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1. INTRODUCTION 

 

 This document describes the Department of Computer Science's Advanced 

Personal Machine, (APM). It is part of a general computing environment that 

has been evolved over a number of years. There already is an extensive 

communications network in the department which has a filestore, print server, 

VAX 11/780, Perkin Elmer 3220 and a number of Interdatas attached to it. The 

services and facilities offered by these systems are described elsewhere and 

the APM makes extensive use of them. 

 

 The Department's Advanced Personal Machine is one version of a modular 

computer system designed to allow easy experimentation with both software and 

hardware. A major aim of this development has been to provide maximum 

flexibility of configuration, so that it would be possible within the overall 

framework to experiment with a variety of architectures and processors. 

Accordingly the system is constructed around general-purpose a moderate-

performance bus, shareable by several processors and permitting easy 

expansion of memory capability. The bus supports full 32-bit data operands 

and 32-bit (byte) addresses, with separate data and address lines. 

 

 The basic version of the system has a single processor board utilising the 

Motorola 68000 microprocessor and one or more 1/2 megabyte memory boards. The 

processor board interfaces to a standard video terminal and to the 

Department's Ethernet-type network. There is no permanent local storage in 

the basic machine, all files being held on remote file servers accessed over 

the network. 

 

 A system configured with more than one active processor(bus master) also 

requires to have a arbitration board. It is desirable, but not essential, to 

have this board on the single processor configuration. 

 

 Optionally, a system may incorporate either of two levels of graphics 

capability. The lower level provides a passive frame-store memory which 

allows direct access from the ordinary processor to individual pixels; the 

second level puts the frame-store under the control of a programmable 

graphics processor. 

 

 In due course the processing capability of the system will be enhanced by 

the provision of user-level processor boards, incorporating a virtual memory 

capability, based on the latest fashionable parts coming onto the market, 

such as the Motorola 68010, the National Semiconductor 16032, and the Intel 

80286. The present control processor boards will be retailed as input/output 

controllers and system monitors in this multi-process or configuration. 

 

 The existing operating system supports a single-process environaent and is 

an interim a development vehicle for hardware testing and evolution of the 

full system software. In due course the operating system will consist of a 

small nucleus concerned with process creation and synchronisation, together 

with an open-ended set of modules, selectable at will according to 

configuration and user needs. 

 

 There are a number of other related projects in various stages of 

development which include: 
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- the development of a Winchester disk controller, which with a large drive 

will enable the APM to become a network file server and with smaller disks 

have local file storage. 

 

- A dynamically microprogrammable data path which will interpret abstract 

machine code of Meta Language (ML), an applicative language developed at 

Edinburgh. This scheme also provides for an experimental environment in 

which the support of other languages can be investigated. 

 

- The development of a graphics processor, together with an associated frame 

store having a resolution of 4096 x 4096 pixels; enough for a high quality 

laser printer driver. 

 

- Replacement of the current 2MHz network with a 10MHz Ethernet when 

integrated components become available. 
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2. EUCSD BUS 

 

 

2.1. Introduction 

 

 The EDCSD bus is an interconnection system for computer components. Its 

design goals were those of simplicity, flexibility and high performance. It 

was assumed that the components to be connected would fall into three 

categories : 

 

1. Memories - accessible from all other devices. 

 

2. Main processors - with no I/O capability. 

 

3. I/O processors - providing I/O facilities for the system. 

 

 The two significant features of the system are that there are multiple 

processors sharing common resources and that there are no simple I/O devices 

connected directly to the bus. 

 

 Multiple processors imply that the bus must be shared fairly among them. 

To achieve this, a bus controller that gives bus arbitration facilities must 

be provided as part of the bus structure. This is implemented as a central 

facility that has separate connections to each of the potential bus masters. 

 

 As there are no simple I/O devices on the bus, it is possible to avoid 

providing a fixed interrupt structure. These facilities are provided by 

control registers associated with processors. When these control registers 

are accessed from the bus, the effect is to cause an interrupt request tc the 

corresponding processor. The form and number of these registers are 

determined by the nature of the processor with which they are associated. As 

only 'intelligent’ interrupting devices are attached directly to the bus, 

differences between the processors can be handled in software. As a result, 

the only transfers on the bus comprise fully addressed exchanges of data 

between 'active’ masters and 'passive' slaves. 

 

 

2.2. Aims of this document 
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2.3. Mechanical Details 

   All boards are Double height extended depth Eurocards (233.4mm X 220mm). 

The Bus is connected by a single DIN41612 C 96 way connector positioned as in 

the following diagram : 

 

         |----------------- 220 mm ----------------| 

   _____  __________________________________________ 

    |    |                                         _| 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | |    Bus 

    |    |                                        | | Connector 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        |_| 

    |    |                                          | 

    |    |                                          | 

233.4 mm |             Component Side               | 

    |    |                                          | 

    |    |                                         _| 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | |  Unused 

    |    |                                        | | Connector 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        | | 

    |    |                                        |_| 

   _|___ |__________________________________________| 

 

 

 

 

 The unused connector position may be used freely to provide off-board or 

inter-board connections. It is intended that this facility should be used to 

communicate with other buses and systems. 
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2.4. Connector Pin Assignment 

 

pin no  row 

 a b c 

 

1 GND GND GND 

2 GND GND GND 

3 +12V +12V +12V 

4 -12V -12V -12V 

5 AD2L AD3L AD4L 

6 AD5L AD6L AD7L 

7 AD8L AD9L AD10L 

8 AD11L AD12L AD13L 

9 AD14L AD15L AD16L 

10 AD17L AD18L AD19L 

11 AD20L AD21L AD22L 

12 AD23L AD24L AD25L 

13 AD26L AD27L AD28L 

14 AD29L AD30L AD31L 

15 CO0L CO1L CO2L 

16 CO3L reserved R/WL 

17 BRQiL CBRL BGRiL 

18 RSTL MCLK PFLL 

19 TACL ATML TRQL 

20 ERRL DA30L DA31L 

21 DA32L DA33L DA34L 

22 DA35L DA36L DA37L 

23 DA20L DA21L DA22L 

24 DA23L DA24L DA25L 

25 DA26L DA27L DA10L 

26 DA11L DA12L DA13L 

27 DA14L DA15L DA16L 

28 DA17L  DA00L DA01L 

29 DA02L DA03L DA04L 

30 DA05L DA06L DA07L 

31 -5V -5V -5V 

32 +5V +5V +5V 
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2.5. Signal Descriptions 

 

 

 

2.5.1. Unused pins 

    Pin 16b is unused and reserved. Under NO 

   circumstance should this pin be used. 

 

 

 

2.5.2. Power supplies 

 

GND Common signal and supply ground. 

 

+12V Positive 12 volt supply. 

 

-12V Negative 12 Volt supply. 

 

+5V Positive 5 Volt supply. 

 

-5V Negative 5 Volt supply. 
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2.5.3. Bus Signals 

   All bus signals are active low TTL level signals. Thus the Asserted (Ass) 

state is defined to be <=0.8V and the Negated (Neg) state to be >=2.0V. 

 

   The signal type specifies whether the signal driver is a TTL totem pole 

output (ttl), a TTL open collector output (o/c) or a TTL three state output 

(3-s). 

 

   The significance of assertion or negation of Address and Data signals on 

the bus is not specified as part of the bus protocol. This will be determined 

by mutual agreement of the masters and slaves in any given system. However 

all simple memory devices MUST present read data in the SAME state as it was 

written. By convention, address selection logic will assume TTL low on the 

bus to be binary 1 and TTL high on the bus to be binary 0, with AD2L the 

least significant bit and AD31L the most significant bit. In general, module 

address recognition logic will not decode more than the 16 most significant 

address lines. 
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Signal Type Driver Validity Description 

 

BRQiL ttl Masters always Bus request from master to arbiter. 

    Asserted whenever master wishes to  

 NOT BUSSED  use the bus and for the period while 

 ----------  the master has control of the bus. 

 

 

BGRiL ttl Controller always Bus grant from arbiter to master. 

    Asserted whenever master has 

 NOT BUSSED  requested and has been granted 

 ----------  use of the bus. 

 

 

CBRL o/c Masters always Common bus request. Asserted whenever 

a master has requested but not yet 

been granted use of the bus. This 

indicates to the current bus master 

that other potential masters are 

requesting the bus. 

 

RSTL ttl Controller Always System reset. Forces all devices into 

a known initial state. 

 

MCLK ttl Controller Always Mains derived 100Hz clock. A train of 

1ms wide low going pulses within 1ms 

of the zero crossing of the AC mains. 

 

PFLL ttl Controller Always Mains supply failure. DC supplies 

should be stable while this signal is 

negated and for at least 5ms after the 

assertion of this signal. 

 

ATML o/c Masters always transaction. Is negated only when TRQL 

is negated on the last transfer of the 

transaction. The transaction may 

consist of a single bus transfer. 

 

TRQL o/c Masters always Asserted by the current master at the 

begining of an indivisible bus 

Asserted by the master in control of 

the bus when a transfer is required. 

This must occur only after AD2L-AD31L, 

R/WL, CO0L and if R/WL is asserted, 

DA00L-DA37L are valid and stable. It 

is negated only after these signals 

are deselected in response to TACL 

being asserted. 



   

 

EUCSD BUS    11 

 

TACL o/c Slaves Always Asserted by the slave addressed in a 

transfer once the transfer is 

complete. This must occur only after 

ERRL and if R/WL is negated, DAOOL-

DA37L are valid and stable. It is 

negated only after these signals are 

deselected in response to TRQL being 

negated. 

 

   Controller In the event of no slave asserting 

TACL within 2000ns of TRQL being 

asserted the controller will assert 

both TACL and ERRL to force 

unsuccessful termination of the 

requested transfer. 

 

ERRL o/c Slaves TRQL Ass Slave error response. Asserted if 

   TACL Ass the slave cannot succesfully complete 

the transfer. 

 

  Controller  In the event of no slave asserting 

TACL within 2000ns of TRQL being 

asserted the controller will assert 

both ERRL and TACL to force 

unsuccessful termination of the 

R/WL 3-s Masters TRQL Ass Read/write line. Determines the 

   TACL Neg direction of transfer on the bus. 

    When asserted the direction is from 

Master to Slave. When negated is from 

Slave to Master. 

 

AD2L - 3-s Masters TRQL Ass Word address signals. 

  AD31L   TACL Neg 

 

C00L - 3-s Masters TRQL Ass Byte strobes. Determines which  

  C03L   TACL Neg data bus bytes are active in a 

transfer. Used as follows : 

If COOL asserted then DAOOL-DA07L are active. 

If C01L asserted then DA10L-DA17L are active. 

If C02L asserted then DA20L-DA27L are active. 

If C03L asserted then DA30L-DA37L are active. 

Otherwise the corresponding data lines are held in the high 

impedance state and take no part in the transfer. 

DAOOL - 3-s Masters TRQL Ass byte 0 data signals. 

  DA07L  (R/WL Ass) TACL Neg 

   CO0L Ass 

  Slaves TRQL Ass 

  (R/WL Neg) TACL Ass  

  COOL Ass 

  ERRL Neg 

 

DA10L - 3-s Masters TRQL Ass byte 1 data signals. 

  DA17L  (R/WL Ass) TACL Neg 
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   C01L Ass 

 

  Slaves TRQL Ass 

  (R/WL Meg) TACL Ass 

   C01L Ass 

   ERRL Neg 

 

DA20L - 3-s Masters TRQL Ass byte 2 data signals. 

  DA27L  (R/WL Ass) TACL Neg 

   C02L Ass 

 

  Slaves TRQL Ass 

  (R/WL Neg) TACL Ass 

   C02L Ass 

   ERRL Neg 

 

DA30L - 3-s Masters TRQL Ass byte 3 data signals. 

  DA37L  (R/WL Ass) TACL Neg 

   C03L Ass 

 

  Slaves TRQL Ass 

  (R/WL Neg) TACL Ass 

   C03L Ass 

   ERRL Neg 
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2.6. Bus Protocol 

   A master wishing to perform an exchange of data on the bus must obey a 

three level protocol. The first level deals with acquiring control of the 

bus. The next level deals with delimiting bus transactions, during which no 

information accessible from the bus can altered other than by the current 

master. This is included to deal with dual-ported memories which can be 

changed by sources other than the bus. At the third level the master requests 

a data transfer and acknowledges the slaves response. The protocol involved 

in each of these levels is given below. 

 

2.6.1. Bus Aquistion Protocol 

 

Step Controller Action  Master i Action 

 

1    Wait until BGRiL negated. 

    Assert BRQiL. 

    Assert CBRL. 

 

 

2 Wait until it is 

 Master i's turn to 

 control the bus and  

 previous master j 

 has negated BRQjL. 

 Negate BGRjL. 

 Assert BGRiL. 

 

3    Note Assertion of BGRiL. 

    Negate CBRL. 

4    Perform one or more 

    bus transactions according to 

    the protocol below. 

 

5    Negate BRQiL. 

    Repeat Bus acquisition protocol 

    as required. 
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2.6.2. Bus Transaction Protocol 

Step Master Action 

1 Wait until TACL negated. 

 

2 Assert ATML 

 

3 Perform one or more bus 

 transfers according to 

 the protocol below. 

 

4 Negate ATML 

 

5 If CBRL is asserted 

 then release bus 

 otherwise retain control of bus 

   and perform further transactions 

   as required. 
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2.6.3  Bus Transfer Protocol 

Step    Current Master Action Slaves and Controller Action 

 

1 Drive AD2L-AD31L, R/WL and COOL-C03L. 

 If R/WL is asserted 

 then drive DAOOL-DA37L as 

    specified by COOL-C03L. 

 

2  Assert TRQL. 

 

3    Note TRQL asserted.  Wait 25ns. 

 

4     Decode AD2L-AD31L to see if selected. 

    If selected 

    then proceed 

    otherwise wait until TRQL negated. 

    If operation cannot be performed  

       successfully, 

then assert ERRL, 

otherwise if R/WL is asserted 

   then accept data on DAOOL-DA37L as    

      specified by COOL-C03L. 

   otherwise present data on 

      DAOOL-DA37L as specified by COOL-C03L. 

       

5    Assert TACL. 

    If TACL not asserted by any slave within   

   2000ns of TRQL asserted 

then the Controller asserts TACL and ERRL. 

 

6 Note TACL asserted.  Wait 25ns. 

 

7 If ERRL asserted 

 then note that transfer failed, 

 otherwise If R/WL negated 

    then accept data on DA00L-DA37L as 

       specified by CO0L-C03L, 

 Remove AD2-AD31L,  R/WL and CO0L-C03L. 

 If R/WL was asserted 

 then remove DA00L-DA37L as specified 

    by CO0L-C03L. 

 

8 Negate TRQL. 

 If end of transaction 

 then return to complete 

    transaction protocol. 

 otherwise continue. 

 

9    Note TRQL negated. 

 

10    Negate ERRL. 

    If R/WL was negated 

    then remove DA00L-DA37L. 
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11    Negate TACL. 

 

12 Wait until TACL negated. 

 Repeat bus transfer protocol. 
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3. THE CONTROL PROCESSOR BOARD 

 

 

3.1. Introduction 

   The control processor board (CSD134) provides a fully-programmed system 

control facility based on a Motorola MC68000 Clock rate micro-processor. It 

has a system bus interface that allows access to the complete address space 

of the system (EUCSD) bus. It also has a local bus through which it may 

access 16k of on board memory, an RS232 port and a programmable timer. This 

bus is also taken off board to allow expansion of the local resources. For 

further details of the MC68000 the reader should consult the manufacturer's 

documentation reference. 
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3.2. Switches and indicators 

   When viewed from the front of the system the layout of the control switches 

and indicators on the control processor board is as follows: 

 

| 

|---- 

|  [| MSD Address Select Switches (4 Hex Digits). 

|---- 

|  [|  Selects the high order 16 address bits used to 

|----  access the control processors interrupt and 

|  [|  status registers within the system bus real 

|----  address space. 

|  [| LSD 

|---- 

|  RSS232 port baud rate select switch. 

|----  Positions : 

|  [|  0:19200.0 4: 3600.0 8: 1200.0 C: 134.5 

|----  1: 9600.0 5: 2400.0 9:  600.0 D: 110.0 

|      2: 7200.0 6: 2000.0 A:  300.0 E:  75.0 

|      3: 4800.0 7: 1800.0 B:  150.0 F:  50.0 

|---- 

| 0 |  Run indicator. 

| 0 |  User mode indicator. 

|---- 

|----  System manual reset switch, 

| - |  Normally in UP position. 

|----  Depress switch and release to reset system. 

|      This switch is interlocked with the mains key 

|----  switch. The system will not reset unless the 

|   |   mains key switch is in the reset enable 

|   |  position adjacent to the off position. 

|   |  (Regardless of how hard you press the system 

|   |  reset switch!) 

|   | 

|   |  

|   | 

|   |   Control processor local bus connector. 

|   |  

|   | 

|   |  

|   |  

|   | 

|---- 

| 

 

3.3.  Control Processor Address Space 

   The address outputs from the MC68000 on the control processor are used to 

control access to the system bus, local bus and the on board memory and I/O 

devices. The 16MByte address apace of the processor is split into regions. 

Each region is associated with a group of devices each having a particular set 

of properties. 

 

The most significant address bit (A23) is used to distinguish between access 

to local devices(A23=0) and the EDCSD system bus(A23=1). This is the most 

important division and the two cases are dealt with separately. 
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3.3.1. System Bus Address Mapping Registers 

   There are 8 registers which supply the 12 high order address bits of the 

system bus(AD31L-AD20L). These are indexed by address lines A22-A20 in both 

the system bus and the local device regions of the MC68000 address space. 

They can only be written. Writes to these registers take place only in the 

local device region. Software should maintain shadow locations in RAM to 

record their contents. 

 

 

3.3.2. Local Devices 

   When accessing the local region of the address space, A19 determines 

whether the local bus or the address mapping registers are accessed. When 

accessing the mapping registers, bits A22-A20 select which register is 

written. Address bits A18-A1 are ignored. Only data bits 4-15 are written to 

these registers. The individual bytes of the address registers may be updated 

separately. 

 

   When accessing the local bus, A22 is used to determine the protocol to be 

used. Bits A18-A1 are used as the bus address lines. Bits A21-A20 are 

ignored. If A22=0 the MC68000 asynchronous handshake is used. A one micro-

second time-out is provided to ensure all transfers complete. A M68000 bus 

error is generated on a local M68000 bus time-out. If A22=1 a synchronous 

protocol that is compatible with Motorola MC6300 family I/O devices is used. 

As A22 is used to gate the appropriate control signals the local bus appears 

as two logically distinct buses separated in time. They do, however, share 

both data and address lines. The UDS and LDS control signals from the MC68000 

are used to determine which bytes of the local bus are active. Thus, they 

provide the least significant address line. 

 

   The on board memory and I/O devices are interfaced through these buses. 

The buses are also taken off board to allow expansion of the local address 

space. In particular the Ethernet local area communications network station 

is connected through this local bus. 
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3.3.2.1. Local Bus Pin Assignment 

The local bus is taken off board on a DIN41612 C 96/64 way connector. This is 

positioned at the front of the board. 

 

 

pin no row  

 a c 

1 GND GND 

2 GND GND 

3 unused unused 

4 unused unused 

5 unused A1 

6 A2 A3 

7 A4 A5 

8 A6 A7 

9 A8 A9 

10 A10 A11 

11 A12 A13 

12 A14 A15 

13 A16 A17 

14 A18 ADACK' 

15 CLK E 

16 AS' DTACK' 

17 UDS’ LDS' 

18 IRQ7’ IRQ6' 

19 VMA' R/W’ 

20 RST' LOCK' 

21 IRQ5' IRQ4' 

22 unused unused 

23 DO D1 

24 D2 D3 

25 D4 D5 

26 D6 D7 

27 D8 D9 

28 D10 D11 

29 D12 D13 

30 D14 D15 

31 unused unused 

32 unused unused 
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3.3.2.2. Local Bus Signal Description 

 

signal input description 

 output 

 

A1-A18 O MC68000 address lines A1-A18  

 

D0-D15 I/O MC68000 data lines D0-D15 

 

AS’ O MC68000 address strobe. 

  Active only when M68000 bus in operation. 

 

UDS'.LDS’      O MC68000 Data strobes. 

  Active only when M68000 bus in operation. 

 

R/W O MC68000 read/write line. 

 

VMA’ O MC68000 valid memory address line. Active only when 

M6800 bus in operation. 

 

CLK O MC68000 8 MHz clock.  

 

E O MC68000 800KHz Enable clock. 

 

RST' O MC68000 reset. Low during power-up, manual and 

software resets. 

 

DTACK' I MC68000 data transfer acknoledge. 

 

 

ADACK' I Address acknowledge.  A TTL low on this line 

suppresses the local bus time-out. Used to enable 

slow response from slaves. 

 

IRQ4’,IRQ5', I Interrupt request lines. TTL low 

IRQ6’,IRQ7'  signals on these lines cause an auto-vectored 

interrupt at the corresponding priority level. 

  IRQ7’ is a non maskable interrupt. 

 

LOCK' I System bus lock.  A TTL low on this line will cause 

the control processor to gain and retain control of 

the system bus. For use by diagnostic hardware. 

 

 

3.3.2.3. Local Bus Timing 

   The timing of the signals is generally the same as an 8MHz MC68000. 

However, the bus is buffered and delays of approximately 20ns should be taken 

into account when analysing timing requirements. 

 

   ADACK' has similar timing characteristics to DTACK’, and must be asserted 

within 800ns of AS’ being asserted in order- to suppress the local sus 

timeout. 

 

   LOCK' is synchronised internally and there are few constraints on its 

timing. 
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3.3.3. System Bus 

   When A23=1 the system EUCSD bus is accessed. Address lines A22-A20 

determine which address mapping register is used to provide the high order 12 

bits of the system bus address(AD31L-AD20L). Address lines A19-A2 form the low 

order 18 bits of the address. 

 

   A1 is used to determine which pair of bytes is accessed on the system bus. 

When A1=0 bytes DA0XL and DA1XL are active. When A1 = 1 byte DA2XL and DA3ZL 

are active. Note that it is not possible to access bytes within both of these 

pairs simultaneously. UDS and LDS are used to determine which bytes within the 

pairs are accessed. UDS controls DA0XL and DA2ZL while LDS controls DA1XL and 

DA3XL. Thus to the MC68000 byte DA0XL has an address with two least 

significant bits on 0, DA1XL is accessed with low order address of 1 and so 

on. 

 

3.3.4. Control Processor Address Space Summary 

 

A23 A22 A21 A20 A19 A18-A2 A1 (A0) 

 

 0 | 0 |---?---| 0 |----A----| 0  M68000 local space A high byte 

 0 | 0 |---?---| 0 |----A----| 1  M68000 local space A low byte 

 0 | 1 |---?---| 0 |----A----| 0  M6800 local space A high byte 

 0 | 1 |---?---| 0 |----A----| 1  M6800 local space A low byte 

 0 |-----M-----| 1 |----?----| 0  Map reg M high byte(write only) 

 0 |-----M-----| 1 |----?----| 1  Map reg M  low byte(write only) 

 1 |-----M-----|-----A----| 0  0  System bus (map reg M)A  DAX0L 

 1 |-----M-----|-----A----| 0  1  System bus (map reg M)A  DAX1L 

 1 |-----M-----|-----A----| 1  0  System bus (map reg M)A  DAX2L 

 1 |-----M-----|-----A----| 1  1  System bus (map reg M)A  DAX3L 

 

3.4. On board Facilities 

   The control processor board contains some memory and a number of I/O 

devices. These appear in the local address space of the MC68000 control 

processor. 

 

3.4.1. Memory 

   The on board memory consists of 16K bytes organised as 8K of 16 bit words. 

It is link selectable as EPROM(2716) or RAM in 4K byte blocks. This occupies 

locations 00000-04000 of the local M68000 bus. Normally the first block is 

bootstrap EPROM and the remainder is RAM. 

 

3.4.2. I/O Devices 

   The on board I/O devices consist of a RS232 port, a programmable counter 

timer and a mains key switch position sense register. They are located at 

addresses 00000-001FF of the local M6800 bus. 

 

3.4.2.1. The Key Switch Register 

   Located at address 00031 of the local M6800 bus this is a simple read only 

register. The 4 low-order bits of this byte reflect the position of the mains 

switch. The coding is as follows: 
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Switch Position    Code 

0 (furthest anti-clockwise)                    Power off. 

1 (Manual reset enable)   0 

2     1 

3     2 

4     4 

5 (furthest clockwise)     8 

 

Bits 4-7 of the bus are not driven when this register is read. These bits may 

contain unpredictable data. Care should be taken to mask off these bits when 

using the contents of the register. 

 

3.4.2.2. The RS232 Port 

   This is a Motorola MC6850 ACIA. For programming details see the appropriate 

data sheet. It appears as two low order byte locations within the M6800 bus. 

Both have a different meaning depending on whether it is being read or 

written. The command (write-only) and status (read-only) register is at 000C1. 

The data registers are at location 000C3. The ACIA interrupt output is 

connected to interrupt level 5 of the local bus and hence uses auto-vector 5 

(longword at address 000074 of the local M68000 bus). Both the transmit and 

receive data rates are determined by the setting of a single hex coded switch 

visible at the front of the board. For details of their coding refer to the 

section on switches and indicators. 

 

3.4.2.3. The Programmable Timer 

   This is a Motorola MC6840 PTM. For programming details see the appropriate 

data sheet. It appears as 8 high order byte locations within the M6800 bus. A? 

with the ACIA, each register has a different meaning depending on whetfcar it 

is being read or written. Their addresses within the M6800 address space are 

as follows: 

 

Address   Read Write 

 

00100 Undefined  Control Register 1 or 3 

00102 Interrupt Status Control Register 2 

00104 Counter 1 high byte Constant Register 1 high byte 

00106 Counter 1 low byte Constant Register 1 low byte 

00108 Counter 2 high byte Constant Register 2 high byte 

0010A Counter 2 low byte Constant Register 2 low byte 

001OC Counter 3 high byte Constant Register 3 high byte 

001OE Counter 3 low byte Constant Register 3 low byte 

 

The PTM interrupt is connected to interrupt level 6 of the local bus and hence 

uses auto-vector 6 (longword at address 000078 of the local M68000 bus). The 

internal clock oscillates at 800KHz. Counter input 1 is derived from the 

system bus 100Hz mains clock. Counter input 2 is derived from counter 3's 

output. Counter input 3 is derived from counter 1fs output. This allows 

cascading of the counter channels. The gate inputs to all channels are 

permanently enabled. 
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3.5.  Control Processor Address Space Index 

This is a complete guide to the devices within the M68000 address space. 

 

Addresses Device 

 

000000——000FFF Local bootstrap EPROM  

001000——003FFF  Local RAM (switchable to EPROM) 

004000——07FFFB Unused  

 (available for local M68000 bus expansion) 

07FFFC——07FFFF Ethernet Station Interface (if fitted) 

080000——0FFFFF Address map register 0  

100000——17FFFF Same as 000000-7FFFFF 

180000——1FFFFF Address map register 1 

200000——27FFFF Same as 000000-7FFFFF 

280000——2FFFFF Address map register 2 

300000——37FFFF Same as 000000-7FFFFF 

380000——3FFFFF Address map register 3 

400000——400030 Unused 

400030(2)40003E Unused 

400031(2)40003F Mains switch register (low byte) 

400040——4000BF Unsafe to access 

4000CO(2)4000CE Unused 

4000C1(2)4000CF ACIA (low bytes) 

4000DO——4000FF Unsafe to access 

400100(2)40010E PTM (high bytes) 

400101(2)40010F Unused 

400110——1001FF Unsafe to access 

400200——47FFFF Unused 

 (available for local M6800 bus expainsion) 

480000——4FFFFF Address map register 4 

500000——57FFFF Same as 400000-47FFFF 

580000——5FFFFF address map register 5 

600000——67FFFF Same as 400000-47FFFF 

680000——6FFFFF Address map register 6 

700000——77FFFF Same as 400000-47FFFF 

780000——7FFFFF Address map register 7 

800000——8FFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 0 

900000——9FFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 1 

AOOOOO——AFFFFF System Bus RRROOOOO-RRRFFFFF, RHR = Map Reg 2 

BOOOOO——BFFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 3 

COOOOO——CFFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 4 

DOOOOO——DFFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 5 

EOOOOO——EFFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 6 

FOOOOO——FFFFFF System Bus RRROOOOO-RRRFFFFF, RRR = Map Reg 7 
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3.6. System Bus Control and Status Registers 

   The control processor provides a number of registers that can be accessed 

as slave devices from the system EUCSD bus. These enable the processor to be 

interrupted by any master on the system bus. They also provide information 

about the current state of the control processor. 

 

   The locations they occupy within the system bus address space are 

determined by 4 hex coded switches that are visible from the front of the 

board. These specify the high order address bits (AD16L-AD31L) used to access 

the registers. 

 

   The registers are 16 bits wide and connected to bytes DA2ZL and DA3IL of 

the system bus. Bytes DA0XL and DA1XL are unconnected and access to these 

bytes alone does not cause the slave logic to acknowledge an access. The two 

bytes are individually accessible. The DA2XL byte is common to each of the 

registers and is read only. The 8 distinct DA3XL bytes are selected by 

address lines AD15L-AD13L. Note that this allows fairly coarse segmentation 

to provide controlled access to the individual registers. At present the 

status bits are active high, but may be made active low by a trivial hardware 

modification. 
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3.6.1. Control and Status Register Address Map 

   To summarise the registers appear in the system address space as follows: 

 

   DA2XL byte 

 

SSSS0002(4)SSSSFFFE Combined interrupt state register 

 (read only) 

 

   DA3XL bytes 

 

SSSS0003(4)SSSS1FFF Processor State register 

(read only) 

SSSS2003(4)SSSS3FFF Level 1 interrupt register 

SSSS4003(4)SSSS5FFF Level 2 interrupt register 

SSSS6003(4)SSSS7FFF Level 3 interrupt register 

SSSS8003(4}SSSS9FFF Level 4 interrupt register 

SSSSA003(4}SSSSBFFF Level 5 interrupt register 

SSSSC003(4)SSSSDFFF Level 6 interrupt register 

SSSSE003(4)SSSSFFFF Level 7 interrupt Register 

 

(SSSS is the setting if the address select switches) 

 

Note that the binary encoding of bits AD15L-AD13L give the level of the 

interrupt register. 

 

3.6.2. Register Bit Encodings 

 The meaning of each of the register bits when read are as follows: 

 

3.6.2.1. Combined Interrupt State Register 

 bit  

  7 Priority level 7 interrupt pending 

  6 Priority level 6 interrupt pending 

  5 Priority level 5 interrupt pending 

  4 Priority level 4 interrupt pending 

  3 Priority level 3 interrupt pending 

  2 Priority level 2 interrupt pending 

  1 Priority level 1 interrupt pending 

  0 Always 0 

 

3.6.2.2. Processor State Register 

 bit  

  7 Function code FC2 for last cycle 

  6 Function code FC1 for last cycle 

  5 Function code FC0 for last cycle 

  4 Always 0 

  3 Processor halted after fatal bus error. 

  2 Always 0 

  1 Always 1 

  0 Always 1 

 

3.6.2.3. Interrupt Registers 

 bit  

  7 Interrupt pending at corresponding leve 

  0-6 Always 0 
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3.6.3. Requesting Interrupts 

   When any data is written to an Interrupt register the data Is discarded 

and an Interrupt at the corresponding M63000 priority level Is requested. At 

the same time Bit 7 of the interrupt register is set, together with the 

corresponding bit in the combined interrupt state register. Once the 

processor has acknowledged an interrupt at that level the interrupt request 

is removed, it the same time bit 7 of the interrupt register is cleared, 

together with the corresponding bit in the combined interrupt state register. 

During the interrupt acknowledge the processor is forced into the auto-vector 

mode of operation. 

 

   Note that care must be taken to ensure that system bus interrupts are not 

lost. In general, this will require that details of the interrupt request are 

stored in shared system memory. These details can then be examined by 

interrupt handling software on the control processor. This is particularly 

true for interrupt levels 4-7 which may also be generated by I/O devices 

attached to the control processor's local bus. The situation requires even 

more care when there is more than one source of interrupts from the system 

bus. Steps must be taken to ensure mutual exclusion on the Interrupt 

information held in shared memory. This might consist of a semaphore that is 

locked prior to storing the interrupt details and before issuing the 

interrupt request. The semaphore is subsequently released by the control 

processor on completion of the interrupt service routine. 
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4. MEMORY SYSTEMS 

 

4.1. Introduction 

 

4.2. The Memory Board (CSD136) 

   The standard memory board provides 512K bytes of parity checked volatile 

memory. The memory is based on 64K dynamic memory chips. To minimise the 

effect of cycle times and refresh overheads the board is internally organised 

as two interleaved banks. Approximate performance is as follows: 

 

Average access time (read and write) :<230 ns 

Average cycle time :<260 ns  

Worst case access time :<550 ns 

 

Switches and indicators. 

 

 

| 

|---- 

|  [| MSD Address Select Switches. 

|---- 

|  [|  Selects the address of the memory within the 

|----  high order bits of the bus real address space. 

|  [|  The board is disabled if the least significant 

|----  digit is other than 0 or 8 

|  [| LSD 

|---- 

| 

| 

| 

| 

| 

| 

|---- 

| 0 | Access indicator. 

| 0 | Parity fault indicator. 

|---- 

|---- 

| - | Up position -Parity checking disabled. 

|---- Centre position - Checking enabled. 

|    Indicator not latched. 

| Down Position - Checking enabled. 

|    Indicator latched after single 

|    fault. 

| In normal service this switch should ALWAYS 

| be in the bottom position. 

| The indicator may be cleared after a single fault 

| by moving the switch to the centre position before 

| returning it to the down position 

| Parity checking should be disabled only when 

| running diagnostic hardware. 

| 

| 

| 

| 
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5.  CONSTRUCTION 

 

5.1.  The Cabinet (CSD144) 

 

   The APM cabinet is an attractive standard 19 inch equipment case. It 

contains a 19 slot card cage to the EDCSD bus specification. Power is 

supplied by a 400 watt switched mode unit. Sufficient cooling for the boards 

and power supplies is provided by external quiet fans. 

 

   A Perspex door at the front of the cabinet gives access to the card cage 

and allows board indicator lights to be seen at all times. Mains switching is 

on a 6 position key switch. The position of the key switch may be sensed by 

software in the control processor. This switch also interlocks with the 

system manual reset switch on the control processor. The backplane may be 

accessed by a door at the back which also carries the power supply. A fixed 

panel at the rear of the cabinet carries external connectors such as the 

RS232 port and local area network interface. Specifications : 

 

cabinet size : ? x ? x ? 

 

power supply maximum ratings : +5V 45A 

 +12V ?A 

 +24V ?A 

 -5V ?A 

 -12V ?A 

SUBJECT TO AN OVERALL RATING OF 400 WATTS TOTAL 

 

   Although +24V is not available on the backplane direct connections may be 

made to the power supply for disc drive stepper motors. 
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I. Vendors and Services 
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6.  LOCAL AREA COMMUNICATIONS 

 

 

6.1. Introduction 

   This chapter describes the APM component of the Edinburgh University 

Computer Science Department's local area network. The network is based upon a 

carrier sense, multi-access broadcast discipline with collision detection 

which was first developed within the Xerox PARC establishment. There are some 

major differences between the Department's Ethernet and the Xerox model. 

Essentially, the EU Ethernet controllers have their own processing and memory 

resources and can therefore offer a range of network services which absorb 

the overheads of protocol handling that would otherwise fall upon the 

network's hosts. It follows that the scope of protocol design is more 

extensive, incorporating higher layers of protocol than the existing Xerox 

proposals. An obvious consequence of this is that network stations are 

comprehensive independent entities likely to appear in many devices. Indeed, 

versions of network stations were designed and constructed before the APM 

existed. The issues for the APM are how these stations are incorporated into 

the basic system framework and how they are used. A full discussion of the 

Edinburgh Ethernet is presented elsewhere [reference 3.13]. 

 

6.2. The Ether net Station Interface (07FFFC-07FFFF) 

   The station for the circuit (2mhz) ethernet is interfaced to the control 

processor through a full duplex bi-directional 9-bit wide character stream. 

Associated with each transfer direction is a single 8-bit character buffer 

register, plus various control flags which determine whether the register is 

full or empty and whether it contains data or a control character. When the 

ether station interface interrupts, it uses auto-vector 4 (longword at 

address 000070). 

 

   The interface appears to software as six registers (command register, 

status register, 2 Data Character Registers, 2 Control Character Registers). 

The command and status registers share the same address (and are 

distinguished by read/write), and both appear at two locations in the address 

space. The RX and TX data registers share an address, and so do the RX and TX 

control registers, as shown below. This mapping makes it possible to read 

either the data or the control register using a word, rather than byte, 

access, transferring the data in the low-order byte and command/status in the 

high-order byte. 

 

 

 

 

 

 

 

 

 

 

Reference: 

3.13 Edinburgh Local Area Network (W. Enos, I. Hansen, R. Thonnes, undated)
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07FFFC Command and Status 

07FFFD Data Character 

07FFFE Command and Status 

07FFFF Control Character 

 

Status Register bits have the following meaning: 

 

Bit 7: Interrupting 

Bit 6: Being Reset 

Bits 5,4: Unused (0 when read)  

Bit 3: Transmit Register Empty 

Bit 2: Received Control Character 

Bit 1: Received Data Character 

Bit 0: Received Control or Data Character 

 

Command Register bits have the following meaning: 

 

Bit 7: Unused 

Bit 6: Reset the Station 

Bits 5,4: Unused 

Bit 3: Interrupt on Transmitter Empty 

Bit 2: Interrupt on Received Control 

Bit 1: Interrupt on Received Data 

Bit 0: Unused 

 

   Interface operation is straightforward on the transmitter side. The 

software writes its characters either into the data or the control register, 

provided the TSE bit in the status register is set. Receiver operation is 

such that a read from the data register will clear the RDC bit, but not the 

RCC bit. It is necessary to read from the control register to clear the RCC 

bit. Likewise, a read from the control register will not clear the RDC bit. 

RCDC will remain set as long as either of RCC or RDC is set. 



   

 

6.3. The 2 MHz Ethernet Board (CSD---) 

 

 

 

Switches and indicators. 

 

 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

| 

|------ 

| 0 0 | Transmit indicators. 

| 0 0 | Receive indicators. 

|------ 

| 

| These indicate whether data is being transmitted or 

| received across the tap/station interface (RHS) or 

| station/control processor interface (LHS) 

| 

|  

| 

| 

| 

| 

| 

| 

| 

|  

| 

| 

| 

| 

 
 

 

 

 

 

 

 
John Butler May 1984 
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7. SYSTEM SOFTWARE 

 

   This chapter describes the facilities provided by the interim development 

operating system. In line with earlier practice, very little is built into 

the system itself, the great majority of the commands being implemented by 

calling individual programs. 

 

7.1. Loading the System 

   To load the system turn the power-on key clockwise to the first position. 

It already switched on, the system may be reset and reloaded at any time by 

(gently!) pressing the small spring-loaded switch located on the control 

processor board. This causes the operating system software to be loaded over 

the network from the Filestore. NB: The memory boards have similar-looking 

switches and should not be confused with the control processor board. The 

latter can be distinguished by the ribbon cable connecting it to its 

neighbour. 

 

7.1.1. Communicating with the System 

   The video terminal is the basic means of communicating with the operating 

system. After initial loading, the system announces itself on the screen and 

outputs a curly bracket, inviting the user to enter a command at the 

keyboard. Usually the first command that a user will give in a session will 

be the L command to log on to a remote filestore. However, it is not 

essential to do so in order to use the system. Every time a command is issued 

by the user, the system executes it and then prompts for another command. 

 

 

7.2. Command Language 

   The simplest commands consist of a single word (a verb or abbreviation for 

a verb); others consist of a number of words, separated by prescribed 

punctuation symbols. Commands are always terminated by typing RETURN, and 

until this is done, they can be corrected or revoked at will. 

 

   In general, the effect of typing a command is that the command verb is 

used to locate a file which implements the command. 

 

   Examples of some of the simple commands which require no additional 

information beside the command verb itself are KELP (to elicit help 

information) and TOD (to find out the time of day) 

 

Examples of more elaborate commands (discussed below) are: 

 

 COMPARE OLDFILE,NEWFILE/DUMPFILE 

 T TESTPROG/ CURRPROG 
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7.2.1. Parameters 

 As the more elaborate examples illustrate, it is, in general, necessary 

fax- the user to be able to specify not only what operation is to be 

performed but also what data is to be used, where the results are to go, and 

what options are to be selected. This is done by supplying additional 

parameter words following the command verb. 

 

 When a parameter is used to denote a data source or destination, it is 

termed a stream-name. A stream-name may take either of two forms: a file-name 

or a device-name. When parameters are present, they are separated from the 

command word by at least one space. Some conventions governing the use of 

punctuation symbols in the rest of the command are illustrated in the 

following examples: 

 

 T TESTPROG / CDRRPROG 

 

 Here the command word is T, indicating the Transfer operation,which copies 

data from any file or device to any other file or device. The source 

(TESTPROG) is specified first and then the destination (CDRRPROG) following 

an oblique stroke. 

 

 COMPARE OLDFILE , NEWFILE / DUMPFILE. 

 

 In this case, the command word is COMPARE, indicating file comparison. For 

this operation the two files to be compared (OLDFILE and NEWFILE) have to be 

specified as inputs; these file names are separated by a comma. Then the 

output file to which a list of discrepancies is to be sent (DUMPFILE) is 

specified after the oblique stroke. 

 

 COMPARE OLDFILE , NEWFILE 

 

 In many cases, there are default parameters for a command which are 

understood if the user does not supply a parameter explicitly. In the case of 

COMPARE, the default for output is the terminal. 

 

 IMP CURRPHOG -NOASS –LIST 

 

 In this example invoking the IMP compiler, the source program is specified 

as the first parameter and then two options are selected: NO ASS to suppress 

unassigned-variable checking and LIST to cause a listing to be produced. 

 

 In this example, the dash (minus) is used to mark what follows as an 

option specification. 

 

 IMP -NOASS -LIST CURRPROG 

 

 This command is identical in effect to the previous one. 
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the point that the placing of option specifiers is open,  unlike the placing 

of other parameters. 

 

7.2.2. Punctuation 

 General conventions governing the format of most commands are as follows 

 

 (a) output stream-names are separated from input stream-names by an 

oblique-stroke; 

 

 (b) within  a  group  of either input or output stream-names the 

separator is a comma; 

 

 (c) keyword parameters are preceded by a dash (minus), and may be 

followed by an equals-sign and a value; 

 

 (d) the complete command is terminated by RETURN; 

 

 (e) spaces are optional before and after the punctuation symbols 

mentioned above. 
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7.3. Input and Output 

 

7.3.1. Files 

   File-names denote files held on a remote file server; file naming 

conventions are those imposed by the file server. At present, the only such 

server is the original central Departmental Filestore introduced in 1976. 

Full information about the management of files is contained in the Filestore 

manual [reference 4.1]. 

 

   The naming conventions are as follows. The full form of a filename 

consists of an owner-name, followed by a colon, followed by a file-identifier 

proper. In many cases the owner-name is implicit, so that only the file- 

identifier proper need be typed. The latter consists or up to 12 characters, 

of which the first must be a letter or a dollar-sign, and the remainder may 

be any combination of letters, digits and dots. Conventionally a dot is used 

to separate a file-name extension (like LIS or OBJ) from the file- name 

proper. A file-identifier starting with a dollar-sign denotes a temporary 

file, which is automatically deleted when the user logs off. The special file 

name LP: (that is, owner- name LP followed simply by a colon) is used to 

denote the line-printer connected to the Filestore. 

 

7.3.2. Devices 

   Device-cases are distinguished by starting with a colon. On the basic 

machine, the only device is the video terminal, which is denoted by :T (or 

simply a colon by itself). Also reckoned as a device is the null data stream 

(denoted by :N), which it is sometimes convenient to specify in place of a 

file-name; for input, this implies no data and for output, results to be 

discarded. 

 

7.4. Command verbs 

   The interpretation of a command verb proceeds along the following lines: 

 

   If the word is a defined symbol (see below), it is replaced by its 

definition and the resulting command is interpreted; 

 

   Otherwise, a file with the same name as the command verb and extension H3B 

is searched for. If a directory is included in the name (for example, 

APM:PROG), the search is confined to the directory indicated. Otherwise, the 

search is made, first, in the user's selected directory and, failing that, in 

the system directory FMAC. If so such file can be found, an error report is 

made. 

 

 

 

Reference: 

 

4.1 “The Filestore” (H. Dewar, V. Eachus, K. Humphry, P. McLellan, Dept. 

of Computer Science Oct 1977, revised Sep 1981 (draft)) 
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The located file may be: 

 

 a Motorola 68000 object program to be executed. 

 a file of commands to be obeyed 

 

7.4.1. Object files 

   These are files containing directly executable programs, generated by one 

of the assemblers or compilers available on the system. 

 

   If the first character of an object file is ‘S', the file is assumed to 

contain object code in Motorola format. The code is loaded into free memory, 

with location- counter addresses interpreted as relative to the start of free 

memory. 

 

   Otherwise an object file, is assumed to be a binary executable image, i.e. 

a contiguous chunk of position-independent code. [At present the first 

character should be binary 254 (16_FE)]. 

 

   Binary and Motorola format code files, once loaded, are entered by means 

of a JSH to the last longword of the file, which will normally contain a 

word-displacement jump instruction of some sort. 

 

   At present, by default, the rest of the command line is net read by the 

command interpreter. When the loaded program reads from stream 0, it will get 

the rest of the command line and is free to interpret it in whichever way it 

chooses. 

 

7.4.2. Command files 

   A command file consists of a sequence of commands and data exactly as they 

would be typed at the terminal, except that the first character in the file 

must be a left curly bracket ('{'). The commands are successively executed 

until either the end of the file is reached or one of the commands fails. The 

command file is closed after the last (and possibly only) command in the file 

is executed. One command file may call another, but presently only on a 

chained (not nested) basis. 
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7.4.3. Symbol Dictionary 

   The system maintains a dictionary of names or 'symbols' which have been 

defined to stand for other names or partial command sequences. A number of 

system definitions are established when the system is first loaded. The user 

may add others as required by means of symbol definition commands. The form 

of this type of command is: 

 

 <newname> = <oldname> 

 

For example: 

 

 GO = UTIL:TESTPROG1 

 

   When a program is loaded for which there is an abbreviation in the command 

dictionary, the system remembers where it has been loaded. The space occupied 

by the binary image is not released when the program finishes. This saves 

time when the same program is subsequently required again, which is 

especially useful for large frequently used programs like compilers. 

 

   When symbols are looked up in the command dictionary, approximate (leading 

substring) matches are taken to be sufficient. For example, given the 

abbreviation NIMP=HMD:NEWCOMP the command NIMP, but also the commands NI or 

Just N, may be used to refer to HMD:NEWCOMP, provided there has not been a 

more recent symbol definition starting with N or HI. 

 

   Because the rest of the command line is normally read from the control 

stream directly by the loaded program, it is not possible, as on VAX/YMS, to 

include preferred default options in the symbol definition (like IMP=I:C-

DIAG-LIST), as there is no way the command interpreter can inject these into 

the control stream. It is, however, possible to include flag characters in a 

definition (e.g. COMPARE=FMAC:COMPARE!). 
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7.4.4. Flag Characters 

 

   A command verb may be terminated by one or more flag characters, which 

cause the command to be interpreted slightly differently. 

 

   Flag character '_' suppresses translation of the command verb via the 

command dictionary. 

 

   Flag character '!' instructs the command interpreter to read the rest of 

the command line, and to interpret it as a set of input-output stream 

definitions as noted above (Up to 3 input file names separated by commas, 

optionally followed by a '/' and up to 3 output file names separated by 

commas). 

 

   Flag character ‘?' causes the loaded program to be entered in trace-mode 

for single step execution under control of the software front panel (see 

below). 
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7.5. Terminals 

   On the basic configuration, the main device for interaction with the 

system is a standard VDU. In fact, it figures as two devices: a keyboard for 

input, and a display screen for output. Terminals are always driven in full 

duplex mode, which means that information typed at the keyboard does not 

automatically appear on the screen; it does so only if the software dealing 

with keyboard input (the terminal handler) echoes it. Most of the time, 

characters are echoed as they are typed in, but in some cases echoing is 

suppressed or other characters substituted. 

 

   The general principle for keyboard input is that a sequence of printing 

characters are not acted on until the RETURN key (or other terminator key) is 

pressed, although some highly interactive programs override this provision. 

All the printing characters of the ASCII character set may be entered in the 

normal way, but the control characters are subject to special interpretation, 

as described below. Again, some programs override the conventional system 

interpretation. Control characters are generated by pressing a normal key 

while holding down the CTRL key. For example, TAB (though usually provided as 

a single key) can also be generated by CTRL together with I; this is 

indicated below as ^I. 

 

   Many programs issue a prompt message when input is required, as a guide to 

the user. It is usually permitted to type ahead of input requests, and it may 

be convenient to do so when a lengthy operation is in progress. Information 

typed ahead is not echoed until the running program tries to read it. It is 

discarded in the event of a total failure in the execution of a previously 

issued command. 
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7.5.1. Terminal Control Characters 

 

DEL Erase the last extant character typed on the current line. 

 

BS or ^X Erase all characters typed on the current line. RETURN   Terminate 

the current line. 

 

^S Set auto-freeze mode. 

 When enabled, output to the terminal is halted every time the screen 

becomes full and remains in this frozen state until something is 

typed on the keyboard; LF 'unfreezes' the display for one line, 

RETURN or BS unfreeze the display for 1 page, and ^Q changes the mode 

to 'continuous scrolling’. 

 

^Q Quit auto-freeze mode. 

 

^Y Abandon the current activity, and return to command level. 

 

^D or ^Z Terminate input from the terminal, 

 creating an 'end of file' condition. 

 

^P Pass the next character typed as data to the program currently 

running. For example, ^P^Y allows ^Y to be input without stopping the 

program. 

 

^T Escape to trace-mode 

 (See below: Software Front Panel). 
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7.6. Summary of Individual Commands 

 

Logging on or off: L <user> 

 L 

 

  This command is used to log on to the Filestore. The purpose of logging on 

is to establish the default directory to be used in referencing files, and to 

demonstrate authority to use those files by citing the appropriate password. 

The user is prompted for the password (union is not echoed). If the command 

file LOGIN.MDB exists, the commands in it are obeyed before the system 

accepts further commands from the terminal. If another user is already logged 

on at this machine, the previous user is automatically logged off. 

 

   Since this command always causes any existing user to be logged off, it 

can be used without any parameter simply to log the current user off. 

 

 

Transfer: T <in1>,<in2>,<in3>/<out> 

 

  The Transfer command is used to copy information from one or more (up to 

three) source streams to a destination stream. If more than one source stream 

is specified, the data is concatenated in the order gives. The defaults for 

<in1> and <out> are the terminal. 

 

 

Print: P <file>,<file>,... 

 

   The specified files are sent to the printer spooler. Any copying 

operations this involves are done remotely and do not impose a load on the 

local processor or on the network. 

 

 

Edit command: E <old>/<new> 

 E :N/<new> 

 E <old> 

 E <old>,<secondary>/<new> 

 E <old>/:N 

 

   The Edit command is used to invoke the VECCE context editor, which is 

fully described in a separate manual (the revised screen-oriented 

specification). 

 

1. The first form of command is used to edit an existing file to a new file. 

2. The second form is used to create a file from scratch. 

3. The third form is used to edit an existing file.    In this case, the new 

file is given the same name as the old,   (but the original file is not 

deleted until the editing has been finished successfully). 

4. The fourth form is used to specify a secondary input file. 
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5. The last form is used to examine a file without altering it. 

 

 

File enquiry:        F <dir> 

 

 The file enquiry command F provides the facility to list the names of the 

files in a given directory. 

 

 The command FILES provides fuller information about each file, including 

the permissions and date of creation. 

 

 The current default directory is used if <dir> is omitted. 

 

 

Directory Operations:  D <dir> 

 

 This command displays the names of the files in the specified directory and 

allows the user to ask for any of them to be Shown, Renamed, Deleted, or 

Permitted. It is self-documenting. Type H within it for assistance. 

 

 The current default directory is used if <dir> is omitted. 

 

 

Change Directory:       SET <dir> 

 

 The SET command is used to change to another default directory, to be used 

in subsequent file references. If <dir> is omitted, the default reverts to 

that established at log-on. 

 

 

Quote Password:    QUOTE 

 

 The QUOTE command is used to quote a password in order to demonstrate 

authority additional to that established at log-on, so that protected files in 

directories owned by someone else may be accessed. 

 

 

Delete file(s):    DELETE <file>,<file>,... 

 

 The DELETE command causes -the specified file(s) to be destroyed. Ths user 

must have owner-authority over the directory involved in order to delete files 

in it. 

 

 

Rename file:      RENAME <old>/<new> 
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 The RENAME command is used to rename a file. The user must have owner 

authority with respect to the directory containing the file in order to rename 

it. Other attributes of the file, like date of creation and permissions, are 

unaffected by renaming. 

 

 It is not possible to alter the directory part of a file-specification. The 

parameter <old> may contain a directory name, as in LIB:TEST2f but <new> may 

not. 

 

 

Change file protection:  PERMIT <file>/<code> 

                      or PERMIT <dir>:/code 

 

 The first form changes the protection of <file> to <code>. The second font 

changes the default protection associated with the directory <dir>; this 

applies to all files subsequently created in that directory. 

 

 The interpretation of <code> on the 1976 Filestore is as follows: 

 

 The first letter denotes the permission given to anyone with owner-

authority; the second letter denotes permissions given to everyone else. These 

letters may be: 

 

 F : Free (i.e.  Read/Write/Delete) 

 R : Read-only 

   or H : no access 

 

 The third letter, if present, affects the archive flag associated with the 

file and may be: 

 

 A : Archive (i.e. back this file up regularly) 

   or V : Vulnerable (do not back this file up). 

 

 

View help information:    HELP <topic> 

 

 The HELP command is used to browse through documentation relating to the 

commands available on the system. HELP by itself provides general information 

about the system and the command language. HELP followed by a topic-name like 

ECCE provides information about a particular topic. The system command F VIEW 

may be used to establish what topics may be specified. 

 

 This facility emulates the EMAS VIEW facility, which provides access to 

information using a Prestel-style tree-structured approach. 

 

 Type H within HELP for a summary of the operations provided. 
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Compare files:        COMPARE <file1>,<file2>/<diff> 

 

   The program COMPARE compares two files and produces a list of the lines 

which differ in each file. The matching is done in such a way that short 

insertions are recognised without generating a lot of false mismatches. The 

differing lines are printed out preceded by 1 or 2 to indicate which file 

they are from. The differing lines are followed by the first line which 

matches in both files; preceded by an equals. 

 

 

Produce documents     LAYOUT <doc>/<file> 

 

   This command invokes the document production program LAYOUT to format a 

file prepared in LAYOUT source. 

 

   The program is described in a separate manual [references 5.1, 5.2]. 

 

 

Assemble program:     M68000 <file> {options} 

 

   This invokes the M68000 assembler. The program in <file> (with assumed 

extension ASM) is assembled. The object code (in Motorola format) goes into a 

file with extension MOB, the listing into a file with extension LIS. By 

default, production of object code is enabled, of a listing disabled. 

 

 

Compile Imp program:   IMP <file> {options} 

 

   This invokes the IMP compiler for the M68000. The program in <file> (no 

assumed extension) is compiled, with object code (in binary image form) going 

to a file with extension MOB. By default, production of object code is 

enabled, but is suppressed if the program contains compiler-detected errors. 

By default, production of a listing is disabled. The main options are: 

 

-LIST{=file} Produce a listing (default file is LP:, so that 

listings are sent straight to the network printer 

 

-DIAG  Include line number diagnostic 

 

-TRACE  Generate code which lets the program be excuted one 

line at a time under control of the Software Front 

Panel. 

 

 

Interpret S-Algol program:  SR <SA-command-line> 

 

 

References: 

 

5.1 “Layout”, P. McLellan, Dept. of Computer Science Internal Report CSR-

21-78, Feb 1978 

5.2 “Layout 1.5 User’s Guide (provisional)” (Hamish Dewar, Dept. of 

Computer Science, Feb 1984) 
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 The SR command invokes the S-Algol interpreter. The first thing on the 

command line is taken to be the name of an S-code file, which is loaded and 

interpreted. 

 

 

Compile S-Algol program:    SR SA:SC <file> 

 

 This invokes the S-Algol interpreter to load and interpret the S-Algol 

compiler, which is documented elsewhere. 

 

 

Test New System: BOOT <file> 

 

 The BOOT command loads the file specified starting at location 16_1000, 

logs the current user off the Filestore, and jumps to the start-address 

specified by the pseudo-reset vector contained in the loaded file. It is used 

to load trial versions of new operating systems. 

 

 

Convert to Binary: TOBIN <infile>/<outfile> 

 

 The standard Motorola M68000 assembler produces a form of output which, 

aside froa being space-inefficient, is incompatible with the ROM bootstrap 

loader, which only loads straight binary images. TOBIN converts from Motorola 

format to binary image form. 

 

 

Convert to hex: HEX!   <in>/<out> 

 

 The stream (usually a file) <in> is output to <out> one byte at a time,  

in hexadecimal. 

 

 

Dissemble machine-code:  DIS <from> <to> /<out> 

 

 Code in the machine address space, bewteen the specified addresses <from> 

and <to> (both in hex) are decoded and output to stream <out> in M68000 

assembler notation. If /<out> is omitted, output goes to the terminal. 

 

 

Log on to VAX: VAX 

 

 The VAX command attempts to establish a Network Terminal connection to the 

Department's VAX, so that the terminal can be used as a VAX terminal. This 

facility should be used sparingly, because the mode of connection puts a 

heavier load on Vax than ordinary terminals. It is not intended for general 

public use, but rather as  
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a convenience terminal for those who are working in parallel on VAX and the 

APMs. The VAX program terminates (i.e. returns to command level) when the VAX 

process to which you are connected stops (normally when you log off VAX). 

 

Access files on VAX: VFS 

 

   The VFS (Vax File Store) command makes it possible to transfer files 

between VAX and the 1976 Filestore. Like the VAX command, it is only a 

convenience utility and should be used with care. It is self-documenting 

(type H in reply to the ‘>>’ prompt). 
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7.7. The Software Front Panel        . 

   This debugging tool is invoked by appending the flag-character '?' to a 

command verb, or by pressing ^T at the keyboard. When invoked, the SFP 

displays (near the top of the screen) the contents of processor registers D0 

to D7, A0 to A6, the current stack pointer A7, the status register and program 

counter SR and PC, the line number (if an IMP program compiled with the -DIAG 

or -TRACE qualifiers is running), and the previous PC (if known). In response 

to the "Now what?" prompt, single-character commands are accepted, which are 

not subject to normal line-editing conventions. Unknown command characters 

(such as H for help) cause a list of valid commands to be displayed. These 

are: 

 

S  Execute one single instruction of the running program,  then re-

invoke the SFP (Implemented by setting the T bit in SR). 

 

C  Continue.  Resume normal execution of the running program. 

 

Bx  Set breakpoint at x.  Execute instructions until PC=x. x is an 

absolute PC value and should be entered in hexadecimal immediately 

after the B (no leading spaces), the first non-hex character 

terminates the number,   sets the breakpoint and resumes execution 

of the running program (implemented by replacing the instructions 

at the target PC by a TRAP TRAP 0 instruction,not by setting the T 

bit in SR). 

 

R  Reset and reload the system. 

 

N  Execute next statement or line. Only relevant to programs compiled 

with the -TRACE qualifier. 

 

Ln  Execute statements until line n is reached (n is in decimal and 

should come immediately after the L). Only relevant to IMP 

programs compiled with the TRACE qualifier 

 

X  Examine store (Spy).  This issues a prompt to which the reply is 

TWO hex numbers (no leading spaces,separated by one non-hex 

character).  The first is an address,  the second a byte count (in 

the range 0  (meaning 256) to 255).  The specified number of bytes  

(say k) are displayed on the screen.   Ihree actions are then 

valid: Press RETURN:The next k bytes are displayed (repeatedly). 

  Press  '=': The last byte displayed is overwritten 

  with a hex value, typed immediately following the'='. 

  Press any of the above commands (including X 
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 to examine a different area of store). 
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7.8.  System Environment 

 

 

7.8.1.  Initial System Loading 

   After the system has been reset (as a result of pressing the reset button, 

of typing 'R' to the Software Front Panel, or of first switching on), the ROM 

bootstrap fetches the operating system from the filestore. The file FMAC.STS 

on the 1976 filestore is read, and assumed to contain a binary image of an 

operating system suitable for loading into memory starting at address 

16_1000. Because in the M68000 the interrupt table occupies the 256 longwords 

(1024 bytes) of store starting at address 0, and this area is actually ROM, 

the ROM bootstrap contains code to re-direct all interrupts through a 

corresponding table of pseudo-vectors starting at address 16_1000. The first 

two interrupt "vectors" represent initial values for the stack pointer and 

program counter and, consequently, the ROM bootstrap will use the 

corresponding values (at 16_1000 and 16_1004) to enter the loaded operating 

system. 

 

   Once the basic system is loaded, it will load the command interpreter. If 

by this time any key on the keyboard has been struck, the system will ask for 

the name of an image file to load instead of the command interpreter. 

Otherwise it proceeds to load file FMAC:EZEC.MOB. Once this is loaded, it 

obeys command file FMAC:STARTUP.MOB, which contains symbol definitions for 

some of the utility commands detailed above. 

 

 

7.8.2.  Software Environment 

   Programs are entered at the address of the last byte loaded minus three. 

The last longword is usually a jump with word displacement to the actual 

start of the program. The area of free store available for use by the program 

as stack or heap or general work space is contiguous and is delimited at the 

low-address end by D6-256, and at the high-address end by SP. The contents of 

all other registers on entry to the program are undefined. Normally (except 

for programs which remain resident because they have symbolic abbreviations) 

this contiguous area of free store will be adjacent to the area into which 

the code was loaded. 

 

   In the development system, a number of general-purpose support routines 

are incorporated in the operating system itself and are called indirectly 

through a fixed-site table of entry points. [The M68000 does not have 

indirect addressing, so indirect calls are done as calls into a branch 

table]. A list of the routines available follows, with a brief indication of 

what they do. "Include"-files suitable for u-e with the assembler and IMP 

compiler which define the entry-points and their parameter specifications 

where applicable are contained in filestore files FMACS:SPECS.ASM (assembler) 

and FMACS:SPECS (IMP). 

 

   All these routines follow the conventions that parameters are passed in 

registers (values in D0 to D3, addresses in A0 to A3)» results (if any) come 

back in D0 or A0, all registers not conveying 
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results retain the values they had when the procedure was called. 

 

   It is emphasised that these functions are provided as an in-built part of 

the development system for convenience and that most of them will eventually 

be removed in favour of linked library routines. The continued availability of 

the low-level ether net procedures is not guaranteed in any form. 

 

   In the list which follows, the entry-point address (in hex) comes first, 

then the name of the procedure, then a brief description. 
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10C0 printsymbol The character in D0 is sent to the current 

output stream. 

 

10C4 printstring The character string (pointed to by) A0 is sent 

to the current output stream. 

 

10C6 readsymbol The next character on the current input is read 

to D0. 

 

10CC nextsymbol The next character on the current input stream 

is copied to D0 (but not read). 

 

10D0 prompt The character string A0 becomes the prompt 

string for terminal input. 

 

10D4 testsymbol The next character from the keyboard type-head 

buffer is read to D0, -1 is returned there is 

type-head.    This operation is independent of 

the currently selected stream 

 

10D8 selectinput input stream D0 is selected (0:3). 

 

10DC selectoutput output stream D0 is selected (0:3). 

 

10E0 resetinput The current input stream is reset. 

 

10E4 resetoutput The current output stream is reset. 

 

10E8 closeinput The current output stream is closed. 

 

10EC closeeoutput The current output stream is closed. 

 

10F0 openinput Input stream D0 is selected, closed, and re-

opened as the file with name A0.    The null 

file,   ".T" or "." denoted the terminal. 

 

10F4 openoutput Output stream D0 is selected, closed 

unsatisfactorily,  and re-opened as file A0. 

 

10F8 etheropen Ether port D0 is opened to remote station 

D1>>8, port D1&15.
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10FC etherclose Ether port D0 is closed. 

 

1100 etherwrite D1-byte buffer A0 is written to ether port D0.  

 

1104 etherread Up to D1 bytes are read from ether port D0 into 

buffer A0, the actual packet size is returned in 

D0. 

 

1108 fcomm Filestore command D0 with parameter A0 is sent to 

the filestore. The numeric response is returned 

in D0. 

 

110C fcommw Filestore command D0 with parameter A0 and D1-

byte buffer A1 is sent to the filestore. The 

numeric response is returned in D0. 

 

1110 fcommr Filestore command D0 with parameter A0 is sent to 

the filestore,the packet response is read into 

buffer A1 of size D1. The actual packet size is 

is returned in D0. 

 

  NB: Filestore commands passed in D0 to 

fcomm/fcommr/fcommw are encoded as the command 

letter « 8 plus the user/transaction digit. If 

the user digit is null (as opposed to '0',), the 

user number of the currently logged-on user is 

substituted. 
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1114 signal IMP event D0 is signalled. D0 is encoded as the sub-

event number « 4 plus the event number.    The whole 

value may be negated to indicate that the extra 

information and the message field in the the event 

record are to be cleared. 

 

1118 read A (decimal) number is read from the current input 

stream and returned in D0. 

 

111C write D0 is written out in decimal on the current output 

stream,  padded with with leading spaces to fill D1+1  

character positions (not padded if D1<=0). 

 

1120 mull The product of 32-bit integer values D0 and D1 is 

returned in D0 

 

1124 divl The quotient of the division of 32-bit D0 by 32-bit 

D1 is returned in D0, the remainder in D1. 

 

1128 scompu (IMP perm:String compare A)  

 

112C scomp (IMP perm:  String compare B)  

 

1130 cputime Return (in D0) the (integer) number of milliseconds 

of elapsed time since the system was loaded. 

 

1134 arraydef  (IMP perm: Define array dimension)  
 

1138 arrayget  (IMP perm:  Claim array space) 

 

113C arrayref  (IMP perm: Reference array element)  
 

1140 settermmode Set terminal mode as selected by bits in D0: 

  1: Suppress echo 

  2: Suppress terminator echo 

  4: Suppress line-buffering 

  8: Suppress auto-freeze 

 

1144 intpcwer Raise integer D0 to the integer power D1, result in 

D0. 
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1148 rplus Floating-point D0 = D0 + D1 

114C rminus Floating-point D0 = D0 - D1 

1150 rmult Floating-point D0 = D0 * D1 

1154 rdiv Floating-point D0 = D0 / D1 

1158 rpower Floating-point D0=D0 

  \\ Integer D1 

115C rnegate Floating-point D0 = -D0 

1160 float  Floating-point D0 = Integer D0 

1164 fracpt Floating-point D0 = fracpt(D0) 

1168 intpt Integer D0=intpt 

  (Floating-point D0) 

116C sqrt Floating-point D0 = sqrt (D0) 

 

1170 line  Graphics Mk III: draw line  

  from (d0|d1) to (d2|d3)  

 

1174 trapeze Graphics Mk III: 

  draw a trapezium with 

  sides (d0|d2) (d1|d2) and (d3|d5) 

  (d4|d5) [not callable from IMP]. 

 

 

1178 triangle Graphics Mk III: 

  draw a triangle 

  with vertices 

  (d0|d1), (d2|d3), and (d4|d5) 

  [not callable from IMP]. 

 

117C defname Define name A0 in dictionary A1, 

  reserving D0 bytes. Return 

  reference in A0. 

 

1180 refname Look up name A0 in dictionary 

  A1,return reference in A0. 

 

1184 transname Perform reverse lookup on 

  reference A0, 

  returning name to string A1. 

 

1188 defineeh Define Event Handler 

  (IMP support).  The partial 

  context  (PC, A4, A5, A6, SP) 

  is saved somewhere, and 

  restored when any event 

  is signalled. 

  

118C nhex Print D0 as single-digit 

  hex number (nibble) 

 

1190 bhex Print D0 as two-digit 

  hex number (byte) 

 

1194 whex Print D0 as four-digit 

  hex number (word) 
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1198 phex Print D0 as eight-digit 

  hex number 

 

119C rhex Read hex number to D0 
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8. GRAPHIC SYSTEMS 

 

 

8.0. Introduction 

   The information for this section is currently being re-typed into the 

machine. (Recovery from head crash). 
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A copy of what appears to be the missing section has been added to the 

reprinted edition. Originally this was Section 4, numbered 4.1 – 4.11 
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LEVEL 1 GRAPHICS SYSTEM 

 

8.1 Introduction 

 The level 1 graphics board (CSD154) is a simple, write only, colour raster 

graphics controller and frame store. It provides a display of up to 1024*1024 

pixels of four bits each. It can be configured to drive a large variety of 

monitors, both interlaced and non-interlaced and at different data, line and 

frame rates. It generates 3 TTL video outputs allowing 8 different colours to 

be displayed. 

 

 A further board (CSD155) can be added to give an additional four bits per 

pixel and a colour map suitable for driving analogue input colour monitors. 

Together they can display up to 256 different colours at one time. 

These colours can be selected from a total of 32768 shades. 
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8.2 Switches and indicators 

 

When viewed from the front of the system the layout of the control switches 

and indicators on the control processor board is as follows: 

 

   | 

   |---- 

   |  [| MSD   Address Select Switches (4 Hex Digits). 

   |---- 

   |  [|       Selects the high order 14 address bits used to 

   |----       access the frame store and its associated control 

   |  [|       registers within the system bus real address 

   |----       space. The board is disabled if the LSD switch 

   |  [| LSD   is not a multiple of 4. 

   |---- 

   | 

   | 

   | 

   | 

   | 

   | 

   |---- 

   | 0 |        Access indicator. On if a framestore update 

   |----                          is in progress 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

   | 

 

8.3 Coordinate System 

 

   The frame store is an array of 1024*1024 pixels. Pixel (0,0) is at the 

bottom left of the array and pixel (1023,1023) is at the top right of the 

array. The attached monitor will display a rectangular sub-region of this 

array. The size of the displayed area is determined by the Monitor 

specifications and is configured by PROM's on the graphics board. The display 

area for the Mitsubishi C3419E monitors is 512(V)*688(H) pixels. The origin of 

the displayed region is determined by the contents of a write only register, 

the START OF DISPLAY REGISTER. The Start of Display register 
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is a 16 bit register. The 10 most significant bits specify the Y index of the 

TOPMOST displayed pixel. The 6 least significant bits specify the X index of 

the LEFTMOST displayed pixel, DIVIDED by 16. The X index of the first 

displayed pixel must be a multiple of 16. The two bytes of the register may be 

written separately. If the origin is such that an overflow occurs then the 

displayed region wraps around from high to low index pixels. 

 

 

 (0,1023)                                                     (1023,1023) 

  ----------------------------------------------------------------- 

  |                                                               | 

  |              Frame Store                                      | 

  |                                                               | 

  |                                                               | 

  |       -----------------------------------------<- Y Start of  | 

  |       |                              ^        |     Display   | 

  |       |                              |        |               | 

  |       |      Displayed Area          |        |               | 

  |       |      (Mitsubishi C3419E)     |        |               | 

  |       |                              |        |               | 

  |       |                              |        |               | 

  |       |                              |        |               | 

  |       |<--------------------- 688 ---+------->|               | 

  |       |                              |        |               | 

  |       |                              |        |               | 

  |       |                             512       |               | 

  |       |                              |        |               | 

  |       |                              |        |               | 

  |       |                              v        |               | 

  |       -----------------------------------------               | 

  |       ^                                                       | 

  |       |                                                       | 

  |   X Start of Display                                          | 

  |                                                               | 

  |                                                               | 

  ----------------------------------------------------------------- 

(0,0)                                                         (1023,0) 

 

8.4 System Bus Interface 

 

   The level 1 graphics board provides a number of write only locations that 

can be accessed as slave devices from the system EUCSD bus. 

 

   The locations they occupy within the system bus address space are 

determined by 4 hex coded switches that are visible from the front of the 

board. These specify the 14 high order address bits (AD31L-AD18L) used to 

access the frame store and control registers. The next highest address line 

AD17L determines whether the frame store (AD17L is 0) or the control registers 

(AD17L is 1) are accessed. 

 

   If the control registers are accessed AD16L is used to determine whether 

the general control registers (AD16L is 0) or the colour map (AD16L is 1) is 

accessed. Note that accessing the colour map is effective only when the CSD155 

board is available. 
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8.5 Frame Store Addressing 

 

   The Frame Store appears as a linear sequence of 128K bytes in the system 

bus address space. This may be considered as a 1024*1024 array of bits, 

organized as groups of 8 bits in a 1024*128 array of bytes. Increasing byte 

addresses correspond to increasing X coordinates first and increasing Y 

coordinates second. Within a byte the most significant bit corresponds to the 

pixel with lowest X coordinate. Thus, if we consider a particular sequence of 

pixels as a binary number they appear on the display in the 'natural' left to 

right order of decreasing significance. 

 

   Up to 4 aligned bytes may be written in a single frame store access. The 

user should note that internally 16 bit operations are performed. This implies 

that the store cycle time is doubled for 32 bit accesses. 

 

8.6 Pixels - CSD154 board only 

 

   Each pixel is associated with 4 bits of data. Each bit is stored in a 

separate 1024*1024 bit storage array or PLANE. The contents of planes 0, 1 and 

2 determine whether the red, green and blue guns of the monitor are on or off. 

Plane 3 , the 'cursor' plane allows the sense of data from planes 0, 1, and 2 

to be inverted. 

 

Thus, for any given pixel: 

 

    if plane 3 = 0 

          red gun is on if plane 0 = 1 

        green gun is on if plane 1 = 1 

         blue gun is on if plane 2 = 1 

 

    if plane 3 = 1 

          red gun is off if plane 0 = 1 

        green gun is off if plane 1 = 1 

         blue gun is off if plane 2 = 1 

 

Note that a pixel may be any one of the following colours : 

 

    black      all off        0000 or 1111 

    red        red only       0001 or 1110 

    green      green only     0010 or 1101 

    yellow     red+green      0011 or 1100 

    blue       blue only      0100 or 1011 

    magenta    red+blue       0101 or 1010 

    cyan       green+blue     0110 or 1001 

    white      red+green+blue 0111 or 1000 

 

   Notice that the colour displayed when plane 3 is 0 is the complement of 

that displayed when plane 3 is 1, provided that planes 0, 1 and 2 remain the 

same. Thus plane 3 may be used as a cursor plane on which any symbol written 

will probably be noticeable, regardless of the contents of the other planes. 
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8.7 Pixels - CSD154 and CSD155 two board system 

 

   With the CSD155 option installed each pixel is associated with 8 bits of 

data. Each bit is again stored in a separate 1024*1024 colour plane. The 

method of updating the frame store is unchanged. However, the manner in which 

each pixel is displayed is altered. 

 

   When a pixel is displayed the 8 bits of data are used as an index to a 

writable COLOUR MAP. For each of the 256 possible values a pixel may take a 16 

bit value is generated by the colour map. These 16 bit values are written into 

the colour map before the desired picture can be displayed. The 16 bits are 

used as three 5 bit fields and a single 1 bit field. The 5 bit fields are used 

as an unsigned integer to determine the analogue intensity of the red, green 

and blue guns of the CRT display. The 1 bit field is used as a control bit 

that determines whether the pixel flashes at one 16th of the display field 

rate; about 3 times a second. 

 

   The colour map may be updated by normal writes to the graphics system. 

The low order address lines (AD9L-AD2L) are used to index the colour map and 

the data written provides the 16 bit values generated by the colour map. 

The colour map appears to the bus as 32 bit entries, the 16 high order bits 

being ignored. The individual bytes of the colour map entries may be written 

separately. 

 

   The operation of writing a single new entry to the colour map will cause 

the display to be blanked for 3 pixels. This is to minimise the effect of 

generating incorrect data when a change is made. It may be possible to use the 

vertical sync output from the controller to synchronise colour map changes to 

the display vertical blanking period. This would allow colour map updates to 

go completely unnoticed on the display. 

 

8.8 Updating the Frame Store 

 

   Only write accesses to the frame store are allowed. When the frame store is 

written an UPDATE OPERATION takes place. The data when written does not go 

directly to the planes, but is used as a mask. Each bit in the mask 

corresponds to a pixel as discussed in the section on frame store addressing. 

If a data bit in the mask is 0 then no change is made to the corresponding 

pixel. If a bit is 1 then the pixel is updated. The change made to the bits 

that make up the pixel is determined by the contents of two control registers. 

 

   The PLANE ENABLE REGISTER is a single byte and contains a bit corresponding 

to each of the colour planes. If the bit for a plane is zero, then that plane 

is not changed by frame store update operations. If the bit is 1 then the 

plane may be modified by the update operation. If the CSD154 board is used 

alone then only the 4 least significant bits are used. 

 

   The COLOUR REGISTER is a single byte and contains a bit corresponding 

to each of the colour planes. When a frame store update operation takes place 

the contents of the colour register is written to the corresponding plane of 

each pixel that has 1 in the data mask. This is of course conditional on 
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the enable bit for that plane being 1. If the CSD154 board is used alone then 

only the 4 least significant bits are used. 

 

   This arrangement allows all planes to be updated simultaneously. However, 

it does not have any overall speed up when drawing finely detailed pictures. 

For example, to clear the frame store the following must be performed. First 

all 1's are written to the plane enable register. Then all 0's are written to 

the colour register. Finally all 1's are written to all the frame store 

locations. 

 

   To draw an arbitrarily coloured picture we must proceed as follows. 

For each colour the colour register must be written before writing 1's to each 

pixel that will be that colour in the final picture. This must be repeated 

until the detail for all colours is drawn. 

 

   For 'layered' applications such as VLSI plots it is sufficient to proceed 

as follows. First write all 1's to the colour register. Then for each layer 

write a single 1 to the plane enable register, before updating the frame store 

with the detail for that layer. Again this must be repeated until the detail 

for all of the layers is drawn. 

 

8.9 Register Address Map 

 

   To summarise, the registers appear in the system address space as follows: 

 

    SSST00000 - SSST0FFFF  Frame store. 

 

    SSST20000(4)SSST2FFFC  Plane enable register. 

    SSST20001(4)SSST2FFFD  Colour register. 

    SSST20002(4)SSST2FFFE  Start of Display register. 

 

    SSST30002(4)SSST3FFFE  Colour map registers. 

 

    SSST is the setting of the board address select switches 

    The system is deselected unless T is a multiple of 4. 

 

8.10 Register Bit Encodings 

 

   Collectively the general control registers may be considered as a single 32 

bit word. Each of the bytes may be accessed separately. The meaning of each of 

the bits in order of decreasing significance is as follows: 
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Byte 0 (MSByte) - Plane Enable register 

 

 bit 7 (MSB) - Plane 7 enable bit - 

 bit 6       - Plane 6 enable bit  | Significant only 

 bit 5       - Plane 5 enable bit  | with CSD155 extension. 

 bit 4       - Plane 4 enable bit - 

 bit 3       - Plane 3 enable bit 

 bit 2       - Plane 2 enable bit 

 bit 1       - Plane 1 enable bit 

 bit 0 (LSB) - Plane 0 enable bit 

 

 If a bit is 0, updates to corresponding plane are disabled 

 If a bit is 1, updates to corresponding plane are enabled 

 

Byte 1 - Colour Register 

 

 bit 7 (MSB) - Plane 7 data bit - 

 bit 6       - Plane 6 data bit  | Significant only 

 bit 5       - Plane 5 data bit  | with CSD155 extension. 

 bit 4       - Plane 4 data bit - 

 bit 3       - Plane 3 data bit 

 bit 2       - Plane 2 data bit 

 bit 1       - Plane 1 data bit 

 bit 0 (LSB) - Plane 0 data bit 

 

 The content of each bit is written to the correspondingn plane during a 

suitably enabled and masked update operation. 

 

Bytes 2 and 3 (LSByte) - Start of Display Register. 

 

 byte 2 bits 7-0 

 byte 3 bits 6&7 - Y Finishing Index 

   Y index of the last pixel displayed. 

   byte 2 bit 7 is the most significant bit. 

   byte 3 bit 6 is the least significant bit. 

 

 byte 3 bits 5-0 - X Starting Index 

   X Index/16 of first pixel displayed. 

   The X index of the first pixel displayed 

   is always a multiple of 16. 

   bit 5 is the most significant bit. 

 

 

 The colour map entries are 16 bits wide, but are 32 bit aligned. Only the 

Least significant 16 bits are used. Either of the two bytes may be written 

separately. 

 

They have the following form :  
 
 byte 2 bit 7 - Flash bit 

   If 0 pixel is steady 

   If 1 pixel alternates between colour specified by rest 

of entry and black every 16 fields (about 3 times a 

second)  
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 byte 2 bits 6-2 - Blue intensity 

   byte 2 bit 6 is the most significant bit. 

 

 byte 2 bits 1 & 0, 

 byte 3 bits 7-5 -  Green intensity 

   byte 2 bit 1 is the most significant bit. 

 

 byte 3 bits 4-0 - red intensity 

   byte 3 bit 4 is the most significant bit. 

 

8.11 Software Support Routines 

 

   A number of standard routines are available for using the Level 1 Graphics 

System. The following routines are written in assembler and their close 

interaction with the hardware exploits the full potential of the graphics 

system. their peformance is such that they should be used whenever possible. 

In assembler, parameters are passed in registers d0, d1, ... d5 in the order 

specified by the prototypes given below. 

 

plot(x, y) 

Sets the pixel at coordinate (x, y) to the current contents of the 

colour register. The planes affected are those specified by the 

plane enable register. 

 

fill(x0, y0, x1, y1) 

Fills a rectangular area bounded by the coordinates (x0, y0) and 

(x1, y1). The colour used and planes affected are taken to be the 

current contents of the colour and plane enable registers. If 

x0>x1 or y0>y1 the the area filled is wrapped around the frame 

store. 

 

line(x0, y0, x1, y1) 

Draws a line between the coordinates (x0, y0) and (x1, y1). The 

colour used and planes affected are taken to be the current 

contents of the colour and plane enable registers. 

 

triangle(x0, y0, x1, y1, x2, y2) 

Draws a filled triangle with vertices (x0, y0), (x1, y1) and (x2, 

y2). The colour used and planes affected are taken to be the 

current contents of the colour and plane enable registers. 

 

trapeze(x0l, x0r, y0, x1l, x1r, y1) 

Draws a filled trapezium with parallel sides parallel to the X 

axis. The coordinates of the vertices are (x0l, y0), (x0r, y0), 

(x1l, y1) and (x1r, y1). The colour used and plane affected are 

taken to be the current contents of the colour and plane enable 

registers. Trapeze is primarily intended for polygon filling. 

 

 

In other languages further routines may be provided. This will be in 

addition to suitably interfaced calls to the basic routines given above. 
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The Souris Mouse is a graphics pointing device consisting of a hemi-

spherical plastic box which is grasped by the hand lying on the domed top with 

the thumb and small finger gripping the flattened sides. Three switches are 

mounted on the front edge, corresponding to the middle three fingers. 

 

A steel ball is held, free to rotate, in a chamber above the base of the 

mouse with a hole in the base so that the ball can run on any reasonably flat 

and horizontal surface. Spring loaded rollers press the ball against two steel 

shafts whose axes lie at right angles to each other in the horizontal plane. 

These shafts carry encoders which send signals to the interface to control x 

and y counters. The states of the switches are also transmitted to the 

interface so that they can be used as command inputs. 

 

Although the mechanism is accurately made it is not suitable for use as a 

digitiser. It should be used only as an interactive device where the position 

of some object, eg a cursor on a screen, is related to the position of the 

mouse on whatever surface it is running on. The advantages of the mouse are 

that it does not require any special surface to run on and it is less 

expensive than a digitiser. 

 

8.12.1 Low level Software Interface 

 

The state of the mouse is held in three 16 bit registers: the x axis 

counter, the y axis counter and the buttons register. These are available at 

addresses 16_7FFF0, 16_7FFF2 and 16_7FFF6 respectively. 

 

The buttons register is read only. The left button corresponds to bit 8, 

the middle button corresponds to bit 9 and the right button corresponds to bit 

10, where bit 0 is the LSB of the 16 bit register. 

 

The x and y axis counters are read/clear only. Their resolution is 15 

counts per mm. Clearing is accomplished by writing 0 to them. Writing any 

other value has the same effect. 

 

No interupt mechanism is provided by this interface since it is assumed 

that a system timer will be available to provide a general timed interupt 

mechanism which was thought to be the most appropriate way to handle this 

device. Since the device keeps track of the X and Y positions it is not time 

critical below human reaction times. 

 

8.12.2 Hardware Interface 

 

The Souris Mouse is interfaced to the APM Control Processor Local bus but 

acquires its Power and Ground from the EUCSD Bus Connector. The interface 

occupies part of the bottom half of a double height extended length Eurocard. 

The first batch are built using the department’s Zap technique since it was 

thought possible to incorporate a keyboard interface on the same board at a 

later date. 

 

The Souris Mouse provides quadrature signals for each of the X and Y axes 

of movement and three signals indicating the state of the three buttons. These 

signals along with power and ground are carried through a 9-way cable to a 9-

way D-type plug which mates with a 9-way IDC ribbon cable socket. The ribbon 

cable terminates in a 10-way IDC socket which mates with the on board 10-way 

3M type dual in line IDC plug. 
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The X and Y axis quadrature pairs are taken to a 74LS374 latch (N50). The 

corresponding outputs are fed back to the remaining 4 inputs so that following 

each clock edge the latch outputs give the current and previous states of the 

quadrature pairs. These signals are fed into the least significant 8 address 

lines of a 2716 Eprom (M50). The least significant 4 data outputs of the Eprom 

provide count enable and Up/Down signals to each of the X and Y counters 

(A,B,C,D50 and A,B,C,D62). 

 

The X and Y counters are 16 bit synchronous counters with asynchronous 

clear and tri-state outputs. Each change of state of the X or Y quadrature 

signals results in an up or down count of the X or Y counters so that the 

resolution of the counters is one 15th. of a mm. 

 

Use is made of the 800KHz E clock of the Control Processor Local Bus. This 

is divided by 2 using a 74LS74 (E74) to give CLOCK which is used to clock the 

X and Y counters and the Latch/Eprom state machine mentioned above. 

The interface to the Control Processor Local Bus provides read access to 

the X axis counter, the Y axis counter and a Buttons register (E62). The 

counters can be cleared by writing to them but the write data is ignored. The 

register addresses are as follows 

 

X axis Counter 16_7FFF0 

Y axis Counter 16_7FFF2 

Buttons Register 16_7FFF6 

 

Address 16_7FFF4 is taken but not used. Otherwise, the addresses are fully 

decoded. 

 

The bus signals UDS’ and LDS’ are ORed together by a 74LS08 (D74) and 

inverted by the permanently enabled half of a 74LS240 inverting bus buffer 

(E62) to give the signal UDS. The signals R/W’, A3 and AS’ are similarly 

inverted to give the signals R’/W, A3’ and AS. 

 

A3’ and A(4:18) are taken through two 74LS30 nand gates (A74 and B74) to 

give signals EN1’ and EN2’ which, together with AS and UDS, enable the 

25LS2548 address decoder (C74). A1,A2 and R’/W provide the address inputs 

to the decoder which produces the valid signals RD0’,RD2’,RD4’,WD0’ and WD2’. 

In addition the Bus signal DTACK’ is produced by the 25LS2548 when it is 

enabled and LUDS’ is active. 

 

LUDS’ is produced by latching UDS with the system clock CLK and is simply a 

delayed and inverted UDS. It is almost certainly redundant and was 

incorporated only because it cost nothing and was "purer". 

 

RD0’ enables the x counter outputs to the bus. RD2’ enables the y counter 

outputs and RD4’ enables the buttons register (half of E62). RDO’ and RD2’ are 

ORed by the 74LS08 (D74) to give HCLK’ which holds the signal CLOCK during 

read access to the counters. 

 

The bus signal RST’ is similarly ORed with WD0’ to give CLRX’ which clears 

the x counter and with WD2’ to give CLRY’ which clears the y counter. In 

addition it initialises LUDS’ to be inactive. 
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It was found that the mouse interfaces were failing intermittently and not 

so intermittently depending on the particular board and which APM they were 

plugged into. This was traced to noise on the RST’ signal and as a result a 

small AC filter in the form of a 100 ohm resistor in series with a 100 pF 

capacitor was connected between RST’ and GND to remove this problem. This fix 

was found to be of more general benefit to the APM system and it is 

recommended that the APMs have such filters fitted to all bus control lines. 
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9. C ON THE APM AND VAX 

 

   As of 12/04/83, a version of the MIT portable C compiler (sans floating 

point support) which generates M68000 machine code has been moved to the APM. 

It compiles C as described in Kernighan & Ritchie's book "The C Programming 

Language". Enough of a run-time handler exists to support the compiler, 

linker, etc. The standard i/o header is in C:STDIO.H which, for the present, 

should be denoted as “C:STDIO.H” rather than as the more conventional 

<STDIO.H>. 

 

   On the APM, C can be accessed via the 'command' C:CC. The format is: 

C:CC <filename> [<pre-processor flags>] 

 

   The output relocatable machine code is left in <basename>.REL, where 

<basename> is formed by stripping any extension (rightmost ...) from 

<filename>. Pre-processor flags are described below. 

 

   .REL files can be linked together using the C: CLINK command: 

 

   C:CLINK <f1>....<fn> [-i<ct1>] -?<output> 

 

   <f1> etc. are a space-separated list of .REL files; C:CLIB.REL is the name 

of the standard run- time library (see below). -i<ct1> is an optional control 

file containing a list of files to be linked and possibly; linker -i and the 

filename. ? is o, b or p depending on whether the output is to be another .REL 

file (which can be linked further), a binary image (.MOB file, conventionally) 

which is runnable, or a patched (optimised) binary image (.MOB, again) in 

which as many JSR xxxxxxxx as possible are converted to PC-relative form to 

minimise image size and loading time. NOTE: THIS CONVERSION MAY NOT ALWAYS BE 

SAFE. DO NOT COMPLAIN UNLESS A -b IMAGE FAILS TO RUN. Once again, there must 

be NO space between -? and the filename (which must be given in full, with the 

extension explicitly supplied by the user ). 

 

9.1.  Pre-processor Flags 

   The pre-processor allows a sequence of symbols to be £identified{d} from 

the command line. These are given as -dthingl -dthing2 etc. Similarly, symbols 

may be initially £undef{ined} using -uthing... 

 

9.2.  The Run-time Library 

The run-time library implements functions such 33 printf,scanf, exit, etc. At 

the present time the library 1-5 sufficiently extensive to support the C 

compiler. Omissions should be notified to LDS. Deviations from the Unix 

conventions for library support should, likewise, be notified to LDS. The 

standard i/o header is in C:STDIO.H. The C source of the run-time library is 

in C:CLIB.C. 

 

   The major omissions at the moment are: 



   

 

64 APM 

 

 

   1. No support for floating-point numbers (there is no machine support for 

them yet anyway). 

 

   2. lseek has not been implemented; fseek supports fseek(fp,0,0) ONLY (seek 

to start of file). Limitations in the filestore interface currently preclude a 

full implementation of either of these functions. 

 

   3. On the APM, there is currently no way to include only part of the run-

time library (the bit you need): you either get it all or you get none of it. 

Fixing this requires further discussion of library standards and linker/loader 

standards for the APM. 

 

9.3. The C Linker 

   The C linker assembles a number of .REL files into either (a) another .REL 

file which can be linked further or (b) an executable, self-relocating image, 

which can be run according to the APM conventions (1st byte of image is X'FE', 

load the image anywhere and JSR to the last longword of it). If the image so 

produced is left in a file THING. MOB then it can be run on the APM by issuing 

the •command' THING. When the linker is building an executable image it 

automatically loads the C machine support (C:CRTS) and the bootstrap relocator 

(C:CLDR). The C run-time library C:GLIB.REL is NOT loaded automatically. 

 

   The format of the CLINK command is described above. 

 

   If an input control file is specified with a -i<ct1> parameter then a list 

of names of files to be linked may be given (the list maybe empty) FOLLOWED by 

a list of linker control commands. The names of files to be linked together 

and the linker control commands must be separated by spaces and/or newlines. 

The linker control commands are as follows: 

 

*equate <symbol1> to <symbol2> 

*renaae <symbol1> as <symbol2> 

*hide <symbol> 

*hideall 

*unhide <symbol> 

 

ONLY *equate HAS BEEN TESTED; report bugs to LDS. 

 

   *equate <s1> to <s2> causes all references to <s1> (which MUST be 

UNdefined) to be re-directed to <s2> (which need not be defined). 

 

   *rename <sl> as <s2> causes the symbol <s1> to be renamed <s2>; <s2> must 

NOT EXIST at the point where the renaming takes place. 

 

   *hide <s> deletes external symbol <s> from the symbol-table of the output 

.REL file. <s> MUST be defined. This allows to modules with different 

definitions of (say) external routine fred (or, rather, the C equivalent 

thereof) to be linked together quite happily 



   

 

C ON THE APM AND VAX 65 

 

by hiding one of the freds from the other. 

 

   *hideall hides all DEFINED symbols; an UNdefined symbol cannot be hidden 

(otherwise the reference would NEVER be resolved). 

 

   *unhide <s> reverses the effect of a *hide <s> or *hideall command. 

 

   Typically, I would expect these commands to be used to assemble an almost 

complete module with a carefully controlled set of exported symbols. Such a 

module can be called by users without fear that their choice of external names 

might clash with that of the module builders (and if it does then the clashes 

can be resolved using *rename). 

 

9.4. C Cross-System on VAX 

   The C68000 cross-compiler can be accessed on VAX by using @dro0: 

[lds.c68000jc.com. Assuming that c68 has been equivalenced to this, the 

command format is: 

 

c68 <file> [<pre-processor flags>] 

 

   An extension .C is appended to <file> unless it already has an extension; 

the output is left in <basename>.REL, where basename is formed by stripping 

ant extension from <file>. 

 

   The cross-linker is dr0:[lds.a68000]clink.exe. The command format is 

indentical to that on the APM. However, the -i<ctl> file MUST be in a non-

standard (to VAX) simulated filestore format. Such files can be created using 

@dr0:[lds.fs68000] fssend.com <vaxfile> <simulated filestore file>. (Thus, 

linker control input must be sent be sent to the simulated filestore before 

use.) @dr0:[lds.fs68000] fsfetch.com <sim-fs-file> <vaxfile> reverses the 

process. NOTE: only text files with line lengths < 128 characters can be sent 

and fetched this way (blame VMS Vsn 3's Pascal, not me). 

 

   The run-time library is in dr0:[lds.c68000]clib.rel and the standard header 

is in dr0:[lds.c68000]stdio.h. 

 

   Use the subcommands of the VAX command newfs to transfer .rel and simulated 

filestore files between the filestore and VAX. 

 

9.5. Running APM C Programs on VAX 

   As is well known, we currently only have the rather crummy Whitesmith's C 

on VAX. It is especially crummy for having a (very) non-standard run-time 

library. However, with some inconvenience, APM C programs may be run on VAX 

under a simulated filestore environment (input files must first have their 

format converted from VAX standard to filestore standard using 

@dr0:[Ids.fs68000lfssend.com and output files must be converted back using 

@dr0:[lds.fs68000]fsfetch.com). Indeed, the C cross-linker and the whole of 

the C68000 cross-compiler suite operate under this 
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environment (however ,for the convenience of users, the C preprocessor reads 

standard VAX-format text files as input so no special action is needed in 

order to use the cross- compiler). 

 

   The advantage of this is that EXACTLY the same run-time library is 

maintained VAX and on the APM. 

 

   To compile an APM C program for running on VAX use the VAX command CC 

(input file extension .C assumed, output file extension .OBJ generated). 

 

   To link this into an executable image use dr0:[Ids.c680003cl.com. Assuming 

that CL has been equivalenced to this the command format is: 

 

CL <f1>,<f2>,....,<fn> [<exe>] 

 

   If no .EXE file is specified then <f1> is stripped of any extension and 

.EXE is appended to form the name of the output image. MOTE: any bits of the C 

run-time library you reference are included automatically. 

 

   Unfortunately there are certain differences between the machine support on 

VAX and that on the APM and between the source language accepted by the 

Whitesmith's compiler and that accepted by the MIT portable compiler. 

 

9.6. Machine Support Differences 

   1. VMS insists on translating command lines to upper case, so that C m/c 

support translates them back to lower case. Ergo, don't expect any upper case 

letters in the arguments passed to main () from the startup code. On, the APM, 

command line arguments are NOT translated at all. 

 

   2. Programs interrupted by CTRL + Y on the APM MAY leave the m/c in an 

insanitary or hung state. This problem MAY be fixed if/when the APM operating 

system stabilises. 

 

   3. On VAX, terminal i/o is lazy: newline ('\n') and input operations both 

flush the output buffer. Input is line buffered. Up to 127 chars are buffered 

on both input and output. On the APM, terminal input is line buffered but 

terminal output is character at a time-. 

 

   4. Error messages MAY be different on the two systems, depending on their 

point of origin. 

 

9.7. Source Language Differences 

  Fortunately, there are few significant differences between the source 

language accepted by the Whitesmith's C compiler (VAX CC command) and the MIT 

portable C compiler (APM C.CC. VAX @[lds.c6800]c.com). Note the following: 
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   1. The Whitesmith's C compiler does not check types (very well). Use the 

cross-compiler to get your casts right and to detect where a cast has been 

omitted. The cross-compiler detects more errors and gives (slightly) better 

diagnostics. 

 

   2. MOST ANNOYINGLY Whitesmiths C INSISTS that ALL static and external 

objects are EXPLICITLY initialised whereas the language definition FORBIDS the 

initialisation of unions and GUARANTEES that all static and external objects 

which are not explicitly initialised have every field set to zero. APM C 

guarantees that all unintialised objects are initially zero. The problem can 

be circumvented using the following pre-processor code: 

 

£ifdef 

whsonvms /* better be lower-case...  */ 

£define BLNKDATA ={0}  /'fortunately, WHS C isn't too fussy...  */ 

£else 

£define BLNKDATA /* a null definition •/ 

£endif 

..... 

union thing fred BLNKDATA; 

..... 

 

   It is most efficient on the APM NOT to explicitly initialise static and 

external data which are intended to be zero initially. On the VAX you have no 

choice. 

 

   3. Whitesmith's C does not support any kind of aggregate assignment. MIT C 

appears to support whole aggregate assignment of ALL objects which fit into a 

byte, a short-word or a long-word. 

 

   4. The two compilers evaluate expressions in different orders. If you (by 

accident or by design) write expressions which depend upon evaluation order 

(e.g. (getchar() « 8) + getchar()) then you will get what you deserve: random 

output which, by accident, will be correct on one system but not on the other. 
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10.  APM DEMONSTRATIONS 

   All demonstration files are in directory APM 

 

10.1. General Programs 

 

1. PALIN: A palindrome Program, magic numbers are:     196(2000:4 Sec)  

98(succeeds after 24) 

 

2.  CONC Concordances: 

 

 Space Invaders For Visual 200: 

 INV Keys are {4 Move left} 

  {5 FIRE} 

  {6 Move Right} 

 

10.1.1. Graphics Performance Related 

Speed of area fill,line drawing,etc: 

 

1. FILL: fills the frame with colour.  Type numbers in range 0:15 

 

2. SPOKES: multiple lines 

 

3. WHEEL: draws lines 

 

4. TRIGTEST: Evaluates software floating point SIN,COS,SQRT 

 

5. OCTAG: Triang fill 

 

6. SCAN: Uses cursor keys to move around 

 

7. RUBIK: Uses pre-set sequence. DIR.RUBIK for user-driven operation 

 

8. GOLLUM Adventure game 

 

10.1.2. Vlsi-Related 

   CHARLES is a simulator of Charles terminal. Files EDWIN: 

{OUT,PLA,STACK}.APC are available for demonstration purposes. A null filename 

re-draws previous file without going back to filestore. Cursor keys move the 

picture around. 
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10.2. Animation 

 

1.  GRAPHAN: Tower of Hanoi. 

 

2. TETRA: Goes through pre-set sequence. For user-driven operation use 

FTETRA. 

 

3. DISPLAY: displays text, filename{fontfilename}{<space>paper<space>} 

Default fontfile FMACS.FONT:VISUAL 

 

Default colours are green or black 

 

10.3. Other Programs 

   There is also a program RDISPLAY for a screen rotated through 90`. The 

Default font is FMACS.FONT:RBANTAM Other font files are FMACS.FONT: {BANTAM, 

IGOR,RVISUAL,RIGOR} 
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The Fred-machine or APM served two purposes – as a testbed for research into 

advanced concepts in computing and as a service vehicle for teaching, research 

and administration. 

 

The original APM Working Documents formed a starting point for anyone wanting 

to use the systems or to develop or extend its capabilities. Thirty-five years 

later it is still a logical starting point for anyone wanting to understand 

the project or to get a feel for what life was like around it. 

 

The references here describes as many of these projects as can be identified. 

Some went on to form integral parts of the system, used by everyone, some 

served as the basis of theses or papers and some were discussed or tried out 

but never took off..  

 

I was not part of this development – where I came in was to manage what was 

eventually 50 or so Fred Machines as a departmental computing service and try 

and balance the needs of a service (reliability and stability) with the needs 

of research (tweaking it and trying things out, some of which would fail).  

 

The list that follows is an extension of an earlier list prepared in 1986. I 

have kept the numbers the same to avoid confusion. 

 

I was credited [ref. 1.13] with a document “Complete Guide to the Fred 

Machine” (EUCSD Manual 1985). I don’t recall ever producing that document then 

but this is as close as I can get now. Missing the publication deadline by 35 

years may be some sort of record. 

 

 John Butler, May 2020 

 

GENERAL 

 

1.1 APM working documents Rev. 1.0 (May 1983) 

1.1a Addendum to APM working documents - Level 1 Graphics (F. King) 

1.2 view:apm (HELP APM) 

1.3 PAM: Parameter acquisition module (H. Dewar, Mar 1984) 

1.4 view:sfp (HELP SFP) 

1.5 Motorola specifications: 6840 PTM, 6850 ACLA, 6821 PIA (Motorola) 

1.6 M68000: 16-bit microprocessor User’s Manual (Motorola) 

1.7 Intel specifications: 8257/8257-5 Programmable DMA controller 

1.8 Zilog Z80/Z80A CPU: Technical Manual 

1.9 “The Edinburgh Advanced Personal Machine, or LEGO bricks and 

computing” (F. King, H. Dewar, I. Hansen, R. Thonnes) 

1.10 “A Brief Introduction to the APM System” (J.G. Hughes) 

1.11 512Kb Memory board controller state machine definition 

1.12 QSART: 2651 PCI specification and register addresses 

1.13 “The Evolution of the Fred Machine” (G. Brebner, F. King), CS Dept. 

Internal Report CSR-246-87, Sep 1987 

1.14 CS component sheets and schematics 

 

  



   

 

LANGUAGES 

 

2.1 “The IMP-77 Language” (P.S. Robertson) 

2.2 view:lib (HELP LIB) 

2.3 view:c (HELP C) 

2.4 IMP-77 core environment definition (Lattice Logic) 

2.5 i:maths.inc 

2.6 Summary of the major IMP libraries 1984 (J.G. Hughes) 

2.7 view:imp (HELP IMP) IMP compiler for Motorola 68000 (H. Dewar) 

2.8 APM-TD: Runtime support for IMP/Pascal (H. Dewar, 15/08/83) 

2.9 APM-TD: IMP/Pascal Procedure calling and register usage (H. Dewar, 

19/10/83) 

2.10d IMP Event Numbering - Proposed Revision (H. Dewar) 

2.10 Synchronous Events in IMP 2.0 (H. Dewar) 

2.11 APM system documentation: Program Environment (H. Dewar) 

2.12 APM Pascal (H. Dewar) 

2.13 IMP 3.0 (H. Dewar, CLAN systems) 

 

COMMUNICATIONS 

 

3.1 ether:guide.lay "A programmer’s Guide to the EUCSD Ethernet" (R. 

Thonnes, Dec 1983) 

3.2 ids.inc (IMP include file) 

3.3 Standard video terminal interface 

3.4 fmacs:clients.inc 

3.5 jhb:chario.lay "APM Asynchronous character I/O" (J. Butler) 

3.6 i:chario.inc 

3.7 VAX Ethernet Link Driver (G.D.M. Ross) 

3.8 Ethernet Protocols: Design and Implementation (W.P.S. Enos, MSc. 

Thesis) 

3.9 view:eftp The EFTP program (R. Thonnes) 

3.10 Installation criteria for Ethernet Coaxial Cable (C. Young 10/5/84) 

3.l1 A Hitch-Hiker’s Guide to Ethernets, ECMA and ISO (J. Butler) 

3.12 APM-TD: The development of the EUCSD Network (G. Cleland, 01/02/84) 

3.13 Edinburgh Local Area Network (W. Enos, I. Hansen, R. Thonnes, undated) 

3.14 ISOing the network (R. Thonnes) 

 

FILESTORE AND AUTHORISATION 

 

4.1 “The Filestore” (H. Dewar, V. Eachus, K. Humphry, P. McLellan, 

 Dept. of Computer Science Oct 1977, revised Sep 1981 (draft)) 

4.2 “Chapter 2 – The Local File System” (part document, no further info) 

4.3 The (New) New Filestores (G. Ross, Feb 1985) 

4.4 The New Filestores (draft, G. Ross, Aug 1985) 

4.3 rev The (New) New Filestores (G. Ross, revised, Oct 1985) 

4.5 Thoughts on a File Access Protocol (G. Ross, Oct 1985) 

4.6 Network Authorisation Protocol (G. Ross, Nov 1985) 

4.7 File Access Protocol (G. Ross) (draft, Dec 1985) 

4.8 Level 5: What Should it Do? (G. Ross, Dec 1985) 

 

  



   

 

 

PRINTING 

 

5.1 “Layout”, P. McLellan, Dept. of Computer Science Internal Report CSR-

21-78, Feb 1978 

5.2 “Layout 1.5 User’s Guide (provisional)” (Hamish Dewar, Dept. of 

Computer Science, Feb 1984) 

 

FUTURE DEVELOPMENTS AND OPERATING SYSTEMS 

 

6.1 Proposal to Port a Unix Environment to APM (G. Cleland, Aug 1984) 

6.2 Some Ideas About the new FS + The Kernel within the APM (J. Wexler, 

Sep 1985) 

6.3 A New Operating System for the Fred Machine (anon, Jan 1987) 

6.4 Sons and Daughters of APM (D. Rogers, Dec 1988) 

 

MISCELLANEOUS 

 

7.1 Emulating the Fred Machine (B. Foley, M.Sc. Thesis, 2003) 

 


