University of Edinburgh

Department of Computer Scince

HAL 70

by
Hamish Dewar

revised by
Jeffrey Tansley
Internal Report CSR-29-78
James Clerk Maxwell Building October, 1973

The King's Buildings
Viayfield Road
Edinburgh

EHY9 3JZ2

H H A L 7777717 0

H H A A L 7 00
H H A A L 7 0 0
HHHHH AAAAA L 7 0 0
H H A A L / 0 0
H H A A L 7 00
H H A A LLLLL 7 0

A high level assembly language for
Interdata series 70

mini-computers.
by

Hamish Dewar

Revised by

Jeffrey Tansley

Department of Computer Science.
Edinburgh University.

First Edition 1975.
Second Edition 1977.
Third Edition 1978.

The Second Edition of this Manual reflects changes and additions

made to the Assembler since 1975. Most of these were done by H.D.

The revision of the Manual was done by J.T. The Third Edition
reflects comments of users since then.

Contents. Page.

0.0 Introduction 1
1.0 Form of HAL 2
1.1 Structure 2
1.2 Format 2
1.3 Basic Statement Components 3
1.31 Tags 3
1.32 Register names 3
1.33 Literals 4
1.34 Operators 4
1.35 Expressions 4
1.36 Relators 5
1.37 Labels 5
1.38 Comments 5
1.39 Spaces 5
2.0 Statements 6
2.1 Assignment statements 6
2.2 Jump statements 7
2.3 Machine code statements 8
2.4 Conditional bracketing statements 9
2.5 Loop bracketing stutements 10
2.6 Data statements 11
2.7 Macro call statements 12
3.0 Assembler Directives 13
3.1 Block structure 13
3.2 Tag definitions 14
3.3 Location counter specifications 15
3.4 Temporary register specifications 16
3.5 Listing control 17
3.6 Conditional assembly statements 18
3.7 Macro definitions 19
3.8 SAVE statement 20
3.9 Program END statement 20
Appendices

A Error reports 21
B Interdata mnemonics 22
C SSVC halfword OP code 24
D Assembler Semantics 25
E Implementation 26
F Example listing 28

0.0 INTRODUCTION

HAL-/0 is a programming language for the Interdata 70 mini-

computer range. It is one of a family of high—-level assembly
languages bearing the family name HAL which have been implemented

for a number of different computers. The high—-level features and

the syntax of the language are essentially the same in all
versions, but the machine-level features vary to match the

hardware capability of particular machines.

The aim of this hybrid type of language is to provide the kind of
program—-structuring facilities usually found in full-scale
high—-level languages —— such as block structure and generalised
assignment and conditional statements -- while permitting the
direct access to machine resources that 1is associated with an

assembly language. Thus the language does not pre-suppose a
particular run-time enviromment; it makes no fixed assumptions

about register usage, storage allocation or routine callir

conventions; it permits the wuse of machine instructions
arbitrary data formats; and it provides for explicit contrc

the positioning of code and data.

In the case of a multi-register machine like t: - Interdata 70, the
language permits uniform reference to regist:rs and storage
locations in the majority of contexts, thus avoiding the need to
use different instruction formats for the two cases. However
decisions regarding which variables should be ali-nated to
registers and which to storage locations over particular etions
of code are 1left to the programmer and the importanc e se
decisions for the production of efficient and economical couc =
stressed.

1.0 FORM OF HAL PROGRAMS

l.1 Structure

HAL is a block-structured language. A complete program is a block
and any block may have other blocks nested within it. In the

usual way the scope of applicability of a name introduced in a
block is confined to that block and all blocks textually contained

in it which do not define the same name. This localisation of the

effect of definitions (and certain other assembler directives) is
the sole purpose of the block structure; it has no significance

for storage allocation.

1.2 Forng_

A HAL program consists of a sequence of statements each of which
is terminated by a newline or semi-colon. The ASCII character set
is assumed. Apart from null statements, which are accepted and
ignored, statements belong to one of the following classes:

assignment statements

jump statements

machine-code statements

conditional bracketing statements

loop bracketing statements

data statements

assembler directives

macro—call statements

An assignment statement consists of an assignment instruction
optionally followed by a conditional clause. Similarly, a jump
statement (machine-code statement, macro-call statement) consists
of a jump instruction (machine-code instruction, macro-call)
optionally followed by a conditional clause.

Assignment instructions, jump instructions and run—-time conditions
are translated into a variable number of basic instructions while
each machine-code instruction is translated into a single basic
instruction (occupying one or two 16-bit words depending on the

type of the instruction). Each expression in a data statement is
translated into a 16-bit value (8-bit value in byte mode).

Assembler directives do not cause any code to be generated but
serve to direct the process of assembly and to provide definitions
for the names used in a program. The conditions which occur in

conditional assembly directives are tested at assembly time to
determine which sections of a program are to be assembled on a

particular occasion.

A macro call is expanded in accordance with the corresponding

macro definition, ultimately into statements belonging to the
other classes.

The syntax of individual statements is described in Sections 2 and
3 with the aid of a form of context-free grammar (BNF). The
symbol “*° indicates repetition (zero or more occurrences) and the
symbol “?° indicates that a statement component is optional.

1.3.0 Basic statement components

1.3.1 Tags

Tags (or identifiers) are symbolic names used for a variety of
purposes 1in program statements -- for example as instruction

mnemonics, register names, labels, and symbolic constants. A tag
is a string of up to six letters or digits starting with a letter

and with all letters preceding any digits. Any extra trailing
letters and digits are ignored. Each tag belongs to a certain
type, depending on the way in which it is defined, and there are
constraints on the type of tags which may be used in different

contexts. In particular, instruction mnemonics and register names
belong to different types, distinct from other kinds of tag.

Some tags have a pre-defined significance. These include:

machine instruction mnemonics eg BAL, MH, ACH
standard register names eg Rl, Rl4
keywords eg JUMP, IF, W

Other tags (user tags) may be introduced as required in the

program. A user tag 1is defined by means of a tag definition
statement (explicit definition) or by being used as a label

(implicit definition).

1.3.2 Register names

The following pre-defined tags are provided to designate the
machine registers:

RO, Rl, R2, R3, R4, R5, R6, R/,

R8, R9, RI10, RI11, R12, R13, Rl4, RIS
Normally these denote one of the sixteen 16-bit General registers,
but in floating-point machine instructions (even numbered
registers only) they denote one of the eight 32-bit Floating-point
registers. When used in the context of indexing, reference is to
the General registers, irrespective of instruction type.

1.3.3 Literals

The following forms are provided:

decimal numerals eg 0, 2, 999
hexadecimal numerals eg X“1000°, X“1C4A°
character constants eg "A°, 'OK’
packed tags eg .LP, . EXP

Literals (and expressions made up of literals) are evaluated as
16-bit absolute values, without regard for sign significance or
overflow. Twos-complement representation of negative values 1is
assumed. Hexadecimal numerals with fewer than four digits and
character constants consisting of a single character are aligned
to the right. A tag of up to three characters preceded by a dot
denotes the packed internal wvalue wused by the assembler for

storing tags. This special form is chiefly of use for system
programs.

l1.3.4 Operators

The operators available for use in expressions are:

binary unary
plus \ logical-not
minus - minus
logical-and
logical-or

exciusive-or
< left-shift
) right-shift

WV A~ = | +

(Note: there is no multiply)

1.3.5 Expressions

An expression is evaluated from left to right but may be
overridden by parenthesis or operator precedence rules. This

applies even to assigment operators. Thus R4=14R4 is translated
as R4=1; R4=R4+R4; and sets R4=2 rather than incrementing it.

1.3.6 Relators

The relators available for use in conditions are:

equal

not equal

less than or equal
greater than

greater than or equal
less than

ANNVNV A ==

l1.3.7 Labels

Any statement may be labelled by preceding it by a tag terminated
by a colon. More than one label may be placed at the same point
in the program if required.

1. 3 -8 Cﬂmmen!.'._g

Any statement may be annotated by following it by a comment. A
comment starts with an oblique stroke, which must be preceded by a
space unless the comment is at the start of a line, and continues
to the end of the line -- that is, a semi-colon does not terminate
a comment.

1.3.9 Spaces

In general space symbols may appear freely in statements and are
not significant. Exceptions to this rule are:

(a) there must be no spaces within a tag or numeral, nor between
a tag used as a label and the following colon, nor between a
tag introducing an indexing expression and the following left
parenthesis;

(b) at 1least one space must appear between an instruction
mnemonic, macro name, directive name or keyword and a

following operand, and between the body of a statement and an
attached comment;

(c) spaces are significant within character constants.

2.0 STATEMENTS

2.1 Assignment statements

form

Assignment-statement -> term ‘=’ expression ('IF’ condition)?

where term -> tag, tag “(° expression)’

and expression -> expl, expression binary-operator exp2
and expl -> exp2, unary-operator exp2

and exp2 -> item, ‘(° expression ‘)’

and item -> term, ‘#° term, 1literal

and condition -> condl, conjunction, disjunction

and conjunction -=> condl ‘AND’ (condl, conjunction)
and disjunction => condl “OR" (condl, disjunction)

and condl -> expression (relator expression)?
examples
R2 = Rl R2 = R1 IF Rl > R2
R4 = R4+NUM COUNT = 0 IF COUNT =1
NUM = MAX-MIN FLAG = 1 IF SYM < 0" OR SYM > “9°
R4 = #ENTRY R3 =-1IFI=0ANDJ <= K

W(P) = W(P+2)&X'FFFO’ NUM = NUM-1 IF \8
SYM = B(POS)
TYPE = STYPE(K-32)

effeq;

The assignment statement is the principal instruction of the
language. Each assignmment instruction 1is translated into a
sequence of basic instructions whose effect at run-time 1is to
evaluate the right-hand expression and assign its value to the
register or location denoted by the left-hand term. All
arithmetic is in terms of 16-bit integers; floating-point
operations require the use of machine instructions.

In the case where the assignment instruction has a conditional
clause appended to it, code is generated to test the condition and
cause a branch over the code for the instruction body in the event
that the condition 1is false. Comparisons in conditions are
interpreted algebraically. The form of condition consisting of a
single expression indicates an explicit test on the condition-code
(as set, for example, by a machine instruction). The value of the
expression in this case must be a legitimate mask value (to test
true) or the logical complement of a mask value (to test false).

The form of term in which the tag is followed by a parenthesised
expression indicates indexing in the IBM 360 sense. The special
forms W() and B() indicate reference to the word (W) or byte (B)
addressed by the parenthesised expression. The form of item in

which the term is preceded by the symbol “#° denotes the address
of the specified storage location.

All operators occurring in expressions have equal priority and the
rule of left association applies to expressions containing more

than one operator. Parentheses may be used to over-ride this.
The implementation of assignment instructions, jump instructions

and run-time conditions may require the wuse of one or more
temporary registers; the $TEMP directive (3.4) is used to specify
to the assembler which registers are available for use in this
way. In order to permit optimisation of temporary register usage
over sequences of consecutive instructions, there should be no
entry-points in such sequences which are not marked by a label.

2.2 Jump statements

form

Jump statement => ‘JUMP’ term ("IF" condition)?

examples
JUMP L1 JUMP EOF IF SYM = EOT
JUMP W(SBASE+K) JUMPS LS IF IND > MAX
JUMP W(R3) JUMP OUT IF 8

JUMP OUT IF \3

effect

Each jump statement is translated into a sequence of machine
instructions whose effect at run-time is to cause control to pass
to the location designated by the term, either unconditionally

(case without conditional clause) or conditionally (case with
conditional clause).

In the case of the Interdata 70 it is advantageous to utilise the
short form of machine branch instruction if the destination of a
jump is not more than 15 words from the location of the jump. The
assembler normally does this automatically for backward- referring
jumps, but not for forward jumps (nor for backward jumps occurring
in the body of conditions and loops). In the latter case the
programmer may indicate that a short jump should be used by
writing JUMPS in place of JUMP. A listing option 1is available
which causes the assembler to flag cases where JUMP could be
replaced by JUMPS.

2.3 Machine-code statements

form

Machine-code-statement <-=> mcode-instruction (‘IF’ condition)?
mcode-instruction -> inst-mnemonic expression—-list

expression-list -> (expression (’,° expression)*)?

examples

MH R2,COUNT SVC 13,0 IF CODE = 1

BAL R6,SKIP DH R2,R4 IF R4 # O

ACH R2,TAB(RS8) CALL SKIP IF SYM = ° ° OR SYM = NL

AHM R3,W(P-4) CALL SKIP

CLH R3,WL READSYM

CLH R3,R4

CLH R3,X"FF00°’
THI R3,PMASK\QBIT
LPSW OLDPSW

(See also section 3.2 for an explanation of tags as wused in the
examples.)

effect

Each machine-code instruction 1is translated into a single basic
instruction occupying either one or two 16-bit words according to

type. The treatment of conditions is as for assignmnment statements
(2.1).

The number and types of the operand expressions must be consistent
with the requirements of the machine instruction. A list of
pre-~defined instruction mnemonics with associated operand types is
given in Appendix B. The method of defining instruction mnemonics
with partially specified operands is illustrated in 3.2.

2.4 Canditiona{ﬂbracketing_statemenq§

form
"IF° condition “IF’ condition
[conditional sequence] [conditional sequence]
"ELSE’ "FINISH’
[alternative sequence]
"FINISH’
examples
IF T4 = BASE+I IF CODE > MIN
T3 = T3+1 CALL FAULT
ELSE CODE = 0
T3 = T4 FINISH
COUNT = COUNT&(\1)
FINISH
effect

An IF clause is translated into a number of instructions whose
effect at run—-time 1is to cause a branch over the conditional
instruction sequence in the event that the condition is false.

The branch is to the start of the alternative instruction sequence

(case with ELSE) or the instruction following the associated
FINISH (case without ELSE). The effect of the ELSE statement 1is

to cause a branch to be generated over the alternative sequence.

The FINISH statement marks the end of the condition structure; no
code is generated.

Explicit 1labels and tag definitions are not permitted within
conditional structures.

The following abbreviated forms are also permitted;

ELSE
IF condition ELSE IF condition
[conditional sequence] may be [conditional sequence]
ELSE written ELSE
[alternative sequence] as [alternative sequence]
FINISH FINISH
FINISH
ELSE
IF condition may be ELSE IF condition
[conditional sequence] written [conditional sequence]
FINISH as FINISH
FINISH
example
IF SYM =B’
JUMP BUFFIN
ELSE IF SYM = ‘C’
JUMP CYCIN
ELSE IF SYM = “1°
JUMP INTRP
ELSE
JUMP ERR
FINISH

2.5 Loop bracketing statements

form
"WHILE’ condition *CYCLE’

[loop sequence] [loop sequence]
‘REPEAT’ (‘IF’ condition)? ‘REPEAT’ (‘IF’ condition)?

examples
WHILE B(P) # NL CYCLE
COUNT = COUNT+1 W(I) =0
P = P+1 I = I-1
REPEAT REPEAT IF I >= MIN
effect

A WHILE or CYCLE statement marks the start of a loop. For the
case with WHILE, code 1is generated to test the condition and
branch out of the loop in the event that the condition is false;
for the case with CYCLE, no code is generated. The corresponding
REPEAT statement marks the end of the loop; a branch to the start

of the loop 1is generated, conditionally in the case with
conditional clause.

Explicit labels and tag definitions are not permitted within loop

structures. Loop structures and conditional structures must be
properly nested within each other.

10

2.6 Data statements

form

Data-statement -> expression—-list

examgles

0

1, -1, X"1FFF’, 1, X'0101’

#ENTRY, #ENTRY+4

#L1-#LBASE, #L2-#LBASE, #L3-#LBASE
1<<12+(J<<6)+K

B 10, 20, 30, 40, 50, 60, 70

B ‘FAULT 9’

16 $ 1234

B X"1000°-* § O

effect

Data statements permit the planting of (initial) data wvalues in
line in the object code. All expressions appearing in data
statements must be capable of assembly-time evaluation, yielding

an index-free -- Dbut possibly relocatable -- result. In an
expression operands must be constants, absolute addresses or a
single relocatable component. Differences of relocatable

components is a possible form, but each must be within the scope
of the same relocation directive. Each expression is evaluated as
a 16-bit value and, except in byte mode, generates a single 16-bit
word. Byte mode is 1indicated by prefixing a B to the
expression—-list.

A quoted text string in a data statement is treated as a sequence
of single-character —constants; for example, ‘FAULT 9’ is
equivalent to ‘F’, “A°, ‘U’, ‘L°, ‘T", * °, 9. A data value may
be repeated by preceding the value with a literal repetition count
and a dollar sign.

A data statement may continue onto a following 1line if it ends
with a comma. It still retains the mode of the previous line but

note that the inclusion of a comment or 1label 1is 1illegal. For
example:

B 1,2,
3,4
continues in byte mode, while

B , /BYTES

1,2
3,4
and

1121
LAB: 3,4

are illegal.

11

2.7 Macro call statements

form

Macro-call-statement -> macro-call (“IF’ condition)?

macro-call -> macro—-tag argument-list
examples

SWOP SYM1,SYM2 SWOP NUM,COUNT IF NUM > COUNT
effect

The effect of a macro call is to cause the specified macro body to
be assembled with the arguments supplied in the call substituted
for the dummy arguments of the macro definition (call by
substitution). For the example given in 3.7, SWOP SYM1l,SYM2 would
expand to Rl = SYMl; SYMl = SYM2; SYM2 = Rl.

If it 1is required to include spaces, commas or semi-colons in an
argument, the argument should be enclosed in square brackets.
Outer square brackets enclosing an argument are removed when it is
substituted into the macro body.

(See also Section 3.7 page 19 on Macro Definitions).

12

3.0 ASSEMBLER DIRECTIVES

Assembler directives are introduced by a keyword preceded by a

dollar sign. Only the first three letters of the keyword are
significant.

3.1 Eiock_ggructure

form

*$BEGIN’ comment text?
[block-body]
"SEND’ comment text?

effect

The $BEGIN directive marks the textual start of a block and the
corresponding SEND directive marks the textual end. New tags
introduced within the block body are local to the block and cannot

be accessed from outside. The effect of STEMP directives is also
confined to the block in which they occur. Run-time condition
structures must be properly nested within a block but
assembly-time conditions need not be. Note also that a new page
is started if comment text is present on a “$BEGIN’.

13

3.2 Tag definitions

form
Tag-definition -> “SDEFINE’ definition-list,
* SREDEF’ definition-list,
*SLABEL’ tag list
definition -> tag ‘=’ expression
examples

SDEFINE DEL=X'3F’, RT=13, NL=10

SDEFINE I=R3, ALIM=ABASE+ASIZE

SREDEF MCOUNT=MCOUNT+1

SDEFINE READSYM=SVC 8,0

SREDEF OUT=W(R4), CALL=BAL R4

SDEFINE BASE=W(R2), WL1=W(R142), SYM=B(R143)
SDEFINE WL2=W(#WL1+6)

SLABEL ENT1,ENT2

effect

The effect of a tag definition is to cause the tag on the left of
the equals-sign to be defined —- or re-defined -- to have the type
and value of the expression on the right-hand side, evaluated as

an assembly-time expression. All tags occurring in the expression

to the right of the equals-sign should have been defined prior to
the definition statement.

A tag defined in a $DEFINE statement is declared 1locally to the
current block and may not duplicate an existing tag in that block.

A tag re-defined in a SREDEF statement must already be defined in
the current block or a containing block.

The SLABEL statement permits the declaration of tags textually

prior to their appearance as labels. One use of this facility is
to make accessible in an outer block 1labels which identify
entry-points in an embedded block.

The case of READSYM and CALL in the examples above illustrates the
definition of new instruction mnemonics with partially (CALL) or

completely (READSYM) specified operands. Such definitions must
always appear as the last definition in a definition-list.

14

3.3 Location counter sPecificqgiqn

form

"SLOC° expression
*SASSLOC’ expression

examples

SLOC X“1000°
SLOC *+16
SASSLOC R4+DISP

ef{gqg

During the course of assembly, the assembler maintains a location
counter to keep track of the (notional) address into which each
instruction or data-value 1is to be 1loaded at run—time. The
initial value of the location counter is relocatable zero and at

any time it identifies the byte address for the next item of code.
The main significance of the location counter is in relation to

the definition of labels.

The SLOC directive both sets the location counter and causes a
loader instruction to be generated; the $ASSLOC directive simply

sets the location counter. The value of the expression in a SLOC
directive may be absolute or relocatable, but must be index-free;

the value of the expression in a $ASSLOC directive may
additionally have an index—-component.

At any point when the type of the location counter is changed by a

SLOC or $ASSLOC directive, there must be no outstanding forward
references.

The current value of the location counter may be referred to by
the pseudo-tag “*°., In the case of an instruction the value is
always the value at the start of the statement.

15

3.4 Temporary register specification

form

"STEMP’° register—-name-list

examples

STEMP R1,R3
STEMP R5

STEMP (i.e. no registers)

effect

The STEMP directive defines to the assembler which registers are
available for use in generated code to hold intermediate results.
The directive applies to all of the program from its occurrence

until the end of the containing block or the occurrence of another
STEMP directive.

An error report 1is generated by the assembler if more registers
are required than are available. The initial default is for no
temporary registers.

16

3.5 Listing control

form

‘SLIST’ expression

examples

SLIST 5
SLIST -1

effect

The SLIST directive allows selective control over the program
listing produced by the assembler. Various listing options are

selected by the bit-pattern specified by the expression as
follows:

1 print code overflow lines

2 print macro expansions

4 print unsatisfied conditional assembly sequences

8 flag short jumps

If the value specified 1is negative, 1listing 1is suppressed
altogether. The initial setting is SLIST 5. It is usually easier

to diagnose assembly errors affecting macro calls if the option to

print macro expansions is specified. The assembler starts a new
page in the listing on encountering

(1) a $BEGIN with comment text,
(2) a comment introduced by ‘$/’ rather than ‘/‘ or
(3) a blank line near the end of a page.

Note also that the current listing value may be referred to by the
pseudo~-tag “*L‘.

17

3.6 Conditional assemblz_statemengg

form
“$IF’ condition $IF’ condition
[conditional sequence] [conditional sequence]
"SELSE’ “SFINISH’
[alternative sequence]
"SFINISH’
examples
SIF DISK =1 SIF LP # O
R3 = DDEV SDEF LPCOLS=80
SELSE LPCB: 0; 0; X“62°
R3 =0 SFINISH
SFINISH
effect

These statements provide for the conditional assembly of sections
of a program, typically to provide for flexible macro expansion or

to permit the generation of different versions of a program from a
single source file and a number of short definition files.

If the condition in a SIF statement is found to be true, the
following statements are assembled, otherwise they are skipped.
Expressions occurring in the condition must be capable of
assembly-time evaluation. The scope of a SIF statement extends to
a matching SELSE or SFINISH. For the case with SELSE, the
statements of the alternative sequence are skipped in the event

that the statements following the S$IF were assembled and
conversely.

18

3.7 Macro definitions

form

Macro-definition -> “$MACRO’ tag dummy-argument-list
dummy-argument -> tag, tag ‘[’ default-argument ‘]’

example

$MACRO SWOP A,B
Rl = A; A=B; B =Rl
SEND

effect

The $MACRO statement introduces a macro-definition. The tag (SWOP

in the example) is declared as the-macro name. The following list
specifies the names of the formal parameters of the macro (dummy

arguments). The SMACRO statement is followed by the macro body
which is terminated by the $END statement.

Text enclosed in square brackets following a dummy name is used as
a default argument in the case of a partially specified macro
call. Square brakets may also be used to substitue text
containing non-alphabetic characters. (See section 2.7 Macro
Calls).

Macro definitions may not be nested, but multi-level and recursive
calls are permitted.

The use of the same termination statement for macro definitions as
for blocks prevents a macro from terminating a block or the
complete program. Macro definitions may, however, contain S$BEGIN
directives.

It should be borne in mind when writing macros that the simple
tags representing the arguments might be replaced by arbitrarily
complex expressions when the macro body 1is expanded, and the

effects on, for example, association of operators should be
considered.

To provide for the generation of wunique tags when a macro is
expanded a tag preceded by a question mark can be used. The tag
is then incremented by redefinition. The assembler uses the fact
that the internal codes are dense, in the sense that incrementing
or decrementing an intermal code will always produce another
distinct valid internal code. For example:

SDEF A=.ABC |

7A: /GIVES ABC:
SREDEF A = A+l

7A: /GIVES ABD:

19

3.8 SAVE statements

fgrm

"$SAVE’ expression

examglg

SSAVE O

effect

In a number of applications it is convenient to be able to access

saved registers using the mnemonics defined for the values when
held in registers. A SSAVE statement both enables the wuse of

register mnemonics as the fixed elements of indexing expressions
as for example, RI(P) and establishes the interpretation of such

occurrences as the value of the literal expression specified plus
twice the register number.

3.9 Program e_nd- statement

A SEND directive which does not match an earlier $BEGIN or SMACRO
marks the end of the complete program.

20

APPENDIX A ERROR REPORTS

Erroneous lines are flagged with an error letter in the assembly
listing and are also printed on the report stream.

A assembly-time evaluation of expression not possible
B illegal byte reference

C statement out of context

D duplicate tag

F form of statement incorrect

H error in hexadecimal constant

I illegal operand tag

J JUMPS used inappropriately

P phase error

Q outstanding forward references at SLOC or SASSLOC
R no free register

S JUMP can be made short (not an error)

T truncation error in byte data value

U undefined tag

21

APPENDIX B

tag

7 ABL
ACH
>?7AE
> AH
AHM
*Al

7ATL
#BAL
BFBS

>#BFC
BFFS
BTBS

>#BTC
BTFS

BXLE

it

MACHINE INSTRUCTION MNEMONICS

formats tag formats

R,M *0C R,R / R,M

R,R / R,M > OH R,R/ R,M/ R,I/

R,R / R,M *RB R,R / R,M

R,R/ R,M/ R,I / R,L ?7RBL R,M

R,M *RD R,R / R,M

R,R/ R,M *RH R,R/ R,M

M RLL R,I

R,M RRL R,I

R,M ?RTL R,M

L,L SCH R,R / R,M

L,M >?SE R,R / R,M

L,L > SH R,R/ R,M/ R,I / R,L

L,L *SINT R,R

L,M SLA R,I

L,L SLHA R,I

R,M SLHL R,I

R,M SLL R,I

R,R / R,M SLLS R,L

R,R/ R,M/ R,I SRA R,I

R,M SRHA R,I

R,R/ R,M/ R,I SRHL R,I

R,R / R,M SRL R,I

R,R / R,M SRLS R,L

R,R *SS R,R / R,M

R,R STB R,R / R,M

R,R / R,M >?STE R,M

R,R / R,M STH R,M

R,R/ R,M/ R,I / R,L STM R,M

R,M SVC L,I

M THI R,I

R,R / R,M *WB R,R / R,M

R,R / R,M *WD R,R / R,M

R,R / R,M *WH R,R/ R,M

R,R/ R,M/ R,I > XH R,R/ R,M/ R,I
: register M: mem-ref I: immediate L: short literal

instruction not available on Interdata 74

privileged instruction

register form automatically selected when appropriate

instruction not included for space reasons. (See below)

22

Because of space limitations in the Assembler a number of the

machine mnemonics 1listed in the above table have been omitted.
The following list of the missing mnemonics is in the form of the

definitions needed to restore them if required:

$DEF BTC=X"7010° X“0408’
$DEF BFC=X"7010" X’0303°
$DEF BTB=X"7010" X‘0408’
$DEF BTF=X’7010" X"0508’
$DEF BFF=X"7010" X’0608’
$DEF BFB=X"7010" X“0708°
$DEF NH=X"7000° X“0407°
$DEF OH=X"7000" X‘0607’
$DEF XH=X"7000’ X’0707’
$DEF LH=X"7000" X’080F’
SDEF CH=X’7000" X“0907°
$DEF AH=X"7000° X’0AOF’
$DEF SH=X"7000" X‘OBOF’
$DEF STE=X"7000" X"2002°
$DEF LE=X"7000° X"2803’
$DEF CE=X"7000" X"2903’
$DEF AE=X"7000° X’2A03°
$DEF SE=X"70C00" X’2B03’
$DEF ME=X'7000° X“2C03’
$DEF DE=X’7000’ X‘2D03’

23

APPENDIX C THE SSVC HALFWORD OP CODE

An additional instruction, SSVC (short SVC) is provided from

within HAL for system programs. It takes two constants in the
range 0-15 and assembles as the first word of a SVC with the two

constants as the two register fields of the SVC instruction. No
second half word is generated —— SVC is a 4 byte instruction. The

intention is to extend the number of SVC’s allowed, since many
require no argument.

When the instruction is executed, the hardware processes it as an
ordinary SVC, but with a meaningless argument. It is up to the

called system procedure to deal correctly with the instruction and
generate the appropriate return address. This may be achieved by

decrementing the return PSW store location by two bytes.

For example, SSVC 14,10 assembles as X'ElEA’. The code to process

this ——- pointed at by location X°B8° —- would be something like:
SVCl4: STM RO, SAVE / SAVE USER REGISTERS
R1=W(X’98°) /GET RETURN ADDRESS
W(X’98)=R1-2 /AND CORRECT IT
R2=(W(R1-4)&15)<<1 /SSVC 14,?
JUMP TAB(R2) /INDEX ON SECOND CODE

TAB: #S1400,#S1401,#S1402,#S1404

ETC—

24

APPENDIX D ASSEMBLER SEMANTICS

Reference has been made to the concept of expressions capable of

assembly—-time evaluation, for example in the context of
machine-instructions, data-values and definitions. Such

expressions are those which can be evaluated to denote any of the
following by application of any of the standard operators and/or
indexing:

values
an absolute value
(16 bits)
a relocatable value
(an absolute value plus an unknown constant)
an indexed value
(an absolute value plus the contents of a register)
an indexed relocatable value
(a relocatable value plus the contents of a register)

store references
a storage location addressed by any of the above types of value

register references
a register

In connection with the distinctions made above it should be noted

that the location counter is a value while the operand. for jump
instructions must be a store reference. Thus the effect of

placi g a label like LABl is the same as would be achieved by the

definition SDEFINE LABl=W(*), and ©proper forms of jump
instructions are JUMP W(X°200°), JUMP W(*+4), JUMP W(R3) -- not

JUMP X‘200°, JUMP *+4, JUMP R3.

25

APPENDIX E IMPLEMENTATION

HAL-70 has been implemented on the PDP-15 (in IMP) and on the

Interdata 70 (in HAL-70). The object-code output by these
assemblers as a binary file is in the standard Interdata loader

format (M16/M17 version) and is suitable for loading by the
Relocating Loader.

PDP-15

To assemble a HAL-70 program under the IMP15 operating system,
give a command of the following form:

.HAL70 <sourced> / <object> , <listing>

For example:

.HAL70 TEST1/TEST1 ABS,LP
.HAL70 TEST1/LK1(B),N
.HAL70 TEST1/N,LP

At the start of assembly a pre-definition file is read on input
stream 2 (default assignment: .HAL70 DEF). The source program is

read twice in the course of assembly; the binary output and
listing are produced on the second pass. Error reports are sent

to the control output stream (normally the on—-line console). The
following disastrous errors may be reported:

Fault 2] insufficient space for macros and tag definitions
Fault 22 insufficient space for forward references

Fault 23 insufficent space for block and conditional nesting
Fault 24,25 (internal error)

26

IqurdaQa

To assemble a HAL-70 program under the ISYS operating system, give
a command of the following form:

HAL <source> (,<{predef>)? / <object> , <listing>
For example:

HAL TEST1/TEST1:B,LP
HAL PROG,ISYSDEF/N

The pre-definition file may be used for standard definitions and
macros. Disastrous errors are reported in the same way as in the
IMP15 implementation. Error reports are sent to the on-line

console.

27

APPENDIX F

0000’
0004

0008
000C’

0010’
0014’

0018°
001C”

0033
A803

0000
0031

3292
2699

9296
2223

3233
B233

0000
3330

5749
9722

5562
9333

EXAMPLE PROGRAM LISTING

/SVCS

SDEFINE NEXTSYM=SVC 8,0
SDEFINE READSYM=SVC 9,0

$MACRO SELIN SLOT
SVC 12,SLOT+SLOT

SEND

/SELECT INPUT

SMACRO SELOUT SLOT
SVC 12,SLOT+SLOT+1
SEND

/SELECT OUTPUT

/ REGISTERS

STEMP1 R1

SDEFINE SYM=R1 /*NB ASSEMBLER TEMP*
SDEFINE WORK1=R3, WORK2=R4, ENDED=R5

SDEFINE CI=R8,CODE=R9,TEXT=R10,NUM=R11

SDEFINE TI=R12, CHAIN=R13, TYPE=R14, INSYM=R15

SDEFINE STOPPER=-2000, MAXLIN=80, CBSIZE=180
SDEFINE CONTROL=0, REPORT=0 /STREAM NUMBERS

SMACRO VAR N

SDEFINE N=BASE

SREDEF BASE=W(#BASE+2)

SEND

SDEFINE BASE=W(R2)

/*WORK SPACE LIMITED TO 384 BYTES*

VAR LIMIT
VAR CLIM

SDEFINE CBUFF=BASE / COMMAND BUFFER START
SDEFINE TBUFF=W(#CBUFF+CBSIZE-1)

$MACRO ROUTINE NAM,R
SDEFINE NAM=BAL R,W(*)
SREDEF OUT=R

SEND

SDEFINE OUT=0 /TO PERMIT RE-DEFINITION
/ COMMAND INPUT ROUTINES

STYPE:
/ ! # S$%&" () *+ y=/
X“0033°,X°3233° ,X"A803° ,X’B233"

/ 0123 4567 89:; <=>?
X’0000°,X°0000" ,X"0031°,X"3330’

/ @ABC DEFG HIJK LMNO
X"3292’ ,X°5749’ ,X’2699’ ,X"9722°

/ PQRS TUVW XYZ[\] _
X’9296‘ ,X’5562° ,X 2223’ ,X°9333"

28

0020
0024°
0026°

0028°
002C°
0030°
0032°
0034
0038°
003A°
O03E’
0040°
0042°
0046°
0048°
004A°
O04E’
0050
0054°
0058°
005A’
005C”
0060°
0062°

0066°
006A’
O006E’
0070°

0074°
0076°

0078°

007A°
007C’

007E’

0082
0086°

008A’
O08E’
0092°
0096°
009A°
009C°
009E’
00A2°
00A4’
00A6°
00AA°
00AC’
00BO°
O00B4’

00B8°
00BC’

C9EO

0333
24E1

E190
C910

0213
2235

C910
2113
CAlQ
08F1
9011
D3El
2182
90E4
C4EQ
0233
C8B0
C9F0
0333
24B0
C9F0
0333
C8BF

E180
C910
0213
C910

0223
081B

9112

OABI
91B1

E190

CABI
4300

E1CO
E1CO
C882
C8C2
24D0
24EQ
4130
O8EE
213D
4812
233A
40B1
4130
C9EO

4230
0306

0001

0000
0020

0060

FFEO

FFFO’

OO0O0F

F831
O03F

002A
FFDO

0000
0030

0039

0000
FFDO

0066°

0000
0001
0004
OOB7

0020°

0002

FFFE

0020°

0001

OOBE’

RC1:CI = #CBUFF; TI

ROUTINE RDITEM,WORKI

JUMP OUT IF TYPE =1

TYPE = 1
CYCLE
READSYM
JUMP OUT IF SYM < 32

REPEAT IF SYM = * °
SYM = SYM-32 IF SYM >= 96

INSYM = SYM

SYM = SYM>>1

TYPE = B(#STYPE(SYM-16))
TYPE = TYPE>>4 IF \8

TYPE = TYPE&LS

JUMP OUT IF TYPE # O
NUM = STOPPER+]

JUMP OUT IF INSYM = “?°

NUM = 0

JUMP OUT IF INSYM = “*’

NUM = INSYM-'0°
CYCLE
NEXTSYM
JUMP OUT IF SYM < ‘0

JUMP QUT IF SYM > ‘9’

NUM = NUM<<2+NUM<<1

READSYM
NUM = NUM+(SYM-‘0’)
REPEAT

ROUTINE READCO,R6

SELIN CONTROL
SELOUT REPORT

#TBUFF

CHAIN = Q; TYPE

0

RDITEM
IF TYPE = O AND CLIM # O

W(CLIM-2) = NUM
RDITEM
JUMP ER2 IF TYPE # 1

JUMP OUT
FINISH

29

/TERMINATOR READ

/CONTROL CHAR

/MAP LOWER-CASE

/*SETS CC*
/*PRESERVES CC*
/INSYM WAS ODD

/NUM*10

