

B

Burroughs

B 5500
B 6500
B 7500

COMPILER
ORIENTED
HARDWARE

WHAT MAKES A COVIPUTER SYSTEM
“"COMPILER-ORIENTED?”?
The BURROUGHS PUSH-

DOWWN

STACK!

In the late 1950’s, when the Burroughs B 5000 and its successor, the B 5500, were being designed, a major
industry problem concerned man’s ability, or lack of ability, to communicate his needs to the computer
in a language that both he and the machine could understand. Compiler languages had been developed.
But they produced inefficient translations into machine language. Lengthy compile times were common,
and object programs, too, took longer to run. Most programmers summarily rejected the use of compilers
because they wasted the resources of the computer.

Today, many competent programmers still reject compilers provided by other vendors because of their
continuing inefficiencies.

DESIGNING A MACHINE YOU CAN TALK TO...

The Burroughs approach, from the beginning, has been to design computer system hardware that is
compiler-oriented. The success of that effort is evident in the success of the Burroughs B 5500 . . . a
computer that, for practical purposes, evolved without a need for assembly languages. And today, with
the new B 6500 and B 7500 systems, Burroughs Corporation offers the only third generation systems
based on the proven architecture of the B 5500 . . . the original compiler-oriented computer system.

The basis for successful compiler-oriented systems lies with Burroughs policy of cross-training its computer
design teams. Hardware engineers were given proficiency in software architecture ... and the programing
engineers learned the intricacies of hardware design. And then they were merged into a single design team.

) N
7
PROGRAMING DESIGN ’ ﬁ %\/ ‘ HARDWARE ENGINEERING

SHORTCUT TO EFFICIENCY — THE PUSH-DOWN STACK...

A technique called ‘‘Polish notation’’ was adopted by the team as the basic architecture for both the hard-
ware and software. Polish notation simplifies mathematical expressions by eliminating the conventional
rules of arithmetic precedence and ‘‘bracket-grouping’’ of values within an expression. Using Polish
notation, the expression: (A+B)/C=E becomes: AB + C / E=

The rule that applies is: Follow two arithmetic values with the operation designated to work with those values.
Thus, every mathematical operator automatically works on the most recently obtained pair of operands.

; A B GetTwoOperand Values
4+ Getthe Appropriate Operator
- and automatically ‘‘Add’’

High-level Polish notation is the ‘‘machine language’’ of these Burroughs systems. The power of Polish
notation was fully applied to the hardware architecture of the B 5500 and is carried forward in the B 6500
and B 7500 systems. The push-down stack structure of these systems allows programs to be considered
as strings of elements which correspond to values, literals, and operators in the compiler language.

The push-down stack, in hardware terms, consists of two or three registers (at the top of the stack) and a
contiguous area of memory that permits the stack to extend beyond the registers. Working with a Polish
string, the stack allows an arithmetic operator to work with whatever happens to be in the registers at a
moment in time.

The ALGOL statement: E<(A+B)/C is expressed in Polish Notation as:

A B = Cc / E<
Register 1 Cc E
Register 2 (A+B) (A+B)
Memory

In the example above, a memory cycle brings ‘‘A’’ into the top of the stack. The value ‘“‘B”’
is next fetched, automatically pushing ‘“A’’ down. Encountering the arithmetic operator for
addition causes the contents of the two registers to be added automatically. The value ‘‘C’’
is fetched next. . . the proper division takes place with the topmost values in the stack. . . the
memory location ‘‘E’’ is fetched . . . and the result of the expression is finally stored.

PROBLEM SOLVING FROM THE INSIDE OUT...

The logic of program compilation and execution has been greatly simplified by the architecture of these
Burroughs systems. This is because the problems of man-machine communication have been handled
by hardware design . . . and not by ‘‘programing around the equipment.’”’ Burroughs has removed the need
for storing and retrieving intermediate results of arithmetic expressions. And the machine language of the
systems is compiler-oriented . . . removing the need for wasteful analysis of the program source language.. . .

speeding compilations . . . and producing highly efficient machine code.
Burroughs design philosophy is manifested in the B 5500, B 6500 and B 7500 systems . . . the most
sophisticated, powerful, and useable systems in their class. Multiprocessing . . . multiprograming . . .

priority scheduling ... dynamic resource allocation . . . reentrant programing . . . variable memory allocation
...and other important advances that the industry is talking about doing, have already been done by
Burroughs. And scores of Burroughs users benefit from these proven advances every working day!

S
e’s Burroughs

Burroughs
B 5500

B 6500
B 7500

REENTRANT
PROGRAMING

REENTRANT PROGRAMING...
ANOTHER ADVANCED BURROUGHS
Computer Concept...Working Today!

Six years ago Burroughs Corporation began marketing an advanced multiprocessing system. This was
an unequalled accomplishment at the time, and Burroughs leadership in this area still stands. Multiproc-
essing, multiprograming operating systems are complex and difficult to develop. Yet Burroughs faced and
solved the developmental problems years ago as the Master Control Program (MCP) was being debugged.

A NEW TECHNIQUE. ..

Since then, Burroughs has gone beyond the conventional concepts of multiprocessing. Today, it has again
increased the efficiency of its multiprocessing systems through a new technique called reentrant pro-
graming.

As incorporated in the B 5500, B 6500 and B 7500 com-
puters, reentrant programing allows many people to use the
same single copy of a program in memory . .. at the
same time.

Figure 1 illustrates the memory allocation for a variety of typical jobs in a mix. Conventionally, a separate
copy of the application program or compiler is required for each person using the system. Now, with the new
Burroughs systems, each programmer uses the same copy of a compiler that everyone else is using . . .
and the same is true for any program in the system, as indicated in Figure 2.

COBOL user PAYROLL user COBOL users FORTRAN users
i 1,2,3 1,2,3,4,5
COBOL user PAYROLL user Data Communication Inventory
i Users 1—30 users 1, 2
COBOL user FORTRAN user PAYROLL users Analysis users
1,2,3,4 1
Fig. 1—Conventional Multiprocessing Fig. 2—Burroughs Reentrant Multiprocessing
Six concurrent users demand Dozens of users have access to more
all of available memory. programs in the same or even smaller

amount of memory.

Burroughs has also abolished the job of writing programs to ‘‘fit in memory.’’ Automatic segmentation
handles it now. So, programing can be accomplished without regard for memory size!

Reentrant user programs and compilers save memory. They let the Burroughs user put more productive work
into his system at a time. They let more people have access to the system’s resources at a time. And they
eliminate the need for retrieving and initiating programs every time a new user demands access. This cuts
overhead time drastically.

The Burroughs user can access his system instantly and efficiently. The Master Control Program operating
system checks its dictionary of programs currently resident in the system. If a single ‘‘presence’’ bit is
ON for the program needed, the user can begin running his program immediately.

COBOL/COMPILE |

O
COBOL/COMPILE | SIZE | DISK LOCATION | MEMORY LOCATION PRESENCE

COBOL
users

COMBINED HARDWARE/SOFTWARE DESIGN TEAM ...

Reetrant programing development involved many difficult problems. But Burroughs was able to solve them
by thoroughly defining software requirements before building hardware. A significant part of this solution
involved the cross-training of Burroughs engineering and programing teams and merging them into a
single integrated design team.

The result of this integrated team effort was the B 5500. Its new companion third generation systems,
the B 6500, B 7500, and B 8500 offer the same proven base of successful multiprocessing experience.

FAR MORE SYSTEM POWER—AND ‘PEOPLE’ POWER...

Burroughs reentrant programing brings unique power to scientific and business problem-solving alike. It’s
a highly important technique for a data communications environment . . . for multiple access accounting
. . . for management information . . . for real time applications . . . for new application development
and testing.

The Burroughs B 6500 and B 7500 systems can give their users access to more than 3,000,000 bytes of
main memory . .. head-per-track disk storage up to 19 billion bytes. . . hundreds of tape drives. . . more
than 2,000 independently-functioning data communications lines. . . and more. They can process scientific
work, management information, and data communications faster than you would have thought possible.
After all, multiprocessing is their normal mode of operation . . . with 20, 30, 40 or more jobs running con-
currently.

The B 5500, B 6500, B 7500 and B 8500 are uniquely useable systems, and Burroughs understanding
of what computer users want and need will continue to underlie our systems philosophy.

B Bol) 7250

B
Burroughs
B 5500

B 6500
B 7500

AUTOMATIC
PROGRAM
SEGVMIENTATION

Can a multiprocessing computer system use all of its memory all of the time?
Can a computer handle programs that exceed its memory capacity?

The answer is "yes.”” Burroughs Corporation, through Automatic Program Segmentation, has a
practical answer that works today.

Burroughs Automatic Program Segmentation is based on the use of compilers as program pre-
processors. These Burroughs compilers logically segment all programs at compilation time and
create a detailed record of how the segmenting is performed.

Compiler languages naturally lend themselves to logical and direct segmentation. They were
designed that way. COBOL programs are written in paragraphs, ALGOL programs in blocks, and
FORTRAN programs in subroutines.

Users of B 5500, B 6500, and B 7500 computers write their programs in these higher level lan-
guages exclusively. The Master Control Program executive system (MCP) which controls each of
these computers recognizes that a compiled program has already been segmented and that a
segment dictionary has been prepared for it.

PROGRAM COMPILATION
. SOURCE PROGRAM

- \“ Close Ot
%\R Error Routine #2
N Error Routine #1
N Exception Condition #2
= Exception Condition #1
— = Main Line

inalzanos

Compiler
generates segments
and creates reference tables.

SEGMENT DICTIONARY PROGRAM LIBRARY
Name Size Disk Loc. | Memory Loc. |Presence Name Disk Loc.
Initialize 25 105 0 Report/Writer 100
Main Line 503 117 0 Payroll _ 425
| Exception 1 35 188 0] Inventory 790
Exception 2 30 194 0 FORTRAN 1365
Frror 1 a0 207 0 Forecast 1800
..--"'"_-___-‘. e
SEGMENTED OBJECT CODE :
Initialization I
Main Line
Exception #1 Exception #2 Error Routine #1
Error Routine #2 Close Out

On command, the MCP uses the program directory to determine where the required program and
its segment dictionary are located in the program library. The MCP then fetches the segment dic-
tionary in to main memory and enters the program into the current job mix.

Using the segment dictionary, the MCP brings program segments into main memory as needed
and performs the overlaying operation. To insure the most efficient use of main memory space,
the MCP keeps a running record of: program segments currently in memory, their location: avail-
able memory; and those areas of memory that can be safely overlayed. As soon as a program seg-
ment completes its operations, the MCP assigns another segment or program to the newly avail-
able memory location.

This automatic segmentation means that memory requirements result from segment size rather
than program length. It assures that memory is not wasted or left idle. It provides memory pro-
tection by using segment length and location as protective barriers. The Burroughs Master Control
Program takes care of all this automatically, and at a fraction of the cost in resident memory space
and execution time of the best competitive executive systems now available.

PROGRAM EXECUTION

CALL-OUT CARD 1. MCP reads call-out card.

2. MCP locates program in disk and transfers segment

DESK FILE dictionary and starting segments to main memory.

3. As program segments are completed, the MCP calls
in appropriate new segments until program is
completed.

MAIN
MEMORY

Burroughs customers use Automatic Program Segmentation today, in normal operations, to run
programs of any size, at any time, without concern for the other jobs run concurrently. They are
also using Multiprograming and Parallel Processing, Priority Scheduling, Reentrant Programing,
Dynamic Resource Allocation, and other advanced concepts pioneered and proven by Burroughs.
Burroughs can put them to work for you . .. right now.

B 68500 750

R

Burroughs

B 5500
B 6500
B 7500

THIRD
GENERATION
SOFTWARE
EVALUATION

THE A-B-C’s
OF SOFTWARE EVALUATION ...
Are You Asking the RIGHT Questions?

Just a few years ago, there were some standard questions to ask in evaluating a new computer.
For example, did the new machine offer:

B more memory?

m faster access time?

W lower price?

Of course, the answers lost their meaning as compilers, operating systems, and utilities came into
use. Because system software could degrade hardware performance, a second evaluation tech-
nique, “‘kernel timing"’, was developed. “‘Kernel timing'' is a method of hand timing the instruc-
tions that make up a representative set of jobs. And it works pretty well as a basis of comparison,
provided that the job set selected is truly representative and the jobs are to be processed serially,
as they were when computers first came into commercial use.

But in many instances serial processing wastes a major portion of the third-generation computer's
potential. More and more users are demanding multiprocessing capability, either through an
automatic interleaving of program operations (multiprograming), or through simultaneous execu-
tion of two or more programs or program segments (parallel processing). Multiprocessing involves
“overhead''—time the computer devotes to controlling its own operations. “Kernel timings"”
cannot begin to measure the effects of “‘overhead’ on a multiplicity of jobs contending for and
sharing the resources of a computer.

So, it's time to ask some new and definitive questions about computer performance. How can you
evaluate multiprocessing systems, and where do you start?

One logical place to start is with the manufacturer’s background and performance record. That, of
course, brings you right to Burroughs Corporation!

Burroughs has been demonstrating and installing multiprocessing computers since 1963. By that
time Burroughs had implemented the first really successful automatic operating system for com-
puters—the Master Control Program (MCP)—and had solved most of the operating system prob-
lems that the rest of the industry is struggling with today. Since then we have been refining our
already successful MCP and adding to its capabilities.

But see for yourself! The true value of the MCP operating system . . . of variable priorities . . . of
reentrant programing . . . of dynamic modularity . . . of compiler-oriented system design . . . and
other exclusive features will become dramatically clear when you see Burroughs third generation
software running.

See Burroughs multiprocessing demonstrated, and then . . .

ASK YOURSELF THESE KEY QUESTIONS:

M Were you invited to participate in the demonstration?. . . to change some of the parameters?.. . .
to prove to yourself that it was a “live’ demonstration using real situations?

M Was communication between the operator and the system simple and easy to understand?

B Was there true device independence? What happened when peripheral devices were switched
off? Did the operating system recognize the fact and reallocate the workload to other units?

M Was the Job Control Language simple and easy-to-use or was it complex and error-prone?
M Did you actually see multiple jobs being run through the system?
B Were you able to find out how much processor time each job used?

M Did you see ‘‘dynamic memory allocation”? Was additional memory allocated to long jobs as
soon as the shorter jobs were finished? Did the longer jobs begin to run faster automatically?

REPRESENTATIVE ‘‘MIX’* OF MULTIPROCESSING PROGRAMS

DISK MCP l '

REPORT WRITER

FILE UPDATE
B 5500

PRINTER BACKUP

i
1l

SORT

COBOL COMPILE

M Did “dynamic expansion' allow new devices to be added to the system and put to immediate
use, automnatically?

B Were jobs initiated from a remote terminal device such as a teletype?

B Were data communications jobs run concurrently with background multiprocessing?

SEEING IS BELIEVING

When you have seen a demonstration of these and other features, and have satisfied yourself
that Burroughs systems answers these questions positively, you may still ask: Is multiprocess-
ing practical?

Consider this: Multiprocessing is a standard operating mode for Burroughs 500 Systems users
across the nation. Our customers have not been required to install hundreds of thousands of extra
memory positions, or extra tape drives, or extra disk or drum memories; the resident nucleus of
the Burroughs B 5500 MCP occupies as little as 4,000 words of main memory! Nor do these
systems build up excessive, non-productive overhead; instead, better than 95 percent of their
time goes to productive work!

Is multiprocessing practical with Burroughs third generation operating software? Ask some of our
customers who have been multiprocessing since 1963 . . . they know it's practical!

B
Burroughs
B 5500

B 6500
B 7500

FLOATING
CHANNELS

Burroughs FLOATING CHANNELS

THE MOST EFFECTIVE INPUT/OUTPUT
SYSTEM IN THE INDUSTRY

The channel concept is not new in the computer industry. Years ago, people began to realize that much of a large com-
puter’'s power would be lost without some efficient method of executing simultaneous input/output operations. For a
long time, the answer seemed to be to have a small peripheral computer dedicated to processing input/output data for
the larger system. Buffering slow speed devices also provided a partial answer.

As technology advanced, it became clear that independent access paths could be built into the computer. The access
paths, called ““‘channels’’, can be considered as traffic routes which allow two or more data streams to flow simultaneously
into and out of the computer.

Industry's approach to keeping channel capacities on a par with faster and faster computers has been to increase the
number of channels and to make them faster. But this has not provided a completely adequate answer. With most systems,
a device may he kept waiting for a specific channel until 1/0 traffic for that channel is completed, even though other
channels are free.

Some computer manufacturers have attempted to solve this problem by allowing the programmer to search for an avail-
able channel if the normally assigned channel is found to be busy. This is an attempt to overcome the contention for
channels which typically exists in those systems having many devices physically attached to fixed channels. This technique
imposes a heavy burden on the programmnier. In fact, the job becomes nearly impossible when the programmer is forced
to consider notonly his own task, but also several other jobs running in a multiprograming or parallel processing mode.

The only clear answer is to make the channels themselves able to respond to a request for access by automatically switch-
ing the access to the first free channel path. Burroughs Corporation has taken this ‘‘floating channel’” approach as part
of the B 5500, B 6500, and B 7500 design philosophy.

THE B 5500 CHANNELS . ..YEARS AHEAD OF THE INDUSTRY

In the original B 5500 design, Burroughs engineers and software specialists recognized that a true multiprocessing
system would have to be capable of making 1/O channel assignments itself, on an unrestricted, dynamic basis. The
resulting design efforts produced a type of system architecture which, today, remains the most advanced in the industry.

PROCESSOR PROCESSOR 7
A B
DEVICE
1 | [41
CHANMNEL 1
MEMORY | CHANNELZ | INPUT/OUTPUT
EXCHANGE ERNNELS EXCHANGE

CHANNEL 4 <|—
e B o e e e | Dl;dFCE
i | | | t | #32

Working through an input/output exchange and a memory exchange, any B 5500 1/0 channel is able to answer the demand
of any I/O device at any time. No device is tied to a specific channel. The programmer is free of any consideration for or
attention to channel optimization. This system automatically optimizes use of the 1/0 channels.

The efficiency of its floating channels, combined with other years-ahead features such as multiprocessing and full oper-
ating system control, have allowed the B 5500 to compete with systems costing twice as much.

THE B 6500 AND B 7500...A NEW GENERATION OF INPUT/OUTPUT CONTROL

The concept of automatic floating channels was proved with the B 5500. Now, with the B 6500 and B 7500 this capability
is advanced another order of magnitude.

One or two Input/Output Multiplexors may be attached to the B 6500 and B 7500 systems. Each of the multiplexors may
control up to 10 floating channels. This means that on a maximum system, 20 input/output operations may take place
simultaneously.

The input/output subsystem can be structured to provide automatic back-up as well as multiple paths to clusters of
devices. Each channel can be switched, under control of the computer's automatic operating system, to answer the
peripheral demands of the moment.

MEMORY
MODULE
1

MEMORY MEMORY [RE_AIE_—] [PRINTER | [PUNCH | [PRINTER

MODULE |..... | MODULE
[conTRoL| [CONTROL] [conTRoL| CONTROL |
I | I | I | [|

2 32

fmpur;ourpuﬂ FLOATING
MULTIPLEXOR | CHANNELS
L 1 FUUR TEN

n
PRDCESSUR] CONTROL ' commJ [oonTor
1 iy

LDISK] EXCHANGE EXCHANGE

PROCESSDﬂ — .
| 2 B _s 'ms'k DISK ENSK] CGNTJTRG TroL| &)
|NPUT/UUTPUT FLOATING - ! L — 1

MULTIPLEXOR | CHANNELS | | : | _|_]
2 | FOUR-TEN | !
- CGNT oL rONTRUL

[RE#\DER | LPRINTER |

Hundreds of magnetic tape drives can be attached to the B 6500/B 7500 . . . up to 19 billion bytes of on-line disk file
storage . . . input/output devices in a myriad of configurations. And up to 20 of these devices can be accessed simul-
taneously by continually changing, continually optimized access paths.

EXPANDED CONTROL OF COMMUNICATIONS AND REAL TIME APPLICATIONS

In addition to providing the most powerful and sophisticated 1/0 processing in the industry, the Burroughs Input/Qutput
Multiplexors vastly extend the system’'s ability to handle communications and real time jobs. Up to four Data Communica-
tions Processors can be attached to each 1/0 Multiplexor. These DCP's are small computers designed specifically to
handle communications line discipline and management for up to 256 independent lines. This means that a maximum
configuration will serve 2048 communications lines without interfering with the rest of the system.

For real-time data acquisition, each multiplexor can accommodate a Real-Time Adapter for communication with process
control devices and instrumentation. And each real time device has a direct, separate path to the processor(s) so that
interrupts can be processed without accessing memory.

BURROUGHS 500 SYSTEMS...THIRD GENERATION REALITIES

With Burroughs multiprocessing systems, third generation concepts are working, practical realities. Burroughs “floating
channels’ were years ahead of the industry when they were introduced in the early 1960's . . . and today, working with the
Burroughs Master Control Program operating system, they still provide ‘‘years ahead’ benefits.

1. THE ORIGIN OF THE BURROUGHS B 6500 ‘

As this report will show, the Burroughs B6500 Electronic Data Processing Sys-
tem is highly impressive in its hardware and software specifications. Of equally
impressive significance is the background of the manufacturer, Burroughs Cor-
poration, with computer systems having both multiprocessing and self-regulat-

ing capabilities.

Burroughs 500 Systems, including the B6500, all share these advanced capabili-

ties. There are now five of these systems.

The B2500 and B3500, announced in 1966, are the first low- to medium-priced

computer systems to offer both a comprehensive operating system and automat-
ically controlled multiprocessing. They are characterized by high memory and
operating speeds and multiple, simultaneous input/output processing capabili-
ties. The B2500 and B 3500 use integrated circuits and very high speed read-only

memory and address memory to achieve high level performance.

The B5500, announced and first delivered in 1964, is a more powerful version
of the intermediate size Burroughs B5000. This machine was the first computer
system to be designed with a teamwork approach which saw software experts —
particularly in the compiler and operating systemdisciplines — joinwithequip-
ment engineers in formulating the basic specifications and equipment design.
Common to all Burroughs 500 Systems, this teamwork design approach, coupled
with years of installation experience, is the basis of Burroughs Corporation's
unparalleled abilities in the successful design and support of self-regulating,
multiprocessing computer systems. The soundness of this trend-setting design
concept is affirmed by the many new third-generation computer systems which
partially emulate the BS5500's design objectives, and proven by its solid

record of success in B5500 installations.

The B6500, a binary machine like the B5500, is a larger scale computer system

capable of direct utilization of B5500 software and program libraries.

The B8500 is the most powerful computer system ever designed. It is extremely
fast, and accommodates combinations of I/0 modules and processors to a maximum

of 18.

