THE INTERDATA 74 COMPUTER

This document describes the interdata 74 processor and memory at a
level which is appropriate for programming the machine in an assembler
level language.

First a very brief description is given of all the registers in the
processor over which programs have explicit control. The diagram below
shows these. 1In describing any register a basic characteristic is the
number of bits it contains. By convention, the bits within the register
are numbered 0,1,2, etc... As can be seen from below the model T4
registers each have 16 bits.

15 0]
i i PS } Program status
! | Loc } Word
15 Q
1 ! RO }
| I R1 }
! ! R2 } General Purpose
: : }
3 . } Registers
| | R1Y }
! ! R15 }
Ihe General Purpose Registers

The 16 registers will be denoted by RO,R1, ... R13,R14,R15. Each
register is 16 bits long. They are used for 2 purposes viz:

1) accumulators Arithmetic (add,subtract) and logical (and,
shift) operations can be performed on the contents of any one of
these registers. More specifically, whenever an instruction
being executed by the processor invokes an arithmetic or a
logical operation, then at least one of the operands comes from
a general purpose register and the result is placed in the same
register. All arithmetic in this machine is done using 2s
complement representation in 16 bits.

2) Index registers. When an instruction requires to access memory
the contents of any one of the registers R1 through R15 may be
used in the calculating the address of the required location.

Program Status Word

This is a 32 bit register which can be considered as 2 separate 16
bit registers for most purposes. The complete 32 bit register is
denoted by PSW, its most significant 16 bits are referred to as the
status part PS asnd the least significant 16 bits are referred to as the
location counter, denoted LOC.

15 4 3 Q 15 Q

] 1 1 1 !
1 L 1 ! 1

PS cc Loc
1
1
the condition code

1-1

The significance of these parts is briefly described here. While the
processor is running (executing instructions) the location counter (Loc)
always contains the address of the instruction currently being executed.
Note that an address is a 16 bit quantity. The status part (PS) of the
PSW determines the state of the processor, only the 4 least significant
bits of PS need to be considered here. They are referred to as the
condition code, denoted CC. The bits of the condition code are set to
reflect the state of the last operand derived within the processor.

They are set by most instructions which place a 16 bit value in a
general purposer register and instructions which compare two 16 bit or
two 8 bit values. This means that the condition code bits are set at
the conclusion of most instructions.

The condition code bits are denoted by C,V,G & L as shown below

»_ - - _ 3 2 1 0
PS | lc v e L |

Their significance is as follows:-

L when set to 1 implies that the value was Less than 0 (<0)

G when set to 1 implies that the value was Greater than 0 (>0)

\ when set to 1 implies that arithmetic overflow occurred during
the last arithmetic operation.

C when set to 1 implies that the last arithmetic or logical
operation generated a carry bit.

The V,G and L bits are set according to the value interpreted as a 2's
complement 16 bit quantity.

The condition code plays a vital role in determining the sequence of
instructions selected by the processor.

Main Memory

The main memory of the computer is usually referred to simply as its
memory. It is the memory in which all instructions and data reside
while a program is being executed.

In describing any main memory it is usual to state the number of bits
there are in each location. 1In this machine, and most others, this is
not straightforward. The memory of an interdata T4 can be regarded
either as a collection of 16 bit locations or as a collection of 8 bit
locations. The diagram below shows how these entities are considered to
be laid out, in particular it indicates what address value is given to
each location.

address location

etC.oooens

All addresses generated by programs are 16 bit values. Whether a
particular address is referring to a 16 bit or an 8 bit location is
determined entirely by the opcode of the instruction being executed.

As implied in the diagram, successive 16 bit locations are addressed
by the even integers. In fact if the opcode specifies that a 16 bit
location is to be used then the least significant bit of the memory
address generated is considered to be 0. Programmers should usually
ensure that it is actually 0. :

If the opcode implies that an 8 bit location is to be addressed then
an even address is taken to refer to the most significant half of the
corresponding 16 bit location (bits 15-8), an odd address is taken to
refer to the least significant half of the 16 bit location at the
immediately preceeding (even) address (bits 7-0).

8 bit locations or values are referred to as "byte" locations or
values, whereas 16 bit locations or values are referred to as "half
words"., (Use of the term half might be thought to imply that there are
full word quantities, but these do not exist on this machine.)

The number of locations in the memory can vary from machine to
machine. The number is usually expressed in units of a "kilobyte" (Kb),
which is 1024 (2%**10) bytes. The maximum amount of memory permitted in
a machine is 64Kb i.e. addresses in the range 0 to FFFF(hex), but most
machines have only 8Kb i.e. addresses in the range 0 to 1FFF.

Processor Instructions

The interdata 74 machine has a large number of different
instructions, about 220 different opcodes. Before describing their
format and detailed meaning they can all be placed in one of 5 different
categories as follows

Load & store instructions which move values between the general
purpose registers and the main memory.

Arithmetic instructions which add, subtract and divide etc. values.

Logical instructions which perform operations such as and, or
shift etc.

branch instructions which transfer control such as jumps and
subroutine entry instructions.

privileged instructions which explicitly operate on the program

status word or communicate with peripheral devices.

1-3

Instruction Formats
There are several formats of instruction. They differ according to
the number and significance of the various fields within the format. An

instruction will be either 16 or 32 bits long (1 or 2 halfwords). The
basic formats are considered in turn in the following sections.

Register - Register (RR) Format
Instructions of this format occupy 1 halfword, there are 3 fields

15 87 43 0

OPCODE Ry

|
R]
2

The fields are an 8 bit opcode and two 4 bit fields which specify 2
of the general purpose registers. Opcodes denoting instructions of this
format invoke operations on the contents of the 2 registers specified.
If a binary operation, such as addition, is called for then the contents
of Ry and R, are taken as the operands and the result is placed in Ry -
overwriting the original operand.

For example, opcode OA denotes an addition of this format. An
instruction such as:-

|_0A i 4 9 |

would add the contents of R4 and R9 placing the result in R4.

Register - Indexed Memory (RM) Format
This is a 32 bit format in which there are 4 fields

15 87 43 0 15 Q

i
OPCODE i Ry ADDR

'

1

=

1
|
|

X
!

An opcode denoting an instruction of this format invokes an operation
between the contents of Ry and the contents of a memory location. The
address of the memory location is determined by the ADDR and Ry fields.
If the Ry field is zero then the address is simply the contents of the
ADDR field. However, if Ry is not zero, then the address of the memory
location is obtained by summing ADDR and the contents of Ry. A register
used in this way to calculate addresses is known as an INDEX REGISTER.
The general purpose registers R1 - R15 may be used for this purpose, but
not RO.

For example, consider the opcode YA which invokes an addition of this
format, thus

i__4A i 31 EV 1C0, !

The contents of a memory location are added to R3. The address of the
location is the sum of ADDR, i.e. 1C0, and the contents of R14.

Register - Short Immediate (RSI) Format

This is a 16 bit format having the same division into fields as RR
instructions

15 8 17 43 0

OPCODE Ry

-

As before, Ry contains the first of 2 operands and is the destination of
the result. 1In this format the second 4 bit field IS the second
operand. The I field is referred to as an IMMEDIATE OPERAND, since it
is immediately available within the 1nst3uction.

For example, the opcode 27 denotes a subtraction instruction in this
format, thus

1_21 i 8 | 5 |

is an instruction which would subtract 5 from the contents of R8.

Register - Immmediate (RI) Format

This is a 32 bit instruction which also includes an immediate
operand, the field division is identical to RM instructions.

15 8 1 4 3 15 Q

OPCODE Ry ADDR

- ——
=
»

As usual, Ri contains the first operand and is the destination of the
result. If the R, field is zero, then the second operand is the ADDR
field. If the Ry field is not zero then the second operand is the sum
of ADDR and the contents of Ry. This means that instructions of this
format include a full 16 bit immediate operand.

For example, the opcode C8 is a load instruction of this format, it
places the 16 bit immediate operand in Ry, thus

l__c8 N I O I 8C6 H

places 8C6 into R1.

Other Formats

The four formats defined above cover the vast majority of available
instructions. There are, however, formats similar to these in which the
R; field (bits U4-7) does not denote a register, but is used as an
immediate operand in some sense. The principal instructions in this
form are the branch instructions which are described at the end of the
next section.,

2-2

Ihe Non-Privileged Instruction Set

This section gives a brief summary of most of the instructions in all
categories except the privileged category, which will be described
later. The various categories of instruction are outlined in turn in
the following sections. Some types of operation have opcode variants in
all 4 formats, whereas others may have only 2 variants or even a single

i format., The available formats are indicated simply by giving the

| opcodes under the four headings RR,RM,RI,RSI. A single mnemonic is used
to cover the first 3 formats, but a seperate mnemonic is given for any
RSI format.

The tables also indicate the all important effect that the execution
of an instruction has on the condition code, the notation is defined in
the first section.

Load & Store Instructions

Load instructions place values in general purpose registers, store
instructions copy the values in registers usually into memory.

t Description Mnemonic RR RM RI RSI mnemonic CVGL

|

i Load halfword LH 08 48 8 24 LIS 00%**
Load comp - - - 25 LCS 00 *#

{ Load byte LB 93 D3 ——

' Exchange byte EXBR 94 ———

} Load multiple LM - D1 S
Store halfword STH - 40 ————
Store byte STB 92 D2 —
Store Multiple STM - DO ————

The effect on the condition code is defined for each bit as follows

0 imples that this bit is set to zero by the instruction
* implies that the bit will be set or cleared according to the value
- implies that the bit is not changed at all by the instruction.

Btore operations leave the condition code unchanged. LH and its RSI
variants set G or L according to the arithmetic value loaded. Note that
the most significant half of R; is cleared by the LB instruction. 1In
the RR variant the least significant half of R, is loaded to Rj. The
EXBR instruction is not strictly a load or store for it takes the
contents of R, and swops round the most and least significant halves
before loading into Ry. The STB instruction in the RR variant places
the least significant byte of Ry in the least significant byte of R,.
The most significant byte of R, is unchanged.

The LM and STM instructions transfer values between a number of
successive general purpose registers and successive memory locations.
The registers involved are all of Ry,Ry 4, ... R15 and the memory
locations are the one addressed in the instruction and the ones
immediately following.

N.B. As their mnemonics suggest, the opcodes determine when byte or
halfword addressing is involved.

Arithmetic Instructions

These are the instructions which perform binary operations such as
addition and subtraction. The result is almost invariably placed in Ri'

Description Mnemonic RR RM RI RSI mnemonic CVGL
Add halfword AH OA 4A CA 26 AIS Labdd
Subtract hw SH 0B 4B CB 27 SIS LAl
Add hw with carry ACH OE U4E RERR
Subtract with carry SCH OF UF LAl
Add to memory AHM - 61 EREE
Multiply halfword*#* MH 0C 4c -——
Mult. hw unsigned*#* MHU 9C DC ———
Divide halfword*#® DH 0D up —

** indicates Ry must specify even-odd register pair (see below).

AH and SH are self explanatory. ACH and SCH include the carry bit as
an extra least significant bit, which is useful for programming'two
halfwords as one 32 bit integer (multiple precision arithmetic). AHM is
similar to AH except that the result is placed in the memory location
NOT in Ri which remains unchanged.

Multiplication of two 16 bit values gives a 32 bit result. For this
reason the multiply instructions use not a single register (Ri) but two
ad jacent registers the first of which is R; and it must be an even
numbered register. These even-odd pairs o} registers will be denoted as
Ry and R; 4, examples are RO-R1, R4-R5, R14-R15 etec..

Division of two 16 bit values can give a 16 bit quotient or a 16 bit
remainder. For this reason the divide instruction also makes use of an
even-odd pair of registers. Initially, Ri'Ri+1 contain the operand
which is to be divided, finally the quotient appears in Ri+1 and the
remainder in Rj.

Logical Instructions

These invoke the standard binary logical operations

Description Mnemonic RR RM RI RSI mnemonic CVGL
And halfword NH o4 44 cu QO *#
Or halfword OH 06 46 C4 oo**
Exclusive or hw XH 07 47 CT7 00 *#
Shift Instructions

These fall into several sub-groups. Logical shifts move a 16 or 32
bit value as a whole introducing 0's into vacated positions. Arithmetic
shifts leave the sign bit (most significant bit) unchanged, they
introduce 0's into vacated positions during a left shift but copy the
sign bit into the vacated position during a right shift.

2-4

Description Mnemonic RR RM RI RSI mnemonic CVGL

logical

left 32 bits*# SLL - - ED #OR#
right 32 bits*# SRBL - - EC ROR®
left 16 bits SLHL - - CD 91 SLLS %Q##%
right 16 bits SRHL - - CC 90 SRLS ¥Q¥#»
Arithmetic

left 32 bits*# SLA - - EF EQR#
right 32 bits#*# SRA - - EE ®RR
left 16 bits SLHA - - CF RO
right 16 bits SRHA - - CE ®O R
Rotate

left 32 bits#*# RLL - - EB 00 **
right 32 bits*# RRL - - EA 0o*#*

Note that all these instructions are of RI or RSI format. The 32 bit
operations require that Ry specify the even register of an even-odd
pair. Note that rotate instructions do not set the carry bit, whereas
all others set it according to the last bit shifted out.

Compare Instructions

These are a very useful group of instructions which do nothing other
than set the condition code according to the relative values of the two
operands. The CC reflects the relationship between the contents of Ry
and the second operand in that order e.g. Ry > 2nd. operand sets the G
bit.

Description Mnemonic RR RM RI RSI mnemonic CVGL
Compare logical CLH 05 45 c5 LR e
Compare arithmetic CH 09 49 9 L\
Test Halfword THI - - Cc3 00 **
Compare logical byte CLB - D4 {4

The compares are all done simply by subtracting the second operand
from the value in Rj. Ry is not altered (the result is thrown away!),
but the condition code set. The logical comparisons pay no regard to
the signs of the operands, whereas the arithmetic comparisons set G and
L strictly according to arithmetic comparison. The THI instruction
performs a logical AND operation rather than a subtraction but is
otherwise similar., CLB compares the least significant 8 bits in a
register with an 8 bit value in memory.

Supervisor Call

This is a special instruction of the RI format with mnemonic SVC and
opcode E1. The details of the mechanism involved will be given later
but the instruction is designed to allow non-privileged programs to
request services from some privileged supervisor program(s). The Ry
field does not refer to a general purpose register, but designates one
of 16 different categories of supervisor service which may be requested.
The immediate operand is available to the supervisor program thus
invoked. The instruction is like a subroutine call in that after the
supervisor has completed the service it has the information to enable it
to return to the instruction immediately following the SVC. The effect
on the condition code is determined by the supervisor service invoked.

2-5

Branch Instructions

These are the instructions which may break the normal sequential flow
of instruction execution. They always designate a memory address which
contains further instructions. The condition code is interrogated by
these instructions, if it conforms to a certain state determined by the
instruction then LOC is loaded to cause the next instruction to be taken
from the designated memory address, otherwise the instruction
immediately following the branch instruction is taken next. In all
these instructions the Ry field (4 bits) does not designate a register,
but a value against which the condition code (4 bits) is compared. The
Ry field is referred to as the "mask" in this context.

Branch instructions are of two kinds. The "branch on true" kind
perform a logical AND operation between the mask and the condition code.
The branch "is taken" if the result is not zero, i.e. the second operand
determines the address of the next instruction. If the result is zero
the instruction immmediately following the branch is executed next - the
branch is "not taken". The other kind of branch instruction is the
"branch on false" kind. Here the mask and condition code are ANDed
together, but the branch is taken only if the result is zero.

Description mnemonic RR RM RI RSI nmemonic CVGL

Branch on

true condition BTC 02 42 20 BTBS ----
21 BTFS ----

Branch on

false condition BFC 03 43 22 BFBS -=--
23 BFFS = ----

Loop control
branch index high BXH - co ——

br. index less or equal BXLE - C1 —
subroutine entry
branch and link BAL 01 M1 -——

In the RR format BTC and BFC instructions the second register (R2)
contains the address of the next instruction if the branch is taken. 1In
the RM format the address of the second operand is the address of the
next instruction if the branch is taken (more like RI form?).

The RSI format instructions determine the branch address from the 4
bit immediate operand which, in this case, denotes a number of
halfwords. In the BTFS (branch on true forward short) and BFFS (branch
on false forward short) instructions when the branch is taken the next
instruction is that which is located the given number of halfwords after
(forward from) the branch instruction itself i.e. at LOC + 2*I. If the
branch is taken in the BTBS or BFBS (backward short) instructions then
the next instruction is located the given number of halfwords preceeding
(backwards from) the branch instruction itself i.e. at LOC-2%*I.

This paragraph shows a few examples of typical branch instructions.
Consider the following BTC instruction

! 02 i 3 1 6 | i.e. BTC 3,R6

The mask (3) is ANDed with the CC and the branch taken if the result is
not zero. This means the branch is taken if either the G or the L bit
is set (or if both - but that is impossible). With the normal
arithmetic interpretation this means that the branch is taken if the
last result was non-zero (#0 is same as >0 or <0). A branch if the

J
2-6

result was equal to zero would be taken by an instruction such as

03 {3 | 6 | i.e. BFC 3,R6

Here the mask and CC are anded and the result must be zero for the
branch to be taken i.e. G and L must both be zero implying the result
was equal to zero. 1In both instructions the address of the next
instruction is contained in R6.

It is possible to make all normal comparisons by noting that, for
example <=0 is the inverse of >0.

The diagram below shows the branches that would take place if the
following RSI format branches were taken

address halfword

n
n+2
n+4
n+6
n+8 (BFFS)
n+10
n+12 (BTBS)
n+14
n+16

The BXH and BXLE are instructions which mimic the action of a high level
language construction such as the IMP cycle with a control variable. No
condition code testing is involved, instead tests are made on the
relative contents of cvarious registers. Ry, Rj,q and Ry, play the
role of a control variable, an increment ané a %inal value. The action
for BXH is to add the contents of Ri4+q to Ry and compare the new Ry
value with the contents of Ri+2' The branch is taken if Ry > Ry o

Thus three adjacent registers are involved. The BXLE instruction is
similar except that the branch is taken only if the incremented R; value
is less than or equal to the contents of Ri+2'

Subroutine Entry

This very important facility is provided via the branch asnd link
(BAL) instruction. This is an unconditional branch instruction, i.e. it
is always taken. The R; field denotes a register into which the address
of the halfword 1mmedia%ely following the BAL instruction is placed when
the BAL instruction is being executed. This address is used by the
subroutine to return to the correct place at the conclusion of the
routine.

