RIJKSUNIVERSITEIT TE GRONINGEN
MATHEMATISCH INSTITUUT

a multi-user operating system
for the pdp 11/40

Winm Bronsvoort

T™W-200 deel I

s

GUTS

Wim Bronsvoort

This project was undertaken during
the closing phase of my study under
the supervision of Prof. Whitfield.

Inquiries may be addressed to:
- Department of Computer Science
Postbus 800
9700 AV Groningen

December . 1978

B R L e T e mmmarme o e e da g W

e um ow o b S - —iam kol mamlE e o bmwe et - el O
'

1) Intrdduction

3) Direct memory'aecess'by.an interrupt routine

Index;u

1 1) History |

1.2) Type of system B
- 1.3) Motivation for wrlting the system
" 1.4) Hardware environment

1.5) Implementat1on 1anguage

- 2) General structure of the system

”_-2 1) Hlerarchal structure
2.2) Direct memory access by an 1nterrupt routlne
2.3) Kernel |
2.4) Supervisor processes
2.5) User processes

3 1) Clock 1nterrupts

H) Kernel

4.1) Implementation language - -
4.2) Priority, mode and mapping of the kernel and
- the processes =

4,3) Data area
4.4) Entry |
4.5) Wait and signal on a semaphore | |
4,6) Service exchange = | 11
4,7) Send message 11
4.8) Receive message 12
4.9) Supervisor calls 12
4,10) Interrupts o 12
4.11) Error handling 13-
4,12) Despatcher | 13
'u 13) Exit | 14
4,14) Idle process 14
u 15) Further routines 14
5) Clock handler 15
B 1) Messages frem the clock to the handler |
5.2) Services = | 15
5.3) Main part of the handler 15
5.4) Requested interval over 16
'5.5) Get current time 17
5.6) Set current time 17
- 6) Disk'drivér |
6.1) RK ' - . 18
6.2) Serving a request ' _ S - 18
6.3) Service discipline - _ ' _ 19
" 7) Core manager o . | 20
7.1) Services _ ' 20

-

Y
N

e 1T T T e m e — . &

-

7.2) List of free blccks
7.3) Get core

7.4) Release core

7.5) First fit |

7.6) Initialization

8) File system -

8. 1) Files
8.2) Structure of the dlrectcrles and
| allocation of the flles
8.3) File names
- 8.4) Owner of a file
- 8.5) Access perm1531cns
8.6) Services
' 8.7) Directory structure | |
8.8) Advantages and dlsadvantages cf thls d1rectcry
- structure o
8.9) Virtual memory of a user prccess
8.10) Write shared problems
~ 8.11) General implementation features
~ 8.12) Create file
~ 8.13) Close file
8. 14) Delete file
8.15) Rename file
8.16) Set access perm1331cns of file
8.17) Get file names and information
8.18) Offer file |
8.19) Accept file o
8.20) Connect file
8. 1) Disconnect file

9) Ccnscle handler

1) Consoles
2) Mode -
3) Opening a console
) Input/cutput buffers

i
5
6) Output
T7) Simultaneous 1nput and output
8) Escape
9) Further services
10) Convenience and efficiency of the handler
11) Main part of the handler
q.12) More about output

.13) Interrupts:
14) Handling requests frcm the user
15) Handllng requests frcm the console

9.
9.
9.
9.
9.
9.
9.
9.
-9
9.
9.
9.
9
9
9.

- 10) Recovery

10 1) Setting the recovery registers
10.2) Resetting the state cf a process

1) chin and lcgout
12) Scheduler

12.1) Queves

i
I“_I

21
2
21

_ | .',':-:l'“ |

12.2) Round-robin

"~ 12.3) The candidate
12.4) Loading the candldate
12.5) The choice of a v1ct1m. -

~ 12.6) Releasing core in use by the victlml-
12.7) The main cycle of the process |
12.8) Implementetlon of the queues |

13) Inltlallzatlon

13.1) The kernel
13.2) The clock
13.3) Idle process
13.4) Interrupt and trap vectors
 13.5) Processes | o
~ 13.6) Consoles | -
13.7) Available core and memory management registers
13.8) Ex1t .

"114) User processeS'

14, 1) Standard d1v131on of the virtual memory
14.2) Influence of the IMP oompller on the system
14.3) Implementation language

14.4) Perm routines

14.5) Implementation of the perm

14.6) An example: read symbol

14.7) System routines .

14.8) Stopping a program .

14.9) Command language interpreter

14.10) Device and file names

14.11) Searching for a program

14.12) Loader o

14.13) Programs in the subsystem

14.14) Starting the subsystem

14 15)3Availab1e programs

15) Further developments

' 15, 1) Papertape handlers -
15.2) The use of more than one dlskx
15.3) Archive system = o
15 M) Perfbrmance evaluatlon

| References

46

47
48
ug’

51

52

- 52

52

52
52
-0

2

53

53
54

55

55

59
59

55
56

5T
5T
57
57

58

60
60

60

60

60
61

2

"";versions, but certainly not
-ma'ly ways. -

- 1) Introduction. .

Gromngen Unlversity Timesharlng Systan (GUTS) is the llsomewhat o

ambitious name of the Operatmg system which will be described in this

~document. Although it is a system with some attractive properties, it
- was never meant to become generally used at our unlver51ty, as the name

_mlght mggest.__' .

1. 1)'H15torg. N
The first wcrk on GUTS was done in 1975 dur'ifrg a course on cperatmg -

'systans. . Prof. Wmtfield wrote the first version of the kernel and a
| r of pro,ject groups. cons1sting of students wrote some processes

micﬁ' made use of this kernel. In 1977,two more students worked on the

- System and in the meantime two student-assmtants did some - development
wcrk on it too. I wdrked on the system both as a student and a

;studént-assistant.

In the autumn cf 1977 we had a system, ent1re1y written in aSsembly*

' language , which did the synchronization in a tidy way, but was not
" really usable. - There was no loader, no compiler or assembler and the

system itself ‘had - too many deficiencies to be attractive. At that

- moment we cbtamed a compiler for the high-level implementation language

IMP for the PDP11. I was looking for a project to complete my study and

~ we decided to install the compiler under the (old) GUTS system and to
‘redesign, rewrite in IMP and, for the first time, to properly dccunent .
‘the system. o B . | S

The systan running now 18 much more attractlve than prencus
finished it can be: imprcved and extended in

'1 2) nge of szstan. |

GUTS _15 a multl-user, inter‘active cperating system f'cr PDPH |

T c{mputers w:Lth memory management, i..e.. | several users can work from
. --:ccnScles on the system at” the sane t?-_;mea It is. nct deslgned fcr batch
- p ._',__;_essing or real t:.me appl icatmns._. e |

We will call "'the system“ that par't of the sof‘tware which is

'pemmently resident in main manory the: kernel and the Supervisor

processes. The "subsystem", which is part of the code of ° ‘every. user
process and consists of the command interpreter and basic I/0 routines,

- will also be described, but programs which can be run by user prccesses, _
_such as editcrs, ccmpllers, etc., are nct descrlbed in thlS document

1.3) -Fbtivaticn'fcr wr-itin the system.

When the development cf‘ GUTS started 1t ‘was as a teaching pro;ject

‘with the following aims:

-learning about synchronlzatlon | and cther operating system '_

principles
o -1ear'ning to manage a somewhat more canpllcated prcgran

Gradmlly the systan becane tco ccmpl icated and in fact mmanageable,

' mainly“ because it was wrltten entirely in assembly language._-- It

Rl W S SR) ak AR E il -l -

Y S ePepfeba sl tmal aT W PE == n R ne 1 EEE

S

are:

- certainly could not be presented at a new course on operatlng systems as
an example of how an operating system should be wrltten .

- The main intention of my project was toflearn more about de51gning .
and implementing an operating system, and - in this way to 1manage_
acomplicated appllcations in general. = | o

The main objectives chosen for the system were the f‘ollowmg

-simplicity: it should be shown that a system, which is really
| usable, need not be complicated. Besides, simplicity increases -
the adaptabillty and might 1mprove the perf‘onnance of the system? |

too.
-it should be usable as an example at courses on Operating

systems. This means that the system should be easy to
“understand from the source-llstlngs and the documentation. I
‘have tried to write the system in a. clear style,i inserting'

‘useful comments. - -
= -~the system.should be efflclent Exper;ence wlth,the;w1dely used
~ UNIX system ([4]) showed that the performance of this system is
- not so good and- that it is certainly possible to write a more
- efficient system. - | o

 These objectives have been chosen at the cost of generallty.. l'hope

this objection is not too serious, but stlll more do I hope that thef
_objectives-mentioned have been realized - N

 1.“) Hardusre env1ronment

" QUTS is written for the PDP11/40 computer,- which consists of a
processor connected to - one or more storage units and peripheral
,controllers via a bldirectional parallel cmmunicatmn 11ne called the |
'"Unibus" For details see [1] and [2]. o - | '

It is a slxteen-blt ‘word machine,_ i.e. instructions and virtual
addresses have this length. A word is divided into two bytes, so data

can be eight or sixteen bits 1long. The processor incorporates a
processor status word (psn) eontainlng.lnﬂormation about the status of
the program running, a progr t

pe), two stack pointers (sp) and

six general registers.

memory management registers is used to convert program virtual addresses

into physical adresses, which :stack- poxnter is used and whether certain

instructions e.g. "halt thecomputer!, are. forbidden or not. For more

‘details and the instruction schq see. [3}- _w,;ix,

The mdnimal harduare requ1rem&nts ﬁor GUTS, be31des the processor,

-112 K bytes of’maln memory, Which we wlll call "core", although
it need not really be core'memory, to prevent confusion with
"virtual memory" - o .

-a memory management unit; see next sections

-3 decwriter, ‘more conaoleg can ea31ly be 1nserted into the 7

system
-3 KW1l<L or KH11—P clock
-an RKOS dlsk.

- The manory managanent unlt converts 31xteen bit v1rtual or program
. addresses into physical addresses of eighteen bits. It‘cbnsists.of'two -
-*sets of‘registers, the active page reglsters. For each of‘é;jﬁ_wﬁo#ﬁﬂ_xl

- ﬁ H73l§Min two different modes: kernel
mode and user mode. The choice of I;he mda determmes mich set of

ot Bl ¥ N £ s e Raig Sds & san - it rrmr by .

$

there is a set-offthese'fegiéter54;éanhg§e§;is;camposedbdf-eight,pairs,.

each consisting of a page address register and a page descriptor -

register. Each pair controls the mapping of one page, i.e. 8K bytes of

the virtual address space. ~ Each page consists of a maximum of 128
~ contiguous blocks of 64 bytes each. | . | |

~ Any virtual address belongs to one page or other. The corresponding

- physical address is generated by adding the relative address within the
page to the contents of the corresponding page address register.The
contents of the corresponding page descriptor ‘register determines for
which addresses in the page, if any at all, a mapping is valid and

~ whether or not it is allowed to write into the page. Furthermore the -

- register contains a bit indicating whether or not the page has ever been
‘written into. ~ Any attempt to reference an invalid address, i.e. an

" address for which no mapping is set up, or to write into a page which is
‘protected from writing, is trapped by the[hardware. |

- The memory managemeht]unit provides for enlargement of the usable

3 core_~mem0ry_(upQESJEEG*KFbytéS)~aﬁd*pr@tection against users reading or

' modifying parts of core outside their own areas. Alas, the design of
~ the. unit is far from ideal, as will be shown in the chapter on the file
~ system (chapter 8. ¢ o o | _

 As mentioned previously, the first versions of the system were
entirely written 1in assembly language and were assembled by the MACRO
assembler running on the RT11 system ([3]). The kernel and the
‘subsystem of the current version are still in assembly language, but all
' supervisor processes are written in IMP. S T

IMP was designed as ‘the implementation language for the Edinburgh
Multi-Access System ([51), but is now in use as a general- purpose
programming language on many machines. Although it preceded Pascal, it
- can be described as ﬂ?ascal—like"g;“_Itmfoersﬁﬁtidyﬁﬁprogramy_agd_‘data |

_ Structuring facilities and is easy to understand. For a description of

ke lagunge, see (E61)e . o oo o g il o s ol

- The advantages of wusing a higher level language are enormous:
 programs became more structured, more readable and are easier to
maintain. When you use such a language, you are less concerned with
- details and so make fewer mistakes while programming. The time you win

“in this way can' be used for thinking about the real problems. GUTS is

e .

; anQ?her_jpro°quthat-?pggrams liké'-perating°system5aQan5b§ Writteﬁ;iQ:a
_higher level language, a fact admitted by too few people. . o

- - The only problem with thea cﬁrrent 'eampiief 'ia_ that it is not
‘reliable: strings and byte integers cause a lot of trouble, but also in

'dthéﬁ‘éaSésrfaulty%GOdenis.scmetimeSwgenePatedyor-theacompiler b1gws;up,*

Parts of programs for which faulty code was generated could always be
rewritten in such a way that the compiler generated correct code. The
difficulty was to localize the parts at which the compiler failed.
Writing a correct program which does not work is one of the worst things
‘which can happen to a programmer. I call the current version of IMP a

: a . . .

__higﬁé] lev§I?1anguagé'with.a*l@merileuel¢ecmpi1er-and[sincere;y hope we
 will shortly get a better implementation. - S

Tc understand the system.requires a kncwledge of the general featuresf
- of operating systeme like processes, synchronization, resources and |
. 'scheduling. The book "Operatlng System Principles" ([7]) can serve as
_an intrcducticn tc theee.-,;f:ae L S SV .

i T I . fay ..
o 3 . o5, ® "1 | "
CIPNT P S L SRR, SR ST S | S P ST O S, B

2. 1) Hierarchal struc'cure._ -

- 'GUTS can be ccn31dered as ccnsisting cf a number cf levels,- each
level making use of the- facilities offered by the levels below it. This
 division was made to understand the working of the system better and to _,‘ §
1“-give an idea cf how the different parts are related T S ORI
,Thewlevels, in increaSIng crder are* .,f";”*7 E
~ «the hardware = ' - ' o o o
- =the direct mencry accesses by 1nterrupt routines ' SEPUEE A

-the kernel for the basic synchronization

- =the supervisor processes *

- -the subsystem, i.e. the command language 1nterpreter, loader' and |
~_basic I/0 routines _ o _ | R i
~ -the user programs. -' o B
The-hardwere has already been described in the previous chapter. The
general principles of the other levels will be described in the rest of

this chapter, while the descripticn of the internal wcrking of them will

. .
- . .) o) .
PRI X T R TR CAEY SRS

- main mcry by a device,. e.g. “the diek. with ;ut the pr'ecesser being '
- invclved Here it is used to indicate access to main memory by an - =
" inter routine ‘without the rest of the system being involved, i.e. BN

the systau continues at the exit of the routine in the same state it was | |
‘at the time of the interrupt. The 1dea—iS-tc achieve seftuare simulated

DMA to reduce kernel actlvity

o “These interrupt rwilines, running at a nen—interruptable pricrity, -
' are used for actions which are performed very -often and are simple and
- short. Only when there is.an exceptional -condition will. it be necessary--
to inform a supervisor prcceee of this, e.g. when the counter in a clock
interrupt routine gets a value less than or equal to zero. This is done
via the kernel by converting the interrupt into a "signal" on a
- semaphore or by sending a message to the supervisor prccess This can
also influence the continuation of the system. Generally there will be
- no exceptional condition and there will be a simple return from the
interrupt, continuing the systemsin the state it was pricr to interrupt. -

-“f Hand1in3 interrupts 1n this way is very efficient. .

L i Tugrag, g = I L oa at
’ bt - wa R e --..-E'.'-‘.:-’.
ot LI il i | i S i e ¥ TSI et R o e » i

g

5 TR

B 2. 3) Kernel

| The kernel is in fact ‘the basic pert of the system, neededl to S
implement the idea of a process. It contains a description of the st.at.e .
- - of every process and a despatcher, which selects the next pr};jssdyhich T o

~is ‘going to run. If there is no cther prccess to be "run, tQ;iiidle

"*‘fx;.~;is selected

' e _...._,PM.' e i ..; . M...‘ e e 1“-'-*-"---.'.I "-’w i =

e A A e i A ek md g

i g
il Sl st R Ln‘h-qh_; L

s

RIRE S

" P 0 . Y ['. .
i ' Lo [
\
a 1 . .
q A - B i
. L .. 3
- s & :'h" TN 5 -
. i L

.supervissr

~ specified

- Tproeess number by the service exchange mechanism.ln the kernel, which
- ‘makes it p@s fble to hsld the service number fixed whlle changlng the_'

The primitives for process 1nteract1on are. 1mplemented by the kernel

too. Supervzser processes can request a "signal" and a "wait" on ‘a
semaphore, a "send message" and a "receive message”. Supervisor and
user processes can request a "supervisor call", i.e. a ‘“send message"
~ combined with a '"receive message" to receive the reply to the request
 issued by sending the message. The use of semaphores by user processes“]
“would requ1re an allocation strategy for these and the use of "send
message" is dangerous because this could cause a message ‘buffer overflow“‘
~ when too many messages are sent without receiving the replies sent by
the supervisor. Besides, the use of these primitives by user processes
“would make the supervisor more eaomplicat&l, ~because a second request
"eould be sent to a supervisor process before the first one is serviced.

Some interrupts from devices, handled by'the kernel are converted 1nbo

f!a "slgnal" or a “send“ too.

o The kernel is Implemented as a crltlcal reg1on, i.e. the executlon of '
- one call cannot be interrupted by another call. This is achieved by

‘running the kernel on a high priority and is needed because thej

operatlons performed need to be mutually exclusive.

- The code for the idle process is located in the kernel too, although
it is not really part of it and certainly does not run on a non-

,_interruptable priority. Furthermore there are a number of useful
routines: a trace routine, which can monitor on the system console
 messages sent and or received by one or more processes (this is very
convenient during the development of the system), a dump routine,

useable if the system crashes, and a bootstrap.routine for the RT11

‘system, which is used for 1oad1ng GUTS.

- To read more about the idea of a kernel, consult the book by Hansen'
N ({7]), wheremthe term "baslc menitor" is used fbr it. -

'nvisor _rocesses

The superviser is the part of' the systan wh1ch enables users to s"hare

the ‘resources of the system such as:

- =processor time -

-core :
-disk space
-consoles

‘ It con31st of a number of processes |
| . «the clock handler, offering time serv1ces
' «the disk driver, handl1ng the disk .
- =the core manager, Keeping track of used and free space in core
. «the file system, allocating files, i.e. collections of data, on
- the disk and making these files accessible to users. It also
contains = routines : for: the sharting and stpplng of user
. processes (login and logout) and resetting such a process to a
 required state when there has been an error -trap (recovery)
- <the console handlers, each handling one console
. =the scheduler, arranging the sharlng of core space and processor
time amengst the users.

User and superv1sor processes can send requests fOr a service to a
e All services have a unique number which must be
when sending a request. ‘This number is cenverted into a

number of the process handling the request. When a supervisor process
' receives a reqUést;?‘it;dgpendstﬁ;thé?service-number;whieh;noubine of .
_ the process is executed. Not all services can be requested successfully -
by user processes, e.g. the disk can not be read from or written to.
directly by a user, and”a11 parameters-of‘a-call-are'checked-carefullybm;5'

“The supervisor ‘processes have to set the source of a message .)
themselves when sending one. This enables them to send a request on
behal f of another process or to pass on a request. - . S

w)

Tﬁé'shpefviscr processes are permanently in core. They are protected

‘from being read from or written to by a user process by the memory -

~ All supervisor processes have the same general structure: they are in

 a never ending loop, receiving a request, handling the request and

' mostly sending a reply immediately. Before the loop is entered, some .
~ initialization of variables is done. So all supervisor processes look
like: S T o R

* initialization
| ~ %cycle *
‘receive (message)

~send (reply)
~ %repeat

- The variable "flag" is always used to indicate the result of the

" request; only if "flag" has the value zero at the moment the reply is
~sent, has the request been handled successfully. The supervisor

. processes extensively use the primitives offeagd;hbyg ﬁﬁg;g;5;;gl;sto ;
interact with other supervisor processes. (The "control k'100001'"

.. 'statement in theféygtem“séuﬁCeS'iﬁdicates*thétvaEEipl'catf@nya_diuisicn";-

" ete. should be executed by the hardware, i.e. the Extended Instruction |

- Set option should be used, and that the program is trusted, i.e. certain
checks, like switch index checks, are not executed.) .

2.5)1U3er'2rocesses.

A user process is started for every user who is admitted to the
system. It has at its disposal a virtual memory of 64 K bytes:
addresses generated by the processor when the process is running are 16
bits long. These virtual addresses are converted 1into physical
- addresses by the memory management unit after: the appropriate mapping
for this conversion has been set up by the system. L .

It is not necessary to understand what a user process does to be able = .

. to .understand__the+-syStém,{“-*EVéfy[useruprocess could in fact arrange - B
‘things in its own way. For simplicity and convenience however, a SN
standard subsystem has been chosen as part of the code of each user S
process. This subsystem consist of a command interpreter, which o S

‘determines the interface of the system to the user, and basic I/0 . . =
routines, and is located in segment 7. Segment 6 is partly used as.data g
~area for the subsystem and further as data area for programs to-be. rim. :
Segment 0 and 1 are used as 1/0 segments (see the description:of. the

- file system). These (arbitrary) deCisiOﬁSThave_hadsgqggﬁéiﬁflﬁéhGEaééﬁ}

6

B

oy

the d631gn of the system;toe. _7'

The user processes which are meant to run programs, can get access

to the resources of the system by sendlng requests to the supervisor.
So you could say that every user has at its dlsposal a- 16 bit v1rtua1

ccmpnter.

il '
¥ I e

e

. TP S .

~ 3) Direct memory access by an interrupt routine.

There are dlrect memony.access 1nterrupt routlnes fbr two purposes' 7;

- =to -update a counter for the clock handler
-to put a character into a console output buffer.

The second one will be dealt with in the chapter about the console
‘handler (chapter 9), because there is a lot of interaction between the
routine and the handler. The first one will be discussed now. The
routines are run non-interruptable priority, to ensure mutual exclusion

of the interrupt routines and mutual exclusion of an interrupt routine

and a kernel call. They are in kernel mode, so that the kernel memory
management;reg1sters, which are set to map a virtual address onto the
location with the same physical address, are used. The-assembly.__--

'-language code for the routlnes is located 1n the code for the kernel

3. 1) Clock_lnterruits

Depend1ng on the avallable clock the routlne "kWplnt“ or "kwllnt" is

- used to update the variable "count". This counter is used by the clock

~ handler to indicate the number of milliseconds to pass before it has to
be waked up. If an KW11-P clock is used, 1 is subtracted from "count"
every interrupt, ©because this «clock gives an interrupt every

millisecond. If an KW11-L clock is used, 20 is subtracted from "count",

‘because the frequency of this clock is 50 Hz. As soon as the counter
becomes equal to O in the routine for the KW11-P clock or less than or
equal to O in the routine for the KW11-L clock, a message to the clock
handler is generated. This 1is done via the kernel and informs the
handler of the fact that the requested interval is over, so that some
action has to be performed. See chapter about the clock handler

(chapter 5). If no message is sent there is an Immedlate return from :

'the 1nterrupt routine.-_a-

) @ . =" =") W - L L =
. - R & & LI I
A MELa e e e, a.“w—va_m‘.-'.n—.u._-h;_ > PO e, el LS PR

L. -
.
P

|. ! 5 ‘
§ ™ ‘oA .
¥ s - & -
. S T . : e .
a Hmlae e 4 e o U S . L - N

e 3 e o ol P S| e ey i -m“*{‘—_‘ln“.—-—é-‘_ﬂl\.u"-___u__u|d"-|_"_‘_

._ =
e _.;_.........:........_u-...-l__.. S S TR R S g

oy

~ the written into
selected,

. 4)_Kerne1;

| The kernel con31sts of a number of routines,_handllng the entry andf;
exit, the execution of the primitives for priocess 1nteraction and the
selectlon of the next process to be run. There are also some routlnes
which were useful durlng the development of the system.

H 1)_Im’lementation 1a’uae.d

The kernel is written in ‘assembly laoguage' Some parts have to be,

. because one has to address the registers. and execute certain

instructions which cannot be executed in an IMP program. . Other parts~

could be written in IMP but this would not make it clearer, because of

the 1nteractlon required between the different parts. Because the
kernel is a critical region, the code for the primitives should be as
efficient as p0381b1e, whlch is another reason ﬂor writlng it in

~ assembly 1anguage

Y, 2) Prlorlt _lmodeland map 1' of the kernel and the ocesses

- The kernel ‘1like the direct memory access 1nterrUpt routines, runs at
a non-lnterruptable priority to ensure mutual exclusion of different
calls and mutual exclusion of a kernel call and an interrupt routine,
and in Kkernel mode, so that the kernel memory management registers are
used. These are set to map the virtual addresses in the segments 0-6

onto the locations with the same physical - addresses and the virtual
addresses in segment T ~onto the area where the device registers are

located (the YK words with the highest possible phy31cal addresses), S0

~ that these registers can be addressed via segment 7. The idle process-'

runs at the lowest possible priority in kernel mode. The kermel memory

| management registers are never changed after 1n1t1allzation

Eoth superv1oor processes and user processes run at a low priorlty to

: enable all devices to 1oterrUpt them. These processes run in user mode.
‘Because the user mode has its own stackpointer, the kernel stack is

reserved for use by the kernel. The memory management registers used

- .are the user active page registers. For a supervisor process they are
. set to the same values as the kernel mapping registers. ‘The value of

them is never examined, so they never have to be saved. Each user

| process has its own mapping, which must be copied:- to the . memory

t. registers every time the process is: selected to run. In
addition%ethe contents of the page descriptor registers must be saved
every time the r ___I_ocess is. stopped to ‘enable the supervl.s-r +0 exanine,
b1t”cf a segment. When a supervisor process is
the user mmory management registers only have to be set when
the prev1ou31y ruﬂﬁlﬁg process waS a user process, because otherwise the
prev1ously runnlng process was another supervlsor process, hav1ng the

'same mapplng._ .

Yy, 3) Data area.

The data area of the kernel contains the ﬁollow1ng var1ables._,-\
“process", containing the number of the running process |

~"apd", which 1s a Dolnter to the process descriptlon of the |';'

running process
="punproc", indicating the user process Whlch will. be selected o

run when no superv1sor process is ready to run

~=an array of semaphores, consistlng of records with the fields

- "counter™ and "waiting"
* ~ =the process table ”proctab" which centains an entry for eachs
process with the following information:
-the state of the registers rO-r5,sp,pc and psw
-the head -of a queue of received messages ("recd")

-a variable indicating whether or not the process is waltlng~*'

for a message ("heldup")

-a variable indicating whether or not the process is Waltlﬂg':;
for the receipt of a reply to a “SUperv1sor call"; if so,
" the wvariable contains the. number of the serv1ce it 1s |

~ . expecting a reply frem.("asleep")

- a variable indicating whether or ndt messages to or frdm‘”
the process should be. monitored, i.e. prlnted on the console_

("rsmoni")

-the ‘queue . of _superV1sor processes Nthh are ready to run

("readyq") with 2 pointers ("begrdy" and endrdy")

-"recproc", containing the process number of :the.- prdceSS'i

- receiving the message being sent . |
~"suppar" and "“suppdr" containing copies of the superv1sor “page

address"™ and "page descrlptor registers"”

~"userapr", containing copies of the "active'page reglsters“ fbr“‘

- each -user process - |
~-"messtab", which is an array of‘message buffers
~"free';, whlch is a pointer to the list of free message buffers

-an array of records with the fields "link" and "info" used as '

elements of lists for several purposes
="agl", which is the -head . c&llaOf the llst of free records iﬂ

this- array

~"find", which" contalns a p@lnter td the process descrlptor fbr;'

each. precess

="intflag", indieetlng Whether a send cames from;an 1nterrUpt or*

- from a process

-"callsch", 1ndlcét1ng whether ‘the scheduler shodld be called-ﬂ

 when the idle process is selected to run

"psave"- which -contains the process ndmber Of the PPQOQSS .

runnr&g beﬂore the kernel was entered

u 4) Ent z.
Ehtry te the kernel is pess1b1e in several ways.

-by a’ processfexecutsng an emulator-;ﬁ

mly wrm]_tgﬂ men agone dby.-a rvisor pl“OQeSS. Depe ing on
0o the ‘number-of the € B@r a *'51
.- "gend message" or a "regeive messa

e" is. axecuted

‘x -by ‘a ‘process execut.ing -the Leteinstruction. ‘This is permitted '

“t6- both supervisor and user precesses and causes a "superviser

eall" to be executed.

-by an interrupt from a dev1ce.ii' B
-by a proeess trying to execute a non-executable instruction. o

In all cases the priority is automatlcally set to a high value by the

loading of a new processor status word from the vector address of the -
_ interrupt. or trap instructldn._; Thls. ‘causes the kernel 1 tdﬁ” be. |

non-interruptable.. o

";a The routlne '“save" 18 used to save the state df tﬁe reglsters |
rﬂurB Sp,pc and psw'of the running process in the process table.; FOr a .

10

rap instructidn . This is

”“?ﬁ}gr'a "wait" on a semaphore,, _

)

P SR N

—

o s s s i, il st i i Bty ot el B, o eadast .

e - T i N i .) i -
- i B el . - = St) 3 J
. g LR A B o el i il el e s, P, s, o i, s s e Wi i B e it P N T T

CeailPei ey T,

e iy g bt etk

(4

! LT . - o - . '
[T TR U EREUT - WU, N TN) L L Sy L h " R . L
i - [LTS T R P LL, e S L o IR . TR L S, "S-y T LU L0, TR Y YL I N (ST ST S S TS T ALY N

user process, the page descrlptor reglsters are saved too. by the]

routine. For the idle process nothing is saved. There are some simple |
calls of the Kkernel, in which only a few reg1sters are used and where

the same process continues, after the exit. from the: kernel , for ‘which

this sav1ng is unnecessary, and thereﬂore 1s not done.

;h 5)’Hait.andSSi nal-On;a Sema hore._

Each semaphore _con81st of two components | |
- ="counter", whlch defines the number of signals sent, but not yet
‘l“jﬁreceived o -
| ~"waiting", Wthh is a queue of processes waltlng to recelve-
signals not yet, sent . -

' Fcr both "wait" and "31gnal", rO contalds the number of the required

semaphore.

"Wait" does the following: if "counter“ is greater than zero, it is
decreased by one and the calling process . continues; otherwise the

“ecalling process is entered into "waiting" by the routine "enter" and the
'despatcher is called to select another process. .

When a "31gnal" is executed the ﬁollowing happens if one or more
processes are in the "waiting" queue, the first one of them is removed
from it by the routine "remove" and the process with the highest

fﬁprlorlty contlnues, otherwlse "counter" 1s increased by one.

| aﬁ).Serv1c'

4.cha- e.;_

The use of the serv1ce exchange mechanlsm has already'been explained

- - in i 'the chapter about the general structure of the system (chapter 2).
| -*The tmplementatlon of'lt 1s very. straightforward S |

Eor both the "send" and the "superv1sor call" operatlons the rlght
byte of r0 contains the requested service number. The number of the

‘process supplying the service is fetched from the array "serv'", which

- maps a service number onto a process number. If a non-exlsting serv1ce_

- is requeatﬁa; which is noticed by a negative value of ‘the entry in
-~ "serv"; this is ‘handled in the same way as when an attempt is made to
~“f¥exesste-a non—executable instructlon.,u See sectlon cn error handling-'

ection 4.11).

For superv1sor processes the left byte of rO contains the source of

‘the request The two bytes are exchanged when the.message is copied to

the: recelver area or a buffer. - For a request from a user process, the

left byte of the-first word of the message is set to the service number

. "sendlng messeges1onfbeha1f ofha;

after the copying too, but the right byte is set equal to the service
number of the user process. - This prevsnts the user processes from
sther process. -

4.7) Send message.

Messages are contained in the reglsters rO0-r5 when the sendlng
process enters the kernel. = Now there are two p0331b111t1es for the
process to which the message is sent:

=it is waiting for a ‘message, 1. e.-"heldup" is set or 1t is

~waiting for a reply from the sending service,i. e.j'"asleep" 13'
~ equal to the service number of the send1ng serV1ce o o

11

al.-lt 1s not welting for a*messege or it is waltlng for a reply
f‘rotn a service dif‘ferent from the one sending the messsge. e

In the frrst case the message is wrltten 1mmediate1y by the routlne

 ‘*copw" into the space reserved for copies of the registers rO~r5 in the

process-table entry of the receiving process. The receiving process can
‘continue now. The priority of the receiving process and the sending

process are compared to select the process with the highest prlorlty as

the running process

In the second case the message is copled to a message buffer by thej

- routine '"gmess", which gets a buffer from the list of free buffers

f*("free") by the routine "remove", copies the message into it and enters
the buffer into the list of received messages of the receiving process

'(routlne "enter"). The sendlng process continues.

S 4.8) -R‘e'ceive"messe"e_;-'

~ When a process wents to receive- a .message, .there ~are '1£wo
possibilities again: | | SR T

| -there are messages 1n the 113t of recelved messages of the-

process -
-there are no messages in this list

In the flrst case the flrst message is removed from the 113t by the
routine "ungmess", which gets it out using the routine "remove", writes
the message to the copies of rO-r5 in the process table entry of the
process and returns the message buffer to the list of free buffers uSing
__the routine "enter" The rece1v1ng process continues. f

In the second case "heldup" is set to 1ndieate that the process 1s'

waiting for a message * The despatcher 13 called t0 select the - running
jprocess. | -

“_H 9) Sucfrv1sor call .

when a process issues a “supervisor call" itkis SuSpenoed-untii'a
‘reply to the request is received. - The service to which -a_ "supervisor

call" was issued, is remembered in the "asleep" field of the

: process-table entry~of the sender. Only a reply from this service. . can
- wake up. the process e e | |

The-sendlng part of the "supervxsor call“"l -is nearly 1dentlcal to that

of the "send message" primitive; except that when a user process doeS"

the call the source of the request is set by the kernel

The process 1ssue1ng the superv1sor call does not contlnue until the

reply 1is received. So a new process ‘has to be selected by the B

despatcher.

o y, 10) Interrugts.

Interrupts can occur from a number of dev1ces e ey
-the clock o e |
~the .dlsk o
 =the consoles

13

* - L . i Ty *
P, - . % o f '
o I R R - e - F & a
L -‘-—*W-M-‘.w‘-'b‘-l. LT PR R R B

e e
RN B T

Lk . . 5 A . r L ¥
I S TEANLEE LTS WP PUET L SV L Sy U P WL SRR SR

o
Y

| - an attehpt

Interrupts from the elock were dlscussed in chapter 3. The sending

-cf’a message to the clock process from the interrupt routine, .is done by

“the routine "intsend", which looks 11ke the normal send routine.

‘Destination and source, Hhich are. set equal, and: two more unrds of the
" message can be set by the interrupt routine.. The variable "intflag" is
- set. to 1nd1cate a. send com1ng from an 1nterrupt. ;5,- |

| Interrupts from the dlsk ("dlskint") are converted 1nto a'"signal" byx'
putting the.disk semaph@re number 1nto r0 and jumping to the "sssnal" -
\“routine. A R _ AR

Interrupts from the consoles are sometimes converted 1nto a "send

message", sometimes into a "signal" on a semaphore and sometimes. handled
-immediately See the chapter on the console handler (chapter 9) S

M 11) Error handllng

- When there is a power fallure ("poW1nt"), the system is stopped. -

Trying to execute a non-executable 1nstructlon (e g. an attempt to
move a word to an odd address or to address a part of the v1rtual memory

for which no-mapplng is set up), a request for a non-ex1sting Service or
to - execute the: halt instruction or an emulator trap:
,1nstructicn by a user pocess, are all handled in the same way.

- +A super\flsor process making an error causes the system to stop after

*%printing all the'process registers."

If a user process makes an error a "SUperv1sor call" to the "reset
process state" service is generated, containlng the trap number. = The

process goes to sleep until this service sends a reply. Before sending
“this reply, the "reset process state" service resets the values.of'rS »SP
and pc in the process-table entry of the wuser process to values
- “previously specified by this process and disconnects all connected |
'7;files. See chapter about recovery (chapter 10) | e |

The code of the error- caUS1ng the processor to trap 1s obtalned fnom |

the processor status word- loaded from the trap vector. The routine
"error" converts this code into the trap number via the array "ernumb" .

"This trick, copied from the UNIX system ([u]), is used by the console -
‘1nterrupt routine to 1dent1fy the console. |

4 12) DesEatcher.
The despatcher is the part of the kernel which decides which process

~is going to run. It consists of two routines:
-"resched", used to compare the priority of two processes, both |

ready to run, select the one with the h1ghest prlority and
indicate that ‘the other one is ready to run

"select“ ~used ‘to select, from all processes ready to run the .

process W1th the ‘highest. priority

The following prlorlty rules are used | - | :
-- -when there are one or more superv1sor processes ready to run,
. the one with the lowest process number is selected i
-when there 1is no supervisor process ready to run, ‘the running
user process ("runproc", which is set by the scheduler)

‘examined. If this is the idle process, it-is.checked-whether_

N

P P I PR L S —— - - - aa = ————— P p———

of it wit

- least when' this ‘process is not the same as-the:
process or both this and the previously rusnlng.;;,';
ffprocesses.pp ‘See section : about .the mapping of the prﬁﬁ%

4,2). The registers rO-r5 and ‘the stack pointer are set, ‘the program

- u}1u)_1d1e:

the scheduler should be called to see if any user process has
. become ready to run (variable "ecallsch', which is set whenever a
-~ message ' is sent to a user proceas), if the scheduler is not
called, the ‘idle process continues. If the running user process
is not the idle process, it is checked whether the process. is
asleep or not; if it is, the scheduler is called to select a new
user process.to run, otherwise the process 1tse1f contlnues.d

The superv1sor processes which are ready to run are in a queue, which

is implemented by putting all ready supervisor processes ‘into a

-contlguous part of the array "readyq". The processes in it are always
~in the order of increasing process number, so; that getting the.one out
th: the highest priority is very simple: you take ‘the first.

‘Inserting a process into the queue is more: llfflcult because the ‘queue
 must stay in order, this may take some shuffllng of part of the array..
- The routine "intread" is used for this. | : | - |

To see hOW' the selection of the ‘user process is done, read the

chapter about the scheduler (chapter 12).

u 13) Exlt

When the "exlt" part is entered, the variable "process“ contains the
number of the process selected - to continue. | S

'Ihe -exit for the 1d1e process is the simplest The program counter
and program status word are put: onto - the
1nterrupt 1s executed : | .

ses-the*mﬂimmy management regssters are set flrst at
3 prevmously'running

' For other pﬁs*s

counter and program status word .are-put onto the stack and the RTI is
executed. The values of the registers are taken from.the process table

entry for the’ process..

The 1idle process is very simple: it executes a "wait" 1nstruction
In this way no use is made of the bus, which is advantageous when a data

transport between the*memory and the dlSk 15 going on.

u 15) Further routlnes.a: -

The routlne “rmonl“ is used to:monitor, on the system console, all

messages received by processes for which the "monitor receive" bit is
- set in the~process“tab1e,. The routine nsmonln is used to' monitor all-f
_messages sent by processes for wh1c;ithc "monitor send" b1t is set A

' The routlne "dunp“ . is used to dump areas of memory. It should be '
- started from the switches, which are«used to set begin and end address'

of the dump area too.

Thef routlne "bootrt" is used to bootstrap the RT11 system_end should

"be started manually too. : i

e

stack and a return from |

S -were supervisor -
sses (section

I I

«355 3)-Ma1n _

~5)Clcckhandler.

~ The clcck:handler uses the KN11-P.cr KW11—L clcck tc keep track of
the time and to send messages to processes after requested intervals.
The - selection and 1n1tia112ation of the clock .is done at the
1nit1alizaticn cf‘the kernel See chapter about initialization (chapter
13) | o S T o !

5.1) Messages frcm.the clock tc the handler.
To wake up the handler at the apprcprlate time there is a variable

named "count" in the kernel which is adjusted by the handler every time
‘this is needed. It indicates the number of milliseconds to pass before

some action has to be performed by the handler. Every time an interrupt
from the clock occurs, "count" is updated. As soon as "count" becomes

- less than or equal to Zerc, ‘a message to the handler is generated. See
"chapter on dlrect memcry access by 1nterrupt (chapter 3) |

5.2) SerV1ce31 -

The f‘cllowirg servlces are 1mp1anented
- 0) reply after a certain interval
1) get current time |
2) set current time.

.The'last service can only be requested by a system process, 'the' cther

two by all processes. The get current time service immediately gives a

reply; the first service sends a reply after the requested 1nterval _1f.

this 1nterval was legal ctherW1se 1t 1mmed1ately sends a refusal

rt cf the handler.,_,f .

| -'el*‘t impcrtant 1nﬂcrmat1cn fcr the handler is. held in'~'~'d w -
3 -nshe_ _ fw__J:; " named "ttme” whlch is an 1ntegerarray

aining. the current tme express ;I.l"l mill 1seccnd ds, second s,

-the reccndarray “wa1t1ng" which ccntalns 1nfbrmatlcn abcut
prccesses mlch are tc have a reply f‘rcm the handler after some
“time . S ¢

~the 1nteger “raquestedflnterval" Hhich ccntalns the number of
“milliseconds which have past at the moment "eount" becomes O
since it was reset by the handler for the last time. e

Every time a reguest for a service is received "time" is updated. If
the counter in the -kernel has-become less than or equal to O without the
handler having received a message for it (this can have happened while

executing the first instructions of the cycle of the handler) the

routine "interval over"™ is used for this update and it is remembered

that an extra update took place, so that the message ‘generated because

"count" became O can be ignored. - If the counter is still positive the
only things to be done are to update the milliseconds time and the
requested interval. 'Hereafter the.requested service rcutine is called -

- If a message generated because "ccunt" becane 0 is recelved and there

';-nhas been no extra update the rcutlne "1nterva1 over" is called.

C o

; ._15 .f

5.4) Reguestedintervalover. .
The requested interval is over when "count" has become O. This means
that at least one of the following things is going to happen:

. =at-the update of "time" (routine "adjust time") the mlllieecondsl

— time gets the value 1000 after adding the requested interval to

:.7lt 80 that other elements of "time" are also. changed (when an

| element in "time" becomes equal to a certain maximum value, e.g.
60 for seconds, the next element in "time"™ is incremented by 1
- and the element itself is assigned a certain minimum value, e.g.

0 for seconds)

-one or more messages to a process must be sent at this moment .
The reubzne "test waiting queue" checks the waiting queue to see

 ?-:whlch -processes . (if any) must have a message at this moment,
- sends them the current tlme and removes them f'rcm the waitlng
- queue. : - - _ Y . S |

After the adJustment of '"tlme" and checklng of the waltlng queue,

Meount™ and "requested interval' must be reset. If there is a .process

which must have a message before the milliseconds time becomes 1000
“again the new values depend on the time this message must be sent,

~otherwise the values depend on the time till the mllllsecondsLtime
becomes 1000 again. The new requested interval is added to '"count",
while interrupts from the clock are disabled by putting the processor at

high priority, (routine "adjust count") .and the value of "count" is

checked to see if it is negative. If so, the 1nterval is already over
and the same things aremdone again. | - | |

5 5) Rel‘1after a;eertainlntervel.,.,~

A request fbr a reply after a certain 1nterval is first checked to

see if the requested interval, which is expressed in milliseconds and

seconds, is legal: the*mill1seconds time must be bigger than or equal to

0 and smaller than or equal to 1000, the seconds time bigger than or

equal to 0 and smaller than or equal to 60 and-not both times may be 0.

If it 1is a legal request the time at which a message must. be sent back
'is determined. This time is expressed in- a milliseconds time bigger
than or equal to O and smaller 1000=and a seconds txme blgger than or

) equal to 0 and smaller than 60

: Now the request has to be put 1nto the waltlng queue Th1s 1is a

fairly ‘complicated matter because we want to hold the'queue in such an
order that requests which have to be. satisfied flrst are at the head of
the queue.. See routlne “measage after time". - el

To - put - the: requeat 1nto the waiting queue the routine "into waiting

queue" is used. . The relevant information (process 1dentification and

" time ~at which a reply must be sent) is put into a new record. If the
new'reeard does not become the first one in the queue the rest is simple
1ist processing,; otherwise it is necessary, at least if the new request
~must be satisfied: beﬁere the present sepond ends, to adjust "count” and
*."requested 1nterwal"~ .The difference between the new and the requeated'-
~interval :is subtraeted from “ooumth
Meount" is- negatlve now the time is: aﬁreedyw.ver and" "interval-ewerﬂ isi'.
called. It is even possible that "eount" was already negatlve before
he requested
| 'awﬂrated?ahlﬁﬁuhae-noti”
- yet been received and which must be 1gnored when received ("extra
_ updates" is incremented by 1), because "count" w111 certainly be’

(routine - "adjust count").

~ subtracting the dif‘f‘erence between the new interval and .
~ interval from it. Then there has been:a message:

T

16

FURPTTRCTT P S SRS T O . X7 A - N §

s [Lo : .
¥ : " d .) . .o
‘ ! i " T #? R ' W !
e W R T .
i R R e 4 L i b gl bl e A R e i R N AU TR A s, SRY. PP PRSPV

negative after the subtractlon so "interval over" will be called and
here it will be established that the time at which the message was
generated is already over and SO thlngs whlch had to be dcne at that

moment will be done nOW- o

_5 6) Get current time.

The get current time serv1ce 'is sxmple. a copy of the array "tlme" 15
R Sent as the reply. S | - |

. 5.7) Set current time.

The given new time is flrst checked to see if all values are between
a certain minimum and maximum value. Extra attention has to be paid to
the day in the month, because the maximum value 1is variable here.
Leap-years are 1gncred for the month february the maximum day is always
29 If no error is detected the nvetime is set into the array "tlme“

Settlng the time dlsturbs ‘the ccrrectness of the 1nfbrmattcn in the*
jwaltlng queue, 50 it should only be dcne at the startup cf the system.:-

A

The disk driver is meant for an RK disk. The discipline used for

handling the requests is the first come first served discipline.

6.1) RK.

One RKl'control caa service_dp to 8 drives each hahdlingaa7disk of
4872 blocks of 512 bytes. Average total ‘access time on each drive is 70

msecs. All data transfers are direct memory access transf‘ers i.e. the

processor is not 1nvolved during a transfer.

The RK-dlSk is controlled by 6 reglsters
- =drive status register |
not used by the drlver
-error register
- ysed to discover whleh error occurred
-control status register
- used -to set interrupt enable and the requ1red fUnction and to
-~ start this function . e
- -word count register | L | “
- used to indicate total. number of words to be afﬂected by 2 given
function (in two's complement form) | |
-current bus address register

used to indicate the bus address to or from whlch data will be

transferred
~disk ‘address

~used ‘to indicate the drlve and block to or from thCh data w111_

be trans fe rred

Eer a detalled descr1pt10n~of the RK.dlsk and 1ts reglsters see [2]

';6 2) Serv1gg a reguest

Four different requests to the driver are. p0331b1e to transfer a

specified number of blocks of 512 bytes to or from core:

0) read from the disk to a specified block (512 bytes) in core

1) write to the disk from a specified block in core

2) read from the disk to a specified address in core

3) write to the disk from a specified address in core
The first two services are used to handle file transfers between core
and disk, the other two to handle transfers of the directories and small
‘buffers in the system area. Files are located in the user area of core,
which is the (higher) part of core left after allocating the system code
and data areas, and always start at the beginning of a Dblock. - The
physical start address cannot be expressed in 16 bits, but takes 18

bits. So it is easier to specify the address in block numbers. Buffers |

in the system area can start at an arbitrary address which can be

expressed in 16 bits; because the system area is located within the

first 56 K bytes of‘memory

A request is first checked to see where it comes frdm when a user

has sent it, it is refused and an appropriate reply is sent. The
contents of the different registers are determined and the requested
function is started. Interrupt enable is set, so that an interrupt will
“occur when the functlon ‘has completed its activity. To ensure

continuation of other processes whlle the function is st111 in progress, |

- JI‘ .

"
Y L St s -_,...r 3 | - L o P Y

" E . i
- - o
o T T B et s ?
»

/

the dr1Ver does a ;"walt" on the dlsk semaphqre..f When the 1nterrupt -
occurs it is converted into a "31gna1“ on the disk semaphore .1n the
'_kernel 50 that the drlver may contlnue.. | S

- When the drlver oontinues,- after the functlon has completed its
activity, the control status register is checked to see whether an error

occurred. If so, the error register is examined to see whether it was a
'write-lock-out-violation error, which means that a disk was on write
'protect while attemptlng to write on that disk. If such an error occurs
an’ approprlate ‘message is printed on the system oonsole, in case of
other errors all disk reglsters are dumped in octal “on the system
console. When any error occurs a control reset is executed-and the
- requested function is tried again. ThlS makes it possible to get the
- disk into the right condition (e.g. by manually putting the disk 1nto[
the wrlte permit status) and perform the request without the originating

process having to reissue it. When the driver continually gives errors

-other -‘than writemloek-out-v1olat10n the only thing that can be done is
-to haltrthemcomputer... S |

After successful cqmpletlon of the function a reply is. sent to the
process - whlch made the request. One of the parameters sent back is an
identifier, which is a word recelved with the request and Whlch is left
‘unehanged It can be used by the process to 1dent1fy different requests
whichi are "being sent to the disk driver. This faeility allows other
“servxce dlaciplinas ta be used - without affectlng the rest of the system.'

|6 3)_SerV1ce dlscl'llne. -

The rule 1mp1101t1y applled fbr handllng the requests is the FCFS
(First Come First Served) rule: when a request is received a p0331b1e- -
- next request is not received ‘and-looked at - until’ the present one is
 completed. Different rules 71like the SSTF (Shortest Seek Time First)

-rule,rwhich selects as next: request for service the one having the track
~ address closest to the current p031t10n of "the head, the SCAN- rule,
“which applies the 'SSTF rule in one direction only and. rewerses the
-7direction.when there are no further requests ahead of the head posltionf
in the given direction, and the FSCAN rule, which is like the SCA
EbJut arrivals during a -given scan are placed inte a q];@-ﬂﬁﬁgw,
- serviced until the next ‘scan, have better response times hut -3aks
disadvantages such as discrimination agalnst certain blocksgof the diak
cause -the

and complexity of the algorithm (see [8]). Nevertheless, b

disk transfers are an important. factor in the total syStemfperfbrmanCe;
a better discipline than the FCFS rule would probably improve the
perfbrmance when the system is heavily used -) e L

T Core mansger.

The core manager keeps track of‘used and free space in core. Core is |
divided into blocks of 512 bytes, which is more natural with a disk with

blocks of that size than to take blocks of 64 bytes as the memory

‘mariagement unit assumes. The first fit algorithm is used to find a free
area large -enough ¢to satisfy a request fbr -a certaln amount of
-contiguous core. | B |

7. 1) Services
Two serV1oes are offered by the core manager
0) get core | | ,
-search for a number ef‘contiguous free blocks of core. If
found then mark them as in use and send back the number of
the first block (the start block) otherwise send back a
refusal I | |
1) release core |
~the - specmfied blocks.ef core are released and are marked as
o free aga1n.--
" Both services are reserved fer use by superv1sor processes.,_ It
‘assumed that these processes do not make any mistakes with regard bo

start block and number of blecks when rele331ng core, so ‘this
1nfbrmat10n is not cheeked - - -

7.2) List of‘free blecks. |

Areas of “core which are. not used at the moment are in a queue of
records named Maprea" ("free core 1ist"). For each area it is remembered
where it starts ‘and how many blocks there are.- The areas are kept in
order - of increasing start block. The queue is bidirectional, which
“means that every record contains a. pointer to the preceding and a
pointer to the succeeding record. It is:also clrcular, which means that
the 1last record points to the first record again. This is somewhat
unnatural, because the first area of free core does not 1in any sense
succeed the last area, but it makes the list processing easier. Records
which are not used at the mament are in a queue of free recerds ("free-

records llst")

7 3) Get core.

If the total riumber of free blocks is less then the requested number o

of blocks it is immediately clear that the request cannot be satisfied.
Otherwise we go along the list of free areas to find an area large

enough. If such an area is found and the total area is used, then the
record car. be returned to the free records list. If it is found and the

total area is riot used then the start block and 1ength of‘that area have

to be adapted. In both cases the requested length is subtracted ‘from

"the total rnumber of free blocks @and the start block and length (zthe
requested length) of the allocated area of core are sent to the process
" which made the request. 1If an area large enough is net f0und this is

reported to the process.

T

7.4) Release core.

If the released area of core becomes the only free area, a new free
core list is made. Otherwise the free core list is searched for the
free area behlnd the released area. | Now there ane several

_p0331b111ties

'ﬁthe released area goes w1th the precedlng and the succeeding
 free area i |
-the released area goas wlth the precedlng area
-the released area goes with the succeeding area
-the released area cannot be combined with any surroundlng area,
so that a new record has to be setup for it.
In all these cases the number of released blocks is added to the total

.fnumber of free blocks

“7 5) First flt

The first fit algorlthm.ls used to satlsfy a request for a certain

~ number of contiguous blocks of core: the first free area of core with
size larger than or equal to the requested size is (partially) used.

Although one might expect the best fit algorlthm ‘which searches for the

‘smallest free area of core with size larger than or equal to the

requested size, to increase the probability of being able to satisfy
subsequent requests, the first fit algorithm appears in practlce to be

better (see [7]) ‘The algorlthm is also smpler.

The search ﬁor a large enough free area always starts at the end w1th

the lowest block number. This tends to accumulate the smaller free
~areas at ‘that end and so to increase the search time for larger free

areas. A better strategy m1ght be to start the search at diffErent

apolnts 1n the free 11st every t1me

- The memory management unlt requlres that contlguous areas of‘core are
‘used to map segments onto (see chapter 8 about the file system). This
causes some serious problems. The available core is split into used and
free areas of different lengths so it is possible that a free area
~-large enough to satisfy a request cannot be found, although the total
“‘number of free blocks is large enough These problems are solved by the
-_,scheduler T T e o S

'7 6) Inltlallzatlon._;.'

At the 1n1t1a112ation of the e@rc‘manager (rout1ne “1n1t1allze") the

-?total number of free blocks. ard -a record containing the flrst free block

and the total number of free blocks have to be filled in. The relevant

. information to do-this, is got from two external integers in the
~einitializationrpartAofathe total.system.,T | |

| .58l_File,szstem.

The file system has two ba31c functlons*
-the creation,deletion,renaming,etc. of flles |
-~ =-making the contents of files available to user processes |
The structure of the file system on the disk is fully RT11 compatible.
When a process wants access to a file, the file must be connected to the

:virtual memory cf that process,'l.e a*mapelng must be set up

38 1) F1les.

A flle is a 'sequence”cf bYtes' The 1ength of‘the sequence is an ,

larbitrary mult1p1e of 512, the block 1ength.on an RK disk. The internal

':structure and contents of‘a file are of no interest to the file system,

S0 a text file, a code file or any other file is handled in exactly the
same way

8.2)Structuneofthedirectories,and allocationsof the'files;

- RT11 is a single user Operatlng system developed'by DEC for the PDP11
series of computers. RT11 was used for the development of GUTS. ~ For
more information about this system see [3] ey) S

On GUTS the structure of the directories, i.e. the areas on the dlsk
that contain information about which files are on the disk and where
they are, is exactly the same as on the RT11 system. Files on GUTS are,

like RT11 files, contiguous on the disk, i.e. all blocks of a file

-;followfeachlother In this respect the syatema are fully compatible.”_-

There were two reasons for choos1ng thls strategy

- ~transfers of several blocks of 512‘byte3 from or to the disk are-

considerably faster-when ‘these blocks are contiguous in core and
on the disk, because several :blocks can be transferred by
~ issueing one request to the disk. When, on the contrary, these
“blocks are scattered ‘across the disk, as many requests have to

‘be issued to the disk as there are blocks and the total seek |

‘time on the disk will increase considerably.
-during the development of GUTS it was very convenient to have an

identical structure for both file systems because the same dlsk
could be used by both systems. . |

Contiguous allocatlon of fllee on the dlsk ‘has some very serious
disadvantages, because the avallable room on the disk is split into
 areas of different. lengths:
| - =it is possible that the total number of free blocks 1s large

enough for the placement of a file of a certain length, but the

‘largest number of contiguous free blocks is too small for it, soi

that the file cannot be placed |
-once the initial (maximum) length is fixed, the file cannot ‘be

extended, because it cannot be guaranteed that there are free
‘blocks behlnd the already allocated block., |

There are a number of p0831b111ties of‘preventlng or solv1ng these”

- problems:

allocation of the f11es on a disk (see sections about creation
of‘ fllES) -- |

2

™ ﬂ.—..#&?ﬁaﬂ.;_iﬁ._'. = ...-'--I-L..i.-;-

-choose a good allocation strategy for the creatlon and 1n1t1a1-

e tlll o, i i el i e g, g i i i, e e e _'--.,..__......:..._._-_._ T L A S TS e p————

._ . _\
. "

. -

! L LT e

i,

- Cwh, PATL LT
AN N, T L SRR RY B P

ol # 5, s g

"'-release parts’ of files which are net used (see descrlptlon of'
closing files). - L
-choose a good allocatlon strategy for the creatldn and
allocation of the files on the different disks when using
several disks. One could e. g. have one disk on which all
~ created files are initlally allocated. ‘When the system is
~ started this disk should be empty and all files which have to be
preserved should be copied to another dlSk durlng system tume or
~after the system stops.
~stop the system and compact: the disk i.e. cepy all used bloeks -
to the beginning of the disk, at the moment this is needed or
~ahead of this moment. On RT11 this is done by the compress
service of the peripheral interchange program. This is a very
radical solutlon, because stopping the system is very unpleasant
for the people using the system at that moment. -
_-compact the disk, without stopping the system, at the moment
- this is needed or ahead of this moment. . On a multi-user system
like GUTS this is a very complex aperatlen, because besides

changing the directory and copying the flles, which is done at

- the prev1ous solution too, several tables in core will have ¢to

be changed and the system will be unable to perform some

- operations during the time of the compaction. ~This solution is
~ not yet implemented and should not be chesen befbre it is proved
~ to be really needed.

- =always- have available enouah dlSk sterage to have no trOUDle
Com;aaction eould then be done when the system is stopped. This
isof " course the mest 1dea1 .but also the most unreallstic
solutlon | -

- For a time we considered the following solution: divide the disk into

blocks of 16 contiguous blocks - of 512 bytes, which constitute;}ehef”'

segment (see section about memory management), and allocate files in
‘these blocks. If a file is longer than such a block, use several of-

- them and' 11nk them one way or the other. . This would to a lange extent

" solve the allocation problems. But we could not think of a way to stay
fUlly RT11 compatlble when US1ng this strategy, so we reJected it

At the mement of‘ wrltlng 1t 1s not yet clear how ser'ious the-_
described problems are. = Experience with the UNIX system ([4]), which
‘uses scattered allocation of one block at a time (and so can use all
blocks of the dlsk before a file cannot be allocated any ‘more) instead
of contiguous alloeation, ~shows that the performance of such a system
al so deteriorates when the disk becomes nearly full, so problems seem to
be inevitable. How serious the problems with our . allocation strategy
are and whether a drastic solution, like compaction without stopping thef "

'system, shauld be—tmplemented will have to—be shown in practlce.

-8 3) File names.

To be -RT11 flle system campatlble requlres that you also have, more
or less, the same convention for the names of the files . The names in
the directorles of RT11 are in the RADIX 50 notation, whlch permits only
the characters space,'a'-'z',dollar,dot and '0'-'9', gives these

* ' characters a value, multiplies: the value of the first character of three

by 1600 (=40%40;40=50 octal), the value of the second by 40 and leaves
~ the value of thE’thlrd unchanged and .adds these 3 values. In thla way 3

'9*fehsracters can be stored into one 16-bit word. GUTS ‘uses this

~ convention too and file names sent to the file system are assumed to ‘be
‘already in RADIX 50 notatlon._. In thls way less space 1s needed ﬂor the

 ?parameters;~ The converSLOn can 3ust as e3311y be done by the subsystem _

as by the systan._ |

RT11 file names consist of 2 parts |
~user defined name of the file (1 letter followed by 0-5 letters
or digits)

~=user defined ‘extension, . which gives an indlcation of the_

contents of -the file (3 charaeters)

SO a total of 9 characters is used for a file name.: GUTS*uses these 9'

'.charaeters in a sllghtly dlfferent way. -

The name is d1v1ded 1nto 3 partS'-
-user defined name (1 letter fbllowed by 0-5 letters or d1g1ts)
'”-w~user defined extension (1 letter)
| - -identification of the owner of the flle (2 letters)
The user defined name is written flrst followed by a dot and the

~extension. @ The 1last part of the name consists of the owner
identification between square brackets. So legal file names are e.g.:
| - 1list1. i[wb] IR T R o :
- copy.olsy] -

-~ For ewery-request to the flle system-the user def1ned name and exten51on
must be fully specified. For some requests (e.g. create file) the owner
identification is filled in by the system, for other requests (e.g.
connect file) this identification has to be specified too. Parts of the
‘name can of course be set by the subsystem, so that the user can e. g.

ask for the program "copy" and let the subsystem change ‘this name to
" “eopy.olsyl" before calling the file system. See the description of the
subsystem (chapter 1“) |

| 8 H) Owner of a file.m;_ Lf?f3< .”f

| ‘The user who creates a file is the emnerief that flle.-. Part of the
file name consists of the identification of the owner (see previous
- section). The owner ean offer a file to another user and this user can
accept the file or not. 1In this way it is impossible that a file 1s
transferred between users, w1thout the new*owner wantlng 1t o

d8 5) Aceess Egrmlssions.

Access to a file is p0531ble in 4 dlfferentlmodes.
0) read unshared
| - only one user at a tlme'may read frdm:the f1le
1) read shared | |
- several users may read from the flle simultaneously o
2) read-write unshared
| only one user at a time may read from and wrlte to the file
3) readawrlte shared

‘several users may | read from and wrlte to the f1le.)

simultaneously

When several users. want ta cennect.a file in shared-mode, this made;must'

~ be identical for all. e A

To access a file 1n a snaclfiedﬁmsde the user must have penmisssan to3 -

'connect the file in that ‘mode. . The:owner: ﬁf a '. 1le . car A
- set- the permissions: for - himseif'sa;f= S ~
 permissions consist-of 4 bits each'**ﬂ'-bst ﬂer each psssiblg mnde,
) 1nd1eatingfwhether aceess 1n-thlsfmadeﬁtssalleued‘or not g

. ;2.’4” .t‘% -.

AP

8~6) Services.»v-‘

The f0110w1ng services are offered by the current flle system

m,,--create file
- Create a file with the speclfled name, Which must be dlstlnct
from all existing file names, and length - The 1ength 1sf
o spe01f1ed as follows: : |
- =either 1/2 the largest unused area or the entlre second'
largest unused area, whichever 1s 1argest
-the largest unused area | -
- «-M blocks - N |

The maximum size is always 250 blocks. The owner gets
permission for all modes and others get no permission at all.
The three possibilities for the specification of the 1length
are offered to reduce the allocatlon problans of‘ flles on the

- disk.

-close file |
Set the final length of the file to a specified value. This

- value must be less than or equal to the length allocated when
" the file was created. A file can be closed only once. When
it is not closed, it is deleted at a compaction of the disk.
Closing a file can. only be done when the file 13 not
"econnected by any user RED 5 o s

-delete file : | L
Delete the file from;the system. - This can only be done ‘when

‘the file is not connected by any user. e |
-rename file SRR S |
Rename the file from the old name to a new name The new |

" name must be distinct from all existing names. The file-must
not be connected by any user. S

-set access permissions of file R
. Set the access permissions of the file for the owner and ﬂor
others to the spe01f1ed values. The file may not be on ofﬂer‘
E t0 another user. o R
| -vget file names and information - -
Give a list of all files the user owns and 1nformat1on about
these flles, such as_ length, access permlssmons,;date of
~ creation, - datec.of . last access, number of accesses and

- offer/accept stat | S

-offer file ! | S
Offer the file to the spe01f1ed user. - The file may not be
connected by any user -and cannot be used any more until it is

-accepted. The owner can revoke the offer until the new owner :
has accepted the file; when this is done the owner gets . |
per‘mission for all modes and others no pemlssmn at all.

-accept file s §

- Accept a file from another user: the owner part of the file
name is changed to the identification of the new owner, who
gets permission for all modes, while others get no perm1331on
at all. S o :

-connect file S |
Make the file acce331b1e by connectlng 1t to the user's I
virtual memory. I.e. locate the file on the disk, read it R
- (partly) into core and setup a mapping between the virtual .
" memory of the user process and the part(s) of core- the file 7 ey
~ is read into. The position in the virtual memory, ‘the access

“mode, - the start block within the file and the length of the -
part to be connected have to be. Spe01f1ed - Several things

- can. prevent a connect call from belng executed successfully:

| vavuthe flle does ‘not - exlst or the user does not have

i
e g Bt e | A, s . ALY el . . e e . A 58 . i et . o

= e b ey By o B e B iy s iy e b

s s g i g

e,

permission to access it in the specified mode
-the specified start block does not exist i,e. the file
~ is not long enough-

-the required mode is in conflict WIth the mode 1n which
-~ the file is already connected in another virtual memory,

i.e. the file is already connected in an unshared mode or .

" in a different shared mode -
-there 1is no room or notrenough room at the specified
location in the virtual memory.
If a connect is done on a file, which is already connected

~_and the new connect can be executed successfully, the part of’

' €&« the file already connected is first disconnected. The mode
- must not be changed however. When a call is executed

-'lqjsuccessfully, ‘the virtual address, the ‘length of the

 connected part in bytes and the total file length in blocks
of 512 bytes are returned to the user. :)

-dlsconnect file |
‘Remove ' the mapping between the virtual memory and (part of)

~the file. The contents of the file, which is left on the
~ disk after the disconnection, is of cour se con31stent withx-

g ‘the changes made by writing into it. |
Create file, close file, delete file, rename file, set access perm1331on
of file and offer file can only be done by the owner of the file; accept
file can only be done successfully by the user to whom the file is

offered; connect file can be done successfully by any user who has
permission to do it and disconnect file can only be done successfully-

| when the file 1s actually connected

8. 7) Directory structure

The directory on a disk- starts at physical bloek 63 the first blocks_
4uing S i A cinsiatsf«ef -3 - series of directory

'are used for bootstre
segments that contain the ‘names, lengths, ete. of the files on that

disk. The directory area is variable in length, f
segments; the ‘number of segments can be specified when the disk is
initialized. Each directory segment is made up of 2 physical blocks;
thus, a Single directory segment is 512 words in length. | |

| A directory segment has the followmg format
- -a header of 5 words - | o
~46 entries-of 11 words for files and unused areas

_-1 unused wond

- The header contains the ﬂollowing 1nfbrmation (all words):
4 ~=number of segments available for entries (between 1 and 31).
o usegment number of “the ‘next logical directory segment. The
~ directory is a linked list.’' This word is the link between
" logically contiguous segments.
- =the highest segment currently in use. This.word is updated~and
used in the first segment only. | | -‘ | :

-unused. |
o _-block number where files in- this directory segment begln.

A directory entry has the ﬂollowing formet T
T ~status word. The following (octal) values are p@ssible |
B uoo : a tentative entry; indicates a file wbich has been
© created, but not yet closed - :
“1000: an empty entry; indicates an unused area’

2000* a permanent entry,- 1ndicates a file—Which has been__

%6

. L . .
—-!L'Fr:'-u......m-n.'...ruh..:._.-.-\.l;u“.. W il

oo , . o e
= A Sy
, A‘J\I.'...‘hu:\.'l.'u_.\-'-l- LTTLV L RV, T PN

rom 1 to 31 directory

L
T TTT PU A v W

o ik, s'agl e i el

' . L]
e T ok, Pt -

: L N P.- - -
. . P
3 ' ‘i, . .
’ Lo h “ L
. 4 1 " ' ' L4 . 4 " L]
Lo . L in o Y ' ; P & ! " '
- Ay me . b A i e B Mt bt e el i, Lt o ot

\
3

| closed | | E |
4000 end-of—segment marker, Whlch is used to determine when
| the end ‘of the directory segment has been reached
during a directory search . g
-_-2 words for the name L R
-1 word for the extension and the owner name
‘. =1 word for the length in blocks =
=2 bytes for the access perm1351ons for the owner and for others-
-1 word for the date of creation
-1 word for the date of the last access
"~ both these words are in the followlng format:
bit 15 unused
~ bit 14=10 month (1- 12)
bit 9-5 day (1-31) |
bit 4-0 year minus 72
-1 word for the total number of accesses
-1 word for the offer/accept services. When the file is not

offered ‘the word is zero; when 1t 'is offered and not. yet .

accepted the user 1dent1ficatlon of the user to whom it is

‘offered is stored in it; as soon as the flle 1s accepted the

“word becomes zero agaln.;,.--~_ ST e T S
-.-1 unu“f'*word. . | SR

If files are added sequent1a11y-w1thout deletlng any files roughly;
one half the total number of entries will be filled before a directory
overflow occurs. This results from the way filled directory segments;_.__
are handled. | }

‘When a directory segment becomes full, it is necessary to open a new

-segment..' Approximately one half the entrles of the filled segment are.

moved to the beginning of thie newly-opened segment. When files are only
created and not deleted, then at the moment the final segment is full,

~all previous segments have approximately one half of their total entries -
in use. If this process were not done however and a file were deleted
from a full segment, the space from the deleted file could not be

reclaimed1 every tentatlve file has to be followed by an empty entry ﬁorf
recovering unused blocks when the file 1is closed. Though only one. file

is deleted, two entries (a tentatlve and an empty one) are needed to
.reclaimrtherspece e | , | : . o

Thenentries in. the~d1rector1es are in the same order as the flles and'

_unused areas on the disk. - So to find the start block of ‘a particular
file or unused area one has to find the directory segment contalning the
. entry for that file or unused area, take the start block number given in

 the header of that

.segment and add to it the. length:of'each file and
unused aree ih:the direceyry segment before the desired f11e or unused,f'

8. 8) Advant‘”es and- dlsedvanta es of this dlrectory structure.

The~advantages of thls dlrectory structure are: |
~ ~the names of often used system files can be put into the first
directory segment and so, assuming the search for a flle starts
at the first segment, be located very quickly o
'-~t-there is no separete free llst for unused areas :

The dlsadvantages are:

-finding a file whose name is located'1n”the£1ast'directory_ﬂ
segment requ1res many more disk transfers than one whose name is

27)

- located in the f1rst directory segment _
- =the names of the files of one user are not located together, SO

‘making a list of all files of’one user requires searching the

whole directory
-it is possible, when there are many small flles on the disk,

that a directory overflow occurs, i.e. the directcry is full
while the disk is not yet full. This is caused by ‘the fixed
number of directory segments. |

8. 9) Virtual memorf cfﬂa user proc

“For a descripticn cf the avallable mancry managanent unit, see'
section 1.4, | | | | "

The mancry management unit is far f‘rcm 1dea1 for implanentlng nice E
virtual memory concepts such as segmentation, which divides the virtual i
address space into a collection of named, linear subspaces of various | .
- sizes (segments), and paging, which divides core into units of equal
length, into which parts of files are stored (page frames). In a good
system the virtual address space is very large, so that one can have a =
large number of segments which can be div1ded into a number of pages | p
which are mapped onto page frames in core. Ideally we would like to be o
able to implanent a demand paging system, which offers the possibility

- of running partially loaded programs. - Pages are brought into core at
the moment they are needed and not before. Fcr a description of = these
concepts see [7] and [8] | . S

| Demand paging is impossmle with ‘the available memory management
unit. When a page fault occurs in a demand paging system, it must be

- possible to determine ‘what - caused the fault. This requires that an
instruction is first checked to ‘see whether it can be executed
successfully or not, before it is actually executed..- The PDP 11/40
however just starts executing every instruction. When an address error
oceurs the state of the prcgran {program status word,registers;etec.) is
left as it is at that moment, i.e. it -might be ‘'the state half way-
through the execution of the instruc'ci'dn, and some extra information
about the reason the address error oceurred is 1left in a ‘special

" register. For some instructions it is impossible, even with a very

ccmplicated routine, to discover why an address error occurred and to.
reset the state of the process to the value it had before the: execution

- of the instructlon started - As an example ccnsider the fbllcwing_

_ 1natructicn S - . ot _ | "
f - mov (r0)+,(r0)+ _ . LT o
d Hhen ‘an address error occurs; this can be caused by fbtching the source

or by setting the destination. With the available information it just
cannot be determined which part of the instruction failed and so the. rO; .
register can never be reset to 1ts original value. | R

- The consequence of this is that all addresses which can be refered to S
during an instruection must be mapped - onto core, 1i.e. all connected | .
(parts- cf) files must be in core, before the instruction execution is
‘started. This and the fact that the%‘fdress space is only 64 K bytes
long, cause ‘a lot cf’trodble the-mamary*management of a user process,

~i.e. determining when information ‘has: to be moved into the virtual =
memory, determining where in the virtual memory it must be located and -
which parts of the virtual memory must be remcved must be 1eft tc thej. = bt
subsystem.and possibly the user himaelf' | | _ - e L |

- 28

_r = e I
- TRETR s

buffers fbr;devicea, such as a console.:

"As sald beﬂore, the v1rtual ‘memory on a PDP 11/“0 is 64 K bytes 1ong,

divided into 8 segments of 8 K bytes each. One segment must be mapped
onto a contiguous area of core. To have convenient segmentation one,,
must have more. segments, whlch,must be larger, because one wants to map
a whole file onto one segment. One can of course consider the segments;g,
as pages, but this leaves one. with one segment (the whole v1rtuala_:

memory) d1v1ded 1nto 8, rather large, pages |

Our first 1dea was to take the 8 segments and use each segment tol-_

access a whole file, if the file was smaller than or equal to 8 K bytes,
or part of a file, if the file was larger than 8 K bytes. Experience

with an earlier version of GUTS showed that with this method the total
number of accessible files was too small. As an example consider the

second pass of the IMP compller. One segment is used for the perm for

IMP programs and the command interpreter, two segments are needed for
data areas and three segments for the code. This leaves one segment for
(part of) an input file and one segment for (part of) an output file.
But this program; needs one input file and two output files, which are
used in turn. Every time the output file is switched, the currently

- connected output file has to be disconnected and wrltten back to the
disk and the other: output file has to be connhected and read from the
'dlsk The overhead becomes too 1arge when using thls strategy. o

CIf one wants to *make accessible more flles at one time, the only

solution is to connéct more than one file into one segment. The problem
-,arising here is the sharebility of files. Segments have to be mapped
onto a contiguous area of core. So when (part of) a file is connected
to a segment to which there are also other (parts of) files connected,
that file cannot be shared by any other user, because it is pOSSIble"

that this user wants to connect other (parts of) files too at the

egment to which he connects that file. This is impossible, because

core around the area, in which the file is located is already in use.'fﬁ

However, one wants to take advantage of the shareblllty‘of'flles tco,;ﬂ
because sharing a f11e decreases the amount of core that is needed. |

| wa declded to make the folloW1ng d1v131on of the v1rtua1 memory .
Segment 7 is used to connect (in shared mode) the IMP perm and the
command interpreter (see section about user processes/subsystem),
segment 6 to connect (in unshared mode) a data f‘11e for perm and command

| 1nterpreter variables and the highest part of the stack area. Segments
2,3,4and 5 can each be used to connect (part of) a file in unshared or

sharedﬁ modes. One (part of a) file can occupy several of these -
ents, ‘but only a contiguous part of a file can be" connected to a

* coniigoous part of the virtual memory of the same length. Segments O
and 1 dre used as special ‘I/0 segments. The 16 available blocks of 512

shese ‘segments can be used to connect several files and to hold--'

bytes of

ﬁraeﬁﬁollowing restrictlons are; '
applied | |
- =--f11es 1n segment 0 are in read mode, f11es in segment 1 in write,_
| :“”-n-files in segment 1 must be connected 1n unshared mode (see
= previous section) - oo 3
- =a block in a segment can- only be used for one thlng at a tlme.
. to connect a file or as a buffer for a device |
--the number of flles connected at - one segment cannct exceed

As described ~in the prev1ous sect1on a contlguous area of core has to_
be used when one wants to connect several files into one segment. To

avoid nasty allocation and copy problems, it was decided to connect a SO
called base file of 1length 16 blocks to each 1/0 segment when a user

' process is:started. Flles, whleh are connected into an I/O segment, are
~ written into the base file. This has the disadvantage of taking core
~ (remember that the file must be in core when the process. runs) which
~ perhaps is not used at once, but it makes the handling of the files and
~ buffers, which are going to be located in the segment easier. ‘See also
the chapter about the login service (chapter 11). B

The chosen strategy of‘u31ng segments in dlfferent ways is not really |
nice, but should be prefered to a much less efficient strategy as the

one used in the earlier version of GUTS. Of course all the problems are A
caused by the hardware and the only thing ohe can do 1s to restrlct the

nu1 sance

7 3

3.10) Write shared problems.

~ If a file is cenneeted in wfite shared mode, the users themselves"
have to take care that meaningful results are achieved. Only when
exactly the same part of the file is connected, can that part be shared
in core by the users, so that changes made by one user can be observed

by another. Even then the order, in thch users write 1nto the file,
will determine the end result. - | |

| Because files eonneeted at segment 1 can never be shared in core, it
was decided to aIIGW‘enly write unshared mode ﬂbr thls segment See -
previous section. - N - -

8 11) General_im:lementatlon features._ o ;¢pf«¢ o ; o ,__Eﬁ ;,=; | - *‘fg

All file services are handled by a single prncess'“ the f11e systamg¢]
process. ‘This process handles requests one by one in- first come first =
- served order. Having one process has the advantage of needing only one - ..
process entry. Besides, mutual exclusion of eper'ations on large parts _ oy
of the data area of the file system is needed anyway, SO having more S
processes has almost no advantages.,-. S T

S For operations on the dlrectories there is a buffer named. “dblaek",
> 1nto which a dir-ectory segment is read from the disk by calling the .
'~ routine "getdblock". = When the required directory segment
core, it is not read agaln. - Every time information in a dlrectoryf'
segment is changed, it 1is written back to the dlSk by calling the : -
routine "writedblock"™. The predicate "file exxsts" saarehes a directory %
to see whether a file with a specified name . exists. The . routine 1
"comprdblock" compresses a directory segment . when there are two L
consecutive empty entries (can be combined into-one) or when there is an S
empty entry following a *permanent entry (the empty entry can be | L
deleted). - . |

Information about the files which are currently connected to a L
virtual memory of a user process and about the segments, to which they |
are -connected, is held in several tables. In the kernel there is a |
table "userapr" containing copies - <of the page address and page ;**
descriptor registers of each user process. All files which are -
currently connected by a user process are in a list of records named-
"file® (header "files"). The following information is kept for each | o
file: | | S | | o o TR e, - 2
.~ «the name of the file T T S NN

- «the length of the file N - B TR T i

- =the dlSk address of the f11e | | LT e I g

i 1
ol s FLETINE PR L e SN TR T TR AT T PR Wt o L T - A

§0:

'-the number of users of the: file _;J; ,
~-the access perm1351ons of the file
~the mode the file is connected in -
- -a pointer to the list of connected blocks of the flle, see
description of "block" ST
o -p01nters to the next and the prev1ous records in the list. |
From a file several parts, which we will call blocks and whlch consist

of up to 16 physical blocks of 512 bytes, can be connected at the same;.:
time. Because it is not necessary to have several copies of the name,

- mode, etc .y there is, for each file, a 1list of records named “block"f;
containing information about the connected blocks. - For each block thej
- following information is held: T B

-page address register f‘or a .segment the block 1s Connected to D

-page descriptor register for a segment the block is connected to
- =start block in core where the block 13-located
- -disk address of the block
- =start block of this part within the f11e
-status word, indicating whether the block is in core or not (see
chapter 12 about the scheduler) |
-number of user processes which have connected this part of the
file L - -
-number of user processes currently in core which have connected'
this part of the file | .
-length of the block
-pointers to the next and previous records in the list. |
The array "segmenttable" contains for each segment from each . user“
process information about that segment. As mentioned in the previous
section, segments 0 and 1 are called 1/0 segments and ﬁOr these the
f'ollowing “information is relevant: o
- -which blocks are in use and which are free -
-number of files connected into that segment | | |
-is the copy on the disk -of the base file, i.e. the flle which is
" connected when _the process starts updated or not. Nhen the
process. is swapped out of memory and later swapped in agaln, we
just want to read in the base file and. ‘not all (parts of) files'-
wh1ch are connected into that se:,;nt But this Implles that
the copy of the base file on the disk is updated every time the
" file is swapped out and something changed in the flle See also-
| chapter 12 about the scheduler. - |
~ -for every file connected 1nto the segment a so called subsegment
~ entry, which contains: -
.~ =a pointer to the file 1nﬂormation -
- -start block within the segment |
_ | ~ -number of blocks.
For all 8 segments the following 1nformat1on is. kept
- . -a pointer to the relevant file information
-a pointer to the relevant block information (which is an 1ndex
~in "block")-
-3 status word used by the scheduler, to indicate whether a
segment ‘' is assumed ‘to be mapped onto memory or not.
Besides there is a2 field indicating whether or not segment 0 is
requested to be in core by any handler. If this field is unequal 0, it
indicates the handler which wants to copy input from its own buffer area
to the user area See section 9.14. . .

The predlcate neonnected" checks the list of connected flles to see
whether or not a file is connected to any virtual memory. The predicate
"file in virtual memory" checks the segment table of a user process. to
- see whether or not a file is connected to the v1r'tual - memory of‘ that |
process. R B | _

31

P More detalls about the 1mplementation of the currently;offered
serv1ces are given in the next sections. BT LA . _

f*8 12) Create flle

There are 3 possibilities for the length~of the new file: see section:

about services. After some checks, e.g. the file must not exist
already, the directory is searched. For the first two possibilities the

largest and second largest unused areas on the disk are located. When
asking for a specific length, an unused area with length larger or. equal
this length is searched for. If such an area is ﬁound, we must enter;-'

1nformation into the directory segment.

It is p0351ble that the dlrectory segment 1s full and a new dlrectory
segment has to be opened. For this the routine "extend" is used. If no
more d1rectory segments are available, a dlrectory'overflow'error is
reported, otherwise the following is done:

- =one half of the entries from.the fllled segment are put into the
~ next available segment |
-the directory segment links are set
-both segments are rewritten to the disk |
- =the highest segment currently in use, which is a varlable 1n the
header of the first segment, is updated ; - -
The links are needed when there are e.g. 3 segments in use and the

second is full. Then a segment must be entered between the second and
third segment and the 1inks are used to logically rather than physically-

1ink a new segment between the second and third segment. After the
extension of the directory, the position where the inﬂonmation about the

file has to be inserted is located again

~ Now the entry for the file can be inserted. ~When the previous entry
is a tentative one, first an empty entry*of’length 0 must be inserted,
" because a tentative entry must always be followed by an empty one to
reclaim the unused space when the tentative file is closed. After

creating an entry, the relevant information (see section 8.7 for a

 description of the directory entries) is filled in and the file is -made
tentative. The entry is followed by the empty entry, containing the
still unused part of the area the new file is located in. Finally the
directory segment is rewritten to the disk. | | _

When, during the search of the d1rectory, the last d1rectory segment
has been done, there are two possibilities:

- =the search was for an unused area of a specified length This
~ means that the request cannot be satisfied. | -
~the search was. for the largest and second largest unused areas.
"~ In this case, it is determined which unused area is going to be
‘used and the request is converted into a search for an unused

area of a specified length, with a maximum size of 250 blocks,
which is the maximum file size. The search for the selected
area is restarted at the directory segment previously found. 2

8. 13) Close file

C1031ng a file is a sxmple Operatlon. %Be51des the fact. that the file.~

._must not be connected by any user at that moment, it . ‘must - be:
that the file is not closed, i.e. made-permanent 5

the requested length is less than or equal to the lengthfalloeetedéuhen

the file was’ created.

& .. . ¥ o .
" W . e .
T vt AL . P P S N L Mg LY

| The requested length is set fcr the file and the dlfference between;_
o thls length and the allocated length is added to the empty entry
following the entry of the file. The file is made permanent now and the_

| directory segment written backftc the dlSk

8. 1“) Delete file

Deletlng a’ flle from a dlrectcry is dcne by“maklng the entry.of the

'flle an empty one, so that the area can be used again. The file must

not be connected by any user at that moment. The altered directory

Jsegment isrrewritten to the disk.

;'_ 15) Rename file

| Renamlng a flle is cnly done when the flle is nct connected by any
,user at the moment and there is not yet a file with the new name. The
new name is written into the entry'of‘the file and the directory segment

‘;s rewrltten tc the disk.

'8 16) Set access rmissicnsof file.

The'new'access permissions are written into the entry'cf‘the flle and-

' the directcry segment is wrltten back tc the dlSk

‘8 17) Get file namesJand_lnﬁcrmaticn_ S

| Ecr thls serv1ce a so called dlrectcry f11e-must be spe01f1ed ~ Into
jthis file a 1list with the relevant information (see section 8.7 for .a
descrlpticn of the dlrectcry structure) about all files, belonging to
‘the user, is written. This directory file must exist and be long
,?encugh otherw1se an error is reported |

The whole d1rectory'must be searched - When a file belcnglng to the

_juser is found, information is written 1nto a buffer of 512 bytes named
- Mbuffer" by calllng the routine "putword". The rcutlne “transfer
_:ibuffEr" writes the buffer to the disk’when it is full. : -

o 8 18) Offer file.

o Ecr an cfﬁer of a f11e, the cffer/accept word | in the entry of the
'“file is set to the identification of the wuser to whom the file is
-offered. Both access permissions are set to zero. ~For a revocation of

“an offer, the offer/accept word is set to zero again and the owner gets
permissicn fcr all modes. The file must not be connected by any user at
the lmment The altered directcry segment is written back to the disk.

,8 19) Acceft flle |

When a 'user wants tc accept a flle fr@m _another ‘user, the
ffer/accept wcrd in the entry of ‘the file fmust contaln"'hls"\

'vldentificatiﬁn “If this is the case, the owner identification is

| " changed to his. The newrowner gets all perm1351cns .and. the cffer/accept'

;"wcrd is again set to zero.

33

= e g e T R R S et S | ot iy e

8.20) Connect file.

" The virtual memory of a user process consists of 8 segments, 2 of

 which are I/0 segments. Connecting a file into an 1/0 segment is.
 different from connecting a file to ‘another segment. When a user

process is started, a base file of 16 blocks of 512 bytes is connected

in the normal way to each I/O segment. These base files cannot be

d_iscdnnected by the user and so are always in memory when the user

" process runs. Files which are connected into an 1/0 segment are written
“into the segment file. As explained earlier, files in segment O are in

read mode and files in segment 1 in read and write unshared mode.

If the file is not yet connected by any user'prbbess,'thé.directOfyﬂ

" has to be searched to see whether the file exists and the user has

 permission for the specified mode (predicate "permission"). Several =
~ things have to be checked when the file is found, such as the startblock
" within the file. The predicate "room in virtual memory" is used to

check whether the specified part of the file fits in the specified part
of the virtual memory. The parameter for this predicate indicates
whether any room in the virtual memory is going to be released: a value
0 says that there will be no disconnect of a now connected part of the
- same file, a value 1 says that room will be released by discommecting

the now connected part of the file. For connects into an 1/0 segment,
the number of connected files in that segment and the specified blocks
haveﬂto{beﬁéhecked;ifor-*connectsrfte”'another-,Segmgntl;;thegispecified

&1ength;must:fit.ih-thesSegmentsffrom.the.speeified”segmentlopwardg; If

‘the specified (part of) the file can be allocated in the virtual memory,

the information about the file has to be inserted into the ‘list of

connected files. This is done by the routine "insert file information",
which fills in a record and inserts it into the list. L

If the file is -already connected, 1tsQéntry:iﬁ the~direthry does not
have to be searched for, because all the information about the file is
‘already in the list of connected files. ~After checking the startblock,

" the predicate "file in virtual memory" is used to see whether the file
 is already connected by this user. If not, the permission for “this
- user, thewfmndé~fthé'Sfiléﬁﬂis*cenneeted&invand_the+n@@m-inftbe'Virtual

memory have to be checked. If the file is already connected by the

“user, the required mode and the. current mode are compared 3“d'the'r°am".

in the virtual memory is checked with the extra condition that room will
be released by disconnecting the now connected part of the file. The
routine "return blocks" is used to perform this disconnect (see next

section about disconnect file).

fs--The-infopmation_abeut-the;connectedgpért(S) is put into -thé list

 belonging to the file by the routine "insert block information". For a
connect into an I/0 segment, first a- free subsegment entry in the

' segment table, i.e. one which has no pointer to file information set, is |
found. The relevant information (see description of the segment table

in section 8.11) is put into it and the number of connected files in

this segment and the used blocks are updated. For a connect to a normal
segment as many segments from the specified segment onwards as needed to

allocate .the specified part of the file are used. The (part of) the
file is divided into a number of blocks of maximum length 16 physical

~ blocks of 512 bytes. Each block is first searched for in the list of

~ already connected blocks. If it is found, the number of users is

* incremented by one. - Otherwise the relevant information about the block

" i{s put into the list. One of the things is the contents .of. &

‘descriptor register, which is also put into theiarrgy;ﬂﬁsggg_gﬁf;hgghe

 ,¢kerne1;wa-The-status-of the block is set to "out of core",

34

1 B |
. 5
M A i
J T T R PO 0L T S SN TR B L S . A W W [

. - . .
Eo R R e .
W =, r .
~ el 3
" ¥ " e '
] I- °a B ." o .. .-
R AT, 5 LW
el)
h
L
L}
.

b . 5 L L
'} y oy o . . . A T vl
Lt AR TP T SR S s ge ' . AL

e | B ST

: : s .. i Ay
. - S . T]
' 1) . a " . I. U
ECT PRl AR RE. AP M Y. SRR TR S SN SR S T PR T (R T SR

b i e s i aa i Ty

' not yet in core. The routine "insert block information" also fills in
the segment table. | | | | o J

~ Finally (part of) the file has to be read into core if 1t was a
connect into an I/0 segment. The base file is still in core and the
connected part of the file is written into it. For a connect to another
‘segment, a message is sent to the scheduler. This process theh knows
that a cohnect has been requested by the user process and can read the
 connected part(s) from the disk into core and set the relevant page
address register(s). o :

8;21)'Disconnect file.

A disconnect can only be done for a file which is actually connected.
" The routine '"return blocks" takes different actions again for an 1/0
segment and another segment. For a file connected into I/0 segment 1,
it cannot be checked whether anything has actually been written into the
file, because there can be several files and I/0 buffers in the segment,
so the written into bit of the page descriptor register can only be used
‘to see whether the segment as a whole has been written into. Besides,
“the individual files connected into an I/0 segment are not written back
to the disk when the process is swapped out. So the file has to written
" back to the disk now, although in some cases this might be superfluous.
For both I/0O segments the blocks used and the subsegment entry
containing information about the file are released. For a file
connected to another segment, we go along all segments used to connect
~part of 'the file. Each segment is released for a new connect. The
contents of the page descriptor register field of the block information
is "ORed" - with the copy of the page descriptor register in the kernel,
which is cleared afterwards. If this user was the last user 1in core
having this block connected, the core is released and a message 1is sent
td the scheduler to indicate that some core has been released and
possibly another file can be read into core. If the written into bit of
~-the page descriptor register field is set by any disconnect (that is why
~the "OR" is executed) or by the scheduler, the block is written to the
© disk first. - Fipally it is checked whether this user process was the
- last - having the block connected; if so, the block is removed from the
~ 1ist of connected blocks of the file concerned. The routine "return
‘file information™ removes the information about the file from the list
of connhected files, at least if this user process was the last having

© 9) Console handler.

. The code of the console handler is shared by a number of processes,
| each handling both input and output on one console. ‘Each of these
-:prccesses has hlS own data area._ R . U

9, 1') Ccnscles
The—number of consoles and the device address,the vector address the

rhaximun line width and the delete character of each cf them are set at
the initlallzation of the system. | | | -

9 2)'McdeJ7

Tuc modes are pdSSlble for a console:

'--—ascli mcde while typing a line in, characters can beadeleted bY'

typing the delete character, the whole line can be
caricelled by typing the cancel character, tabs are

converted into the required number of Spaces-and the

parity bit is cleared. An input line is ended by a
carriage return,.a line feed, an etx character or an
~eot character at the beglnnlng of a line, in which

- case 0 is given as length of input to the user to

indicate end of input. Typing the escape character

causes a message to be sent to the reset process

state service. Durlng output a line feed Iis
“converted into a carriage return followed by a line

"feed If the maximum line width is exceeded, a

carriage return followed by a line feed is printed
~ and before the rest of the line the character '>! is
" printed to indicate an overflow.

“f;raa'mcde: no line reconstructlon is done durlng 1nput if .the'

console is in raw mode, all characters are
- transferred urichanged to the user; the way to get an

;rliHPUt-bloek'of'IEﬁEth~0'iS'to.:use the break key.

Output ‘is printed exactly as it is sent to the
handler nc characters are. added anyuhere.'

It must by spe01f1ed whether or not typed in characters shculd be
~_echoed by the handler. Invisible characters, which have no special

meaning, are echoed as '~t followed by the character with ascii code 64

plus the ascii code of the invisible character. If the console is in

ascii mode with echo and the delete character is backspace, this
character is echoed when typed in; if the console is in this mode but
the delete character is rubout, a backslash and the deleted character

~are echoed when the rubout character is typed for the first time, after

that all subsequerntly deleted characters are echoed until a character
differing from the rubout character is typed, the echo of this character
is preceded by a backslash to indicate the end of the sequence of
deleted characters. When the delete character or the cancel character
is typed and the length of the line is zero, the bell character is

- output to indicate the failure of the action.

N -y . 'w S B .
i o i - L. nt ’ : R " ¥ T R HO
. . - . A |
& . . g o = B - . a Ty L ' i
" T LT v 11 b A evina - uF o . AL T N ‘ P g ' s

i T b S A T 'ﬁ.iﬁ'M’:m%I_ e il A 2 il ! : [, T T N - S [:

: EETE s S PR, .]
1

A J

a console.

9-3)

i Orily the user who has opened a console can make use of it. Opening
carn be done, when the console is not already in use, in two different
ways: S B PR LS
| '_--pressiﬁg_anyjkey ori the keyboard. The handler prints the string
 ‘name:' and the user should type his name. When the name 1s
~ended (by a carriage return or line feed) the string 'passwd:’
is printed ard the user should type his password. Echoing of
the password is suppressed. The name and password are checked
by the login service. If the user is admitted to the system,
the assigned user “service number is set as the user of the
console, which is left in ascii mode with echoing. The user
process which is started, can now make use of the console. If

= ‘the user is not admitted to the system, an appropriate message
is printed. See also chapter about the login service (chapter
-sending an opern request to “the handler. The required mode
(ascii or raw) and echo or no echo can be specified. A process

can in this way use a console e.g. to print a flle.

9.4) Input/output buffers.

) Buffers_fbr'inpUt-and_output are located in segment O aﬁdi segment 1
of the wuser virtual memory respectively. A buffer can occupy one or
more blocks of 512 bytes. See the section about the virtual memory of a

~9.5) Input. S _
) CharaCtéré'typed in are first putintoa_bufferoflength255 *byﬁes
in the data area of the handler. If the console is in ascii mode, line
reconstructior iS”done; if_echo_is,requiredgthefchanapter is;-echoedf to
tb§ cOnsQlef'. _ - R RPN | T .

THe trarnsfer of characters to the user area is performed in blocks.
If the console is in ascii mode a block 1is ‘defined as a sequence of
characters up to a carriage return, a line feed, an etx character or eot
“character at the beginnirg of a line, or a sequence of 255 characters,

which is the buffer size. In raw mode a block can be terminated by a

break, which further produces a block of length 0, indicating end of
input. When a get input-serVioe-call-is-issued_byﬂthe user, available
input is copied to the user area and a reply is sent only when the
-~ console is in ascii mode and cne or more blocks of input are complete,
or when ‘the conmsole is in raw mode and one or more blocks are complete
or the number of available characters is equal to or exceeds the maximum
riumber of characters required by the user. Copying 1is done. in the
following amounts: ' | | _
-if there are a number of complete blocks available, as many of
these as fit entirely into the specified area are copied
-if the first block does not fit into the specified area, as many
~ characters of it as possible are copied N
_if the console is in raw mode or the buffer is full, the a
specified maximum number of characters is copied. - :
-a block of length 0 is not combirned with any other blocks, but
S giver as a reply to a separate request to indicate end of input. ;
”;-ThiS-Strategy'is?éhosen*beeausefcoﬁsolefinput'is«afvery slow action and - EReE
should be harndled by a resident part of the system without waking up the L

7

‘user process for every character typed in.

- Whern a get input_requeSt?isqiSSued-by the'user process. and thereis"
- not input yet in %the buffer, i.e. the user has not typed ahead, the

prompt message is printed. This is a message consisting of up to eight
characters, which can.be set by the user, indicating what the process

‘expects the user to type next. The prompt mechanism is independent of

* output performed by the handler and is not used to indicate that a

~ previously .reqUeStedx;actionﬁis;terminabEQ,-but indi¢ates-a request for
‘more imput. L S |

" “The command' interpretér uses ,this f‘a‘(:il-it;y"' to request t-he' next
command by setting the prompt message to 'command:'; user programs can

‘request data by setting the prompt to e.g. 'data:'. The prompt message

can be set to a null string if no prompt message is required.

If the user has typed 256'characters_ahead of get input'requests the

“input buffer is full. The user is informed of this by printing the
 string ‘'wait!' and characters now typed in are ignored. At the moment
space~beCQMES“availablejagain;in.the;buffer,by.a;get'inpUt request, the
user is informed that he can go on by printing the message 'continue'.

9.6) Output.

Output by . a console handler iS‘veryfstraightforward: the characters

in the output buffer in segment 1 of the user virtual memory are not-

copied to a buffer in the data area of the handler, but are directly
fetched from the user buffer and put into the output register of the
~ console by a short interrupt routine. When. the console is in ascii

mode, a line feed is replaced by a carriage return plus a line feed and
~ a line overflow is indicated. o e N

_19l75 SimUltaﬁeous'in

ut and output.

~If a put output request is received by the handler and the uSer is

typing ahead, the output _is‘-uithheld until a block of input is

completed. |
If the user starts typing whilst.outputgis going on, and the console
is in ascii mode, the current output line is finished, after which the

- already typed in characters are, if necessary, echoed and the user can
~ “tYQG,a.block °f“inPUt-'* AftéP'that’”the”r¢st:Gf'th?_0uth§r'0har39ter$;""

- if any, are printed.

_ﬁ:;” []Bch' strategiés¥ are} chosen to prevent output characters and echoed
" input characters from being mixed on the same line. S o

9.8) Escagg.-

If a user wants to end the execution of a program, e.g. because it is

in a neverﬁending_lodﬁ,.this can only'be-done;by a process indeperdent
of the userwprocgsskl-The-conscie”handler offers this possibility.

If theconsole~isin'asciimedeaﬁdhetypesthexescapewcharacter;a '

‘message is sent to the reset process state service, which puts the user
pr003837into~a.state-f?om”whichrit can recover. As error code the value

=1 'is used, so that the recovery sgrwicelcan,distiﬁéhf3h7it,f?ﬁm'the

38

o P .
. i

T g i i =
LT L R . o .
- 'y o B T
= i b l-‘-‘——-‘b—“dnzl.u..-u”.hh“—t TN Loh e e W e s - - a3 _ -

“y

'normal'errors;- All input which is rnot yet sent to the userf is thrown

away and the output which is going on is stopped immediately.

' 9-90'Furfhér'services;~

Besides opening the console, getting input, putting output, setting

the input request message and the escape possibility,__the?e _are?'the

~ following services:

-change mode, i.e. set ascii or raw mode and echo or 1o echo
-get mode, i.e. get the mode the corisole is in at the moment

-close the console, i.e. indicate_that}the_conSole;is_no-longer

-

 needed by the user, so that it can be opened by another user.

9.10) Convenience and efficiency of the handler.

~ The first aim when designing =~ the ‘handler was to supply a tidy
facility to the user: no output of different users is mixed, no echoed
 input characters and output characters are mixed on the same line and a
real prompt.'mechanismgis-offéred;,qfThese.thingS'are rarely offered on

other systems. o

The second aim ‘was to make-iefficient handlers: input,- line
reconistruction is done by the handler, so that the user does not have to

be swapped into core for every character typed in and output is done

very efficiently by a short interrupt routine without any copying from
the user area to the system area. - ' o |

" The two aims are not really in conflict,_as one might expect. The

‘only consequence of making the handler tidy is, that it becomes slightly
- more complicated, but this is not done at the,cost-of-effiCienCy.-;*'d_ |

9.11) Mairn part of the handler.
Wher: you have understood thé priﬁcip1es of'the handler described_'in

' the previous sections, it is not so difficult to understand the code as
- well. iy = . a e _ _

For every console handler there is a record in the ‘array "condes",

. 'f".dﬁhtaining=“iﬁﬁonmatien.aboutﬁthggphysicalipropefties of the console and
~ the current state of the handler. T

”'L‘The,d@éeis;divided-intotwoparts;’

~the part hardling interrupts from the console. Interrupts from
~ input are ‘converted into a message to the harndler; interrupts

from output are handled immediately, i.e. a character is put
-into~ the output buffer, are converted into a message to the
handler or are converted into a "signal" on the console
semaphore. For more details, see following sections. This part
is written in assembly language. :

-the non-interrupt part, handling user requests in the first

~ instance and-input, written in IMP.

" The handler can be considered as a finite state machine with the
following states:

-Muused": the console is not in use
 ="name": a user is typing in his name
-"passwd": a user is typing in his password

39

 -"rest™: no input or output is going on - L
- =M"input™: a*getfinbut”reqUést*is*receivedtwhile_nowcomplete7le¢k_'
of input was available, so the handler is really waiting for
| iriput : S o | | D . |
- ="output": a put output. request is being serviced, without any
~ interruption for imput - - .
~ ="irput ghead": input is typed ahead, 1i.e. without having
- réceived a get input request for it o . D
- «"output while input pending": during output, the user .starts =
- typing ahead}*_:Ifiin“ascii'mode;ﬁthe current line of output is SRS
" finished, after which the user can type a block of input o
_J“iﬁﬂﬂtiwhile*output'pending":the user is typing ahead a block of
. iﬂput;fwhilefthere‘iSLStill,output=to be printed. The output is
" pestarted when the user finishes the input block. e

- The transitiohs betweeh" the different states are. quite
 straightforward ard depend on the requests received from the user
process and the things the user sitting at the console is doirg.

There are a number of important switches, i.e. vectors of labels, 1in
the non-interrupt part of the handler: | | -
-"yserserv", used when receiving a message from a user process
~"consserv", used when receiving a message from the console
-"jr", used when a message from the console concerns input
_nout™, used when a message from the console concerns output. =
" To which of the labels of a switch control 1s passed, depends for the
first two switches on the request made and for the 1last two on the
current state of the console. '

9.12) More about output.
Characters are put into the output buffer of the console in one of
the followirg ways: ! - | - |
| -directly by the output interrupt routine. This is done for the
characters from a put output request: the start address, the map
register to reach the area the characters are located in and the
rumber of characters are put into "condes” and the interrupt
eriable bit of the output status register is set. Characters
will be put into the output buffer register by the interrupt
" routine, without intervention of the rest of the handler. The
output state field in naondes", called "dmasignal", is set to
"dma" in this case. R T | |
-by the ron-interrupt part of the handler. This is done for
input characters which must be echoed, for characters from
‘messages like 'stop input' and for the input request message
characters by the routine "outputchar®, which does a wait on the
console semaphore. The correspording signal on the semaphore is
dorie by the interrupt routine. Wheri the handler continues, the =
character is put into the output buffer. The output state field *
in "condes" is set to "signal" in this case. . _ S
" These two ways are chosen for simplicity. If the output of input g
characters which -must be echoed, ‘tharacters from messages.to the user =
and characters from the input request message were done by the output *
 interrupt routine too, the handler would become much more complicated.
E.g. a second input character could be received before the first.one is

i, ' ' i ti ' LI ' '
ﬁ.....‘_ S APl 8 P L aloniath o' i i i myy P . ’ ’ 'y L ')
. [y I T PP T LT T —— [T P

T g Tt B, : R) L
HEL TSNP 5% = TS ERNY . LISt N SO

echoed. To solve this kind of synchronization problem, the number of o
~ states would have to be-eonsiderably*inéreased.-sfhe;pneaegtnglutign;is S
'-?:becausevzthe_fnumbér*iOfficﬁaraétQFSQ@jfﬁut.bywthe_naﬁgigigﬁrupﬁ Part-is;,

. ! l . '

PPN VORI S VT TN YRR FOVURT R SO W S W LI L T W AL TR A5 iyt

' 1 40¢

Loy Cn -t .
B Ty L S T T o L L P I LT ") r - ! . . - L W -)
WL L Ny N L L U TR, Y N - a P e o v N O T PR

e

119 1H)Hand11n

. uery small.

13) nterrup

- The interrupt routines for input ("con51n") o and ﬁor “output
| ("consout") both make use of the new program status word loaded from the
- interrupt vector to 1dent1fy the console: the low-order four bits
- contain the console number.-u This trick is. copied from the UNIX.system.-
- The entry in “condes" is determined from the console number.-' |

The irnput 1nterrupt routine ‘reads the typed in character from-the

“input buffer register arnd a message containing the character 1s sent to
- the harndler. | |

The output 1nterrupt routine is sllghtly'mcre complicated If the
output state is "signal", the interrupt 1is converted into a signal on

- the console semaphore. If the output state is "dma", the mapping
j;;reglster for segment 6 of the kerriel is set 'so that this segment 1is
- _mapped onto the output to be printed. If the console is in raw mode,
 the next character is simply printed, but if the console 1is 1in = ascii
*-r,m@de, a line feed is replaced by a carriage return, later EOllowed by a |
. line feed and a line overflow 1s indicated by printing a carriage
- return, a line feed and the character '>* first. Of course only one
 character is printed per 1nterrUpt. | A.message is sent to the handler
when. | ' -

-all output to be printed has been printed -
-the console is in ascii mode, the console state is "output whlle
input pending" and the current line of output is finished; in

this case the handler will enable the user to type a block of

input before output is continued.

‘Mostly there will be a simple exit from the interrupt routine after .
jenabling fUrther interrupts from the console | | |

r?juests from the user

Only the 1mplementaticn of the get input and put output requests is.'

somewhat compllcated

A request for 1nput is handled in the following way. If'one or more
blocks of input are available, the routine "get ready for copy input" 1is

‘called, which serds a message to the scheduler to ask for a reply at the

moment segment O of the user virtual memory, where the input 1is copied
to, is in core. The scheduler checks whether the blocks, where the user
input buffer is located in, are used to access a file also and sends a
refusal to the user if this is the case; otherwise it sends a reply to
the handler at the appropriate moment. When this reply is received, the

‘mapping register for segment 6 of the handler is set so that this

segment 1s mapped onto the core where segment 0 of the user virtual

memory 1is located. Thern input is copied, in the amounts previously
described, via segment 6. If there is no input available and the user
“has not typed ahead the input request message 1s prlnted

A put output request is dlrected by the service excharge, via the
schaduler which checks whether the blocks ‘where the user output buffer

is located are already in use, and sends a refusal to the user if this

~is the case. Otherwise the scheduler takes care that the blocks are not h
released before the characters are actually printed and sends the

request to the handler. Here the output by' means of the output

o

o n mmmm m e masm e daa - —)))
Cassw caa e sy s ahmn g s o ReR sl s A A —— -

*1_;character into the 1nput buffer

interrupt routire is started at least if the user is not typing ahead,
in which case the state becomes "input while output pending".

9. 15) Hsnd11 ” re uests from the console.,

This sect1on w111 probably only be understood 1n conjunctlon w1th the

- source of the console handler.
| 1ved are always handled by the routlne Bgocgﬁe

Input characters rece

:character" which does the 11ne reconstruction, echo‘ng an p

If the conscle is unused at the moment an 1nput character 'is
‘received, the handler succe531vely asks the user to type in his name. and
password ard sends these to the 1og1n serV1ce to see whether or nct the

user is admltted to the system.

Some state transltlons for received 1nput characters are 1nterest1ng

If the state is."input" and a block of input is complete, the ‘scheduler
" is asked to get segment O into core and the state becomes "rest"; if the
state is-output it becomes "cutput while input pending"; if the state is
"input shead” ard the end of a block is reached, it becomes "rest"
again; if the ‘state is "input while output pending" and the end of a
block is reached, output is restarted. Characters typed in while the
state 1is "output whlle -1nput pendlng"- are saved in the array

_"savelnput“

The output 1nterrupt rout1ne sends a message to the non-interrupt
part of the handler when the state is "output" or M"output while input
perding" at the moment all characters are printed. The blocks of. core
used can now be released; this is done by sending a message to the
scheduler 'Ihe state beccmes "rest" or "1nput ahead" riOW., N

If the state is “output Whlle 1nput pendlng" the output interrupt_

routine sends a message too when the mode is ascii and the current line

- is finished. The characters stored in ‘"saveinput" are: processed Nnow.
- When the block of input is already complete, output_

1S restarted
otherwise the_state_becomes "1nput whlle output pendlng" o

H2

. ; . . - . ' . - .- .
-_..-__._...J.-u.._...,-_ - L) L = % 3 .'. &)

1 i "))] i g
1 ?
¥ N K] 1
| P A CRIFL E ST ST L SR TOR L L Pt S R

i .
» W ¥ i

vt .

s e e s e il s it i . g U il

O Ll S SRR

ol A i)
- LT e i :] - - R v -
- " B = . - " I..|- - - o N B
T S VAU Ot S I SO S SR S

e

10) Recovery.

—

- The recovery serv1ces are meant to get a user process into a state
frcm which it can recover after an error has occurred. P0331b1e errors
are: |
I-trylng to execute a ron-executable instructlon (e.g. an attempt
to move a word to an odd address or to address a part of the
virtual memory for which no mapping is set up) |
-a request for a non existing service
-an attempt to execute an emulator trap instructlon.

Hhatever a user process does when an error has occurred is left to
?ﬁ.«the process itself. It can for example print the error number and the
~ values of registers like the program counter at the moment the error
occurred. The only thing the reset process state service, called by: the
_kernel when an error occurs, does, is to reset the values of- the

~registers r5,sp and pc of the process to values which must be specified
by the process itself by ‘a "supervisor call" to the set recovery
reglsters service, and to disconnect all corinected files.

'10 1) Settlng the recovery registers.'!

“ Ihe values of the registers r5 ,sp and pc to be set when an . errcr

-occurs, are stored in the array "recov inﬂo"

10.2) esettlng the state of a Erocess.

Wher ‘an error occurs, "superv1sor call” to the reset process state

| service is generated in the kernel, containing the number of the error.

See section about error ‘handlirng (sect1on 4.11).

The reset process state service is called from a console handler if

w'dlthe user of it types an escape character.

The reset prccess state service sends a message to the user process,

;y:whlch is waiting for it because of the "supervisor call" generated in
the kerniel. This message contains the error number and the values _of

the registers r5, sp and pc at the moment the error occurred, which are

~ got from the process table entry of the process. R5 is reset by setting
. the last parameter of the message to the user process, which 1is copied
 to r5 by the kernel, to the specified value. The values of the
Q'reglsters sp and pc in the process table entry of the process are reset
to thelr Spe01fied values dlrectly |

All flles connected ‘at the I/0 segments and segments 2-5 are'

_'dlsconnected ‘This is not done however for an error with number -1,
‘because this error number is used by a console handler if an. escape_
character has been typed. - In this case the files connected by the user
process cannot be dlsconnected because they might be out of core if the

process 18 not running, Whlch is quite p0351ble because the console--

._; handler is 1ndependent of the user process. The ~user process itself'
e must do the disconnects when 1t starts runnlng agaln. SRR

o The recovery serv1ces “are part of the flle system proceSS, because o
ﬁhzuse is made of a routlne to dlsconnect the flles.:acd-~- e

_”3.,

11) Login and logout.

-"When a user wishes to enter the_system,,he presses any key on the

~ keyboard of the corsole he wants to make use of. The console handler

asks the user to type his name and password, which are stored in a

buffer. The addresses of the typed in name and password are sent to the

" aa

login service, which checks them to see whether the user should be

" admitted to the system or not.

The namesiof-allfuserS,_who have'permiSSion'to use the”syStem,”are-in-

the password file. In this file, which can only be connected by the

system mariager, there is also an encoded form of the password of every

user. The encoding is done by manipulating the values of the characters

of the password anthhrowing_away-Certain'bits.j, The algorithm used for

the encoding when a new user gets permission to use the system and his

rame ard password are entered into the password file, is of course the

same as the algorithm used to check whether someorie who wants to usé the

system has permission or not. The predicate "identification ok" is used

for the last purpose..

"If the user is known and'the'password;is.ccrrect, the arraylﬂid",

containing for every possible user process number the identification of

the user of the process with that number or a zero indicating that the
process number is not in use, is checked. @ If the user has already

logged in at another terminal or no more user process numbers are free

to be used, the user 1is not admitted. The user process with the lowest
runber is reserved for use by the system manager, SO that this process

cari be giver permission to do things the other user processes cannot do.

This facility is for example used by the create file service, to offer
the possibility ¢to the - system manager of creating a file for another
user. The entry in "id" with the chosen process number gets the value
of the user identification. SR o | R

The base files seg0.s, segl.s and segb.s belonging to the user and

seg7.olsyl, containing the stardard subsystem, are now connected for the
‘user at the segments 0,1,6 and 7 1in read unshared, read-write unshared,

pead-write unshared and read shared mode respectively. - If an error

ocewrs during one of the cornnects, the already connected base files are

‘disconnected again, the assigned user,prpcess_number is freed again and

the user is not admitted.

-~ If the user'issédmitted;tO' the system, a message;kcontaining"the

 console service number and the user identification 1is sent to the

'L”aSSigned“user'process,¢whichfiseﬂgitinggﬁgr@af message from the login
service and is woken up in this way. A message is sent to the scheduler
to get the process running. A reply is sent to the console too,

indicating that the user is admitted or giving the reason that he is not
admitted. In the latter case, the console handler prints an appropriate

The logout service is very simple. A1l files connected to the I/0

‘segments and to segments 2-5 are disconnected, as well as the base
files, connected to segments 0,1 and 6, and the subsystem, connected to

segment 7. The entry in "id" belonging to the number of the user . |
process is set to zero, SO that the process number can be assigned to

~ another user by the login service. The "asleep” field in the process
table entry of the user process is set to "login", so that the process

| to_theisChedUIQr;>'

o

can only be woken up again by'the login service, and a message 18 ‘sent

B N N e CO N S

'
. !
e A e bl gl

- The 1og1n and logout serv1ces, llke the recovery serv1ces, ”ere for
convenience located in the file system process. They make use of

routines of the file system.to connect and disconnect files. "Id" is

used by the flle serv1ces to get the identificatlon of a user. -

45

 12) Scheduler.

The scheduler 1s ‘meant to share the available processor time in a

fair way amongst the user processes which are ready to run. A
round-robin scheme has been chosen: each user process, which is ready to

run and in core, is given in turn a fixed amount of processor time

called a time slice; if processing is not completed at the end of the
time slice, the process is interrupted and returned to the end of a
queue to wait for another time-slice. B

. The round-robin scheme in itself is very simple. Problems arise from
the limited amount of available core. As explained in the chapter about
the file system (chapter 8), all parts of files connected by a user
process must be loaded into core before the process can start running.
To give all user processes, which are ready to run, a fair part of the
processor time, swapping, i.e. the exchange of files between core and

disk, had to be introduced. After a user process has used a certain

number'of time slices, the files which are connected by the process and
which have been changed, are rewritten to the disk if another user
process, which is ready to run, is not yet loaded. The latter can be
loaded now and given a number of time sllces too. o

Some of the decisions made were qu1te arbitrary and should be'

-evaluated by'measuring the performance of the system. As examples

consider the number of time slices given to a process when it is ready--

to run and the way the next process to be loaded is selected.

12. 1) QueUes;

There are a number of queues used by the scheduler.. kEach user
'process is in one and only one of them. The queues are the fbllowing

~the run queue, contalnlng the processes which are ready to run

and entirely loaded
-the candidate queue, contalnlng the processes which are ready to
run, but not yet in the run queue, because they are not entirely

loaded or the maximum number of processes in the run queue has_ |

‘already been reached

-the file system queue, contalnlng processes~hav1ng issued a
"supervisor call" to the connect, disconnect, recover or 1ogout'

- service, which is not yet entirely handled
-the high priority queue, containing processes which are ready to
run but possibly not entirely loaded and whlch have 3 high
priority to be moved to the run queue _
-the low priority queue, containing processes which are ready to
run but possibly not entirely loaded and which have a lower

priority to be moved to the run queue

- -the blocked queue, containing the processes which are waltingb' ”

~for a reply to a "supervisor call" to a service other than the
connect, disconnect, recover and logout service

-the logln queue, containlng the processes at which no user. has'_

logged 1n at the mdment

12.2) Round-robin. .

As said prev1ou51y, the round-rdbln acheme is very simple. Each time

the running user process (variable "runproc“ in the kernel is used by

the despatcher to start running a user process) has to be selected; the

u6"

» i a ._l .. et -
v e T & v i
" T I Y ¥ L
L LENTICEI RN TN NS LINE STCIENr SARAL 7 M i e - '
L

' first process out of the run queue is taken and aemessage from the clock o
is rcquested at the end of the time slice given to the process. If the

run queue is empty, the idle process is chosen. The selection is done
by the routine "select running process" See also the section about the

despatcher (section 4 12)

At the end of the time slice, assuming that the process has not
become heldup prev1ously because of a "superv1sor call", there are two
possibilities - - - |

‘=the number of time slices given to the process has not been used

: compdetely, so that the process has the right to have another
- time slice. The process is put to the end of the run queue..

-no more time slices are left for the process. In this case the

process is put into the low priority QUeue with a large

allocation of time slices to be used the next time the process

1s moved 1nto the run queue. ~ - - |

- The main advantage of round~robin schedu11ng is the guarantee that
short requests will be handled within a reasonable time. Long requests
are prevented from monopolizing ‘the system by interrupting them at the
end of a time slice and removing them from the run queue to. the low

priority queue, from which they may be selected to have files removed
from core to disk after a number of time slices. The main disadvantage‘

of‘ romd-robin scheduling is the overhead caused by the swapping
12. 3) The candidate
Beﬁore a process "is moved into the running queue, it has to be

loaded. - The process at the head of the candidate queue, called the
candidate, is the first process which will be loaded and moved 1nto the

running queue.

Processes enter the candidate queue in one of the ﬁollowing ways. If
a process is in the file system queue and the "superv1sor call" to the

connect, disconnect or recover service is entlrely'handled the process

is moved to the beginning of the candidate queue. If a candidate is

‘needed and there ‘is none, a candidate is selected from the high priority

queue or lou'priority queue by the routine "select candidate", which
selects a process from the high priority queue more often than from the
1ow*priority queue | | | o .

12 1y Loadihl4tné candidate.

The routine "load candidate" is used to bring all parts of files

‘connected by the candidate 1nto core -1;

The ﬂollowing entries in the segment table of the candidate are'_)
relevant for each segment: - |
-"fileptr", if it 1s zero no file is conhnected at the segment,
otherwise it contains a pointer to the 1nﬂ0nmation about the
file (see chapter 8 about the file system)
-"blockptr", a pointer to the information about the connected

(part of) the file (idem)
-"status"; if it equals "in" the file connected at the segment 1s

in core, if it equals "out" the file connected at the segment is
p0581b1y not: in core. R LR o

The first thing the routine does, is to check f‘or all segments to
which—a file is connected and whose status equals "out", whether the

(part of) the file. connected to the segment is in core. This is

possible for shared files. ‘In this case the status of the . segment is
set to "in", the copy of‘the page address register in the kernel is set;

~and the number of users in core of the block is updated

For segment to whlch (part of) a flle is fconnected whlch is out_ _
core, the core manager is called to. get an area of core of the Specified~'

‘length. If this call is successful, the disk driver is called to bring

'the file from the disk into core, the file information is reset and the
. copy of the page address register in the kernel is set. The dlSk driver -

is called by a "send" so that the seheduler can ccntlnue._..

If the call to the core manager was unsuccesst1 and there are no“'

.parts belng written from core to the disk, in which case core will soon
become free, an attempt is made to get core from.the victim, which is
the process whose core will be released first. If there is no v1ctim;at“

the moment, an attempt is made to find one by the routine "choose". See

next section. If no victim can be found, the loading of the candidate

is suspended. If the victim is the same process as the candidate, all

core. of that process is released by the routine '"remove core". This

pcssib111ty has to be taken into account to prevent a deadlock. If core
in use for (part of) a file, which need not be written back to the disk,

has been released, the loading continues. If core will only be released 'i
after (part of) a file is written back to the disk, the loadlng‘1s o

suspended.

The replies to the requests to the disk handler are recelved in the
main cycle of the process, which w111 be discussed later, as will the

routine "remove core"

| 12 5) The ch01ce of a victlm.

The v1ct1m is chosen in the fOIIOW1ng way. Flrst the blocked queue '
~is examined from the beginning. - If no process is found with any
segments with state *in", the low priority queue is searched from the,

~end. If no process is found in this queue, the hlgh priority queue is
%searched If 1n this queue a: victlmicould not be found either, the

candldate queue 1is searched from the ‘end if there is more. than one
"process in the candidate queue or both the number of processes in the
run queue and the file system queue are zero. In the last case, the

ViCtlm w111 be the same process as the candidate (see previous sectlon)

Core from processes in the file system queue cannot be released

because files connected by such a process are expected to-stay in core

to be possibly used by the connect disconnect, recover or logout__%

service.

12.6) Releasing core in use b the victimj

. ' | | R LT .
The routine "remove core" is used o release core in use by the

victim.

- For. the non- I/O segments of this. process whose status is "in", the:
copy of the page descriptor register in the block descriptor is ORed
with the copy of it in the kernel, whose written into bit is cleared for
 future use. If the written into b1t in the copy in the blockudescriptOr'}'

g

: . 1
S e i ol e aadfe b ST W W (RS0 LR S SR S

g * i ARl e i

B

™ el il it o s L i s e 5 s

=S L T W— _-.-.--..-....-..l_.-.-..j e

users .which are in core and are using the block becomes zero, the core

“used by the block can be*releasedqby~issu6ing_a«"superviSOrhcallﬂ”to thejf B |
 core manager and the routine is left. S | | o _ o .

~ For the I/0 segments whose status is "in", the status is normally set
to Mout", this is not done however for segment O when it is in use by a
handler to copy input from its own buffer to the user area, which is.
‘indicated by the field "handler" (see chapter O about the console
handler). Because the files at- the = I/0 segments are connected in
unshared mode, the core used for such a file can be released immediately
when a handler has not written into it and no (part of) a file is
connected - into the segment ("copy ok" is set to "false" when one of
these things is done) and when the user has also not written into it
(the written into bit is checked). When the file has been written into,
it has to be written back to the disk before the core can be released.
" In this case the disk driver is called, the written into bit in the copy.
~ of the page descriptor register is cleared and "copy ok" is set to
~ ngrue". In both cases the routine is left. - . - PR

- For the non- 1/0 segments whose status is still "in", which means that

'~ they have been written into, the status is now set to "out". If the
 number of users, who are in core and are using the (part of the) file
connected to ‘the segment, becomes zero, the disk driver is called to

- write the (part-of.the)ﬁfile~back~to'the:diski.theQWritten,into “bit in
the copy of the page descriptor register in the file descriptor is
cleared and the routine is left. - - S) o

If the end of the routine is reached, which means that no core from
the vietim could be released immediately or will be released as soon as
2 confirmation from the disk driver is received that (part of) a file is
written back to the disk, this is indicated by setting "result" to zero.

The victim can no longer serve as such; this 1is indicated by setting
"victim" to zero. b - - o

- 12.7) The main cycle of the DFOCQSS.

The scheduler can be called from a number of processes:
- «the clock handler -~ e
~* =the disk driver @ .
~-the file system .

| -the console handlers. . R o -
It can be called from the kernel too. .~ A put output request from a user
fDFOcé§SQtoVa-conSGIeihandle?Eisﬁdinected, byathe service exchange, via
‘the scheduler. Other requests from user processes are_ignorgd.' I

" When the Scheduler is called from the clock handler, this is the
reply to a request for a message after a time slice. If there is a
process, different from the idle process, running, the time used by the
process is adjusted by the routine "adjust time and queue". If the
process has gone to sleep on the connect, disconnect, recover or logout
‘service in the meantime, it is moved into the file system queue; if it
has gone to sleep on -another service, it is moved into the blocked - i
queue; if the current time slice is considered to be over, the process R
'is left in the run queue, at least if there is still a number of time o
'slices to be-used; if no time slice is let . ‘the process is put into the
1low priority queue. The féétethat~aam3a§;ie:from;theacleek'is}received

~does hOﬁfimplyfthat}the¥curﬁéntqtime slice is over; it might ‘be the

;xrebly’td}aﬁrequest-issuedfwhen;anctherrtime slice started, which was not _"

__“9

entirely needed by the .prccess that gct it, because it uent to sleep.'
before the end of the slice. " The current time slice is considered to be

over if less than a certain minimun anwnt cf— 1t is left

After-the adjustment-of the t1me,_and poss1bly the queue, of the
process the following is done. The processes in the file system queue
are checked to see whether they are still waiting for a reply; if not,

they are moved into the run queue. Processes in the blocked queue whlch_

are no longer waiting, are moved into the high priority queue. Then an

attempt is made to load the candidate, if one can be found, and a

running prccess is selected.

A message frcm the disk driver might be a ccnfirmat1on of a (part ofh

a) file being read from the disk to core or of a (part of a) file being

written from core to the disk. In the first case the process, for which
this transfer was done, is being loaded. If the segment read was
segment 0 and a2 handler wants to copy input from its buffer to this

segment, a message is sent to this handler and the "copy ok" field in

" the segment table is set to "false" to indicate that the (part of the)

file has to be written back to the disk before the core used for it is

released. If all segments of the candidate are in core now and there is
no process in the run queue, the process is put into the run queue and.
- selected to run. In the second case core from the victim can be

released now. For segment 1 only those blocks which are not in use by a
handler to output characters from, can be released, for other segments
all core can be released. If there is still a candidate,-the-loading of
1t is continued. —_— | . S e
‘When the scheduler is called from the connect service, the process
which requested the serV1ce,'is moved into the candidate queue after the

time used by the running process is adJusted - The candidate is loaded
and a running process selected - e

At a call from the dlsconnect'service, the time used by the running

process is adjusted. The processes in the file system queue which are

no longer waiting for a reply are moved into the run queue. An attempt

is made to load the candidate, if there 1is one or one can be selected

and 2 runnlng process is selected.

A call from a console handler can be a call to get segment O cf a

-_user process into core, in which case the blocks, to which input should
be copied, are checked to see whether they are nct used to access a file

also; if so an error message 1is sent to the user. A reply to the
handler is sent immed1ately if the segment is already in core, otherwise

it is remembered that the segment is needed by the handler. It can also
"be a call to release some blocks of output segment 1, which were used to

output characters from. If the status of the area of core used to
connect the base file to segment 1 .is "out core", the blocks released

can be given back to the free list by a request to-the core manager and
the candidate, if any, can be lcaded S : | S

At a call from the lcgcut serv1ce, the process, which was stopped, 1s

moved into - the login queue and the.variables belcnglng to the process' .

are in1tial1zed

.

- The scheduler can be called by the despatcher in the kernel tco See -
jthe section about the despatcher (section 4.12). If the running process

is not the idle process, it may have gone to Sleep on the connect,

_'disccnnect “recover or logout serv1ce, in which case it ls.moved into
“'the file system~queue., If 1t has gcne tc sleep«cn ancther serV1ce, 1t

.........

i o il s, el e S DN T 5 e 2

 ' 'is moved into the blocked queue; If it is no longer asleep, the process
~ can continue. - The processes in the file system queue and blocked queue

are checked, and an attempt is made to load the candidate, if there is
oné or one can be selected and a runnlng process is selected

: A put output request from a user process to a console handler is sent

_;'to the scheduler first. If the console is not in use by this process or

the blocks, where the output buffer is located, are already in use, a

 refusal is sent to the user. Otherwise care is taken that the blocks

are not released until all characters in them are aotually pr1nted and
_the request is passed on to the oonsole handler.-

_12.8) ImElementationofthe-gggues.

As noted previously, all user processes are in one and only one of
the queues. These queues are implemented in the following way.

There 1is a record containing timing information for every user
process (the array "userlist"). These records contain a field to
~ indicate in which :queue the process is at the moment and pointers to the

previous and next - process in that queue too. The queues are cyclie.

When there is only one process in a queue, the previous and next pointer

‘both point to the process itself. The routine "change" is used tormove

a process from one queue to another.

- —— S R e e e & e =

o b it i A

v~'v~«r 13) Inltlallzatlon _;r-'

At a start or a restart of the system, the data areas’ have to be
initialized.. There is a fixed (re) start address (location 40 octal).
Part of the initialization is done by code in the kernel and part of 1t

by a seperate 1n1tlallzatlon program._*

13. 1) The kernel

The data area for the kernel is cleared first. Ihe-array “find",isgf
filled with pointers to process descriptors. The free list of records

to be wused for several purposes (head cell "asl") and the llst cf‘free7p

~message buffers (head cell "free") are. set up.

13 2) The clock

To run the system, elther a KW 11-P or KW11-L clock is required. -«Ihej- ':

KN11-P clock is prefered, because it can generate an interrupt every
millisecond. This makes the clock handler more accurate than what is
possible 'With an KwW11-L clock which can only generate an interrupt

every 20 milllseconds

First an attempt is made to start the KW11-P clock, after having set
the trap vector of the location to which a trap will occur if this clock
~is not there. If a trap occurs, the KW11-L clock is started.

13.3) Idle proces .

-~ The process table entry of the 1d1e process whlch has the hlghest_
process number,_ls filled in. The idle process is set to become the
first running user process. Now the separate 1n1t1alizatlon program is

~ called.

13'”)‘-nterrupt and-trap vectors.

- All interrupt and trap vectors are filled in. A vector consists of
the address of the interrupt or trap routine and the new processcrik
status word. The processor status words set for error traps contain an

error code.

13.5) Processes.

For all supervisor processes and user processes an entry in the"
process table is filled in by the routine "insert". The stack pointer, -
the program counter and the processor status word are set. Supervisor

processes are ertered into the ready queue. User processes all have the iortf“-,

same start address, which is in the subsystem,' and are put to sleep
_unt11 the login service wakes them up. ~ | B

'13.6) The service exchange table.

The service exchange table is filled in so that the legal service
numbers are converted into the number of‘ the process handling that

service.

52

x B -
‘J E' . ™ F;
o LY o Py
e L .

’ et X e e L wat - . L .- ", L
) ; ST A e T _ .
£ ! et s T T - T e o ' ! "
- LR LT B L whan, e R L e) ., . s .
1 . b i e e o e s e M e 1 ARY i i "l e i, i bt i (YRR i o e e L,

13 T) Consoles.'.

The number of consoles is speclfled by the constant integer "h1ghest
console" -For each console a record of the array "console" containing

the dev1ce address, the vector address the max1mum line w1dth and the'\
| delete character 1s fllled in. | | . | |

The 1nterrupt vectors fOr both 1nput and'outout are set. The new
processor status words contains an identification number to ‘be used by

~ the input interrupt routine ("consin") and the output 1nterrUpt rout1ne j

(“consout") to. identlfy the console.

FOr each console ~a record of the array "condes", whlch contains a
descrlptlon of the console and the state of the handler of the console,

~is initialized. The array "condes" 1s used by both the 1nterrupt

routines and the handlers.

Each handler has his own data area. The start address of this area

for a certain console is determined from the size of the system, which

is located in the lower part of core, and the number of the console.
The initialized data area is copied from the area behind the shared code
of the handlers to this area. ‘The rest of the data area is used for
un1nit1a11zed data | e R

| For each handler an entry in the process table and two entrles in the
service exchange table are filled in. _Spec1f1ed are the program

counter, the stack pointer, which points to the end of the data area and

r4, which points to the beginning of the data area. Interrupts from the
input of the conscle are enabled. T

13.8). Avallable core and memory manngjment reglsters

- e wa s e B M KT] ———t - n

The start and size of thﬁ_dr(i core tO'bezused;fbr'alIOCating
flles which is Jocated in the (nhi Uhar) part of core left after
allocatln - the system’code and data areas, are determined and set into

the varlables "start user memory" and "avax]ab]e user memory". These |

var1ab1es are used by the core manager to set up- its llSt of free core

- The kernel actlve page reg1sters the user actlve page reglsters and

_the coples in the kernel of the supervisor ‘active ‘page registers are

initialized to map virtual addresses in segments 0-6 onto the same
physical addresses and virtual addresses in segment T onto the reglster

*addresses - The memory management unit is started

"13 9) Ex1t

Process O whlch is the clock . handler, is selected to start running

and is removed from the ready queue. The routine "eX1t“ in the kernel '
is called to set the reglsters for this process. |

.....

ey e el e Wl e i B L B e

: i
s T L P —

T
.......
- Tl

~ 14) User processes.

| A user process has at its dlsposei a virtual memory of 64 K bytes,
divided into 8 segments of 8 K bytes each. It can make use of the
- resources of the system by issuelng requests to the superv1sor. | :

14.1) Standard division of the virtual memory.

For simplicity and convenience, a standard subsystem is part of the

code of every user process. This subsystem consists of the command
‘interpreter and the perm, which contains some basic I/0 routines. It is
~connected to segment 7. Part of segment 6 is used as data area for the

perm and the rest of the segment as data area for programs. Segment O

"and 1 are used as 1/0 segments in which buffers for devices are -located

and to which files are mapped. When the user process starts ‘base files
are connected to segments 0,1 and 6.

1&.2)'Ihf1uence of the'iMP oompiler-on'the'system;'

The. way the subsystem is built and the organisation of the I/0
segments is very much influenced by the requirements of the IMP compiler
and run-time organization. The possibility of running an IMP program,
which is one of the aims of a user process, requires that you have a

perm, which is a set of 'standard routines to e.g. read and write a

character. The perm in the standard subsystem is suited to this
purpose. |

Input and output in IMP‘1s done via so called "streams". ?_There afe 3

input streams and 3 output streams, numbered 0-2. At any time there is

one selected input stream and one selected output stream. All I/0 takes

_ place on the selected streams. The stream numbers are linked to devices

files in the ﬂolloW1ng way. - Input stream 0 and output stream O are
alwsys llnked to the user's console, i.e. the console the process was
started from. To input stream 1 and 2 can be linked devices or files by
putting their names behind the name of the program to be executed.
Names of devices or files to be linked to output stream 1 and 2 should
be specified after a slash in the command string. If a field is left

" blank, the stream is mapped to "null"- which causes and "end of input"
to be read on input and all output to be thrown away. As an example
consider the following command strmg o SRR

test filel,file2/file3 - |
It causes the program "test" to be executed. When the program selects

input stream 1, it reads from "file1"; when it selects input stream 2,

it reads from "file2". Output for stream 1 is written to "file3", whlle

output for stream 2 is thrown away, because no device or file. is
:speoifled for thls stream | |

Programs often use the p0331b1]1ty of‘ SWltChlng the currently

selected streams, so it must be possible to have all files, linked to a
stream, connected at the same time. Because the segments~2—5 are used

for the code and data area of the program to run, we decided to take

segment O as an input segment and segment 1 as an output segment. These

I/0 segments can be used to connect several files and to hold buffers

- for devices. See section on the virtual memory of a user process
(section 8.9). - LT e - | :

54

i =* =7 . i . Lo
TP N TR S | [P S b gadlot i o o i

r.r- "

Ui

P] 1" !
il S e s

- vy . . . - i) .. "
- a . . .‘- "] . i a
W - ’ . R e S
e e - i — . | % :)
e A e e e B R e i i s . R Y - . L .

L TR R S S i,

c RIEPAY 3 :
o e e B
.

&ty

The I/O segments are d1v1ded in. the ﬂollowlng way.- The first 2c'
blocks of 512 bytes are reserved: for stream O, which is 1linked to the
user's console. The rest of the segment is d1v1ded 1nto two perts.of 7_

blocks, uhloh ‘are used for streams 1 and 2

14, 3) Im'lementat1on lan'ua_e.

| Although parts of the subsystem could certalnly be wrltten in IMP 1tl
is entirely written in assembly 1anguage There are several reasons for
this: | ~

has to address the registers

-routines to read and wrltew a character should be efflclent o
because they are executed very often. Especially the entry and
exit from a routine can be made much shorter when the perm is

. written in assembly language.

-writing the subsystem partly 1n assembly 1anguage and partly 1n -

IMP would 1ntroduce some nasty linkage problems.

TJ“ “) Perm rout1nes

’-The"ﬂollowlng routines are proV1ded by the perm

~routine read symbol (%integername nh); reads next symbol on the
current input stream and advances the streampolnter so that the

- symbol is not read again
¢ <%integerfn next symbol; reads next symbol on the current 1nput

stream, but does not advance- polnter so that the symbol can be

read again

~%routine pr1nt symbol (%integer n) prints symbol on current

output stream
-%routine select 1nput (%mteger strean nunber), further calls of

read symbol and next symbol are to operate on the input stream

-~ with the specified number
~%routine select output (%1nteger stream number), further calls
are to operate on the output stream with the specified number
-$routine eclose input; close the current input stream and selects
input stream O |
_-%routlne close output; closes the current output stream and
- selects output stream O : - S
-stop; closes all streams and exit to the command 1nterpreter |
-s;gnal this is a 1anguage dependent feature

14. 5) mglementation of the Eg

The locations 1in segment 6 with the addresses 157100-160000 are used
as a data area for the perm. Most important in this area are the stream
descrlptors, containing for every stream:

- =-pointers to positions in the buffer belonglng to the stream

~the rname of the device or file linked to the stream . -
-if 2 device is linked to 1t the service number of the device

-if a file is linked to the block number of the f1rst-"

urrently connected block of‘the f1le

When the perm is called there are a number of routlnes used to check-

the part of the command string contalnmg the names of devices and
‘files, which have to be llnked to the streams and to set up the stream
descriptors | | | o | | | |

-some parts have to be written in assembly language, because one?

T

14, 6) Anuexam 1ef.read sbol‘ _

~ If there is no error in the oomm_a'nd.-*string,» the r-e_covery address is

set to "stop", so that after an error trap all streams are closed in the
normal way, and the input request message, which is used by the console

~handler to ask for input, is cleared by issueing a supervisor call to

the console handler. Register ri is set to point to the gla, i.e. the
initialised data area, register r5, which is used as a pointer to the
IMP data area, gets the value of the stack polnter and the . program 1is
started by Junplng to a f'ixed start address. -

As an exanple of how the perm makes use of the SUperv:Lsor the

routme read symbol will be discussed

At the entry of the routlne ("readsym") 1t Lit-;checked in- the

descriptor of the current input stream whether all characters in the

 buffer belonging to the stream have been read If so, the buffer has to

be filled again.

For a device this is done by the routine "getdbuf", which sets the
parameters for a get input request and issues a SUpervisor call to the

 device linked to the stream. If the call was successful, the stream
- descriptor 1is reset and "readsym" returns the first swmbol out of the
buffer. If the end of the'lnformatlon is reached, the symbol value

"100004" is returned. If the device was not opened by the process, a

~supervisor call is 1ssued for this purpose. If this call is not
successful, i.e. the device cannot be Opened the program is stopped,
| otherw1se the get input request 1s re-1ssued

For a stream 11nked to a file the routlne "getfbuf“ is used. - This
routine issues a supervisor call to connect the next part of the file at
the buffer area. First a connect in shared mode is tried; if this is
not successful a connect in unshared mode is tried. If the call was

successful, the stream descriptor is reset and “readsym" returns the

first symbol out of the buffer. If the end of the file has been passed,

the symbol value "100004" is returned ~If the connect cannot be‘
. executed successfully for another reason, ‘the program is stopped |

1U.7 sttem rout1nes

There are a number of system rout1nes, i.e. non-standard routines

usable by IMP programs, in the subsystem:

~%systemroutine svc (%record (%integer service, pari, par2,_par33

pard, par5) ¥fname mes); 1ssues a supervisor call with the

specified parameters -
- =%systemintegerfn owner; gives identiflcatlon of the user
. <$systemroutine command (%string (80) s); puts the string into
- the command buffer from which the command 1nterpreter tries to
read characters before it starts reading from the user console,
this offers the possibility of issueing commands from programs:

-%systemstring (12) %#fn strname (%integer inout, stream); gives

" the name of the device or file linked to the specifled Stream
- -%systemroutine setstrm (%integer inout, stream, %string (12)
name) ; 11nks the speclfled dev1ce or f11e to the spe01fled
- stream :
=%systemroutine setlnr (%strlng (11) s), sets the 1nput request
message tO s |
'—$systemrout1ne specout and %systemroutlne normout used to set

56

RS

. - . st : . A
g " . _- L. . . J - - . ' a) . . " . 4 : . = . :
| | o LT . . . -) / : i : - . .
g : - : . i . : . . 1 . - .
" T L ML T T T - ’ \ ’ - I J | | |
I S el LA T - ! I ., . . . e ; : . : .
e bt S T T e e o s d L IR L L. S S L A S I . :] - i : . K) .) :
el T T T T P T T L - ’ o N . . . | .
A e B - S P T, - . T - " PR @ anmee o, s 4 1 W o & | 1
. . R T T e e T A Biome s T aRereaT eyt 1w i) ’ '
. 3 rerdioin mi b A e e e e - " T T P Eme o b omm - ¥ ' |) v
| ‘ as 9 . B . . TR | 1T I T P T L LT LY i EE] 4

o g i e e i, o

. 2

1H 9) Commandxlan

whether or not output of a buffer for a dev1ce should be done at

a line feed; this offers the possibility of speeding up output,f .
because the process is put asleep only when the buffer for the

device is full or the "prompt character" (k'100000') is sent.
To use one of them, one has to 1nclude a "%systemrout1ne3pec“ for the
routlne in the program. | - . | o |

14.8) togging'a program.

When a program stops because it is at the end of its execution or an

error occurred, all streams are closed. l.e. files are disconnected and
devices, except the user's console, are closed. Streams O are selected

for further input and output. If an error occurred, an appropriate

message or flag is prlnted on the console Control 1slpaSSed back to

the command interpreter.

uage 1nterpreter. :

 The command 1anguage 1nterpreter s functlcn is to get a command from
the user and check A command consists of a program name,,whlch

should either be the name of an object file to be executed or the name
of one of the programs located in the subsystem. In the first case the

program name should be followed by the names of the devices and files to

be linked to input stream 1 and 2, a slash and the names of the devices
and files to be linked to output stream 1 and 2. The program is loaded

‘and the ‘perm is called to execute it. In the second case other
‘parameters are expected. The program does not have to be loaded now,
but can be celled directly (see sect1on 14,13 about programs in the

subsystem)

'Ihe reason the perm was dlscussed prior to the command 1nterpreter is
that the last makes use of the perm to get characters from the user's

console. If there are no characters in the command buffer (see section

14.7 about system routines), a read symbol on input stream O is
executed Output from the command 1nterpreter is prlnted via the print
symbol routIne on output stream o. | .

14, 10) DeV1ce and file names. R

Dev1ce ‘names con31sts of a dot followed by two letters. The name

m tt" is used to indicate the user's.console. Other-names in use are:

=", 1la", to indicate the system console
. _" di", to 1nd1cate ‘the dlablc prlnter

Fbr the conventlons for fllP names, see sectlon 8. 3

14.11) Searchin or'a Erogr f ’

When search1ng for a program, the llst of programs in the subsystem
is checked first. If the name is found, the program is executed If it

‘is not found, it is checked whether an extension has been set; if not,
the extension 'o' is set to indicate an object file. If ng owner.

identification is set, the user's 1dent1flcatlon is set and a conbect of
the first block of‘the file at segment 2 is requested. If the connect

48 not successful, the user's identification is replaced by the
1dentif1cat10n of the system.manager, i.e. the owner of all filéb'ﬂhich -

_) f

-

 are in;endedfbk‘generaluse,andaconnect_istriedonthisfile1 If
| an - owner *‘déntification'~is;“set_*by- the'user,himself,=anly the fully

specified file is tried.

" If the program file is found the loader is called to load the
program; otherwise the message 'program not found' is printed. The

program is started via the perm.

14.12) Loader

At the moment the loader is Called,' the f‘irst block of the pr_ogran

q*'file_ is connected at segment 2. The first 3 words of an object file

contain the following information:
~-the length of the code

~the length of the glap, i.e. the initialized _data and linkagé |

area | |
- ~the length of the stack area needed by the program

The loader reads these header words from the file.

‘The next stage_‘is'to copy the glap to the gla,”i.e;the area in the

‘virtual memory where the initialized data and linkage area will be
located during the execution of the program. This copying 1s necessary,
" because the program file itself must stay intact, to enable a next

execution of it. The glap is located at the end of an object file. The

startblock within the file is determined from the header words and the

- file is cénnected"frcm' this block onwards to segment 2 and possibly

higher segments. The gla is located in the area below the stack area,
‘which is the uninitialized data area. The gla bottom, which is the

"

lowest address of the gla, is determined from the header words. If the .

gla bottom, which is always on the boundary of a segment, is the lowest
address of segment 6, copying can be done immediately, because to this
segment a base file is always connected. If.however the gla bottom is =
located in one of the lower segments. a scratch file 18 connected from
this segmeht;onwardsfup*tofséngﬁt_G;;’fThe'scratCh_file{is”used_tQ]QOPy-_-
the glap into and as stack area. L | | T

After COpying_thelglapttO'the gla, the.'bode 1partiof~-thefile*is

connected from segment 2 onwards.

14.13) Programs in the,subs stem. |

 There are a mnb.er‘"'c)‘f'prograns which are located in the subsystem f‘c)r.

two reasons: |

-efficiency. The program does not have to be loaded, S0

execution can be started immediately. This is an advantage for
often used programs like "delete file". -
-no files have to be connected to 1load the program, SO the
 virtual memory is left in the same state. This is necessary for
a program which wants to read a certaln area of the virtual

memory ~as it is at that moment. As an example consider a dump

- program.’

These'programS'must5of'course be short. The éxpectedxparameters are

determined by each program separately. As an example, the dump program

expects the begin and end address of the area to be dumped. .

| Sbopping thé_usér“pr¢Cess ("logout") 1is also .déné gby 3a' progrém_ |
located in the subsystem. A

. 58

5 S

i .

(S

— . ¥ T--.-_-. . . . L LN
LI s o et g e . .
I Tt S T

’ 'E'_' O e L L S S !
i M R N e e o

e

©14.14) Starting the subsystem.

 When ‘a user procesS is started, the system starts the 1n1tlalizatlon _
- part of the subsystem. The area in segment 6 from: 156000-157100 is used
~as data area by the command interpreter. This area and the stream

descriptors for input and output stream 0O are initialized and the
streameqmentloned are selected as the current input and output streams.-

| The command 1nterpreter then starts to execute commands, until “the
| 1ogout canmand is given. | T |

14.15) Availabie Erograms;

From the available programs we mentlon the f011OW1ng
| -an IMP compller

~ -a linker - - -
~ -some programs to manipulate 11brar1es, i.e. files contalnlng

- 1nformat10n about routines which can be linked to programs .
~-a recode program, glving the code the IMP compller produces for
~~ a program | |

~ =an editor | - -

=23 document layout program, used to prepare thlS document

59

SR

1557FUrther develoj ents.

The current system certainly is not flnlshed many extensions and
lmprcvements might be implemented I shall,mentlon some of these. | |

15, 1)'Paggrtage handlers._a I_'i

A papertape reader and punch handler will be qu1te easy to 1mp&ement-

once you understand the console handler code. The console handler will

be much more complicated, because it has to handle both input and.

output. The papertape reader and punch are 1ndependent

15.2) ww

The CUrrent version uses only one disk. This mlght be extended to
more. It should be considered carefully how the allocation of files on

these disks is done. One could e.g. allocate all files of a certain
user on (part of) one disk or allocate all files created during a

certain run period of the system on one disk and copy them afterwards to

| another dlSk

15 3) Archive system |
It should be possible to archive a file on 3 dlSk or tape different

from the disk(s) used to run the system. This is required both as a
precaution against loss and as a way to save space on the dlsk(s) ‘used

to run the system

15.4) Perfbrmance evaluation.

‘The perfbrmance of the system should be measured._ Especially in the.
de31gn of the scheduler there were made some arbltrary decisions,
e.g.the length of a time slice. The consequences of these decisions-

| were not understood and should be 1nvestigated. |

ThlS evaluation w111-almost,certa1nly lead to improvements 'inj the
scheduler and in the disk driver, which can be rewritten to implement a

better service discipline than the first come first served discipline.

60

'.'-\.-‘_.-
L

L " : '
W o ol :..H: '
L* * 5 * . -
e e AL G S e

¢y B

" ']
LT My IS . .
FRRE, R0 S OV RT - P U A RIS SR TN

I S R

a s, o e g, . Sty v b8l il

e

R
NCRE
i

i

e’

--“_-___'_r__.-"’ '

References

= [1] PDP‘H Processor Handbook Dlgltal Equ:meent C«T)J’l"ll’ﬁ?1“"=3'f'1€?’n

[2] PDP11 Peripherals HandbOOKI Digital EQUlpment,COFPOratlon’

[3] RT11 Software Support_MenualngigitaliEquipment Corporation
- RT11 System Reference Manual, Digital EqUipment-Corporatien |

.[M] thchie D.M. and Thompson,K., The UNIX Time-Sharing System,

Communlcations of the ACM, vol 17 no.7 (July 1974), pp. 365-375

- [5] Whltfleld H. and W1ght A.S. EMAS - The Edlnburgh MU1t1-Access System,

The Computer Journal vol 16 no. 4 (november- 1973) pp. 331-3“6

[6] Robertson P. S The IMP‘Language A Reference Manual
Unlver51ty of Edlnburgh -

[7] Hensen,P.B. Operatlng System Pr1nc1p1es, |

Prentlce-Hall 1973

(8] Coffman,E.G. and-Denning,P.J;,-Operating_SVstem Theory,
Prentice-Hall, 1973 | -

61

| R " 4 :
I L Rt e 5 ek R e e e T e T e 6 e i
= Brlim A geies s e g s o f A i e ey

