RIJKSUNIVERSITEIT TE GRONINGEN
MATHEMATISCH INSTITUUT

a multi-user operating system
for the pdp 11/40

Winm Bronsvoort

T™W-200 deel I

GUTS

IWim Bronsvoort

This.project,was undertaken during
the closing phase of my study under
the superv1310n of Prof. Whltfield.

Inqu1r1es may be addressed to.
- Department of’Computer Sc1ence
- Postbus 800 | |
- 9700 AV Groningen

December 1978

Index;a

e

1) Introduction

1 1) History

1.2) Type of system o
1.3) Motivation for wrlting the system
1.4) Hardware environment

1.5) Implementation language

- 2) General structure of the system

2.1) Hlerarchal structure
2.2) Direct memory access by an 1nterrupt routine
2.3) Kernel
2.4) Supervisor processes
- 2.5) User processes

3) Dlrect memory access by an interrupt routine

_ 3 1) Clock 1nterrupts .

 fH) Kernel '

4 1) Implementation language

4.2) Priority, mode and mapping of the kernel and

-~ . the processes
4,3) Data area

EEFWWNHNN=S =2 —2O0OWW W W 0 W OMEEE &= W=

ned
N

4.4) Entry
4,5) Wait and signal on a semaphore |
4,6) Service exchange
4.7) Send message
4.8) Receive message
~ 4,9) Supervisor calls
4,10) Interrupts o
4.11) Error handling
4.12) Despatcher
4,13) Exit -
4.14) Idle process |
u.15) Further routines
'5) Clock handler 15
5.1) Messages from the clock to ‘the handler |
5.2) Services = | 15
5.3) Main part of the handler 15
5.4) Requested interval over 16
5.5) Get current time 17
5.6) Set current time 17
- 6) Disk driver
6.1) RK . 18
6.2) Serving a request _ 18
6.3) Service discipline ' _ 19
- 7) Core manager | o o . 20

7.1) Services f 20

7.2) List of free blocks
7.3) Get core

7.4) Release core

7.5) First fit ”
7.6) Initialization

8) Flle system

',8 1) Files
- 8.2) Structure of the dlrectorles and
| allocation of the files
8.3) File names

8.4) Owner of a file

8.5) Access permissions

8.6) Services |

8.7) Directory structure | |

8.8) Advantages and d1sadvantages of‘thls d1rectory
- structure o

8.9) Virtual memory of a user process

8.10) Write shared problems

8.11) General implementation features

' 8.12) Create file

8.13) Close file

8.14) Delete file

8.15) Rename file

8.16) Set access permissions of file

8.17) Get file names and information

8.18) Offer file

8.19) Accept file

8.20) Connect file

8.21) Disconnect file

9) Console handler

) Consoles
.2) Mode -
Opening a console
) Input/output buffers

) Simultaneous 1nput and output
) Escape
) Further services

.1
2
.3)
4
.5
.6) Output
7
.8
.9
9.10) Convenience and efficiency of the handler
.1

o@'m@@-m@o@@m'

| 1) Main part of the handler
9.12) More about output |

9.13) Interrupts -
9.14) Handling requests from the user
9.15) Handling requests from the console

- 10) Recovery

'10 1) Setting the recovery'registers
10. 2) Resettlng the state of a process

1) Login and logout
12) Scheduler _
12.1) Queues

21
21

21

-~ 12.2) Round-robin
"~ 12.3) The candidate |
12.4) Loading the candidate
12.5) The choice of a victim

12.6)

Releasing core in use by the victlml_

12.7) The main cycle of the process

12.8)

Implementation of the queues

‘13)_Initializetien'

13.1) The kernel
13.2) The clock

13.3)
13.4)
13.5)
13.6)

13.7) Available core and memory management registers

13.8)

Idle process |
Interrupt and trap vectors
Processes

Consoles

Exit

~ 14) User processes

%.1)

14, 2)
14, 3)
14.4)
14.5)
14.6)
14.7)
14.8)
14,9)

Standerd'd1v1sion of the virtual memory
Influence of the IMP compller on the system

Implementation language

Perm routines |
Implementation of the perm

An example: read symbol
System routines |
Stopping a program .
Command language interpreter

14.10) Device and file names
14.11) Searching for a program
14.12) Loader |

14.13) Programs in the subsystem
14.14) Starting the subsystem
14.15) Available programs

15) Further developments

15.1)

Papertape'handlers-

15.2) The use of more than'one disk
15.3) Archive system |

15. u)

Perfbrmance evaluetlon

) References AT

U6

47

u7
48
48

51

52

52

52

5
- 52
53

53

53
5}

54

55
55

55

57

57

58

59
59
60

60

60

60
61

56
56
57
57

TETETT T aoem T U] e .. . ay .
é_.,?f.:. oy TN A b, T ol " T 4
4

R D *IntrOdU‘?’t.iom*‘ B

Gronlngen Unlversity Timesharlng Systan (GUTS) is the “somewhat

~ambitious name of the operating system which will be described in this

document. Although it is a system with some attractive properties, it

~ Wwas never meant to become generally used at our unlver31ty, as the name
m:.ght suggest.h. S | PRI

1. 1) Hlstorz. AR

The first work on GUTS » was done in 1975 duri*rg a course on oper'atmg .

'systms. . Prof. - Whitfield wrote the first version of the kernel and a
| r of pro;ect groups conslsting of ‘students wrote some processes

michmade use of this kernel. In 1977,two more students worked on the

. System and in the meantime two student-ass:Lstants did some development
wrk on it too. I worked on the system both as a student and a

udént-assistant.'_'f'

In the autumn of 1977 we had a system, entlrely wr1tten in aSsembly'
uage |, which did the synchronization in a tidy way, but was not

'really usable. There was no loader, no compiler or assembler and the

system 1itself had - too many deficiencies to be attractive. At that

- moment we obtamed a compiler for the high~level implementation language

IMP for the PDP11. I was looking for a project to complete my study and

- we decided to install the compiler under the (0ld) GUTS system and to

redesign, rewrite in IMP and for the first time, to properly docunent -
_the systan.;

The systen running now is much more attractlve than prevmus

' 'va'sions, but certainly nct f‘mished it can be 1mpreved and extended in
| -'mm)' ways. | ,

. 'l 2) Txge of‘ szstem. _

GJTS 1s ‘a multi-user, mterective operating system f'or' PDPH |

'* 'cemputers with memory management, 1i.e. sever;al users can work from
| -:conseles on the system at® the same t-_;:mes _ It is. n_ot-" -designed -- .forf-- ;‘,--batch

essing or real tlme appl icatmns. |

We will call '“the system“ that part of the sof‘tware which is
permmently resident in main memory: the Kkernel and the Supervisor
processes. - The "subsystem", which is part of the code of ‘every. user
process and consists of the command interpreter and basic I/0 routines,
will also be described, but programs which can be run by user p*ocesses, _
such as editors, compiler's, etc., are not described in this docunent

-

1. 3) Motlvation for wmting the szstem.

When the develepment of GUTS started it was as a teaching pmJect

with the following aims:
'--leerning ~about synchronization and other operating system

prin01p1es
-leaming to manage a somewhat more compllcated progran._

Graduelly the systan becane too eomplicated and in fact umnanageable,
mainly’ because it was written entirely in assembly language. It

PRl e A i gk MR Sl el AT —a = - &

-y A Eepfela e rma cor W ey s) EEE

- L]
[
A Lo b -l o - e byl R, S———— P P f LR L
ey,

the program running, a

are:

- certainly could not be presented at a new course on operatlng systems as
an example of how an operatlng system should be wrltten - L

‘The main intention Of'mW'prOJQCt was toflearn more about de31gning
and implementing an operating system, . and in this way to 1manage_

'fcamplicated applzcations in general.

The main objectives chosen for the system.were the fbllowang |

-3implicity: it should be shown that a system, which is really'.

- usable, need not be complicated. Besides, simplicity increases
the adaptabillty and might 1mpr'ove the perfonnance of‘ the system- |
too.

-it should be usable as an example at courses on Operating |
-systems. ~ This means that the system should be easy to
“understand from the source-llstlngs and the documentation. I
‘have tried to write tbe ‘system in a. Qlear style,i 1nsert1ng'
~useful comments. - |

" -~the system.should be eff1c1ent Exner;enee w1thfthe;w1de1y used
~ UNIX system ([4]) showed that the performance of this system is

- not so good and- that it is certainly pessible to write a more
- efficient system. o _

- These obdectives have been chosen at the cost of generallty., I hope

' this objection is not too serious, but still more do I hepe that thef
_objectives mentiened have been realized o |)

 1.“) Harduare eHV1ronment

GUTS is written for the PDP11/40 computer, which consists of a
processor connected to .one or more storage units and peripheral

- controllers via a bldirectienal parallel cmmunicatmn 11ne called the |
"Unibus". Fbr details see. [1] and [2]. - - | |

It is a sixteen bit word maehlne,_-l.e. instructions and virtual
addresses have this length. A word is divided into two bytes, so data

can be eight or sixteen bits long. The processor incorporates a

processor status word . (psw) eentainlng.lnﬂbrnation about the status of

unter (pel, two stack pointers (3D) and
six general registers. : srate in two different modes:. kernel
mode and user mode. 'I'he choice of ‘the mode determines hhiCh set of
memory management registers is used to conver't program virtual addresses

into physical adresses, which -stack- poznter is used and whether certain

instructions e.g. "halt the: camputer are. fbrbidden or not.“ Fbramore

details and the instructien sehq see [3}- _w,;;,q

The minimal hardware requirementa ﬁer GUTS, be31des the processor,

-112 K bytes of main memory, which we w111 call "core", although
it need not really be core'memory, to prevent confusion with
"virtual memory" o .

-a memory management unit; see next sections |

-3 decwriter, ‘more conaeleg can e3511y be 1nserted 1nto the 7

- 8system | | S o

-a KW1l-L or KH11-P clo k

-an RKOS dlSk.

- The manory managanent unlt converts 51xteen bit v1rtua1 or progran. |
addresses ‘into. physical addresses of eighteen bits. It¢cbnsist§.of'two

-sets ef‘registers, the active page reglsters. For. eaeh of ;;j;,ﬁﬁiﬂﬁﬁ_-L

there is a set of these regl'sters._ anh set is oomposed of eight palrs,
~each consisting of a page address reglster and a page descriptor -
register. Each pair controls the mapping of one page, i.e. 8K bytes of
the virtual address space. Each page—oonslsts of a maximum of 128
‘oontlguous blocks of 64 bytes each R - -

- Any virtual address belongs to one page or other.=: The correspondlqg
- physical address is generated by adding the relative address within the

~ page to the contents of the corresponding page address register.The
contents of the correspondlng page descriptor ‘register determines for

" which addresses in the page, 1if any at all a mapping is valid and

whether or not it is allowed to write into the page. Furthermore the -
 register coﬁtalns a bit indicating whether or not the page has ever been
written into. = Any attempt to reference an invalid sddress, i.e. an

address for which no mapping is set up, or to write into a page whloh 1sx ;.

_ protected from writing, is trapped by the hardware.

| The memory management unlt proV1des for enlargement of the usable
core memory (up.to 256 K bytes) and protection against users reading or

o modlfylng parts of core outside theéir own areas. Alas, the design of

 ,the unit is far from ideal as w1ll be shown 1n the chapter on the file
LVsystem (chapter 8) | | | N
L 5)}1mglementatxon“la_'uare..

; AS*mentxoned previously, the f1rst ver51ons of the system were |
entirely written in assembly language and were assembled by the MACRO

assembler running on the RT11 system ([3]). The kernel and the

ssubsystsm of the current version are still in.assembly language, but all
' superv1sor processes are- written 1n IMP s _ .

IMP was designed as the implementatlon language ﬁor the Edinburgh
- Multi-Access System ([5]), but is now in use as a ‘general- ‘purpose
programming language on many machines. Although it preceded Pascal it
can be described as "Pascalulike" It.offers tidy program and . data ;
- structuring facilities and 1s.easy to -{f{rstand. - For a descrlption of
 ‘the language, see ([61). R I

The advantages of u31ng a higher level language are enormous
.ﬁ ‘v 2 come ‘more structur ore readable and are easier to
;;maintain - When you use ‘such a—language, you are less concerned with

" details and so make fewer mistakes while programming. The time you win .

.‘_;in this way can be used for thinkzng about the real problems. GUTS: is
~ another proof that programs like operating systems can be written in a
higher level language, a fact admitted by toorfew'people._. B

| The Ohly problem: wlth the ourrent oompller 1s that 1t is not
‘reliable: strings and byte integers cause a lot of trouble, but also in
other cases faulty code is sometimes generated or the compiler blows up.
Parts of programs for which faulty code was generated could always be
rewritten in such a way that the compiler generated correct code. “The
difficulty was to localize the parts at which the compiler failed.
'Writing a correct program which does not work is one of the worst things
‘which can happen to a programmer. I call the current version of IMP a
higher level language with a lower level compdler and s1ncerely hope we
_ ;will Shortly get a better 1mplementatlon. - _

[Toe e T : T T & - . 2 -
; . .s-___.q‘,,I LA LA, T o -
- TRy TRy e TR LT o ;o
E

2 Geneeal m-,ructure efthe system. o

To mderstand the S»ystan requires a kncwledge cf' the general f‘eatures;_
of operating systems 1like processes, synchronization, resources and
. scheduling. The book "Operating System.Principles" ([7]) can sérve as -

an introductien to these. e

I 2. _1) Hierarchal structwe L

GUTSrcan be ccn31dered ee ccnsisting cf a number of 1evels, eechVi

level making use of the- facilities offered by the levels below it. This
division was made to understand the working of the systan better and to_..

‘give an idea cf how the difTerent perts ere related. :
hThe_levels, in 1ncre331ng order are'
~ =the hardware = -
© =the direct'memory accesses by 1nterrUpt routines
-the kernel for the basic synchrcnization
~-the supervisor processes IR

-the subsystem, i.e. the command language 1nterpreter, 1oader and_: |

- basic I/0 routines

-the user programs. |
The-hardwere has already been described in the previous chapter. The
general principles of the other levels will be described in the rest of

‘this chapter, whilecthe descripticn of the internal wcrking of them will

fbllcw‘in latér ct

3'“i;ffﬂe term;direct'memcry access is normally used to indicate access tc;f'

mairi mcry by a device, e.g. the disk, without the processor being”

involved. Here it is used to indicate access to main . m@ory by an
interrupt rff'ine “without the rest of the system.beig
the system continues at the exit of thi
at the time of the interrupt. The idee is tc echleve scftuere simulated

DMA to reduce kernel activity

» routine in the same stete 1t uaSj

These interrupt rcutines, running at a nen-interruptable pricrity,'f

are used for actions which are performed very often and are simple and

- short. Only when there is an exceptional condition will. it be necessary
to infcr'm a supervisor process of this, e.g. when. the ccmter in a clock

interrupt routine gets a value less than or equal to zero. This is done
- via the kernel by converting: the interrupt into a. "signal"' on - a
- semaphore or by sending a message to the supervisor process. This can
~also influence the continuation of the system. - Generally there will be
" no exceptional condition and there will be a simple return from the
~ interrupt, continuing the system in the state it was pricr to interrupt
Handling interrupts in this wey is very efficient. L BRI

g - i
LFO=

2 3) Kernel.,..a,s

The kernel is in fect the b331c pert of the. system, needed' to
implement the idea of a process. It contains a description of the atate
- of every process and a despatcher, which selects the next prfﬁ‘ diffich
is going to run. If there is no other process to be 'run, the idle

prcceaa is selected

‘The primitives for process 1nteractlon are 1mplemented by the kernel

too. SuperVLscr processes can request a "signal" and a "wait" on’ a

semaphore, a "send message" and a "receive message". Supervisor and
user processes can request a "supervisor call", i.e. a '"send message"
‘combined with a "receive message" to receive the reply to the request

 issued by sending the message. The use of semaphores by user processes

- would requlre an allocation strategy for these and the use of "send

message" is dangerous because this could cause a message buffer overfIQW"

~ when too many messages are sent without receiving the replies sent’ by
the supervisor. Besides, the use of these primitives by user processe3f~
 would make the supervisor more complicated, because a second request
- could be sent to a supervisor process beﬁcre the first one is serviced.
Some interrupts from devices, handled by the kernel are converted 1nbo
] "31gnal" or a "send" too. | | | o -

| The kernel is xmplemented as a critical region, i.e. the executlon of
one call cannot be 1nterrupted by another call. This is achieved by
“running the kernel on a high priority and is ‘needed because the
operatlons perfcrmed need tc be mutually exclusive. |

| The ccde fcr the idle process is located in the kernel too, although
it is not really part of it and certainly does not run on a non-

,.interruptable priority. Furthermore there are a number of useful

routines: a trace routine, which can monitor on the system console
messages sent and or received by one or more processes (this is very
convenient during the development of the system), a dump routine,
useable if the system crashes, and a boctstrap.routine for the HT11
system, which is used for loadmg GuTs. |

~ To read more about the idea of a kernel, consult the book by Hsnsen
({TJ), whereathe term "baslc monitor" is used fbr it. : _

- The superviscr is the part of‘the systcm which enables users tc shsre
he rescurcesfcf the system such as: - o 5 |
o -processor time |

-core : -
-disk space
-consoles.

It conszst of a number of prccesses |
~ =the clock handler, offering time serv1ces
" =the disk driver, hamdllng the disk -
. =the core manager, keeplg;;trsck of used and free space in core
 «the file system, allocating files, i.e. collections of data, on
- the disk and making these files accessible to users. It also
contains = routines : for the. starting and stopping of user
| processes (logln and logout) and resetting such a process to a
required state when there has been an error -trap (recovery)
- -the console handlers, each handling one console
. =the scheduler, arranging the sharlng of core space and prccessor
| tlme amcngst the users.

User and superv1sor processes can send requests fcr a serv1ce to a
super#iscr -process. All services have a unique number which must be

 specified when sending a request. This number is converted into a

- process number by the service exchange mechanism in the kernel, whlch.
makes it possible to hcld the service number fixed while changlrg the

‘.number of the process handling the request When a supervisor process

' receives a request, f1t ‘depends on the service number which routine of - .
 the process is executed. Not all services can be requested successfully -
by user processes, e.g. ‘the disk can not be read from or written. to
directly by a user and all parameters of*a call are checked carefully. S

‘The supervisor processes have to set the source of a message .
themselves when sending one. = This enables them to send a request on

behalf'of:another process or to pass on a request.

The superv1sor processes are permanently in core. They are proteotedg_
- from being read from or written to by a user process by the-memory:_
-fmanagement unlt) . o i

All superv1sor processes have the same general structure they are 1n. -
~ a never ending loop, receiving a request, handling the request and
f.:mostly ‘sending. a reply lmmedlately. Before the 1oop is entered, ‘some

initialization of variables 1s done.. S0 all supervisor processes look
like: | ST L o

inltializatlon
%cycle o
| recelve (message) o

.il.li

-send (reply)
-.='%repeatf , I _ , .
.The variable "flag"' is always used to indlcate the result of the

request; only if "flag" has the value zero at the moment the reply is
“sent, has the request been handled successfully. The supervisor

, processes extensively use the primitives offered by the kernel to

interact with other supervisor processes. (The "“control k'100001'"
. statement in the system sources indicates that'multipl cation, division

- ete. should be executed by the hardware, i.e. the Extended- Instructlon-
- Set option should be used, and that the program is trusted, i.e. certain

checks, 11ke swltch index checks, are not executed.)

* 2.5)User2rocesses.
' A'user process is Started”ﬁor'every User - who is admltted to the
system. It has at its disposal a virtual memory of 64 K bytes:

addresses generated by the processor when the process is runaning are 16

bits long. These virtual addresses are converted into physical
addresses by the manory management unit after the approprlate mapping
for this conversion has been set up by the system. o

It is not necessary to understaad what a user process-does to be able e
to understand the system. Every user process could in fact arrange -
things in its own way. For simpldcity and convenience however, a
standard subsystem has been chosen as part of the code of each user
- -process._ This subsystem consist of a command interpreter, which
‘determines the interface of the systm to the user, and basic 1/0

routines, and is located in segment 7. Segment 6 is partly used as.data

-area for the subsystem and further as data area for programs to. bq rin.
| .\-':’Semeat 0 and 1 are used as 1/0 segments (see the descai :_:_;-‘;_i_oa of the
fxle system) These (arbitrary) decisions have had- Some: - iﬂ;aaence @nF -

LU

= : .!"'.".""."*""'7--"'“- ——— PR T T T R Ao o e Ty
.

the design of'the 3Y5tem~t.6_'-~ |

-The user processes which are—meant to run programs, can get access
‘to the resources of the system by sendlng requests to the supervisor.
‘So you could say that every user has at its dlsp@sal a 16 bit virtual

cernputer .

There are dlrect memenyﬁaccess 1nterrupt routlnes fbr two purposes‘ o

- «to-update a counter for the clock handler
-to put a character into a console output buffer.

The Second one will be dealt with in the chapter about the consoleV*

handler (chapter 9), because there is a lot of interaction between the

routine and the handler. The first one will be discussed now. The
routines are run non-interruptable priority, to ensure mutual exclusion

of the interrupt routines and mutual exclusion of an interrupt routine
and a kernel call. They are in Kernel mode, so that the kernel memory
‘management_registers, which are set to map a virtual address onto the

location with the same physical address, are used. The assembly

-1anguage code for the routlnes is located in the code for the Kernel.

3. 1) Clock_lﬂterruits

| Dependlng on the avallable clock the routlne "kWplnt“ or "kwllnt" is
- used to update the variable "count". This counter is used by the clock:
- handler to indicate the number of milliseconds to pass before it has to

be waked up. If an KW11-P clock is used, 1 is subtracted from "count"
every interrupt, Dbecause this _clock gives an interrupt every
millisecond. If an KW11-L clock is used, 20 is subtracted from "count",
because the frequency of this clock is 50 Hz. As soon as the counter
becomes equal to O in the routine for the KW11-P clock or less than or
equal to O in the routine for the KW11-L clock, a message to the clock
handler is generated. This 1is done via the kernel and informs the
handler of the fact that the requested interval is over, so that some
action has to be performed. See chapter about the clock handler

(chapter 5). If no message is sent there is an Immedlate return from

'the 1nterrupt routine e

s "'),.--.—--—--Kernel;

| The kernel consists of a number of routines handllng the entry and
exit, the execution of the primitives fbr process 1nteraction and the
selectlon of the nekxt process to be run. ® There are also some routlnes
-which were useful durlng the development of the system., :

- The kernel is written in assembly language. Some parts have to be,
because one has to address the registers and execute certain
instructions which cannot be executed in an IMP program.~ Other parts
could be written in IMP but this would not make it clearer, because of
the interaction required between the different parts. Because the
kernel is a critical region, the code for the primitives should be as
efficient as possible, whlch is another reason fbr writlng it in
assembly 1anguage. - ~ |

- 4,2) Priority, mode and mapping of the kernel and the ocesses.

The kernel, like the dlrect memory access 1nterrupt routlnes, runs at
a non-lnterruptable priority to ensure mutual exclusion of different
calls and mutual -exclusion of a kernel call and an interrupt routine,
and in kernel mode, so that the kernel memory management registers are
used. These are set to map the virtual addresses in the segments 0-6
onto the locations with the same physical addresses and the virtual
‘addresses in segment 7 onto the area where the device registers are
located (the UK words with the highest possible physical addresses), so
that these registers can be addressed via segment 7. The idle proceSs
runs at the lowest possible priority in kernel mode. The kernel memory:
management registers are never changed after 1n1t1alization '

Both supervisor processes and user processes run at a low priorlty to

i_enable all devices to interrupt them. These processes run in user mode. :

‘Because the user mode has its own stackpointer, the kernel stack is
reserved for use by the kernel. The memory management registers used
~are the user active page registers. For a supervisor process they are
set to the same values as the kernel mapping registers. The value of

" them is never examined, so they never have to be saved. Each user

| ;Process has its own mapping, which must be copied. to the . memory
| agement. registers every time the process -is selected to- run.' In
'additioa%w;he contents of the page descriptor regl5~ ~s - must be saved

every time the process. is stopped, to enable the supervisor to examine

. the. written into bit of a segment. When a ‘supervisor process is

_-seleoted, the user memory management registers only have to be set when
the preV1ously ruhﬁiﬂg process was a uaer process, because otherwise the
prev1ously runnlng process was another superV1sor process, hav1ng the

sSame mapplng

. 3) Data area.“

The data area of the kernel contalns the ﬁollow1ng varlables.,?-, T'
-"process", containing the number of the running process ..
=-"apd", which 1is a polnter to the process descriptlon of the_l

. running process
-"runproc", indicating the user process ‘which will be selected to

run when no supervzsor process is ready to run

-an array of semaphores, consistlng of records wnth the flelds |

e "counter” and "waiting"

“p";-the proeess table :"proctab" whlch contains an entry for eachv |

process with the following information:
- ~the state of the registers r0-r5,sp,pc and psw
-the head ‘of a queue of received messages ("recd")

-a variable indicating whether or not the process 1s wa1t1ng~r

for a message ("heldup")

-a variable indicating whether or not the process 1s waltlng-;f
for the receipt of a reply to a "supervisor call";. if so,
the variable contains the number of the serv1ce it 1s

expecting a reply from ("asleep")

- = a variable indicating whether or not messages to or from;*' o
- the process should be monitored, i.e. prlnted on the console ;-_

~("rsmoni")

—the ‘queue . of 'superVISor processes wh1ch are ready to run

("readyq") with 2 pointers ("begrdy" and endrdy")

-"recproc", containing the process number of the PPOCQSS'_

- receiving the message being sent.
«M"suppar" and "“suppdr" containing copies of the superv1sor "page
address™ and "page descriptor registers"

"userapr",'contalnlng copies of the "active page reg1sters" for

~ each ‘User process -
~"messtab", which is an array of‘message buffers
~"free', whlch is a pointer to the list of free message buffers

” V-sn arrey of . records with the flelds "11nk" and "1nﬁo" used as-'

elements of lists for several purposes

<agln, whlch is the ‘head. cell-of‘the 113t” of free records id

this- array

~"fing", which contalnS-a polnter to the process descrlptor for;

each . process

- ="intflag", 1ndicst1ng Whether a send comes from;an 1nterrupt cr*

from a process

="callsch", 1ndlcat1ng' whether the 'scheduler shodld be called-

when the 1dle process is selected to run

T runnlcg hefore the kernel was entered

“psave"- which -contains the process ndmber of the process

4 u) Ent x.
Entry to the kernel is poss;ble in several ways

nby a process execubing an emulator-trap instruction | This is

only~perm1t£ed whenaﬁsﬁ; bx~e-suﬁgr¥j?7r,PP0c933 Depending on
0o+ the mumber-of the trapg-2a “slgnal“ Qor a "wait" on a ‘sema oh
. nsend message" or a "receive message" is executed.

‘kd*nby a ‘process executing -the Lotfinstruction. ‘This is permitted’

- “to both supervisor and user processes and auses a '"supervisor
~ecall" to be executed. S . T
~=by an interrupt from a dev1ce

-by a process trying to execute a non-executable instruction.

~ In all cases the priority is automatlcally set to a high value by the
loading of a new processor status word from the vector address of the

__interrUpt or trap instructlon._ Thls causes. the kernel T-tQa; be-

non-interruptdble.. o

i+ The routlne “save" is used to save the ,state of the reglsters |
roﬁr5 Sp,pc and psw of the runnlng process in the process table.; For a

10

re, a

-)

user process, the page descrlptor reglsters are saved too. by the_

routine. For the idle process nothing is saved.fﬂ There are some simple
calls of the kernel, in which only a few registers are used and where

the same~process continues after the exit from the: kernel, fory which
-this sav1ng is unnecessary, and thereﬂore 1s not done.,; P

' ;h;S) Naitfandwsi nal on a sema hore.hi

Each semaphore con81st of two components
| "oounter" whzch defines the number of 31gnals sent, but not yet
received-
-"uaitlng" whlch is a queue of processes waltlng to recelve
. 'signals not yet sent.
For both "wait" and "s;gnal", ro contalqs the number of the required
semaphore |

- "Walt" does the following: if "counter" 1S greater than zero, i1t 1is
decreased by one and the calling process . continues; otherwise the

“calling process. is entered into "waiting" by the routine "enter" ‘and the
'despatcher 18 called to select another process SRR

When a "31gna1" is executed the ﬁollowing happens: if one or more
processes are in the "waiting" queue, the first one of them is removed
from it by the routine '"remove" and the process with the hlghest
V«prlorlty contlnues, otherwlse "counter“ is increased by one.

| .é) Seruc&excha e_. '

The use of the serv1ce exchange mechanlsm has already‘been explained '
-‘in+ the chapter about the general struecture of the system (chapter 2).
.ﬁThe tmplementat1on of‘lt 1s very straightﬁorward | |

Eor both the "send“ and the "superv1sor call® Operatlons the rlght
byte of r0 contains the requested service number. The number of the
jprocess supplying the service is fetched from the array "serv", which
- maps a service number onto a process number. If a non-ex1sting service_'
is requested whlch is noticed by a negative value of the entry in

- mgervy®: “this is handled in the same way as when an attempt is made to

~'*fexecute ar non-executable 1nstructlon See sectlon on error handling
-*“-'-(sectionil 11). - | | | o -

' For superv1sor processes the left byte of ro contains the source of
‘the request.. — The two bytes are exchanged when the:. message is copied to

- the receiver .area or a buffer. .- For a request from a user process, the

"“5'process enters the kernel.

‘left byte of the-first word of the message is set to the service number
after the copying too, but the right byte is set equal to the service
number of the ‘user process. - This prevents. the _user processes from
-sending messages.on behalf of another process |

4.7) Send message

Messages are contalned in the registers rO0-r5 when the sending
. Now- there are two p0331b111t1es ﬂor ‘the
process to which thetmessage is sent: |
- =it is waiting for a message, i.e. “heldup" is set,,or it is
- waiting for a reply from the sending service,i.e. "asleep" is
equal to the service number of the sendlng serv1ce L

11

~ﬂ-1t is not waiting for aimessage or it -is waiting for a reply

f‘rom a service dif‘ferent f‘rom the one. sendlng the messege_. A %

| In the first case the message is wrltten 1mmediately by the routlne
‘"eopy" into the space reserved for copies of the reglsters ro-r5 in the

process~table entry of the receiv1ng process. ‘The receiving process can
continue now. The priority of the receiving process and the sending
process are compared to select the process w1th the hlghest prlorlty as

the runniog process.

. Io the second case the message is oopled to a messege buffer by thel

routine "gmess", which gets a buffer from the list of free buffers
- ("free") by the routine "remove", copies the message into it and enters

i-the buffer into the list of received messages of the recelving process

‘(routlne "enter"). The sendlng process continues.

4, 8) -Re'ceive mes-s’a‘_e;-;,

Nhen 3 process wents to receive a message,'j there ?vare”'fﬁwo
possibilities again: RN

: -there are messages 1o the llSt of‘recelved messages of‘the-

o process e | |
- =there are no-messages io this list

In the first case the first message is removed from the list by the
routine "unqmess“ which-gets it out using the routine "remove", writes
the message to the copies of rO-r5 in the process table entry of the
process and returns the message buffer to the list of free buffers using
_the routine "enter" The reoe1v1ng process contlnues.

In the second case “heldup“ 1s set to 1ndioate that the process 1s'

waltlng for a message. - The-despetcher is celled to: select the - running

y, 9)~SuE§rV1sor cal - e

When a proeess ‘issues & “supervisor oell", it is susoended until a

'freply to the request is received: - The service to which -a._ "supervisor

call® was issued, is remembered in' the ™asleep" field of the,'

~ process-table entry*of‘the sender. Only a reply from this service .. can
wake up. the process.;;» g ST .

The sendlng pert of the "superV1sor call” 1s nearly 1dentloa1 to that

of the Ysend message" primitive; except that when a user process doeS"

the call the source of the request is set by the kernel

The process 1ssue1ng the supervlsor call does not contlnue untll the

reply is recelved So a new process has to be selected by the

despatoher

u 10) Interrugts

Interrupts can occur from a number of dev1ces'~ *
-the clock . _ .
~ ~thedisk
n' ;the;CQﬂ§51ESQl__,f

| Interrupts from the clcck were dlscussed in chapter 3. The sending
"cf’a:message to the clock process from the interrupt routine, .is done by
‘the routine "intsend", which 1looks 1like the normal send routine.
‘Destination and source, uhlch,are sef, equal, and twcfmcre words of the

 message can be set by the interrupt routine.. The variable "1ntflag" is
-set to 1ndlcate a. send ccmlng frdm an 1nterrupt.

Interrupts frcm the disk ("dlsklnt") are converted 1cto'a ﬁ31gnal",by~
putting the.dlsk semaphere number 1ntc r0 and jumplng tc the "signal"
- routine. - Ty, . - S e

- Interrupts from the consoles ‘are sometimes converted 1ntc a “send
message", sometimes into a "signal® on a semaphore and sometimes. handled
~1mmedlate1y See the chapter on the console handler (chapter 9)

"_H.11)'Errcr handling.
When there is a power failure'(“powint") the system is stcpped

Trying to execute ncn-executable'1nstruct10n (e g. an attempt to
move a word to an odd address or to address a part of the v1rtual memory
for which ncrmapplng is set up), a request for a non-existing service or

~an attempt to execute the halt instruction or an emulator trap
,1nstruct10n by a user pccess, -are all handled in the same way.

"f f*ﬁ superv1sor prccesswmsking an’ error causes the system to stcp after
*éprinting all the process registers. .y

If a wuser process makes an error, a "SUperv1scr call" to the "reset

process state" service is generated ccntalnlng the trap number. = The

- process goes to sleep until this service sends a reply. Before sending

~ “this reply, the "reset process state" service resets the values.cf‘rS »SP

and pc in the process-table entry of the user process to values

" previously specified by this process and disconnects all connected
~ files. See chapter abcut reccvery (chapter 10) | | |

The ccde of the error-: cau31ng the processcr to trap is: cbtalned fhcm |
the processor status word loaded from the trap vector. The rcutine
"error" converts this code into the trap number via the array "ernumb". -

" This trick, copied from the UNIX system ([u]), is- used by the ccnsole |
’_1nterrupt rcutlne tc 1dent1fy the conscle | | | |

4 12) Despatcher
The despatcher is the part of the kernel whlch decides whlch prccess
~is going to run. It consists of two routines:
-"resched", used to compare the priority of two processes, bcth |
- ready to run, select the one with the hlghest prlcrity and
~ indicate that the other one is ready to run

~"select", used to select, from all prccesses ready tc run the |
process wlth the ‘highest prlcrity - : B |

. The fcllcwing priority rules are used: ~
e -when there are one or more superv1sor prccesses. ready to run,
the one with the lowest process number is selected - -
- -when there 1s no supervisor prccess ready to run, the running
user process ("runproc", which is set by the ‘scheduler)
‘examined. If thls is the 1d1e process, 1t is checked whether

G et . :
ooty . ' B i . '
LI T [) : .
L) -.- ’ T ' : : a \-._ - :

STy L N , . . . - .)) . I .
R . = s) ’ d 3

e . o " . . - . .

tal e . =, - . . - ‘ L '
& -t] .
\ -

RALL L M o T

LT the scheduler shculd be called to see if any user prccess has

., become ready to run (variable "callsch', which is set whenever a

- message is sent to a user prcceas), if the scheduler is not

called, the ‘idle process continues. If the running user prccess

is not the idle process, it is checked whether the process. .is

asleep or not; if it is, the scheduler is called to select a new
,user process to run ctherwise the prccess 1tse1f ccntlnues.;*

The superv1scr processes which are ready to run are in a queue, which

is implemented by putting all ready supervisor processes into a
ccnt13ucUs part of the array "readyq". The processes in it are always
in the ‘order of increasing process number, so: that getting the one out
of "it with the highest priority is very ‘simple: you take the first.
Inserting a process into the queue is more: iifflcult because the queue

must stay in order, this may take some shuffling of part of the array

The routine "intread" is used for thls. '- |

To see hcw the selection of the user process is done, read the
chapter about the scheduler (chapter 12) - o

'4 13) Exlt

When the "exit" part is entered the variable "process" contains ?the
number of the prccess selected tc continue. : B

The eX1t for the idle prccess is the sﬁmplesta - The'prcgram.ccunter._
and prcgram status word are put. onto. -the stack and a return frdm |
1nterrupt 1s executed : - o -

~ For cther pr:ecesses the mmcry managaaent reg;sters are set flrst at
least when~ this process is not the same as-the prevxcusly'running
‘process or both this and the prevﬁcusly running process were -supervisor
-fprocesses.;w,mﬁ“”j section about .the mapping of the preﬁ;sses (secticn

~ 4,2). The registers rO-r5 and the stack pointer are set, the program

ccunter ‘and program -status word .are put onto the stack and the RTI is
executed. The values of the registers are taken—frcm the process table
fentry for- the prccess. S : . |

= .

- ﬂ. 14) Idlé

ocess:
‘The idle process is very simple: it executes a "wait" instruction.
In this way no use is made of the bus, which is advantageous when a data
transport between the mancry and the disk is going on.

u 15) Further routines.'-n~,,ﬁ

'I'he routine "rmcm" is used to mcnitor, on the systan ccnsole, “all
messages received by processes for which the "monitor receive" bit is
set in the process-~table. - The routine "smoni" is used to monitor all
messages sent by prccesses for Whlpglthe Wmcnibcr send"™ b1t is set

| ' The rout:me "dunp" . is used tc dump areas of memcry. It shculd be -
- started from the switches, Wh1ch are»used to set begin and end address‘

of‘the dump area too.

B The - rcutlne'"boctrt“ is used tc bcctstrap the RT11 systsm end shculd
-”be started manually too. UL T nRaes

R

'!5) Clock handler.

~ The clock'handler'uses the KH11-P.or KN11-L clock to keep track of
the time and to send messages to processes after requested intervals.
The- selection and initialization of the clock .is done at the
anitialization of the kernel.- See chapter abeut initiallzatlon (chapter

 -'5 1) Messaﬂesdfrom thefclock to themhandler)

: To wake up the handler at the appr0pr1ate tlme there is a var1able'
named "count" in the kernel which is adjusted by the handler every time -
~this is needed. It indicates the number of milliseconds to pass before |
some action has to be performed by the handler. Every time an interrupt
from the clock occurs, "count" is updated. As soon as "count" becomes
- less than or equal to ‘zero, a message to the handler is generated.. See
?{chapter on dlrect memdry access by 1nterrupt (chapter 3) o

’""5—20 SerV1ces.i

'Ihe following services are 1mplanented
0) reply after a certain interval
1) get current time
| - 2) set current time. L
‘The last service can only be requested by a system process, the other
two by all processes. The get current time service immediately gives a
reply; the first service sends a reply after the requested 1nterval if
th1s 1nterval was legal otherW1se 1t 1mmed1ately sends a refusal |

'*ﬁ5 3}-Maln _ rt of'the handler ,f’

The most important mformatmn fer the handler is held in e
o =the ("software c¢lock" named "time", which is an 1ntegerarray
-~ containing. the current teeerexpressee~1n;m11113ecends, seconds, |
- minutes, hours,; days; months and.years: =
 ~the recordarray "waiting", which- contains 1nfbrmat10n abeut
| m'ocesses whlch are to have a reply f‘rc:m the handler after - Some
time . v TR B
*~the~ 1nteger “requestedfen@rrval" which centalne the number of
“milliseconds which have past at the moment "ecount" becomes O
since it wasr'eset by the handler for’ the last -=t-ime R

o Every tlme a request for a service is received "time" is updated. If
- the oounter in the kernel: has become less than or equal to 0 without the
- handler having received a message for it (this can have happened while
- executing the first-instructions -of the cycle of the handler) the
routine "interval over" is wused for this update and it is remembered
that an extra update took place, so that the message-'generated because
- "count"™ became O can be ignored. - If the counter .is still positive the
 only things to be done are to ‘update the milliseconds time and the
| requeated i;ﬁerval. Hereafter the requested serv1ee raut1ne is called |

| If a‘meesage generated beeeuse "count" became 0 is recelved and there
- hes been na-extra update the routlne “1nterval dver" is called |

,f *

5

5.4) Requested interval over.

The requested interval is over when "count" has become O. This means
~that at least one of the following things is going to happen: :
.. -at the update of "time" (routine "adjust time") the mllllseccnds-
- time gets the value 1000 after adding the requested interval to
- -it, so that other elements of "time" are also changed (when an
- element in "time" becomes equal to a certain maximum value, e.g.
60 for seconds, the next element in "time" is incremented by 1
- and the element itself is assigned a certain mlnimum value, e.g.

0 for seconds) i '
-one or more messages to a process must . be sent at this mcment |
- The reuhlne test waiting queue" checks the waiting queue to see
.- which -processes . (if any) must have a message at this moment,
sends thcm the current tlme and remewes them f'rcm ‘the waitlng

After the adJustment cf "time" and checking of the waiting'queue,
"count" and "requested interval! must be reset. If there is a process
which must have a message before the milliseconds time becomes 1000
“again the new values depend on the time this message must be sent,
- otherwise the values depend on the time till the milliseconds time

becomes 1000 again. The new requested interval is added to "count",
while interrupts from the clock are disabled by putting the processor at
high priority, (routine "adjust count") .and the value of "count" is
checked to see if it is negative. If so, the interval is already over
and the same things are.dcne again. . | SRR |

.5.5) Re ld_after aﬂeertain 1nterval.- .

A request fcr a reply after a certain 1nterval is first checked to
see if the requested interval, which is expressed in milliseconds and
seconds, is legal: the*mill1seccnds time must be bigger than or equal to
0 and smaller than or equal to 1000, the seconds time bigger than or
equal to 0 and smaller than or equal to 60 and- not both times may be 0.
If it 1is a legal request the time at which a.messagewmust be sent back
is determined. This time is expressed in-a milliseconds time bigger
than or equal to 0 and analler 1000 and a secs tlme blgger than or
equal to 0 and smaller than 60 - |

. Now the request has to be put 1ntc the wa1t1ng queue Th1s ‘is &
- fairly complicated matter because we want to hold the'queue in such an
order that’ requests which have to be satisfied first. are at the head of
the queue See routlne “message after time".

?c. put the- request into the waiting queue the routine "into. ualtlng.
queue” is used. . The relevant information (process 1dentif1caticn and

~ time —at whleh a reply must be sent) is put into a new record. If the

new'reeerd does not become the first one in the queue the rest 13 simp]

~1list processing; otherwise it is necessary, at least if the new request
must be satisfied: "fd”ﬁe*the present sepond ends, to adjust "ceuns" and
"requested interval™.. :.The difference between the new and the requested

- interval -is ~subtracted from ‘“count" (routine Madjust count™). - - If

~ interval from it. Then there has been:a message:

"count" is negatlve now the time is already over and Yinterval ever*? is
called. It is even possible that "count" was already negative beﬂore
subtracting the difﬂerence;betueen the.aauélnt,ﬁval -and . the: ‘request

~_yet been recelved ‘and which must be igncred?uhen“received;("extra
;fUpdates“ 1s 1ncremented by 1, ~ because “ccunt“ wlll certainly befh

16

"negatlve after the subtractlcn, SO "1nterval over" will be called and
here it will be established that the time at which the message was

generated is already over and SO thlngs whlch had to be done at that
moment will be done ncw. 3 |

5;5 6) Get current tlme.

 The get current tlme serv1ce is 31mple. a ccpy of‘the array "tlme" 13
'sent as the reply C ' | _ .

5. 7) Set current tlme.

The given newftime~1s first checked to see if all values are between
a certain minimum and maximum value. Extra attention has to be paid to
the day in the month, because the maximum value 1is variable here.
Leap-years are ignored: for the month february the maximum day is always
29. If no error is detected the new time is set into the array "time".

- *$ettin§°*the'ftime7dieturbsﬂthchorrectnesa“cf*the inﬂcrmationuin the
waiting queue, so it should only be done at the startup of the system.

17 f;.

- .6) Disk driver. .

The disk driver is meant for an RK disk. The discipline used for
handling the requests is the first come first served discipline.

6.1) RK

One RKL control can service up to 8 drlves each handling a disk of
4872 blocks of 512 bytes. Average total ‘access time on each drive is 70
msecs. .All data transfers are direct memory access transfers, i.e. the
processor is not involved durlng a transfer. . e

The RK+d13k is controlled by 6 reglsters P
.. =-drive status register) |
" not used by the driver
-error register - |
 ysed to discover whlch error occurred
-control status register | |
~ used -to set interrupt enable and the requ1red function and to
"+ start this function | o PR
~ -word count register | ' e '
- used to indicate total number of words to be affected by a given
function (in two's complement form) | |
-current bus address register '
used to indicate the bus address to or from which data will be
transferred
-disk address |
used to indicate the drlve and block to or from whlch data w111
be transtrred .

For a detalled description of the RK.disk and its registers see [2].

6.2) Serving a request.

Four different requests to the driver are possible to transfer a
specified number of blocks of 512 bytes to or from core:
0) read from the disk to a specified block (512 bytes) in core
1) write to the disk from a specified block in core.
- 2) read from the disk to a specified address in core
3) write to the disk from a specified address in core

The first two services are used to handle file transfers between core- '

and disk, the other two to handle transfers of the dlrectorles and small
‘buffers in the system area. Files are located in the user area of core,
which is the (higher) part of core left after allocating the system code
and data areas, and always start at the beginning of a block. The
physical start address cannot be expressed in 16 bits, but takes 18
bits. So it is easier to specify the address in block numbers. Buffers
in the system area can start at an arbitrary address which can be
expressed in 16 bits, because the system area is located within the

first 56 K bytes of‘memory

A request is first checked to see where it comes from: when a user
has sent it, it is refused and an appropriate reply is sent. The
contents of the different registers are determined and the requested
function is started. Interrupt enable is set, so that an interrupt will
"occur when the function has completed its activity. To ensure
continuation of other processes while the function is still in progress

’ 4

/

|6 3)_SerV1ce d1301'11ne

the driver does a "wait" on the disk semaphore When the 1nterrupt

occurs it is converted into a "signal" on the disk semaphore in the
~ kernel, so that t.he drlver may contmue. . .

When the drlver ~continues, after the functlon has cqmpleted its
activity, the control status register is checked to see whether an error
occurred. If so, the error register is examined to see whether»it;was.a
write-lock-out-violation error, which means that a disk was on write
protect while attempting to write on that disk. If such an error occurs

‘an appropriate message is printed on the system console, in case of

other errors all disk registers are dumped in octal “on the system

console. When any error occurs a control reset is executed -and the

requested function is tried again. This makes it possible to get the
disk into the right condition (e.g. by manually putting the disk into
the write permit status) and perfbrm_the request without the originating
process having to reissue it. When the driver continually gives errors
other ‘than write-lock-out-v1olat10n the only thing that can be done is
to halt the computer. | o |

After Successful'cqmpletion'of'the function a reply is. sent 'to the

-process which made the request. One of the parameters sent back is an
identifier, which is a word received with the request and which is left
”unchanged It can be used by the process to identify different requests,_
whichi are "being sent to the disk driver. This facility allows other
“serV1ce dlsciplines te be used - without efﬂectlng the rest of the sysbam -

The rule 1mp1101t1y applled fbr handllng the requests is the FCFS -
(First Come First Served) rule: when a request is received a p0531b1e-

- next request is not received and: looked at until' the present one is

~ completed. Different rules like the SSTF (Shortest Seek Time First)
‘rule, uhich selects as next: request for service the one having the track

~ address closest to the current poslthn of the head, the SCAN - rule,
“which applies the SSTF rule in one direction only and rswerses the
" direction when there are no further requests ahead of the head position
in the given direction, and the FSCAN rule, which is like the §

but arrivals during a ~given scan are placed into a qq;m_ﬁ:aaw,
serviced until the next ‘scan, have better response times but -3aks
disadvantages such as discrimination against certain blocks-of the disk
and complexity of the algorithm (see [8]). Nevertheless, because the
disk transfers are an important factor in the total system perfbrmanCe,
a better discipline than the FCFS rule would probably Improve the
performance when the system is heavily used. - | L

AN 'ule,

AT SR L i e
N, e,

| 7)‘Cere man

The core manager keeps track'of'dsed and free space in core. Core is
divided into blocks of 512 bytes, which is more natural with a disk with

~ blocks of that size than to take blocks of 64 bytes as the memory

management unit assumes. The first fit algorithm is used to find a free
area large -enough to satisfy a request fer ‘a certeln smount-of
;centiguous core. , | _

7 1) Services

Two serV1oes are offered by the cere manager |
0) get core - | _
~ 'search for a number ef contiguous free blocks ef core. If
~found then mark them as in use and send back the number of
the first block (the start block) otherwise send back .a
refusal o o |
1) release core S
~the " specified blocks.of'core are released and are merked as
free again.
“Both services are reserved fer use by superv1ser precesses It
‘assumed that - these processes do not make any mistakes with regerd bo
start block and number of blocks when rele331ng core, so this
1nfbrmat10n is not checked. | . _ | '

'7 2) List of free bleeks.

Areas of core which “are. not used at theemement are 1n a queue of
records named "area" ("free core 1ist"). For each area it is remembered
where it starts and how many blocks there are. The areas are kept in
order - of ' increasing start block. The queue is bidirectional, which
~ means that every record contains a poin&er to the. preceding and a

‘pointer to the succeeding record. . It is also circular, which means that
the 1last record points to the first record again. This is somewhat
- unnatural, because the first area of free core does not in any sense
- succeed the last area, but it makes the list processing easier. Records
which are not used et the mcment are in a queue of free recerds ‘("fr‘ee-

-records llst")

7 3) Get core.

If the total number of free blocks is less then the requested number -

of blocks it is immediately clear that the request cannot be satisfied.
Otherwise we go along the list of free areas to find an area large
eniough. If such an area is found and the total area is used, then the
record can be returned to the free records list. If it is fbund and the
total area is not used then the start block and 1ength of that area have

to be adapted. 1In both cases the requested length is subtracted. ‘from

the total rumber of free blocks and the start block.and length (=the
requested length) of the allocated area of core are sent to the process
. which made the request. If an area large enough is not found, this is
- reported to the process. RERT o e

7. u)'Release core.

If the released area of core becomes the only free area, a new free
core list 1is made. Otherwlse the free core list is searched for the

free area behlnd the released area.. . NOW there are several
p0331bilities | |
-the released area goes wlth the precedlng and the succeeding
 free area . |

-the released area go“iiw1th the precedlng area

-the released area goes with the succeeding area

-the released area cannot be combined with any surround1ng area,
so that a new record has to be setup for it.

In all these cases the number of released blocks 1s added to the tota1 7'

'number of free blocks

The first fit algorithm is used to satisfy a request for a certain
number of contiguous blocks of core: the first free area of core wlth_

~ size larger than or equal to the requested size is (partially)

Although one might expect the best fit algorlthm which searches fOr the
smallest free area of core with size larger than or equal to the
requested size, to increase the probability of - being able to satisfy
subsequent requests, the first fit algorithm appears 1n practlce to be |
better-(see [7]) The algorlthm is also 31mpler. .

The search for a large enough free area always starts at the end with

 the lowest ‘block number. This tends to accumulate the smaller free
"areas at that end and so to increase the search time for larger free

areas. A better strategy might be to start the search at different

'po1nts in the free 115t every tlme

R The memory management unit requlres that contlguous areas of‘core are
used to map segments onto (see chapter 8 about the file system). This
causes some serious problems. The available core is split into used and

free areas of‘d1fﬂerent lengths, so it is possible that a free area

“~large enough to satisfy a request cannot be found, although the total
“‘number of free blocks is large enough These problems are solved by the"
| _scheduler | | e i .~ :

.7d6)i1ﬁitializatidﬁ

o At the 1n1t1al1zation of the. core manager (routlne "lnltlallze") the

lvtotal number of free blocks ard .a record containing the first free block

and the total number of free blocks have to be filled in. = The relevant

 informatior to do:this, ~got from two external 1ntegers in the
-inltlalization part~of the total system._f. | - T

T R R (R S S L ST T PN A - YL IS P oo L

‘} 8) File system.

The file system has twc basic functlons* |
-the creation,deletion,renaming,etec. of flles |
-making the contents of files available to user processes |
The structure of the file system on the disk is fully RT11 compatible.
‘When a process wants access to a file, the file must be connected to the
:v1rtual memory of that process, 1.e a*mapping must be set up.

'8.1) Files.

- A file 1is a sequence of bytes. The length of‘the sequence is an
:arbitrary multiple of 512, the block 1ength on an RK disk. The internal

- structure and contents of a file are of no interest to the file system,
'S0 a text file, a code file or any other file is handled in exactly the
‘Same way

 8 2) Structure of the directories and allocation.of the files.

- RT11 is a single user Operating system developed by DEC fOr the PDP11
series of computers. RT11 was used for the development of GUTS. ~ For
more infbrmation about this system see [3] | -

On GUTS the structure of the directories, i.e. the areas on the dlsk
that contain information about which files are on the disk and where
they are, is exactly the same as on the RT11 system. Files on GUTS are,
‘1ike RT11 files, contiguous on the disk, i.e. all blocks of a file
';fOIIOW’eaChSOtHEf In this respect the systems are fully compatible.u”-

There were two reasons fbr ch0031ng this strategy . o
- ~transfers of several blocks of 512‘bytes from or to the disk are

considerably faster when ‘these blocks are contiguous in core and
on the disk, because ' several blocks can be transferred by
- issueing one request to the disk. When, on the contrary, these
“blocks are scattered across the disk, as many requests have to
'be issued to the disk as there are blocks and the total seek
‘time on the disk will increase considerably.

-during the development of GUTS it was very convenient to have an
identical structure for both file systems because the same dlsk
could be used by both systems.

Contiguous allocatlon of files on the disk ‘has some very serious
~disadvantages, because the available ‘room on the disk is split into
“areas of different. lengths: |
- =it is possible that the total number of free blocks is large
enough for the placement of a file of a certain length, but the
‘largest number of contiguous free blocks is too small for it, so
that the file cannot be placed | |
-once the initial (maximum) length is fixed, the file cannot ‘be
extended, because it cannot be guaranteed that there are free
‘blocks behind the already allocated block., -

There are a number of poss1b111ties of’preventing or solv1ng these'

- problems:
| -choose a good allocation strategy for the crcatlon and 1n1t1a1-

allocation of the files on a dlsk (see sections about creation
of‘ f‘iles) .-

2

. =-release 'parts cf files which are nct used (see descrlpticn cf
closing files). . L
-choose a gocd allocatlcn strategy for the creatlcn and
-~ allocation of the files on the different disks when using
 several disks. One could e. g have one ~disk on which all
created files are 1nit1ally allocated ‘When the system is
 started this disk should be empty and all files which have to be
;.preserved should be copied tc ancther dlsk during system.tume cr
after the system stops.
-stop the system and compact the disk i.e. ccpy all ‘used blocks

~to the beginning of the disk, at the-mcment this is needed or

ahead of this moment. On RT11 this is done by the compress
service of the peripheral interchange program. This is a very

~ radical solution, because stopping the system is very unpleasant |

for the people using the system at that moment.

_-ccrnpact the disk, without stopping the systan, at the moment
this is needed or ahead of this moment. . On a multi-user system
like GUTS this is a very complex cperatlcn, because besides

changing the directory and copying the files, ‘which is done at
the previous solution too, several tables in core will have to
be changed and the system will be unable to perform some
operations during the time of the compaction. This solution is

'j“?nct yet implemented and shculd nct be chcsen befcre it 1s prcved -

~ to be really needed.
 -always- have available enough dlSk stcrage-to have no trcuble
'fjfpacticn ‘could then be done when the system is stopped. This
is of course the mcst 1deal -but also the most unreallstic
| solut1cn | o

For a time we considered the'ﬂcllcwlng:solutlcn' divide the disk into
blocks of 16 contiguous blocks - of 512 bytes, which constitute one

 segment (see section about memory management), and allocate files in

‘these blocks. If a file is longer than such a block, use several of-

- them and link them one way or the other. This wculd to a lange extent

 solve the allocation problems. But we cculd not think of a way to. stay |

:fully RT11 compatlble when US1ng this strategy, sc we. reJected 1t

At the mnent of wr1t1ng 1t 1s nct yet clear' hcw sericus the

described problems are. = Experience with the UNIX system ([41), which

uses scattered allccaticn of one block at a time (and so can use all

blocks of the dlsk before a file cannot be allocated any more) instead
of contiguous alloeation, ~shows that the performance of such a system
also detericrates when the disk becomes nearly full, so problems seem to

be inevitable. How serious'the problems with our allocation strategy
are and whether a drastic solution, like ccmpaction without stopping the ”

system, shculd’be-tmplemented will have to be shcwn in pract1ce. |

- 8. 3) File names

To be RT11 flle system.ccmpatlble requ1res that you alsc have, more
or less, the same convention for the names of the files . = The names in

' the directories of RT11 are in the RADIX 50 notation,. whlch permits only
the characters space,'a'-'z',dollar,dot and '0'-'9', gives these

~ characters a value, multiplies the value of the first character of three
by 1600 (=40%40;40=50 octal), the value of the second by 40 and leaves

~ the value of the third unchanged and .adds these 3 values. In this way 3

-~ characters can be stored into -one 16-bit word. GUTS uses this

 fccnvention too and file names sent to the file systam are assumed to ‘be
-already 1n RADIX 50 notation. In th1s way less space 1s needed fbr‘the

 parameters. The converSLOn can 3ust as easily be done by the subsystem
as by the systan. .

RT11 flle nanes consist of‘ 2 parts._ | |
-iser defined name of the f11e (1 1etter ﬁollowed by 0-5 1etter5'z

o or digits) :
. =user defined extension, whlch glves an indlcation of the

- contents of -:the file (3 characters). |
So a total of 9 characters is used for a file name. - GUTS uses these 9
'xcharecters 1n a sllghtly dlfferent way |

The name is dlvided 1nbo 3 parts.-g-. e
-user defined name (1 letter fbllowed by 0b5 lettersror dlglts)
-user defined extension (1 letter)
-identification of the owner of the flle (2 letters).
The user deflned name is written first, followed by a dot and the

~extension. The 1last part of ‘the name consists of the owner
1dent1fieat10n between square brackets.; So legal flle names are e.g.
~list1.i[wb] |
- copy.olsy]

- For every request to the file system-the user deflned name and extension
- must be fully specified. For some requests (e.g. create file) the owner
~identification is filled in by the system, for other requests (e.g.
connect file) this identification has to be specified too. Parts of the
‘name can of course be set by the subsystem, so that the user can e. g.
ask for the program "copy" and let the subsystem change this name to
- "copy.olsyl" before calling the file system. See the description of the
j J3ubsystem*(chapter 1#);-' B e

8. H) Owner of a file._;=

| The user who creates a file 1is the ownerJof that flle Pert of‘the..
file name consists of the identification of the owner (see ‘previous
“section). The owner ean offer a file to another user. and this user can
accept the file or not. In this way it is impossible that a file is
transferred between users,'w1thout the new owner wanting it. |

;f78 5) Access “rmlseions. |
- Access to a file is p0531b1e in M dlfferent modes
- 0) read unshared =
- only one user at a tlme'may read from the f11e
1) r‘ead shared = -
~‘*r several users may read from the flle 31mu1taneous1y
2) read-write unshared :
only one user at a time may read from and wrlte to the file
3) read-wrlte shared

‘several users may | read from and wrlte to ‘the - file._1

simultaneeusly
- When several users want to cennect.a file in shared mode thlS mede;must
~ be 1dentical fbr all.i;-- ; _a -:.1m)

o To access a f‘ile in a smified mode t.he user must heve pemiss;@n to
";connect the file in that mode.: -~-;&1i{er-9faa file can in ependently
“set' the permissions for hﬁmse&£'~a;f&£5

- "penm1331ons consist of 4 bits each: 1 bit for -each poas;blg mpde,
o mdmeting mether a-ceess in thls nmde Ls ellomﬁ or: net e

oy

for others. : These access

8.6) Services.»
The fbllow1ng services are offered by the current flle system:
- =create file
Create a file with the spe01f1ed name, which.must be distinct
from all existing file names, and length - The 1ength 13[
| specified as follows: o | ~
7 =-either 1/2 the. largest unused area cr the entlre second'
largest unused area, whichever is largest
=the largest unused area
=M blocks e 5 - J
The maximum size is always 250 . blocks. The owner gets
permission for all modes and others get no permission at all.
The three possibilities for the specification of the 1length
- are offered to reduce the allccatlon problems cf flles on the
- disk. | - TS o o |
: '-close file ' ' -
~ Set the final length.of the file to a speclfled value This
~ value must be less than or equal to the length allocated when
~ the file was created. A file can be closed only once. When
it is not closed, it is deleted at a compaction of the disk.
Closing a file can. only be done when the file is not
- ' connected by any user | N o - o P
E '-delete file - |
- Delete the file frcm the system This can bnly be done when
“the file is not connected by any user.;__-' L
-rename file - DU
" Rename the file from the cld name to a new name. The'.new
- name must be distinct from all eX1st1ng names. The file must
not be connected by any user. -
| -set access permissions of file
~ Set" the access permissions of the file for the owner and for
~ “‘ﬂr, others to the Spe01f1ed values.. ‘The file~may not be cn cfﬁer‘
e “to another user. . IS IR
'--_;f-get file names and 1nformatlan - ' '
* - Give a list of all files the user owns and 1nfbrmatlon about
- these flles, such as length, access permissions, date of
- creation, - date—tgi last aceeas,. number of accesses. and
- offer/accept stat |
-offer file Tl | | |
Offer the file to the spec1f1ed user | The flleemay not be
connected by any user -and cannot be used any more until it is
- accepted. The owner can revoke the offer until the new owner
has accepted the file; when this is done ‘the owner gets
| permission f'or all mcdes and cthers no penn13310n at all.
~accept file -
Accept a file frcm anbther user: the owner part of the file
name is changed to the identification of the new .owner, who
gets permlssicn for all mcdes, whlle cthers get no permission
-connect file _ o |
| Make the file acce331b1e by connectlng it to the user's
virtual memory. I.e. locate the file on the disk, read it
(partly) into core and setup a mapping between the virtual
- memory of the user process and the part(s) of core- the file
is read into. The position in the virtual memory, the access
mode, - the start block within the file and the length of the
part to be connected have to be specified. Several thlngs* |
ean. prevent a connect call from belng executed -successfully:
| ~~f~the flle dces ‘not - exlst or the user does not have

25

' perm1331cn to access 1t in the spe01fied mcde '

-the specified start block does not exlst i.e. 'the flle' |

~is not long enough-

-the required mode 1s“1n ccnflict W1th the mcde in which '

“the file is elreedy connected in another virtual memory,

"i.e. the file is already connected in an unshared mode or .

~ in a different shared mode .
-there 1is no room or nct enough rccm;at the specified
~ location in the virtual. mancry. S
- 'If a connect is done on a file, which- 18 already connected
'4_ and the new connect can be executed succcsst11y, the part cf
- the file already connected is first disconnected. The mode
—must not be changed however. . When a call is executed
sucecessfully, the wvirtual address, the 1ength of the

- connected part in bytes and the total file length 1n_ blccks..

of 512 bytes are returned to the user.
-disconnect file
- Remove the mapping between the virtual memory and (part of')
the file. The contents of the file, which is left on the

~disk after the disconnection, is of cour se ccn31stent withi-

~ the changes made by writing into it.
Create file, close file, delete file, rename file, set access perm1331cn
of file and offer file can only be done by the owner of the file; accept
file can only be done successfu1ly by the user to whom the file

offered; connect file can be done successfully by any user who has"

permission to do it and disconnect file can only be dcne successtlly
| when the file is actually ccnnected | |

8. 7) Directcr structure

"The directory on a disk- starts at physical blcek 6— the first blocks

are used for bootstrapping. It consists of a series of directory

segments that contain the ‘names, lengths, etc. of the files on that
disk. The d1rectcry area is variable in-leng5¢,.
~ sSegments; the ‘number of segments can be specified when the disk is
- initialized. Each directory segment is made up of 2 physical blccks,

. thus,| single d1rectcry segment is 512*wcrds in length

A directcry segment has the ﬁolloW1ng fcrmat
~ =a header of 5 words -
;. -46 entrles cf‘11 wcrds fbr f11es and unused areas

- The header contalns the ﬂbllcwing 1nﬂbrmat10n (all words)
R ~-number of segments available for entries (between 1 and 31).

L -segment number of the- next logical directory segment. The
“directory is a linked list.: Thts werd 1s the 11nk between
“logically contiguous segments :

- =the highest segment currently in use. Thls-wcrd 13 updated and
used in the first segment cnly.

, -unused. |
L .*_'-blcck number' where f‘11es 1n thls directcry segment begln.

* -*A directcry entry has the ﬁcllowing ﬂcnmat |

T ~status word. The following (octal) values are pcssible e

1’.1 400 : a tentatlve entry; 1ndicates 2 file uhlch has been

-~ created, but not yet closed | ORI |
“1000: an empty entry; indicates an'unused area S
2900‘.a permanent entry, 1ndicates a file-which has been

o6

from 1 to 31 directory

‘)

uuuuuuu

closed | | ’
4000 endeef-segment marker, Whlch ‘is used to determine when
 the end ‘of the directory segment has been reached
during a directory search _ . | -
-2 words for the name - |
© =1 word for the extension and the owner name
=1 word for the length in blocks
=2 bytes for the access permissions for ‘the cwner and fcr others
-1 word for the date of creation |
- =1 word for the date of the last access
~ both these words are in the fbllcwlng fbrmat
- bit 15 unused |
- bit 14=10 month (1- 12)
bit 9-5 day (1-31)
bit 4-0 year minus 72
-1 word for the total number of accesses |
-1 word for the effer/accept services. - When the flle is not

 offered ‘the word is zero; when it is offered and not yet

accepted the user identification of the user to whom it is
offered is stored in it, as soon as the f11e 1s accepted the

| ‘word becomes zero. again. R T A o i
=¥ unuf““ﬂwcrd_ O R

If files are- added sequentlally W1thout deletlng any files roughly,
one half the tctal number of entries will be filled before a directory
overflow occurs. This results from the way fllled dlrectory segments.}[.'
are handled. | .

a;directcry segment becomes full, it is necessary to open a new

-segmeht.-' Approximately one half the entrles of the filled segment are

moved to the beginning of the newly-opened segment. When files are only
created and not deleted, then at the moment the final segment is full,

all previcus segments have approximately one half of their total entrles_ *
in use. If this process were not done however and a file were deleted

from a full segment, the space from the deleted file could not be
reclaimed1 every tentatlve file has to be ﬂcllcued by an empty entry for
reeevering ‘unused blocks when the file is closed. - Though cnly-one filef -
is deleted, two entries (a tentatlve and an—empty one) are. needed to
reclalmfthe~space SEU | | | | c

Thewentries in the~d1rector1es are in the same order as the flles and”
unused areas on the disk. - So to find the start block of a particular
file or unused area one has to find the directory segment ccntalning the

- entry for that file or unused area, take the start block number given in
‘the header of that s

-segment and add to it the. length of each file and
unused area iﬁ-the directory segment befcre the desired file or unused"

8. 8) Advant’ es.and dlsadvanta es of thls dlrectorz structure.

| The advantagee af this dlrectory structure are: | 1
- =the names of often used system files can be put 1nto the flrst
directory segment and so, assuming the search f‘or a flle starts
. at the first segment, be located very quickly f
'--.-there is no separate frae 113t ﬂdr unused areas g

The dlsadvantages are:

-finding a file whose name is located in the last directcry_*
segment requires many mcre_dlsk,transfers_than'cne_whose name is

located in the first directory segment | |
| ’f;-the names of the files of one user are not located together, SO
“making a list of all files of’one user requires searching the
whole directory
-it is possible, when there are—many small files on the disk
that a directory overflow occurs, i.e. the dlrectory is full
while the disk is not yet full. This is caused by the fixed
- number of directory segments. - SIS L

8. 9) Virtual memorz?of ‘a usergr_\ ocess.
- For a description of the available menory managment unit, see
section 1 u |

The memory management unit is far from.ideal for implementing nice

virtual memory concepts such as segmentation, which divides the virtual

address space into a collection of named, linear subspaces of various

- sizes (segments), and paging, which divides core into units of equal
length, into which parts of files are stored (page frames). In a good
system the virtual address space is very large, so that onc can have a
large number of segments which can be divided into a number of pages
which are mapped onto page frames in core. Ideally we would like to be
able to implement a demand paging system, which offers the possibility
of running partially loaded programs. - Pages are brought into core at

the moment they are needed and not before. For a description of . thene

concepts see [7] and [8]

Demand paging is imposs:LbIe w1th the available memory management

unit When a page fault occurs in a demand paging system, it must be

 possible to determine ‘what caused the fault. This requires that an
instruction is first checked to see whether it can be executed
successfully or not, before it is actually executed.- ‘The PDP 11/40
however just starts executing every instruction. When an address error.
oceurs the state of the prcgram {program status word a;sisters,etc) is
left as it is at that moment, i.e. it~ ‘mMight be the state half way-
through the execution of ‘the instruction, and some extra -information
about the reason the address error occurred is left in a special
register. For some instructions it is impossible,'even_with a very
complicated routine, to discover why an address error occurred and to.
reset the state of the process to the value it had before the ‘execution
- of the instructlon started ~ As an example consider the foilowing
1nstruct1on o 5 . o | - |

mov (r0)+ (r0)+ | |

When an address error occurs; this can be caused by fetching the source
or by setting the destination. With the available information it just
cannot be determined which part of the instruction failed and SO the rO

T oregister can never be reset to 1ts original value

The consequence of this is that all addresses which can be reﬂered to
during an instruction must be mapped onto core, i.e. all connected

(parts- 'of) files must be in core, before the instruction execution is
started. This and the fact that thewaddress space is only 64 K bytes
long, cause “a lot. of’troUble thetmemory*manegement of a user process,

 i.e. determining when information has’ to be moved into the virtual
memory, determining where in the virtual memory it must be located and
which parts of the virtual memory must be removed must be lef‘t to the
subsystem.and possibly the user himself o E T ST 4

8

1

"As said before, the v1rtual memory on a PDP 11/40 is 6“ K bytes long,

~divided into 8 segments of 8 K bytes each. One segment must be mapped

" ‘onto a contiguous area of core. To have convenient segmentation one,a

must have more segments, which,must be larger, because one wants to map
a whole file onto one segment. One can of course consider the segments
pages, but this 1leaves one. with one segment (the whole virtualﬂ_;

. memory) d1v1ded 1nto 8, rather large, pages. g

Our first 1dea was to take the 8 segments and use each segment to |

access a whole file, if the file was smaller than or equal to 8 K bytes,
-part of a file, if the file was larger than 8 K bytes. Experience,ng
with an earlier version of GUTS showed that with this method the total

number of accessible files was too small. As an example consider the

second pass of the IMP compiler. One segment is used for the perm for

IMP programs and the command interpreter, two segments are needed for

data areas and three segments for the code. This leaves oné segment for

(part of) an input file and one segment for (part of) an output file.
But this program needs one input file and two output files, which are
used in turn. Every time the output file is switched, the currently

- connected output file has to be disconnected and written back to the
- disk and the other: output file has to be connected and read from the
“disk. The overhead becomes too large when us1ng this strategy. .

I ‘one wants to make accessible more files at one time, the only

solution is to connect more than one- file into one segment. The problem
=_arising here is the sharebility of files. Segments have to be mapped
onto a contiguous area of core. So when (part of) a file is connected

to a segment to which there are also other (parts of) files connected,
that file cannot be shared by any other user, because it is p0531ble |

 that this user wants to connect other (parts of) files too at the
~ segment to which he connects that file.

“This is impossible, because
core around the area, in which the file is located is already in wuse.

However, one wants to take advantage of the sharebility of files too,s-~

| because sharing a file-decreases the amount of’core that 1s needed

we decided to make the follow1ng d1v131on of the v1rtual memory.hf-
Segment 7 is used to connect (inh shared mode) the IMP perm and the
command interpreter (see section about user processes/subsystem),

_segment 6 to connect (in unshared mode) a data file for perm and command

l 1nterpretcr variables and the highest part of the stack area. Segments

———

2,3,4and 5 can each be‘used to connect (part of) a file in unshared or

shared- ‘modes. (part of a) file can occupy several of these -
ments, butionly a contiguous part of a file can be’ connectnd to a

;configuous part of the virtual memory of the same length. - Segments O
and 1 are used as special I/0 segments. The 16 available blocks=of 512

bytes of these segments can be used to connect several files and to hold

buffers for-devices, such as A console. ~The- ﬂollow1ng restrictions are- '

applied _ - -

| a--files 1n segment 0 are 1n read mode files in segment 1 in write,,

 ‘mode i

=files in segment 1 must be connected unshared mode (see

previous section) RO

f;r-ua block in a segmentfcan onlyaﬁlaused ﬂor one thing at a time:

. to connect a file or as'a buffer for a device | |
~~the number of files connected st one segment cannot exceed~

| three. | o ET & - |
As described ~in the prev1ous sectlon a contiguous area of core has to

be used when one wants to connect several files into one .segment. To

avoid nasty allocation and copy problems, it was decided to connect a so

called base file of length 16 blocks to each I/0 segment when a user

 process is started. Flles;'whlchdare connected into an 1/0 ‘segment, are

- written into the base file. This has the disadvantage of- taking core
(remember that the file must be in core when the process runs) which

perhaps is not used at once, but it makes the handling of the files andf;'
buffers, which are going to be located in the segment easier. See also
the chapter about the login- service (chapter 11). o

The chosen strategy of usmg segments in dlfferent ways is not really |
nice, but should be prefered to a much less efficient strategy as the
‘one used in the earlier version of GUTS. Of course all the problems are
caused by the hardware and the only thing one can do is to restrict the
nuisance. | | -

8.10)_Wtiteeshared ,robléms |

- If a file is connected in wrlte shared mode, the users themselvesg
have to take care that meaningful results are achieved. Only when
exactly the same part of the file is connected, can that part be shared
in core by the users, so that changes made by one user can be observed
by another. = Even then the order, in whlch users write into the file,
will determine the end result. O SR | |

| Because files connected at segment 1 can never be shared in core, it
was decided to allou‘only write unshared mode for thls segment. See -
.previous section. ! ! -

8 11) General im:lementat;on features.

| All file services are handled by a single proceSS'* the flle system.,
process. This process handles requests one by one in- flrst come first

served order. Having one process has the advantage of needing only‘on@;gf'

process entry. Besides, mutual exclusion of operations on large parts
of the data area of the file system is needed anyway, so having more
pnocesses has almost no advantages. B TSN

Eor operations on the dlrectories there is a buffer named. “dblook"e

_ into which a directory segment is read from ‘the disk by calling the '

routine "getdblock". = When the required directory. segment ‘is already 1n"
core, it is not read agaln. Every time information in a directory
segment is changed, it is written back to the dlsk by calling the

routine "writedblock". The predicate "file-exbsts" searches a directory
to see whether a file with a specified name exists. The . routine

_"oomrrdblook" compresses a directory segmt wheh there are two
consecutive empty entries (can be combine
empty entry ﬂollowing a *penmanent entry (the empty entry can be
deleted). | |

Information'-about the filesf Which='are currently' connected to a
virtual memory of a user process and about the segments, to which they
are connected is held 1in several tables. In the kernel there is a

d into- one) ar when there is an

table "userapr" ‘containing copies of the page address and page:.'

~ descriptor registers of each user process. All files whlch are
currently connected by a user process are in a 113t of records namedf
"file"® (header "files"). The following information is kept for each
file: . - | - | S | o R
e ~=the name of the file
~ =the length of the'file = L R ey R
- =the dlSk address of the flle ::wi'!'rj.«u= R R

30

'-the number of‘users of the flle o
~the access permissions of the file
~the mode the file is connected in -
- =a pointer to the list of connected blocks of the flle, see
. description of "block" _
o -p01nters to the next and the previous records in the list. |
From a file several parts, which we will call blocks and Wthh consist
of up to 16 physical blocks of 512 bytes, can be connected at the same -
time. Because it is not necessary to have several copies of the name,
‘mode, ete., there is, for each file, a list of records named "block"
containing information about the connected blocks. For each block thej
- following information is held: AT |)
~ =page address register for a segment the block is connected to If_
~ -page descriptor register for a segment the block is connected to
-start block in core where the block is located
- =disk address of the block |
. -start block of this part within the file | ,
-status word, indicating whether the block is in core. or not (seef
chapter 12 about the scheduler) | |
_-number of user processes wh1ch have connected this part of the
-number of user processes currently in core whlch have connected'
~ this part of the file | | -
~-length of the block | : .
| ~ -pointers to the next and prev1ous reccrds in the llst.._. |
‘The array "segmenttable" contains for each segment from each user__
process information about that segment. As mentioned in the previous
section, segments 0 and 1 are called 170 segments and for these theﬁ
f‘ollowing information is relevant: |
- -which blocks are in use and which are free
~ =number of files connected into that segment | |
-is the copy on the disk of the base file, i.e. the flle Which is
~ connected when _the process starts, updated or not. When the -
process is swapped out of memory and later swapped in agaln y , We
just want to read in the base file and not all (parts of) files
which are connected into that segmcnt ~ But this implies that
the copy of the base file on the disk is updated every time the
file is swapped out and something changed in the file See also
_Echapter 12 about the scheduler. N
-for every file connected into the segment a so called subsegment
~ entry, which contains:
. =a pointer to the file 1nﬁormation
~ =8tart block within the segment |
. | - =number of blocks.
For all 8 segments the following 1nﬁonmat10n is kept
-+ . -a pointer to the relevant file information -
-afﬁointer to the relevant block information (which is ‘an index
in "block")
,'-a status word used by the scheduler, to 1nd1cate whether a
~ segment ' is assumed ‘to be mapped onto memory or not. |
- Besides there is a field indicating whether or not segment 0 1s

requested to be in core by any handler. If this field is unequal O, it
indicates the handler which wants to copy 1nput from its own buffer area
to the user area See sectlon 9.14, - S |

~ The predlcate "connected" checks the list of-connected.flles to see
”whether or not a file is connected to any virtual memory. The predlcate1
~ "file in virtual mamory" checks the segment table of a user process.to
- see whether or not a file 13 connected to the v1rtual memory of‘ that |
process.---- . , e | o

31

More detalls about the 1mplementation of the currently;offered

Serv1ces are given in the next sections. ‘

' 8 12) Create flle

There are 3 possibilities for the length.of the new file: see section
about services. After some checks, e.g. the file must not exist
already, the directory is searched. For the first two possibilities the
largest and second largest unused areas on the disk are located. When
asking for a specific length, an unused area with length larger or. equal :
this length is searched for. If such an area is ﬁound we must enter -'

1nformation into the directory segment.

It is p0351ble that the directory segment is full and a new directory

segment has to be opened. For this the routine "extend" is used. If no
more dlrectory segments are available, a directory overfloW'error is

reported otherwise the following is done:

. =one half of the entries from the fllled segment are put into the

- next available segment y
- =the directory segment 11nks are set

- =both segments are rewritten to the disk

- =the highest segment currently in use, which is a varlable in the
- header of the first segment, is updated) SRR

The links are- needed when there are e.g. 3 segments in use ,and the
second is full. Then a segment must be entered between the second and

third segment and the links are used to logically rather than physically-
1ink a new segment between the second and third segment. After the

extension of the directory, the positlon ‘where the infbrmation about the
file has to be inserted is located agaln |

-~ Now the entry for the file can be inserted When the prev1ous entry
is a tentative one, first an empty entry of length 0 must be inserted,

because a tentative entry must always be followed by an empty one to
reclaim the unused Space when the ‘tentative file is closed. After

creating an entry, the relevant information (see section 8.7 for a.

description of the directory entries) is filled in and the file is -made
tentative. ‘The entry 1is followed by the empty entry,-containlng the
still unused part of the area the new file is located in. Finally the
directory segment is rewritten to the dlsk. | o |

When, during the search of the dlrectory, the last d1rectory segment
has been done, there are two possibilities:
 ~the search was for an unused area of a spe01fied length This
- means that the request cannot be satisfied. | | |
~the search was for the largest and second largest unused areas.
“In this case, it is determined which unused area is going to be

~used and the request is converted into a search for an unused

area of a specified length, with a maximum size of 250 blocks,

which is the maximum file size. The search for the selected |

area is restarted at the dlreotory segment previously'found

S

8. 13) Close file

01031ng a file is a sxmple operat1on. Be51des the fact. that the- fileeft
must not be connected by any user at that mament, it must be. checked

that the file is not closed, i.e. made=permanent prev1ously-and that

the requested length is less than or equal to the lengthralloeated uhen,

the file was created.

32

. ~ changed to his.

The requested length is set for the file and the dlfference betweené'
 this length and the allocated length is added to the empty entry

following the entry of the file. The file is made permanent now and the
directory'segment written back to the dlSk g e e o -

- 8. 1u) Delete file

Deletmg a flle f‘rom a d1rectory is done by making the entry of the_
file an empty one, so that the area can be used agaln. - The file must
- not be connected by any user at that moment The altered dlrectory‘:'

isegment 1s rewr1tten to the dlSk

_. .8 15) Rename f‘11e

| Renamlng a flle is only done when the file is not connected by any
user at the moment and there is not yet a file with the new name. The
newWw name is written into the entry of‘the flle and the dlrectory segment

'-fls rewrltten to the dlSk

8516) Set access nmissionsof file

The new access penm1531ons are written into the entry of‘the flle and-

' the directory segment is wrltten back to the dlSk

8 17)*Get f11e names and 1nformatlon

| For th1s serv1ce a so called dlrectory f1le must be speclfled f Into
fthis file a 1list with the relevant information (see section 8.7 for .a
_ descrlption of the dlrectory structure) about all files, belonging to

the user, is written. This dlrectory file must exist and be long
_‘enough otherw1se an error is reported

| The whole dlrectory'must be searched When a f1le belonglng to the

';user is* found, information is written 1nto a buffer of 512 bytes named

“"buffer" by calling the routine "putword". = The routine "transfer
_ fbufFEr" writes the buffer to the disk when it is fu11 | -

8:58) Offer rilé.'

y - For an ofﬁer of a file, the ofﬂer/accept word in the entry of'the
file is set to the identification of the user to whom the file

'ioffered Both a¢cess ‘permissions are set to zero. “For a revocatlon of-

an offer, ‘the offer/accept word is set to zero again and the owner gets
permission for all modes. The file must not be connected by any user at
the moment “I'he altered directory segment is written ‘back to the d1sk

8.19) Aocept file.

When a user wants to accept a file from another user, the
~ offer/accept word in the wentry of the file -must contain his
jdentification. If this is ‘the case, _the owner 1dentificatlon is

word is again set to zero.

1€ newfowner gets ell perm1331ons and the ofﬁer/accept*

8 20) hconnect file. |

The Virtual memory offa user process consists of 8 segments,. 2 off
which are I/0 segments. Connecting a file into an 1/0 segment is.

- different from connecting a file to another segment. When a user

process is started, a base file of 16 blocks of 512 bytes is connected

'in the normal way to each I/0 segment. These base files cannot be

| disconnected by the user and so are always in memory when the user

- process runs. Files which are connected into an I/0 segment are written

“into the segment file. As explained earlier, files in segment O are in
read mode and files in segment 1 in read and write unshared mode.

| If the file is not yet connected by any user process, the directory
 has to be searched to see whether the file exists and the user has
permission for the specified mode (predicate "permission"). Several
things have to be checked when the file is found, such as the startblock

" within the file. The predicate "room in virtual memory" is used to

check whether the specified part of the file fits in the specified part
of the virtual memory . ‘The parameter for this predicate ‘indicates
whether any room in the virtual memory is going to be released: a value
0 says that there will be no disconnect of a now connected part of the
same file, a value 1 says that room will be released by discomnecting

the now connected part of the file. For connects into an I/0 segment,
the number of connected files in that segment and the specified blocks
have to be checked; for connects to another segment, the specified
length must fit in the segments from the specified segment onwards. If
the specified (part of) the file can be allocated in the virtual memory,
the information about the file has to be inserted into the 1list of
connected files. This is done by the routine "insert file inﬁormation“
‘which fills in a record and inserts it into the list

| If the file is: already connected its entry in the directory does not

have to be searched for, because all the information about the file is
‘already in the list of connected files. After checking the startblock,
~ the predicate "file in virtual memory" is used to see whether the fil_e
- is already connected by this user. If not, the permission for this
| user,' the mode the file 1is connected in and the room in the virtual
_.memory have to be checked. If the file is already connected by the

‘user, the required mode and the current mode are ccmpared and the room

in the virtual memory is checked with the extra condition that room will
be released by disconnecting the now connected part of the file. The
- routine "return blocks" is used to perform this disconnect (see next
~ section about disconnect file) - - . .

The infbrmation about the connected part(s) is put 1nto the list
.f"belonging to the file by the routine "insert block 1nformation" - For a
connect into an I/0 segment, first a free subsegment entry in the
" segment table, i.e. one which has no pointer to file information set, is
found. The relevant information (see description of the segment table
in section 8.11) is put into it and the number of connected files in

this segment and the used blocks are updated. For a connect to a normal

segment as many segments from the specified segment onwards as needed to
~ allocate .the specified part of the file are used. The (part of) the
- file is divided into a number of blocks of maximum length 16 physical

‘blocks of 512 bytes. Each block is first searched for in the list of

 already connected blocks. If it is found, the number of users 1is

; inoremented by one. Otherwise the relevant information about the block |
 is put into the list. One of the things is the contents .of. the
descriptor register, which is also put into the array "usera rnin the
. ‘kernel. - The status of‘the block is set to Mout of‘core“ because it is

34

page

'Enot yet in core. " The routine "insert block information" also fills in

the segment table.
Finally (part of) the file has to be read into éore if it was a

"connect into an 1I/0 segment. The base file is still in core and the

connected part of the file is written into it. For a connect to another

‘segment, a message is sent to the scheduler. This process thenh knows

that a cohnect has been requested by the user process and can read the

~ connected part(s) from the disk into core and set the relevant page
address register(s) o - :

'8;21) Disconnect file;i

A disconnect can only be done for a file which is actually connected.

- The routine "return blocks" takes different actions again for an I/0
- segment and another segment. For a file connected into 1/0 segment 1,

it cannot be checked whether anything has actually been written into the
file because there can be several files and I/0 buffers in the segment,
so the written into bit of the page descriptor register can only be used

‘to see whether the segment as a whole has been written into. Besides,
“the individual files connected into an I/0 segment are not written back
"to the disk when the process is swapped out. So the file has to written
“back to the disk now, although in some cases this might be superfluous.
For both 1/0 segments the blocks ‘used and the subsegment entry
containing information ‘about the file are released. For a file
‘connected to another segment, we go’ along all segments used to connect
part of 'the file. Each segment is released for a new connect. The

contents of the page descriptor register field of the block information
is "ORed" - with the copy of‘the page descriptor register in the kernel,
which is cleared afterwards. If this user was the last user in core

“having this*block-connected;fthe core is released and a message is sent

to the scheduler to indicate that some core has been released and
possibly another file can be read into core. If the written into bit of

‘the page descriptor register field is set by any disconnect (that is why
~the "OR" is executed) or by the scheduler, the block is written to the
- disk first. Finally it is checked whether this user process was the

last - having the block connected; if so, the block is removed from the
list of connected blocks of the file concerned The routine "return

‘file information™ removes the 1nfbrmat10n.about the file from the list

of connected files, at least if thls user process was the last having

'connected (part of) the flle

35

' 9) Console handler.

o The code of the console handler is shareduby'acnumber,-ofl processes,
- each handling both input and output on one console. [Each of these
-"prOCeSSes hasfhis cwn datafarea; L S T
9. 1')'- Conscles

The number of consoles and the device address the vector address, the

maximum line width and the delete character of each of them are set at

- the 1nitlallzation of the system.

9.2) Mode.

Two modes are possible fbr a ccnsole
| "—83011 mode while typing a line 1n, characters can. be-deleted by
typing the delete character, the whole line can be
caricelled by typing the cancel character, tabs are
converted into the requ1red number of Spaces- and the
parity bit is cleared. An input line is erided by a
carriage return, .a line feed, an etx character or an
~.eot character at the beginning of a line, in which

case 0 is given as length of input to the user to

indicate end of input. Typing the escape character
causes a message to Dbe sent to the reset process
state service. Durlng output a line feed is
converted into a carriage return followed by a line
feed. If the maximum line width is exceeded, a

carriage return followed by a line feed is printed; -

and before the rest of the line the character 1>t is
| _. printed to indicate an overflow. | |
~ =raw mode: no line reconstructlon is done during . 1nput if the
SR console is in raw mode, all characters are
- transferred unchanged to the user; the way to get an
| 'input:block of length O is to use the break key.

Output is printed exactly as it is sent to the-

handler no. characters are. added anyﬂhere., .

It must by spec1f1ed whether or not typed in characters should be

- echoed by the handler. Invisible characters, which have no special'

meaning, are echoed as '"' followed by the character with ascii code 64
plus the ascii code of the invisible character. If the console is in
ascii mode with echo and the delete character is backspace, this
character 1is echoed when typed in; if the console is in this mode but
the delete character is rubout, a backslash and the deleted character
~are echoed when the rubout character is typed for the first time, after
that all subsequeritly deleted characters are echoed until a character
differing from the rubout character is typed, the echo of this character
is preceded by a backslash to indicate the end of the sequence of
deleted characters. When the delete character or the cancel character
is typed and the length of the line is zero, the bell character is
output to indicate the failure of the actlcn | |

': 9.3) Opening a console.

-Only_thepserwho“has~obenedé-oonsolecanmakeuseofit.Opening

 can be done, wher the console is not already in use, in two' different
~ ways: e R T e e R T T _

]
. -pressirg any key ori the keyboard. The handler prints the string
~ 'name:' and the user should type his name. When the name is
_ended (by a carriage return or line feed) the string 'passwd:’
is printed ard the user should type his password. Echoing of
the password is suppressed. The name and password are .checked

by the login service. If the user is admitted to the system,
the assigned user service number is set as the user of the
“COnsole,JWhich*is.1@?% in;asciiﬂmﬁde;with'uechoing. - The user

4 -

- process which is started, can now make use of the console. If
B ‘the user is not admitted to the system, an appropriate message
~ is printed. See also chapter about the login service (chapter
-serding an opern request to the handler. The required mode
(ascii or raw) and echo or no echo can be specified. A process
can in this way use a console e.g. to print a file. o

~ Buffers for input and output are located 1in segment O and segment 1
~ 'of the user virtual memory respectively. A buffer can occupy one or
- more blocks of 512 bytes. See the section about the virtual memory of a
"~ user process (section 8.9). o NSO

9.5) Input.

Characters typed in are first put into a buffer of length 255 Dbytes
in the data area of the handler. If the console is in ascii mode, line
reconstruction iS“done;'if_echo_is_requiredgtheﬁchanagter'is_~echoedj to
the console. - | e e A I T T _

~ Te transfer of characters to the user area is performed in blocks.
" If the console is in ascii mode a block is defined as a sequence ©of
characters up to a carriage return, a line feed, an etx character or eot
- character at the beginning of a line, or a sequence of 255 characters,
~ which is the buffer size. In raw mode a block can be terminated by a
break, which further produces a block of length O, indicating end of
input. wher. a get input service call is issued by the user, available
- input 1is copied to the user area and a reply is sent only when the
~ console is in ascii mode and one or more blocks of input = are complete,
'A*or‘7ﬂheﬁf:thébcénsole'is-in4rawampdesand,gnef0r more blocks are complete
or the number of available characters 1s equal to or exceeds the maximum
rnnumber of characters required by the user. Copying 1is done. in the
following amounts: | . -
-if there are a number of complete blocks available, as many of
these as fit entirely into the specified area are copied
~if the first block does not fit into the specified area, as many
~ characters of it as possible are copied | L
“—if the console is in raw mode or the buffer 1is full, the
specified maximum number of characters 1s copied. =

‘-a block of length O is not combined with any other blocks, but

~ given as a reply to a separate request to indicate end of input.
. This strategy is chosen because console irput 1s a-very slow action and

should be handled by a resident part of the system without waking up the

T

'user process ﬂor every character typed in.

Nhen a get input request is. 1ssued by the user procesp and there 1s'_

'not input yet in the buffer, i.e. the user has not typed ahead, the
prompt message is printed. This is a,message-consistlng of up to eight

characters, which can. be set by the user, indicating what the process

‘expects the user to type next. ‘The prompt mechanism is independent of
~ output perﬁormed by the handler and is not used to irdicate that a
~ previously requested action is. termlnated but 1ndicates a request for

"_fmore input

The command’ 1nterpreter uses thls f‘aclllty to request. the next

l-,‘cdmmand by setting the prompt message to 'command:'; user programs car
‘request data by setting the prompt to e. g.,'data ', The prompt message o
~can be set to a null string if no prompt message 1s required. | |

If the user has typed 256 characters ahead of get input requests the

;°input buffer is full. The user is informed of this by printing the

string 'wait!' and characters now typed in are igriored. At the moment
space becomes available again in the buffer by a get input request, the
user is 1nformed that he can go on by printlng the'message 'continue'

9 6) tput

0utput by a console hardler is very stralghtforward ‘the characters

in the output buffer in segment 1 of the user virtual memory are not-

copied to a buffer in the data area of the handler, but are directly

fetched from the user buffer and put into the output reglster of the

corisole by a short interrupt routine. When the console is in ascii

mode, a line feed is replaced by a carrlage return plus a 1ine feed and
- a 11ne overflow is 1ndicated |

-9 7) 1mu1taneous 1nput and output

If a put output request is received by the handler and the user is

T”'typlng ahead , the output 1s W1thheld untll a block of input is

completed

If the user starts typlng whilst output is going on, and the console
is in ascil*mode, the current output line is. finished, after which the

- already typed in characters are, if necessary, echoed ard the user can
“type a block of input. After that the rest,of the output characters,--

.....

| if any, are prlnted

Both strategies are chosen to prevent output characters and echoed

'ﬁ”ﬁ’lnput characters from being mixed on the same ' line.

9.8) Escape.

If a user ‘wants to end the executlon of a program, g+ because 1t 1s_.h¢
in a never ending loop, this can only be done by a process indeperdent

of the user process.- The console handler offers thlS possiblllty

- If the console is in ascii mode and he types the escape character,
message is sent to the reset process state serv1ce,_uh1ch puts the user

f:;'_process into a state from which it can recover. As error code the value

is used, 'so “that the recovery servlce can dlStlﬂguiSh,it from the

38

'normal errors. All 1nput whichis not yet sent to the user is thrown
Vaway and the - output whlch 18 golng on 1s. stopped immediately o -

9.9) w '

- Besides opening the console, getting input, putting output, setting
,the input request message and the escape posslblllty,_ there- are the
“fbllowing services: |
-change mode, i e. set ascli or raw'mode and echo or no echo
-get mode, i.e. get the mode the console is in at the moment
~-close the console, i.e. indicate that the console is no longer

needed by the user, 80 that 1t can. be Opened by another user.

9 10) Convenlence.and efficlenc__of'the handler

- The first aim when designlng ‘the handler was to SUpply a tidy
facility to the user: rno output of different users is mixed, no echoed
input characters and output characters are mixed on the same 11ne and a
real prompt mechan1sm 1s offered. | These things are rarely offEred onf
other systams. = S | |

The~ second aim. ‘was .to make efflclent handlers) 1nput line
reconstruction is done by the handler, so that the user does not have to
 be swapped into core for every character typed in and output is done
“very efficiently by a short interrupt routlne without any copylng from;

the user area to the system area. = | |

The two a1ms are not really in conflict as one might expect. The
only consequence of making the handler tidy is, that it becomes. sl1ght1y
more compllcated but thlS 1s not done at the cost of efficiency. |

9 11) Main Eart of the handler.

| When you have understood the pr1ncip1es of the handler descrlbed in
'jfhe prev1ous sectlons, 1t 1s not SO dlfflcult to understand the code as
--twell. I n . o SR ERERN S - L L :

- For - ‘every console handler there is a record in the 'array "condes",
‘_containing information about.the physlcal propertles of’the console and
__nthe current state of the handler | R | |

U ’_Ihe code is d1V1ded 1nto two parts

~ =the part harndling interrupts from the console ,- Interrupts from
-+ input - are converted into a message to the handler; 1nterrupts
- from output are handled 1mmed1ately, i.e. a character is put
~into” the output buffer, ‘are converted into a message to the
~handler ~or are converted into. a "signal" on the console
- semaphore. - For more details, see following sect1ons - This part
is written in assembly language. -

- =the non-interrupt part, handling user requests_ln the first
B 1nstance and 1nput, wrltten in IMP. S - |

" The handler can be con31dered as a f1n1te state machlne wlth the
-ﬂollowlng states: . | |
S -"uniused": the console is not in use
-"name": a user is typing in his name
~"passwd": a user is’ typlng 1n hlS password

~Mrest™: no input or output is going on

-"input": a get irput request is received while no complete block.

of input was available, so the handler is really walting for
iriput

-"output": a put output request is belng serV1ced, without any

interruption for input

-"irput ahead": input is typed ahead -i;e.. w1thout having_.'

" réceived a get input request for it

~="output while 1nput pending": during ‘output the user 'starts -
" typing ahead. If in ascii mode, the current line of output is‘

~ finished, after which the user can- type a block of .input
. ="irput while output pending":the user is typing ahead a block of
- input, while there is still output to be printed. The output 1s
- restarted when the user finishes the input block. |

The tran31tions between the different states are. quite

- straightforward arnd depend on the requests received from the user

- process and the thlngs the user 31tt1ng at the console is doirng.

There are a number of important SW1tches, 1.e vectors oflabels,hin

o the non—1nterrupt part of the handler:

-"userserv", used when receiving a message from a user process
="consserv", used when receiving a message from the console
-"in", used whern a message from the console concerns input
~"out", used when a message from the console concerns output.

" To which of the labels of a switch control is passed, depends for the

first two switches on the request made and ﬂor the last two on the
current state of the console. SR " . - |

,9'12)'MorefaboUt'othUt;"'
~ ‘Characters are put into the output buffer of the console in one of
the following ways:

-directly by the output interrupt routlnej ‘This is done for the

characters from a put output request: the start address, the map
register to reach the area the characters are located in and the
- number of characters are pu
eriable bit of the output status register is set. Characters
will be put into the output buffer register by the interrupt
' routine, without interventior of the rest of the handler. The
output state field in "condes", called "dmasignal", 1s set to
"dma" in this case. N 2
-by the rnon-interrupt part of‘the handler. ThlS is done for
~input characters which must be echoed, for characters from

‘messages like 'stop input' and for the 1nput request message
characters by the routire "outputchar", which does a wait on the

- console semaphore. The-corresponding-signalxon_the;semaphoreiis
dorie by the interrupt routine. When the handler continues, the
character is put into the output buffer. The output state field
in "condes" is set to "signal" in thls case. .

These two ways are chosen for simplicity. If the' output of input
characters which must be echoed, ‘tharacters from messages .to the user . |

and characters from the 1input requestzmessage were done by the output

interrupt routine too, the handler would become much more complicated.
E.g. a second 1nput character could be received before the first.one is

echoed. To solve this kind of synchronlzaticn problem, the number:of
states would have to be considerably increased. The present. soluticn is
both simpler ard tidier. Besides, there is no effigiency problan,

'.f_because the number of characters output by the nonalnterrupt part is

into "condes" and the interrupt

1very small.

13) Interrupt .

The- 1nterrupt routines for' input '("consin"l'”'and *'forl output'

("consout") both make use of the new program status word loaded from the

interrupt vector to 1dent1fy the console: the 1low-order four bits

contain the console number. This trick is. copied from the UNIX system.
fThe entry 1n'“condes" is detepmined from the console number

The 1nput 1nterrupt 'routine reads the typed 1n character from the
~input buffer register and a message containing the character is sent to
;;the handler.; | | - : : |

The output interrupt routine'is'slightly'more complicated If the
output state is "signal", the interrupt is converted into a signal on

 .the console semaphore. ~If the output state is "dma", the mapping

register for segment 6 of the kerriel is set 'so that this segment is

-mapped onto the output to be printed. If the console is in raw'mode,'
~ the next character is simply printed but if the console is in ascii
mode, a line feed is replaced by a carriage return, later ﬂollowed by a

‘line ﬂeed and a line overflow is indicated by printing a carriage

'f_return 'a line feed and the character '>* first. Of course only one

character is printed per 1nterrUpt.-- A message is sent to the handler
when | - IR
- . =all output to be prlnted has been printed -

-the console is in ascii mode, the console state is "output uhile'

input pending" and the current line of output is finished; in

this case the handler will enable: the user to type a block of7

input before output is continued.

‘Mostly there will be a simple exit: from'the 1nterrupt routine after -

~enabling further interrupts from the console

o '9 14) Handll _ r'.__;_._;,:_uest_s from the._user. -~

Ohly the 1mplementatlon of the get 1nput and put output requests is.'

somewhat complicated

A request for input 1is handled in the following way. If one or more
blocks of input are available, the routine "get ready for copy input" is
‘called, which sends a message to the scheduler to ask for a reply at the
moment segment O of the user virtual memory, where the input is copied
to, is in core. The scheduler checks whether the blocks, where the user
input buffer is located ir, are used to access a file also and sends a
refusal to the user if this is the case; otherwise it sends a reply to

the handler at the appropriate moment. When this reply is received, the .

‘mapping register for segment 6 of the handler is set so that this
- segmenit is mapped onto the core where segment 0O of the user virtual
memory 1is 1located. Thenn input is copied, in the amounts previously

described, via segment 6. If there is no input available and the user

"has rnot typed ahead the input request message is printed.

A put output request is directed, by the service exchange, via the
scheduler, which checks whether the blocks ‘where the user output buffer

is located, are already in use, and sends a refusal to the user if this
'is the case. Otherwise the scheduler takes care that the blocks are not

. _ released before ‘the characters are actually printed and sends the

request to the handler. Here the output by means of the output

41 ‘

'1nterrUpt routine is started at least if the user is not typing ahead
in which case the state becomes "1nput while output pending" S

9.'1,_5_)_ H'a_ndlir_lg reguests from the oonsole.- |
Thlsfseetion will probably only be understood 1n conjunction w1th the

- source of the console handler.

- ters received are always handled by the routine o
‘ohagggggrﬁharagioh Eoes the 11ne reconstruction, echo‘ng an pBE Eﬁe_,u

~ character into the input buffer.

If the console is unused at the moment an input character is
received, the handler succe531vely asks the user to type in his name and
!*-password ard sends these to the 1og1n serV1ce to see whether or not the
 user 1s admltted to the system. o | _ -

Some state tran31tlons for recelved 1nput<characters are 1nterest1ng
~If the state is. "input" and a block of input is complete, the scheduler
is asked to get segment O into core and the state becomes "rest'": if the
state is-output it becomes "output while 1nput pending"; if the state is
"input ahead" and the end of a block is reached, it becomes "rest"
again; if the state is "input while output pending™ and the end of a
~ block 1is reached, output is restarted. Characters typed in while the
state is "output while 1nput pending“- are saved in the array
:"saveinput" 3 _ _ - ; SR

- The output 1nterrupt routlne sends.a message to the non-lnterrupt
part of the hardler when the state is "output" or "output while input
- perding" at the moment all characters are printed. The blocks of. core
~used can now'be released this is done by sending a message to the
scheduler. 'Ihe state becanes "rest" or _"mput ahead" NoW. |

~If the state is "output while 1nput pending" the output interrupt
routine sends a message too when the mode is ascii and the current 1line
is finished. The characters stored in "saveinput" are’ prooessed now.
When the blook of 1input 1is already complete, output 1is restarted,
-otherwise the state becomes "1nput while output pending“ e

u2

- are:

r10 1)_Sett1n

10.2) Resettirg

10) Recovery.

The recovery serv1ces are meant to get a user process into a state
frcm wthh 1t can recover after an error has occurred Pbsslble errors

'.-trylng to execute a ron-executable instructlon (e.g. an attanpt
~to move a word to an odd address or to address a pert cf the |
- virtual memory for which no mepplng is set up) - | »
-a request for a non existing service |

-an attempt to execute an emulator trap instructlcn. |

Whatever a user process does when an error has occurred, is 1eft tc .

ifawthe process itself. It can for: example print the error number and the
~values of registers 11ke the program counter at the moment the error
~occurred. The only thing the reset process state service, called by the
-kernel when an error cccurs, does, 1s to reset the values of the
~registers r5,sp and pc of the process to values which must be specified

by the process itself by 'a "supervisor call" to the set recnvery_
reglsters service, and to disconnect all corinected files. |

the recover”_re'lsters.';j*'

- The values cf the registers rs5, sp and pc to be set when an'errer

-occurs, are. stored in the array "recov inﬂo" |

the statelof a_hrocess '

 When an error occurs, a "supervisor call" to the reset process state"
service is generated in the kernel, containing the number of the error.
See secticn about error handllng (sect1cn 4 11) S .

‘The reset process state service is called frcm a console handler 1f

-the user of it types an escepe cheracter. |

The reset prccess ‘state serv1ce sends a message to the user process,;

' 'whlch is uaitlng fbr it because of the "supervisor call" generated in

the kernel. This message contains the error riumber and the values of
the registers r5, sp and pc at the moment the error occurred, which are

got ‘from the process table entry of the process. R5 is reset by setting

:;-the last parameter of the message to the user process, which is copied

to r5 by the kernel, to the specified value. The values of the
reglsters sp and pc in the process table entry of the prccess are reset
to thelr SpeC1fied values directly.

All flles connected ‘at the I/0° segments and segments 2=5 are'

:d1sconnected Th1s is not done however for an error with number

because this error number is used by a console hardler if an eSCape
character has been typed. In this case the files connected by the user
process cannot be disconnected, because they might be out of core if the
process 1is nct running, whlch is qu1te p0551b1e because the censole--

| ; hardler is 1ndependent of the user process. - The . user - process itself'
must do the disconnects when 1t starts runnlng ageln. |

The recovery services are part of the f1le system pracess, because -

 l:use 1s made cf a rout1ne to dlscennect the flles.--t-

. LIS N i W . .- b
S e o o gt S e P

11) Login and lcgcut.

When a user wishes to enter the system, he presses any key on the

‘keyboard of the console he wants to make use of. The console handler

asks the user to type his name and password which are stored in a

 puffer. The addresses of the typed in name and password are sent to the
login service, which checks them to see whether the user should be
| admitted to the system or not. : 3 | |

The names of all users, who have perm1551on to use the system, are in
the password file. In thls flle, which can only be connected by the

system mariager, there is also an encoded form of the password of every

user. The encoding is done by manipulating the values of the characters

of the password ard throwing away certain bits. The algorithm used for
‘the encoding when a new user gets permission to use the system and his
"name and password are entered into the password file, is of course the

same as the algorithm used to check whether someorie who wants to use the

- system has permission or not. The predicate "1dent1fication ok" is used'

for the last purpose.

If the user 1is known and the password is correct, the array "id",
containing for every possible user process number the identification of
the user of the process with that number or a zero indicating that the
process number is not in use, is checked. If the user has already
logged 1in at another terminal or no:mcre user process numbers are free

to be used, the user is not admitted. The user process with the lowest

number'_1s reserved for use by the system manager, so that this process
can be giver permission to do things the other user processes cannot do.
This facility is for example used by the create file service, to offer

the possibllity to the system manager of creatlng a file for another
‘user. The entry in "id" with the chosen process number gets the value
of the user 1dent1flcat10n S e

The— base flles segO S, seg1 s and seg6 S belcnglng to the user and
seg7.0lsyl, containing the standard subsystem, are now connected for the
user at the segments 0,1,6 and 7 in read unshared, read-write unshared,

read-write unshared and read shared mode reSpectlvely If an error -
- ocewrs during orie of the connects, the already connected base files are
~disconnected again, the ass1gned user process number is freed agaln and
the user is not admltted. | | : |

If the user is. admltted to' the system, a]'meSBage' containing'”the

~ console service number and the user 1dentiflcat10n is sent to the
" “assigned user process, which is waiting for a message from the login
service and is woken up in this way. A:message is sent to the scheduler

to get the process running. A reply is sent to the console too,

-.*1nd1cat1ng that the user is admitted or giving the reason that he is not
y admitted In the latter case, the conscle handler prlnts an appropr1ate

- The logout service is veryis1mple;' All files connected to the I/O--
segments and to segments 2-5 are disconnected, as well as the base -

files, connected to segments 0,1 and 6, and the subsystem, connected to

segment 7. The entry in ."1d" belonglng to the number of the user
process is set to zero, so that the process number can be assigned to-

~ “another user by the login service. - The "asleep" field in the prccess
table entry of the user process is set to "login", so that the process

can only be woken up agaln by the lcg1n service, and a message is sent

- to the scheduler.

W

.

The legln and 1ogout serv1ces, llke the recovery serv1ces, are for

convenience located in the file system process. They make use of
routines of the file system to connect and disconnect files. "Id" is
used by the flle serv1ces to get the identificatlon of a user. |

45

~12>‘$chedu1er.-

The scheduler 1s meant to share the available processor time in a..
fair way amongst the user processes which are ready to run. A
round-robin scheme has been chosen: each user process, which 1is ready to
run and in core, is given in turn a fixed amount of processor time
called a time slice; if processing is not completed at the end of the
time slice, the process is interrupted and returned to the end of a
queue to wait for another time slice. |

The round-robin scheme in 1tse1f is very simple. Problems arise from

' the limited amount of available core. As explained in the chapter about

the file system (chapter 8), all parts of files connected by a user
process must be loaded into core before the process can start running.
To give all user processes, which are ready to run, a fair part of the
~processor time, swapping, i.e. the exchange of files between core and
disk, had to be introduced. After a user process has used a certain
number of time slices, the files which are connected by the process and
which have been changed, are rewritten to the disk if another user
process, which is ready to run, is not yet loaded. The latter can be
loaded ncw and given a number of time slices too. -

Sdme of the decisions made were qu1te arbitrary and should be
evaluated by measuring the performance of the system. As examples
consider the number of time slices given to a process when it is ready
'to run and the way the next prccess to be loaded is selected. -

'12 1) Queues

There are a number of queues used by the scheduler.. Each user
process is in one and only one of them. The queues are the following:
| -the run queue, containing the processes which are ready to run
‘and entirely loaded
~-the candidate queue, contalning the processes which are ready to
run, but not yet in the run queue, because they are not entirely
| 1oaded or the maximum nunber of‘ processes in the run queue has
‘already been reached - | - : o
-the file system queue, ccntaining prccesses~hav1ng issued a
"supervisor call" to the connect, disconnect, recover or logout'
service, which is not yet entirely handled
-the high priority queue, containing processes which are ready to
run but possibly not entirely 1caded and- which have a high
priority to be moved to the run queue
-the low priority queue, containing processes which are ready to
run but possibly not entirely loaded and which have a lower
priority to be moved to the run queue |
- =the blocked queue, containing the processes which are waiting
~for a reply to a "supervisor call" to a service other than the
conniect, disconnect, recover and logout service
-the 1cgin queue, containing the processes at which no user. has |
logged in at the manent | | m

12.2) Round-rcbin.c'

As Said'preViOUSIy,;the rOUndércbin scheme7is veryisimple.ﬂ Each Eime ~
- the running user process (variable "runproc" in the kernel is used by
the despatcher to start running a user"process)_haS'tc be_3e1e¢ted5_;the

u6

first process out of‘the run queue is teken end a,message from the clock

is requested at the end of the time slice given to the process. If the

run queue is empty, the 4idle process is chosen. The selection is done
by the routine "select running process" _ See also the section about the

deSpatcher (section 4 12)

At ‘the end of - the t1me sllce, assumlng that the process has not-
become-heldup prev1ous1y because of a "superv1sor call", there are- two
possibilities: s | |

| -the number of time slices given to the process has not been used
compietely, ‘80 that ‘the process has the right to have another
time slice. The process ‘is put to the end of the run queue.
-no more t1me slices are left for the process. In this case the -
process is put into the 1low priority queue with a large
__allocation of time slices to- be used the next time the process
1s moved 1nto the run queue. . S ST Lo

The main advantage of round-robin schedullng is the guarantee that
short requests will be handled within a reasonable time. Long requests
are prevented from monop01121ng the system by interrupting them at the
end of a time slice and removing them from the run queue to. the low
priority queue, from which they may be selected to have files removed

from core to disk, after a number of time slices. The main dlsadvantage'-

of‘ round-robin schedullng is the overhead caused by the swapplng

12;3)“The candidate;"

Before a process is moved into the running queue, it has to be
loaded. ~The process at the head of the candidate queue, called the
candidate, is the first process which w111 be loaded and'moved 1nto the

running queue.

Processes enter the candidate queue in one of the following ways.: If
a -process 1is in the file system queue and the "superv1sor call" to the

~ connect, disconnect or recover service is entlrely'handled the process |

is moved to ‘the beglnnlng of the candidate queue. If a candidate is
‘needed and there is none, a candidate is selected from.the high priority
queue or loW“priority queue by the routine "select candidate", which
selects ‘a process from the high prlority queue more often than from the

1ow priority queue.

12 4) Loadia- the candidate.

The routine "1oad candidate" is used to brlng all parts of files
'connected by the candidate 1nto core. |

The ﬂcllowing entries in the segment table of the candldate are'_

relevant for each segment:
| -"fileptr", if it is zero no file is connected at the segment ,

otherwise it contains a pointer to the 1nformatlon about the

file (see chapter 8 about the file system) |
~-"blockptr", a pointer to the informatlon about the connected'

(part of) the file (idem) |
-"status™; if it equals "in" the flle connected at the segment is

~in core, if it equals "out" the f'ile eoneected at the segment is
p0881b1y not 1n Core'*-fﬁﬂ;i*'“ o S B SR

ur

The first thing the routine does, is to check f‘or all segments to

which-a file is connected and whose status equals "out" - whether the
(part of) the file connected to the segment is in core. This is

possible for shared files. - In this case the status of the . segment is
set to "in", the copy cf’the page address register in the kernel is set;

.and the number of users in ccre of the block 1s updated

For a segment to whlch (part of‘) a flle is connected whlch is out
core, the core manager is called to get an area of core of the specified

length If this call is successful, the disk driver is called to bring

the file from the disk into core, the file information is reset and the

copy of the page address register in the kernel is set. The dlSk driver 2

'1s called by a "send“, so that the scheduler can contlnue._ |

- If the call to the core manager was unsuccessful and there are no

parts belng written from core to the disk, in which case core will soon

become free, an attempt is made to get core from the v1ct1m,_wh1ch is

the process whose core will be released first. If there is no v1ctim;at"~
~ the moment, an attempt is made to find one by the routine "choose". See
‘next secticn‘ If no victim can be found, the loading of the candidate |

is suspended. If the victim is the same process as the candidate, all

core. of that process is released by the routine "remove core". Thls_

.possiblllty has to be taken into account to prevent a deadlock. If core
in use for (part of) a file, which need not be written back to the disk,

‘'has been released, the loading continues. If core will only be released "

after (part of) a file is written back to the disk, the 1oad1ng is
suspended . | | o | |

The replies to the requests to the disk handler are recelved in the
“main cycle of the process, which wlll be dlscussed later, as will the
routine "remove ccre“ e | T L o

- 12 5) The choice of a victlm.

- The victim is chosen in the folloW1ng way. F1rst the blocked queue
._.1s examined from the beginning. .. If no process is found with any
segments with state “1n“, the low pricrity queue is searched from ‘the
end. If no process is found ‘in this queue, the high priority queue is
searched If in this queve a victim could not be found either, the
candidate queue 1is searched from the end if there is more than one

process in the candidate queue or both the number of processes in the
‘run queue and the file system queue are zero. In the last case, the

v1ct1m w111 be the same process as the candidate (see previcus sectlon)

Core from prccesses in the flle system queue cannot be released
because files connected by such a process are expected to stay in core
to be p0331b1y used by the connect d1sconnect recover or lcgout
-service | T TR S - |

12.6) Releasigg core in use bz the v1ct1m

- The routine "remowe core" '13 used to release ccre in use by the
victim | . SN o |

o For the non I/O segments of thlS process whose status 1s'_"1n" ‘the

copy of the page descriptor register in the block.descrlptor is ORed
with the copy of it in the kernel, whose written into bit is cleared for
- future use. If the wrltten 1nto b1t in the copy in the block-descriptor .

f .‘}

is 2 zero, ‘the status cf‘ the segment is set tc “out" I the number of._'f o
ugsers which are in core and are using the block becomes zero, the core
“used by the block can be released by issuelng a “supervisor call“ to the

-core manager and the routlne is 1eft

| Fbr the I/O segments whose status 1s."1n" the status is normally set

~ to "out", this is not done however for segment 0 when it is in use by a
handler to c¢opy input from its own buffer to the user area, which is

indicated by the field "handler" (see chapter 9 about the ‘console

handler). Because the files at - the I/0 segments are connected in

unshared mode, the core used for such a file can be released ilmnediately' |

when a handler has not written into it and no (part of) a file is
connected into the segment ("copy ok" is set to "false" when one of

these things is done) and when the user has also not written into it
(the written into bit is checked). When the file has been written into,
- it has to be written back to the disk before the core can be released.
~ In this case the disk driver is called, the written into bit in the copy
of the page descriptor register is cleared and "copy ok" is set to.

:'"true“ | In b@th cases the rcutine is left. SR

Fbr the non I/0 segments whase status is st111 "1n" whlch means that
they have been written into, the status is now set to "cut" If the
~ number of users, who are in core and are using the (part of the) file
connected to the segment, becomes zero, the disk driver is called to

- write the (part of the) file back to the disk, the written into bit in

the copy of the page descriptor reglster in the flle descriptor is

cleared and the routine is left

"If the end of the rout1ne is reached' which means that no 'core from

the 'victim could be released immediately or will be released as ‘soon as
a confirmation from the disk driver is received that (part of) a file is
written back to the disk, this is indicated by setting "result" to zero.

“The victim can no 1onger serve as such thls is 1ndlcated by setting.

“vict1m" to zerc.

- 12 7) The main cycle cf the prccess._;

The scheduler can be called frcm.a number of processes
~+ <the clock: handler SRS RIS
-~ =the disk driver
~-the file system;
| -the console handlers. S - - o
-It can be called from the kernel- tee A put output request from a user

process to a console handler is directed by the service exchange,; via

-the scheduler | Other requests frcm;user processes are igncred

When the scheduler ‘is called fromithe clock handler, thlS is the

reply to a request for a message after a time slice. If there 1is a

process, different from the idle process, running, the time used by the

process is adjusted by the routine "adjust time and queue". If the
process has gone to sleep on the connect, disconnect, recover or logout
‘service in the meantime, it is moved into the file system queue; if it

has gone to sleep on another service, it is moved into the blocked“"

queue; if the current time slice is considered to be over, the process

‘is left in the run queue, at least if there is still a number of time

”sllces to be used; if no time slice is left the process is put into the
‘low priority queue. The fact that a message from the clock is received

'fdoes not imply that the current time slice is over; it 'mlght be the
 rep1y'tc a request issued when ancther tlme sl1ce started which was not

_ngz.

:.'entirely HEQGEd by the -process that got 1t, because it went to sleep_l
‘before the end of the slice. * The current time slice is considered tc be'j

over if less than a certain minimum:amcuntﬁof 1t is left

After the adjustment-of the time, and p0531b1y the queue, cf the
process the following is done. The processes in the file system queue
are checked to see whether they are still waiting for a reply; if not,

they are moved into the run queue. Processes in the blocked queue which

are no longer waiting, are moved into the high priority queuve. Then an

~ attempt is made to load the candidate,. if one can be found, and a

running process is selected

A message from the disk driver might be a confirmation of a. (part ofﬁ

a) file being read from the disk to core or of a (part of a) file being

written from core to the disk. In the first case the process, for which
this transfer was done, 1is being loaded. If the segment read was
segment 0 and a handler wants to copy input from its buffer to this

segment, a message is sent to this handler and the "copy ok" field in

' the segment table is set to "false" to indicate that the (part of the)

file has to be written back to the disk before the core used for it is

released. If all segments of the candidate are in core now and there is

no pnocess in the run queue, the process is put into the run queue and.
- selected to run. In the second case core from the victim can be
released now. For segment 1 only those blocks which are not in use by a

handler to output characters from, can be released, for other segments
all core can be released If there is still a candidate,_the loading of
1t is continued | | o o S

‘When the .scheduler iS'called%frcm the cOnnect_service; the process
which requested the service, is moved into the candidate queue after the

time used by the running process is adJusted ..The~candidate is 1oadéd'

and a running process selected

At a call from the disconnect serv1ce the time used. by the running
',process is ‘adjusted. The processes in the file system queue which are
no longer waiting for a reply are moved into the run queue. An attempt
is made to load the candidate, 1f there is one or one can be selected
and a running process 1s selected -

- A call from a ccnsole handler can be a call to get segment 0 of a
user process into core, in which case the blocks, to which input should
be copied, are checked to see whether they are nct used to access a file
also; if so an error message is sent to the user. A reply to the
handler is sent immediately if the segment is already in core, otherwise

it is remembered that the segment is needed by the handler. . It can also
"be.a call to release some blocks of output segment 1, which were used to

output characters from. If the status of the area of core used to
connect the base file to segment 1 is "out core", the blocks released

can be given back to the free list by a request to—the coremanager and'

the candidate, if any, can be loaded

At a call from the logout serv1ce, the prccess, which was stopped, is

moved into - the 1og1n queue and the variables belonging to the process'

are initialized

T

- The scheduler can be called by the despatcher 1n the kernel tco See -
“the section about the despatcher (section 4.12). If the running process

‘is not the idle process, it may have gone to sSleep on the connect,

'disccnnect ‘recover or logout service, in which case it is.moved into

"“the file system queue.; If it has gone. to sleeplon ancther serV1ce, it

50

.............

 ' _'15 moved 1ntc the blocked queue.'llf it is no lcnger:asleep, the prcceSSf,
~ can continue. = The processes in the file system queue and blocked queue

are checked, and an attempt is made to load the candidate, if there is
oné or one can be selected and a runnlng process is selected.

| A put.output request frcm a user process to-a console handler.is sent
- to the scheduler first. If the console is not in use by this process or
the blocks, where the ocutput buffer is located, are already in use, a

o refusal is sent to the user. Otherwise care is taken that the blocks

- are not released until all characters in them are actually pr1nted and-
- \the request is passed on . to the console handler. . S |
_12}8) ImElementaticn of thejgggues.'”'

As noted prev1ously, all user processes are in one and only one of
the queues. These queues are implemented in the fbllow1ng way.

“There is a reccrd contaln1ng timing 1nﬂormat10n for every user

process (the array Muserlist"). These records: contaln a field to

- indicate in which :queue the. prccess is at the moment and p01nters to the
previous: and next - process in that queue too. The queues are cyclie.
When there is only one process in a queue, the previous and next pointer
both point to the process itself. The routine "change" is used tc move

a prccees from cne queue to ancther. | | . -

51

~~'“-vt 13) Inltlallzatlcn _j?-'

At a start or a restart of the system, the data areas have tc be
initialized.. There is a fixed (re) start address (location 40 octal).
- Part of the initialization is done by code in the kernel and part cf 1t
by a seperate 1n1tlallzatlon prcgram.s S | | -

13. 1) The kernel
| The data area fcr the kernel 1s cleared flrst. The array "find"'isa!
filled with pointers to process descriptors. The free list of records

"to be used for several purposes (head cell "asl") and the 1lst of’free'-
+message buffers (head cell “free") are set up. | | |

13, 2) The clcck

To run the system, either a KN11-P or KWil-L clock is required. The
KW11-P clock 1is prefered, because it can generate an interrupt every
- millisecond. This makes the clock handler more accurate than what is-
possible with an KWw11-L clock which can cnly generate an interrupt.
every 20 milllseccnds. ‘ - |

First an attempt is made to start the KN11—P clcck after having set

the trap vector of the location to which a trap will occur if this clock
~is not there. If a trap cccurs, the Kw11-L clcck 1s started. |

13.3) Idle ErcceSs

-~ The process table entry of the 1dle prccess whlch has the hlghest_
process number, is filled in. The idle process is set to become the
first running user process. Now the separate initialization program is
~called. o - |

: 13;4)'Interrupt and;trap vectcrs.

~ All interrupt and“trap vectors are filled in. A vector consists ch
the address of the interrupt or trap routine and the new processor.

status word. The processor status wcrds set for error traps contaln an)

. error code.

13 5) Processes.

*—.—_-.'_:_

Eor all supervisor processes and user prccesses an entry in the
process table is filled in by the routine "insert". The stack pointer,
the program counter and the processor status word are set. Supervisor
processes are entered into the ready queue. User processes all have the
same start address, which is in the subsystem,' and are put to sleep
.untll the login service wakes them up. ~ -

13.6) The service exchange table.

‘The service exchange table is filled in so that the legal serv1ce'--7

numbers are converted 1nto the number of the process handling that
service. |

52

'13 7) Consoles._.

The number of consoles is specified by the constant integer "highest
console" - - For each console a record of the array "console" containing

the device address, the vector address, the maxlmum line width and the'\

delete character 1s fllled in.

The 1nterrupt vectors for both input and output are set. The new

processor status words contains an identification number to be used by

~ the input interrupt routine ("consin") and the output 1nterrupt routine f

("consout“) to. 1dent1fy the consocle.

For each console a record of the array}“condes" which contains a
descrlptlon of the console and the state of the handler of the console,

~is initialized. = The array "condes"__ls__used.by both the interrupt

routines and the handlers.

Each handler has his own data area. | The start address of this area

for a certain console is determined from the size of the system, which

is located in the lower part of core, and the number of the console.

- The initialized data area is copied from the area behind the shared code

of the handlers to this area. The rest of the data area is used for

_uninitialiZedzdata."

- rEor'each handler énJentry_infthe process table'and'two entries in the
~service exchange table are filled in. Specified are the program

counter, the stack pointer, which points to the end of the data area and
ri, wh1ch points to the beginning of the data area. Interrupts from.the'

1nput of the console are enabled.

13 8). Avallable core—and memory maragrne 0t reglsters._ |

s, M A . g e e e i gl f

The start and size - of the are of core to be USed'ﬂor-allocatihg

_flles which is Jocated in the (ni ahfr) part of core left after

allocating the system code and data areas, are determined and set into
the variables "start user memory" and "gvailable user memory". These
varlables are used by the core manager to set up. 1ts llst of free core..

- The kernel actlve page reglsters' the user actlve page reglsters and '

the copies in the kernel of the superv1sor active page registers . are

initialized tc map virtual addresses in segments 0-6 onto the same
physical addresses and virtual addresses in segment 7 onto the reglster

*addresses The memory management unlt is started

'13 9) Ex1t

Process 0, whlch is the clock handler, is selected to start running

- and is removed from the ready queue. The routine “exlt" in the kernel

is called to set the reglsters for tth process._-

1“)-User~Erocesses;"

A user process has at its dlsposal a virtual memory of 64 K bytes,

‘divided into 8 segments of 8 K bytes each. It can make use of the

resources of the system by issuelng requests to the SUperv1sor.

14.1) Standard division of the virtual memory

For simplicity and conven1ence, a standard subsystem.ls part of the

code of every user process. This subsystem consists of the command
‘interpreter and the perm, which contains some basic I/0 routines. It is

connected to segment 7. Part of segment 6 is used as data area for the
perm and the rest of the segment as data area for programs. Segment 0

"and 1 are used as I/0 segments in which buffers for devices are located

and to which files are mapped. When the user process starts, base flles
are connected to segments 0,1 and 6. -

14, 2) Ihfldence of the'lMP comgiler on the system.

The. way the subsystem is built and the organisation of the I/0
segments is very much influenced by the requirements of the IMP-compller
and run-time organization. The possibility of running an IMP program,
which is one of the aims of a user process, requires that you have a

perm, which is a set of 'standard routines to e.g. read and write a

character. The perm in the standard subsystem is suited to this
pUrpose | | |

Input and output in IMP‘1s done via so called "streams" : There are 3

input streams and 3 output streams, numbered 0-2. At any time there is

one selected input stream and one selected output stream. All I/0 takes

 place on the selected streams. The stream numbers are linked to devices |

files in the ﬁolloW1ng way. Input stream O and_output stream 0 are
always linked to the user's console, i.e. the console the process was

- started from. To input stream 1 and 2 can be linked devices or files by

putting their names behind the name of the program to be executed.
Names of devices or files to be linked to output stream 1 and 2 should
be specified after a slash in the command string. If a field is left

blank, the stream is mapped to "null"- which causes and "end of input"
to be read on input and all output to be thrown away. As an example,_
consider the following command strmg |

test filel,file2/file3 S - | |
It causes the program "test" to be executed. - When the program selects

input stream 1, it reads from "filel"; when it selects input stream 2,

it reads from "file2". Output for stream_1 is written to "file3", Whlle

output for stream 2 is thrown away, because no device or ffile is
aspeclfled for thls stream o | -

Programs often use the p0531b111ty of‘ swltch1ng the currently

selected streams, so it must be possible to have all files, linked to a
stream, connected at the same time. Because the segments 2-5 are used

for the code and data area of the program to run, we decided to take

segment O as an input segment and segment 1 as an output segment. These
I/0 segments can be used to connect several files and to hold buffers
for devices. See section on the virtual memory of a user process

(sectlon 8.9).

s

The I/0 segments are divided in the followlng way.- The first 2
\blocks of 512 bytes are reserved: for stream 0, which is 1linked to the
user's console. The rest of the segment is d1v1ded into two parts of 7
blocks, which are used for streams 1 and 2 |

14, 3) mplementat1on languag .
- Although parts of the subsystem could certalnly be wrltten in IMP, it
is entirely written in assembly 1anguage. There are several reasons for
this: o | i
=-some parts have to be written in assembly language, because one
has to address the registers
-routines to read and write a character should be efflclent *
because they are executed very often. Especially the entry and |
~ exit from a routine can be made much.shorter when the perm-is
~ written in assembly language. '
-writing the subsystem partly in assembly language and partly 1n
IMP would 1ntroduce some nasty llnkage problems

ll“ ”) Perm routlnes._

The ﬂollowlng routines are. proV1ded by the perm -
-%routine read symbol (%integername n); reads next symbol on the'
current input stream and advances the streampolnter SO that the
~ symbol is not read again
- =%integerfn next symbol; ‘reads next symbol on the current 1nput
- stream, but does not advance p01nter 80 that the symbol can be
| read again)
~ -%routine print symbol (%integer n), prints symbol on current
- output stream
<%routine select input (%1nteger stream number) ; further calls of
read symbol and next symbol are to operate on the input stream
with the specified number
-%froutine select output (%1nteger stream number) further calls
- are to operate on the output stream with the speclfled number
-froutine close input; close the current input stream and- selects
input stream 0 |
-%routine close output; closes the current output stream and
- selects output stream O | - o
-stop; closes all streams and ex1t to the command 1nterpreter
-slgnal this is a language dependent feature.,

14 5) mplementation of the Eg

The locations in segment 6 with the addresses 157100~160000 are used
as a data area for the perm. Most important in this area are the stream
descriptors, containing for every stream: |
o '--polnters to positions in the buffer belonglng to the stream
~the name of the device or file linked to the stream
-if 2 device is linked to 1t the service number of the device
~ «if a file is linked to ~ the block number of the flrst-
- currently connected block of the f1le oL -

~ When the perm 1S called there are a number of rout1nes used to check
~ the. part of the command string conta1n1ng the names~of'dev1ces and
‘files, which have to be 11nked to the streams and to set up the stream

_'descriptors.'

55

" If there is no error in the command strlng, the recovery address is

set to "stop", so that after an error trap all streams are closed in the
normal way, and the input request message, which is used by the console

~handler to ask for input, is cleared by issueing a supervisor call to

the console handler. Register r4 is set to point to the gla, i.e. the
initialised data area, register r5, which is used as a pointer to the
IMP data area, gets the value of the stack pointer and the . program is
started by Junping to a f'ixed start address. -

_1“ 6) An exam 1ef:read sooi

As ‘an exanple of how - the perm makes use of the SUperv1sor the
routlne read symbol W111 be discussed |

At the entry of the routlne ("readsym") it 2it-:checked 'in the

descriptor of the current input stream whether all characters in the

 buffer belonging to the stream have been read If so, the buffer has to

be filled again.

For a device this is done by the routine "getdbuf"' which sets the
parameters for a get input request and issues a supervisor call to the

~ device linked to the stream. If the call was successful, the stream

- descriptor is reset and "readsym" returns the first symbol out of the
buffer. If the end of the'lnformatlon is reached, the symbol value

"100004" is returned. If the device was not opened by the process, a
supervisor call is 1ssued for this purpose. If this call is not

successful, i.e. the device cannot be Opened the program is stopped,

\'otherW1se the get input request is re—1ssued

For a stream llnked to a file the routine "getfbuf“ is used. ' This
routine issues a superv1sor call to connect the next part of the file at

the buffer area. First a connect in shared mode is tried; if this is

not successful a connect in unshared mode is tried. If the call was

successful, the stream descriptor is reset and “readsym" returns the

first symbol out of the buffer. If the end of the file has been passed,

the symbol value "100004" is returned. If the connect cannot be‘

~ executed successfully for another reason, _the program is stopped.

14. 7)'sttem routings
‘There are a number of system.rout1nes, i, e non-standard routines

‘usable by IMP programs, in the subsystem: |
-%systemroutine svc (%record (%integer service, pari, par2,,par3,

parlf, par5) %#name mes); 1issues a supervisor call with the

specified parameters | |
~%systemintegerfn owner; gives identif1catlon of the user
. =%systemroutine command (%string (80) s); puts the string into
" the command buffer from which the command interpreter tries +to
~ read characters before it starts reading from the user console,
this offers the possibility of issueing commands from programs

-%systemstrlng (12) %fn strname (%integer inout, stream); gives

* the name of the device or file linked to the specified stream

. —%systemroutine setstrm (%integer inout, stream, Istring (12)

name); links the spe01f1ed devlce or f11e to the spe01f1ed
‘stream |

"*-%Systemroutlne setlnr (%strlng (11) s), sets the 1nput request f

message to s

-%Systemroutlne specout and %systemroutlne normout, used to set_

56

e

B oL

. *whether ‘or not output cf a buffer for a dev1ce should be done at
'~ a line feed; this offers the possibility of speeding up cutput,f -
| because the process is put asleep only when the buffer for the
~ device is full or the "prompt character" (k'100000') is sent. ;
To use one of them, one has to 1nclude a "%systemrcutinespec" for the
.'rcutlne 1n the prcgram‘ e I c o

~ 14.8) Stopping a program.

When a program stops because it is'at the end of its execution or an
error occurred, all streams are closed. I.e. files are disconnected and

devices, except the user's console, are closed. Streams O are selected

for further input and output. If an error occurred, an appropriate
message or flag is prlnted on the console Control is passed back to
the cammand interpreter. | - | | g

14, 9)-Ccmmand language interpreter.

~ The command 1anguage 1nterpreter s function is to get a command from
the user and check A command consists of a program name,,whlch
should either be the name cf an object file to be executed or the name
of one of the programs located in the subsystem. In the first case the
prcgram name should be followed by the names of the devices and files to
be linked to input stream 1 and 2, a slash and the names of the devices
‘and files to be linked to output stream-1 and 2. The program is loaded
and the ‘perm is called to execute it. In the second case other

,parameters are expected ‘The program does not have to be 1caded now,
but can be called directly (see sectlcn 14.13 about programs 1n the
subsystem) | | | |

The reason the perm was dlscussed prlcr tc the ccmmand 1nterpreter is
that the last makes use of the perm to get characters from the user's
console. If there are no characters in the command buffer (see section
14.7 about system routines), a read symbol on input stream O is
'executed OQutput from the cqmmand 1nterpreter is prlnted via the print
symbol routine on output stream O. . - R

'14.10)-Device'and file'names. R

Device names consists of a dot followed hy'two letters. The name
".tt" is used to indicate the user's: console. Other names in use are:

- =".la", to indicate the system console S -

~".di", to indicate the diablo printer

Fcr the ccnventicns fcrafileanames, see section 8.3 .

1& 1) Searching ﬂcr a progr

" When searchlng fcr a prcgram, the llst cf‘prcgrams in the:'subsystem -
is checked first. If the name is found, the program is executed. If it
‘is not ‘found, it is checked whether an extension has been set; if. not,

“the extension 'o' is set to indicate an object file. = If ng ownerﬁ[-," |
identification is set, the user's 1dent1flcatlcn is. set and a ccnpect cfi_'

the first block cf‘the file at segment 2 is requested If the ccnnect |
{8 not successful, the user's identification is. replaced by the
1dentiflcat10n of the system manager, i.e. the owner cf all files Hhichﬁ--

ST

-~

| _-are intended for general use, and a connect is tried on thls file. If
an owner identification is set by the user. hlmself' only the fu1ly)

specifled f11e is tried. D
" If the program file is found the 1oader is called to load the

program, otherwise the message 'program not found' is printed. The _

'_program is started via the perm.

14, 12) Loader.

. At the moment the loader is called the first block of the program_
‘file is connected at segment 2. The first 3 words of an object file

contain the following information:
~the length of the code c

-the length of the glap, i.e. the 1n1t1al1zed data and llnkage |

area
- =the length of the stack area needed by the program

The loader reads these header words from the file.

‘The next stage ‘is to copy the glap to the gla, i.e.the area in the
‘virtual memory where the initialized data and linkage area will be

located durlng the execution of the program. This copying is necessary,
“because the program file itself must stay intact, to enable a next
execution of it. The glap is located at the end of an obJect file. The

startblock within the file is determined from the header words and the
- file 1is connected from this block onwards to segment 2 and possibly

higher segments. The gla is located in the area below the stack area,
which is the wuninitialized data area. The gla bottom, which is the
lowest address of the gla, is determined from the header words. If the
gla bottom, which is always on the boundary of a segment, is the lowest:

address of Segment 6, copying can be done immediately, because to this

segment a base file is always connected. If.however the gla bottom is

located in one of the lower segments. a scratch file is connected from

this segment onwards up to segment 6. The_scratch flle_is used to_copy |

_the glap into and as stack area.

After copylng the glap to the gla, the code part of the file is .

.connccted from segment 2 onwards

14 13) Programs in the subsxstem

There are a number of programs which are located 1n the subsystem fbr.

'two reasons:

- =efficiency. The program does not have to be loaded 'S0

-~ execution can be started immediately. This is an advantage for
often used programs like "delete f‘ile"

=ho files have to be connected to load the program, so the

virtual memory is left in the samelstate - This is necessary for
a program which wants to read a certain area of the virtual

memory ~as it is at that moment As an example consider a dump

program

These programs must of’course be short The expected parameters are

determlned by each program separately. As an example, the dunp progrm

expects the begln and end address of the area to be dunped

Stopping the user process -(Flogout")-.ls also .done by~aprosram'

located in the subsystem

'g58; r

Ee
. i '

| 14 14) Startlng the subsystem.-

When a user process is started the system sterts the initialization

~ part of the subsystem. The area in segment 6 from:156000-157100 is used

“as data area by the command interpreter. This area and the stream"
descriptors for 1input and output stream 0 are initialized and the
streams mentioned are-selected as the current input~and-cutput'stteams.j

| The cemmand 1nterpreter then starts to execute ccmmands, until the
| 1ogout ccmmand is given | S | o

14.15) Availebie Egograms;

From the available progrsms we mentlcn the fcllow1ng

- -an IMP ccmpller

~ ~a linker | -

~ ~some programs to ‘manipulate 11brar1es, i.e. files contalnlng
~_information about routines which can be linked to programs =
‘=a recode program, glving the code the IMP compller produces fcr

~~ a program | B |

~ =an editor | -

-3 docunent layout program, used to pr'epar'e thlS docunent

59

15)*'urther deVeloEgents.?

The current system certainly is not finlshed many extensions and
1mprcvements might be implanented I shall mentlon some of these. -

:15 1) PaEgrtaEg handlers._
o A papertape reader and punch handler will be quite easy to 1mplement.

once you understand the console handler code. The console handler will
be much more complicated, because it has to handle both inbut snd

‘output. The papertape reader and punch are 1ndependent

15.2) The use'of’mere than one disk;

 The current version QSes only one disk.'-'This-might be extended to

more. It should be considered carefully how the allocation of files on
these disks is done. .~ One could e.g. allocate all files of a certain
user on (part of) one disk or allocate all files created during a
certain run period of the system on one disk and copy them afterwards tol

another dlSk

15. 3) Archive system.‘

It should be p0331b1e to archive a file on a dlSk or tape dlfferent

from the disk(s) used to run the system. This is required both as a
precaution against loss and as a way to save Space on the dlSk(S) ‘used

to run the system

15 4) Perfbrmance evaluatlon.

‘The perfbrmance of the system should be measured. Especially in the
design of the scheduler there weré made some arbltrary decisions,
e.g.the length of a time slice. The consequences of these de0131ons
| were not understood and should be 1nvestigated. |

| Thls evaluatlon w111-almost,certa1nly lead to improvements in the
scheduler and in the disk driver, which can be rewritten to implement a

better service discipline than the first come first served discipline.

60

(S T N

) References

”f-[1] PDP11 Processor Handbook D1glta1 Equ1pment Corporatlon
[2] PDP11_Per1pherals Handbook, Digital Equ1pment.Corporat1on

[3] RT11 Software Support_Manual;TDigital.Equipméﬁt Corporation
| RT11'SystemfReference'Manual Digital Equipment-Corporation |

' ._[H] thchie D.M. and Thompson K., The UNIX’Tlme-Sharing System,

Communlcations of the ACM, vol 17, no.7 (July 197&), Pp. 365-375

5] Whltfleld H. and‘W1ght A.S. EMAS - The Edlnburgh MU1t1-Access System,
- The Computer Journal vol. 16 no 4 (november 1973) Pp. 331-346 L |

'[6J Robertson P. S , The IMP Language A Reference Manual,
Unlver51ty of’Edlnburgh

[Hansen P.B. Operatlng System PrlnolpleS,
| Prentlce-Hall 1973 |

[8] Coffman E.G. and Dennlng,P J -Operating System Theory,
Prentlce-Hall 1973

61

