e e
G M e I¢||:,fg:L!u:|s-:I kbt .
IIiE! “il.l Hy II | 1 |
a7

UNIVERSITY GRANTS COMMITTEE

I'§;5; 'Conference on Teaching Computing
held at the University of Bristol
on 28th March 1972

PROCEEDINGS

PAPER 31

WHAT SHOULD WE BE TEACHING?

by
Profegzor 8 Michaelson

University of Edinburgh

Before the nature of courses can be discussed, there must be some sgreement about
the objectives of the courges., That agreement must cover the type of student we
intend to teach, and what the courses are intended to convey to them, The content
of the courses cun partially be doduced from these decisions, but will be
influenced by the resources available for the teaching.

Let us start by considering the sort of students for whom universities should offer
courges, I think ‘that we can start by distinguishing 2 categories:-

a4, Those who wish to use computers as a teol in their studles, and
b, those who wish to be educated about computers in a general senae.

School temchers who wish to teach computer science in schools should be trained as
specialist computer scientists, just as physics and mathematics teachers are (this
is one good reason for offering joint honours courses including computer rcience,
for they provide the subject training nceded for teachers who may have to teach two
or more subjects, or across subject boundaries). In addition, all school teachers
should have the opportunity to acquire a general education about computers, and so
should receive courses aimed at category b., at the very least,

Consideration of much computer use ghows how often spparent skill is a whited
sepulchre, hiding muddle and the squandering of valuable resources: hiding, too,
abysmal ignorance of generalities about computers and their uses in society and
their effects upon society. We need to raise the standards of technical users of
computers in two ways. We should give them a better general understanding of
computers, and should encourage them to develop real skill in computer use, based
on an understanding of the structure of what they are trying to do. Experience
gshows that the course of B lectures on Fortran, so beloved of our masters, is
thoroughly ungatisfactory for teaching technical skill., Far too many programmcrs
have been trained in this sort of way, and every computer centre can tell stories
of the wasteful conasequences.

¥hat do we want to convey to students, under the head of general education? We
nead to digpel the mystery which surrounds computers and their users., The
‘inevitability of computer use' must be shown for the sham it is. Naive belief
in the answers produced by computers is a social evil which should be eradicated,
and we are responsible for its persistence among those who have been educated at
universities, We should encourage a spirit of informed, health scepticism which
does not mccept without question assertions of the truth of this or that result,
or of the necegsity for the use of computers ip this or that way.

There doeg not geem to be any way in which most people can acquire a feel for
computing without using computers. How ghould these students uae computers?
Clearly they should use them as tools in solving problems, and these problems
ghould impress them asg realistic, This requires us to provide them with languages
and packegesl that will enable them to perceive what they are doing as they follow

1, It should be pointed out that most of the curremtly available packages have
control languages that offend all the canons of good design and we need to
provide packages which are controlled as clearly as the flow through a program ims

" controlled.
138,

the thorny path from a problem to its solutlon. ¥e ncw understand how important
it is that programs should have clearly visible structures, so that thelr
behaviour can be understood, This requires that students should be provented
from writing knotted programs, During the last few yecara, Wirth, Nauer,
Dijkstra and others, have shown how a few really simple control facilities can
replace the spurious simplicity of labels and Jjumps, If we ally this with the
"principal of minimum detail” we are well on the way to permitting the studenis
to gee the forest in spite of the trees, The approach to a problem by "peeling
off the skins of the onion", working at the least detailed level at which one has
an adequate tool, has been well exemplified by DiJkstra. Kot only a language
must be provided, but also packages of complex operators upon complex entities,
so that students who do not noed to study the detall can solve problems by using
a "machine” which handles things at a level appropriate to them.

Once gtudents feel that they can master the computer even if it is merely one

with such complex operands as dictionaries, and guch complex operands as "find
this word in that dictionary”, we can talk to them about commercisl and industrial
applications and expect them to understand how "zarbage in” leads to 'garbage out"”,
We can explain how it is that people lose sight of the potentially dangercus
effects and the inefficiencies of computer use, in the joys of being able to do
complex things easily. We can warn them against exaggerated claims and expect
them to follow us when we tell them case histories of complex systoms.

Every technical user also needs the same sort of understanding of how one goes
about solving problems, of how one reduces the effort required of the problem
solver by teaching him to program clearly. Every technical usor als¢ needs to
have some basis for judgement of contending methods of sclution of his problems.
¥e should give technical users the same sort of introduction aa we offer for
general education, This is satisfactory if technical users can continue to "peel
the skinsg off machines until they reach the level of detail appropriate to their
technical use. This will encourage them to write clearly structured programs at a
fairly detailed level, thus raising the general standard of technical skill and
efficiency considerably above the present level, This approach has already been
used for some time in teaching specialists about compilers, operating systems and
interrupt handling and so on. It is only recently that we have begun to use it
for introductory tesching, Our students in Edinburgh have found it easy to learn
assembly languages and common languages, guch as Fortran and Cobol, after becoming
able to program in IMP (a block-structured language), and there is no reason that
students in general, once they have been taught to program decently in n language
well adapted to teaching basic principles, should find difficulty in picking up
other programming languages, The usual introductory courses, in Cobeol, Fortran,
PL/1, and so on, are not an adequate substitute for proper education using a well-

designed pedagogic language.

An approach of this sort starts the user off on the right foot, Writing well-
structured programs becomes the natural thing to do. Programming is simplified,
It becomes eagsy to modify programs, and to keep them correct, The programmer
becomes more willing and more able to plan solution processes to allow for
changes in the requirements of the users, and a general economy of human effort
results. At the same time, it is easier to improve the economy of use of the
computer, because it is sasier to pick out the parts that need improvement, and
to improve them,

The effort required of the student in the general course is not negligible. The
student has to learn a new language,in which to express his ideas. He has to
abgorb many new concepts - flow of control, storage, sequencing of events - to
adopt a new approach to problem solving, more reasoned than before, more explicit,
without appeals to hig sudience's intultion - to deal explicitly with more complex

139,

processes than before, and, above all, actually get things right, We find
that this stage occupies about one third of a gtudent's time for a term.

To try to do this in a non-credit courge in unreasonable, and many universities
will have to modify their course credit siructure somewhat before they can offer
this sort of thing to all their students. This also demands a lot of teaching
effort, especially if the gocial problems are to have worthwhile discussion,

and it is not the sort of teaching that can be done by hiring final year
mathematica students. It needs people with a fairly mature understanding.

It also needs good computing facilities to maintain the students' will to work.
Rapid turn-around sessions and remote job entry terminals are very useful, but
the best tool is a good multi-access system - reliable, fast, with video=
terminals, and easy provision of hard copy.

The specimens used in the teaching need to vary with the students’interests.

The depth of detail that is exposed must vary with the students' need, The rate at
which students can absorb this sort of material appears to vary greatly from
gtudent to student. A large renge of differing courscs is needed, What better
way of providing it is there than the use of & computer as a teaching aid?
Clearly this is the time for an 'imsginative experiment’ to be carried out - for
the UGC to fund a fow universities on a large encugh gcale to enable them to use
a good multi-access system as & tool in large scale introductory teaching.

140.

———————— el

