment

	4.2 Conditional statement
	4.3 While-statement
	4.4 For-statement
	4.4.1 For list elements
	4.4.2 The controlled variable
	4.4.3 The controlled statement

	4.5 Goto-statement
	4.6 Procedure statement
	4.6.1 Actual-formal parameter correspondence
	4.6.2 Value parameter replacement (call by value)
	4.6.3 Default parameter replacement (call by reference)
	4.6.4 Name parameter replacement (call by name)
	4.6.5 Body execution
	4.6.6 Restrictions

	4.7 Object generator statement
	4.7.1 Parameter replacement

	4.8 Connection statement
	4.9 Compound statement
	4.10 Blocks
	4.10.1 Prefixed blocks

	4.11 Dummy statement

	Chapter 5
	DECLARATIONS
	5.1 Simple variable declarations
	5.1.1 Value type variables

	5.2 Array declaration
	5.3 Switch declaration
	5.4 Procedure declaration
	5.4.1 Values of function designators
	5.4.2 Parameter specification
	5.4.3 Parameter transmission modes

	5.5 Class declaration
	5.5.1 Subclasses
	5.5.2 Concatenation
	5.5.3 Virtual quantities
	5.5.4 Attribute protection
	5.5.5 Parameter transmission modes
	5.5.6 Remote accessing
	5.5.7 Fictituous outermost prefix

	5.6 Scope and visibility rules
	5.6.1 Scope of identifier definitions
	5.6.2 Visibility of identifiers
	5.6.3 Dynamic aspects of scope and visibility rules

	5.7 Initialization
	5.8 Constant declarations

	Chapter 6
	PROGRAM MODULES
	6.1 External declarations
	6.2 The main program
	6.3 External procedure declaration
	6.4 External class declaration
	6.5 Module identification

	Chapter 7
	SEQUENCING
	7.1 Block instances and states of execution
	7.2 Quasi-parallel systems
	7.2.1 Semi-symmetric sequencing: detach - call
	7.2.2 Symmetric component sequencing: detach - resume
	7.2.3 Dynamic enclosure and the operating chain

	7.3 Quasi-parallel sequencing
	7.3.1 Detach
	7.3.2 Call
	7.3.3 Resume
	7.3.4 Object end
	7.3.5 Goto statements

	Chapter 8
	ATTRIBUTES OF TEXT
	8.1 "constant", "start", "length" and "main"
	8.2 Character access
	8.3 Text generation
	8.4 Subtexts
	8.5 Numeric text values
	8.6 "De-editing" procedures
	8.7 Editing procedures

	Chapter 9
	THE CLASS "ENVIRONMENT"
	9.1 Basic operations
	9.2 Text utilities
	9.3 Scheduling
	9.4 Mathematical functions
	9.5 Extremum functions
	9.6 Environmental enquiries
	9.7 Error control
	9.8 Array quantities
	9.9 Random drawing
	9.9.1 Pseudo-random number streams
	9.9.2 Random drawing procedures

	9.10 Calendar and timing utilities
	9.11 Miscellaneous utilities
	9.12 Standard system classes

	Chapter 10
	INPUT-OUTPUT
	10.1 The class file
	10.1.1 External file access control
	10.1.2 Open and close

	10.2 Structure of file subclasses
	10.2.1 Procedure "checkpoint"
	10.2.2 Direct file locking

	10.3 Imagefiles
	10.4 The class "infile"
	10.4.1 Open and close
	10.4.2 Inimage and inrecord
	10.4.3 Inchar
	10.4.4 Lastitem
	10.4.5 Intext
	10.4.6 Item-oriented input

	10.5 The class "outfile"
	10.5.1 Open and close
	10.5.2 Outimage
	10.5.3 Outrecord
	10.5.4 Breakoutimage
	10.5.5 Checkpoint
	10.5.6 Outchar
	10.5.7 Outtext
	10.5.8 Item-oriented output

	10.6 The class "directfile"
	10.6.1 Open and close
	10.6.2 Locate, lastloc, and maxloc
	10.6.3 Inimage
	10.6.4 Outimage
	10.6.5 Deleteimage
	10.6.6 Inchar
	10.6.7 Lock and Unlock
	10.6.8 Item-oriented input/output

	10.7 The class "printfile"
	10.7.1 Open and close
	10.7.2 Lines per page
	10.7.3 Spacing
	10.7.4 Eject
	10.7.5 Outimage and outrecord

	10.8 Bytefiles
	10.9 The class "inbytefile"
	10.9.1 Open and close
	10.9.2 Inbyte
	10.9.3 Intext

	10.10 The class "outbytefile"
	10.10.1 Open and close
	10.10.2 Outbyte
	10.10.3 Outtext

	10.11 The class "directbytefile"
	10.11.1 Open and close
	10.11.2 Locate and lastloc
	10.11.3 Inbyte and outbyte
	10.11.4 Lock and Unlock

	Chapter 11
	CLASS SIMSET
	11.1 Class "linkage"
	11.2 Class "link"
	11.3 Class "head"

	Chapter 12
	CLASS SIMULATION
	12.1 Class "process"
	12.2 Activation statement
	12.3 Procedure ACTIVAT
	12.4 Sequencing procedures
	12.5 The main (simulation) program
	12.6 The procedure "accum"

	APPENDIX A
	SIMULA Syntax
	Chapter 1: Lexical tokens
	Chapter 2: Types and values
	Chapter 4: Statements
	Chapter 5: Declarations
	Chapter 6: Program modules
	Chapter 12: Class Simulation

	APPENDIX B
	Implementation Aspects
	B.1 LANGUAGE EXTENSIONS
	B.2 ALLOWED IMPLEMENTATION RESTRICTIONS
	B.3 IMPLEMENTATION DEPENDENT CHARACTERISTICS
	B.4 IMPLEMENTATION DEFINED CHARACTERISTICS

	APPENDIX C
	Index of Syntactic Meta-symbols
	APPENDIX D
	Statutes of the SIMULA Standards Group (SSG)
	Article 1. Objectives
	Article 2. Membership
	Article 3. Representation, Voting and Meetings
	Formal rules of the SSG operation

