e

L
SR

/Zm[u tuj Goww(j/‘w»

INTRODUCTION TO PROGRAMMING

FOR EDSAC 2

SEPTEMBER 1957

CONTENTS .

PART 1
Section 1. Introduction page 1.
2. The Store 2,
3. The Arithmetical Unit 2.
4, Storage of orders 3.
5. Written form of orders 3.
6. Some simple exaﬁples 4.
7 Jump orders 5.
8. Cycles of orders 6
9. Cycles of orders with a count 10.
10. sutomatic modification of orders 13.
11. Special orders . 15.
12. Punched form of orders 17.
13. Directives 18.
14. Input of numbers 19.
15. Output of numbers 21
PA4RT 11
16. Further orders in the order code 22,
17. Subroutines 23.
18. Entering and leaving a closed subroutine 24,
19. Parametric addressocs 25.
20. Additional facilities of the program input routine 29.
21. Numerical integration of differential equations 31.
APPENDIX 1. EDSAC 2 teleprinter code 35.

2. Summary of that part of the EDSAC 2 Order Code
used in this booklet 36.

3. Programming exercises 38.

—— =

AN INTR0DUCTION TO PROGRAMMING FOR _EDSAC 2

PARL 1

The purpose of this booklet is to provide an introduction to
programming for newcomers to the subject. By the 'program' is meant
the schedule of operating instructions by means of which the machine
carries out the calculation. Each of these instructions (or 'orders')
specifies a single operation (such as addition or multiplication), and
the program must be drawn up in such a way that the machine not only

carries out the operations required, but does so in the right sequence.

The ideas involved in programming for different machines are esscnt-
jally similar. However, in order to fix one's ideas and to provide
examples for illustration and practice, it is necessary to work in terms
of the programming system for a particular machine, Since this booklet is
intended to be used in connection with the Summer School in programming
held at the University Mathematical Laboratory, Cambridge, it is written
in terms of the system used for EDSAC 2. It is meant to be only a first
introduction to the subject: in particular it leaves out many of the

advanced facilities available on EDSAC 2.

The main things that a programmer needs to know about a machine are:
(i) 1Its 'order code', that is, the different elementary operations

that the machine can carry out, and how they are specified.

(ii) How the machine, having carried out the operation specified

by one instruction, determines the next one.

(iii) The input and output media: that is, the physical forms
in which the program and data are supplied to the machine and in
which results are supplied by it; and the auxiliary equipment

with which the input can be prepared and the output processed.
(iv) The coded form in which program and data must be specified
to the machine,

(v) The range of numbers that can be stored inside the machine,

and the precision with which they can be stored.

In the following sections the order code is introduced gradually, so
that the student becomes accustomed by practice to some of the more

commonly used orders without having to master the whole order code at

once. Orders arc of the fone-address typc; that is, each order which
refers to the store (some do not) refers to one number in the store.
only. Orders are normally placed in the store in the sequence in which
they are to be obeyed. Input and output are both by means of five-
hole puﬁched paper tapes. The input tape is prepared on a keyboard

perforator, similar to a typewriter.

In EDSAC 2, numbers arc stored in floating binary form., However,
in the early stages of learning how to program, the programmer has
no nced to know the precise form in which numbers or orders are stored,
or the details of the proccsses by which the machine operates on them.
H

~

@ should, however, know the range of numbers which can be stored

4
and used, and their precision. In EDSAC 2, numbers up to 10 0 can
be stored and used, with a precision of about 10 significant decimal

figures.

The Store.

~ The store consists of 1024 registers, cach capable of holding
one number or a pair of orders. A single order occupies only half
a register; a half register is frequently called a storage location,
or simply a location. In order to identify the storage locations, each
is labelled by a number, called its address; these addresses run from

O to 2047, and the addresses of the two halves of a register are always

. an even number and the odd number following it - that is, 2q and 2g+1.

The whole storage register is referred to by the even address 2q. (This
leads to no confusion, since it is always clear whether we are talking
about‘a register or a location.) It is sometimes convenient to use

the term 'word' to describe the contents of a register without specify-
ing whether it is a number or a pair of orders. The notation C(q)

will be used for the content of location q, and F(q) - where q is

even - for the content of register q.

The Arithmetic Unit.

i S i s

The central part of the arithmetic unit is a register which plays
the part of the result register in a desk calculating machine; it
accumulates the sum of numbers added into it. This register is known
as the gecumulator and its content will be written F(Acc). Ordinarily,

the effect of any arithmetic operation is simply to change the value

of F(kcc).

At any stage in a calculation, the number in the accumulater can

be copied into any specified storage register q by means of an appropriate

instruction. When this is done, the previous content of the register
is obliterated, and is replaced by the content of the accumulator.

The number in the accumulator itself is not altered.

The accumulator, or a storage register, is said to be 'clear!'
if its content is zero; and to 'clear' a register means to make its

content zero.

4. Storage of orders.

Orders are normally placed in storage locations numbered in the
sequence in which they are to be obeyed. The control unit is so
designed that after the machine has carried out the order in locat-
ion q it automatically takes next the order in location g+l1, unless

the order in location q has specified otherwise (sece Section 7).

5 Written form of orders.

When orders are written, the function and the address are
written as two integers, normally separated by the letter f. The
written forms of some of the more important arithmetical operations
are as follows:

10 f q place in the accumulator the number in storage register q.

11 £ q place in the accumulator minus the number in storage
register q.

12 £ q add to the number in the accumulator the number in stor-
age register q.

13 £ g subtract from the number in the accumulator the number in
storage register q.

14 £ q multiply the number in the accumulator by the number in

storage register q.
15 £ q divide the number in the accumulator by the number in
storage register q.
19 £ q copy the number in the accumulator into storage register q.
In all these, q stands for the address of a storage register, that
is, an even integer in the range O to 2046 inclusive: it is called
the address part of the order. For orders with function numbers

10 to 15, the result of the operation is placed in the accumulator.

Thevcontents of the store are not affected by any of these
orders except the order with function number 19, and this order does

not affect the content of the accumulator.,

an order with function number x is usually called an 'x order',

6o

The 10 order is said to get F(q), the number in storage
register g, in the accumulator; similarly the 11 order is said
to set ~F(q) in the accumulator. The results of these operations
areé independent of the previous content of the accumulator, which
is deleted and is lost unless it has previously been placed in

some register in the store.

Some_simple examples.

We are now able to write down the sequences of orders required
to perform some simple'calculations. These are to be thought of
as forming part of a larger program: the numbers to be operated
on have been calculated and placed where they are at an earlier
stage of the work. For the reader's convenience, we note with each
order the operand (that is, the number in the store to which the
order refers), and also the number in the accumulator after the
order has been obeyed. These are purely explanatory: they do not

form part of the program as it would be read into the machine.

In writing our sequences of orders, we shall draft them in
such a form that the required calculation is carried out regardless
of the content of the accumulator before the first order of the
sequence is obeyed, This usually requires that the sequence starts

with a 10 or 1l order,
Example 1. Given x = F(200), y = F(202) - that is, the numbers
X and y are in registers 200 and 202 respectively; to form x+y

and place it in 204.

Order Operand ECAce)
10 £ 200 X X
12 £ 202 y X+y
19 £ 204 X+y X+Y .

Since the orders are to be obeyed in this sequence, and the control
unit takes orders in sequence from successive storage locations
unless explicitly instructed to do otherwise, these orders must

be placed in successive storage locations, say 100, 101, 102:

Storage location Order
100 10 £ 200
101 12 £ 202

102 19 £ 204

Te

Example 2. Given a = F(300), b = F(302), x = F(350), vy = F(352);
to place ax in 420 and y(ax+by) in 430.

Location Qrder Operand E(hce)
100 10 £ 350 X b4
101 14 £ 300 a ax
102 19 £ 420 ax ax
103 10 £ 302 b b
104 14 £ 352 y by
105 12 £ 420 ax ax+by
106 14 £ 352 y y(axtby)
107 19 £ 430 y(ax+by) y(ax+by) .

Jump orders.

Unless it is explicitly instructed otherwise, the machine
obeys orders in the sequence in which they are stored. Any order
which makes it do otherwise is known as a jump order. The effect
of a jump order, with address part q, is to make the machine obey
a new sequence of orders starting at storage location q (a 'Jjump

to q'). A jump order may be unconditional, in which case the

machine always jumps to q, or conditional, in which case the mach-
ine jumps to q if a certain condition is satisfied, and otherwise
proceeds serially; that is, if the conditional jump order is in
location r, it takes the order in (r+l) as the next to be obeyed.
The form of an unconditional jump order is
50 £ g

Two of the most common conditional jump orders, in which the criter-
jon for a jump depends on the sign of thc number in the accumulator,
are as follows:

54 £ q jump to q if F(Acc) 2 0; otherwise proceed serially.

55 £ q momnowon F(hace) < 03 " " " .
It will be seen that these two conditional jump orders are complement-

ary., Logically it would be sufficient for the programmer to have

only one of themj; but it is much more convenient to have both,

Example 3. If x = F(200) is negative, replace it by O; otherwise

leave it unchanged.

Location Order
100 10 £ 200
101 54 £ 103
102 13 £ 200

103 19 £ 200

e =

The sequence of orders actually carried out by the machine
is different according as x » 0 or x < 0. If x » O the orders

carried out aret-

Location Qrder Operand E(Ace) Notes
100 10 £ 200 X X
101 54 £ 103 X
103 19 £ 200 X X F(200) = X.

In this casc the number in the accumulator when the 54 order is
encountered is positive or zero. For a 54 order this is the condit~—~
ion for a jump, and the machine therefore jumps to the address 103

specified in the 54 order.

1f x < 0, however, the orders carried out are:i-

100 10 £ 200 b 4 X
101 54 £ 103 b3
102 13 £ 200 X o
103 19 £ 200 0 0 F(200) = 0.

In this case, the number in the accumulator when the 54 order is
oncountered is negative. This is the condition for procceding
serially, and the machine takes its next order from 102. This
causes F(200) = x to be subtracted from F(Acc) = x, leaving in
the accumulator the number zero, which is the result required to

be put in 200 when x is negative,

Note. The fact that the order in 103 may be reached by a

jump from 101 is often indicated by the notation '101-9'
written to the left of the 'Location' column on the line
referring to location 103, thus:i-

101—3103 19 T 200

This notation is purely for the guidance of the proérammer, and

plays no part in the orders in the machine,

Cvcles of orders.

Many long calculations involve repeated application of the

same group of orders to different sets of numbers. Such a group

is called a cycle. The number of times the cycle has to be repeat-
ed may be known in advance or may depend on the numbers produced

in the course of the calculation. In either case, the cycle must
include at least one jump order, in order to return from the end

of the cycle to the beginning: moreover, it must include at least
one conditional jump, since otherwise it will be impossible ever

to leave the cycle.

& short example in which the number of repcetitions is not
known in advance, but is controlled by the results of the calculat-

ion, is the following.

Example 4. F(4) is negative. 4dd F(2) (which is positive) to it
repeatedly until the result becomes zero or positive, and place

the result in 4.

Let the initial value of F(4) be -x (x is positive) and F(2) = y.
Location Qrder Operand FE(hcg)

100 10 £ 4 -X -X
102 —3101 12 £ 2 y ~x+y, =x+2y, =X+23¥, ..., Successive-
ly.
102 55 £ 101 do.
103 19 £ 4 final value of -x+my.

The order in 102 results in a jump back to 101 if -x+my is still
negative; the first time -x+my becomes zero or positive, the machine
procecds serially from the order in 102 and, by obeying the order

in 103, it places the final value of -xt+tmy in 4.

Notes. 1. A procedure of this kind could be used for reduc-
ing a negative angle to the rangc O to 2 7, by

successive addition of 2%

2. Here the conditional jump for leaving the cycle

is also the jump to repeat the cycle.

The following is a less trivial example of a process in which
the number of repetitions of a cycle depends on the results obtained

as the calculation proceeds.

Example 5. Given x = F(200), a = F(300), where 0 < a < x < 1;
form the sum of the series x+x2+x3+..., up to (but not including)

the first term which is less than a, and place the result in 202.

We shall build up the sum term by term in 202, so that when
the calculation is complete the result will already be in that

register, as required. We shall also need to keep a record of

xn. the term last added to the sum, in order to form xn+1, the

next term to be added (if it is not less than a); let this be

kept in 204. If we start with x in 202 and 204, we want the cycle

n+
to be such that, at the end of n repetitions of it, x 1 is in 204

2 1
and X+X +eeetx is in 202; for brevity we shall write Sn+1 for

this sum of n+1 terms, so that
n+1

Sn+1 = Sn+x .

In programming a set of orders including a cycle, it is
often most convenient to program the cycle first, and then to
add the preliminary orders, such as those, in this example, which
set the initial contents of 202 and 204. There are often several
points in a cycle at which one might start the programming of the
cyclic group of orders. We shall start the programming at the
point where xn has just been added to the sum and the result
placed in 202. We then want to form xn+1, test whether it is
greater than a and, if it is not, jump out of the cycle. Let the
first of these orders be in 103; then they are

Location Order Operand F(Acc) Notes

103 10 £ 204 x° x" set x in the accumulator from
204

104 14 £ 200 X xn+1 multiply xn by x to form xn+1

105 19 £ 204 x"T1 O place x*"1 in 204

106 13 £ 300 a xtea

107 55 £ xn+1-a

A 55 order is used to test whether the condition for leaving

+1-a < 0, so a jump

the cycle is fulfilled. This condition is X
occurs if it is satisfied. The address to which the jump occurs
cannot yet be specified. It is left blank for the moment, but will

have to be inserted later,

I1f the condition xn+1—a < is not satisfied, the machine
will take its next order from 108, and we want it then to add the
value of xn+1, Jjust calculated, to the sum up to the term xn which
is in 202, and to place the result in 202¢ Since at this stage
the accumulator contains xn+1—a, which we do not want to be added

into the sum, we must start the addition process with a 10 order:

108 10 £ 204 xMT1 Bt
109 12 £ 202 S s +x"t1 - g
n n ntl
110 19 £ 202 8,41 place 5 in 202.

We are now ready to return to the beginning of the cycle, which
is the order in 103, and we can do this by an unconditional jump
order, since if these orders in 108 = 111 are reached at all, the
condition for leaving the cycle is not yet satisfied. This jump
order is therefore

111 50 f 103
Since the order in 103 is a 10 order, the content of the accumulator

when this jump is made is irrelevant to the further calculation.

P

10

Alternatively we could use the group of orders:-

Location Order

100 10 £ 200 |
101 19 £ 202
102 19 £ 204
—> 103 10 £ 204 orders 100 - 106 of (1)
104 14 £ 200
105 19 £ 204
v106 13 £ 300‘_’J
~—107 54 £ 110
108 10 £ 202 set sum in accumulator
109 50 £ 114
110 10 £ 202
111 12 £ 204 orders 108 - 111 of (1)
112 19 £ 202
b——113 50 £ 103

> 114 next order.

Here the cycle consists of the orders in locations 103 - 107

and 110 - 113; 100 - 102 are prologue and 108 - 109 epilogue.

The orders in locations 100 - 106 are the same as before.
Now, however, we want the conditional jump order in 107 to
be succceeded by the epilogue in 108 -~ 109 if the condition
xn+1-a < 0 is satisfied, and by a jump to 110 to continue
the cycle if this condition is not satisfied: so we now

require a 54 order at this point.

Cycles of orders with a count.

In the last example, the number of terms of the series we
had to take could not be predicted in advance. We might instead
have wished to take a definite number, say 50 terms of the series.
One way to do this is to keep somewihere a count of the number of

cycles still to be performed, to subtract 1 from it every time

~ we go round the cycle and to leave the cycle when the count

becomes O. (This of course means that in the 'prologue! we must
set the initial value of the count = in this case 49, since

the first term of the series was dealt with in a special way,
outside the cycle, by the orders in 100 - 102.) It would be
perfectly possible to do the counting in the ordinary registers;
however, this state of affairs is so frequent that the machine

is provided with two special registers (callsad modificer registoers,

11

for recasons which will appear in the next section) which can be
used for this purpose. These are called the s register and t
register., Their contents are integers which are denoted by s

and t. The operations involving these registers will be explained
in terms of the s register: similar statements, with t substitut-

ed for s, apply to the t register.

The orders which set the value of s arc as follows:
70 s q put the integer q in the s register.
71 s q put the integer -q in the s register.
Note that q hcre stands for a number (not the content of storage
register q) whereas s is a letter identifying the modifier register

involved; also that these orders do not contain a letter f.

It is usually convenient (for reasons which will appear
in the next section) to count in multiples of 2; thus for counting
we need a way of increasing or decrecasing s by 2, and we need a
conditional jump order which will test whether s is O, These are
both, in fact, done by the same order:
74 s q increase s by 2; if the new value of s is O
proceced serially, if not jump to q.
75 s q decrease s by 23 if the new value of s is O
proceed serially, if not jump to q.

Example 6. Given x = F(200), form the sum x+xz+...+x50.

Place the sum in 202.

The arithmetic of this calculation is simpler than that of
Ixample 5, since we do not have to form and test xn+1—a: the
arithmetical orders of the cycle which we still need arc those in
locations 103 - 105 and 109 - 110 of the schedule (1) on p.9
Further, since we do not have to form and test xn+1-a before
adding xn+1 to the sum, the conditional jump order for leaving
the cycle can be put at the end of the cycle instead of in the
middle; that is, we do the arithmetic before the counting. The
main new point is the organisation of the count. In this case
the cycle has to be performed 49 times. We can either count
upwards from ~-¢3 to O or downwards from 98 to O (remembering that

we count in multiples of 2); both versions are given here.

Counting downwards Counting upwards
location Order Location Order
100 10 £ 200 100 10 £ 200 |
101 19 £ 202 101 19 £ 202 srologue
102 19 £ 204 102 19 £ 204
103 70 s 98 103 71 s 98

12

Counting downwards Counting upwards

Location Order Location Order

104 10 £ 204 104 10 £ 204 |
105 14 £ 200 105 14 £ 200
106 19 £ 204 106 19 £ 204 arithmetical
107 12 £ 202 107 12 £ 202 operations
108 19 £ 202 108 19 £ 202

—109 75 s 104 - 109 74 s 104¢M count and test.

Notes. (1) The counting does not affect the accumulator.

(This is one reason for using a modifier register.)

(2) 1f a different number of repetitions has to be made,
only the address part of the order in 103 has to be changed.
Moreover, the group of orders includes the setting of the
count; thus it can be used any number of times in the

course of the calculation.

(3) After k repetitions of the cycle (counting downwards),

the initial value of s has been diminished by 2k. Another

cycle will then be started unless s has been diminished to
0. Thus if the original value of s was 2j (an even number),

the cycle will be performed just j times.

In preparing for a cycle, it is often convenient to place
O in some storage register. For instance, in both the-examples ‘g“!o.
of-this~aeetion it would have becen convenicnt to place O in 202
as the initial value of the sum (*the sum over O terms').
We got around this by treating the first term of the sum in a
special way by the orders in 100, 101; but this is frequently
very inconvenicent. There is therefore a special order which
has the effect of putting O in storage register q:
9 f q clear q3 that is to say, set F(q) = O.

This does not disturb the accumulator. To show its use, we give

the following altcernative version of Example 6:

Location order Notes
100 71 s 100 set count (counting upwards)
101 9 f 202 clear 202 (initial value of sum)
102 10 £ 200 put x in accumulator (as initial value of xn)
—— 103 50 £ 106 jump into cycle
~> 104 10 £ 204
105 14 £ 200
> 106 19 £ 204
107 12 £ 202
108 19 £ 202

— 109 74 s 104

13

Here it is inconvenient to put 1, the initial value of

xn, into 204, since no storagc location contains the number 1;
so instead we enter the cycle at the point where xn+1 has been
formed and is about to be stored, and we do this with x, the
initial value of xn+1, in the accumulator, The 74 order is
obeyed at the end of this first part-cycle, which therefore is
counted as if it were a complete cycle. Hence the number of
cycles is now 50 and not 49, consequently the initial value of

s has to be set to =-100.

10. putomatic modification of orders. It often happens that a group
of orders has to be repeated a number of times, with slight and
systematic changes being made before each repetition. These
changes will normally be in the address parts of some of the

orders. For instance, if xl,...,x are stored in 302,404,380

40

and yl,...,y40 in 402,...,,480, and we wish to form X ¥, +eess+x

171 40740
in 200, then we have to go through a cycle 40 times; and when

we go through the cycle for the nth time we want its arithmetic
orders to have the effect of those shown below (we leave out the

count, for the moment, and write Sn for the sum up to and including

Xy):
nn
Location Order Operand ECAce)
102 10 £ 300+2n x X]
; n n
103 14 £ 400+2n y Xy
n nn (2)
=8
104 12 £ 200 Spe1 Xy +S =S
105 19 £ 200 S s
n n th

Suppose that we have chosen to count upwards to O; then the n

time we go through the cycle we have s = 2n-82, since the first

time we have s = ~80. In effect, therefore, the value of 2n is
available in the modifier register. (This is why we chose to

count up, and not down, in this case.)

To cope with this situation, there is an arrangementbe which

an order may be modified (before being obeyed) by having:the‘
content of the s (or t) register added to the address in it.
This is indicated by using the letter s (or t) instead of f to
separate the function and address parts of the order. It must
be understood that the order is not altered in the store every
time it is obeyed: what happens is that when the order is put
from the store into the control unit s (or t) is added to its

address part before it is obeyed.

14

Example 7. Given xl,...,x40

e i “’" 00 8 H *®
stored in 402, ,480; form x1y1+ +x40y40

stored in 302,...,380, and

Yl,---,y40 in 200.

We already know what the arithmetical orders in the cycle
should look like in the control unit: they are given in (2) above.

The cycle can now be built up round them:

location Qrder Operand Notes

100 9 f 200 (0] clear 200 ready to form sum
101 71 s 80 set count initially at -80
102 10 s 382

103 14 s 482

104 12 £ 200

105 19 £ 200

106 74 s 102

The simplest way to determine the address parts of the two modified
orders (in 102 and 103) is to note that the first time we go
through the cycle, when s = -80, they are to reach the control

unit in the form 10 £ 302 and 14 f 402.

an order can only be modified in this way if it does not
in its specification refer to a modifier register: the s in a
74 order, for instance, means that the order refers to the s
register, and does not mean that the order is to be modified
by s before being obeyed., Thus there are two kinds of orders in
which s (or t) may appear. In orders of one kind, of which
orders with function numbers 9 - 15 and 19 are examples, the
to the address part of the order before it is obeyed. In those of
the other kind, of which orders with function numbers 70, 71, 74
and 75 are examples, the letter s denotes the modifier register
which is involved in the operation specified by the order, but
this operation does not involve adding the number s to the address
part of the order. The orders of this second kind are those which
have function numbers from 66 to 90 inclusive; they are called

modificr or 1.

When s is added to the address part of a modified order, the
sum is taken modulo 2048; thus a meaningful order always results,
and there is no overflow from the address part of the order into

anywhere else.

Example 8. Given ao,...,a4o

form ab+a1x+...+a40x in the accumulator.

stored in 300,...,380 and x = F(200);

15

Here, for the first time, we meet an important point of tactics:
it 1s not enough to know what onc wants to calculate, one must
also decide the particular way in which it is to be calculated.
Here one's first idea might be to build up the series term by term,
as we did earlier in Example 5. There is, howcver, a much more
economical way, which is expressed by the formula

((...((a4ox+a39)x+a38)x+...)x+ao).

This can be ovaluated by a cyclic process, of which the arithmetical
steps in a cycle consist simply of a multiplication by x and the

addition of a coefficient aj to the result.

When we go through the cycle the nth time, the arithmetical
orders must be obeyed in the form
14 £ 200 multiply by x
12 £ 380-2n add 240-n
and we have to go through the cycle 40 times. It follows that we

th
must count down, so that at the n repetition we have s = 82-2n.

(1f we counted up, we would have s = 2n~82, which is no good to us,)

Thus the group of orders is

Location Order Notes
100 70 s 80 set count initially at 80
101 10 £ 380 put 240 in the accumulator
r}loz 14 £ 200 cycle to multiply by x
g 103 12 s 298 and add 240-n.
— 104 75 s 102

11. Speccial ord.rs.

In addition to the normal orders, there are in BDSAC 2 certain

special ori- rs (also called permanent subroutineg). From the

e e i b

point of view of the programmer these are to be regarded as single
orders, but, for enginecring reasons, they all have the function
number 59 and are distinguished by their address parts. Most

of the operations they perform are more complicated than those

of normal orders. Five of them replace the number in the accumulator,

X, by some function of it:

1
59 £ 11 place x? in the accumulator
59 f 12 1" ex 1" " 11
59 f 13 " logex 1 1? 13
59 f 14 " sin x " " 1

59 £ 15 " cosx "M "

16

One is concerned with the input of numbers:
59 £ 10 read a number from the input tape and place it
in the accumulator.
(“he forw ‘n which nunbord have to be unchcd on the input tlape

i Jdiscuns. d in Section 14.)

Several are concerned with the output of numbers, in various
forms and with various precisions. 4 typical one is
59 £ 27 punch on the output tape the number now standing

in the accumulator (in floating decimal form,
to 7 significant figures). This does not affect
the content of the accumulator.

These special instructions widen considerably the range of

calculations which can be programmed quite simply.

Example 9. Read a number x from the input tape, calculate
y = e(x—e) and punch x and y on the output tape.

In this example no repeated groups of orders occur, and
it is easiest to draft the orders of the program in the sequence

in which they will be carried out by the machine.

The machine must first rcad x from the input tape, which

is done by the order

Order Operand F(Ace)
59 £ 10 X Xe

Anticipating that we shall need x again at a later stage of the

calculation we must plant it somewhere in the store. This we

do by the order
19 £ 2 X X,

where we arc using 2 as working space. Since x is still in

the accumulator, we can punch it on the output tape by the order
59 £ 27 X X,

and, since this still leaves x in the accumulator, we can

form ¢ by

50 f 12 x %,
and then ex—x by
13 £ 2 x ®-x.

To obtain y, we need the exponential of minus this last quantity,

so the first thing to do is to change its sign. Since we no

longer need the value of x, we can use 2 as working space, and

change the sign of the content of the accumulator by the orders
X b'<

19 £ 2 e -x e -x

11 £ 2 ex—x x—ex.

.
. .

17

The value of y is now formed in the accumulator by the order

order Operand F(AcC)

50 £ 12 x-e" y = e(x—e)
and punched on the output tape by the order

50 £ 27 y Vo

What comes next in the program depends on what we want to
do next. It may, for example, happen that we want to perform
the same calculation with a new value of x read from the tape,
in which case the next orier will be a jump back to the beginning
of the sequence. It can, however, happen that this one calculation
is all we want to do. In this case we now want an order which stops
the machins and signals to the operator that the calculation is

ended., Such an order is the stop_order:

0L £f0 stop the machine and light the stop warning lamp.
This order must be used to end any complete program, since other-

wise the machine might go on running for ever.

12. Punch:¢ form of orders.

We have so far been concerned solely with the design of a
program, that is to say with writing down the orders on papers.
EDSAC 2, however, does not respond to written symbols, and in
order to get the program into the machine it must first beo punched
out on paper tape, which is the actual input medium of EDSAC 2.
The tape is punched out on a keyboard rather like that of a type-
writer, and is the same sort of tape as is used to control tele-
printers in telegraphy. The manner in which the tape must be
punched is so designed that if the tape is passed through a tape

reader connected to a teleprinter the result will be a printed

copy of the program as written out in the manner laid down in the

previous sections of this booklet.

Bach symbol on the keyboard corresponds to a single row of
holes on the tape. In this row there are five positions in which
holes can be punched; in addition there is a small hole, known
as the sprocket hole, which helps to guide the tapc through the
tape reader but has no programming significance, There are thus
32 possible symbols, including blank tape, which can be represent-
ed. These, together with their representations on the tape, are

given in Appendix 1.

In addition to the decimal digits, those lower case (small)

letters which are used in writing a program, and certain symbols

13.

18

such as brackets and a decimal point, the code includes tcarriage
return', 'line feed', 'space', 'letter shift!, and ‘erase!'. The
first three of these are the 'layout symbols': they do not them-
selves correspond to any mark on the paper (if the tape is printed
out), but they control the way in which the other symbols are laid
out on the printed page. They must be used in punching a program,
as will be explained below. The use of the letter shift symbol on
the input tape is restricted to the printing of titles (see Section
20)., The erase symbol consists of all five holes and is ignored
by the program input routine (except in a title - see Section 20).
It may therefore be used to cancel any symbol that has been incorrect-

ly punched on the input tape.

In punching a program, each order must be punched as it is
written: that is, the function number, followed by the letter
f, s or t, followed by the address (which may be in parametric
form, as explained in Section 19). Single spaces may be included,

and will improve the appearance of the printed page, but two spaces

must never be punched together. Moreover, each order mugst be followed
by the two symbols 'carriage return' and 'line feed!. This is not
merely to produce an clegant layout on the page when the program

is printed out: it is necessary to have some terminating symbol

at the end of each order, and the carriage return symbol. has been

adopted for this purpose.

Pirectives.

e s e e s

The program input routine reads the orders and numbers of
a program into the store. It must therefore be given, for example,
some indication of where in the store the program is to be put, and
when it is to stop reading in the program and begin o beying it.

Such indications are called directives.

There arc two types of directives which concern us at the
moment. The first of them is written
pl = q
where q is an integer. This causes the orders following on the
tape to be read into successive storage locations, starting with
location q. The effect of this continues until another directive
is read. The second kind of directive is written -
sa —Gh | bglielz
This causes the machine to stop reading tape and start obeying

the orders of the program, beginning with that in location q and
Ao srq e AuE oy
u4t1uv C?hof

P

A s B B B L VR L T A

Ty g ey ok v ooy gyt ey

: ('cY). ﬁym) | .i ﬂ | -—nmra

")“’)mg‘/ 47?"!))7 T”B"Eh[;’l?? -fwulu] m\7 ')
el z -ﬂ)_w;' v

MR N LR S B BT

14.

19

proceeding serially in the usual way.

A directive must be terminated by a carriage return and
a line feed, just like an order, so that it would appear in

the printed copy as a single line of print,.

As an example, the written form of Example 9, including
the directives needed to put it in locations 100 - 109 and then
begin obeying it, is as follows:

pl = 100
59 £ 10
19 £ 2
59 £ 27
50 £ 12
13 £ 2
19 £ 2
11 £ 2
50 £ 12
50 £ 27
101 £0
s 100

The punched form would consist of the same symbols (with single
spaces if desired), each line, including t last, being torminat~

ed by a carriage return and a line feed,

Input of numbers.

We have so far been concerned with the input of numbers
during the operation of the program, and for this we have used
the order 59 f 10. It is sometimes convenient to read numbers
into the store at the same time as the program, by means of the
program input routine. For example, if values of a function
are to be evaluated by means of a polynomial approximation to
it, the values of the coefficients have to be read in at some
point, and it is easiest and most convenient to read them in with

the rest of the program.

The program input routine can read numbers as well as orders.
The numbers must be punched in a suitable styie; this is described
below, and is the same as that required to read a number by the
order 59 f 10, The storage registers into which numbers are
read are controlled by a directive pl = q, just as with orders;
a succesion of numbers will be read into successive registers.

1t is indeed possible to mingle numbers and orders. The program

15.

21

iocation Content Operand F(4cc)
100 10 £ 200 a a
101 14 £ 202 b ab
102 12 £ 108 w b ab+ag b
103 14 £ 106 T, T ab+1R) b
104 19 f 252 T¢ (ab+WQ) T ab+1%) b
105 50 £ 156 7(ab+1y) b
106 |
107_j 3414159265

108] % "

109

The tape entries would cénsist of the items in the column headed
'Content', each followed by the symbols for carriage return and
line feed; thus if the input tape were used to give a printed

copy on a teleprinter, these items would appear on successive

lines, as written in this column.

Onc advantage of this way of reading numbers which are known
before the calculation is started, as part of the program, is
that no orders are needed for this in the program; anqther
advantage will be mentioned in Section 19. A further way of read-
ing numbers in the course of the input of a program will be

desceribed in Section 20 (a).

Output of numbers.

It has been pointed out in Section 11 that a number may
be punched on the output tape by the special order
59 £ 27

The number thus punched is in floating decimal form, with seven

significant figures; that is, when the output tape is used to
give a printed copy on a teleprinter, the number will appear
ass minus sign or space (aécording as the number is negative
or positive), first digit, decimal point, remaining digits,
suffix 10 symbol, exponent. The exponent is an integer of one
or two* digits preceded, in the case of a negative exponent,

by a minus sign.

The results of a calculation are printed by passing the
output tape through a tape reader connected to a teleprinter.

It the results consist of more than two or three numbers, the

If the exponent is zero it is omitted altogether, the number

ending with the suffix 10°

AN

18,

22

layout of these numbers on the printed page must be programmed in order
to provide them in a readable form, For this purpose we must insert, in
the part of the program concerned with the output of results, orders for
punching on the output tape the symbols for space, carriage return and
line feed., These orders are as follows:

107 £ 2 punch on the output tape the symbol for carriage return

107 £ 8 " noon " "noon " " line feed

107 £ 30 » won " "oon " " space.
Note that when carriage return and line feed are both required the

carriage return must precede the line feed, and not vice vorsa.

PAIT 2
Further orders in the order code.

This section introduces some further orders in the order code

of EDSAC 2.

(a) An order which is often useful is:
8 £ q eoxchange the content of the accumulator with that of storage

register q.

(b) The following are orders, similar to those with function numbers
10 to 13, but involving the modulus of the content of a specified
storage register:~-

20 £ q set lF(q)l in the accumulator

21 £ g set ~‘F(q)! in the accumulator

22 £ g add lF(q)i to the content of the accumulator

23 £ q subtract ‘F(q)l from the content of the accumulator

(c) The following are additional jump orders:-
50 £ q Jump to g and clear the accumulator
52 £ q jump to q if the content of the accumulator is zero, other-
wise proceed serially
53 £ q jump to q if the content of the accumulator is pot zero,
otherwise proceed serially.
Since the orders with function numbers 10, 11, 20 and 21 provide means
of setting the content of any storage register in the accumulator, it
is seldom necessary to clear the accumulator; if this ias to be done,

a 51 order provides one way of doing it.

(d) The following are additional modifier orders:
72 8 q add the number q to s

73 8 g subtract the number g from s
79 8 g set the address in the order in location q e¢qual to s
80 s q set s cqual to the address in the order in location (.

Similar orders, containing t instead of s, concern the t register.

17.

23

Crders with function numbers 79 and 80 arc useful for temporary
storage and replacemont of the content of a modifier register if
this register is required for another purpose in the course of a

calculation.

(2) It is sometimes necessary to halt the machine temporarily,
for instance to give time for a new tape to be put in the tape
reader. For this purpose we have the order:

102 £ 0 wait until the machine is manually restarted.

Subroutines.

Since a calculation has to be broken down into very simple
individual operations, it will normally need a great many of them,
Instead of considering the program as a whole, it is therefore
convanient to break it up into groups of orders, each doing some
self-contained job such as a quadrature or the multiplication of
two matrices. Such groups of orders are called gubroutines. Thus
the group of orders required to evaluate a power series (Example 7)
could be regarded as a subroutine, though it is really too short

for this to be worth while,

The main reason for thinking in terms of subroutines is that
this enables a program to be broken up into pieces small enough
to be grasped but, at the same time, self-contained eunocugh to
be checked individually. yuite a number of jobs of the sort one
would do in a subroutine turn up time and again. It would obviously
be a waste of time if cach programmer had to devise a set of orders
for doing them: suitable scts of orders are therefore put in a
library, so that one can merely copy them and can rely on their not
containing any mistakes. Such copying can be carried out and verified
mechanically; all that the uscer has to do is to take the original
tape from the library and place it in the copying and verifying

equipment .

It may happen that we wish to use a subroutine at several
different points in a program. It is then convenient to place
it in the store in some position separatc from the main program
and, on each occasion on which the subroutine is used, to enter it
by a jump order (somctimes called the cue to the subroutine) and
to return from it by another jump order (called the link). If the
cue is in location r, it is most convenient if the link produces
a jump to (r+1); then, from the point of view of the programmer,

the cue which results in the operation of the subroutine is a

18.

24

single order which is placed in the sequence of orders just like

an order for any other opcration.

To simplify and standardise the process of entering and leaving
subroutines, there are in the order code of EDSAC 2 two special
orders; their function numbers are 58 and 60. Subroutines using

these orders for cue and link are called closed subroutines. For

most purposes the programmer need not know the exact specifications
of the 58 and 60 orders. Provided that (i) within a closed subroutine
he does not use register O nor call in another closed subroutine,

and (ii) if the subroutine changes the valué of t he does not use
aftor the subroutine the value of t set before it, then all he needs
is the partial description:

58 £ q enter the closed subroutine of which the first order
is in location q;

60 £ O return from a closed subroutine to the location immed-
jately following the cue order 58 for entry to the
subroutine, restoring s to the value it had when the
58 order was obeyed.

(Note that, by contrast to everything earlier, s and t are NOT
treated symmetrically. It follows that the s register is freely
available to the programmer within the subroutine, but the t register
only if he can afford to destroy its previous content.)

Howover, in some contexts in which these orders may be used, it may
be advisable to know rather more about them, and for this reason

they are considered further in the next section.

All library subroutines are closed in the sense just defined;
and even if a subroutine is only going to be used once, the programmer
will usually find it most convenient to write his program as a number
of closed subroutines called in by a brief master routine. It is
then casy to check the subroutines, and the master routine is short
enough to be error-free; the waste of time and orders involved

is negligible.

Entering and leaving a closed subroutingc.

The orders which are used to enter and leave a closed subroutine
are as follows:
53 £ q if r is the location of this order, make C(0) =0 f s
and C(1) =0 £ (r+1), and jump to ¢;
60 £ 0 sct the value of s equal to the address part of C(0),
and jump to the address specified by the address part
of C(1).

19.

25

The 58 order provides the cue for entry to a closed subroutine,
and the 60 order provides the link for return to the main program.
Provided that the contents of locations O and 1 (that is, of
register 0) have not been disturbed during the subroutine, the
effect of the 60 order is to reset s to the value which it had on
entry to the subroutine, and to return to the main program at the
order immediately after the cue to the subroutine. Since the
address (r+1) for the jump back is set by the cue order, the link
order is the same wherever in the store the subroutine is placed.
It should be noted that, in contrast to what happens with other
orders, the s and t registers are treated unsymmetrically. The
content of the s register is stored at the beginning, and recovered
at the end of a closed subroutine; but nothing is done about t.
Thus, if the t register is used by the subroutine, the original

value of t is lost.

Since register O is used by the 58 and 60 orders, it should
not normally be used for any other purpose. Care is also needed
if in the course of one closed subroutine it is necessary to call
in another: in this case, the contents of register O after entering
the first subroutine (i.e, its link with the main program) must be
put somewhere else in the store before the second subroutine is entered,
and put back in O again afterwards in order to return to the main

program. A typical sequence of orders for this would be

10 £ d_- transfer C(0) and C(1) to accumulator
19 £ 2 and store them in locations 2 and 3.
58 f d*- jump to second subroutine.

Second subroutine —> 10 f 2 | recover original contents of locations
19 £ 0 0, 1, and put them back in O, 1.

In many sequences of orders, the addresses in one or more
orders depend on the locations of others. For instance, in the
set of orders (1) in Example 5 (Section 8), the address 103 in the
order in location 111 is the address specifying the location of
another order in the sequence, and depends on the position in the
store in which these orders are placed. Other instances of this
can be seen in Examples 4, 6, 7 and 8; it has so far only occurred
with jump orders, but there are other contexts in which it may
occur. Further, it has so far been supposed that the addresses
of all registers containing numbers involved in the calculation

have been determined beforcehand.

ghoz opye R
oswosword L b

e] - M - M—_‘

Con Gy oy A]

26

The result is, in effect, that a programmer cannot write a
sequence of orders until he has decided where in the store these
orders, and the numbers on which they operate, are to be placed;
and this can be very inconvenient. For a subroutine intended for
the library it can be disastrous, since a feature of a library
subroutine should be that it can be put iﬁ any position in the

store without alteration.

We require, therefore, a means of referring to locations of
orders, and to registers holding numbers, which does not require
that the programmer should know the addresses of these locations
or registers at the time he programs the sequence of orders referr-
ing to them. At some later stage in the process of programming
these ‘addresses must be determined, but the process of programming
a long or involved calculation is very much simplified if this step
can be postponed, Further, such a facility enables a group of
orders to be tested before it has been decided where in the store
these orders, the numbers on which they operate, or any other groups
of orders referred to, shall be placed in the complete program of

which these orders will eventually form a part.

On EDSAC 2 this facility is provided by the use of symbols
termed parameters in the addresses in the written (and punched)
form of orders; each such parameter stands for an integer which
is the address, or a contribution to the address, in an order.
A parameter is written (and punched) as the letter p followed by
a number which identifies it, for example

pl2

Note that the number 12 here identifies the parameter and is NOT
its value; The combination pl2 must be regarded as a single symbol,
denoting a single number which is the address, or a contribution
to the address, in an order, It is often convenient to use several
independent parameters in a single program. There are in fact
97 parameters available to the programmer, written as p3 to p99
inclusive. There are also parameters pl and p2, but these should
not be used by the programmer. It is possible to form an address
by the addition of a known number and a parameter; this is expressed
in the written (and punched) form of an order by writing the parameter

symbol immediately after the number. An address containing a parameter

is called a parametric address.

Example 11. As an example of the use of parameters, suppose that
when drawing up the orders (1) of Example 5 (Section 8), it had

27

not been decided in which register of the store the number x should
be stored, or where the records of the current values of x° and
Sn in the course of the calculation should be kept, but it had been
decided that the latter two records should be kept in successive
registers., Then if we denote by q the address of the register
which is to contain x, and by b the address of the register which
is to contain xn, we should want the first three orders of this
group to be

10 £ g

19 £ b

19 £ b+2
If we use the parameter symbol p20 to denote the value of q, and
p21l to denote the value of b, these three orders, in the form
appropriate to the machine, would be

10 £ p20 |

19 £ p21 (a)

19 £ 2p21
the address 2p21 in the third gzwihese orders being the form
used feor writing the address

2 + (value of parameter p21).

The conversion from parametric addresses to absolute addresses
is carried out by the program input routine. On different occas-
ions on which a group of orders using parametric addresses is
used, different values may be given to the parameters; but on
any one occasion the parameters will have definite values, which
must be specified during the input of the program so that they
can be used for this conversion. There are two ways of specifying

the value of a parameter, one explicit and the ether implicit.

The value of a parameter can be set explicitly by a directive.
The directive to set the parameter p3 to the value q is
p3 =q
For instance, if in Example 11 the values of the parameters p20
and p21 are set by the directives
p20 = 200
p21 = 202
the orders (a) of this example would be placed in the store as
10 £ 200
19 £ 202
19 £ 204

which are the first three orders of the sequence (1) of Example 5.

a9 P)P ,4Uﬂ‘r W 48
mﬂm‘}’a" WVbj

pfon e o ey) pTD ot §

. 6 2 [:(¢‘ 7."29[)2{‘?
ﬁ7 v appra0 2 7 | armord &f"’)%fﬂ
’ L_é d - .- o} d "”WP)‘ E_)T’?‘M?”?I Ao memd

Grnao Ry = g

e sapenp o1 mpe 4o el

wepps Y MW 6*)0 n7) N ~¢‘>_'~/f)1)~m>v /r”,JY”
T el R e
Rl S] mmvmt/ ‘)-.:)ﬁu@ynu mﬁd’vjav WWJ

28

Alternatively, a parameter may be set implicitly, by attaching
a label to an order, the label being the numbgr which identifies
the parameter to be used in referring to the location of this
erder, The label is written by following the relevant order with
an opening bracket and the identifying number of the parameter
te be set, thus:

14 £ 200 (3

The value of the parameter p3 will then be set to the address ef
the location in the store into which this order is placed by the

program input routine.

¥xample _12. The nrders of Example 8 (Section 10) in a form

independent of position in the store.

The sequence of erders in its eriginal form, designed to be

put into locations 100 to 104, is

Location Order
100 70 s 80
101 10 £ 380
102 14 £ 200
103 12 £ 298
104 75 s 102

The last of these is the only one in which the address depends

on the position of this group of orders in the store. If we label
the order 14 f 200 by (say) the label (3, the location of this
order, to which the 75 order jumps back, can be denoted by the
parameter p3, so that the orders take the form

(p3)-2 70 s 80
(p3)-1 10 £ 380
(p3) 14 £ 200 (3
(p3)+1 12 £ 298
(p3)+2 75 s p3

and in this form this group of orders is independent of the posit-
ion in the store which it may occupy. It is still necessary that
these erders should occupy successive locations, but the use of
parametric addresses frees the pregrammer frpm having te consider
what particular sequence of lecatigns shall be used. It has the
further advantage that if, at a later stage of prggramming, it is
found that some orders have to be inserted in the middle of a program
already drafted, this can be done withgut requiring any renpmgering
of addresses in orders already written. It also enables different
parts ef a lgng er cemplicated program to be largely 'unceupled’

from one another during programming, while retaining full freedom

29

of cross-reference between them; their detailed'placing in the

store can be considered separately, and later.

The replacement of a parameter symbol by its numerical value
in a particular case is done, as already stated, by the program
input routine. It might seem that the value of a parameter must
be set, explicitly or implicitly, before this parameter is used.
However, if a parameter is the whole of the address in an order
(as often happens when a parameter is used), then it will be
correctly interpreted even though the value of that parameter is

only set at a later stage of the input process.

In Example 12 the item labelled (3 is an order. It is also
possible to set a value of a parameter by labelling, in the same
way, a number which is read in the course of the input of a program

(but not one read in by means of a 59 f 10 order),

Example 13. Example 10 with parametric addresses for the numbers

ocand ¥2. b

The required sequence of tape entries is:

10 £ 200

14 £ 202

12 £ p5

14 f p4

19 £ 252

50 f 156
3.14159265(4

268 b(S

Notes. (1) 1In this form, the orders are independent of

their position in the store.

(2) The address in the third order of this group must not
be written 2p4 since this is a forward reference and, as

such must consist of a parameter alone (see above).

20. Additional facilities of the program input routine.

(a) Listing of constants.

e S e e S i e ettt o St

When a program is being drafted, it happens quite often that
we wish to use some specific number as the operand of an instruct-
ion. For example we may wish to divide the number in the accumulator
by 360 to convert degrees into revolutions. The program input
routine makes it possible to do this in a simple manner. The

programmer merely writes the number itself (instead of the address

ey

32

where h is the interval of integration in the independent variable

x; and c+4, c+10,,.. arc used as working spacc during the operation.
The contents of c+4, c+10,.s. must be clcared (this may be done

most simply by repsated use of the 9 order) before the integration

is started, and must not subsequently be altered by the programmer.
The auxiliary subroutine must be so written that, given any numbers
YO: Yl
places them in registers c+2, c+8,...; 1in addition, on every exit

,+ss in registers c,c+6,... it evaluates hfo, hfl,... and

from it t must be 2n. The subroutine must therefore contain,
at the end for preference, the order 70 t 2n. If this is done,
the t register as well as the s register is available for the

programmer to use in the auxiliary.

It is also necessary that on reaching the order 5dﬁf 17 we
should have s = ¢; the simplest way to ensure this (since a closed
subroutine restores the valuc of s) is to have the erder 70 s ¢

immediately before the order 58 f q. Thus the natural entry to the

integration subroutine will be

770 s ¢ set s = ¢

58 £ g jump to auxiliary subroutine

50 f 17 advance integration one step.
(Note that the auxiliary will have been obeyed once before the
order 59 £ 17 is reached: this order must not be reached by a

jump from elsewhere in the program.)

Example 14. Auxiliary subroutine for the set of equations
2
dyo/dx =Y, Yge dyl/dx = Yy dyz/dx = -kyyy,-
Suppose F(4) = h, F(8) = k°, F(10) = y, (i.e. ¢ = 10); then
F(16) = yl, F(22) = Voo We evaluate and plant the values of
hdyO/dx. hdylldx and hdyZ/dx in succession,

Order Operand E(Ace)

10 f 16)’1 yl

14 £ 22 y2 yly2 = dyO/dx

14 £ 4 h hdy,/dx

19 £ 12 hdyo/dx hdyo/dx plant hdyo/dx in (¢+2) = 12
11 £ 10 Yo Yo

14 f22 vy, Yo¥y = dyl/dx

14 £ 4 h hdyl/dx

19 £ 18 hdyl/dx hdylldx plant hdyl/dx in (¢+8) = 18
11 £ 10 Yo =Y,

14 £ 16 Y& —Zoyl

14 £ k -k yoy1 = dyz/dx

14 £ h hdy ,/dx

19 £ 24 hdyz/dx hdyzldx plant hdyzldx in (c+14) = 24
70 t 6 3 equations, set t = 2n = 6
60 £ O link.

33

An integration will usually require some preliminary operat-
ions for setting initial values of the yi's, clearing the set of
registers c+4, c+10,..., setting the value of h, and perhaps read-
ing in numerical data such as, in this example, the value of k2
for which the integration is carried out., It'is often convenient
to combine these into a separate subroutine which is called in
before the integration process is started. The complete program
will also have to contain some orders controlling the number of
steps of integration carried out, and the stages at which results

are punched.

On completion of the order 59 f 17,the contents of registers

c, ct6, c+12,... are the values of yo, yl, yz,... at the current
stage of the integration; but the contents of registers c+2,

c+8, c+14,..., are not in general the corresponding values of
hdyo/dx, hdylldx,... though they will be approximations to them.

1f values of the derivatives are required (for example for punching
on the output tape) they must be calculated by the auxiliary, which
is entered and left in the ordinary way for a closed subroutine

(see Section 17).

If the value of any of the derivatives dyi/dx depends explicitly
on x, the most convenient procedure in many cases is to include
among the dependent variables one (say yo) which is x itself, or
a constant multiple of it, and which therefore satisfies the
equation

dyO/dx =C,
so that hdyo/dx = hC, If h is going to be kept constant throughout
an integration, the value of hC can be placed in register (c+2)
as part of the preliminaries to the integration itself; it will
not be disturbed by the integration process, and does not need to
be reset by the auxiliary. It may bz convenient to take C = 1/h;
then hC = 1 and hy0 = X

If h is changed in the course of an integration, but all
values which are used arae multiples of some number ho (which may,
for example, be 0+1 or $-01 or 0-005) it may be convenient to

take C = 1/h°.

Similarly it may be convenicnt to evaluate other functiens,
occurring in the differential equation to be solved, by ietegration
of one or more auxiliary differential equations; for exaﬁble
Bessel functions by integration of Bessel's equation

dzy/dx2 + (1/x)dy/dx + (1 - nz/xz)y =0 (3)

APPENDIX 4 EDSBAC 2 teleprinter code

Code Figure Letter
Shift Shift

G0 .000 No effect
00,001 £ F
00.010 Carriage return
00.011 0 0
00,100 r R
00.101 7 K
00.110 2 U
00.111 s 3]
01.000 Line feed
01.001 3 L
01.010 5 H
01.011 / A
01.100 9 M
01.101 (Z
01.119 = B
O1. D
1.111 10
10.000
10.001 4
10.010 3
10.011 5 w
10.100 6 J
10.101 t T
10110 n N
10.111 - B
11.000 1 I
11.001 * C
11.010) X
11.011 Letter shift
11.100 . v
11.101 + @
11.110 Space
11.111 Figure shift

Note: Tapes are punched in accordance with the left-hand column, a hole being punched
for each 1. The full stop in each row rcprosonts the sprocket hole, which is always
punched.

S

o

K " W w X 80D 5T 3 68

* " w wu X urs u T I 66

s (009)4 Teurdiaxo = X - 032 ThRWNOOE 8yl Ul xaﬁot " ¢l 3 64

* " " i xa' " 2T 3 66

* 103BTRWNOOR dY3 Ut %x ooeTd TI1 3 68

s J0jeTNWNOO® 2yl ul 3% ooetd pue eodez andutl oyjl woay JoquUnuU e peaJ OT 3 6%

(*b 03 dun({ pue
(I+1) 3 0= (T)) pue 8 3 C = (0)) oyew ‘aopao STU3} JO UOTIEDOT oy} ST I I1)

*b UOT3EO0T UF ST JOPIO 3SITF 2Y3 YTy JO aUTINOIQNS POSOTO 2yl J23Ud b 3 g¢
* “ " . " €0 > (99Y)d b 4 “ b 3 g8
*A1TeTI0S posooxd oSTMILYLO §0< (ooy)a 3T b 03 dunf b3 vS

+f1Teta0s posvoad
asTMIOY}0 foxoz 760 €1 J03eTNWNOO® 9Y3 JO JuUaju0d ou3l 3T b o3 dumnf b 7 €S

s A1TeTaes poodsoad

2SIMIOY30 $OJ9Z ST JIOJBTNUNOOT 2Y3 JO JUSJUOD ous Jt b b 1 g8
* J0oj3eThUNOOR aqq xea1o pue b o3 dumfl b 3 16

*b o3 dunf b 3 0%

* JOJRTNUWNOOR 3Y3 JO Ju2juUcd 8Y3 woiy |(b)g| j0eI3qns b 3 ¢2

* J07BTHWNOOE SY3 JO 3FU2IU0D 2Y3 0} ‘(b)gl ppe b3y 22

. o woow | (0)A)- 308 b3 T2

* J03RTNWNOO® 2Y3 UT ‘(b)gl 108 b 3 02

*b xo3st8ex 28rvIo3}s O3UT JojeTnunooe 2yj Ul Jaqunu ay3l Adoo b1 61

*h aeqst8oa
o8eao3s ur Joqunu oyj} Aq JOjBRINUNOOE BYJ UT Jaqunu eyl opIarp b 3 gt

b xeysiloa
o8ea01s Ul Joqunu oyl Aq JI03RTNUNOOE 2Y3 UT Joqunu oy3 AtdraTnu b3 ¥T

*b aojsiBaa

o8es038 UT JoqUNU 8Y) JOJBINUNOIE ©UY} UT Joqunu oyj uody 30BI3qNS b g€l
‘b xe3sTdes 28ex0ls Ul Joqunu 2yl JojeTnunooe oyl ul Joqunu ayl 03 bpe b1 21
o ‘b a03sTfex 08eJ03s UT JOQUNU SY] SNUTU JOFETNUNDIOE ayy) ut eoetd b1 It
*b ao3sTfea ©8eJ03S UT JoquUNU 9Y3J JO03ETNUNDDE oYy utr eoetrd b1 01
0 = (b)g 38 ‘Aes 03 ST IBU} ¢b xo3st8oa a3va03s JvOTO b3ye
*b
x238T8x oBeJ03s JO JBUL UITA JOIRTNWNODE 2YI} JO 3U83U0O Il a8uryoxe bzeg
* 1e1y00q

STU] UF Pesn 8po) IBpIQ Z HYECHE oy3 Fo 3aed jey) yo Ageumng 7 X1aNdddv

59

59

60

70
71
72
73

74

75

79
80
101

102

107 ¢

107

107

17

27

advance integration of diffurential equations by one step.

punch on the output tape the number now standing in the accumulator
(in floating decimal form, to 7 significant figures). This does
not affect the content of the accumulator. :
return from a closed subroutine to the location immediately
following the cuc¢ order 58 for entry to the subroutine, restoring

s to the value it had when the 58 order was obeyed.

(set the value of s equal to the address part of C(0), and
jump to the address specified by the address part of C(1).

put the integer ¢ in the s register.
put the integer -q in the s register.
add the iantugerq to s,

subtract the intes. rq from s.

increase s by 2; if the new value of s is O proceed serially,
if not jump to q.

decrease s by 23 1if the new value of s is O proceed serially,
if not jump to q.

set the address in the order in location q equal to s.

set 8 equal to the address in the order in location q.

stop the machine and light thc stop warning lamp.

wait until the machine is manually restarted.

punch on the output tape the symbol for carriage return.
noon o " " " " " line feed.

" " " 1" (1) " " " SpaC@.

APPENDIX 3

Programming Exorcises =

Construct sequences of orders to carry out the following operations
on EDSAC 2. The orders may be placed anywhere in the store, but
their locations should be indicated. Registers 2, 4, 6,..s may

be used for temporary storage of constants if required.

Sequences of orders should preferably be capable of repeated

application,

For sets A and B,
X, ¥, & z are in registers 100, 102, & 104 respectively;

a, b, & ¢ are in registers 110, 112, & 114 rcspectively.

Set_A
1. Place x+y in register 120.
2. Place 2x-y in register 122.
3. Place x2 in register 124,

4. Place y3 in register 126,

S5 Place x2+y3 in register 128 and xz-y3 in register 130.

6. Given that T2 is in register 118 place (x2+y2)/ﬂ? in
register 120.

7 Place xy+yz+zx in register 122.

8. Place axz+2bxy+cz2 in register 124.

9. Place ax2+bx+c in register 126.

10. Place cx2 in 120 and bx2 in register 122.
Set B

i. Place -lx! in register 120.

2. Place]x-yl in register 122«

3. Place the greater of x and y in register 106«

4, Place the greater of F(106) and z in register 106.

54 Replace x by vy if y > =z,

Goe The number in register 118 is either 1/2 or 1/3. Whichever
is therc replace it by the other.

T Replace the number in 118 by the number in 118 subtracted
from (1/2+1/3).

8. Write a scquence of orders which cause a jump to location
300 the first time they are encountered, to location 400
the sc¢cond time, and so on alternately.,

9. if F(100) < O place F(104) in register 1063 if ©(100) > O
put F(108) in register 106. In cither case reverse the sign

of F(109). What does your program do if F(100) = 0? MNodify

i

10.

3,

4.

7.

it, if necessary, so that it stops in this case.
Given a, b, ¢, d, e, f in registers 110 to 120, place
u and v in registers 2130 and 132 where

authv+e = O

dutev+f = Q.

Clear registers 100 to 198 inclusive.

Place in register 4 the sum of the squares ofg}pe numbers

stored in registers 100 to 198 inclusive,

leplace the numbers stored in registers 100 to 198 by those

stored in registers 1000 to 1098 respectively.

Place the numbcer which is stored in register 4 in the first

register which is now clear after register 100. Then clear

the following registor.

Test the numbers in rogisters 200, 202, 204, etc. until one

is found which is greater than 1/2 but less than 1. Place

this number in register 6.

Given that register 10 contains x, place x13 in register 4

using the fewest possible orders. Repeat the programming

trying to minimise the time taken. Assume that multiplication

orders take ten times as long as any other order.

Place in register 100 the largest of the numbers in registers

100 to 198 and placc the number from 100 in the register which

previously h21ld the largest number.

Evaluate and place in register 6 the number
ao+a1x+a2x2+a3x3+....+a10x10

where x is stored in register 8 and the coefficients a,

are stored in registers 120-2n.

zxn—1

Evaluate 1+4x+9x2+16x3+...+n +...+100x9 without holding

all the coefficients in thoe storc.

Programming Exerciscs I
H

Write complete programs, including any necessary directives, for

the following cxamples. It may be assumed that a separate data tape

will be placcd in the tape reader after the program has been read

and placed in the store. The program should contain a wait order to

allow time for this tape handling. The program should be terminated

by a stop order.

n
()
ot
>

1. Print (3-142)2+72085.
2. Print (/2-1)2,
3. Print exp(3°14159).
4, Print cos33° and 5in33°,
5. Read x from the data tape and print 1oge(x~M§).
6o Read x and y from the data tape. Print
xcos(ry) aﬁd ysin@rx).,
7. Print exp{?l/S)log %] where x is read from thefdata tape.
8. The data tape contains a group of positive numbers, terminated

by a negative number. Print the largest of the positive numbers.

9. Read x and y from the data tape. Let uo =1, ul = 1, and
Ynrr T MY
Print uloo/ugg.

10. Read x and y from the data tapec. uo = x, vo = y3 and
Uy T (un+vq)/2.
Vn+1 =«/hnvn'
Print u10 and Vlo'

11. Using the same rclations as in Example 10, print uN where
N > 1 is the smallest vilu: for which vy z,uN.

Set B

1. Read 16 numbers X from the data tape.
Print x0+xlcoslz°+xzcosz4°+...+x15coslso°.

2, Read 16 numbers X from the inp:; tape.
Print Yp' ™ = 1(1)5 where v, = g‘:;ncos(nmlz)o.

3. Print the solutions of ax2+bx+c = 0, where a, b, ¢ are read
in sequence from the input tape,

4, Print the sum 1 + 1/2 + 1/3 + 1/4 + ...+1/1000—logelOOO

5. Evaluate and print (1 + 1/4)(1 - 1/9)(1 + 1/16)(1 - 1/25) « + «(1+1/10000) .

6. Print the sums
1+ X + X724 X°/102.3 + x7/1.2.3.40 4eeut £ 102000n 4o
for x = 1(*2)2. Terms which contribute less than 1O~10 to
the sum should be neglected.

7 The times of departure and arrival of trains from Cambridge to

King's Cross and from Cambridge to Liverpool Street, expressed

in minutes after midnight, are given on a data tape. The

data are expressed in pairs of numbers, the first giving time

of departure and the second time of arrival. The trains are in
order of departure time, with all the King's Cross trains first.
The end of the tape is marked by a negative number, Using the
order 59 f 24 for printing, print a timetable expressed in

minutes giving the times of departure of useful trains, i.e. those
which takc less than 2 hours and are not passed by another train

during the journey.

sccumulator 2, 3
Address 2, 3

INDEX

Address, Absolute 27

Address, Parametric
Address Part 3, 15
Arithmetic Unit 2
Clear 3, 12
Constants 29, 30
Counting 10 - 1i2
Cue 23, 25

Cycle 6 ~-14
Differential Equation

25 — 28

8 31 - 34

Directives 18, 27, 30

Epilogue 9
Floating Decimal Form
Function 3
Input 1, 2, 16, 17,

Instruction see Order

Item 20
Label 28
Layout 18, 22

Library 23, 24, 26

Link 283, 25

Location 2

Master sfoutine 24
Modification of Order
Modifier Registers
Order 1

21
19, 20, 21
s 13, 14
10~ 12

Order Code 1, 36, 37

Orders, Jump 5
Orders, Modifier 14
Orders, Special 15
Output 1, 2, 16, 21
Parameter 27 ~ 29
Parameter, Forward Re
Permancent Subroutines
Program 1

. Program Input Routine
" Prologue 9

Range of Numbers i,
Register 2

- Set 4

g-Register see Modi
Storage Location se
Storage of Orders 3
Storage Register se
Store 2

Subroutine 23 - 26
Subroutine, Closed
Subroutine, Auxiliary
Teleprinter Code 35
Titles 30, 31
t-Register see Modi
Waiting 30

Written Form of Order

ference 29
see Orders, Special

18, 19, 29, 30
2
fier Register
o Location
e Register

24
31, 32

fier Register

s 3

%@\\\\\%@@\ . . \&Qx\% TR .

| Y B W &%&;i&&& ok 3

-

