
The polygon package 
E E Barton*and I Buchanan 

The polygon package is a set of  procedures which manipu. 
late geometric objects in the 2D plane. The operations 
that can be performed on these objects, regarded as 
polygons, include intersection, union, asymmetric 
difference, inflation and deflation. Polygons may have 
both straight and circular arc edges and include holes 
within their boundaries. Using a binary tree of  bound- 
ing boxes as a sorting aid in the centrally important 
procedure for calculating edge intersections results in 
a fast, efficient pachage. 

A polygon package may be used in any program that 
requires operations such as union, intersection, difference, 
inflation and deflation. Examples of these operations are 
shown in Figure 1. Many applications of such a package 
exist in the fields of, computer graphics, architecture, 
engineering and geographical data processing. The follow- 
ing examples illustrate two of the areas in which the 
package may be used. 

One of the computationally most expensive operations 
in computer graphics is the removal of hidden lines or 
surfaces in 3D images. The polygon package may be used 
to remove hidden regions provided the surfaces do not 
intersect 1,2. Relevant surfaces are projected onto the 
viewplane where they may be treated as polygons. By 
sorting these polygons on their distance from the view 
point and using the difference operator hidden regions 
may be removed. 

In VLSI circuit fabrication, the masks used to expose 
selective portions of resist on the silicon substrate are 
subject to certain dimensional design rules. These rules 
state that certain regions in the mask may not be closer 
than a defined distance, while other may not be less than a 
minimum size. Manual checking for violations of these 
rules is a time consuming, expensive and unreliable 
procedure. If the mask, or set of masks, is passed to the 
polygon package as a collection of polygons, the 
proximity of a set of regions to each other may be 
quickly and accurately tested by inflating those regions 
by half the test distance and calculating the intersection. 
If such intersecting areas are found then the design rule 
has been violated at precisely those locations. 

Similar techniques are applicable in architecture and 
various engineering disciplines where structures may be 
subject to minimum and maximum size requirements. 

D E F I N I T I O N S  

The generality and correctness of the definition of a 
polygon is the foundation on which the package builds 
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Figure 1. (a) polygon A (b) polygon B (c) union, A +B (d) 
intersection, A *B (e) difference, A-B (f) difference, B-A 
(g) inflation A (h) deflation A. 

the set of manipulation procedures. The set of polygons, 
corresponding to the definition below, must be closed 
under the operations union, intersection, difference, 
inflation and deflation. Briefly, a polygon consists of a 
number of sheets, each of which may have a positive or 
negative sense 3 . A sheet is a sequence of directed edges, 
which may be straight lines or circular arcs, connecting at 
vertices. Every point in the plane has an associated wrap 
number which is a measure of its level of enclosure by 
a set of sheets (Figure 2). 

Detailed definitions follow: 

• An edge is a straight line or a circular arc connecting two 
vertices. The edge possesses direction from its tail 
vertex to its head vertex. The tail vertex is omitted from 
the set of points on the edge. Circular arc edges are 
represented by their centre point and radius. The radius 
is positive if the arc is described anti-clockwise from 
tail to head and negative if it is described clockwise. 

• A vertex is a point on the 2D coordinate plane at which 
two edges connect. It is the head vertex of its preceding 
edge and the tail vertex of its succeeding edge. 
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• A sheet is a set of points enclosed by an ordered ring of 
alternating vertices and edges. The edges may 
not exhibit any self intersections. The sense of the 
sheet is either clockwise (negative) or anti-clockwise 
(positive) depending on the sense of the cyclic order 
of the edges anti vertices. 

• The wrap number of a point is a measure of the number 
of times the point is encircled by a set of sheets. This 
number is positive if the point is enclosed by a net number 
of anti-clockwise sheets. It is negative i f  the point is 
enclosed by a net number of clockwise sheets. If the 
point lies on the edge of a negative sheet then it is 
considered to be outside the sheet and the sheet makes 
no contribution to the wrap number of the point. If the 
point lies on the edge of a positive sheet then the point 
is considered to be inside the sheet and the wrap number 
is incremented. 

• A polygon is a set of associated sheets such that none of 
the sheets exhibit edge intersections with any of the 
others and, furthermore, relative to this set of sheets all 
points in the plane are either inside the polygon and 
have wrap number +1 or are outside the polygon and 
have wrap number 0, ie no sheet can be enclosed by 
another of the same sense and no negative "sheet can exist 
outside a positive sheet. 

All well-formed polygons conform to the above definition. 
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Figure 2. Wrap numbers ere associated with each point in the 
plane 
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Figure 4. Well-formed polygons 

Polygons which violate any of the rules are termed malformed 
and cannot be reliably manipulated by the union, inter- 
section, difference, inflation and deflation procedures 
unless they are first processed by the package to remove the 
irregularities. Examples of well-formed and malformed 
polygons are shown in Figures 3 and 4. 

P R I M I T I V E  OPERATIONS 

High-level polygon manipulation procedures depend on 
several lower level operations. Most basic of these is the 
edge intersection routine. On this may be built the 
calculation of the wrap number which is the basis for 
deducing the topology of any polygonal interaction. 
Use of a sorting aid increases the speed of these primitive 
operations by reducing the number of calculations to be 
performed. The technique used in this package is a 
bounding box based binary tree 4. 

Bounding boxes 
Manipulating polygons ultimately reduces to calculations 
on pairs of edges to discover the existence and locations 
of any intersections. Testing each edge in one polygon 
against every edge in another yields an algorithm of 0(n 2) 
complexity. For large polygons with few intersections this 
is clearly unacceptable. It is necessary to develop some 
method, of disregarding unproductive pairs of edges. The 
technique used in this package is based on the paraxial 
bounding box (Figure 5), a simply described rectangle 
which encloses all the points on an edge and within a 
surrounding rectangular region. 

To achieve an algorithm with the desired performance it 
is necessary to merge the primitive bounding boxes so 
that sets of edges may be compared (Figure 6). 

The necessary hierarchy is realised in a binary tree 
structure in which the root is the bounding box of the 
complete polygon and the leaves are the bounding boxes 
of the individual edges. The tree is built up by merging the 
primitive bounding boxes according to the cyclic order 
of the edges in the sheets. Sheets are sorted by proximity 
and merged accordingly until the root of the tree, the 
polygon, is reached and is enclosed in a single bounding 
box. Below sheet level the tree building is performed by 
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an algorithm of 0(n) complexity, in fact in (2n-1) 
operations. Above that level the sorting of sheets imposes 
an 0(nlogn) complexity. 

EDGE INTERSECTIONS 
The bounding box hierarchy is used to concentrate on only 
those areas where intersections are likely to occur. At each 
call of the edge intersection procedure two bounding boxes 
are referenced and compared for a possible intersection. 
Initially, these are the bounding boxes of the two polygons. 
No intersection between bounding boxes implies no inter- 
section between any of the edges they contain and there- 
fore the search down these branches of the two trees can 
be terminated. If an intersection does occur then one of 
the bounding boxes, that containing the greater number of 
edges, is divided into its two successors. The algorithm is 
then applied recursively to each new pair of bounding 
boxes. Once two primitive bounding boxes have been 

Figure 5. Paraxial bounding boxes 
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reached an edge intersection is possible and the appro- 
priate calculation is performed. Figure 7 shows a pair 
of intersecting polygons and the bounding boxes 
examined by the searching algorithm. 

The number of bounding boxes tested by the algorithm 
is greatest near the edge intersection points, thus demon- 
strating the efficiency of the search method. 

Distinction must be made between three types of interactions 
by the edge intersection procedure: 

• straight edge and straight edge 
• straight edge and circular arc 
• circular arc and circular arc. 

Calculations involving circular arc edges are more complex 
than their straight edge counterparts. However, edge 
intersection calculations occur only when strictly neces- 
sary, so this makes no appreciable difference to the overall 
performance of the package while considerably enhancing 
its functionality. 

Wrap number 
The wrap number of a point determines its level of nesting 
within a set of sheets. A line is constructed from the test 
point rightwards for an infinite distance. The number of 
intersections between this line and the edges of the polygon 
are counted and the sense of the intersection determines 
whether the count is incremented or decremented, Again, 
the bounding box hierarchy produces great savings in 
computation by restricting the number of edge inter- 
section calculations to be performed. The procedure calls 
itself recursively and at each level it references a bounding 
box and the test point. Bounding boxes are trivially 
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Figure 6. Merging of bounding boxes 
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Figure 7. Intersecting pair o f  polygons with bounding boxes 
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Figure 8. Bounding boxes used in wrap number calculation 
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Figure 9. Contributions to wrap numbers 
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Figure 10. Testing o f  point position 

Figure I 1. Affect o f  next edge direction wrap number 

rejected if they lie completely to the left, above or below 
the constructed test line. A bounding box intersected by 
the line is divided into its two successors and the algorithm 
is applied to both, recursively, until a primitive bound- 
ing box is reached (Figure 8). 

At this stage the normal edge intersection calculation is 
performed and several alternative cases are recognised: 

• The test point lies to the left of the bounding box. 
The test line crosses the edge, if and only if one of its 
vertices lies on or above the line and the other lies below 
the line (Figure 9). Circular arcs therefore make no 
contribution to the wrap number if both their vertices 
lie to one side of the line, as their crossings are in opposite 
directions and cancel each other out (Figure 9). The wrap 
number is incremented for edges crossing in an anti- 
clockwise direction, ie the tail vertex lies below the head 
vertex, and decremented for edges crossing in a clockwise 
direction. 

• The test point lies within the bounding box. 

o The edge within the bounding box is a straight line. 
The position of the point relative to this edge is 
tested. If the point lies to the left of the edge, the 
wrap number is incremented or decremented as 
in Figure 10. If the point lies to the right of 
the edge, no crossing of the test line has occurred 
and no contribution to the wrap number is made 
(Figure 10). 

If the point lies on the edge then either the edge 
points upwards or it points downwards; horizontal edges 
are classed as pointing upwards if they point to the right 
and downwards if they point to the left. The wrap 
number is incremented for all points on upward 
pointing edges, excluding the tail and head vertices. 
A point on the head of an upward pointing edge 
increments ~ the wrap number if the next edge points 
upwards or to the left of the edge (Figure 11 ). The 
wrap number is not affected by downward pointing 
edges unless the point is on the head vertex and the 
next edge points upwards and to the. right of the 
edge (Figure 11). 
o The edge within the bounding box is a circular arc. 

Tests are made to discover whether or not the 
point lies on the arc and also how many times the 
test line crosses the arc. If the arc is crossed twice 
no net change occurs to the wrap number as the 
directions of the crossings are opposite (Figure 12). 
If the line crosses the arc only once then the wrap 
number is incremented or decremented according 
to t~e direction of the arc at the crossing point 
(Figure 12). 

Once again, particular attention must be paid to 
points on the edge and its two endpoints. If the test 
point lies on the arc but not at a vertex then the 
wrap number is incremented only for arcs of positive 
radius (Figure 13). If the test point lies on the tail 
vertex (Figure 13) then no change is made to the 
wrap number for arcs of positive or negative radius 
unless the test line intersects with another portion of 
the same arc. 

If the test point lies on the head vertex then a 
similar series of further tests is required as for head 
vertices of straight edges. If the tangent to the arc 
at the head vertex points upwards and the next edge 
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points upwards or to the left of the arc (Figure 14), 
or the tangent to the arc at the head vertex points 
downwards and the next edge points upwards and to 
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Figure 12. Arc direction at crossing point 
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Figure 13. Position of  test point and wrap number 
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Figure 14. Affect of  next edge direction on wrap number 

the right of the arc (Figure 14) then the wrap 
number is incremented. 

This set of tests is consistent for all well-formed polygons. 
More tests are performed when the test point lies on a 
vertex as more information is needed to decide whether 
the point forms an upper or lower extremity and, if so, 
in a clockwise or anti-clockwise sheet. 
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POLYGON OPERATIONS 

Polygon manipulation operations that the package pro- 
vides fall into two categories; unary (inflation and 
deflation) and binary (intersection, union and difference). 
All operations result in a single well-formed polygon. 
In addition three other unary operations (self-union, 
overlap and underlap) are supplied to discoyer and repair 
malformed polygons. Self union trims off any malformed 
regions of the polygon, overlap extracts all areas where 
the polygon intersects itself and underlap finds all the 
regions that are encircled a net negative number of times 
by the edges of the polygon. 

'Binary operations 
Let wrap (r,R) be a function which returns,the wrap number 
of a point r with respect to a polygon R. Then for a given 
point p in polygon P, wrap (p,P)=l. Thus for polygons P and 
Q, p is in union P+Q if. and only if wrap (p,P)=l) or wrap 
(p,Q)=l. Similarly p is in intersection P*Q if, and only if 
wrap (p,P)=l and wrap(p,Q)=0. Figure 15 shows the results 
of these operations on an interaction between two polygons, 
one with two curved sheets and the other with a single 
straight-edged sheet. In each case the result of the operation 
has been slightly inflated or deflated to make its position 
obvious. 

Clearly it is necessary to consider only points on the edges 
of sheets when manipulating the polygons within the package. 
Points of interest can be limited even further to the edge 
intersections. Accordingly, an algorithm has been developed 
which constructs a new polygon by tracing all the edges 
with the appropriate wrap number. 

To calculate the result of a set operation on two polygons 
the algorithm starts by finding all edge intersections. Not all 
of these intersections will be useful to the tracing routines. 
The following tests select only those intersections which are 
relevant and will form decision points during the tracing of 
the output polygon. 

The intersection lies on the tail vertex of one or both of 
the two edges. 
The intersection is always ignored as the tail vertex of 
an edge is excluded from the edge for the purpose of 
finding edge intersections since the tail vertex of one 
edge forms the head vertex of the preceding edge. 

• The intersection lies on the head vertices of both the 
edges. 

d 

Figure 15. (a) union P+Q (b) intersection P*Q (c) difference P-Q (d) difference Q-P 
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The intersection is ignored if either the two edges are 
parallel and their successors are parallel, or if both edges 
are antiparallel to the other edge's successor (Figure 16). 

• The intersection occurs on the head of one edge. 
If the successor of the edge with the intersecting head 
is parallel to the other edge it is ignored (Figure 16). 

In effect, parallel edges, either singly or in groups, will 
yield a single intersection where they diverge. 

Edge intersection routines build t-he data structure 
required by the tracing routines. The tracing routines must 
now examine the valid intersections and decide which 
paths to follow round the initial polygons to produce the 
desired binary operation result. The same procedure, 
parameterised by the appropriate wrap number, is used 
to produce the union, intersection or difference. The 
process begins by passing the first valid edge intersection 
to the tracing routine as the initial vertex of a sheet. 

The step that selects which edge to follow makes the 
decision with reference to a number of conditions. If 
nothing is known about the current edge intersection, 
eg on first entering the procedure, then a test must be 
made of the wrap number of a pair of points on the edges 
about to be traced (Figure 17). 

~Rejec ~ intersection intersection 

eject intersection 

Figure 16. Cases where intersection ignored 

-e~oluote 

Stor'ting intersection 

Figure 17. Test of wrap numt~er 

These wrap numbers are compared with the desired w 
number with the following possible outcomes. 

Neither wrap number equals the parameter. 
The intersection point must lie on some malformed 
region of one or both of the two polygons. Such a 
configuration should never arise if the polygons passe~ 
to the package are well-formed. Any edges added to 
the output polygon by the tracing procedure up to 
this point are dissembled and the point is marked as 
having been analysed. 

One of the points has a wrap number equal to the 
parameter. 
The edge with the matching wrap number is selected 
as the path on which tracing will be continued. The 
intersection is marked as having been analysed. 

Both points have wrap numbers equal to the parametc 
This case occurs when two edges which will appear in 
the output polygon touch, but do not intersect, one 
another. The point is marked to indicate the edge on 
which tracing will be continued so that the next 
time this point is reached the other edge will be 
selected immediately without recalculation of the 
wrap numbers. If the procedure is generating the 
intersection of two polygons then tracing will be 
continued on the current path. If the union or 
difference is being traced then the path is switched. 

The procedure continues by copying edges and vertices 1 
the output sheet from the selected path until another 
intersection point is reached. If the current and inter- 
secting edges are continuous over the intersection point 
there is no need to repeat the above tests and the tracin I 
path is switched to the other polygon (Figure 17). The 
intersection point is then marked as having been analyse 

The procedure continues to add edges to the output 
sheet until the initial intersection is rediscovered. If onl~ 
a single valid path exists from this point then the out- 
put sheet is closed. However, if both paths from the 
intersection were valid and only one has been traced, 
then the current sheet may be continued. Tracing is 
continued for the following reasons. 

Intersection is being constructed and the starting poi 
is not approached on the path that was initially selec 
(Figure 18). 

Union or difference is being constructed and the star 
"point is approached on the initially selected path 
(Figure 18). 

In all other cases the output sheet is closed (Figure 19). 
When a new sheet has just been closed the next inter 

section that has either not been analysed or possesses a 
remaining untraced path is passed to the tracing pro- 
cedure as an initial vertex. Sheets are added to the outp 
polygon until all intersections have been analysed. 

Any sheets in the two initial polygons which did not 
exhibit edge intersections are now tested. They are inch 
in the output polygon if the wrap number of a point on 
one of their edges, calculated relative to both polygons, 
equals the desired wrap number. This completes the cor 
struction of the output polygon. 
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Inflation and deflation 
Inflating a polygon expands all the anticlockwise sheets and 
contracts all the clockwise sheets by a given distance. Con- 
versely, deflating a polygon contracts all the anticlockwise 
sheets and expands the clockwise sheets by a given distance. 
These two operations are implemented in the same proce- 
dure which takes a positive or negative parameter for 
inflation and deflation respectively (Figure 20). 

A strict definition of the output polygon places the edges 
of the output polygon exactly the given distance from the 
edges of the input polygon. However, some algorithms have 
been content merely to shift the edges of the input polygon 
outwards or inwards by the desired distance without regard 
to the discrepancies that can occur at the vertices of the out- 
put polygon. This course of action has been followed by 
packages which do not include edges modelled by circular 
arcs. Some simplifications in code and data can be obtained 
by this view of the problem but at a cost in accuracy and 
functionality. 

Expansion of a vertex on an anticlockwise sheet, whose 
edges form an internal angle of less than 180 degrees, should 
produce a circular arc centred on the original vertex with 
radius equal to the inflation distance (Figure 21). An 
algorithm that acts only on straight lines approximates 
this by extending the two edges until they intersect. If the 
edges are almost parallel but in opposite directions their 
endpoints will be extended by a distance many times greater 
than the inflation distance (Figure 21 ). Such inaccuracies 
are unacceptable in many applications. 

The polygon package uses a single algorithm to produce 
both inflation and deflation of sheets. Every edge in the 
input sheet is shifted outwards or inwards by the appro- 
priate distance. Straight edges are translated along their 
unit normal vertors and circular arcs have their radii 
increased or decreased by the given distance. Each vertex 
in the input sheet is the source of a new circular arc in the 
output sheet centred on that vertex. This process produces 
a curlicue at each vertex (Figure 22). The curlicues may 
cause malformed regions in the output sheet if the edges 
become intersecting. Such regions are removed by repair 

a 

Figure 18. (o) storting point not approoched on initial path, 
(b) storting point opproached on initial poth 

b 

Figure 19. (a) union, (b) intersection 

a b 

Figure 20. (a) defloted, (b) originol, (c) inflated, (d) infloted 
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procedures included in the package. Output includes 
only those edges in the output sheet which have wrap 
numbers equal to that of the edges in the input sheet. 
Sheets which have been transformed so far as to reverse 
the sense of the sheet are discarded (Figure 22). 

While the individual sheets of the output polygon are 
well-formed the polygon itself may be malformed. This 
occurs when two adjacent sheets have been inflated to 
such an extent that their boundaries now cross. A well- 
formed polygon may be produced in ~he usual way by 
the repair procedures but this is not done automatically 
since the user may require the data in the pro-repair 
format, possibly so that some check on overlap areas can 
be performed. 

Figure 21. (o) rod~us equal to inflation distance, (b) radius 
much greater then inflation distance 

Unary operations 
The definition of the polygon has so far provided a set of 
rules within which the operations of union, intersection, 
difference, inflation and deflation have been implemented. 
These operations must be guaranteed to produce correct 
output polygons from well-formed input data. Polygons 
passed to the package could be malformed and it is 
necessary to provide a checking procedure so that a user 
may have confidence in the package. Additionally, such 
checks are of use internally, eg following an inflation 
which may cause self-overlap. Malformations are detected 
by the presence of edge intersections combined with 
topological tests. A number of configurations can cause 
the polygon to be malformed and a number of these are 
shown in Figure 23. Any of these conditions will cause the 
result fa/se to be returned by the checking procedure. 
Self-union and self-intersection procedures repair the 
malformed polygons by tracing the singly and doubly 
wrapped regions respectively. Any holes in free space are 
discovered by following edges with wrap number O. 

Implementation of the malformation detector and the 
repair procedures rely heavily on the intersection and 
tracing routines already described. In the binary operations 
the tracing routine is used to discover all the sheets possess- 
ing edges with the required wrap number. Exactly this oper- 
ation is performed on single polygons in the unary oper- 

b 
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Figure 22. (a) inflation, (b) deflation 
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ations. The difference lies in constructing the intersection 
lists which the tracing procedure uses. 

All the edge intersections of the input polygon must be 
found before tracing can commence..The usual edge inter- 
section procedure is used to find these intersections but 
it is only efficient when finding the intersections of groups 
of edges. A second procedure is required to present a 
series of groups of edges to the intersection routine in 
such a manner that, eventually, all the edges have been 
compared for intersections ~vith all other edges. The 
bounding box trees consist of groups of edges. Every 
edge in the polygon will be implicitly compared with all 
other edges if the intersection procedure is called with 
the two sons of every element in the tree, excluding the 
leaves. This has been implemented in a recursive procedure 
which is initialized with the bounding box of the whole 
polygon. It calls the intersection routine with the two sons 
of the current bounding box and then recurses on these. 
The routine returns immediately if the bounding box is 
primitive. If there are n edges in the polygon there will 
be (2n-1) elements in the tree and this procedure will 
perform ( n - l )  calls of the edge intersection procedure. 
Thereafter the tracing procedure will be called upon to 
retrieve the negatively, singly and doubly wrapped regions 
with a wrap number parameter of 0, 1 and 2 respectively 
(Figure 23). The output polygon is well-formed and can 
be used in further polygon package operations. 

Area and perimeter 
Two further procedures are provided, area and perimeter, 
both of which return real number results. The area of a 
polygon is the total area of all its sheets, remembering that 
negative sheets have negative area. A polygon may not how- 
ever, have a negative area since a negative sheet may not exist 
outside a positive sheet. 

The perimeter of a well-formed polygon is simply the 
total absolute length of all its edges, ignoring direction and 
sheet nesting depth. 

CONCLUSIONS 
The polygon package provides a powerful and efficient tool 
which may be employed in a variety of application areas. 
Within the stated definitions, the set of polygons is closed 
under the operations of intersection, union, difference, 
inflation and deflation supplied by the polygon package. 
The bounding box hierarchy enables groups of edges to be 
compared for intersection, and is effective in reducing the 
average number of edge intersection calculations below the 
upper bound of 0(n 2) complexity. The inclusion of 
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Figure 23. (a) malformed polygon, (b) self-union, (c) self- 
intersection, (d) free holes 

circular arcs considerably extends the application area of 
the package beyond that available to its straight line 
counterpart. Additional procedures for detecting and 
repairing malformed polygons enable input data to be 
verified so that polygons resulting from any of the oper- 
ations supplied by the package will be well-formed. The 
resulting package is therefore both functionally com- 
plete and efficient in performance. 
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