

cedure has as one of its parameters an access rights record, detailing the caller’s ID,
privileges and group memberships, as described in section 2.1.3 below.

The basic sequence of operations is to open a file, to read and/or write one or more
blocks, and then to close it again. This stateful approach was chosen over the alternative
stateless method whereby the file’s ID would be specified with each read or write request,
because it reduces the cost for these data-transfer operations, because it allows for files
to be opened by suitably endowed agents on behalf of other less-well endowed agents,
and because it allows the file system to enforce file-grained concurrency control. This
latter requirement implies that some state must be maintained somewhere, and the file
system, which is in any case responsible for enforcing access control, is the obvious place
to put it. Supported access modes are read, modify which allows any block of the file to
be written, and append, enforced here but implemented mainly in the packaging layer,
which allows new data to be written beyond the end of the current file but not the
alteration of existing data.

When a file is opened, the file system returns a token for the file, the size of the file
(in bytes) and a flags word. The flags include some from the header, such as whether the
file has been improperly closed or is marked for backup, and some which are generated,
such as whether the file has world-read access (because access control is enforced by
the file system, any higher-level caches must either be user-specific, or contain only
world-readable information).

Reading and writing blocks require only that the token issued when the file was
opened be presented along with a data buffer. Files are extended automatically by
writing, one block at a time, beyond the area which already contains data. Only the
last block written may be short; an error status will be returned should a short write to
any other block of the file be attempted.

Closing a file invalidates the token supplied when it was opened and removes any
concurrency constraints. Optionally, the allocated space may be truncated to exactly
that required to hold the data content.

Files grow automatically as they are written. In order that they may be shortened,
a procedure is provided to truncate a currently-open file. The new size is specified in
bytes, and any data which existed beyond that size becomes inaccessible. For reasons
of security the converse operation is not supported.

A separate procedure for creating files is provided, as this was felt to result in a
cleaner division of the file system’s tasks than would automatic creation in the “open”
procedure. The caller specifies a creation name, which is recorded (possibly truncated) in
the file header for the benefit of file system structure management utilities, a partition
number, the initial space allocation (note that these blocks are not accessible until
written) and the file-ID of a “benefactor.” This last is used to supply defaults for all
ownership and access fields, with the exception of the “creator” which is taken from the
supplied access record. The purpose of these ownership and access fields is explained in
section 2.1.3.

Each file has a reference count associated with it which is incremented or decremented
in steps of one at the request of the directory layer. Files are automatically deleted when
their reference count goes to zero, implying that they are no longer needed.

The procedures for querying or modifying a file’s miscellaneous attributes (basically,
everything except data content) take linked lists of attribute records, each of which
contains an attribute code, a status, and pointers to one or two buffers. These are

4

processed, independently of each other, in the order in which they appear in the list,
the entire request being an atomic operation on the file. Files are referred to directly by
ID, rather than being required first to be opened, as attribute operations are generally
of a one-shot nature and do not require to be interlocked with other concurrent users.

The “exchange” operation is provided for the benefit of applications implementing
transactions by mechanisms such as differential files. It provides a means whereby the
data content of two files can be logically interchanged as an atomic operation. The
operation is performed “carefully” in the sense that in the unlikely event of a total
system failure partway through, the data content of both of the files is guaranteed to be
preserved, albeit perhaps not with the intended IDs; the critical window is of the order
of milliseconds, however.

2.1.1 Logical Partitions

The file system does not, in fact, deal directly with raw discs. Instead, each disc is
divided up into one or more logical partitions. There are a number of advantages in this
approach: these include the ability to mix both file-structured and non-file-structured
areas, such as the disc header (describing the partition layout on the disc) and the
bootstrap area; the ability to influence disc layout on a coarse scale, for example by
placing commonly-used system utilities in a partition near the centre of the disc; the
provision of coarse-grained access control; and independent quota enforcement.

Each 30-bit file-ID is divided into two parts: the high-order six bits are used to
identify the logical partition, while, in the case of file-structured partitions, the low-
order 24 bits identify the file within the partition. The partition identification part is
currently further sub-divided into two equal parts, the high order three bits identifying
the disc, and the low-order three bits identifying the partition within the disc. The
partition module provides a defaulting service to the directory layer, with procedures?
to supply missing partition and disc numbers for one file-ID based on those of a (fully
specified) second file-ID, and conversely to strip out the partition and /or disc numbers
from a given file-ID if they correspond with those of a second. The directory layer
uses this mechanism to make files’ directory entries relative to their respective parent
directories, allowing directory trees to be more loosely coupled with discs and partitions.

The interface between the partition sub-layer and the file system above it takes the
form of block-read and block-write requests, each of which specify the partition ID and
the block within the partition.

As well as controlling coarse-grain disc layout, the partition module maintains a
cache of disc blocks. This is organised in “chunks,” currently of eight blocks each, read
from the disc in a single operation. Writes are done one block at a time, first to the
disc and then copied into the appropriate cache chunk as required: this approach is
sufficient, in the sense that it does not make any concurrent read from the same block
any less risky. Note that it is not safe to attempt the cache update before writing to
disc, as the disc driver is at liberty to schedule any subsequent chunk read request before
the write, giving rise to cache inconsistency. The cache replacement strategy is LRU. A
prefetch request entry is provided, together with an indication to the caller whenever a
read is from the last block in a chunk. With a -.}-Megabyte cache, the hit rate is typically
over 90%, and often in excess of 95%. Concurrent access to the cache tables is under

2 At least it should be done like this!

%constinteger
%constinteger
%constinteger
%constinteger
%constinteger
%constinteger
%constinteger
%constinteger

%recordformat
%recordformat
%constinteger
%constinteger
%constinteger

%recordformat

no access = O { File is inaccessible

read access = 1 { File can be read

modify access = 2 { File can be modified

append access = 4 { File can be appended to
exchange access = 8 { File can be (extent) exchanged
link access = 16 { File can be (un)linked

control access = 32 { File attributes can be modified
deny access = 64 { Invert sense of access bits

header access fm(%integer ID, access)
extent fm(%integer start, size)

non extent size = 8 + 2 + 2 + 12 + 8 + Yc
12 + 12 + 16 + 4 + 2 + 2

extent limit = (512 - non extent size) // 8
access table size = extent limit

file header fm((%integer checksum, ID,
%short header refcount,
%short flags,
%integer owner, owner access, supervisor,
%integer world access, local access,
%integer creator, static ID, audit ID,
%integer created, modified, accessed,
%string(15) creation name,
%integer blocks used,
%short bytes in last block,
%short extent limit,
(%record(header access fm)%array %c
access(1l : access table size) Yc
%or %record(extent fm)%array Y%c
extent(1 : extent limit)) %c
) %or %integerarray x(1 : 128))

Figure 2.2: File Header Format

When a file is created it normally inherits its access control data, with the exception
of the creator-ID, from a “benefactor,” chosen by the packaging layer to be either a
previous version of the file, if one exists, or the parent directory in which the file is
being created.

Two ownership tokens are maintained for each file in order that that both the creator
of the file and the owner of the directory (or the previous version of the file, should this
be different for some reason) maintain full access rights. The use of only one token
would inevitably have led to one or other being disenfranchised.

The “supervisor” token is intended as an aid to class management. The members
of a particular class would be assigned to some group, with rights to the token being
granted to the lecturers, tutors and demonstrators responsible for that class. This would
give them full owner-access rights to the root directory of the tree and any files created
as part of that tree, including the implicit right to alter a file’s protection attributes. In
effect, they have equal power over students’ files as do the students themselves. Note
that students would inherit ownership of, and hence full access rights to, any files which
a supervisor might create in their directories.

In addition to the right to assert a number of access tokens, each user may also be
granted various privileges. Those relevant to the file system are:

readall allowing the user to read any file, irrespective of the protection set;

bypass which, as its name suggests, causes the protection checking mechanism to be
bypassed completely; and

bootarea which allows the holder to access unstructured partitions, and in particular
the system’s on-disc bootstrap area.

2.1.4 Free Space Management

Free space management is performed using bitmaps, one for each partition, though as
they are manipulated exclusively through a procedural interface it would be straightfor-
ward to implement some other scheme. The operations allowed are:

¢ to claim a specified range of blocks, returning an error if any was already allocated;

e to release a specified range of blocks, returning an error if any was not allocated;
and

e to allocate a contiguous range of blocks, guided by a desired size and a suggested
starting position.

Bitmaps are scanned 32-bits at a time whenever possible, starting either at the
suggested location, wrapping round if necessary, or, if none is specified, from some
(prime) number of blocks beyond the end of the area allocated in the previous call.
The intention behind this algorithm is to make it more likely that files can be extended
contiguously, for efficiency of access and to reduce the number of extent records required
to describe them, the hope being that the hole which was left can be allocated at the
time the file is next extended. The prime step-size should be less likely to interact
constructively with the bitmap size. If contiguous space is available then it is allocated,
even if it is smaller than the requested size; if no contiguous space is available, then the

10

%recordformat path fm(%record(path fm)%name next, %integer version,
4string(*)%name key, %string(255) text)

%integerfn directory lookup one Y%c
(%record(fsys access fm)%name access,
%integer directory ID,
%string(+)%name key,
%integer version,
%integername resulting ID,
%string(*)%name textual translation)
*record(path fm)¥%map directory penultimate %c
(%record(fsys access fm)%name access,
%record(path fm)%name path,
%integername components translated,
%integername resulting ID,
%string(*)%name textual translation,
%integername status)
%integerfn directory lookup %c
(%record(fsys access fm)%name access,
%record(path fm)%name path,
%integername components translated,
%integername file ID, penultimate ID,
%string(*)%name textual translation)
%integerfn directory insert ID Y%c
(%record(fsys access fm)%name access,
%integer directory ID,
%string(*)%name inserting key,
%integer inserting ID)
%integerfn directory insert local %c
(%record(fsys access fm)%name access,
%integer directory ID,
%string(*)%name inserting key,
%string(*)%name inserting text)
%integerfn directory insert external Y%c
(%record(fsys access fm)%name access,
%integer directory ID,
4string(*)%name inserting key,
4string(*)%name inserting text)
%integerfn directory delete entry Y%c
(%record(fsys access fm)%name access,
%integer directory ID,
%string(255) key, %integer version)
hintegerfn directory check empty %c
(%record(fsys access fm)%name access,
%integer directory ID)
%record(*)%map directory contents Yc
(%record(fsys access fm)%name access,
%integer directory ID,
%integername status, flags)

Figure 2.3: The interface to the directory module

12

slots, identified by file-ID, each containing name/translation pairs. Directory slot reuse
is controlled by a LRU algorithm, while within slots the entries at present remain per-
manently allocated. Because the directory layer sits at a higher level than that at which
file protection is enforced, the cache mechanisms must take care not to compromise file
system security. This is achieved by making a cache entry only where the directory
concerned is world-readable.

2.3 The B-Tree Module

As has already been mentioned, the directory layer makes use of a separate B-Tree
package to perform key management and data storage (the interface is shown in figure 2.4
on page 15). The package, which is also used by other server components such as the
authorisation manager, has three parts:

e the I/O interface,
o the key manager, and

e the data record manager.

As well as interfacing to the file system, the I/O section implements transactions
using a form of virtual file [16,11,1,9,3,4]. Two two-level indirectory maps are held in
the file along with the tree and data blocks. The one-block roots of the maps, which
are stamped with an epoch number to show which is the most recent, are in blocks 0
and 1 of the file. The high-order bits of a virtual block number are used to index into
the current root block; the resulting entry is the physical block number of the second-
level map block; the physical block number corresponding to the original virtual block
number is obtained by using the low-order bits of the latter as an index into the former.
A transaction is opened by selecting the root block with the more recent epoch number,
the other one being ignored meantime. Blocks are read using the current indirectory
map. When a (virtual) block is written for the first time a new physical block is selected
and the second-level map block is updated; if this was the first time that map block
was updated then a new physical block will be chosen for it and the root block will be
updated accordingly. The transaction is committed by flushing the map cache, then
incrementing the epoch number and writing the root back to the other root block site;
it is abandoned simply by closing the file without updating the root. Although a small
degree of complication is added by this process it is more than made up for by the
considerable simplification in the logic of the rest of the B-Tree module and the other
system components which make use of it.

The key management section maintains a B-Tree of variable-size keys and corre-
sponding 32-bit data. Insertions follow the usual splitting algorithm. Deletions are
complicated slightly by the variable key-size: a non-leaf key deletion requires that the
next-highest key be borrowed from the appropriate leaf, possibly resulting in splitting
if the borrowed key is larger than that being deleted; the shape of the tree is then re-
adjusted, starting at the leaf from which the key was borrowed. Readjustment, which
is carried out only if the node is less than half full, takes the form first of an attempt
to merge adjacent blocks, right or left merging being chosen according to which gives
the best use of space; if merging is not possible an attempt is made to rotate one or

14

more keys left or right, again depending on use of space; if neither merging nor rotation
was possible the attempt is abandoned, the assumption being that some subsequent
readjustment will recover the wasted space. Note that empty blocks will never arise, as
it would always be possible to merge or rotate in this case. No attempt is made to carry
out tree manipulation operations in a “safe” manner, as the transaction system in the
I/O interface allows any alterations to be backed out if required.

The data storage section provides a means whereby variable-size records may be
stored in the same database file as the keys. When a record is inserted a token is
returned to the caller (usually to be stored itself as the datum corresponding to some
key). The record can subsequently be read, modified (provided its size is not changed)
or deleted on presentation of the token. A size change requires that the record be deleted
and reinserted, probably resulting in a different token being returned.

Both the key management and the data storage sections are self-contained units, and
could easily be packaged up in an I/O section suitable for a user application. Indeed,
the only changes required to the current I/O section would be to open the database file
by name rather than by file-ID, and to adapt the block-read, block-write and close calls
appropriately.

2.4 User Requests and the Packaging Layer

The packaging layer is responsible for taking user requests in the standard form and
performing the appropriate sequence of file and directory operations. These operations
may map directly, may involve several more primitive operations, may be ignored or may
be rejected. Requests are serviced by a pool of procecsses, sharing access to common
tables and all waiting on a single request queue. Each request is dealt with in its entirety
by whichever process happens to have picked it up before the process returns to the tail
of the queue to wait its turn for the next request.

Note that the packaging layer does not interpret redirectors; instead it passes the
resulting text back to the user-level run-time support together with an indication as
to the type of the redirector. A co-resident client would probably want to interpret
both local and external redirectors, the former resulting in a new request to the local
file system, with the latter resulting in a request to a different file system. A protocol
interpreter acting on behalf of an external client, however, would only interpret local
redirectors, returning external redirectors to the client for further processing. This
means that the remote client can obtain the same view of the global directory structure
as would a co-resident client without the need for the protocol interpreter to act as a
proxy.

The current standard form is a preliminary version, and will shortly be replaced.
The new version will include the following features:

e Each (32-bit) request code will consist of two parts. The least significant 16 bits
will specify the operation, while the most significant 16 bits will indicate whether
the operation is common to all file systems or whether it is a specific extension
supported by one particular file system.

e For specific extension codes, bit 15, if set, will indicate that there is a path in
the “usual place.” This will allow file systems which are otherwise unable to

16

Bibliography

[1] M. M. Astrahan et al. System R: relational approach to database management.
ACM Transactions on Database Systems, 1:97-137, June 1976.

(2] G. Brebner and F. King. The Evolution of the Fred Machine. Technical Re-
port CSR-246-87, Computer Science Department, University of Edinburgh, 1987.

[3] M. F. Challis. Database consistency and integrity in a multi-user environment.
In B. Schneiderman, editor, Databases: Improving Usability and Responsiveness,
pages 245-270, Academic Press, 1978.

[4] M. F. Challis. Version management—or how to implement transactions without
a recovery log. In M. P. Atkinson, editor, Database, pages 435-458, Pergamon
Infotech, 1981.

[5] H. Dewar, V. Eachus, K. Humphry, and P. McLellan. The Filestore. Technical
Report, Computer Science Department, University of Edinburgh, 1977. Second
Revision: August 1983.

[6] H. M. Dewar and M. R. King et al. APM Reference Manual. Technical Report,
Computer Science Department, University of Edinburgh, 1983.

[7] W. P. Enos, I. B. Hansen, and R. W. Thénnes. Edinburgh Local Area Network.
Technical Report, Computer Science Department, University of Edinburgh, 1981.

(8] W. P. S. Enos. Ethernet Protocols: Design and Implementation. Master’s thesis,
University of Edinburgh, Computer Science Department, 1981.

[9] J. Gray et al. The recovery manager of the System R database manager. ACM
Computing Surveys, 13:223-242, June 1981.

[10] P. M. McLellan. The Design of a Network Filing System. PhD thesis, University
of Edinburgh, 1981. Available as Technical Report CST-12-81.

(11] P. M. McLellan. Shrines. Technical Report, Computer Science Department, Uni-
versity of Edinburgh, 1982.

[12] J. Postel. Internet Protocol. RFC 791, Information Sciences Institute, University
of Southern California, 4676 Admiralty Way, Marina del Rey, California 90291,
September 1981.

18

