» & o
HD/APM March 1904

PAM: Parameler Acquisition Module

Description

PAM is a set of procedures which may bhe called by programs to acquire parameters. For the
background to the approach, see the note "Getting Command Parameters into Programs"
(appended). The module is available for IMP programs on Vax/VMS and the APMs.

On ECSVAX/VMS the relevant specifications for inclusion in programs are available in:
IMP_INCLUDE:PAM.INC

and the implementation module for linking is available in:
IMP_INCLUDE:PAM.ORJ

On the APM system, the relevant specifications for inclusion in programs are contained in the
general-purpose file:
[:UTIL.INC

and the implementation modules are pre—installed.
As well as the procedures described in the following sections, the include files specify:

the string (unction CLI PARAM which is the standard means of obtaining from the environment
the parameter string from the command line invoking the program;

the record map PAM which is used to determine PAM_GROUPSEP and PAM_KEYFLAG -- the
user's choice of separator characters:

the constant definitions for the values of FLAG attributes described below —— these all have
the prefix PAM to avoid possible identifier clashes, so that, for example, the attribute
cited below as INFILE is actually defined as PAM INFILE.

Parameter types

The definition procedures distinguish four general types:

integer

enumeration

string —- covering also input and output files
sets of Booleans -- a specialised requirement

Mode of use
In order to acquire its parameter values, a program rcquires to execute the following steps:
call the appropriate definition procedure for each parameter in turn

call the parameler processing procedure

Example of Use

Suppose that a program has two input files, one output file, two numeric paramelers and a
three—way diagnostic option. The relevant declarations in the program might be.

ownstring (255) MAIN design to be plotted,
PREDEF="PLOTPREDEF" pre-definition file,
RESULTS="STANDOUT" analysis of design,
owninteger MAX=8 max number of levels,
ITER=5 iterations,
ownbyte DIAG=0 diagnostic option
0:none, i:brief: 2:full

The parameters for this program could be acquired by the following sequence of calls:

define param("MAIN -- design to be plotted”, main, infile+nodefault)
define param("PREdef", predef, infile)

define param("RESults"”, results, outfile)

define int param("MAX —- max number of levels”, max, newgroup)
define int param("ITERations"”, iter, 0)

define enum param("NONE,BRIEF,FULL -- diagnostics"”, diag, 0)
process parameters(cliparam)

Parameter definition

There are three main procedures for defining parameters:

outine DEFINE PARAM (string(255) text, string(*)name variable, integer flags)
—~- to define string parameters

routine DEFINE INT PARAM (string(255) text, integername variable, integer flags)
—=— to define integer parameters

routine DEFINE ENUM PARAM(string(255) text, bytename variable, integer flags)
-~ to define enumeration parameters

The significance of the three arguments to the DEFINE procedures is as follows:

TEXT: defines the keyword or keywords for the parameter, and optionally provides an
expanded explanation of its significance. Keywords should be sequences of
letters only and the convention is adopted that acceptable initial abbreviations
are given in upper-case, optional trailing parts in lower—case. The expanded
explanation should be separated from the keyword(s) by at least one space.

In the case of an enumeration, there are a number of keywords separated by
commas (NB no spaces). The keywords given correspond to the values 0,1,... in
the order of presentation.

VARIABLE: specifies the program variable corresponding to the parameter. This should

always be an own variable.
For string parameters, it must be a string variable of any appropriate length;
For integer parameters it must be a full integer;

For enumerations it must be a byte integer.

FLAGS: specifies the set of additional attributes for the parameter. The attributes which
may be specified are:
NODEFAULT: indicates that there is no default value for this particular

parameter —- causes interactive acquisition if no value is provided
in the parameter string;

MAJOR: indicates that this is an important parameter, for wuse in
determining which parameters should be made visible to the casual
enquirer

NEWGROUP: indicates that if the value for this parameter is presented

positionally within a parameter string, it must be preceded by a
group separator character (typically used to segregate output
file—-names from input file-names);
INFILE: for a string parameter, indicates that the value is an input
file—name to be opened at the time of parameter acquisition;
input stream numbers are used in sequence starting from 1;
any failure to open the file causes an alternative name to be
requested interactively.
OUTFILE: for a string parameter, indicates that the value is an output
file—name to be opened at the Lime of parameter acquisition;
output streamm numbers are used in sequence starting from 1;
the first defined OUTFILE parameter implies NEWGROUP;
any failure to open the file causes an alternative name to be
requested interactively.
by default, letters occurring in string parameters are standardised
to upper—case; KEEPCASE disables this translation.

KEEPCASE:

Sets of Booleans

There is an additional definition procedure for the specialised case of sets of binary-valued options
which are required Lo be held internally as bits within a single word. This is:

routine DEFINE BOOLEAN PARAMS (string(255) text, integername variable, integer flags)

In this case, the text component should start with a sequence of comma-separated names, similar
to an enumeration. However, each of these names is treated as an individual binary enumeration,
using the prefix 'NO' to derive the negated case. For example, the set LIST,CHECK is treated as two
enumerations (NOLIST,LIST) and (NOCHECK,CHECK). For this case VARIABLE should be a full integer,
and bits are assigned in sequence starting from the more significant end (null names may be used
to pad).

Acquiring parameter values

After defining the types of the parameters in sequence, a single procedure call is made to the
procedure PROCESS PARAMETERS. This procedure takes as argument a single string which it
processes to yield values for assignment to the relevant parameters. Typically this string will be
derived from the standard function CLI PARAM which makes available to a program the parameter
string from the command line invoking it. PROCESS PARAMETERS should be called immediately after
the last definition has been set up and it can be used once only for any set of definitions.

Errors

When a localised error is discovered in a parameter string, the user is given the opportunity to
correct the mistake interactively. Where this is not feasible or if the program is not being run
interactively, a report is made and the program stops.

User appearance

The conventions applied to the processing of the parameter string are as follows. Parameter
values for string or numeric parameters may be presented positionally or by keyword selection.
Enumerated type parameters may be presented by keyword selection only. Keyword selection is
indicated by the appearance of a keyword flag character immediately followed by a letter; the
character '-' (minus) is always honoured as a keyword flag character, as is the user's chosen
alternative if there is one. The former should be used to achieve independence of user choice. In
the case of string or numeric parameters, the keyword must be followed by an equals sign and a
value of the appropriate type (eg ~OUTFILE=TEMP2 or —CASES=20); in the case of enumerations, the
keyword itself indicates the value (eg —FULL).

Positional parameters within any group are separated by commas; any parameter defined with the
attribute NEWGROUP requires that the value should instead be preceded by a group separator
character, as chosen by the user.

If. the parameter string consists of, or is terminated by, one or two query symbols ('?'), this is
interpreted as a request to enter interactive mode, displaying to the user all (two queries) or the
major (one query) parameters and their default values (or values assigned thus far) and permitting
additional values to be specified.

The facility for the user to specify an individual choice for certain separator symbols is exercised
on ECSVAX/VMS by providing an alternative definition for the symbol PAM_INFO. This should be a
two-character definition: group separator followed by keyword flag. For example, to select space
as the group separator and '!' as the keyword flag the definition would be:
DEFINE PAM_INFO " !

Note the use of the double-quote immediately before the two charcters. On the APM, the
command PAMSET is used and expects as dala the group separator followed by the keyword flag.
Space is not a valid choice for keyword flag, nor dash (minus) for group separator, and there are a
number of other characters which would not be sensible for either, depending on the syntax of
file-names on the particular system.

Limitations

Some of the details of this facility are provisional and suggestions for improvement are welcome.
The existing implementation of interactive enquiry about, and acquisition of, parameters is limited,
and will surely be extended and varied; this should not, however, perturb the way in which
programs interface to the module.

The module seeks to cover the most common requirements in terms of types and defaults, and to
leave the way open for other cases to be handled by the program itself. Thus it is fully recognised
that the INFILE/OUTFILE attributes will not deal with cases where it is inappropriate to open files
at the outset, or where names have to be derived by more complex procedures, or where the mode
of access is non-standard. It would be desirable to cover a few more cases automatically, such as
default extensions, and suggestions in this area would be particularly welcome.

Note that, for consistency of user appearance, the first parameter corresponding to an output
file-name should be given the attribute NEWGROUP, even if it is not designated OUTFILE.

There are also quite a few detailed points about 'syntax’ which will require to be refined on a
pragmatic basis.

The module does not include provision for acquiring values of type real. There is no problem in
principle in extending it to do so, but it seems best to be conservative about what is supported at
such a basic level.

At present on the APM implementation there is no checking on the validity of string lengths. Also
at present the module does not distinguish interactive execution from non-interactive.

RS

HD/APM January 1984 (revised)
Getting Command Parameters into Programs
Axioms

1. The definition of what the paramelers of a program are should be independent of the
specification of how they are acquired.

2.1 The proper place for definition of whal the parameters are is within the program.

2.2 The proper place for specification of how the parameters are to be acquired is not in the
program.

3. There should be a variety of differenl ways for furnishing values for parameters, provided
by different user interfaces and reflecting different user preferences.

4. The methods for specifying parameter values provided by a system should be applicable
to all programming languages supported on the system.

5. As well as providing ways of communicating parameter values from user to program,
there needs also to be communication to the user of information about the parameters
of a program (or, more precisely. a command): their names, significance and default
values.

6.1 The form of parameter definition within programs should be supportable on a variety of
systems.

6.2 The form of parameter definition within programs should be consistent with the
possibility of eventual compiler support.

Consequences of the axioms

Axioms | to 3 are incompatible with the philosophy of such command languages as the VAX/VMS
DCL, in which the definition of what the parameters for a command are is inextricably bound up
with the form and order of presentation of these parameters in a conventional command language.

It is clearly advantageous if the requirement imposed by Axiom 5 can be handled within the same
mechanism as used for parameter acquisition, though this may be difficult to achieve.

Axioms ‘4 and 6.1 are at odds with an approach which pre-supposes that programs are 'called’ with
typed parameters as for procedure calls, attractive though this would be in many ways.

Axiom 6.2 stems from 2.1. The justification for 2.1 is that the definition of the parameters to a
program, their types and possible ranges, is as much a part of the definition of what the program
does as the instructions it contains. If this is so, we should expect it eventually to be reflected in
the language definition, which makes it sensible to design forms of definition, and accept
principles of usage, which are consistent with this assumption.

Status of paramecters

One obvious implication of the considerations just mentioned is that parameters may be expected
to be individual global variables within programs. So we postulate that there should be a way of
designating as parameters a subset of the global variables declared in a program, just as another
such group might be designated as volatile variables.

One natural thought is to regard parameters as nothing more than externals -- data to be
supplied from oulside the program itself. There are both logical and practical difficulties to
identifying parameters with externals. FExternal variables, though not (necessarily) volatile, may

have their values altered by arbitrary external procedure calls, whereas the concept of a parameter
is that of a variable which may be initialised to an externally provided value, but is not otherwise
capable of being altered from outside the program. In any case, external data does not provide
useful flexibilty in systems which do not support dynamic external linkage.

Accordingly, parameter—-hood must be regarded as a distinct status. Since existing languages do
not in general recognise the concept, it is necessary to introduce it, either by language extension
or by a technique of informal language extension using stylised comments. This applies to other
attributes of parameters as well.

Attributes of parameters

The members of any group of variables are necessarily presented in a certain order; it is open to
make use of this to provide a positional significance, as well as keyword identification, in a
command language.

As variables, parameters would be typed. Axiom 4, however, imposes a restriction on the
over—enthusiastic use of esoteric type mechanisms. At least the following three cases seem
indispensable:

integer (preferably with range specification)
enumerated type (individually named cases)

string

Integers

For this case, the user interface must provide a convenient means for the user to supply arbitrary
integer values, and the acquisition mechanism should check that these values are within the
relevant range. In a conventional command language, the form of presentation would typically
take a form such as:

MAX=1000

The pre-requisites for support within source *language programs are: variables of type integer:
range specification; initialisation option to provide default value.

Enumerations

At first sight, Boolean variables would appear to be the appropriate way to handle binary choices,
with the typical form of presentation for a Boolean option LIST, say, being:

LIST or NOLIST

However, enumerated types provide a more flexible means of handling both binary and multiple
choices. Given the declaration of a parameter V of an enumerated type with constant identifiers
THIS, THAT and TOTHER, one possible form of specification, following the pattern of the integer
case, would be:

V=THIS or V=THAT or V=TOTHER
However, if there is only one parameter of that type, the constant identifiers themselves should
suffice:

THIS or THAT or TOTHER

It is suggested that user convenience is probably best served by accepting the constraint that all
enumerated—type parameters should be of different types, so that the second form is the only one
that needs to be used.

It is also suggested that Boolean options should simply be treated as special cases of enumerations,
as, for example, (NOLIST,LIST) or (NOPLOT,PLOT).

Strings

If string parameters were only used to convey pieces of text for use as, say, headings, they would
be as straightforward as the first two types considered. They raise distinct problems by virtue of
their use to specify the files or other slreams to be operated on by a program.

The root of the problem that this consideration creales is Wwe the issue of file~names versus files.
In the case of an integer parameter, the user types a sequence of digits, and we expect the
program to receive an object of integer type which is the appropriate internal representation of
that sequence. It would remove a number of problems if the same treatment could be applied to
files, so that there would be parameters of various file types which would be initialised to
appropriate files by an externally applied process of referencing the name supplied by the user.

The main problem wilh this approach is that it leads to over early binding, which eliminates the
possibility of applying various systematic operations or substitutions to file-names within the
program.
with the consequence of importing into programs objects which are highly system dependent, and
complicating a number of aspects of parameter acquisition and defaulting.

To achieve such effects, we are obliged to operate with file~-names rather than files,

However, it should be possible to handle at least the most straightforward cases of input and
output streams automatically.

Defaults

As noted earlier, the use of an initialisation statement in the program may be quite a reasonable
way of providing a default value for a simple parameter. However, as well as any long-stop
defaults built into the program there is also a need to provide a way of defining commands which
call that program with alternative defaults. Such layered defaulting can be supported reasonably
well in a command language such as that on VMS in which a new command can be defined as the
application of a partial parameter string to an existing command. With this approach, it is
important that the ultimate parameter string is interpreted sequentially, so that user supplied
values over-ride the defaults. It is less easy to see how this requirement can be integrated with
an environment providing interactive parameter acquisition, though it may not be impossible to do
so,

More attractive for some purposes is to have the possibility of specifying the default value as some
external or environmental variable.

A separate difficulty attaches to the use of string parameters for file—names. Including explicit
default values for these in a program immediately compromises its portability across systems. The
use of an external or environmental variable would avoid this difficulty, but if the system supports
symbolic name substitution at the point of file reference, it is probably best handled by having a

symbolic name as the default.

Implementation approaches

At the low level, the implementation will have Lo be in terms of procedure calls out of the program
to a parameter acquisition module.
definitions of a program in a static fashion from outside, so that this information would be in the
same category as linkage information, but this is ruled out by Axioms 4 and 6.1.

It would be preferable to be able to access the parameter

Three means of deriving the low level implementation are relevant:

Compilation: where the language and implementation support

-1

all the required apparatus

Translation: to convert a program with part of the information
conveyed by language features and part by
stylised comments to a form suitable for execution

Programming: direct use of the low level facilities
(only as a last resort).

Low level interface

It would be attractive to present all the information about parameters in one go, but this would
put an excessive strain on the type mechanisms of most languages, so that an approach involving
one call per parameter is indicated. The parameter acquisition module on the other side of the
interface could simply implement these sequentially, but full flexibility (of enquiry as well as
acquisition) requires that they should be cumulated until all are available. (This may involve some
jiggery-pokery behind the scenes, which is one reason why automatic generation of the call
sequences is desirable).

Accordingly the interface would provide:
a limited set of procedures for defining parameters of different types, one parameter
defined by each call and the order of the calls determining the positional significance of
the parameters;
one procedure with a parameter string as argument to process the parameter string in
the light of the previously executed definitions and/or to interact with the user to
inform about and/or acquire parameters.

