HP 4972A Protocol Analyzer

HP 18220SA
Protocol Interpreter
Development Environment

User’s Guide

[ﬁﬂ HEWLETT

PACKARD

Vlanual Part Number: 18220-99501 Printed in U.S.A. September, 1989
Microfiche Part ,Numbcr:18220-98801 EQ0989
J

\Nlotice

e e]

{ewlett-Packard makes no warranty of any kind with regard to this material, including, but

10t limited to, the implied warranties of merchantability and fitness for a particular purpose.
Jewlett-Packard shall not be liable for errors contained herein or for incidental or
:onsequential damages in connection with the furnishing, performance, or use of this material.

Jewlett-Packard assumes no responsibility for the use or reliability of its software on
:quipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. No part of
‘his document may be photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

[f your software application or hardware should fail, contact your local Hewlett-Packard Sales
Office listed in the protocol analyzer operating manual.

© Copyright 1989 Hewlett-Packard Company.
Colorado Telecommunications Division

5070 Centennial Boulevard

Colorado Springs, CO, 80919-2497

2 - Notice

Contents

1. Getting Started

Setting up the Pascal Workstation 1-1
Loading the HP 18220SA Files 1-2
A Typical Development Cycle 1-4
2. Decode Guidelines
Decode Display 2-1
Layers 2-1
Overall Display 2-1
Screen Attributes 2-3
User Lists 2-4
Definition 2-4
Softkeys 2-4
List Display Format 2-5
File Extension 2-6
Run Application Screen 2-6
Decode Screen Format 2-7
Select Format 2-8
The Header Column 2-8
The Display Column 2-8
The Detailed/Summary Column 2-8
The Protocol Column 29
The Hexbyte Column 2-9
The Substitute Labels Field 2-9
3. HP 4972A Applicatiion Interface
Base System-Application Interface Requirements 31
Procedure Initialization 3-1
Procedure Get_Softkey_Label 3-2
Procedure Entry_Point 3-2
Procedure Unload 3-3

Contents -3

. The Decode Application
The Modules

4-1

The Procedures

The Display Creation

42
43

System Procedures and Constants
Helpful Hints

4-5
47

' The User List
Adding and Removing Lists

5-1

Parameter Descriptions

5-2

1. User List Module Description
List Module Required Procedures
Example Calls

6-1
6-4

'. The Disk Functions Interface

Contents - 4

Getting Started

Note: The HP 182205A Decode Development System requires Revision B.03.00 of the HP 4972A
Operating System.

To use the HP 4972A application development environment, you must first turn your HP 4972A i
Pascal workstation. The HP 98617A Pascal Language System (also required to use the HP 18220
has detailed instructions for this. The following are simple tips to help reduce set-up time and ent
performance of your system.

Setting Up the Pascal Workstation

Your HP 4972A already has much of the Pascal Workstation System (PWS) software installed o1
hard drive. Volume #11 should contain the files SYSTEM_P, STARTUP, INITLIB, TABLE, anc
AUTOKEYS. However, these files are for Revision 3.01 of the PWS, and you will need to replact
some of them with Revision 3.22 versions.

To do this, put the "BOOT:" disc from your 3.22 PWS into the floppy disc drive of the 4972A. Cyc
power to the 4972A while holding the space bar down. Keep holding the space bar down until the
message "SEARCHING FOR A SYSTEM" appears at the bottom of the screen. Then enter "2F
from the keyboard. The system should continue booting from the floppy disc. When the boot has
finished, the system will prompt you for the correct date and time. Enter these, and the PWS
command line will be displayed.

At this point you must remove the "BOOT:" disc and insert the "ACCESS:" disc. Then press "F" t¢
the FILER. Once the FILER has loaded you may again swap discs, removing "ACCESS:" and ins
"BOOT:".

Now remove {iles SYSTEM_P, STARTUP, INITLIB, findSYS.CODE and AUTOKEYS from #1
Krunch the volume, then (in the Filer) filecopy SYSTEM _P, STARTUP, and INITLIB from #3 t
#11. IT IS NEITHER NECESSARY NOR DESIRABLE AT THIS POINT TO REPLACE TH
TABLE PROGRAM ON #11.

Next, remove the "BOOT:" disc and re-boot by pressing < Shift > < RESET >. The system shot
now boot off of the internal hard disc and prompt you for the date and time again. Hit < Return
twice to get to the PWS command line again.

Getting Started 1-1

isert the "ACCESS:" disc and press "F" to load the FILER. Now copy the FILER, EDITOR,
IBRARIAN, and MEDIAINIT.CODE files from #3 to #13. Then replace the "ACCESS:" disc wi
ie "CMP:" disc and copy the COMPILER from #3 to #13. Finally, replace the "CMP:" disc with th
ASM:" disc and copy the ASSEMBLER and DEBUGGER files from #3 to #13. Your hard disc n
»ntains all of the PWS system files you will need.

e-boot your system once more. From the PWS command line, press "W". The system should disp!
list of system files and their locations. All of the files except the LIBRARY file should be prefixed
JARDSC:" indicating that the system has found them on the hard disc. If so, you are now ready to
yad the HP 18220SA files onto your hard disc.

.oading the HP 18220SA Files

'he HP 18220SA disks contain several files which will help you to create HP 4972A applications. T
re:

JISK 1 DISK 2

\UTOKEYS EXPORTS.TEXT
indSYS.CODE XREF.TEXT
IBRARY

STABLET72.TEXT

ink_72.TEXT

'YS_72.CODE

yz_body. TEXT

yz_body.CODE

yz_main. TEXT

yz_main.CODE

ink_xyz.TEXT

{YZ0.A

ild_IL.TEXT

nsert the HP 18220SA disc into the floppy drive and copy AUTOKEYS and findSYS.CODE to #1
These will allow you to select between the PWS and the HP 4972A instrument code when the unit i
yowered on.

Che remaining files should be copied onto #13 for use in developing your applications. You can us
he wildcards (=,$) to speed up the copy process. A brief explanation of those files follows:

LIBRARY

Contains library routines needed for compilation. YOU MUST NOT USE THE LIBRARY FILE
WHICH COMES WITH THE PWS SOFTWARE:!

f -2 Getting Started

TABLE72.TEXT

link_72

SYS_72

XYZ_body.TEXT

XYZ_body.CODE

XYZ_main.TEXT

X)(Z_main.CODE

link_XYZ.TEXT

XYZ0.A

build_IL

EXPORTS.TEXT

This is a modified version of the Version 3.22 CTABLE program which

" “comes with your PWS software. If you need to modify your system

configuration, you should modify this file and compile it, then copy the
result into #11:TABLE

This is a stream file which will combine the "library. CODE" file on #11
with the "HP 4971S.CODE" file on volume #12 into a file called
"LPA.CODE" on volume #13. This allows you to invoke the analyzer
software at any time by simply executing #13:LPA.

This file contains all of the exported modules from the HP 4972A base
system. It must be "searched" by your applications files for them to
compile.

This is an empty decode shell file which can be modified to create your
custom decode. There will be one "body” file for each protocol header
decoded.

The code file generated when xyz_body. TEXT is compiled.

This is an empty application shell file which can be modified to create :
custom application. When used in conjunctxon with xyz_body, it can cr
an entire decode application. Only one "main" is requxrcd for each prc
decode stack.

The code file generated when xyz_main. TEXT is compiled.

This is a sample stream file which invokes the LIBRARIAN to link the
xyz_body and xyz_main CODE files together into XYZ0.A, an applica
file.

Application file created by link_xyz.

If your HP 4972A has Option #002 (remote interface) it will be neces:
to add two modules to your INITLIB file on #11. This stream file is
provided to do that for you. Simply insert the ACCESS: disk from yot
PWS software and Stream (S) #13: build_IL. If the stream file fails fc
some reason, consult your Procedure berary manual for instructions «
adding "RS232" and "DATA_COMM" to your INITLIB.

This file contains all of the data types, constants, variables, and procec
exported from the base system. It can be used in conjunction with
XREF.TEXT to identify useful items already implemented. There is
or no documentation associated with this file, so the items contained v
should be used only as a last resort.

Getting Started 1-3

{REF.TEXT This file contains a cross reference for the items contained in

' "EXPORTS.TEXT.

\ Typical Development Cycle

Jow that you have access to the PWS and the HP 18220SA files, you can start developing applicatic
The process for this is fairly simple:

1

2.

Edit the source file shells xyz_body and xyz_main to add the custom functions.

Compile the files. It is always advisable to compile in reverse hierarchical order. Thus
xyz_body should be compiled first and xyz_main should be compiled second.

Use the link_xyz stream file to link the xyz_body and xyz_main files together into XYZ0.A
NOTE: Whenever "xyz" is encountered, it should be replaced by the decode header title.
Invoke the analyzer software by running LPA.CODE (created in step 3).

Load your application from the disc functions menu.

Test your application.

Return to the PWS environment by pressing < Shift > <USER>. On an HP 49718, use |
< Shift > key in conjunction with the blank key in the upper right-hand corner of the

keyboard.

Return to step 1.

1-4 Getting Started

Decode Guidelines «
~
The Pascal Workstation Operating System in conjunction with the Lan Protocol Analyzer Decode
Platform make it possible for you to develop protocol decode application programs for the HP 497

These decode applications will enhance the analysis capabilities of the HP 4972A by presenting
protocol information in an easy-to-read format.

This chapter describes in general terms the attributes of a decode application. It is not intended to
a complete and exhaustive definition since every protocol will have its own unique needs. It is a sel
guidelines for the minimum credible solution, to which additional features can be added as those n
become evident.

Decode Display
Layers

For the purposes of this manual it is assumed that the protocol suite may be decomposed into
functional layers along the lines of the OSI model. Although most protocols were defined before t
OSI model, it is generally possible to "force fit" them into at least some subset of the OSI layers.

Within the Select Format menu, the layers are numbered 1 through 7. This is done primarily to pr:
the user with an easy reference. If the user has an unusual protocol stack, the decodes will still be
called in the order that they occur in the frame. For example, IP is usually considered to be a leve
three protocol. Suppose the network was running IP on top of the X.25 protocol. IP would be cal
level four.

Overall Display

Each decoded layer is preceeded in the margin by the header name followed by a colon. Then, all
header fields are shown in the order that they occur within the frame. If the decode fields will not
on one line, the display is continued on the next line beginning with a colon and then followed by t
remaining fields. A header display should consume as many lines as desired while still maintainin;
concise format. The displayed header might look something like the following:

Decode Guidelines 2-1

leader: ETICHE] 00-00-00-00 [HTEIEIE 65535 255

: Broadcast [RLICEH 10 00-00
WField 7 90 Unknown 0

Che title "Header" is the name of that particular header. The header name may be between one an
ifteen characters long, and should only appear on the first line of the header display.

'n the above example, the Field # represents the label that describes the data in the field. The abo
sxample shows three fields per line, but the display may contain as many fields as will it only onto «
ine while still maintaining clear field labels. The data should be shown in a format that is the most
neaningful. In the above example, fields 1 and 6 are shown in hexadecimal format, fields 2, 3, 5, 7,
3 are shown in decimal, and fields 4 and 7 both contain neumonics.

A header may be incomplete as a result of lost data, etc. What if there are not enough bytes in the
frame to display the complete header? Only the fields that are complete should be displayed. For
axample, suppose the header displayed above contained only 12 bytes (assume that its full 16 bytes
shown above) which is just enough to consume fields 1 through 5. The header would then be displ:
as follows:

Keader: FIACE 00-00-00-00 RECEA 65535 255
lFicld 4 Broadcast 10

kk% Incomplete Header ***

Note that the display was cut short after field 5. Field 6 was not displayed on the second line as be!
The user must be notified that the header was incomplete. Therefore, an "Incomplete Header"
message is put up on the very next display line. That message has a margin followed by a colon, an
preceeded and trailed by five asterisks.

For another example, suppose there were only two bytes of data available in the header. Notice th
field #1 requires four bytes of data. The header display would look as follows.

Header: **kkk Incomplete Header **¥*¥

The user could turn "On" the SHOW HEX BYTES column (which will be explained later) to view
two bytes of data.

The field labels should be targeted toward the decode user. If the user is familiar with the protocc
labels may be abbreviated to the extent that their meaning is still clear.

Note that the data is right justified following the labels. This is donc to give the display a "clean” k
thereby allowing the user to become familiar with ficld data by position. The field labels should lis
as much as possible, giving the display a "column" appearance. For some headers, columns may n
practical. The display should still maintain a degree of neatness.

2 -2 Decode Guidelines

\ header display should never show more data than the previous header’s length ficld indicates. Tt
lisplay should be cut off at “that length.

Screen Attributes

Various attributes are used in the display to aid in finding information and locating error condition:
The decode display should adhere to the screen attribute conventions that have been estabhshcd
There are currently four attributes in use.

Normal Attributes

Half Bright Inverse Attribute

Inverse Attribute

Half Bright Attribute

This attribute is used for the margin header name, the colon, the
incomplete header message, and the data display if the data is nc
error. This will be the prevalent attribute.

This attribute is used to display all of the field labels. In the abo
display examples, the labels Field # will be in half bright inverse
(Note: Within the system, the actual attribute used is the half bri
inverse plus the underline attribute to keep the field labels from
running together.)

This attribute is used to flag an error in the data field. It was ch
because it stands out. Example error conditions include: a bad
checksum, a length field that is too long or too short, an invalid
or code field, etc. (Note: Within the system, the actual attribute
used is the inverse attribute plus the underline attribute to keep
field labels from running together.)

This value is used in the case of an incorrect checksum. The val
that is in the checksum field is shown in inverse video as previou
described. It may then be beneficial to show what the correct
checksum value should have been. This correct value is shown ir
half bright attribute preceeding the incorrect value. An example
bad checksum would look as follows:

Field 1 (34-78) ELEN&Y

Half Bright Inverse Attrib. Half Bright Attrib. Inverse Attrib

Decode Guidelines 2-3

If the checksum is good, the value in parenthesis would be replaced by the word "Good" in normal
attribute: Good 34-77. If the checksum field is not used, the value in parenthesis would be replace
the word "Unused": Unused 00-00.

Within the Select Format menu, you can alter the decode display slightly. These changes will be
described later in this chapter.

User Lists
Definition

It is often beneficial to be able to keep a list of addresses, services, etc. that are currently on the
network. Each protocol may have different address formats. Therefore, provisions have been mac
within the HP 4972A protocol decode platform to allow new lists to be added with each new decoc

What constitutes a valid list? A list may be added for any address field (this includes hosts, ports,
sockets, etc.) or protocol field within the header. In this manual, protocol field is defined to be a fi
which accesses a higher layer. For example, the IP protocol has a field which identifies the protoce
that rides directly above IP (TCP, UDP, etc.).

What are the benefits of such a list? Within the decode display, the address or protocol fields can’
shown in a neumonic representation, thus making it much easier to interpret that field. If the lists
not provided, the user would have to convert the data into a meaningful name. If "User Labels" is
selected in the "SUBSTITUTE LABELS" column within the Select Format screen, the labels will t
displayed in place of the data values provided an entry exists for that value. Each decode may have
more than one list. In theory, a list could be added for each address or protocol field.

It may be more practical for a decode developer to add an internal user list rather than one that
appears as a softkey choice. This will greatly decrease the effort required. If the developer does
choose to add an external list, the information that follows should prove useful.

Softkeys

The lists may be accessed through the Setup Analyzer softkey in the top lcvel menu. When "Edit 1
is pressed, a menu of softkeys containing all of the lists that are currently loaded is displayed. The
Physical Address List and the Ethernet Type List will always be resident. When each decode
application is loaded, its corresponding lists will be loaded also. When the application is unloaded,
lists will be removed. If more than one application is loaded, there may be quite a few lists. By
pressing the "Other Choices" softkey, the remaining lists will be displayed. The user may enter a li;
simply pressing its corresponding softkey. The code for the lists is in a separate file from that of th

application. That list file must be present on the same volume as the application file in order to be
loaded.

2 -4 Decode Guidelines

ist Display Format

\ typical list will contain four elements: a list name, a column containing the entry number, a colun
ontaining the name, and a column containing the address or data value.

“he list will appear as follows:

.dst Name: Example_List

Entry # Name Address
1 Example Name| 00-00-00-00

[he List Name header, column headers, and entry numbers should all appear in normal attribute. -
_ist Name and the name and address fields should all appear in half bright inverse attribute except
he ficld where the cursor currently resides. That field should be shown in full bright inverse attrib
For a better example of the list attributes, please refer to the EtherType List, which resides in the I

1972A.
The softkeys that are provided within the list menus are as follows:
Softkey #1: Insert Address

This softkey allows the user to insert an entry in the list. The softkey label will change
with each list. For example, in the EtherType list, this softkey reads "Insert Type”.

Softkey #2: Delete Address
This softkey allows the user to delete an entry from the list.

Softkey #3: Sort Addresses
This softkey allows the user to sort the list by name or address. The softkey label will
change with each list. For example, in the EtherType list, this softkey reads "Sort
Types". Within this menu, two more softkeys will appear: "Sort by Name" and "Sort
by Address".

Softkey #4: Search for Address
This softkey allows the user to search for a particular item. Within this menu, three

more softkeys appear: "Search for Address #", "Search for Name", and "Search for
Address". Again, the label "Address" may change depending on the type of list.

Decode Guidelines 2-5

Softkey #5: Select Format

This softkey is present only when the cursor is in the data (address, type value, etc.)
field. It allows the user to select how that field will be displayed. Within this menu,
one to four softkeys will appear: "Decimal”, "Hex", "Bin LSB Right", and "Bin LSB
Left". (The last two softkeys represent Binary Least Significant Bit Right and Left,
respectively.) In the case of some fields, it may not make sense to represent the
data in one of these formats. In that instance, those formats are deleted from this
list. Note that in the preceeding example, the data is shown in hexadecimal.

Softkey #6: Reset List

This softkey allows the user to set the list back to the original state in which it
contains only the pre-defined values. Within this softkey menu, the user will be given
the choice "Yes" or "No".

Please refer to the lists within the HP 4972A to view the softkey menus, thereby making some of tt
elements discussed here much easier to picture.

File Extension

Each file type within the HP 4972A has a different extension. For example, data files end in’0.D’.
* D’ tells the analyzer that a particular file is a data file. Each list in the system must also have its ¢
extension since a list constitutes a file type also. The possible choices are all letters of the alphabe
both uppercase and lowercase.

Some of the letters have already been used and therefore, since they have reserved a specific file t;
they cannot be reused. These extensions are: A,a,C,c,D,d,e,F,i,M,m,N,n,0,P.p,q,s,T,t,X,x.

Any other letter may be used for a new file type. In general, it is best to use upper case letters for
multi-object files and lower case letters for single-object files.

Run Application Screen

Normally, an application is entered through the Run Application softkey in the top level menu. W
this key is pressed, the user is given a softkey list of the applications that are currently loaded in th
system. Upon selecting one of those softkeys, the application code is evoked, and program contro
to the application.

The decode applications operate differently. When the application is loaded, the code becomes
resident in the system and is accessed through the Examine Data menu. Therefore, the Run
Application softkey need not be pressed unless the user wishes to unload the application. If the u

2 -6 Decode Guidelines

oes enter the application through the Run Application menu, a message should be provided giving
10rt explanation of how to use the decode application. Thus, the Run Application screen is used as
elp menu.
)ecode Screen Format
'he decode application screen contains the following elements:

m The application name and revision code element

m The protocol decodes that have been successfully loaded with the application

m A brief summary on how to use the application

‘he decode application screen format should appear like this: (In the following example, the TCP/
ecode application is used.)

TCP/1P Protocol Interpreter Application A.00.00

The following protocol decodes have been successfully loaded with
this application:

DOD IP
ICMP
ARP
RARP
TCP
upbpP

The decodes may be utilized through the Examine Data menu.

Press <Examine Data> then <Select Format> and turn on the
appropriate header displays. You may force each level to be
decoded as a specific protocol by entering the 'Protocol' column
and then using the softkeys to select the protocol of your choice.
A 'Default! entry in this column allows the analyzer to decode the
level.

Decode Guidelines 2-7

Select Format

The Select Format screen allows the user the flexability to define how the decode should be display
This functionality allows features such as the suppression of certain headers, a decoded header to t
shown in hex format, the selection of a summary or detailed format, the forcing of a certain layer tc
decoded in a certain way, and the presentation of names in place of addresses or protocol fields. I
short, the user can tailor the decode to meet specific needs. This increased functionality is describe
the sections that follow.

The Header Column

The first column in the Select Format screen is labeled "Header’. This column represents the layer
number corresponding to the seven layer OSI model. As described earlier, these layers are merely
reference, and need not match the protocol at hand. In other words 'HEADER 1’ refers to the fir:
decode (corresponding to the physical header), ’"HEADER 2’ refers to the second decode, (usually
corresponding to the link level header), and HEADERS 3 through 7 refer to the third, fourth, etc.,
protocol decode called. For example, suppose that the user decided to turn the HEADER 3 displz
off. This would result in the absence of the display of the third decode called, regardless of which
protocol that is.

The Select Format screen is part of the HP 4972A base system. This code itself is not modified wh
new application is added. However, the decode application itself must adhere to the format that tt
user has selected.

The Display Column

The second column in the Select Format Screen is labeled DISPLAY. The softkey choices while »
this column are "Off" and "On". If the user selects "Off", that header will not be shown in the displ:
The header will still be decoded, however.

This functionality allows the user to suppress certain headers from the Examine Data display. Thi:
may be helpful, for example, if the user wishes to view only one header and, as a result, see more
frames on the display at one time. To prevent a frame from disappearing from the display, one lev
must always be turned on.

The Detailed/Summary Column

In certain cases, the user may wish to view a scaled-down form of the header and scan for certain 1
fields. For this purpose, a summary display option was added. The summary is defined as a one-li
synopsis of the header, and should contain a few key header fields. The summary format lets the v
find information without having to go through the entire header and also makes it possible for mor
frames to {it on the display. Within the "DETAILED/SUMMARY" column, the user can select €
"Detailed Display" or "Summary Display".

2 -8 Decode Guidelines

he fields displayed in the summary format are not selected by the user. They are defined by the
splication programmer. In some cases, a header may be so short that a summary need not be
-ovided. In these instances, the detailed header is displayed regardless of what the user selected in

ie Select Format menu.

'he Protocol Column

he PROTOCOL column allows the user to select how each header should be represented. Under
ormal conditions, the ' DEFAULT’ value will be used. This allows the analyzer to decode the fram
he user may force a layer to be decoded as a certain protocol by selecting one of the softkey choict
rach decode that is currently loaded in the system will appear on a softkey.

‘he Hexbyte Column

"he user may wish to view the decoded header bytes in hex format as well as in detailed format. By
ntering the SHOW HEX BYTES column and turning the hexbytes "On", this function will be
«ccomplished. Note: the hexbytes will be displayed only if that particular layer is turned "On" (the
SISPLAY column) and a decode application for that particular header is loaded in the system. An
:xample display for a hypothetical 16 byte header might look as follows:

leader: 00-00-00-00-FF-FF-FF-FF-FF-FF-FF-0A-00-00-5A-00

Field 1] 00-00-00-00 65535 255
: Broadcast 10 FEEE 00-00
: 90 Unknown 0

The header name (in the margin) only appears on the first line and is followed by a colon just like t
jecoded header lines. If the header is longer than 20 bytes, the hex byte display will continue on th

next line.
The Substitute Labels Field

Through the use of User Lists, the user can assign names to addresses or protocol fields. It is
beneficial in many cases for these names to replace the data in the examine data display, thereby s:
the trouble of having to convert that data into a meaningful name. This is where the SUBSTITUT

LABELS field comes into play.

In this ficld, the user can select either "User Labels" or "Data Values". If "User Labels" is selected,
application accesses the list to see if a valid name has been defined for that data value. If a name ¢
exist, the data value is replaced by the name in that field.

Decode Guidelines 2-9

2-10 Decode Guidelines

1P 4972A Application Interface

\n HP 4972A application is a seperately compiled code module that can be dynamically loaded anc
nked in with the running HP 4972A program. When the user loads an application file, the HP 497
ses the segmenter to load and link in the application code module. The application module has ac
» any procedures, functions, type declarations, and constants that are exported from modules includ
1 the application module’s import statement. The base system can access procedures and function:
xported from the application module only through the system calls FIND_PROC(string),
IXISTS_PROC(segment_proc), and CALL(procedure_variable, parameters).

Jase System - Application Interface Requirements

\pplications for the HP 4972A must reside in files ending in "0.A". Zero is the sequence number. T
A" indicates the file is an application file.

The file name for the application, exclusive of the "0.A" suffix, must match the module name of the

ipplication. For example, the TCP/IP decode application is in a file called "TCPIP0.A". The modu
:ontaining the application is declared as "MODULE tcpip". This is because the base system must u
he module name concatenated with the procedure name in order to call an application procedure.

Che base system uses the file name as the module name when it does this. The file name must be i
ippercase, but this is not necessary for the module name.

Che procedures that the base system expects every application to export are outlined below along w
heir respective descriptions. These procedures must be exported from every application.

>rocedure Initialization(VAR init_error : INTEGER)

Chis procedure will be called immediately after the HP 4972A loads the application. This procedur
thould initialize all application globals and attempt to allocate heap space (if needed) for large data
itructures. The variable parameter "init_error" should return 0 if initialization was successful, and ¢
10n-zero error code otherwise. If a non-zero code is returned, the base system will call unload to
mmediately unload the application.

HP 4952A Application Interface 3-1

irror code values :

= no error, initialization successful

= application already loaded
. = insufficient heap memory for application
» = insufficient global memory for application
» = maximum applications already loaded
i = some or all supplemental application files not found
» = unresolved application references
00 = unable to load application due to software incompatibility *
lxx = I/O error, xx = IORESULT.
Che initialization procedure will only have to return error codes 0, 2, 5, 6, and 1xx. Error codes 1, 3
ind 100 are detected by the base system. Error codes greater than 100 are returned when an error
ietected via the Pascal Try/Recover mechanism. The recover statements should assign
L00+IORESULT to the error code.
Procedure get_softkey label(VAR sk_label : softkey_label)
Called by the base system to retrieve the softkey label that will appear for this application in the
Application menu. The two lincs of the soltkey label can be up to nine characters each and both
should not be blank.
Procedure entry_point
Called by the base system when the user runs this application within the Run Application menu.
Entry_point is currently written as a shell to just call the main_application_procedure. It has a
Try/Recover block to trap any fatal errors that occur within the application. It is advisable to leave
entry_point unmodified and to just write the application within main_application_procedure.
Main_application_procedure is where the actual application code resides. Decode applications we

slightly differently, as described in the Decode Application Outline section.

Note: This error usually occurs when external references cannot be resolved.

3-2 HP 4972A Application Interface

rocedure unload |

alled by the base system when the user selects Unload Application. Must deallocate any heap
emory allocated by the application. Also must do any necessary cleanup for the application. After
is procedure is called, the base system will unlink and unload the application code module for the

1se system.

HP 4952A Application Interface 3-3

3 -4 HP 4972A Application Interface

"he Decode Application ‘
“

his chapter describes the procedures that appear in the application and perform the actual decodin
nd display creation. It is presented in five parts:

1. The Modules

2. The Procedures

3. The Display Creation

4. System Procedures and Constants

5. Helpful hints for writing the decodes
‘he Modules
‘'or each decode that you wish to include, you must create a separate module. Just as with the main
pplication module, decode module naming is critical. This is because the base system can only call
our decode if it is able to find modules and procedures of certain names.
“he convention for module naming is fairly straightforward. The module name must be fifteen
haracters or less and must match exactly the name of the protocol as defined by the previous layer.
ou are designing a layer three protocol and you want to be called right after the level two decode i1
he base system, your module name must match the entry in Ethernet Type list or the 802.2 SAP lis

our protocol. If you are designing a layer five protocol to run on top of TCP/IP, your module nam
vould have to match the name of the corresponding port number in the TCP port list.

The Decode Application 4

he Procedures

he decode procedures must be EXPORTED from the decode module. They are called as follows:

¢ decode(frame_number : INTEGER;
header_start : INTEGER;
current_level : INTEGER;
VAR protocol_label : prot_name_type;
VAR next_protocol : prot_name_type;
VAR next_start : INTEGER;
VAR protocol_end : INTEGER);

x is the protocol name, which may be up to 15 characters long and must match the name of the de
nodule. ’prot_name_type’ is of type string [15] and is defined within the system.

For example, an XNS layer 3 decode has module name "xns_idp" and exports procedure "xns_idp-
decode".

The parameters represent the following:

frame_number: The number of the frame currently being decoded and displayed.
header_start: The starting byte of the current header being decoded and displayed.
current_level: The level (1 thru 7) that the current header occupies in the frame.

protocol_label: A character label that contains the name of the protocol header and
may be up to 15 characters in length. This label will be used in the display.

next_protocol: A character label that contains the name of the protocol header that lies
on top of the current header, which is passed back to the calling environment s
that the next layer can be called. If the next protocol cannot be found from the
current layer, this parameter should return the value "'UNKNOWN’.

next_start: This value is equal to the current header_start plus the length of the current
header. It is passed back to the calling environment, telling that environment a
which byte in the frame the next header starts. Next_start should equal the
header_start plus the number of bytes displayed.

protocol_end: This value is passed in by the calling enviroment. It is the maximum ending p«
for this header. If the decode application calculates a header length that excet
this value, it must cut it’s display short so that protocol_end is not exceeded.
Next_start must also be cut accordingly. If the current level has a total length
it then must calculate a new protocol_end, which will be returned to the callin
environment as the maximum ending point for subsequent levels. This value i

4-2 The Decode Application

used to calculate pad bytes. If the current level does not have a total length field,
protocol_end should return the value that was passed in.

he Display Creation

he decode procedure is responsible for decoding and displaying the header. The display is not actu:
nt to the screen from the application, it is merely created here. The system contains a display
anager, which is responsible for writing the display lines and attributes to the screen, and is also
:sponsible for scrolling the frames, etc.. The application programmer communicates with the displ
.anager through the following procedures:

dspmgr_write_string(string);
dspmgr_write_attrib(screen attribute,
starting attribute column,
ending attribute column);

he first procedure sends the string to the display manager. The parameter passed is a string of
1aximum length 80 (the number of columns on the screen). The second procedure is used to send
ttributes to the display manager for the string just sent. The parameters include the attribute, the
-arting screen column for the attribute, and the ending column for the attribute. The programmer
rst sends a string to the display manager, and may then write as many attributes as he/she wishes f
1at string. This process is repeated for each string that the programmer desires to display in the
urrent header. The allowable attributes are exported from the system module ’lan_lib’, and are as
dllows:

normal_attrib
inverse_attrib

blinking_attrib
underline_attrib

half_bright_attrib
half_inverse_attrib

\ny combination of these attributes may be used. For example, the current decode application
lisplays the field labels in half bright inverse. To prevent the labels from running together on the
«creen, the underline attribute is also used, giving that attribute the value: half_inverse_attrib +
inderline_attrib. A bad field value was given the attribute: inverse_attrib + underline_attrib. The d
n the ficlds was displayed in normal_attrib. If normal_attrib is desired, no attribute need be sent t«
he display manager. This attribute is the default.

The system module ’scl{rmt’ contains a record structure called *format’, which holds the display for
‘hat the user has selected. The programmer may need to access this structure and adjust the displa
accordingly. For example, if the hexbyte column is turned 'On’, the application should call a routin
that displays the headers in hex format. (This routine will be described later.) Also, the user may s

The Decode Application 4

ether to show a detailed display of the header or a summary display. If the application programme
;hes to provide a summary display, the code must first check the detailed/summary format variable
decide how the header should be displayed. In addition, the programmer must check to see wheth
ieader display is turned on or not.

is *format’ structure is EXPORTED as follows:

(PE

v3_header_type = RECORD

display_on : BOOLEAN;

hexbytes_on : BOOLEAN;

summary_on : BOOLEAN;

nbytes : INTEGER;

name : PROT_NAME _TYPE;
END;

v3_headers_format_type = ARRAY [1..7] OF v3_header_type;

v3_frame_format_type = RECORD

hdrs : v3 headers_format_type;
subs_labels : BOOLEAN; { Substitute labels }
timestamp : timestamp_type { Timestamp selection }
time_from_frm : INTEGER { Time from which frame }
base_high_int : INTEGER { Used to hold the base }
base_low_int : INTEGER { timestamp }
filter_on : BOOLEAN { Filter format on or off}
filter_to_use : filter_display_type; { Which filter format }
data_on : BOOLEAN { Whether datafield on }
data_format : datafield_format_type; { Hex, Char, Hex & Char }
data_code : char-mode type; { Which data code type }
offset_in_bytes : BOOLEAN { or after headers }
data_start : INTEGER { First byte of data }

END;

-4 The Decode Application

AR
format :v3_frame_format_type;

he application programmer will only be concerned with:
format.hdrs[current_level].display_on { Should display be called? }
format.hdrs[current_level].hexbytes_on { Should hexbytes be displayed? }
format.hdrs[current_level].summary on { Summary or detailed display? }
format.subs_labels { Whether to display user labels or data values }

OTE: The programmer should check these values, but not alter them!

he HELPFUL HINTS section of this chapter will describe a suggested code format for the decode
splications.

ystem Procedures and Constants

he system will call xx_decode. Within this call, the application programmer is responsible for
:coding and generating the display strings. The programmer must be careful to ensure that the
roper parameters have been set before returning to the calling environment.

"hile within the application, the programmer may wish to call some system routines. The following
st of the routines that may be useful:

add_decode(prot_name : prot_name_type;
prot_layer : INTEGER;
VAR successful : BOOLEAN);

his procedure should be called by your application "initialization" routine for each decode you wish
Id. Parameter "prot_name" is the name of the decode, and should match exactly the module name
at decode. The "prot_layer" is the layer of the OSI stack where the protocol usually resides. The
riable "successful" is returned to indicate if the protocol was successfully added or not. This call
ould only fail if there is not enough memory in the system data structure to any more protocols.

remove_decode(prot_name : prot_name_type;
prot_layer : INTEGER;
VAR successful : BOOLEAN);

1s procedure should be called by your application "unload” routine for each decode that you

eviously added. This will remove that decode from the system decode list. Parameters are the san
for add_decode.

' The Decode Application 4-

splay_hexbyte_hdr(frame_number JINTEGER;

header_start :INTEGER;
number_of_byte :INTEGER;
protocol_name :prot_name_type);

ormat.hdrs[current_level].hexbytes_on is equal to TRUE, the above procedure should be called. Tt
| display the header bytes in hex. The parameter number_of_bytes should equal the total number ¢
es in the header. The protocol_name will be displayed as a label in the margin, which will be

ncated to five characters.

et_data_bytes(frame_number : INTEGER;
header_start : INTEGER;
number_of bytes_to_get :INTEGER;
VAR put_bytes_here : string_80;
VAR out_of_data : BOOLEAN);

d from the module ‘newbufP. You pass the frame number, starting byt
d it returns the bytes in a string. If the boolean is set, there are not

{fer; however, whatever bytes were available will be returned in t
ader bytes out of the buffer to be decoded an

\is system routine is exporte
d number of bytes to get, an
ough bytes in that frame in the bu
‘ing variable. Using this routine, the user pulls the he

splayed.

gct_unmasked_hex_string(VAR data_byte_string : string
VAR hex_string : string);

his procedure takes a string of bytes (data_byte_string) and converts the string to a string of
-xadecimal characters which is returned in hex_string. The hex characters are separated by a’-’. *
rogrammer must ensure that the hex string parameter is long enough to handle the returned string
or example, if data_byte_string is 2 clements long (say, 2 and 5), then hex string will read ’02-05’, a
1ust be 5 characters long. ’string’ refers to a string of any length, which the programmer must defir
‘his procedure may come in handy when displaying the data for certain ficlds in hex format.

yther routines which may prove helpful include the following special routines: STRWRITE, ORD,
JIT_SET, BINAND, etc.. These system routines are documented in the Pascal Language Referenc
nd Procedure Library Manuals included in the Pascal Language System.

“he display manager procedures dspmgr_write_string and dspmgr_write_attrib were explained in tt
yrevious section.

4-6 The Decode Application

veral types have been defined, which may also come in handy to the application programmer. The:
ses are EXPORTED from system files:

‘hree_bits :0.7;
four_bits : 0..15;
six_bits : 0..63;
thirteen_bits : 0..8191;
byte : 0..255;
two_bytes : 0..65535;

hese values may be used to set aside header fields of various lengths.

string 80 = STRING[80]; { There are 80 characters in one screen row }

incomplete_hdr_str =’ s#++* Incomplete Header b
‘his is a string constant that should be written to the display manager if a header display was not
omplete.

sertain modules must be IMPORTED for their procedures and constants to be accessed. These
nodules include:

segmenter
sysglobals
iocomasm
revrbuffers
lan_lib
config_net
selfrmt
dspmgr

[n order to import these modules, a search statement must be included at the beginning of the
application source file: $SSEARCH’SYS_72'$

Helpful Hints

The programmer may construct the application code to best suit the needs of the decode at hand.
However, the structure of the current application code may provide a good framework from which
build future decodes. A description of that structure follows:

m The decode is invoked by the calling environment.

The Decode Application

® The header bytes are pulled from memory using ’get_data_bytes’. Remember, don’t extract
more bytes than *protocol_end’ will allow! Clever use of case-variant records can greatly
simplify access to fields within the frame. If a static data structure can be defined which
describes the protocol fields, a case-varient record can be used to convert the string returned
by ’get_data_bytes’ into that form. An example would be:

PE
:ader_x _fields_type = PACKED RECORD
- header_length : byte; { Always leave this byte for a string length
field 1 : two_bytes;
field 2 : thirteen_bits;
field 3 : three_bits;
field 4 : two_bytes; etc.
END;

ader_x_type = RECORD
CASE BOOLEAN OF
TRUE : (header_x_data : string_xx);
Where xx = header length in bytes }
FALSE : (header_x fields : header_x fields_type)

END;

R
header_x : header_x_type;

en get_data_bytes is called, the VAR put_bytes_here (described earlier in this chapter) would
ome header_x.header_x_data. The first byte would then contain the string length and each field
ild be superimposed over its proper label. The values could be accessed as

der_x.header_x fields.field_1, etc., thereby making the code more readable. Note: A WITH

ement is useful in this case.

® Next, the return parameters are calculated and set. Calculations may involve various fields
from the header that was obtained using the get_data_bytes procedure.

= The headers are now ready to be displayed. First, the programmer checks to see if the display
for the current_level is turned on. If not, the decode may return to the calling environment.

= If the display is on, the user checks to see if the variable
format.hdrs[current_level].hcxbytes__on is TRUE. Ifit is, the application calls
display_hexbyte_hdr with the appropriate number of bytes in the header.

® Then the programmer checks to see which display to use (summary or detailed) and calls the
proper routine.

} The Decode Application

m Within the scparate display routines, a separate procedure was used to generate each string to
be displayed. Once the string was generated, the display would send the string and its
attributes to the display manager, and then call a procedure to generate the next string. The
process continues until each string has been displayed.

= If a header display is incomplete, and ’incomplete header’ message is sent to the display
manager.

The Decode Application 4-9

I The Decode Application

e User List

ing and Removing Lists

rocedures within the HP 4972A base system for adding a new user list module to the system are
ibed here. These procedures allow an application to set up its own user editable lists and connect
into the the edit lists, print lists, and disc functions menus. Applications can use these lists to
name to address mappings that can be used as part of the decode presentation. An example list
IP address list that is part of the TCP/IP decode application.

leclarations from module userlists (file userlists) are given below.

list_name_type = string_9;

:dure: add_user_list(list_name : list_name_type;
skupperline : softkey _line;
sklowerline : softkey_line;
dir_mnemonic : filetypes;
dir_suffix : file_suffix;
load_proc : load_procedure_ptr;
save_proc : procedure_pointer;
VAR successful : BOOLEAN

dure: remove_user_list(list_name : list_name_type;

dir_mnemonic : filetypes);

user_list places the list name in a data structure holding the names of lists currently known to the
n. The list name will then show up in the Edit Lists and Prints Lists menus. Add_user_list also
izes disc functions for handling files containing this type of list functions.

ed 28 August, 1989 at 11:44 AM The User List 5-1

ve_user_list removes the list name from those currently known to the system. The list is
ed of, freeing up thé memory it occupied. It no longer shows up in the Edit Lists or print Lists
s. Disc functions no longer allows Deleting, Saving, Loading, or Copying of this type of list file.

imeter Descriptions

iame : The name of the list. Cannot exceed 9 characters. Can contain only alphanumeric

characters plus the underscore character °_’. Must be uppercase. The list name is used in
the formation of procedure names which the base system can use to access this list. It must

match that part of the procedure’s name. It must also match the name of the module
containing the list editing routines, since this is used in forming the procedure names as well.

This is shown in further detail later.

perline, sklowerline : Gives the softkey label that disc functions will use for selecting this type of
list file. The softkey will appear in the Delete File, Save File, Load File, and Copy File

functions.

mnemonic : Gives the label that will be shown by disc functions during a directory listing for files
containing this type of list.

suffix : the one character file extension used to identify files containing this type of list.

d proc: Tells mass store what procedure to call for loading this type of file. Should always use

"load_this_file" for any new file types.

of list file. The procedure

> proc : Tells disc functions what procedure to call for saving this type
where "xooo000x" is

should be the "save_xcoooxx” procedure exported from the list module,
the same as the list_name.

cessful : Returned true if the addition of the list was successful.

umple calls

add_user_list(*TCPPORT’,
*TCP Port’, 'File’,
"TCP Port’,’t’,
load_this_file,
save_tcpport,
status);

remove_user_list('TCPPORT’, TCP Port’);

-2 The User List

User List Module Description

This section describes the basic outline of a HP4972A user list module. A user list module allows
application to define its own user editable lists. It provides the routines to create, edit, save, load.
print, and dispose of a user editable list. Applications can use these lists to allow name to address
mappings that can be used as part of a decode presentation. An example is the IP address list tha
part of the TCP/IP decode application.

The interface between the base system and a user list module is described in the previous section.
List Module Required Procedures
Every module for defining and editing a user list must export the procedures listed below. "ox" is

in place of the list name in the table below. Substitute the name of your list in the place of "oox" (:
the list_name parameter description given above).

Procedure Name Purpose
XXX Module name
edit_xxx_list Edit list main procedure

init_xxx_list List allocation and initialization

dispose_xxx_list
get_xxx_name
get_name_given xxx
get_xxx_given_name
get_xox

put_xxx

append
default oo list
print_xxx_list
get_xxx_label

Save xxx

List deallocation routine

List access procedure *
List access procedure *
List access procedure *

Mass store save entry routine

Mass store restore entry routine

Mass store restore entry routine
Check for default list routine

Print list routine

Returns softkey label for edit list menu
Mass store save routine

* not required, but provides means to access contents of list.

User List Module Description 6- 1

Brief descriptions of these procedures are given below.

Module name:

The name of the module containing the list, as declared in the module statement.

The module name must match the list_name parameter used in the call to the add_user_I
procedure.

The module name (as passed to the add_user_list procedure) is used by the base system t
form the names of procedures it expects to be exported from the list module.

To prevent similar procedures within different list modules from having the same name, {
module name is included within the names of exported procedures. This part of the proc
name must match the module name.

The module name cannot exceed nine characters.

Can contain only alphanumeric characters plus the underscore character’_’. The compil
treats upper and lower case as the same.

Edit_xax_list : (o is module name)

This is the main procedure for editing the list. It is called from the edit list menu
when the user selects to edit this list.

Init_xxx list

This procedure should be called by the application initialization procedure after a
successful call to add_user_list. It should create any data structures needed for the
list and do any necessary initialization. Typically, init_xx_list would allocate the list
data structures from heap memory.

Dispose_xxx_list List deallocation routine

This procedure disposes of the list. It frees up any dynamically allocated data
structures by returning them to the heap. This procedure would normally be called

by the application unload procedure.

Get_xxx_name List access procedure

Allows access to the list. Given the entry number for a list entry, get_xxx_name

returns the name for that element.

6 -2 User List Module Description

Get_name_given_xxx a List access procedure
Allows access to the list. Given a field value for a list entry, get_name_given_xxx
returns the name for that clement. As an example, get_name_given_tcpport
returns the name for the passed in port number. The port name returned is then
used as the next level protocol name as the label for the port in the TCP display.

Get_xx_given_name : List access procedure
The corollary of get_name_given_xxx.

Get_xxx Mass store save entry routine
Called repetitively by the disc function save_generic procedure to save the list in a
file. Each call returns a string of bytes representing the requested entry from the
list.

Put_xxx Mass store restore entry routine
The corollary to get_xxx. Put_xxx is called repetitively to put each table entry into a
disc file. Put_xxx should reset t the table to empty when called with entry_number
equal to zero. Entry number one will contain the list name. Of course, you can
modify get_x0x and put_xxx to store and retreive whatever string records you like.

Append_xxx Mass store restore entry routine
Similar to put_xxx. This procedure only appends entries to the end of the table.
Each call to append xxx appends one entry to the table. There will be no call to
append entry number zero, which would reset the current table contents.

Default_xxx_list Check for default list routine
This function should return true if the list contains only its default entries.
Default_xx_list is called by disc functions when a list is to be loaded. If
default_sxxx_ Tist returns false, disc functions will ask the user whether to append the
list file or overwrite the current list contents.

print_xxx_list Print list routine
Print_oox_list is called from the userlists module to print the list.

Get_xxx_label Returns softkey label for edit list menu
This procedure must return the softkey label that will be displayed for this list in the
Edit List and Print List menus. When the user selects the softkey with this label,
either edit_xxx_list or print_xxx_list will be called.

User List Module Description 6-3

Example Calls

edit_ox_list;

init_xxx_list(VAR success : BOOLEAN);

dispose_xxx_list;
get_xxx_name(entry_number
VAR name

VAR\dont_care__prescnt

VAR found

get_name_given_xxx(xx_value

xxx_dont_care_mask

VAR name
VAR found

get_xxx_given_name(name

VAR xxx value

VAR x:o(—dont_care__mask

VAR found

get_xx(entry_number
VAR entry_str_ptr
VAR error

put xxx(entry_number

VAR entry_str_ptr

VAR error

append xxx(entry_number
VAR entry_str_ptr
VAR error

default oo list(VAR default

print_xxx_list;

Sar~<t Ko ,{ 3 ‘/3’7%“’\,/

Ceed

e 7 !

'

6 - 4 User List Module Description

: INTEGER;
: prot_name_type; -~

: BOOLEAN;
: BOOLEAN);

: xxx_value_type;
:xxx_mask_type;

: prot_name_type;
: BOOLEAN);

: prot_name_type;
1 xxx_value_type;

: xxx_mask_type;

: BOOLEAN);

: INTEGER;
: ptr_str255;
: BOOLEAN);

: INTEGER;
: ptr_str255;
: BOOLEAN);

: INTEGER;
: ptr_str255;
: BOOLEAN);

: BOOLEAN);

. [

7
get_xxx_label(VAR sk_label : softkey_label);

Fs

p ‘),,;; 1t %‘,««{ .

/.

The Disk Functions Interface

Some procedures within the HP 4972A base system are useful to applications. For mass storage, t
are several. These procedures allow an application to set up its own files and connect them into th
disc functions menus. The declarations are listed below.

Type
filetypes = string[10];
file_suffix = string[1];
procedure_pointer = Procedure(VAR success: BOOLEAN);
load_procedure_ptr = Procedure(File_name : file identifier;
VAR success :BOOLEAN);
Procedure add_masstore_file_type(top_line : softkey_line;

bottom_line : softkey line;
dir_mnemonic : filetypes;
dir_suffix : file_suffix;
VAR status : INTEGER),

Add_masstore_file_type tells the disc functions software to recognize file names ending in dir_sufi
file of type dir_mnemonic. The dir_mnemonic is the description label that shows up when the use
does a directory listing. The top_ line and bottom_line parameters give the softkey label that will t
presented by disc functions for this file type durmg load, save, delete, and copy operations.

When using this routine, watch out for duplicate uses of dir_suffix. Many suffixes are already in u:
A,a,C,c,D,d,e,f,i,M,m,N,n,0,P,p,q,s,T,t, X x.

The Disc Functions Interface 7-1

Example call
add_masstore_file’ type(’'IP Addr’,
’File’,
"IP Address’,
’i”
status);

Procedure add_load_procedure(dir_nmemonic : filetypes;
procedure_var : load_procedure_ptr;
VAR status : INTEGER);

Add_load_procedure tells the disc functions software which procedure to call to load a file of type
dir_mnemonic. The procedure passed should always be load_this _file, as it has been made to har
any file type.

Example call
add_load_procedure('IP Address’, load_this_file, status);

Procedure add_save_procedure(dir_nmemonic : filetypes;
procedure_var : procedure_pointer;
VAR status : INTEGER);

Add_save_procedure tells the disc function software which procedure to call to save a file of type
dir_mnemonic. The procedure passed must be exported from the application. Its parameters m

match those of the procedure type procedure_pointer given above.

Example call
add_save_procedure(’IP Address’, save_ipaddr_list, status);

Procedure delete_load_save_procedures(dir_nmemonic : filetypes);
Declete_load_save_procedures performs the corollary of the add procedures. It removes the file |

from the list of active file types so that the filc type is no longer presented during load, save, delet
and copy operations. The links to the load and save procedure variables are also removed.

7 -2 The Disc Functions Interface

