
The polygon package
E E Barton*and I Buchanan

The polygon package is a set of procedures which manipu.
late geometric objects in the 2D plane. The operations
that can be performed on these objects, regarded as
polygons, include intersection, union, asymmetric
difference, inflation and deflation. Polygons may have
both straight and circular arc edges and include holes
within their boundaries. Using a binary tree of bound-
ing boxes as a sorting aid in the centrally important
procedure for calculating edge intersections results in
a fast, efficient pachage.

A polygon package may be used in any program that
requires operations such as union, intersection, difference,
inflation and deflation. Examples of these operations are
shown in Figure 1. Many applications of such a package
exist in the fields of, computer graphics, architecture,
engineering and geographical data processing. The follow-
ing examples illustrate two of the areas in which the
package may be used.

One of the computationally most expensive operations
in computer graphics is the removal of hidden lines or
surfaces in 3D images. The polygon package may be used
to remove hidden regions provided the surfaces do not
intersect 1,2. Relevant surfaces are projected onto the
viewplane where they may be treated as polygons. By
sorting these polygons on their distance from the view
point and using the difference operator hidden regions
may be removed.

In VLSI circuit fabrication, the masks used to expose
selective portions of resist on the silicon substrate are
subject to certain dimensional design rules. These rules
state that certain regions in the mask may not be closer
than a defined distance, while other may not be less than a
minimum size. Manual checking for violations of these
rules is a time consuming, expensive and unreliable
procedure. If the mask, or set of masks, is passed to the
polygon package as a collection of polygons, the
proximity of a set of regions to each other may be
quickly and accurately tested by inflating those regions
by half the test distance and calculating the intersection.
If such intersecting areas are found then the design rule
has been violated at precisely those locations.

Similar techniques are applicable in architecture and
various engineering disciplines where structures may be
subject to minimum and maximum size requirements.

D E F I N I T I O N S

The generality and correctness of the definition of a
polygon is the foundation on which the package builds

Department of Computer Science, University of Edinburgh,
Edinburgh EH9 3JZ.

*Now at Department of Computer Science, California Institute of
Technology, USA.

al

d

I b c

13
[]

e [I f

1 I

gl) h i

Figure 1. (a) polygon A (b) polygon B (c) union, A +B (d)
intersection, A *B (e) difference, A-B (f) difference, B-A
(g) inflation A (h) deflation A.

the set of manipulation procedures. The set of polygons,
corresponding to the definition below, must be closed
under the operations union, intersection, difference,
inflation and deflation. Briefly, a polygon consists of a
number of sheets, each of which may have a positive or
negative sense 3 . A sheet is a sequence of directed edges,
which may be straight lines or circular arcs, connecting at
vertices. Every point in the plane has an associated wrap
number which is a measure of its level of enclosure by
a set of sheets (Figure 2).

Detailed definitions follow:

• An edge is a straight line or a circular arc connecting two
vertices. The edge possesses direction from its tail
vertex to its head vertex. The tail vertex is omitted from
the set of points on the edge. Circular arc edges are
represented by their centre point and radius. The radius
is positive if the arc is described anti-clockwise from
tail to head and negative if it is described clockwise.

• A vertex is a point on the 2D coordinate plane at which
two edges connect. It is the head vertex of its preceding
edge and the tail vertex of its succeeding edge.

volume 12 number 1 january 1980 0010-4485/80/010003-09 $02.00 © 1980 I PC Business Press 3

• A sheet is a set of points enclosed by an ordered ring of
alternating vertices and edges. The edges may
not exhibit any self intersections. The sense of the
sheet is either clockwise (negative) or anti-clockwise
(positive) depending on the sense of the cyclic order
of the edges anti vertices.

• The wrap number of a point is a measure of the number
of times the point is encircled by a set of sheets. This
number is positive if the point is enclosed by a net number
of anti-clockwise sheets. It is negative i f the point is
enclosed by a net number of clockwise sheets. If the
point lies on the edge of a negative sheet then it is
considered to be outside the sheet and the sheet makes
no contribution to the wrap number of the point. If the
point lies on the edge of a positive sheet then the point
is considered to be inside the sheet and the wrap number
is incremented.

• A polygon is a set of associated sheets such that none of
the sheets exhibit edge intersections with any of the
others and, furthermore, relative to this set of sheets all
points in the plane are either inside the polygon and
have wrap number +1 or are outside the polygon and
have wrap number 0, ie no sheet can be enclosed by
another of the same sense and no negative "sheet can exist
outside a positive sheet.

All well-formed polygons conform to the above definition.

0

L

0 •

,I

0

.1
0

Figure 2. Wrap numbers ere associated with each point in the
plane

J I = ~Doubly

i=

Intersecting sheets~

wropped oreq

Edge intersection/#

Figure 3. Me/formed polygons

==

J

t . t

J
t

Figure 4. Well-formed polygons

Polygons which violate any of the rules are termed malformed
and cannot be reliably manipulated by the union, inter-
section, difference, inflation and deflation procedures
unless they are first processed by the package to remove the
irregularities. Examples of well-formed and malformed
polygons are shown in Figures 3 and 4.

P R I M I T I V E OPERATIONS

High-level polygon manipulation procedures depend on
several lower level operations. Most basic of these is the
edge intersection routine. On this may be built the
calculation of the wrap number which is the basis for
deducing the topology of any polygonal interaction.
Use of a sorting aid increases the speed of these primitive
operations by reducing the number of calculations to be
performed. The technique used in this package is a
bounding box based binary tree 4.

Bounding boxes
Manipulating polygons ultimately reduces to calculations
on pairs of edges to discover the existence and locations
of any intersections. Testing each edge in one polygon
against every edge in another yields an algorithm of 0(n 2)
complexity. For large polygons with few intersections this
is clearly unacceptable. It is necessary to develop some
method, of disregarding unproductive pairs of edges. The
technique used in this package is based on the paraxial
bounding box (Figure 5), a simply described rectangle
which encloses all the points on an edge and within a
surrounding rectangular region.

To achieve an algorithm with the desired performance it
is necessary to merge the primitive bounding boxes so
that sets of edges may be compared (Figure 6).

The necessary hierarchy is realised in a binary tree
structure in which the root is the bounding box of the
complete polygon and the leaves are the bounding boxes
of the individual edges. The tree is built up by merging the
primitive bounding boxes according to the cyclic order
of the edges in the sheets. Sheets are sorted by proximity
and merged accordingly until the root of the tree, the
polygon, is reached and is enclosed in a single bounding
box. Below sheet level the tree building is performed by

4 computer-aided design

an algorithm of 0(n) complexity, in fact in (2n-1)
operations. Above that level the sorting of sheets imposes
an 0(nlogn) complexity.

EDGE INTERSECTIONS
The bounding box hierarchy is used to concentrate on only
those areas where intersections are likely to occur. At each
call of the edge intersection procedure two bounding boxes
are referenced and compared for a possible intersection.
Initially, these are the bounding boxes of the two polygons.
No intersection between bounding boxes implies no inter-
section between any of the edges they contain and there-
fore the search down these branches of the two trees can
be terminated. If an intersection does occur then one of
the bounding boxes, that containing the greater number of
edges, is divided into its two successors. The algorithm is
then applied recursively to each new pair of bounding
boxes. Once two primitive bounding boxes have been

Figure 5. Paraxial bounding boxes

\

reached an edge intersection is possible and the appro-
priate calculation is performed. Figure 7 shows a pair
of intersecting polygons and the bounding boxes
examined by the searching algorithm.

The number of bounding boxes tested by the algorithm
is greatest near the edge intersection points, thus demon-
strating the efficiency of the search method.

Distinction must be made between three types of interactions
by the edge intersection procedure:

• straight edge and straight edge
• straight edge and circular arc
• circular arc and circular arc.

Calculations involving circular arc edges are more complex
than their straight edge counterparts. However, edge
intersection calculations occur only when strictly neces-
sary, so this makes no appreciable difference to the overall
performance of the package while considerably enhancing
its functionality.

Wrap number
The wrap number of a point determines its level of nesting
within a set of sheets. A line is constructed from the test
point rightwards for an infinite distance. The number of
intersections between this line and the edges of the polygon
are counted and the sense of the intersection determines
whether the count is incremented or decremented, Again,
the bounding box hierarchy produces great savings in
computation by restricting the number of edge inter-
section calculations to be performed. The procedure calls
itself recursively and at each level it references a bounding
box and the test point. Bounding boxes are trivially

/

Figure 6. Merging of bounding boxes

volume 12 number 1 january 1980 5

I

_ v I t t /

i
Figure 7. Intersecting pair o f polygons with bounding boxes

\

~ /f~'x ..~ /~

/
\

Figure 8. Bounding boxes used in wrap number calculation

.1
x

Figure 9. Contributions to wrap numbers

o

Figure 10. Testing o f point position

Figure I 1. Affect o f next edge direction wrap number

rejected if they lie completely to the left, above or below
the constructed test line. A bounding box intersected by
the line is divided into its two successors and the algorithm
is applied to both, recursively, until a primitive bound-
ing box is reached (Figure 8).

At this stage the normal edge intersection calculation is
performed and several alternative cases are recognised:

• The test point lies to the left of the bounding box.
The test line crosses the edge, if and only if one of its
vertices lies on or above the line and the other lies below
the line (Figure 9). Circular arcs therefore make no
contribution to the wrap number if both their vertices
lie to one side of the line, as their crossings are in opposite
directions and cancel each other out (Figure 9). The wrap
number is incremented for edges crossing in an anti-
clockwise direction, ie the tail vertex lies below the head
vertex, and decremented for edges crossing in a clockwise
direction.

• The test point lies within the bounding box.

o The edge within the bounding box is a straight line.
The position of the point relative to this edge is
tested. If the point lies to the left of the edge, the
wrap number is incremented or decremented as
in Figure 10. If the point lies to the right of
the edge, no crossing of the test line has occurred
and no contribution to the wrap number is made
(Figure 10).

If the point lies on the edge then either the edge
points upwards or it points downwards; horizontal edges
are classed as pointing upwards if they point to the right
and downwards if they point to the left. The wrap
number is incremented for all points on upward
pointing edges, excluding the tail and head vertices.
A point on the head of an upward pointing edge
increments ~ the wrap number if the next edge points
upwards or to the left of the edge (Figure 11). The
wrap number is not affected by downward pointing
edges unless the point is on the head vertex and the
next edge points upwards and to the. right of the
edge (Figure 11).
o The edge within the bounding box is a circular arc.

Tests are made to discover whether or not the
point lies on the arc and also how many times the
test line crosses the arc. If the arc is crossed twice
no net change occurs to the wrap number as the
directions of the crossings are opposite (Figure 12).
If the line crosses the arc only once then the wrap
number is incremented or decremented according
to t~e direction of the arc at the crossing point
(Figure 12).

Once again, particular attention must be paid to
points on the edge and its two endpoints. If the test
point lies on the arc but not at a vertex then the
wrap number is incremented only for arcs of positive
radius (Figure 13). If the test point lies on the tail
vertex (Figure 13) then no change is made to the
wrap number for arcs of positive or negative radius
unless the test line intersects with another portion of
the same arc.

If the test point lies on the head vertex then a
similar series of further tests is required as for head
vertices of straight edges. If the tangent to the arc
at the head vertex points upwards and the next edge

6 computer-aided design

points upwards or to the left of the arc (Figure 14),
or the tangent to the arc at the head vertex points
downwards and the next edge points upwards and to

+1

.1

Figure 12. Arc direction at crossing point

-1

C

Figure 13. Position of test point and wrap number

Next edge ~ Tongent/ / / ~ Next edge

Figure 14. Affect of next edge direction on wrap number

the right of the arc (Figure 14) then the wrap
number is incremented.

This set of tests is consistent for all well-formed polygons.
More tests are performed when the test point lies on a
vertex as more information is needed to decide whether
the point forms an upper or lower extremity and, if so,
in a clockwise or anti-clockwise sheet.

//
a b

POLYGON OPERATIONS

Polygon manipulation operations that the package pro-
vides fall into two categories; unary (inflation and
deflation) and binary (intersection, union and difference).
All operations result in a single well-formed polygon.
In addition three other unary operations (self-union,
overlap and underlap) are supplied to discoyer and repair
malformed polygons. Self union trims off any malformed
regions of the polygon, overlap extracts all areas where
the polygon intersects itself and underlap finds all the
regions that are encircled a net negative number of times
by the edges of the polygon.

'Binary operations
Let wrap (r,R) be a function which returns,the wrap number
of a point r with respect to a polygon R. Then for a given
point p in polygon P, wrap (p,P)=l. Thus for polygons P and
Q, p is in union P+Q if. and only if wrap (p,P)=l) or wrap
(p,Q)=l. Similarly p is in intersection P*Q if, and only if
wrap (p,P)=l and wrap(p,Q)=0. Figure 15 shows the results
of these operations on an interaction between two polygons,
one with two curved sheets and the other with a single
straight-edged sheet. In each case the result of the operation
has been slightly inflated or deflated to make its position
obvious.

Clearly it is necessary to consider only points on the edges
of sheets when manipulating the polygons within the package.
Points of interest can be limited even further to the edge
intersections. Accordingly, an algorithm has been developed
which constructs a new polygon by tracing all the edges
with the appropriate wrap number.

To calculate the result of a set operation on two polygons
the algorithm starts by finding all edge intersections. Not all
of these intersections will be useful to the tracing routines.
The following tests select only those intersections which are
relevant and will form decision points during the tracing of
the output polygon.

The intersection lies on the tail vertex of one or both of
the two edges.
The intersection is always ignored as the tail vertex of
an edge is excluded from the edge for the purpose of
finding edge intersections since the tail vertex of one
edge forms the head vertex of the preceding edge.

• The intersection lies on the head vertices of both the
edges.

d

Figure 15. (a) union P+Q (b) intersection P*Q (c) difference P-Q (d) difference Q-P

volume 12 number 1 january 1980 7

The intersection is ignored if either the two edges are
parallel and their successors are parallel, or if both edges
are antiparallel to the other edge's successor (Figure 16).

• The intersection occurs on the head of one edge.
If the successor of the edge with the intersecting head
is parallel to the other edge it is ignored (Figure 16).

In effect, parallel edges, either singly or in groups, will
yield a single intersection where they diverge.

Edge intersection routines build t-he data structure
required by the tracing routines. The tracing routines must
now examine the valid intersections and decide which
paths to follow round the initial polygons to produce the
desired binary operation result. The same procedure,
parameterised by the appropriate wrap number, is used
to produce the union, intersection or difference. The
process begins by passing the first valid edge intersection
to the tracing routine as the initial vertex of a sheet.

The step that selects which edge to follow makes the
decision with reference to a number of conditions. If
nothing is known about the current edge intersection,
eg on first entering the procedure, then a test must be
made of the wrap number of a pair of points on the edges
about to be traced (Figure 17).

~Rejec ~ intersection intersection

eject intersection

Figure 16. Cases where intersection ignored

-e~oluote

Stor'ting intersection

Figure 17. Test of wrap numt~er

These wrap numbers are compared with the desired w
number with the following possible outcomes.

Neither wrap number equals the parameter.
The intersection point must lie on some malformed
region of one or both of the two polygons. Such a
configuration should never arise if the polygons passe~
to the package are well-formed. Any edges added to
the output polygon by the tracing procedure up to
this point are dissembled and the point is marked as
having been analysed.

One of the points has a wrap number equal to the
parameter.
The edge with the matching wrap number is selected
as the path on which tracing will be continued. The
intersection is marked as having been analysed.

Both points have wrap numbers equal to the parametc
This case occurs when two edges which will appear in
the output polygon touch, but do not intersect, one
another. The point is marked to indicate the edge on
which tracing will be continued so that the next
time this point is reached the other edge will be
selected immediately without recalculation of the
wrap numbers. If the procedure is generating the
intersection of two polygons then tracing will be
continued on the current path. If the union or
difference is being traced then the path is switched.

The procedure continues by copying edges and vertices 1
the output sheet from the selected path until another
intersection point is reached. If the current and inter-
secting edges are continuous over the intersection point
there is no need to repeat the above tests and the tracin I
path is switched to the other polygon (Figure 17). The
intersection point is then marked as having been analyse

The procedure continues to add edges to the output
sheet until the initial intersection is rediscovered. If onl~
a single valid path exists from this point then the out-
put sheet is closed. However, if both paths from the
intersection were valid and only one has been traced,
then the current sheet may be continued. Tracing is
continued for the following reasons.

Intersection is being constructed and the starting poi
is not approached on the path that was initially selec
(Figure 18).

Union or difference is being constructed and the star
"point is approached on the initially selected path
(Figure 18).

In all other cases the output sheet is closed (Figure 19).
When a new sheet has just been closed the next inter

section that has either not been analysed or possesses a
remaining untraced path is passed to the tracing pro-
cedure as an initial vertex. Sheets are added to the outp
polygon until all intersections have been analysed.

Any sheets in the two initial polygons which did not
exhibit edge intersections are now tested. They are inch
in the output polygon if the wrap number of a point on
one of their edges, calculated relative to both polygons,
equals the desired wrap number. This completes the cor
struction of the output polygon.

8 computer-aided d

Inflation and deflation
Inflating a polygon expands all the anticlockwise sheets and
contracts all the clockwise sheets by a given distance. Con-
versely, deflating a polygon contracts all the anticlockwise
sheets and expands the clockwise sheets by a given distance.
These two operations are implemented in the same proce-
dure which takes a positive or negative parameter for
inflation and deflation respectively (Figure 20).

A strict definition of the output polygon places the edges
of the output polygon exactly the given distance from the
edges of the input polygon. However, some algorithms have
been content merely to shift the edges of the input polygon
outwards or inwards by the desired distance without regard
to the discrepancies that can occur at the vertices of the out-
put polygon. This course of action has been followed by
packages which do not include edges modelled by circular
arcs. Some simplifications in code and data can be obtained
by this view of the problem but at a cost in accuracy and
functionality.

Expansion of a vertex on an anticlockwise sheet, whose
edges form an internal angle of less than 180 degrees, should
produce a circular arc centred on the original vertex with
radius equal to the inflation distance (Figure 21). An
algorithm that acts only on straight lines approximates
this by extending the two edges until they intersect. If the
edges are almost parallel but in opposite directions their
endpoints will be extended by a distance many times greater
than the inflation distance (Figure 21). Such inaccuracies
are unacceptable in many applications.

The polygon package uses a single algorithm to produce
both inflation and deflation of sheets. Every edge in the
input sheet is shifted outwards or inwards by the appro-
priate distance. Straight edges are translated along their
unit normal vertors and circular arcs have their radii
increased or decreased by the given distance. Each vertex
in the input sheet is the source of a new circular arc in the
output sheet centred on that vertex. This process produces
a curlicue at each vertex (Figure 22). The curlicues may
cause malformed regions in the output sheet if the edges
become intersecting. Such regions are removed by repair

a

Figure 18. (o) storting point not approoched on initial path,
(b) storting point opproached on initial poth

b

Figure 19. (a) union, (b) intersection

a b

Figure 20. (a) defloted, (b) originol, (c) inflated, (d) infloted

volume 12 number I january 1980 9

procedures included in the package. Output includes
only those edges in the output sheet which have wrap
numbers equal to that of the edges in the input sheet.
Sheets which have been transformed so far as to reverse
the sense of the sheet are discarded (Figure 22).

While the individual sheets of the output polygon are
well-formed the polygon itself may be malformed. This
occurs when two adjacent sheets have been inflated to
such an extent that their boundaries now cross. A well-
formed polygon may be produced in ~he usual way by
the repair procedures but this is not done automatically
since the user may require the data in the pro-repair
format, possibly so that some check on overlap areas can
be performed.

Figure 21. (o) rod~us equal to inflation distance, (b) radius
much greater then inflation distance

Unary operations
The definition of the polygon has so far provided a set of
rules within which the operations of union, intersection,
difference, inflation and deflation have been implemented.
These operations must be guaranteed to produce correct
output polygons from well-formed input data. Polygons
passed to the package could be malformed and it is
necessary to provide a checking procedure so that a user
may have confidence in the package. Additionally, such
checks are of use internally, eg following an inflation
which may cause self-overlap. Malformations are detected
by the presence of edge intersections combined with
topological tests. A number of configurations can cause
the polygon to be malformed and a number of these are
shown in Figure 23. Any of these conditions will cause the
result fa/se to be returned by the checking procedure.
Self-union and self-intersection procedures repair the
malformed polygons by tracing the singly and doubly
wrapped regions respectively. Any holes in free space are
discovered by following edges with wrap number O.

Implementation of the malformation detector and the
repair procedures rely heavily on the intersection and
tracing routines already described. In the binary operations
the tracing routine is used to discover all the sheets possess-
ing edges with the required wrap number. Exactly this oper-
ation is performed on single polygons in the unary oper-

b

/

Figure 22. (a) inflation, (b) deflation

10 computer-aided design

ations. The difference lies in constructing the intersection
lists which the tracing procedure uses.

All the edge intersections of the input polygon must be
found before tracing can commence..The usual edge inter-
section procedure is used to find these intersections but
it is only efficient when finding the intersections of groups
of edges. A second procedure is required to present a
series of groups of edges to the intersection routine in
such a manner that, eventually, all the edges have been
compared for intersections ~vith all other edges. The
bounding box trees consist of groups of edges. Every
edge in the polygon will be implicitly compared with all
other edges if the intersection procedure is called with
the two sons of every element in the tree, excluding the
leaves. This has been implemented in a recursive procedure
which is initialized with the bounding box of the whole
polygon. It calls the intersection routine with the two sons
of the current bounding box and then recurses on these.
The routine returns immediately if the bounding box is
primitive. If there are n edges in the polygon there will
be (2n-1) elements in the tree and this procedure will
perform (n - l) calls of the edge intersection procedure.
Thereafter the tracing procedure will be called upon to
retrieve the negatively, singly and doubly wrapped regions
with a wrap number parameter of 0, 1 and 2 respectively
(Figure 23). The output polygon is well-formed and can
be used in further polygon package operations.

Area and perimeter
Two further procedures are provided, area and perimeter,
both of which return real number results. The area of a
polygon is the total area of all its sheets, remembering that
negative sheets have negative area. A polygon may not how-
ever, have a negative area since a negative sheet may not exist
outside a positive sheet.

The perimeter of a well-formed polygon is simply the
total absolute length of all its edges, ignoring direction and
sheet nesting depth.

CONCLUSIONS
The polygon package provides a powerful and efficient tool
which may be employed in a variety of application areas.
Within the stated definitions, the set of polygons is closed
under the operations of intersection, union, difference,
inflation and deflation supplied by the polygon package.
The bounding box hierarchy enables groups of edges to be
compared for intersection, and is effective in reducing the
average number of edge intersection calculations below the
upper bound of 0(n 2) complexity. The inclusion of

[__

Molforrned polygon Self-union

L I
r

D

Self- intersection Free holes

Figure 23. (a) malformed polygon, (b) self-union, (c) self-
intersection, (d) free holes

circular arcs considerably extends the application area of
the package beyond that available to its straight line
counterpart. Additional procedures for detecting and
repairing malformed polygons enable input data to be
verified so that polygons resulting from any of the oper-
ations supplied by the package will be well-formed. The
resulting package is therefore both functionally com-
plete and efficient in performance.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the major contri-
bution to this work made by Ivan Sutherland, Professor
of Computer Science at the California Institute of
Technology. I Buchanan was a graduate student at
Caltech during 1978. This implementation was under-
taken by E Barton as a final year undergraduate project.

REFERENCES
1 Newman, W M and Sproull R F Principles of/nteract/ve

computergraph/cs Second Edition, McGraw-Hill (1979)

2 Sutherland, I E, SproulI,R F and Schumacker, R A
'Characterisation of ten hidden surface algorithms'
Comput. 5urv. Vol 6 No 1 (March 1974)

Sutherland, I E The polygon package California Institute
of Technology (1978)

Burton, W 'Representation of many-sided polygons and
polygonal lines for rapid processing' Commun. ACM
Vol 20, No 3 (March 1977)

3

4

volume 12 number 1 january 1980 11

