FILE STRUCTURE AND DATA DESCRIPTION IN
THE IMP LANGUAGE

A. Freeman
International Computer Limited
United ngdom_

ABSTRACT

This paper describes work undertaken for ICIL and Edinburgh
liniversity on the conversational “ulti-Access system being

implemented on the University's ICL 4~75 Computer.

The 1angua'ge IMP, a derivative of Atlas £utocode, is being

used to write the system.

The basic deta types availeble in IiP are:

* byte 1nteger

short integer

integer

long integer

real

long real

string

Any data object may exist and be handled in one of four
reference modes: direct reference, indirect reference,
function call, or function call followed By indirect

reference.

589

is ~ell as arithmetic assignment, address assignment
:tatements are provided which 'point' reference mode

variables at data objects.

omround data objects may be synthesized from simple ones,
or Prom other compound ones by repetition or by

structuring.

‘epeated objects are termed arrays: array components are

-eferenced by indexing.

itructured objects are known as records. To describe a

structured objeet, & specificatlion of the structure, the

format is given separately, which 1lists in order the
componentz of the structure. This format may then be

ased to ceclere records of the given format.

ccess to record components is by means of the subfield
perator _ (underlined space). If A is a record with

omponents i, ,k, then 4 i specifies the component

aamed 1.

‘he compiler guarantees thet for all records:
1) The objects of which it is composed will ve
- located in the order described,
ii) Each component will be aligned on the next
relevant Lardware word boundary.
'1ii) Ko hidden address words or code data will be
included in the record.

e organiaationfbr record access for optimum efficiency
onsistent with these constraints is described, with
xamples.,

zamples are given of applications to page=ené-eegment list
rocessinq, and dictionary description.

590

1 Introductory Remarks
1.1, The Edinburgh Multi-Acccss System

The ﬁachine being used is a large paged, segmented machine
with drum, replaceable discs and large fixed disc store.
The basic software uses the paging and segnentation to
provide apparently ope-level 'virtual memories'. for the

users and for much of the system software.

Inside & virtual memory reside all programs relevant to
& problem, and all data used by these programs. Data and
programs are organized into 'files' which are also used

for all I/0 and interprocess communication,

The machine is a byte-organized machine in which the
principal hardware data objects (i;e. those entities
manipulated by the machine order code) may be thought of
as

eight bit unsigned BYTES

.sixteen bit signed SHORT INTEGERS

thirty-two bit @igned INTEGERS

sixty-four bit signed LONG INTEGERS

thirty~two.bit floating point REALS

sixty~four bit floating point LONG REALS

up to 256-byte CHARACTER STRINGS

In addition there are sixteen general-purpose high-speed
32-bit registers, and four &4-bit floating point registers.

The order code is very similar in its actions to that of
the IBX 360 series, and is compatible at the usercode

level.

691

2 The language IMP
he system software is being written in the high-level

anguage IMP, (IMP lementation language). The language
s similar in structure to ALGOL, being actually derived
‘rom the language Atlas 2utocode.

t will be released for use with the system, together
:ith an associated conversational debugging monitor, as
_he principal programming language for University user's.

1.2.1 General Remarks concerning IMP.
'I don't want it perfect, I want it Thuraday' -
attrib. Henry Ford.

-

The first use of the INP language, and initislly
the most important one, is for writing systems in.
The most important feature of these systems is that
they have to work.

The second most important feature is that the system,
when written, must be easy to debug, maintain, and)
modify. It must therefore be written in & form which
aids comprehension and communication,

Besides the eimected bonuses of speed of writing and

ease of conmnication, IMP is required to provide.

(1) Efficient operation and data hendling, within an
addressing framework which readily facilitates
optimiutidn by the program-writer of key program
sections. ‘

Optiidzation is conceived as something to be
nndertaken by the user rether than the compiler:
1a% compiler must, however, provide an acceptable

592

framework, The principal optimization techniques
are the reservation of high-speed register:z for
certain purposes, and the rewriting of key sections
in mechine code. !achine code instructions are
providei as a subset of the language, but are
renerally introduced via user-defined macros to
sreserve clarity and logical separsbility.

(ii) Accurate end con5159£nt knowledge of the layout
of data objects. Thus the elemenfazy data types
of the language correspond closely to those of
the machine; and in the definition of complex
entities, strict rules may ve applied to deter-
:mine the position of the constituent parts of
the entity. '

Nevertheless, the prim;ry goalg of clarity, lo;ical

separability, and speed and ease of use introduce

furtier constraints on the language, WV:ilst as
many as pcssible of the features requested by system

designers are 1ncluded in the language emphasis has
heen placed on a sound and consistent logiceal

ztructure.

. 693

2, Data Description
in IVP

2,1, OBJECTIVES gnd EFFECTS OF STORAGE DESCR;PTION‘

Stérage description serves two basio purposes: first,‘
the description in logical terms of the data objects
handled by.the progran; secondly, the‘specification of
the physical layout of these objects. |

2.1.1. Logical Description
The techniques of storage déacription available to

IMP Program writers involve using DECLARATIONS to
associate symbolic identifiers with date objects,
The objects may be simple or complex., Complex
objects are synthesized from simp%f'ones by repeti-
:tion (arrays) or by structuring (records).

The objects may be accessed in several ways: directly,
by indirect reference, or by functior call,. "In t@e
case of objects not accessed directly, the identifier
will be logically as:ociated, not only with the object
itself, but witk one (or more) intermediate objects.
The letter will be termed ACCE'S INTERKEDIARIES. The
object itself will be termed the EFFECTIVE OBJECT
when it 1c to be distinguished from access inter-
:mediaries. The term 'IMMEDIATE OBJECT' will be used
to mean the first access intermediary for indirectly -
accessed objects, and the object itself iovr directly
accessed objects, The term 'object' will generally
signify the immediate object unless EITHER
(1) it is specifical’y distinguished, OR
(11) reference is made to attributes such as type
or components, which make it obvious that the

effective object is under discussion.

Access intemedieries arc to be distinguished from
objects like dope vectors and array heads to which
the user normally has no access and of which he need
have no knowledge. The latter will be termed CODE
DATA.

The process of using an intermediary to access the
effective object (or at a further intermediary) will
be termed REALIZATION.

2.1.1:1. Declarations

Declarations comprise a sequence of underlined
words termed a DECLARATOR, an identifier or list
of identifiers, followed by further QUALIFYING
INFORMATION.

Further lists of identifiers with different
qualifying information may follow, the same
declarator applying. ,

Example

integer i,j,k

integerarray A.",(1:n),C(1:3)

record format F(integer i, shortintegerarray
A(1:0%2))

record format ¥2 (record name R(F))

record R1,R2(F2),R3,R4(F)

record array RI,RJ(1:64)(F),RK(1:3)(F)

string S,T(20)

Z2.1.1.2. Aftributes determined by declarations

Declarations associate certain attributes with
symbolic identifiers pertaiﬂing to the objects

they represent. These attributes determine:

(i) The TYPE of the effective object. Types
may be simple or complex. Simple types
are:
byteinteger

~ shortinteger
integer
longinteger
real
longreal
string
complex types are:
arra

record

in the case of records, qualifying
information concerning type is also supplied
by giving a RECORD FORMAT IDENTIFIER

n the case of strings, Queliﬂying informa-
:tion specifies the maximum length of the
string in bytes; in the case of

arrays, it specifies the number of dimen-
:sions and the upper and lower bound of

the index for each dimension.

(ii) The ACCESS MODE of the object: i.e. how
the access intermediaries are to be used
to access the effective object. Acceas
modes are:
direct access
indirect reference
function call
combination of these.

Indirection is specified by the incluslon of
the word neme in the declarator following the
type descriptor. PFunction call is similarly

596

specified by the word fn, and the combination
by the words pamefn or, alternatively, by the

word map.

In the case of an object of access mode 'function
call' or 'combined', qualifying information

specifies the formal parameters of the function,

In the case of a‘'combined access mode, the
attributes also determine in what order succes-
:sive realizations are to be carried out, and

what intermediary results af'ter each realization.

For example, if 'I' is an integernamefn then
the first realization comprises the evaluation
of the function to yield an intergername, and
the second realization is the use of this to

yield the effective object, an integer.

For further information see section 3 on assign-

:ment operations and arithmetic expressions,

(i3i) Bhe way in which the component parts
(if any) of the effective objects are
to be reached: by record access or by
array access. Objects with componenf
parts can either be handled whole or
as a means of referencing component
parts. In the case of a record, the
tjrpe and access mode of the component
part is given in a RiCORD FORMAT,

597

A record format associates a layout of component
parts with a symbolic identifier (the FORMAT
IIINTIFIER), The identifier can then be used to
complete the information supplied by a 'record'’
declarator, so that any number of records in any
access mode may be declared, with the given

format,

The layout is a bracketed list of declarationms;
each identifier declared inside the layout is
used to identify a gomponent of the record by
means of the subfield operator '_' (underlined
space). Thus:,

record format F (integer i,j,k)

specifies a layout of three integers in direct
access mode, named i,j,k respectively.

record R (F) .
declares a record of format F ; i.e. it reserves
a block three physical words and associates its
&fireas with the symbolic nems R.

The record components may be referred to individ-
:ually by the identifications

R_i
R _J

R_k
respectively,

Record componenta of any type and ucéess mode
may be specified in a format. The subfield
Operator'may be repeated as often as necessary
to get at components of deeply nested records:
e.g.

man _ address _ town _ country _ ideology

In the case of an array, the declarators
preceding the word ‘array' also specify:
(iiia) The type of the component parts of the
object.
(iiib) The access mode of the components of the
objecf.
The questions of arrays with components of type
‘array', and of access modes involving repeated
indirection, will be discussed latér in the

section on rgstrictiona.
2'1'1.3
EXANPLES

integeHK’A

integer name B

specify A and B as objects of type 'integer' (with
no component parts). The acéess mode of B iq(

*indirect rkference’.

integer array X(1:10)
integer array name Y

define X and Y to be of type ‘array'; the component
parts being of type 'integer' and access mode '‘direct’.
The access mode of X is direct reference; and that

of Y is 'indirect reference', '

short integer name array Z (-1:K-2)0p4,

defines Z to be of type ‘array','direct access mode;
the components are of type 'short imgglam', access

mode 'indirect reference’. mlecier

record name array X (-1:N-2)(F)
defines X to be of type 'array', access mode ‘'direct

reference', the components being of type ‘record
(format F)', access mode indirect reference.
record Y(F) l

defines Y to be of type 'record(format F)', The
type and mode of the components will be determined
by the format F.

600

Data objects in IMP, having been declared, are specified in other
contexts by strings of charactera which will be termed DATA
SELECTORS. :

Example

A

AR(20)

R_4

RA(30%*j)_K

RB(j,kr2) 1

The contexts in which data objects appear are; on the left hand
side or the right hand side of address assignment statemenis; on
the left hand side of arithmetic assignment statements; as actual -
parameters of a function or routine where the formal parameter is
declared to be of indirect reference mode (name-type), and in -
arithmetic expressions,

Arithmetic expressions may appear on the right-hand side of arith.
tmetic asasignment statements; as actual parameters of a function
or routine where the formal parameter is declared to be of direct
reference mode (value-type); as array indices or in array declar-
tationg, when integer-valued,

In addition certain special operationg on strings exist which
"1l not be dealt with here, |

Byte and Ehgrt'. integers are always expanded to integer length in
expressions.
3.1 finit _dat ect

The simplest data selector is a single identifier, e.g.
i

fred .

number of variables.

601

A data object may also be selected from a complex cbjest by the
operations of array indexing and record subfield gelection, If
X is any data selector, then , :

(1) if X represents an array of m dimensions, a camponent of X
is represented by X followed by a bracketed list of m
integer-valued expressions.

(i1) If X represents a record, and S1..,Sn are the nazes lden-
stifying its compor;xt.s, then
X Si
represents component 1

The statement

I=X .

where X is a data selector and Y an arithmetic expression,
assigns the value Y to the object X. The expression Y must
yleld a value of the same type except if X is real and Y integer,
and if Y and X are records they must be of the samé format.

At present no infix operations on records or arrays are available,

A data selectar in an expression which is not in direct reference
mode 18 always realized (section 2.1.1) to produce a value. A
data selector on the left-hand side of an arithmetic expression
or as a name-type actual parameter is always realized to procuce
an address., Thus after

intername n,m

the statement

n=m

means ‘put the valus referenced by m in the location referenced
by n'. ‘

(O

3.3 drei i ent

The statement

X=X)

where X is a data-selector specifying a name type obiject and I
a data selector of the same type, assigns the address specified
by ¥ to the reference variable X,

In future when X is realized it will produce the effective obje¢
specified by Y, '

603

4. Physgi e : t
Data objects can be divided into two further categoriess;
DYWAMIC and FIXED-LENGTH objects., Dynamic objects are strings,

arrays, or records ccntaining dynamic objects of direct reference

acceas mode,

~

The sicnificant property of dynamic objects is that their length
is uaxaown at compile time; hence, if space is being allocated
in a block or a record, nothing can be located beyond a dynamic

object unless referred to via a pointer word.

This has two potential efrectss

(1) Objects are physically re-ordered to place the dynamic
objects at the end of the atack, in the normal course of events,
(11) Code data, to which the user has no access, is
intermingled with data on the stack, with the result that the
user cannot know the physical layout corresponding to his
declarations unless he has some knowledge of the internal work-

:ings of the campiler,

604

5. Files
Al)l files on the 4~75 system appear to the user as contiguous -

areas of his virtual memory; there is no concern on his purt
with the physical disposition of the file, since the paging
and segmentation hardware automatically maps each reference to
virtual memory into a physical address. ' "

Files may be created, destroyed, or acquired fram outsids, by
the use of system routines available to the user. Files w
also be shared tetween two users, occupying different virtual
addresses in the virtual memories, and may be relocated in a
single virtual memory.

5. Eile Gructure

A file has assoclated with it a certain definite atructure.
This can be considered in two parts.

5.2 Physical Structure

This is impoged on the file by its creator in that he places
the components of the file in a certain order, It may be
generally asasumed that this order is amenable to systematic
description.

5.3 Lopical Structure

The file creator has some concept of the logical meaning of the
objects in the file, and attempts to embody this in the physical
structure, He considers the file to contain objects of certain
types and precisions, and conceives certain of the objects as
being logically grouped together,

605

5.4, file User

The file user is not obliged to accept the file creator's
assuaptions concerning the file's logical structure, although
he may, of course, be well advised to do so. He must, however,
accept the physical structure whether he likes it or not.

In gemeral it may be hoped that the physical structure will

to a certain extent reflect the logical, The extent to which

it does depends cn constraints such as the machine's capebili-
ities, coupled with the need for efficiency and ease of handling.
It also depends on the functioning of the program which creates
the file., It must be remembered that fileg will be created by
many means beside IMP proghna. In addition, it 1. not reason-
table to inslist on a fixed and immutable systen standard for

the layout of all types of objects on a file, In particular,

it 1s not reasonable to expect code data in place on a file,

5.5 Conclusions

(1) A file description must be applicable to a wide variety of
layouts, among the layouts not created by IMP prograss.

(11) A descriptive aystem must not impose the inclusion of code
data in ordinary file data, nor can it rely on finding code
data on a file,

6. Restrictions

(1) It is not possible to permit the declaration of cbjects w

access mode is repeated indirection or repeated function oall,

integer name name 1,]

integer E_f:n_ ‘x

This is because statements like

i==] o

(or function assignment if implemented) would be ambiguous unde

circumstances.

(ii) Whilst possible, it is confusing and undesirable to permi
declaration of identifiers which could w hoccur in arithmetic
expressions with two sets of actual parameter or index lista:

For example, integer array array A (1:10) (1:20)
integer fn array name B (integer i, Jj)
integer array map K (integer name f)
would involve writing statements like '
= A(1) (@+2)
x = B(x-3) (20.tr)
k (1).(20) =
For this reason, cbjects of type 'array' may not he.va as compone
functiona, maps or other arrays, nor may arrays be of access mod
'function call' or 'indirect reference followed by function call!
There is no restriction on the types and access modes of reoord.
components or the access modes of records,
Thus record fn
record map
record name -
are all permissible and will be implemented.
For this reason the restrictions (1) and (ii) above may always be
Tprogrammed round! without loss of efficiency: 3
e.g. for integer array array A(1:10) (1:20); x = A{d) (4+2)
write/ ‘

write

record format ARR (integer array B (1:20))

record array A (1:10) (ARR)

x = A(1) _ B(3+2)

(iii) A fundamental restriction on the use of name-type variables
which is necessary to avoid possible self-damage by the user is
the following; no name-type object may reference an object to

" which it is global;

€e 80 -
begin

integer name i
routine fred yet again -

integer [T his n:stn‘.ot(m now W]
i== ‘

end .

end

If the routine were called, 'i' would be left pointing to an undefined
location, ' -

(iv) It is desirable to allow record formats to mention e;.ch other
cross-recursively, e.g.

record format HUSBAND (integer age, height, record name a (WIFE))
record format WIFE (integer age, height, record name b [HUSBAND))
This will be allowed, provided |

(1) No format may mention records of another format which is not

yet described, except in indirect access mode,

(11) No records may be declared with formats which are not yet
described, or which contein recorda with formats. not yet
described,

608

7. Declerations 3 dt

In the light of the canclusions at the end of sections 1 and 2,
it did not seem that standard declaration. procedures, such as
stackwise allocation, could reascnably be applied to file
description.

However, it would have been unfortunate to have to evolve a
completely new storage description scheme for files alone.

The solution proposed was a compromise; declarations were
adapted to meet the more rigorous demands of file description
in the particular case of recordg, and a method was devised for
applying these descriptians to files.

609

8e t t (o]

Owing to the multi-lingual nature of the uult;l.pgqqg” Syatem it
was necessary to define standards for array ao;ma,q',' strings and
routine parameter passing to facilitate communication between
routines or programs written in various languages.

Because of the relevance to the problem of record access these
standards are quoted here: it ghould be borne in mind that
this is only one solution to a difficult problem,

8.1 tep_Stand d St

Arrays are accessed through a system standard ARRAY HEAD and
UOPE VECTCR. The array head contains four words as follows:

(1) A pointer to the thecretical zerc element of the array

(11) A pointer to the actual atart of the array

(111) & pointer to the dope vector '

(iv) & multiplier, for efficient two-demensicnal array access.
The dope vector containa;

(1) the precision of the array, i.e, how many bytes each
element occupiles. |

(1) For each dimensicn, a lower bound and an upper bound oa
the index for that dimension,

For normal (monitor mode) access, the dope vector is used, For
prcduction mode programs, the index is added directly to the
pointer to the nypothetical sero element to obtain the address
of the element concerned.

Two aystem standards for strings exist;
A) the string head contains

(1) A pointer to the string elements

(11) A short integer containing the maximun length of the string.

(441) A short integer containing the current length of the string,
The atring comprises the characters making it up and nc
furtner information,

610

up, preceded by a byte containing the current length of
the string.

8,2 ut rhysical tents of Reco

1) 411 the data objects contained in record are laid out in |
order described in the corresponding record format.

2) Each obJect is aligned on the next relevant boundary, and
the record itself starts on the boundary corresponding to'
the largest element it contains. ‘

3) No code data is stored in the record except that which var
for each instance of the object concerned, and is therefo
an integral part of the objeot (e.g. string current length

©.3 Acceps Yo fiecordp Declared On The Stack

1) Each fixed length record declared in the main progran is
placed on the gtack in the scope of a base register, and
is a(icoased by base-displacement addressing relative to
this register,

2) Lach dynamic record is located after all static objects in
the routine in which it is declared. A pointer will be put
on the stack in the scope of a base register, via the reco
will be accesaeﬁ. -

MW

1 assume that the address of the record, called aR thmughout
this section, has either been calculated and is in a register,
or known as a displacement relative to some regiaster,

1) All components preceding the firat d,yxia.mic component are
accessed as a base-displacement relative to aR.

611

2)

4)

8.5

All
the

For each subgequent array, a8 dope vector and :gpq.;lried.arra.y
head are allocated in the corresponding racqu fm.mat, hence~
sforth called F. The arrsy head conforms to sysism standards
except that all addresses are relative to the stert of the
record. An array element address is calculated in the normal
way, except that aR is added before use.

For each subsequent string, a modified type (B) string head

is allocated in F, and the string is accessed by adding aR
to the string address in F as for arrays.

For each gubsequent record or ai"mple object a pointer is
allocated in F, which is again relative to the start of the
record. The object is accessed by adding aR to this address.

nape-type variables

nape type variables conaist of one word only, wiich contains
address in virtual memory of the referenced object, or, if

an array, to the array head. uan exception tc this rule may be
made for the case of arrayas where the four-word array head may
be used directly as an array name variable. .

Any

name type variable may be declared as being reletive to

some address in problem memory by qualifying the declarstion
with the phrase.

(relative N)

where N is an address specifier i.e. any INP data selector
e.g. ipteger name (relative A (0)) 4,B,C

The

address specified by N at the time of declaration will

always be added to the pame -~ type variable before it is used,

8.6

tispping Records onto Fileg

Onestatements js ueed for thip purpcse

(1)

map (N1, N2)

[Nows orithn N, <K= Ny]

612

Where N1 and &2 are a8 in section 5.5. The effect is the same
as the address assignment (= =) statement except that no
restriction is placed on the types of N1 and »2; i.e. the name-
type variable N1 is modified to point at the area of core
apecified by Né, whatever the type of N2; this area may anow

be treated as if it were of type N1 by referencing it via N1,

Both N1 and N2 may, of course, be record and/or array companents

It is by means of this statement that programs wishing to
communicate via, or to access, external files, can connect to
them and reference then,

Functions and procedures to gbtain the address of the file,
say from external parameters, are provided as part of the

File system libra;*& mectanism, In addition it is hoped

to write a number of machine coded routines to obtain addresses
like, for example, the address of the end of a record, -

613

9. Examples

9,1 List processing - . o e

A simple list cell may be represented in general by a record
plus a pointer Assuming a record format F to have been

defined, the construction of a list is as follows:

record format CilL(record head (F),record name tail (CELL))
record array list (1:1000) (CELL)

record name next cell, p (C<LL) .

integer i

i=1

comment set up the list

LOOP: 1list (i) _ tail = = list (i+1)

i=1i+1

-> LOOF unless i = 1000

list (1000) _ tail = = end cell

next cell = = list (1) ' ,
comment a function to yield the contents of the

1 top cell of a list and return the cell to the
1 main list

recordapop up (F) (record name top (CELL))
toptail = = next cell

next cell = = top
regult = next cell _ head
e

comment a routine to take a cell off the main list,

1 put information in it, and push it down
1 on another list.

routine push down (record info (F), record name top (C:ELL))
p = = top _ tail -
top = = next cell

"

next cell = = next cell . tail
top _ head = -info
tOp - tail = = P

end

9.2 Simple Dictionary

This dictionary associates records with identifying tags. The

record is assumed to be of format F

record format DICT ZKTRY (record r (F), string name (40))
record array dictionary (1:1000)(DICT ELKIRY)

integer next entry

next entry = 0

comment to a.d a record R2 .dentified by 'tred'
dictionary (next entry) _ neme = 'fred’

dictionary (next entry) _ rgr = r2

next entry = naxf entry + 1

comnent & more efficient method

record name index (DICT ZNTRY)

index = = dictionary (next entry)

next entry = next entry + 1

index _ name = 'fred'

index _ r = r2 .

comment a look up function

record namefn look up (F) (strips T (40))
intéger search

search = 0

LOOP:-> iMPTY if search = next entry

if dictionary (search) _ name = T ¢

then result = dictionary (seareh) _r

-> [00P

AMPTY &

print string ('no luck')

stop
end

