=~ Edinburgh
%MI' f Regional

Computing
sn Centre

||||‘

m
9

DEIMOS: User Manual

A guide to the use of DEIMOS,
an operating system for the PDP11.

by B.A.C. Gilmore

Edited by J.M. Murison

3rd Edition: January, 1980

DEIMOS

AN OPERATING SYSTEM FOR THE PDP 11

USER MANUAL

by

B.A.C. Gilmore

Edited by J.M. Murison

1st Edition: August 1976
2nd Edition: May 1978
3rd Edition: January 1980

CONTENTS

Section
General Features
System Commands
Inter-Process Communication
Buffer Sharing between Processes
The Editor
The IMP Compiler
The Linker
Library Manipulation
Compiler Listings with Code Addresses
Checking the Compiled Object Code
The Transfer Program
The File System Interrogator
Magnetic Tape Utilities

ARCHDK

RESTDK

STAR

STAN
UTAN/UTANR

INSL

The Debugging Program

System Fault Messages

Appendix 1: Tape Analysis, Archive & Restore,
and Labelling Programs

Page

10

12

13

14

15

17

18

19

20

21

22

22

23
23
23
23

24

28

31

GENERAL FEATURES

Design Aims
amssnesnmniom, CO———

DEIMOS was designed for operation in a medium=—sized PDP ll. At least 16K
words of main store, a memory management unit, a disc or similar fast mass

storage device, a terminal and a clock are required.
The system was designed with six main aims:

1) To run user programs

The system is designed to run general user programs. Normally, about
twenty simultaneous programs can be supported, but this figure is a
parameter at system generation. Each program runs in its own virtual
memory enviromment (VM), not necessarily limited to the hardware’s
mapping limit of 32K words. The system, and other user programs, are
fully protected from the failure of a user program.

2) To support multiple terminals

The system supports multiple terminals, each of which can be linked to a
command language interpreter which will emable the user to initiate and
control programs from the terminal.

3) To support peripherals

The system supports a wide range of peripherals, e.g. line printer, card

reader, paper tape reader and punch, various discs, magnetic tape, grapa

plotter, asynchrooous communication lines and a° synchronous communication
line using the HDLC protocol. New peripherals can be added with minimum

disturbance to the rest of the system.

4) To be self-supporting

The system is self supporting on a medium main store configuration

(approximately 32K words). Although the system only occupies about 6K
words, 32K words are required to run the IMP compiler.

S) To use swapping

The number and size of user programs is currently limited to the physical
store size of the machine; however, a limited swapping strategy will be

implemented to support a virtual store size of two to three times the
physical store size.

6) To have a small resident section

The size of the resident system is kept small to allow as much store as
possible for user programs.

Constraints

The resident part of the system has been kept reasomably small to enable

the system to run in small main store configuratiomns. This constraint
affects the overall design, distinguishing it from systems with a large set

of facilities like UNIX and RSX11lD, which require at least 48K words of main
store to do useful work.

DEIMOS User Mzaual 1

Structural Overview

The system is based on the concept of a number of tasks, each of which
manages either a resource or a user program, and which communicate and

synchronise with each other using ‘messages’. The concept of messages comes
from EMAS, the GEC 4080 and other systems.

The user interface is heavily influenced by a number of machines running
in the Computer Science department.

The system has two main sections, a resident section and a potentially
swappable section.

The resident section consists of a kernmel and the mass storage device
handler which runs otherwise as a standard system task.

The kernel does the following:

1) Controls the CPU allocation.
2) Passes interrupts to their device handlers.
3) Passes messages between tasks, storing them if necessary.

4) Supports the virtual memories, including mapping between them.
5) Provides clock and timer functions.

6) Controls main store allocation.

All peripherals and other system functions, e.g. the file storage
handler, command language interpreter and loader, are handled by system

tasks. The system tasks are ‘privileged’; this entitles them to access
parts of the real machine and other tasks.

A new task is created when a user program is run, and is deleted om its
termination. A task consists of a virtual memory enviromment and a ‘task
descriptor block’, held within the kernel. A task on this system does not
have a ‘task monitor’: all interrupts and messages are processed by the task
in its ‘user’ state.

The virtual memory enviromment of a task comsists of a number of
segments. These are used to hold the program code, data areas and shared
system code. The hardware of the PDPll allows eight segments to be mapped
onto real store at any given time, giving a virtual memory address space of
32K words. However, the number of segments owned by a task is not limited

to eight. A segment may be mapped in a read only mode or in a read/write
mode.)

The ‘task descriptor block’ contains the registers (when the task is not

actually executing) and other information such as the state, priority level
and message queue that constitutes the context of the task.

The list of segments used by all tasks is held in a Global Segment Table
within the kermel, with the main store or disc address, access permission
and the number of tasks using the segment. This table enables the kernel to
maintain control over the usage of segments and can easily determine what
parts of tasks may be swapped out. The main store address, access
permission and a pointer into the Global Segment Table are also maintained
within the task descriptor to optimise the context switch.

2 DEIMOS User Manual

If a task fails with either a hardware fault (e.g. an address error or
memory protection violation), or a fault detected by software (e.g. an
illegal supervisor call or message), then the kernel generates a message to
a ‘system error task’; to allow later investigation the failed task is
prevented from continuing. The ‘error task’ informs the user of the task
failure and the reason for it. The ‘error task’ is also used by some system
tasks to inform the operator about the state of devices.

All communication in the system is done by sending messages. These
messages are queued by the kernel, if necessary, until requested.
Interrupts are handled similarly, the kernel generating and queueing a
message for the appropriate task. A table is used to determine which task a
message (or interrupt) is for. A supervisor call is provided to enable
tasks to ‘link’ themselves to a particular message number. This is slightly
less efficient than direct ownership but enables device handlers to be
configured into the system dynamically.

The address of a data area may be passed by a message. The segment
containing this area may then be mapped from the caller’s VM to the
receiver’s VM. Currently this mechanism is only used to share segments,
which are eventually returned to the caller. There is no restriction,
however, to stop segments actually being transferred by this method.

Input/output on this system uses a separate segment in each user’s task
to hold its I/0 buffers. This allows the kernmel to swap the major part of a
task whilst slow I/0 is in progress. The sharing of segments, as described
above, is used by the device handlers to process the buffers, the segment
being released and a reply sent on completion.

Implementation

This system was written in IMP. IMP was chosen for a variety of reasoms:

1) A deliberate decision was made to write the system in a high level
language for ease of expansion and maintainability.

2) IMP is a proven systems implementation language; for example, it was used
to write both the System 4-75 and 2900 versions of EMAS.

3) A new implementation of IMP was available on the PDPll which was of a
high enough standard to consider using it for systems implementation.

Two modules of the system have been written in assembler. The first
module is at the lowest level of the system, loading up the registers on
context switching. Since there are no explicit register manipulations in
IMP, it was necessary for this module to be in assembler. The second
assembler module provides the run time support for IMP programs. This
module could probably be converted to IMP later, but was writtenm in
assembler for bootstrapping reasons. Fortunately, these two sections are
changed infrequently as they have proved to be a disproportionately small
source of problems in relation to their size.

The rest of the system consists of six IMP modules, comprising the kermel
and the system tasks. These modules are compiled separately and then
‘linked’ by a purpose-built Linker which also sets up the bootstrapping
area.

DEIMOS User Manual 3

Applications programs, with the exception of the editor = which was
brought from a previous system — have been writtem in IMP. The sources are
held and compiled on the system.

Ogeration

The first DEIMOS system, operational since May 1976, is used for a large
spooling RJE system with the usual peripherals plus a magnetic tape drive
and a graph plotter.

The second system, also operational since May 1976, is part of ERTE
(Edinburgh Remote Terminal Emulation). See the paper "The Structure and
Uses of the Edinburgh Remote Terminal Emulator" by J.C. Adams, W.S. Currie
and B.A.C. Gilmore, in ‘Software Practice and Experience’, Volume 8, p. 451
(1978).

The third system, on a PDP 11/34 used as the Front End for the ERCC 2970
running EMAS 2900, became operational in December 1977.

The fourth and fifth systems are used part time as the drivers for an
interactive benchmark of two ICL 2900s running VME/K and VME/B.

At this stage swopping has still to be implemented, though most of the
necessary kernel features are already present.

4 DEIMOS User Manual

SYSTEM COMMANDS

All commands given to the system are interpreted by the Command Language
Interpreter (CLI). The CLI indicates its readiness to accept a command by
typing the prompt ‘X’. If a program is running, the CLI can be invoked by
typing ESC (escape); the command prompt will then appear.

Input to the CLI has two forms:

1) A file name, followed by ’‘stream definitions’ or

2) A command verb, possibly followed by parameters

1) File Name

If a file name is specified, that file is loaded and the program
contained in it is entered. If the file does not exist, or exists but
does not contain a program, the message ‘*NO FRED’, where FRED is the
name of the file, is output and the command prompt is reissued.

The ‘stream definitions’ are input in the form:
<{input 1>,<input 2>,<input 3>/<output 1>,<output 2>,<output 3>

where <input 1>, etc. each represent a ‘stream definition’. One or more
spaces must be given between the file name and the stream definitions; no
spaces may appear within the stream definitions.

A stream definition is of the form:

.ITT =~ either input to or output from a terminal

.LP = output to a line printer

<any other devices on the system, specified in a similar way>
<a file definition>

A file definition is of the form:
<unit number>.<{file name>(<{file system number>)

<unit number> is a digit in the range ‘0’ to ‘4’ and refers to the
physical disc drive. If neither is specified, ‘0’ is

assumed.

<file name> consists of an alphanumeric string, which must start
with a letter, of up to 6 characters in length

{file system number> is the file system that the file comes from, or

is created in. If none is specified the user’s own is used
(see the command LOGON).

DEIMOS User Manual ' 5

Examples

FRED the file called FRED on unit O in the user’s file
system

0.FRED the same

1.FRED the file FRED from disc unit one

FRED(O) the file FRED from file system O (the system’s own
one)

1.FRED(25) the file FRED from disc unit 1 and file system 25
(octal)

.TT the user’s terminal, defined for input if om the left
hand side of the ‘/’, and for output if on the right
hand side

The stream definitions associate files or devices with the
corresponding input and output streams, which are accessible to an IMP

program. For example, if the program JOE is run with the following
command :

JOE F1,F2/01,02,.TT

then input stream 1, selected within the program by use of SELECT
INPUT(l), is mapped onto the file Fl. A SELECT OUTPUT(2) will send
output to the file 02, and SELECT OUTPUT(3) will send output to the
terminal.

If a field is left blank, as with <{input 3> in the above example, the
stream is mapped to .NULL. This causes, on input, an ’end=-of-file’
signal to be generated, and on output all the output to be thrown away.

Input stream zero and output stream zero are always associated with the
user’s terminal.

Further examples

PROG .TT uses one input stream, .TT; no output stream (apart
from 0) is defined

PROG FILE will read from a file called FILE on stream ome

PROG /FILE no input streams defined (apart from 0); will write

to a file called FILE after a SELECT OUTPUT(1)

PROG FILE/FILE will read data from a file called FILE and create an
output file called FILE

Note: When a program does the first SELECT OUTPUT(n) for a perticular
value of n, where a file is mapped to that stream, the system creates a
temporary file with the same name as the defined file but with a “#°
appended (thus FILE# in the previous example). When the program stops,
or calls CLOSE OUTPUT(n), the original file, if one exists, is destroyed
and the temporary file RENAMEd to the original file’s name.

DEIMOS User Manual

2) Command Verb

There are currently available the following system commands:

a)
b)
c)
d)
e)
£)

g)
h)

a)

b)

LOGON - Log on to a file system
TASKS = List the names of the programs currently executing
HOLD - Stop a task executing
FREE - Release a "held’ task
KILL - Stop a program in a controlled manner
PURGE - Immediately remove a task from the system
(i.e. abort the task)
ABORT =~ Abort a device handler transfer
INT = Interrupt a task
LOGON

This command is called in the form:

LOGON nn

where ‘nn’ is a two digit octal number, representing the user’s file
system number.

TASKS

This command has no parameters. It lists out the tasks on the system
in the form:

<{task name> <task number> <task state)

The states of a task are as follows:

state meaning

000001 Task is in the WAIT state

000002 Task has executed a POFF

000010 Task is on a CPU QUEUE awaiting execution
000020 The task is in the RUN state

000200 The task has been HELD

DEIMOS User Manual 7

c)

d)

e)

£)

HOLD

This command is called in the form:
HOLD xxxx

where ’xxxx’ represents the name of a task running on the system. If

the task is currently executing, it is suspended. If the task is

waiting for a message, it will be suspended when it next requests the

CPU.

FREE

This command is the converse of HOLD and is called in the form:
FREE xxxx

It places the task “xxxx’ back on the CPU.

It is also used to tell a device handler to continue after a device

error. For example, if a task attempts to write to a disc while the
‘write protect’ is on, the disc task will accept an error and wait.

The user may put the ‘write protect’ off, and then type ‘FREE OK’ to
tell the disc handler to retry the transfer.

KILL
This command is called in the form:

KILL xxxx
It has the effect of sending to the task called ‘xxxx’ a message to
stop. The task should then stop in a controlled manner, tidying up
all its streamse.
Note: If a program is still running, HOLD should be called before
either KILL or PURGE is used.
PURGE
This command is called in the form:

PURGE xxxx
It has an immediate effect, completely removing the task from the
system. No attempt is made to tidy the open streams. This command
should not normally be used to stop a program, but must be used to

clear from the system a program which has crashed with an ‘ADDRESS
ERROR’ or a ‘SEG FAULT’.

DEIMOS User Manual

g) ABORT
This command is called in the form:
ABORT xxxx
It is the equivalent of FREE, except that it informs task ‘=xxx’
fail the transfer request instead of retrying it (see FREE).
h) INT
This command is called in the form:
INT y xxxx

It will place the single character ‘y’ in a fixed location

to

in task ‘xxxx’. This may be used to control the running of a task.

A task may examine and change its INT character by declaring:

constbyteintegername INT = K”160060°

and then using INT as a simple variable.

DEIMOS User Manual

INTER-PROCESS COMMUNICATION

Processes may communicate with other processes by sending and receiving
messages. A message consists of four 16-bit integers that are passed from
one process to another. The general format may be expressed as an IMP
record, as follows:

record format PF (byteinteger SERVICE, REPLY, integer A, B, C)

The two byte integers are used for message routeing and are defined below.
The three integers are used in various ways, their uses depending on the
context.

An example of an alternative format used is:

recordformat P2F (byteinteger SERVICE, REPLY, FN, PORT, c
record (BUFF) name BUFFER, byteinteger LEN, SPARE)

A process sends a message to another process by setting SERVICE to the
service number of the other process (the ‘destination’ process). REPLY
should be set to the service number to which the reply to the message (if
any) is to be sent. When a process is started up, the system assigns a
unique process identification number to it. A copy of this number is held
by the system in a fixed location within the virtual memory of the process.
It may be accessed by:

constbyteintegername ID = K“160030’

This ID is the service number of the process. For processes which require
more than one service number, or which provide a service to other processes, .
(e.g. a line printer handler which requires to have a ’‘fixed’ service
number), further service numbers can be claimed by declaring system routine
LINKIN:

systemroutinespec LINKIN (integer SERVICE)

and then calling it to clain the service number. For example:

constinteger LP SER=25

LINKIN(LP SER)
The number supplied to LINKIN must lie in the range 1-30. A list of
commonly used numbers is given in Appendix 1.

There are two system routines that are used to send messages. They are

predeclared, and so may be used without a spec. Their form is given for
information.

systemroutinespec PON (record (PF) name P)

systemroutinespec PONOFF (record (PF) name P)

The call of PON, for example, would be the form:

10 DEIMOS User Manual

record (PF) P

P_SERVICE = LPSER; P_REFLY = ID
1 P A, PB and P_C should be set up as required.
PON (P)

The effect of PON is to send the message in P and then to return control
to the process to let it continue. When an immediate reply is required,
PONOFF should be used: the process is then held until the specific reply to
that message is sent back to the process; this is actually implemented by
holding the process in suspension until a message is sent whose SERVICE and
REPLY match those of the original message. A message is received by calling
the predeclared system routine POFF. Its declaration, again given for
information, is as follows:

systemroutinespec POFF (record (PF) name P)

Messages for a process are queued by the system. A call to POFF will
cause the system to deliver to the process either the first message in the

queue, or optionally the first message for a particular service provided by
that process. If there is no message of the appropriate type in the message
queue the process is suspended until a suitable message arises.

When a process wishes to receive any message, it calls POFF as follows:

P SERVICE=0
POFF(P)

To receive a particular message, for example with SERVICE=ID and
REPLY=LPSER, the following code is used:

P_SERVICE = ID; P_REFPLY = LPSER
POFF(P)

DEIMOS User Manual 11

BUFFER SHARING BETWEEN PROCESSES

In many instances it is necessary to pass more than 6 bytes of data to
another process. A method of allowing processes to share segments of
internal memory has therefore been provided.

A predeclared system routine of the form:

systemroutinespec MAP VIRT (integer HIS SER, HIS SEG, MY SEG)

is used to map segment number HIS SEG of process number HIS SER into segment
number MY SEG of the running process. HIS SER may be the process id set by
the system, or any service number which the process has declared (by a call
to LINKIN). It should be noted that the whole segment is mapped in the same
mode as the original segment.

For example, if a process with SER=a sends a buffer at its address
8 140322 (segment 6) to a process with ID=b, then process b may access the

buffer by:
MAP VIRT(a, 6, 4)
The buffer will start at address 8_100322 (segment 4) in process b.

For processes with only one segment of code and one segment of stack,
segments 3, 4 and 5 are available for other process’s segments to map into.

When a process is finished with a segment it should release it, by
calling MAP VIRT with HIS SEG set to zero.

12) DEIMOS User Manual

THE EDITOR

The EDITOR is a PDPll version of the Edinburgh Compatible Context Editor
(ECCE). For general information on the Editor, see the document ‘ECCE’,
published by ERCC (August 1978).

The command for calling the Editor has four possible forms, as
illustrated below:

E /TEST - to produce a new file called TEST

E TEST = to edit an existing file called TEST

E TEST/TEST2 = to produce a new file called TEST2 from an existing
file called TEST

E TEST/.TT - used to examine, without modification, the file TEST

Notes

* The Editor prompts ‘>’ when it is ready to accept a command and ‘:’ when
it expects a line of input (command GET).

* This version of the Editor uses a ‘window’ of the file. This will not
normally be apparent, but it does mean that the command M=* will not
necessarily return right to the top of the file.

WARNING

If you wish to terminate the Editor abmormally, always use the command
PURGE rather than KILL. For example, if you are editing a file back into
itself, as in the second form above, a KILL will delete the file TEST,
and replace it with the temporary editor file which may well be empty.

DEIMOS User Manual 13

THE IMP COMPILER

The IMP compiler is a three pass compiler; a fourth pass, a linking
phase, is automatically called for begin ... endofprogram programs.

There are four main ways of calling it:
IMP A/B - which compiles source file A to object B

IMP A/,L = which only does one pass and creates a listing file L;
note that L can be a filename, .TT or .LP

IMP A/B,L = which creates both an object file and a listing file

IMP A,.TT/B - this form is used to change the Linker defaults; for more

details of these defaults see the section on the Linker,
below

Notes

1) At present, the compilation of an external routine file will cause a
“FAULT 100’ on exit from the third pass; this inhibits the entry to the
Linker. The object file in this case is always called OY.

2) The first pass automatically uses a file of specs called PRIMS which is
taken from the system’s file system.

3) The first pass creates a temporary output file called O (the letter, not
the digit) for use with the second pass. The second pass creates 02 and
03 and the third pass OY.

4) The output from the third pass, 0Y, is useful. It can be used as input

to the programs RECODE and VIEW if it is necessary to de~compile the
compiler output.

5) If the Linker is to be run as a separate fourth pass, the file OY is used
as its input.

14 DEIMOS User Manual

THE LINKER

The Linker is normally run automatically as a fourth pass to the IMP

compiler. It is run individually by typing one of the following four forms
of command:

LINK A/B
or

LINK A,.TT/B
or

LINK A/B,C
or

LINK A, .n/B,C

All of the above forms use the file A (which must be the output from the
third pass of the compiler) to create a runnable file B.

The second and fourth forms of the command override the standard Linker
defaults. The Linker prompts for the new values as follows (defaults in
brackets):

NAME: up to 4 characters are typed in, giving the Task Name for the
program

(default: the first four characters of the object file name)

STACK: the desired stack size (in octal bytes), excluding the GLA
(default: 14000)

STREAMS: the maximum number of input and of output streams that the

program will use, excluding input and output omn stream O
(default: 3)

The Linker will normally assign the code and stack segments as indicated
in the table below. The Linker automatically uses segments 3 and 5 as

overflow code and stack segments.

Seg no Use
0 Unused
1 Shared PERM
2 1st code seg
3
4
5
6 1st stack seg
7 Task 1/0 buffers

If a program has external references in it, the Linker will first attempt
to satisfy them using library LIBOOO in the user’s file system. If there
are still unsatisfied references, the Linker will look at LIBO0OO in file

system 0 (the system’s file system). For more information on libraries, see
the next section.

DEIMOS User Manual 15

If the optional second output parameter is specified, a link map (see the
example below) is output to it. In the above examples this would be in a
file called C. .TT or .LP could also be specified.

Sample Linker Cutput Map

TASK: TEST

CODE: 040000 GLA: 140020
XREF: PON POFF PONOFF MAPVIRT
XDEF: 040000 #GO

FILE: SHARED

CODE: 046506 GLA: 140752
XREF: 004000 RUN

XDEF: 022656 PON

XDEF: 022700 POFF

XDEF: 022736 MAPVIRT
XDEF: 023006 MAPABS

TOTALS: CODE = 006506 GLA/STACK = 002016

The TASK name of the program (in this case TEST) is printed, along with
the base address for its code (040000) and its GLA (140020). XREF refers to
‘external references’ from that section of code (in this case they are all
declared by the system). XDEF is an ‘external definition’, in this case #GO
(the entry point for the main program).

FILE indicates that the Linker has loaded an object file; it specifies
its name (SHARED) and the start address of its code (046506) and GLA
(140752) sections. The list thereafter gives the ‘external definitions’, in
this case entry points which the file contains.

The last line gives the overall code length of the program (006506) and
the total size of the GLA and the declared stack.

If any references are left undeclared, the Linker will list them along
with an ‘UNDEFINED REFERENCE’ message.

If the Linker attempts to load a file which contains an entry point that

has already been loaded, the message ‘*DOUBLE DEF’ is output and the Linker
stops.

16 DEIMOS User Manual

LIBRARY MANIPULATION
When the Linker finds an external reference in a program file it will
attempt to satisfy the reference, by:

a) searching the library LIBOOO in the user’s file system, loading object
files as necessary, then

b) searching the library LIBOOO in the system’s file system (0).

There are three programs currently available to the user for manipulating
libraries: :

1) NEWLIB - creates a new library file
2) INSERT = inserts the entries of an object file into a library
3) INDEX = lists the contents of a library

Note: Each of these programs will manipulate libraries other than LIBOCOO,
but at present the Linker will not link them.

1) NEWLIB
The command for using NEWLIB is as follows:
NEWLIB /LIB
This command will create a new library file, LIB; if it already exists the
old copy is destroyed.

2) INSERT

There are two main forms of this command, as follows:

INSERT TESTY,LIB/LIB

and

INSERT TESTY,LIB/LIB2
The first form will add the entries of file TESTY into library LIB. The
second form will add the contents of file TESTY into library LIB, creating a
new library called LIB2.
3) INDEX
The form of this command is as follows:

INDEX LIB

This command will print out all the entries in the library LIB.

DEIMOS User Manual 17

COMPILER LISTINGS WITH CODE ADDRESSES

A program called ALIST is available to generate an IMP listing which
includes the addresses of the gemerated code. It can either be run using
the output from the third pass of the compiler (file 0Y) or by using the
final object program (usually more convenient).

Example
ALIST TESTS,TEST/L

This takes the source file TESTS and its associated object file TEST, and
creates the listing in file L. It is of course possible to specify .TT or
«LP instead of file L.

18 DEIMOS User Manual

CHECKING THE COMPILED OBJECT CODE

A program called RECODE exists to take either the output from the third
pass of the compiler or the final object program, and recode it back into
assembler and merge it with the source program.

Example
RECODE TESTS,TEST/L

This takes the source file TESTS and its associated obgect file TEST, and
creates the listing in file L. It is of course possible to specify .IT or
+LP instead of file L.

DEIMOS User Manual 19

TRANSFER PROGRAM

A program called T exists to allow source or object files to be copied
from file to file, device to file, file to device, or device to device. It
can also be used to concatenate two files by specifying a second input
parameter.

Examples

T FRED/2.FRED(20) = copies the file FRED omn disc drive O (user’s current
file system) to file system 20 on disc unit 2.

T FRED/.LP =~ lists file FRED on the line printer.

T .PR/FRED =~ transfers a file from the paper tape reader to file FRED.

T FRED,JIM(21)/FRED - appends to file FRED file JIM on file system 21.

T .TT/FRED =~ reads a ‘file’ from the terminal and creates a file FRED.
To terminate the transfer, it is necessary to HOLD and then

KILL T. (Note, however, that the preferred way to create a
file from .TT input is to use the editor.)

20 DEIMOS User Manual

FILE SYSTEM INTERROGATOR

A file system interrogator program called F exists to enable a user to

examine and modify the contents of directories.
any stream definitions.

It should be called without
It then prompts the user for input.

The possible replies and their meanings are as follows:

B filename
C

D filename

F

G filename

L xX,yy

T filename

Notes

Lists name of all files in the current directory along with
the start block, protect code and number of blocks in the
file.

Gives data as in A for a specific file.

Gets current L values (see below).

Deletes file. Specifying ‘?’ instead of a filename lists all
files and for each file requests a ‘Y’ to delete, or an ‘N’
to keep, unless the answer to the automatic request is ‘Y’.

Lists filenames in current directory.

Searches all directories for specified file.
reports location.

If found,

- Alters current directory to disc x, file system yy (octal).

L CR causes return to current logon.

Lists the files in the current directory, in alphabetical
order.

Renames file; prompts for old and new filenames.
Stops.

Transfers file; prompts for destination: disc and file
system, .TT, or .LP.

Lists all files for each user in turn.

* The program assumes that the current logon file system is on disc 0 om

entry.

* A ‘? 4in a file name means "do the command with respect to all files
starting with the letters given before the ?".

* Unwanted output can be interrupted by sending A to task F using the INT

mechanism:

INT AF

DEIMOS User Manual 21

MAGNETIC TAPE UTILITIES

The system supports a TUl6 controller and tape drive, which enables
800 bpi or 1600 bpi tapes to be read or written.

The following general purpose programs exist to use the TUl6:

ARCHDK - archives a complete RKO5 disc pack to 1600 bpi tape in 4K
word blocks.

RESTDK - restores to disc a tape written by ARCHDK.
STAR - standard labelled tape archive and restore.
STAN - standard labelled tape analysis.

UTAN[R] = tape analysis for unlabelled tapes.

INSL - standard tape labeller.

Note: In systems where the tape device handler (TUl6) is not loaded by the
system initialisation program LOADUP it is necessary to

RUN TUL6

before using a tape program.

A description of each program follows.

ARCHDK

This program archives a complete RKO5 disc drive to 1600 bpi tape in 4K
blocks. It prompts:

DRIVE?
when it is loaded. The user then types in the unit number of the drive to

be archived, and the program will then write the entire contents of the disc
to tape, sector by sector in 4K blocks. An entire RKOS disc takes
approximately 45 seconds. The existing program writes the tape at 1600 bpi
but it is a simple modification to, change this to 800 bpi.

In systems where there is a double density pack and the system treats
both “units’ as one unit, the entire disc - 5.4Mb — is written to tape.

The program is run by typing:

ARCHDK

in response to the system prompt.

22 DEIMOS User Manual

RESTDK

This program takes a tape with a disc image written by ARCHDK and
transfers the tape contents back onto a RKO5 pack. When the program is
loaded it prompts:

DRIVE?

and the user responds with the number of the drive that holds the disc pack
to be overwritten. As a sensible precaution the user is advised to ‘write
protect’ all other drives.

Before the data transfer begins the program asks for confirmation, thus:

CONFIRMATION?

If any reply other than ‘Y’ is given the program stops.

The remaining tape programs are described in detail in Appendix 1. They and
their descriptions were written by C.D. McArthur (ERCC).

STAR - Standard labelled Tape Archive and Restore

This program is used to create archives from disc to tape. It creates a
standard IBM labelled tape, and files are written to and read from it.

STAN - Standard labelled Tape ANalyses

This is an interactive tape analysis program driven by commands from a
console or a file. Bytes of data on the tape can be identified and dumped

on the printer.

UTAN and UTANR - Unlabelled Tape ANalysis

These programs are similar to STAN, but no assumptions are made about the
format. '

INSL - INitialise/re-initialise Standard Labelled tape

This program is used to create (or rewrite) a standard IBM label in a
magnetic tape.

DEIMOS User Manual . 23

THE DEBUGGING PROGRAM

Object file name: DBUG
This program is used as an aid in debugging programs. It will normally
be ‘linked’ to a running program on the system using the command T (for

details see below); all accesses to locations will then be made in that
program’s virtual memory.

It may be used to do the following:

1) Set and clear breakpoints

2) Dump out the psect, registers and/or the IMP stack

3) Examine and change locations in main store

4) Dump general areas of main store

DBUG indicates its readiness to accept commands by issuing the prompt
‘DEBUG:’. The following commands may be used:

T Set task number of program to be debugged

A Execute ‘P’ (see below) and dump the virtual memory

B Set breakpoint

C Clear breakpoint

D Dump an area of main store

I Dump the IMP stack

N Set a new program code base

O Change the output device

P Dump the psect

R Dump the registers

S Stop DEBUG

W Wait DEBUG

? Print optiomns

In addition to these commands, there is an implied command, activated by

typing an octal digit, which enters the location examination & change
part of DBUG.

24 DEIMOS User Manual

A detailed description of each command follows.

T - SET TASK NUMBER

The prompt “TASK ID:’ is output and the (octal) ID of the program to be
debugged should be entered. The TASK ID of a running program may be

obtained by typing the command TASKS to the Command Language Interpreter.

Note: Only the commands ‘N’, “0’, ‘S’ and "W’ may be used before ‘T’ is
used for the first time.

A = PRINT ALL

Executes a Print Psect (‘P’), and dumps the program’s virtual memory.
This command is useful for dumping all relevant information about a
program onto the line printer; see also command ‘0’.

B - SET BREAKPOINT

The prompt ‘ADDR:’ is output; the reply must be the relative address
(with respect to the start of the program) of the desired breakpoint.
Debug will remember the contents and place the text ‘BR .’ in the
location. This will cause the program to loop when it executes that
instruction.

Debug replies: BP: n ADDR: n2 CONT= n3

where n is the breakpoint number (between O and 20), n2 is the virtual
address, and n3 the original contents.

The message ‘BP TABLE FULL’ is output if more than 21 breakpoints are
used. See the command N for setting breakpoints in externmal routines.

C = CLEAR BREAKPOINTS
Prompts ‘NO?’. The breakpoint number should be typed; ‘A’ or ’‘-1°
causes all the breakpoints to be cleared. If the specific breakpoint has

not been set, the symbol ‘7?7’ is output. The original contents are
replaced.

D - DUMP AN AREA OF MAIN STORE

Prompts ‘FROM:’ and ‘LENGTH:’. Both numbers should be typed in octal.
The area of main store from FROM to FROM+LENGTH is output.

Notes:

1) In all the dumps ‘ZEROES” is output if one or more entire lines
contain zero.

2) An ISO equivalent is printed on the right hand side of the dump.

DEIMOS User Manual 25

I - PRINT THE IMP STACK
The entire IMP stack is printed on the output device (see ‘0’ below).

Note: the GLA of the program is held at the low address end of the stack;
the IMP stack (i.e. the SP stack) starts at the high address end and
works towards the low address end.

N -~ SET A NEW PROGRAM CODE BASE
Prompts ‘NEW PROGRAM CODE:’. Reply by giving the new address. This
command is useful for programs using external routines. To set a
breakpoint in an external routine, the code base is set to that of the

external routine, as printed out by the Linker, and the relative address
specified. This does not affect any previously set breakpoints.

0 - CHANGE THE OUTPUT DEVICE

Prompts ‘STREAM:’. The reply ‘n’ is used as in SELECT OUTPUT(n), for the
output from commands R, P, I, A and D. By calling DBUG in the form:

DBUG /L or
DBUG /.LP

the output may be directed to the file L or to the line printer.

P - PRINT THE PSECT
The PSECT (own system variables) of the nominated task is printed.
The command does the following :
1) Prints the name of the task.
2) Prints the state of the task.
3) Indicates whether there are messages queued.
4) Calls ‘R’ to dump the registers out.

5) Prints the contents of the segmentation registers, in the form:

<register no> <address> <length> <access)

R - PRINT REGISTERS

Prints the registers of the nominated task. The Local Name Base (LNB)
for the outer level is also printed.

26 DEIMOS User Manual

S -~ STOP DEBUG
Halts DBUG.

Note: all breakpoints are cleared.

W = WAIT DEBUG

Suspends DBUG if it is necessary to input to a program on the same
terminal. It is restarted by

(Escape) FREE DBUG

Implied command to examine/change main store addresses

This command accepts the following instructions. ‘n’ and ‘m’ represent
numbers input in octal.

n prints contents of (n)

ot+C - prints contents of (mtprogram base)
o+l prints contents of (nt+IMP stack base).
n+Rm prints contents of (nt+register m)

n(+options) = m puts m into address specified by léft hand side.

Examples:
DEBUG: 100 (cr) prints contents of location 100.
DEBUG: 100+RS5 (cr) prints contents of 100 on from register 5.

DEBUG: 100+R5=200 (cr) plants 200 in location 100 on from register 5.

Notes

* A “*n’ at the end of the command will cause the following ‘n’ locatiomns
to be dumped out (‘n’ may be negative).

* ‘4% or ‘+=m’ may be entered as a new command. This takes the last

location used and steps it up by 2 (or by =2 if ‘=’ is used instead of
I+I).

DEIMOS User Manual

SYSTEM FAULT MESSAGES

There are three main classes of fault message output by DEIMOS:

1) Compiler run time messages

2) Loader error messages

3) System detected error messages

1) Compiler run time messages

These messages are produced when the compiler run time support code
detects an error. The program is stopped and the error number is
returned to the task which started the program up. This task will
normally be the Loader and the error message is produced in the form:

FAULTn

where ‘n’ has the following values:

n

1

25

26
27

28

Meaning

Excess Blocks. N.B. only produced inside string handling
routine.

Symbol in data (from READ routine).
String inside out.

Not used.

No switch label.

Capacity exceeded (strings only).
An input file does not exist.

Syntax fault on the Input/Output definitions string.

A block read or write to the disc failed (e.g. illegal block,
aborted transfer).

The disc is full or the user’s directory is full.

2) Loader error messages

These messages are produced when the Loader attempts to load a file and

fails.

The format is:

fault n

where ‘n’ has the following meanings:

28

DEIMOS User Manual

n Meaning

1 The free main store is insufficient to load the program.

2 The format of the initial block of the program is too short.

3 Ditto - but it is too long.

4 The checksum on a block is wrong. Note: this can also be
generated when the end of a file is reached prematurely.

5 Out of range. The program is attempting to load into a
non—existent part of its WM.

6 End of file. EOF is reached before the final binary block is
seen.

7 System full. The waximum number of tasks is already loaded.

In addition the following messages are also output:

Error Messages

no FRED = An attempt was made to load the file FRED but it did
not exist or was not binary.

TASK? = A command has been issued to a task which does not
exist.

Information messages

STOPPED - A program, under the control of the Loader, has
stopped normally.
This message will only appear when there is more than
one user task running in the System. When only one
task 1s running and it stops, the system prompt is
issued.

FAULT n - See the earlier section.
TERM REQ. = A KILL has been given to a task and it has stopped.

XXX PURGED - A PURGE has been issued to a TASK and has been
carried out.

3) System Detected Error Messages

These messages are issued when the system notices that a task has
misbehaved in some way. The format in each case is the same:

<{task name):<error message>

The following messages are used:

BAD SEGMENT a b

The named task has caused a segmentation trap by writing or reading
outside its virtual memory. The two octal numbers ‘a’ and ‘b’ are the
value of the error register and the PC respectivelyat the time of the
trap. This message is fatal; the task cannot run any more and should be
investigated (using DEBUG), or PURGEd to remove it.

DEIMOS User Manual 29

30

ADDRESS ERROR
This is the same as BAD SEGMENT, except that an address error was seem by

the hardware (e.g. addressing a word on a non-word aligned boundary, or
illegal stack pointer). It is also fatal to the task.

ILLEGAL INSTRUCTION

Same as above except the task attempted to execute an illegal
instruction. It is also fatal to the task.

ILLEGAL SVC

The task has called a SVC that is not recognised by the system. It will
normally be fatal.

BAD SER n
The task has sent a message to a non—existent process. This is not

fatal: the task will continue to run but if it was expecting a reply it
will never receive it. ‘n’ is the service number that failed.

TIME FAULT

The task has attempted to request the clock to kick it more than ounce.
It is not fatal but indicates problems with the code.

NOT READY! n

This message is issued when a peripheral wants operator action. When
this is done, a FREE or ABORT command should be sent to the task. The
octal number ‘n’ is device dependent, but will normally contain the
contents of the peripheral’s error register (see the DEC PDP1ll Peripheral
Handbook) «

DEIMOS User Manual

APPENDIX 1

Tape Analysis, Archive & Restore, and Labelling Programs

Each of these programs is called in the usual way. A prompt is then
given on the user’s terminal; valid replies are described below. Once the
actions requested have been carried out by the program, the prompt is
repeated. This continues until the appropriate "stop" command is given by
the user.

STAR - Standard labelled Tape Archive and Restore

A tape file is identified in its HDR1 label by its 6 character name, its
11/40 owner number - two octal digits, and its version number = two decimal

digits. The latter is used to distinguish identically named and owned files
on the same tape. (Foreign tapes should have both the owner and version
fields recorded as blanks. On reading, these fields are interpreted as 00.)
Also recorded in the label is the disc protect code of the file at the time
it was written to tape.

Commands are of the form

COMMAND specification

The syntax used in the specification is as follows:

<unit> := <unit number>. ! null
<unit number> t=011121314
<{fgroup> s= 1=-6 alphanumeric, the first being alpha. Any can be

replaced by ?, implying any alphanumeric. Only the
first trailing ? need be given - thus A?=A?777?
{version> := :<{version number> ! null
{version number>:= 2 decimal digits

<owner> := ({owner number>) ! null

<{owner number> := 2 octal digits

<{discdump> := <discname> ! <{discnamed> / <{unit><{userlistd>
<{discname> := l=-6 alphanumeric

{userlist> := (Susers>) ! null

{users> := {owner number><{rest of users>

<rest of users> ,{owner number><rest of users> ! null

Unembedded spaces are ignored.
In the following command descriptions, OWNFS is the user’s file system,

specified via the system command LOGON (see above).

Note also that only the first letter of each command name is significant.

DEIMOS User Manual 31

Commands

FILES

Lists the files present on the tape in the form:

name(owner number):version number

RESTORE <fgroup><owner><version>

If <owner> is null it defaults to OWNFS.
If <version> is null, any version is implied.

Restores file/s destructively to disc in OWNFS (regardless of <owner>
field in tape file identifier). If <{version> is unspecified, the
earliest is restored first, thus leaving the latest omn disc.

e.g. R? restores the latest versions of all files belonging
to ownfs to OWNFS.
R 2(21):00 restores the earliest versions of all files
belonging to user 21 to OWNFS.

Note that foreign tape files to be restored must be specified as
owner 00. Multiple restore specifications can be given on one line
separated by commas; thus

R T?(10),FRED,?(00):00

TYPE <fgroup><owner><version>

As RESTORE, except that the file/s are transferred to the console
instead of disc. The implications of a null <version> should be
considered. Multiple specifications can be given.

.

ARCHIVE <unit><fgroup><owner>

If <unit> is null it defaults to O.
If <owner> is null it defaults to OWNFS.

Archives file/s satisfying <fgroup> in directory <unit><owner>.
Files are written to tape from the current end of tape onwards (but
see DUMP command below). If no identically named and owned file/s
already exist on the tape a version number of 00 is recorded,
otherwise the latest version number+l is recorded. Multiple
specifications can be given.

DUMP <discdump>

32

If <unit> is null it defaults to O.
If <userlist> is null all users are implied.

Overwrites existing tape contents, writing <{discname> and the date
into the tape volume label.

E.g. DUMP CDM (or DUMP CDM/) archives all files from the disc on unit
0, writing CDM and the date into the volume label

DUMP CDM/(20,21) archives all files belonging to owners 20 and
21 on unit O

Once written to by the DUMP command, a tape cannot be written to by
ARCHIVE. It can be rewritten by DUMP or re—initialised (by a
separate program). It can be read by FILES, RESTORE and TYPE in the
normal way and also by UNDUMP.

DEIMOS User Manual

UNDUMP

This is used to restore all files from a tape written by DUMP. The
files are restored to their original owners, as distinct from RESTORE
which always restores to OWNFS. (All version numbers on a DUMP tape

must be 00 since ARCHIVE cannot extend such a tape, and there should
not be identically named files in one disc directory.)

The following checks are performed:

a) OWNFS=00

b) the tape has been produced by DUMP; ie the first character in
the discname field in the volume label is non-blank (but beware
foreign tapes).

These being satisfied, the following information is requested:

1) the name of the disc from which the tape was DUMPed,
2) the date on which the DUMP was carried out,
3) the unit to which the restore is to be made.

If this information is not given correctly the UNDUMP is abandoned.
After 5 UNDUMP failures the tape is released and the program stops.

(If the tape is in fact a DUMP tape the discname and date of the DUMP
is included in the claim tape message at the start of the session.

It need only be copied exactly to satisfy requirements 1 and 2 above.
This is not exactly a stringent test but at least gives pause for
thought. It may be better to scramble the information in some way.)

BACKUP <unit><userlist>
If <unit> is null it defaults to 0.
If <{userlist> is null all users are implied.

This archives all those files in the specified disc areas which are
either not already on the tape or which have a different protect code

(ie they have been altered since they were archived). Use of this
command archives the minimum number of files to maintain an up to

date archive tape. Like ARCHIVE, BACKUP adds files to the end of a
tape and cannot write to a tape last written to by DUMP.

STOP
Rewinds and releases the tape and stops.

Limits:

Maximum files/tape : 200
Maximum read blocksize : 4000

The program reads or writes at 800 or 1600 bpi (determined by a successful
read of the volume label). It will read fixed or variable format files,

unblocked, blocked and/or spanned. However, it disregards the logical
structure implied by the format, record length and block attribute fields in
the HDR2 label, transferring each physical block to the destination as a
stream of 8 bit bytes. The logical control information is therefore
preserved. It writes fixed-length, unblocked, 512-byte blocks.

DEIMOS User Manual 33

STAN - Standard labelled Tape ANalysis

This is an interactive tape analysis program, which is driven by commands
either from the console or from a file (input stream l1). Each byte of data
on the tape is defined by its byte, block, and file displacement from the
start of the tape. Commands exist to move a notional cursor to any byte,
and to output one or more bytes from the current cursor position, in octal,
hexadecimal, character (optionally translated), or in a combined form of
hexadecimal and character side by side.

Primitive commands consist of an operation, generally specifying a movement
of the cursor or an output format, followed by a repetition count

specifying, for a cursor-moving operation the number of bytes, blocks or

files by which the cursor is to be moved or, for am output operation the
number of bytes onward from the current position to be output.

The cursor—-moving primitive commands are:

Un - move the cursor to byte 1, block 1 of the nth file Up the tape from
the current file. (Up is towards the end of the tape.)

Dn - move the cursor to byte 1, block 1 of the nth file Down the tape from
the current file.

Fn - move the cursor to byte 1 of the nth block Forward from the current
block. (Forward is towards the end of the file.)

Bn - movekthe cursor to byte 1 of the nth block Backwards from the current
block.

Rn - move the cursor to the nth byte Right from the current byte. (Right
is towards the end of the block.)

Ln - move the cursor to the nth byte Left from the current byte.

The output primitives are:
On - output in Octal, n bytes starting with the current byte.
Hn - output in Hexadecimal, n bytes starting with the current byte.

Pn - gutput as Printing characters, n bytes starting with the current
yte.

Cn = output in Combined hexadecimal and character side by side, n bytes
starting with the current byte.

Clearly such primitives can fail; for example if the specified cursor
destination does not exist, or if there are insufficient bytes remaining in
the current block to output.

If the cursor-moving command R fails, the end of block failure message

EQB AFTER BYTE n

is produced. (If an output command fails, the output up to the failure is

34 DEIMOS User Manual

produced.) If the cursor—-moving command L fails, the start of block failure
message is simply

*%G OB**

since it must have failed at byte l. Similarly, the F and B commands
produce the file failure messages

EQF AFTER BLOCK n
and

kSOF
respectively, and the U and D commands produce the tape failure messages

**EQT*%* AFTER FILE n
and

#GOTH

respectively.
The repetition count for a primitive command can be of two forms:

a) explicit = an integer>0, meaning do it that many times (an explicit
repetition count of 1 need not be typed)

b) indefinite = 0 or ?, meaning do it until EOT, SOT, EOF, etc., and
produce the appropriate failure message.

Two types of output have already been mentioned - that produced by the 0, H,
P and C commands, and failure messages. A third type of output is produced
when an explicit U, D, F or B command succeeds.

Whenever an explicit U or D command succeeds, the file descriptor for the
newly current file is output, in the form

FILE n
name [format lrecl/blocksize block=-attribute]

(See the section "File descriptor formats", below.) Whenever an explicit F
or B command succeeds, the block descriptor for the newly current block is
output, in the form

BLOCK n LENGTH=m BYTES

Multiple primitive commands can be input on the same line, forming a
compound command whose elements are executed from left to right.
Additionally, parentheses may be used to define compound commands which,
exactly like primitive commands, are followed by an explicit or indefinite
repetition count. (An unparenthesised compound command of one or more
primitive commands behaves exactly as if it had outer parentheses and a
repetition count of 1, and should be so considered in the description of
termination and failure, below.)

An explicit primitive command terminates when its repetition count is
exhausted. It terminates and fails at EOT, SOT, EOF, etc. An indefinite
primitive command terminates only at EOT, SOT, EOF, etc. It never fails
(although it produces a failure message).

DEIMOS User Manual 35

An explicit compound command terminates when its repetition count is
exhausted (i.e. all its elements have been executed from left to right
without failure n times). It terminates and fails when any element of it
fails. An indefinite compound command terminates only when an element of it
fails; the compound command itself never fails. In view of this, care
should be taken to ensure that an indefinite compound command contains a
subsequence whose repetition will ultimately give a failure, otherwise the
program will loop indefinitely. In this context, note that the output
commands do not move the cursor.

A reverse slash immediately following a command (primitive or compound)
cancels any failure of that command.

Examples

Some examples follow to clarify these points. At the start of a session the
cursor is positioned at byte 1, block 1, file 1 and the file descriptor and

first block descriptor are output. From this position the following
commands generate the output described.

command output

u? EOT failure message only.

(U1)? file descriptors for files 2 onwards to EOT.

F? EOF failure message for file 1.

(F?U)? EOF for file 1, then file descriptors and EOF for all files
to EOT.

((F1)?U)? block descriptors for blocks 2 onward to EOF for file 1,

then file and block descriptors for all blocks in all files
from 2 onward to EOT.

(H50F1)? if all blocks in file 1>=50 bytes, then hexadecimal of first
50 bytes in block 1 and block descriptors and hexadecimal 50

for all blocks from 2 onward to EOF, else ditto up to first
block with <50, when EOB for that block and terminate.

(HS50\F1)? hexadecimal of 50 or "block length" bytes in block 1,

whichever is the less, and block descriptors; ditto for all
blocks from 2 onwards to ECF.

(F1B1)? loops indefinitely without output.
(P10)? the first 10 characters of block 1 indefinitely.
(F?2)? EOF for file 1 indefinitely.

Now to the question of the cursor position after failure. With three
exceptions there is always a defined current file, block and byte. As

mentioned above, at the start of a session the cursor is positioned at file
1, block 1, byte 1 unless

36 DEIMOS User Manual

a) There are no files on the tape, when the EOT condition is immediately
raised; this condition is also raised when a U command is executed
and the current file is the last on the tape. Thereafter, the block
and byte positions are undefined, commands F, B, L, R and the output
commands give an appropriate failure message and terminate and U
gives the EOT failure message and terminates. Only D of the commands
described so far is effective.

or b) The first file contains no data blocks when the empty file condition
is raised; this condition is also raised when a U or D command is
executed and the newly current file is empty. The file descriptor
and the empty file failure message is output. Thereafter, the
commands described so far except U and D produce an appropriate
failure message and terminate.

or c) the first block of the first file is a bad block (i.e. one which
cannot be successfully read from the tape because of parity errors),
when the bad block condition is raised; this condition is also raised
when a U, D, F or B command is executed and the newly current block
is bad. A warning message is output in the form

BAD BLOCK m TRANSFERRED

where 0<=m<{=block length and is the actual number of bytes
transferred to main store. If m=0, the block descriptor takes the
form

BLOCK n **BAD BLOCK (ZERO LENGTH)*#*

and the current byte becomes undefined. Thereafter the output and L
and R commands give an appropriate failure message and terminate.
(Note that this condition is only raised for bad data blocks. A bad
block occurring as a label is treated as a fatal error; the tape is
then rewound and the program stops.)

Apart from these three cases, the cursor position after failure is as
follows:

command file block byte
D 1 1 1
F current last 1
B current 1 1
R current current last
L current current 1
out put unchanged unchanged unchanged

Output from the execution of an O, H, P or C command begins on a new line.
Within one such command, newlines are inserted if required on the basis of
the page width, which by default is 132. This width can be reset at any
time using the W command:

Wn - set the page width to n; n<l2 or n=? produces a failure message and
fails.

DEIMOS User Manual 37

The output produced by the O and H commands is always an exact
representation of the bit pattern on the tape. The character output
produced by P and as part of C is a translated form of the bit pattern. The
translation is controlled by the current translation mode. If the mode=0
(the default) the tape bytes are assumed to be ISO characters and the bottom
7 bits of each byte are used, non—-printing characters being translated to
space and newline to “. If the mode=l the tape bytes are assumed to be
EBCDIC characters and are translated to their ISO equivalents, non—printing
to space and newline to “. The translation mode can be changed at any time
using the M command:

Mn - set the translation mode=n; n>l or n=? produces a failure message and
fails.

After some interactive movements within the files on a tape, it may be
convenient to have the current cursor position output explicitly. This is
done using the T(Tell) command:

Tn - output the current cursor position (current file descriptor, block
descriptor and byte number); the repetition count is discarded.

The analysis is stopped and the tape released using the S command:

Sn - end the analysis, rewind and release the tape and stop.

Conclusion

The program produces its output on stream 1, which can be a file or any
defined output device. As already mentioned, it takes its input from stream
1, which can be defined to be the console or a file. Thus an arbitrary
number of tailor-made analyses can be obtained simply by inserting the
appropriate command string in a file (preferably pre-tested for indefinite
looping, especially if the output is not to the comsole). As a final

example, one likely candidate for inclusion in such a set of analyses is the
command string

M1((C?F1)?Ul)?s

which produces = the file descriptor, the block descriptor, a side by side
hex/character dump of all the bytes in the block, for all the blocks, for

all the files in an EBCDIC coded tape, the output being suitable for a page
width of 132.

A version of the program taking identical commands for analysing unlabelled
tapes 1s available. This cannot cope with the empty file condition, since,
lacking the context of the header and trailer labels, it must assume an
empty file to indicate EOT, but otherwise its behaviour is identical. Since
it treats all blocks as data blocks it can be used to analyse a labelled
tape, the label blocks being examined as data. In particular, it can be
used to analyse a tape containing bad label blocks.

Further versions for different labelling schemes can be produced relatively

simply, and further character translation modes can be included given the
appropriate translation tables.

38 DEIMOS User Manual

Summary of Primitive Commands

cursor up n files.
cursor down n files.
cursor forward n blocks.
cursor backward n blocks.
cursor right n bytes.
cursor left n bytes.

bytes in octal.

ouput n bytes in hexadecimal.

output n bytes as printing characters.

ouput n bytes in combined hex/character side by side.

set the page width to n.

set the translation mode to n.

tell the current cursor position.

Un - move the
Dn - move the
Fn - move the
Ban - move the
Rn - move the
Ln - move the
On = output n
En -
Pn -
Cn -
W -
Mn -
Sn -

rewind, release the tape and stop.

File Descriptor Format

FILE
name

n

where:

name

[format lrecl/blocksize block=attribute]

format

1recl

blocksize

block

attribute.

= 17 character file name padded on right with blanks

= record format; F = fixed, V = variable, U = undefined (as
read from HDR2 label)

= logical record length (as read from HDR2 label)

=~ physical blocksize; maximum if V or U format (as read from
HDR2 label)

= blank = no blocked or spanned records,

B = blocked records,
S = spanned records,
R = blocked and spanned records (as read from HDR2 label)

DEIMOS User Manual 39

UTAN/UTANR - Unlabelled Tape ANalysis

UTAN is the tape analysis program for unlabelled tapes mentioned in the
description of STAN (above). This program takes identical commands and -

with the exceptions noted below — performs identically with respect to
output, termination and failure.

The exceptions are

a) the file descriptor reduces to
FILE n

b) a tape which begins with a tape mark is considered to have an empty
file in position 1l; the empty file condition can arise nowhere else,
since two adjacent tape marks signal EOT. As a consequence of this,
an empty tape (i.e. one which begins with two tape marks) is
considered to contain ome empty file.

Typically this program should be used to analyse a tape which is either
known to be unlabelled or whose labelling scheme is unknown. If labels are
present, they can be examined as data; if a labelling scheme is then
recognised for which a specific tape analysis program exists, that program
should be used to provide more convenient access to the genuine data and to
give access to data beyond an empty file, which this program cannot give.

Both UTAN and STAN attempt to establish the density of a tape by reading the
first two blocks at 800 bpi, and if they both give parity errors, trying at
1600 bpi.

If a tape has genuine parity errors in the first two blocks, this will
result in UTAN giving up altogether since it will fail to establish the
density at all. In order to analyse such a tape, UTANR is available. It is
identical to UTAN except that it first requests the density from the console
instead of trying to establish it on its own. A tape starting with two bad
blocks can thus be analysed.

40 DEIMOS User Manual

INSL - INitialise/re—initialise Standard Labelled tapes

INSL is used to re-initialise standard labelled tapes. This is achieved
simply by writing a new VOLl label and two tape marks at the start of the
tape.

The tape driver TUl6Y must be running to use INSL, which first requests the
new name for the tape. This can be up to 6 alphanumeric characters the
first being alpha. (More than 6 may be typed but only the first 6 are
recorded on the tape.) A null name or one containing illegal characters is

discarded, with an appropriate message, and the request repeated.

The recording density is then requested. The reply should be O for 800 bpi
or 1 for 1600 bpi. Any other reply is discarded and the request repeated.

The name and density specified are then output to the console for
verification, together with a reminder that the existing tape contents will
be lost. A final confirmation that the re-initialisation should be carried
out is requested. A reply of Y (yes) causes the new label to be written.
If any other reply is given the tape is released without alteration and the
program StOpS.

DEIMOS User Manual 41

APPENDIX 2
Building a New System
A new system is built by running a program (SBLD) that links together a
number of files containing the basic building blocks of the supervisor. The
program then allows the interrupt vectors to be tailored for the specific

machine before writing the entire supervisor to one of a number of fixed IPL
sites on a disc.

SBLD is run in the form: SBLD3Y SUPDEO,D/.TT

The ‘3’ denotes the current version of the program and will vary from
time to time.

SUPDEO is a steering file, described below.
D is a dummy file name, to allow SBLD to do further I/0.

+IT is a report stream; any normal output definition may be used here.

The steering file SUPDEO contains all the instructions for building the
supervisor. An example file is given below:

E

—OoOwvoo~NoOcuUMPLUN=DE

DEIMOS VSN 8.2 22.FEB.80 (NEW BUILD PROG, SUPER AT 2600)
2600

BRUNOY N O

SUP28 60002 0

PERM9Y 60006 O

BTT4Y 60012 150

BDKSY 60016 70

FSYS1Y 60022 300

LOAD6Y 60026 300

MOTH6Y 60032 50 :

END

-6 304

-7 310 DQS1l # 1

-20 324 DQS11 #2

-21 330

-22 404 DQS1l #3

-23 410

-24 424 DQS11 #4

-25 430

-26 454 PARR INT #1

-27 444 PARR INT #1 (TX)

-14 350 KMC

-13 354 DITTO

0

S 25
0 26

ol

chmmﬁ*
The lst line is a eemmend which identifies the particular supervisor.

The 2nd line (2600) contains the address at which the supervisor Kernel

(SUP28) was linked (see separate instructions). The actual address is
dependent on the register load/unload module. This will normally be a

DEIMOS User Manual 43

constant which depends on the number and type of ’‘pseudo’ DMA devices
built into the assembler register load/unload module.

The 3rd line (BRUNOY N 0) is the name of the register load/unload module.
The N signifies that there are no linkage pointers dumped for
initialisation purposes. The 0 is the size of the stack = in this case
non-existent as it is an assembler module.

There are a number of variants of this particular module, the main ones
being as follows:

BRUMOY basic module. The supervisor must be linked at 2600.

DVRUBY basic module + a ‘pseudo’ DMA handler for a SUPll working in
byte mode with BSC framing. The supervisor must be linked at
3600.

DL11Y basic module + a ‘pseudo’ DMA handler for a DL1l acting as a

processor/processor link. The supervisor must be linked at
3600,

XBMOlY basic module + a ‘pseudo’ DMA handler for a DUP11/DUll
emulating ICL’s "ICLO2" protocol.

The 4th line (SUP28 60002 0) contains the name of the Kernel module. The
60002 is the address at which its start address and (at 60004) its GLA
address are dumped to allow proper initialisation of the supervisor; all
these ‘dedloc’ addresses are fixed and should not be modified without
careful conslideration of the effects within the Kernel initialisation
module SINOO8. (No further reference will be made to these numbers.) A
stack size of 0O is again given, as its stack is always placed immediately
beneath the load/unload module.

The 5th line (PERM9Y 60006 0) is the name of the cement module
(implemented in assembler); this contains the shared I/O function and
system routines used by all IMP programs (source: PERMAS).

The 6th line (BTT4Y 60012 150) is the name of the main console handler
(source: BTT4S). It should be noted that the variables containing the
major parameters (hardware address, interrupt numbers, etc.) are owns, to
allow the code to be stored with subsequent console handlers.

The 7th line (BDKS5Y 60016 70) is the name of the disc handler for the main
system wit (0).

There are a number of variants of this handler, depending on the type of
disc in use:

BDK5Y (source: BDKSS) RKO5 handler (units O and 1).

RLO3Y (source: RLO3S) RLO1 handler (units O and 2). N.B. hardware
unit 1 is mapped to software unit 2.

BDKHIY (source: BDKHIS) Amplex handler (units O and 3). Floppy disc
handler (still to be written).

RX021Y (source: RX021S) Floppy disc (RX02) handler.
PRDL3Y (source: PRDL3S) For systems with no disc and which load

programs down a DL1l.

44 DEIMOS User Manual

The 8th line (FSYS1Y 60022 300) is the name of the file system handler.
This handler normally organises the files on all of the disc units
available on a system. It should be noted that a slightly different
version is required for each of the different disc handlers listed above,
because of the differing disc sizes. One further minor variation in file
system handlers is the number of buffers allocated for the handlers’ use;
this parameter is completely specified before the module is compiled. For
systems with no disc, a dummy program (FSDUMY) is specified.

The 9th line (LOAD6Y 60026 300) is the name of the loader/command language
intepreter.

The 10th line (MOTH6Y 60032 50) is the name of the error handler task
(usually called MOTH).

The 1llth line (END) terminates this phase of the building and switches to
the interrupt number setting phase. The input for this phase is in the
form:

-6 304 command

The ‘-6’ is the interrupt service number, i.e. the number on which a
device handler does a ‘LINKIN’ to claim the device.

The ‘304’ is the address to which the device will interrupt; the
program then plants the necessary linkage.

Only the interrupt numbers less than -5 may be set in this way. The
others, i.e.:

-1 main console 0O/P

-2 main console I/P

=3 unit O disc interrupt
-4 address error interrupt
=5 TU1l6 interrupt

must be changed by editing and re—assembling the load/unload module.
In addition, the ‘pseudo’ DMA device interrupts must be set in this
waye

This phase of the building is terminated by a O.

The 25th line (S) is the termination of a patch phase that is now rarely
used. The form of any patch is:

1000=300
which sets octal ‘300’ into octal address ‘1000°.

The final (26th) line is a character which defines to which site the
completed supervisor is to be written; the normal variants are:

- site 0 (blocks 1-76) of unit O.
- site 0 (blocks 1-76) of unit 1.
- gite 1 (blocks 4600-4676 of unit 0) (N.B. RKOS only)
- site 0 (blocks 1-70) of unit 2

e NN e

DEIMOS User Manual 45

When it has completed, SBLD prints out
NOW IPL

and stops.

A sample output, to match the input file above, is given below:

X¥SBLD2Y SUPDEL,D/.TT

DEIMOS VSN 8.2 22.FEB.80 (NEW BUILD PROG, SUPER AT 2600)
SUPER CODE BASE?002600

FILE:BRUNOY 000000 000000 002253 000000
FILE:SUP28 002600 007700 014151 060002
FILE:PERM9Y 014200 000000 017377 060006
FILE:BTT4Y 017400 022500 023065 060012
FILE:BDKSY 023300 024500 024613 060016
FILE:FSYSIY 025000 031000 035261 060022
FILE:LOAD6Y 035600 045500 046241 060026
FILE:MOTH6Y 046600 047600 050115 060032
FILE:

RESETTING OF INTERRUPT NUMBERS AND VECTORS

INT: -6 VECTOR: 000304 (001660)

INT: -7 VECTOR:000310(001670) DQS1l # 1
INT:-20 VECTOR:000324(002044) DQS11 #2

INT:-21 BECTOR:000330(002054)

INT:~22 VECTOR: (000404 (002064) DQS11 #3

INT:-23 VECTOR:000410(002074)

INT:-24 VECTOR:000424(002104) DQS11 #4

INT:-25 VECTOR:000430(002114)

INT:-26 VECTOR:000454(002124) PARR INT #1
INT:-27 VECTOR:000444(002134) PARR INT #1 (TX)

INT:~14 VECTOR:000350(001764) KMC
INT:-13 VECTOR:000354(001754) DITTO
INT:PATCH?

SUPERVISOR LOADS FROM 000000 TO 050115 AND 60000 TO 063707
TOP OF STORE IS DETERMINED AT RUN TIME

DISC?

PUT ON UNIT O ON SITE # 2

CORE IMAGE WRITTEN

NOW IPL

®

Notes
1) The numbers following the file name are as follows:
START OF CODE - START OF GLA/STACK - LAST BYTE USED - DEDLOC ADDRESS

2) The number in brackets following the vector address in the interrupt
section is the address at which the linkage code is placed.

46 DEIMOS User Manual

INDEX

ABORT 9
address error 8,30
ALIST 18
applications program 4
ARCHDK 22
assembler 3
asynchronous communication 1
bad ser 30
block checksum 29
bootstrap 3
breakpoint 24,25
CLI 5
clock 1,2
command language interpreter 5
command verb 7,5
concatenation 20
CPU
allocation 2
queue 7
DBUG 24,26,29
debugging 24
DEIMOS 1
directory 21
editor (ECCE) 13
window 13
EMAS 2
emulator 4
error messages 28
compiler run time 28
loader 28
system 29
ERTE 4
ESC 5
file
name 5
system interrogator 21
FREE 8,9
GEC 4080 2
GLA 16,26
Global Segment Table 2
HDLC 1
HIS SEG 12
HIS SER 12
HOLD 8
ICL 2900 3,4
ICL 4-75 3
illegal instruction 30
illegal SVC 30

IMP
compiler
INDEX
information messages
INSERT
INSL
INT
interrupt
1/0 buffer
IS0

kegnel
KILL

library

Linker

LNB

local name base
LOGON

«LP

magnetic tape
analysis
file archive
file restoration
labelling
utilities

main store
allocation
examine & change

mapping

MAP VIRT

mass storage

memory management

message
queue

MYSEG

NEWLIB

object file
checking
(0) 4

PDP 11

peripherals

PERM

POFF

PON

PONOFF

PRIMS

process
destination

protection

psect

PURGE

RECODE

1,3
14

17

29

17
41,23
9,21

3,15

25
8,13,29
17

14,3

26

26
7,5,31

31
31

31
31
22
27

12

2,10
12

17
14,19
14
1,3
15

10

10

14

10
24,26

8,13,29
19,14

INDEX

register
segmentation

RESTDK

RJE

RKO5 disc

RSX11D

run state

segment
access permission
fault
sharing
stack
STAN
command summary
EOB
EOF
EOT
SOB
SOF
SOT
STAR
ARCHIVE
BACKUP
DUMP
FILES
RESTORE
STOP
TYPE
UNDUMP
stream definition
supervisor call
swopping
synchronous communication

T
task
descriptor block

held
monitor
priority level

state
TASKS
terminal
time fault
transfer program
«TIT
TU16Y (tape driver)

UNIX
UTAN/UTANR

VIEW

virtual memory (VM)
VOL1 label

wait state

XDEF

XREF

INDEX

2,24
26
23

22

W o N

26
34,23,40

40,23

14
1,2,25
41

16
16

