

L

e T Meteari

Byle

Feedback
Write to Byte

Newsletter
Sign Up Now

BYTE Categories
Previous Weeks
Columns

Features

Audio

Search:
Byte
Research Center

Print Archives
By Issue By Topic

Resources
Downloads

Java:

Columns & Resources
Books

More Books

Java One Audio Report

History Of Byte:
PartI Part Il Part III

BYTE Humor
Ian Shoales’ Page

About Us

Byte Editorial Staff
Feedback
Sales Staff

Privacy Policy

Sponsored by:

For People Who Take

= .com Computing Seriously

FACTS

ART!E:E.E%

Beyond Pentium II

pmetrics

- powered By Chigriut

from-Gan

TechWeh Slizs

Byte.com
CMPmetrics

Data Communications
File Mine
InformationWeek
InternetWeek

December 1997 / Cover Story / Beyond Pentium I1

Here’s the first detailed look at the
new breakthrough microprocessor
architecture from Intel and
Hewlett-Packard -- and what it will
mean for developers and users.

Tom R. Halfhill

For Intel and Hewlett-Packard, the year 2000 isn’t a
problem -- it’s an opportunity. In late 1999, Intel plans
to ship Merced, the first microprocessor based on a
next-generation architecture jointly conceived by the
two companies. Although this 64-bit architecture builds
on years of research at Intel, HP, other companies, and
universities, it is radically different from anything ever
attempted on a mass-market scale. Whether it succeeds
or fails, one thing is certain: It will change the computer
industry forever.

Known as Intel Architecture-64 (IA-64), the new
definition breaks clean with the past in a startling
fashion. IA-64 is emphatically not a 64-bit extension of
Intel’s 32-bit x86 architecture. Nor is it an adaptation of
HP’s 64-bit PA-RISC architecture. IA-64 is something
completely different -- a forward-looking architecture
that uses long instruction words (LIW), instruction
predication, branch elimination, speculative loading,
and other advanced techniques to extract more
parallelism from program code.

Although Intel and HP promise backward compatibility
with today’s x86 and PA-RISC software, they’re still
withholding those details. Compatibility will not be
trivial because 1A-64 goes far beyond the 32-bit
extensions that Intel added to the x86 in 1985, as well

Network Computing
Planet IT
TechShopper
TechWeb News
Tele.com

‘WebTools
Winmag.com

WALLLIDIVIID WiAl R1ILLL AUV AL LU LV AUV 111 LJUJ, QAd vyyull
as the 64-bit extensions that HP added to PA-RISC in
1996. It’s worth remembering that the x86’s much less
radical transition from 16 to 32 bits has so far taken 12
years and still is not complete.

The migration to IA-64 won’t concern most users in the
short term, however, because Intel says it’s designing
Merced for high-end servers and workstations. Merced
is not for mainstream PCs. In fact, Intel says IA-64
won’t replace the x86 "for the foreseeable future." It’s
likely that Intel (and other x86 vendors) will continue to
introduce new generations of x86 chips for years to
come.

Superwide CPUs

Before plunging neck-deep into the technical innards of
IA-64, it is critical to understand why Intel and HP are
gambling their futures on such sweeping changes. It
comes down to this: Intel and HP think CISC and RISC
are running out of gas.

Intel’ s x86 is an ancient CISC architecture that dates
back to 1978. In those days, CPUs were scalar devices
(able to execute only one instruction at a time) with
little or no pipelining. Chips had tens of thousands of
transistors. HP’s PA-RISC architecture dates back to
1986, when superscalar (multiple-instruction) pipelines
were just starting to sprout and chips had hundreds of
thousands of transistors. In the late 1990s, leading-edge
processors have millions of transistors.

By the time Merced makes its debut, Intel will be
rolling out the next generation of process technology
beyond today’s latest 0.25-micron process --
0.18-micron. Even the first IA-64 chips will have tens
of millions of transistors. Future generations will have
hundreds of millions.

CPU architects are eager to put those transistors to
work. They want to design chips with many more
functional units -- that execute more instructions in
parallel -- but they’re hitting a wall of complexity. As
they add more units to make the CPU "wider ," they
must also add more control circuitry to dispatch those
instructions to the units. Today’s best CPUs can’t retire
more than four instructions per clock and already waste
too much silicon on this purely bookkeeping logic.

At the same time, the sequential nature of program code
and the frequency of branches make it increasingly

difficult to dispatch instructions in parallel. Today’s
CPUs devote enormous amounts of logic to minimizing
branch penalties and to extracting as much hidden
parallelism as possible from the code. CPUs reorder
instructions on the fly, predict where branches will
jump, and speculatively execute instructions beyond the
branches. If the CPU guesses wrong, it must discard the
speculative results, flush the pipelines, and reload the
correct instructions -- paying a heavy penalty in lost
cycles. CPUs that theoretically can retire four
instructions per clock actually average less than two per
clock.

To compound these problems, memory chips haven’t
come close to matching the s oaring clock speeds of
CPUs. When Intel designed the first x86 chip, CPUs
could fetch data from memory as fast as they could
process the data. Today, CPUs spend hundreds of clock
cycles waiting for data to arrive from memory, despite
having large, fast caches.

Inte] and HP are addressing all these problems. Here’s
what they divulged in two lengthy interviews with
BYTE:

® The new IA-64 format packs three instructions
into a single 128-bit-long bundle for faster
processing. Usually this is called LIW encoding,
but Intel shuns that label, saying LIW has
"negative connotations." For the same reason,
Intel does not like to describe the individual
instructions as "RISC-like," even though they are
fixed-length and presumably optimized for
single-cycle execution in a core that doesn’t need
microcode. Intel calls its new LIW technology
Explicitly Parallel Instruction Computing, or
EPIC.

At any rate, IA-64 is nothing like the x86. An x86
instruction is a single unit that can vary from 8 to 108
bits long, and the CPU must tediously decode each
instruction while scanning for the instruction
boundaries. (See the figure "IA-64 Instruction Format"

)

® Each 128-bit IA-64 bundle contains a template of
several bits -- placed there by the compiler -- that
explicitly tells the CPU which instructions it can
execute in parallel. No longer must the CPU
hurriedly analyze the instruction stream at run
time to uncover hidden parallelism. Instead, the

compiler identifies the parallelism and binds this
information into the machine code.

Each instruction contains three 7-bit general-purpose
register (GPR) fields, and the fields are specific to
integer and floating-point (FP) instructions. That means
IA-64 processors will have 128 integer-type GPRs and
128 FP registers. All are programmer-visible,
random-access registers. Compare that to the
constipated x86, which has eight integer GPRs and an
eight-entry FP stack. IA-64 processors can be much
wider and will stall less often due to false dependencies
(e.g., shortages of registers).

® IA-64 compilers will use a technique called
predication to remove the penalties caused by
mispredicted branches and the need to jump over
blocks of code beyond branches. When the CPU
encounters a predicated branch at run time, it will
begin executing the code along all destinations of
the branch, exploiting as much parallelism as
possible. When the CPU discovers the actual
branch outcome, it stores the valid results and
discards the others.

® JA-64 compilers will scan the source code to find
upcoming loads from memory, then will add a
speculative load instruction and a speculative
check instruction. At run time, the first instruction
loads the data from memory before the program
needs it. The second instruction verifies the load
before letting the program use the data.
Speculative loading helps hide the long latencies
of memory accesses and helps increase
parallelism.

One implication of IA-64 is that compilers will have to
be a lot smarter about the microarchitectures of the
CPUs they target. Existing chips -- even RISC chips
with optimized compilers -- do much more optimizing
at run time than IA-64 chips will. IA-64 transfers the
job of optimizing the instruction stream to the compiler.
Successive generations of IA-64 processors will run
older IA-64 software, but the software might not run at
top speed until it’s recompiled. In the IA-64 age,
developers might have to ship multiple binaries to get
the best performance on a broad installed base of IA-64
systems.

Another impact will be code expansion. 1A-64
instructions are longer than 32-bit RISC instructions --
about 40 bits each. Just by recompiling existing code,

developers will almost certainly see their programs
grow larger. And those programs will probably take
longer to compile because IA-64 demands a lot more
work from the compiler, as we’ll see in a moment. Intel
and HP say they’re already working with tool vendors
to help them revise their products.

Dis appearing Branches

Predication is a prime example of the new burden
shifted onto compilers. This technique is central to
TA-64’s branch elimination and parallel instruction
scheduling.

Normally, a compiler turns a source-code branch
statement (such as IF-THEN-ELSE) into alternate
blocks of machine code arranged in a sequential stream.
Depending on the outcome of the branch, the CPU will
execute one of those basic blocks by jumping over the
others. Modern CPUs try to predict the outcome and
speculatively execute the target block, paying a heavy
penalty in lost cycles if they mispredict. The basic
blocks are small, often two or three instructions, and
branches occur about every six instructions. The
sequential, choppy nature of this code makes parallel
execution difficult.

When an IA-64 compiler finds a branch statement in the
source code, it analyzes the branch to see if it’s a
candidate for predication. Compilers can’t predicate
every branch: Dynamic method calls that the CPU
won’t discover until run time are one obvious
exception. In other cases, predication might cost more
cycles than it saves. Compilers will have to be clever
about this.

If the compiler determines that predication makes
sense, it marks all the instructions that represent each
path of the branch with a unique identifier called a
predicate . For example, the compiler might tag each
instruction that follows the TRUE condition with the
predicate P1; and it might tag each instruction that
follows the FALSE condition with the predicate P2.
IA-64 defines a 6-bit field in each instruction to store
this predicate. Thus, there are 64 unique predicates
available at one time. Any number of instructions that
share a particular branch path will share the same
predicate.

After tagging the instructions with predicates, the
compiler determines which instructions the CPU can

execute in parallel. Again, this requires the compiler to
know a lot about the CPU’s microarchitecture, because
different IA-64 chips will have different numbers and
types of functional units. Also, of course, the compiler
must watch out for data dependencies -- an operation
that needs the result of a previous operation cannot
execute in parallel with that operation. But the compiler
will almost always find some parallelism by pairing
instructions from different branch outcomes because
they represent independent paths through the program.

Now the compiler can start assembling the
machine-code instructions into 128-bit bundles of three
instructions each. The bundle’s template field not only
identifies which instructions in the bundle can execute
independently but also which instructions in the
following bundles are independent. So if the compiler
finds 16 instructions that have no mutual dependencies,
it could package them into six different bundles (three
in each of the first five bundles, and one in the sixth)
and flag them in the templates.

The bundled instructions don’t have to be in their
original program order, and they can represent entirely
different paths of a branch. Also, the compiler can mix
dependent and independent instructions together in a
bundle, because the template keeps track of which is
which. Unlike some previous very-long instruction
word (VLIW) architectures, IA-64 does not insert
null-operation instructions (NOPS) to fill slots in the
bundles.

At run time, the CPU scans the templates, picks out the
instructions that do not have mutual dependencies, and
then dispatches them in parallel to the functional units.
The CPU then schedules instructions that are dependent
according to their requirements.

When the CPU finds a predicated branch, it doesn’t try
to predict which way the branch will fork, and it doesn’t
jump over blocks of code to speculatively execute a
predicted path. Instead, the CPU begins executing the
code for every possible branch outcome. In effect, there
is no branch at the machine level. There is just one
unbroken stream of code that the compiler has
rearranged in the most parallel order.

At some point, of course, the CPU will eventually
evaluate the compare operation that corresponds to the
IF-THEN statement. Now the CPU knows the outcome.
Let’s say the condition is TRUE, so the valid path is

predicate P1, not P2. The 6-bit predicate field in each
IA-64 instruction refers to a set of 64 predicate registers
(PO-P63), and each register is 1 bit wide. The CPU will
store a 1 in predicate register P1 to represent TRUE,
and it will store a O in predicate register P2 to represent
FALSE.

By this time, the CPU has probably executed some
instructions from both possible paths. But it hasn’t
stored the results yet. Before taking that final step, the
CPU checks each instruction’s predicate register. If the
register contains a 1, the instruction is valid, so the CPU
retires the instruction and stores the result. If the
register contains a 0, the instruction is invalid, so the
CPU discards the result. (See the figure "How
Predication Works" .)

Predication effectively remove s the negative impact of
a branch at the machine level while preserving branch
behavior. Again, it can’t remove every branch.
However, if the compiler cannot predicate a branch, or
chooses not to, an IA-64 processor will behave much
like a conventional processor: It will try to predict
which way the branch will turn, and it may
speculatively execute some instructions along the
predicted path. Simulations of this strategy indicate that
predication can eliminate more than half of the
branches in a typical program -- and therefore reduce by
half the number of potential mispredictions.

This has several benefits. It reduces code fragmentation
at the machine level because the compiler can merge
small basic blocks into larger blocks that branches don’t
chop up. Larger blocks give the compiler more freedom
to rearrange instructions for parallel execution. It also
drastically reduces the hazard of mispredicted branches
because every branch doesn’t require the CPU to play
fortune-teller. And it keeps the function al units busy
because the CPU can dispatch more instructions in
parallel.

The downside of predication is that the CPU always
executes instructions it’s going to throw away. Whether
the predicated condition evaluates TRUE or FALSE,
the CPU does perform redundant work. The trick, of
course, is to make sure the CPU saves more clock
cycles than it wastes. Clearly, predication assumes that
IA-64 compilers will be smart and that IA-64
processors will be very wide superscalar chips with lots
of resources to spare. When you’re rich, you can afford
to spend lavishly.

He Ain’t Heavy, He’s My Data

Another key feature of IA-64 is speculative loading.
Not only will this allow IA-64 processors to load data
from memory before the program needs it, it will also
postpone the reporting of exceptions if the load is not
legal. In geekspeak, this technique allows the CPU to
hoist the load operation higher in the instruction stream
-- in some cases, even above a branch.

The goal is to separate the loading of data from the use
of that data. By paying attention to this, the CPU won’t
have to twiddle its thumbs while waiting for data in
slow memory to show up. Like predication, it’s a
combination of compile-time and run-time
optimizations.

First, the compiler analyzes the program, looking for
any operations that will need data from memory.
Whenever possible, the compiler inserts a speculative
load instruction at an earlier point in the instruction
stream, well ahead of the operation that will actually
use the data. The compiler also inserts a matching
speculative check instruction immediately before the
particular operation that will use the data. At the same
time, of course, the compiler rearranges the surrounding
instructions so that the CPU can dispatch them in
parallel.

At run time, the CPU encounters the speculative load
instruction first and tries to retrieve the data from
memory. Here’s where an 1A-64 processor differs from
a regular processor. Sometimes the load will be invalid
-- it might belong to a block of code beyond a branch
that has not executed yet. A traditional CPU would
immediately trigger an exception. If the program could
not handle the exception, it would likely crash.

But an IA-64 processor won’t immediately report an
exception if the load is invalid. Instead, the CPU
postpones the exception until it encounters the
speculative check instruction that matches the
speculative load. Only then does the CPU report the
exception. By then, however, the CPU has resolved the
branch that led to the exception in the first place. If the
path to which the load belongs turns out to be invalid,
then the load is also invalid, so the CPU goes ahead and
reports the exception. But if the load is valid, it’s as if
the exception never happened. (See the figure "How
Speculative Loading Works" .)

Speculative loading is similar to the TRY-CATCH
structures in some programming languages, except that
it works at the machine level. In Java, for instance, a
TRY statement will attempt a risky operation, such as
opening a file. If TRY succeeds, the program continues
normally. If the system can’t open the file and throws
an exception, CATCH grabs it and stops the program
from crashing. IA-64’s speculative check is a safety
valve for exceptions, like CATCH.

This technique, combined with predication, gives the
compiler much more flexibility to reorder instructions
and increase parallelism. The ability to hoist loads
above branches is particularly powerful. Since branches
typically occur about every six instructions, they would
severely inhibit IA-64’s ability to load data from
memory long before it’s needed. It would be almost
impossible to retrofit an existing architecture with these
features because the compiler and the CPU must
collaborate to make it happen.

Beyond RISC

In the heady days of the 1980s, some RISC engineers
ridiculed CISC and foretold the doom of the x86
family. Unfortunately for them, the penalty for
underestimating Intel is even greater tha n the penalty
for mispredicting branches. Business and technology
are two different things. RISC might be technically
superior to CISC, but Intel’s vast resources and the
momentum of DOS and Windows have kept the x86
competitive.

Now, Intel says RISC is running out of gas. Could it be
that Intel might be making the same mistake that RISC
fans made in the 1980s? Will RISC stave off the IA-64
challenge?

It’s too early to tell. However, it’s doubtful that RISC
vendors can tap the same depth of resources that keeps
the x86 alive. The most popular RISC architecture (not
counting embedded applications) is the PowerPC. And
the only high-volume PowerPC vendor is Apple, a
company struggling for survival. Without more
business, how long can RISC vendors justify the
expensive research and development it takes to battle
Intel?

IA-64 chips are still two years away. Intel’s competitors
-- from both the RISC and the CISC camps -- have that
much time to take the offensive.

TA-64: What’s Different

illustration_link (53 Kbytes)

TA-64 Instruction Format

illustration_link (39 Kbytes) |

How Predication Works

illustration_link (37 Kbytes)

How Speculative Loading Works

illustration_link (39 Kbytes)

Tom R. Halfhill is a BYTE senior editor based in San
Mateo, California. You can reach him at
thalfhill@byte.com .

Up Level

Mext

AR

&

Byte

Feedback

‘Write to Byte

Newsletter IA-64: What’s Different

Sign Up Now

BYTE Categories
Previous Weeks

Columns
Features
Audio

Search:
Byte
Research Center

Print Archives
By Issue By Topic

Resources
Downloads

Java:

Columns & Resources
Books

More Books

Java One Audio Report

History Of B

BYTE HumorSearch
Ian Shoales’ Page

About Us

Byte Editorial Staff
Feedback

Sales Staff

Privacy Poli::y D
1
CTAP
- Spdnsored b

Tedy\Weh Sltes

Byte.com
CMPmetrics

Data Communications
File Mine
InformationWeek
InternetWeek

e ET e
- P
e ¥

Byte

Feedback
Write to Byte

Newsletter
Sign Up Now

BYTE Categories
Previous Weeks
Columns

Features

Audio

Search:
Byte
Research Center

Print Archives
By Issue By Topic

Resources
Downloads

Java:

Columns & Resources

Books
More Books

Java One Audio Report

History Of Byte:

Part1 PartIl Part Il

BYTE Humor
Jan Shoales’ Page

About Us

Byte Editorial Staff
Feedback

Sales Staff

Privacy Policy

1]

the Iatest in.depth product news 1o telecom frontd

ARTICLES BYTEMARKS FACTS HOTBYTES VPR

TALK

TechiWeb Sliex

Byte.com
CMP#ietrics

Data Communications

File Mine
InformationWeek
InternetWeek

How Predication Works

- tiie ever changing Communieations Industry, tures, news and facts

Performance Characterization of the Pentium® Pro Processor

Dileep Bhandarkar and Jason Ding
Intel Corporation
Santa Clara, California, USA

Abstract

In this paper, we characterize the performance of several
business and technical benchmarks on a Pentium® Pro
processor based system. Various architectural data are
collected using a performance monitoring counter tool.
Results show that the Pentium Pro processor achieves
significantly lower cycles per instruction than the Pentium
processor due to its out of order and speculative
execution, and non-blocking cache and memory system.
Its higher clock frequency also contributes to even higher
performance.

Keywords: Pentium® Pro processor, computer
architecture, performance evaluation, workload
characterization, out of order execution, speculative
execution, SPEC CPU95, SYSmark/NT.

1. Introduction

The Intel Pentium® Pro processor was disclosed in
February 1995 at ISSCC [1] and began shipping later taat
year. The micro-architecture implements several new
features that are not found in previous implementations of
the Intel Architecture. This paper analyzes the major
performance characteristics of several business and
technical benchmarks on a Pentium Pro processor based
system. Measurements were performed using the built-in
performance counters of the processor. Results are
presented for cycles per instruction, cache miss statistics,
branch prediction statistics, speculative execution, stall
cycles, and other micro-architecture features.

Current literature contains numerous papers that present
simulations of various machine structures. Often these
simulations do not model the entire machine accurately or
only use traces of parts of popular benchmarks. We
present measured characteristics of a recent
microprocessor to allow researchers to calibrate their
theoretical results. The paper presents a lot of raw data
and some analysis wherever possible. In a modern
superscalar out-of-order processor, it is not always
possible to derive precise cause-effect relationships.

Some of the results presented here are consistent with the
behavior of SPEC benchmarks on other architectures, €.g.,

0-8186-7764-3/97 $10.00 © 1997 IEEE

288

the FP benchmarks have lower Icache misses and higher
Dcache misses than the integer benchmarks. Other
measurements (branch mispredicts, micro-op statistics,
and speculative execution) provide insight into the inner
workings of the Pentium Pro processor.

2. Architectural Features of the

Pentium® Pro Processor

The Intel Pentium Pro processor implements dynamic
execution using an out-of-order, speculative execution
engine, with register renaming of integer, floating point
and flags variables, multiprocessing bus support, and
carefully controlled memory access reordering. The flow
of Intel IA-32 Architecture instructions is predicted and
these instructions are decoded into micro-operations
(uops), or series of uops. These uops are register-
renamed, placed into an out-of-order speculative pool of
pending operations, executed in dataflow order (when
operands are ready), and retired to permanent machine
state in source program order. This is accomplished witht
one general mechanism to handle unexpected
asynchronous events such as mispredicted branches,
instruction faults and traps, and external interrupts.
Dynamic execution, or the combination of branch
prediction, speculation and micro-dataflow, is the key to
its high performance.

Figure 1 shows a block diagram of the processor. The
basic operation of the microarchitecture is as described in
the ISSCC paper {11]:

1. The 512 entry Branch Target Buffer (BTB) helps the
Instruction Fetch Unit (IFU) choose an instruction
cache line for the next instruction fetch. Icache line
fetches are pipelined with a new instruction line fetch
commencing on every CPU clock cycle.

2. Three parallel decoders (ID) convert multiple Intel
Architecture instructions into multiple sets of uops
each clock cycle. Instructions that require more than 4
uops are handled by the microinstruction sequencer.

3. The sources and destinations of up to 3 uops are
renamed every cycle to a set of 40 physical registers
by the Register Alias Table (RAT), which eliminates
register re-use artifacts, and are forwarded to the 20-
entry Reservation Station (RS) and to the 40-entry
ReOrder Buffer (ROB).

4. The renamed uops are queued in the RS where they
wait for their source data - this can come from several
places, including immediates, data bypassed from
just-executed uops, data present in a ROB entry, and
data residing in architectural registers (such as EAX).

5. The queued uops are dynamically executed according
to their true data dependencies and execution unit
availability (integer, FP, address generation, etc.).
The order in which uops execute in time has no
particular relationship to the order implied by the
source program.

6. Memory operations are dispatched from the RS to the
Address Generation Unit (AGU) and to the Memory
Ordering Buffer (MOB). The MOB ensures that the
proper memory access ordering rules are observed.

7. Once a uop has ~xect ted, and its destination data has
been produced, that result data is forwarded to
subsequent uops that need it, and the uop becomes a
candidate for "retirement”.

8. Retirement hardware in the ROB uses uop timestamps
to reimpose the original program order on the uops as
their results are committed to permanent architectural
machine state in the Retirement Register File (RRF).
This retirement process must observe not only the
original program order, it must correctly handle
interrupts and faults, and flush all or part of its state
on detection of a mispredicted branch. When a uop is
retired, the ROB writes that uop’s result into the
appropriate RRF entry and notifies the RAT of that
retirement so that subsequent register renaming can be
activated. Up to 3 uops can be retired per clock cycle.

The Pentium Pro processor implements a 14-stage
pipeline capable of decoding 3 instructions per clock
cycle. The in-order front end has 8 stages. The out-of-
order core has 3 stages, and the in-order retirement logic
has 3 stages. For an integer op, say a register-to-register
add, the execute phase is just one cycle. Floating point
adds have a latency of 3 cycles, and a throughput of 1 per
cycle. FP multiply has a latency of 5 cycles and a
repetition rate of 1 every 2 cycles. Integer multiply has a
latency of 4 cycles and a throughput of 1 every cycle.
Loads have a latency of 3 cycles on a Dcache hit. FDIV is
not pipelined; it takes 17 cycles for single, 32 cycles for

double, and 37 cycles for extended precision. The
processor includes separate data and instruction L1 caches
(each of which is 8KB). The instruction cache is 4-way set
associative, and the data cache is dual ported, non-
blocking, 2-way set associative supporting one load and
one store operation per cycle. Both instruction and data
cache line sizes are 32 byte wide. More details of the
microarchitecture can be found elsewhere [2].

Extemal Bus L2 Cache '

y]

> Memory Reorder
| Buffer } >
Bus Interface Unit
Data Cache Uit _
—] o
A
) 4
Instruction Fetch Unit Memory leta
Unit —
' Address
Branch] Generation Unit]
- Target g
Buffer -
~ =
-§ g Unit
g Micro- 2
la] instruction
~§. Sequancer Floating Point
§ Execution Unit
g -t
<4 Reorder Buffer
Register 7'y _ and B
1 Alias Table - Ragister Filo

Figure 1 Pentium® Pro Processor Block Diagram

The secondary cache (L2 cache), which can be either
256KB or 512KB in size, is located on a separate die (but
within the same package). The L2 cache is 4-way set
associative unified non-blocking cache for storage of both
instructions and data. It is closely coupled with a
dedicated 64-bit full clock-speed backside cache bus. The
L2 cache line is also 32 bytes wide. The L2 cache fills the
L1 cache in a full frequency 4-1-1-1 cycle transfer burst
transaction. The processor connects to I/O and memory
via a separate 64-bit bus that operates at either 60 or 66
MHz. The bus implements a pipelined demultiplexed
design with up to 8 outstanding bus transactions.

3. Performance Monitoring Facility

The Pentium® Pro processor implements two performance
counters[3]. Each performance counter has an associated
event select register that controls what is counted. The
counters are accessed via the RDMSR and WRMSR
instructions. Table 1 shows a partial list of performance
metrics that can be measured by selecting the two events
to be monitored.

Table 1. Pentium® Pro Processor Counter based Performance Metrics

Performance Metric Numerator Event Denominator Event
Data references per instruction DATA_MEM_REFS INST_RETIRED

L1 Dcache misses per instruction DCU_LINES_IN INST_RETIRED

L1 Icache misses per instruction L2_IFETCH INST_RETIRED
ITLB misses per instruction ITLB_MISS INST_RETIRED
Istalls cycles per instruction IFU_MEM_STALL INST_RETIRED

L1 cache misses per instruction L2_RQSTS INST_RETIRED

L2 cache misses per instruction L2_LINES_IN INST_RETIRED

L2 Miss ratio L2_LINES_IN L2_RQSTS

Memory transactions per instruction | BUS_TRAN_MEM INST_RETIRED
FLOPS per instruction FLOPS INST_RETIRED
UOPS per instruction » UOPS_RETIRED INST_RETIRED
Speculative execution factor INST_DECODED INST_RETIRED
Branch frequency BR_INST_RETIRED INST_RETIRED
Branch mispredict ratio BR_MISS_PRED_RETIRED | BR_INST RETIRED
Branch taken ratio BR_TAKEN_RETIRED BR_INST_RETIRED
BTB miss ratio BTB_MISSES BR_INST_DECODED
Branch Speculation factor BR_INST_DECODED BR_INST_RETIRED
Resource stalls per instruction RESOURCE_STALLS INST_RETIRED
Cycles per instruction CPU_CLK_UNHALTED INST _RETIRED

Table 2. Basic Characteristics of Systems

| Processor Intel Pentium® Pro Processor | Intel Pentium® Processor
CPU Core Frequency 150 MHz 120 MHz
Bus Frequency 60 MHz 60 MHz
Data bus 64-bit 64-bit
Address bus 36-bit 32-bit
On-chip L1 cache 8 KB data, 8 KB instruction 8 KB data, 8 KB instruction
Off-chip L2 cache 4-way 256 KB 512 KB (Dell), 256 KB (Gateway)
L2 cache timing 4-1-1-1 @ 150 MHz CPU freq. | 3-1-1-1 @ 60 MHz bus frequency
System Chip Set 82450GX/KX 82430FX
Memory timing 14-1-1-1 (4-way interleaving) 13-3-3-3 (Fast Page Mode DRAM)
(bus cycles) 14-2-2-2 (2-way interleaving) 13-2-2-2 (EDO DRAM)
14-4-4-4 (no interleaving)
Basic Pipeline 14 stages 5 stages
Superscalar 3-way 2-way
Execution units 5 3
Branch prediction 4-way 512 entry BTB, 4-way 256 entry BTB,
4-bit history, 2 level adaptive 2-bit history
Execution model Out of order In order
Speculative Execution | Yes No
McCalpin Streams 140 MB/sec (4-way interleaving) | 82 MB/sec (Gateway 2000 P120)
Memory Bandwidth 128 MB/sec (2-way interleaving)
97 MB/sec (no interleaving)
SYSmark/NT rating 497 (Digital Celebris’ XL6150) 294 (Gateway 2000 P120)
SPECint95 6.08 (Intel Alder System) 3.53 (Dell Dimension XPS P120)
SPECHp95 5.42 (Intel Alder System) 2.92 (Dell Dimension XPS P120)

290

4. Comparing the Pentium® and
Pentium® Pro Processors

This section compares the basic performance
characteristics of the Pentium {4] and Pentium Pro
processors. Table 2 compares the basic characteristics of
these two processors. We chose the 120 MHz Pentium and
the 150 MHz Pentium Pro processors because both are
fabricated in the same 0.6 technology and use a 60 MHz
external bus. For the SPEC benchmarks, the Pentium

system was a Dell Dimension XPS P120 with a 512KB"

pipelined burst L2 cache, and the Pentium Pro system was
an Intel Alder system with a 150MHz Pentium Pro CPU
with 256KB L2 cache and a 4-way interleaved memory.

—,
foepp
apei [N .
turbd
apphy
merd RCPI ralio
hydro2d {1 Port Ratio
su2cor
swim R
torraty
SPECIpe5 /NN -
mh
w‘u—_____l
ipeg
i | ——— .
...
gec]
mBsksim]
go [EERERE
SPECint95
o as 1 15 2 25

Figure 2 Performance Comparison of Pentium® and
Pentium® Pro Processors on SPEC95

Figure 2 shows the SPECratios and the cycles per
instruction of the Pentium Pro processor relative to the
Pentium processor for the SPEC95 benchmark suite for
the two systems. The SPEC results were obtained using
Intel Reference Compiler 2.3 Beta on UnixWare v2.0 on
an Intel Alder system. The Pentium Pro processor
achieves CPIs 15% to 50% lower than the Pentium
processor, in spite of the fact that it uses a design style that
emphasizes a fast clock frequency. Designs that emphasize
clock frequency generally result in deeper pipelines and
longer CPI. The Pentium Pro processor design attempts to
increase frequency while reducing CPI, without being
overly focused on optimal CPI or fastest clock [5].

291

The Pentium Pro processor runs at 1.6 to 2.4 times the
performance of the Pentium processor on the SPEC95
suite[6], achieving 70% higher SPECint95 and 85%
higher SPEC{p95. This performance comes from a 25%
faster clock frequency and a 15 to 50% reduction in CPI
compared to the Pentium processor. The Pentium Pro
processor can issue up to 3 instructions every clock cycle,
while the Pentium processor can issue only two. The out
of order execution model of the Pentium Pro processor
also allows useful work to proceed while prior operations
are stalled, thereby lowering the CPIL.

SYSmark/NT
MaxEDA
Texim
Powerpoint
Excel

Word

- 0.50 1.00 1.50 2.00 2.50
Performance Ratio

Figure 3 Performance Comparison of Pentium® and
Pentium® Pro Processors on SYSmark/NT

Figure 3 shows the performance of a 150 MHz Pentium
Pro processor based Digital Celebris 6150 compared to a
120 MHz Pentium processor based Gateway 2000 P120
system on the SYSmark for Windows NT suite from
BAPCO[7], which contains project management software
(Welcom Software Technology Texim Project 2.0e),
computer-aided PCB design tool (Orcad MaxEDA" 6.0)
and Microsoft Office’ applications for word processing
(W ord 6. 0), presentation graphics (PowerPoint 4.0), and
spreadsheets (Excel 5.0). Both system had a 256KB L2
cache, but the Pentium Pro processor had a faster 1.2
cache (4-1-1-1 timing at full CPU clock frequency) on its
dedicated L2 cache bus. The Pentium Pro processor runs
29% to 113% faster than the Pentium processor, with an
overall 54% higher SYSmark score.

These results are slightly lower than the SPEC95 results
because the desktop applications in the SYSmark
benchmark perform some I/O operations that include wait
times that do not scale with CPU performance. The SPEC
benchmarks used compilers that generate binaries that are
optimized for each target machine. The SYSmark/NT
benchmarks use old binaries that are not optimized for the
Pentium Pro processor. These benchmarks have large
working set sizes for code and data and also contain many
context switches. The SYSmark/NT benchmarks also
result in higher L2 cache misses as shown in a later
section.

it

SRR e L

5. Detailed Characterization of
SPEC CPU95 Benchmarks

This section presents a detailed characterization of
Pentium® Pro processor running the SPEC CPU95 suite.
The performance counter measurements presented in the
rest of this paper were done on a Digital Celebris XL6200
running Microsoft Windows NT Workstation Version
3.51. The central processor in the Digital Celebris
X1.6200 is a 200MHz Pentium Pro processor with 256KB
L2 cache. The Celebris XL6200 system that we used in
our test was configured with 128MB DRAM with 2-way
interleaving and 14-2-2-2 memory timing at 66 MHz bus
frequency. The SPEC benchmarks were compiled with
Intel FORTRAN and C Reference Compilers Version 2.3.

5.1 Cycles per Instruction

Figure 4 shows the cycles per instruction (CPI) for the
SPEC95 benchmark suite. Several integer benchmarks
achieve less than one cycle per instruction. The CPlIs are
remarkably low for a processor that implements a 14-stage
pipeline. The 'ow CPI is due to the overlapped out-of-
order execution that mitigates the effect of the latency of
individual operations, fast L2 cache, and adaptive two
level branch prediction scheme. The FP benchmarks have
higher CPI due to longer execution latencies and higher
L2 cache misses.

148.waves '—
145.0pp0 mm——
1415001 ——
1250ub3d —
110.applu |
107y —
104.hydro2d
103.su2cor

D512KB L2
256 KB 1.2/

102.5wim

101.tomeatv

147vontex Imeeee—
134.pett Lmee—
132ipey | om——
13011 —
129.compress Imm—
126.0cc Iommme——
124.mBksim ;=
099,90 |—————

1] s 1 5 2 28 3 s 4
Cycles pec instruction

Figure 4 Cycles per Instruction

We measured the CPI for the processor with 512 KB L2
cache too, by replacing the CPU in the Digital Celebris
system. Only compress (28%), li (5%) su2cor (17%), apsi
(15%), and wave5 (6%) showed more than 5%
improvement in CPI with the larger cache. The L2 miss
ratio reduction was 85%, 89%, 40%, 48%, and 19%

292

respectively. Simulations show that the CPI would
decrease further for su2cor (25%), apsi (14%), and wave$
(5%) if the 4-way L2 cache is doubled again to 1 MB.

5.2 Instruction Decode

The Pentium Pro processor has 3 decoders that can handle
up to 3 instructions every cycle (one instruction with up to
4 uops, and two single uop instructions){5]. The decoder
has a 6 uop queue at its output. Only 3 uops can be
renamed per cycle, so the decoder has to stall if the queue
is too full. Figure 5 shows the percentage of cycles in
which 0, 1, 2, or 3 instructions were decoded. Benchmarks
with high Icache or L2 misses show many cycles (35% to
51% for integer, 67% to 83% for FP) in which no
instructions are decoded. During L2 misses, the CPU can
run out of other machine resources causing back pressure
on earlier pipe stages. On the integer benchmarks 33% to
54% of the instructions are decoded in cycles in which 3
instructions are decoded; 25% to 64% for FP benchmarks.

146.wave5
1455000
141000
125.4ub3d
11009k
107.mgid
104:byo2d
189 su2cor

10259
101.Jomecatv
SPECIR
147000t
134, perl
1523peg
1306

28gee
124mBBksim
ooga
SPECIH

| IMH I

% e 0% 30K 0% 5% 6% o% 80% 0% 100%

Percent of all Cyclos

Figure 5 Instruction Decode Profile

5.3 Cache Misses

The L1 data cache can accept a new load or store every
cycle and has a latency of three cycles for loads. It can
handle as many as four simultaneously outstanding misses.
Figure 6 shows the L1 data and instruction cache misses,
and L2 cache misses. Except for gcc and m88ksim, the L1
data misses are always higher than the L1 instruction
misses. In most cases the L1 instruction misses are so
small that they don’t even show on the scale used in
Figure 6. The integer benchmarks, in general, show much
lower L1 data cache and L2 misses than the floating point
ones (larger data sets); but higher L1 instruction cache
misses (larger code size and fewer loops). The benchmark
(wave5) with the highest .1 misses does not have the
highest L2 misses. Figure 7 shows a fairly strong

N

correlation between L2 misses and CPI, indicating that the
L2 miss latency (about S0 CPU cycles) is not completely

. overlapped.

Waans
146 5epe
iapt
1250008
110.apphs
107
104tycrad
1Bnoor
2.0
10t Jomaaly

T vorkx

OL1 instr Missas

L1 Data Msses

0 ek 100 120 il 160
sone par Thousend natruniions

Figure 6 Cache Misses per Thousand Instructions

4
stoar
3 Z
= tomeny hydeo
g S -
s .
. appki
.
o Xl portly & opei
15
3 -
. ety o
L e b
mstaim, ’". marid
os {2
° 1©) 2 . 50 o

12 Cache Misses per Thousand Instructions

Figure 7 CPI versus L2 Cache Misses

5.4 TLB Misses

148.wens
145 10ppp
14tapal
125 1ub3d
110.00pk.
107.mgd
104 hydraad
10332000

101.lomeaty

147.vonax

132peg
1304
129.compraas
128480
124.mB8kzim

o

Figure 8 ITLB Statistics

293

The Pentium® Pro processor has separate TLBs for
instructions and data. The processor also has separate
TLBs for 4-Kbyte and 4-Mbyte page sizes. The ITLB for
4KB pages has 32 entries. The DTLB for 4KB pages has
64 entries. Both are 4 way set associative. The ITLB for
large pages has 4 entries, while the DTLB has 8 entries;
both are 4-way set associative. As shown in Figure 8, the
ITLB misses are well below 0.1 per thousand instructions,
except for a couple of integer benchmarks. The DTLB
misses are generally higher than ITLB misses, but they
could not be measured accurately. TLB misses do not
contribute much to the CPI, as shown later.

5.5 Memory References

_l 2 Data References Per Instrudiion

Q8 == Memory Transadtions Per Thousand Instrudiions 0
07 ¥n I 70
- a F

06 &]
[¥ o
g osg 1 A 0%
2 2
2 o4 8
=
r >
£ a3]
8 g
02 o0 =

01 10

0 4]

£ T DEX >E5T D29 w0
2588588 % gsEREagaae
- B - Sl 2SS EGdS. 8
SCalf g Hgag gw@zy\oﬁvm

ETg FTF 3983'2::&",‘59

3 3 8" e3 e 3

Figure 9 Memory Reference Statistics

Figure 9 shows the number of data references pef
instruction and the number of memory transactions per
thousand instructions. On the average, both the integer and
FP benchmarks generate about 1 data reference every two
instructions. The JA-32 architecture results in more data
references than most RISC architectures because it has
fewer registers (8 vs. 32). As might be expected, there is a
strong correlation between L2 cache misses and memory
transactions. The memory transactions per instruction are
higher for the FP benchmarks due to a higher L2 cache
miss rate. Note that there can be more than one memory
transaction per L2 cache miss if a dirty cache block has to
be written back to memory.

5.6 Branch Prediction

The Pentium® Pro processor implements a novel branch
prediction scheme, derived from the two-level adaptive
scheme of Yeh and Patt[8]. The branch target buffer
(BTB) retains both branch history information and the

predicted branch target address. The BTB contains 512
entries. If a branch is not found in the BTB, a static
prediction (backwards taken, forward not taken) is used.
There is no penalty for correctly predicted not-taken
branches. Correctly predicted taken branches incur a 1
cycle penalty. Mispredicted branches incur a penalty of
about 10-15 cycles, plus additional cycles required to
retire the mispredicted branch.

146.wave5
145.fpppp
141.apsi
125.turb3d

110.applu
107.mgrid
104.hydro2d
103.su2cor] f
102.swim
101.tomcatv

147 vortex
134.pedd
132.jpeg
13041
129.compress

126.gce
124.m88ksim
099.g0

0 0.1 02 0.3 0.4 0.5
Ratio

B Branch mispredict ratio
DBTB Miss Ratio
Branches per Instr

Figure 10 Branch Statistics

Figure 10 shows the frequency of branches, fraction of
branches that hit in the BTB, and the accuracy of branch
prediction. Even though the BTB miss ratio is fairly high,
the branch mispredict ratio is less than 10% for all but one
benchmark. The BTB miss ratio is high partly due to the
fact that unconditional branches are not stored in the BTB,
but are included in the total branch instruction count. As
might be expected, the integer benchmarks contain more
branches than the FP benchmarks, and they incur a higher
branch mispredict ratio (fewer loop branches). The
number of mispredicted branches range from about 2 to 40
per thousand instructions for the integer benchmarks, and
about 0.1 to 4 for the FP benchmarks. For most of the
benchmarks, branch mispredict stalls are not a major
contributor to overall CPI.

5.7 Speculative Execution

The Pentium® Pro processor fetches instructions along the
predicted path and executes them until the branch is
resolved. If a branch is incorrectly predicted, the
speculated instructions down the mispredicted path are
flushed. Note that there can be other mispredicted
branches down a mispredicted branch. Figure 11 shows
the average number of instructions issued per retired
instruction for the SPEC benchmarks. There are about 13

to 37 speculated instructions per mispredicted branch.
Mispredicted branches are not recognized for about 10 to
15 cycles, and the processor can issue up to 3 instructions
per cycle. Benchmarks with higher mispredicted branches
per instruction have higher speculated instructions.

146.wave5
145.1pppp
141.apsi
125.turb3d
110.applu
107.mgrid
104 hydro2d
103.5u2¢co0r
102.swim
101.temecaty

147.vo:(ex
134.peri
132.ljpeg
130,
128.compress
126.gcc
124.m 88ksim
088.go

0 0.5 1 1.5 2
Speculation Factor

Figure 11 Speculation Factor

5.8 Resource Stalls

Figure 12 shows the I-stream stalls and resource stalls,
measured in terms of the cycles in which the stall
conditions occur. I-stream stalls are caused mainly by I-
cache misses and ITLB misses. Resource stalls show the
number of cycles in which resource , like register renaming
or reorder buffer entries, memory buffer entries, and
execution units are full; but these stalls may be overlapped
with the execution latency of previously executing
instructions. The FP benchmarks, except for fpppp (long
basic blocks), incur negligible I-stream stalls. They do
incur significantly more resource stalls than integer
benchmarks, probably due to long dependency chains.

145.wave5
145.1pppp
1.apsi
125.ub3
110.appiu
107.mgric
104 tycroed
103.502000

102.9%im

101 dameaty

147voriex
134.port
1Ripeg o ocH

1908 i i-stroam Stalls
120.compress p——ouns—"——"

126.9cc

124.m8Bisim

& Resource Stalls

osago

o o5 1 15 2 25 3 a5 4
Cycles par Instruction

Figure 12 Stall Cycles

5.9 Micro-Operations

146 vaves
145 fopp
1412081
1254ubad
110.applu
107.mgeid
104 hydroad
103.auBoor
102evim
101 fomcatv.

147 vortex
134.ped
132fpeg
1308
129.compress
126,90
124.me0keim

0000 [N

0 02 04 08 08 1 12 14
Number of micro-ops per instruction

16 18

Figure 13 Micro-operations per Instruction

The instruction fetch unit fetches 16 bytes every clock
cycle from the I-cache and delivers them to the instruction
decoder. Three parallel decoders decode this stream of
bytes and convert them into triadic uops. Most instructions
are converted directly into single uops, some are decoded
into one-to-four uops, and the complex instructions
require microcode (sequence of uops). Up to 5 uops can
be issued every clock cycle to the various execution units,
and up to 3 uops can be retired every cycle. Figure 13
shows the average number of uops executed per
instruction for each of the SPEC95 benchmarks. The range
is from 1.2 to 1.7, with an average around 1.35,

146,05
145.fpppp
1800
12650634
10.0pphu
107.mgrid
104.bynimzd
163 512000
102.3%m
101.meaty
SPECH
147 vorkax
134.peci
132.peg
120%

B3 uops retied
82 uops ratired
W81 uop retired
00 vops ratired

128.gcc
124.mBsksim
W
SPECInt

o% 0% 2% % % 50% 0% 0% 0% 0% 100%

Porcsnt of il Cycise

Figure 14 Micro-operations retirement profile

Figure 14 shows that no uops are retired in 25% to 55% of
the cycles on the integer benchmarks, and 43% to 82% of
the cycles for FP. Benchmarks with low CPI have fewer
cycles with no uops retired. Furthermore, about 65% and

295

80% of the uops are retired in cycles in which 3 uops are
retired for the average integer and FP benchmark
respectively. This indicates that executed uops often have
to wait for uops from previous instructions to be ready for
retirement, thereby confirming the value of out of order
execution. These younger uops build up more for FP
benchmarks because of higher cache misses and longer
latencies of FP operations.

5.10 Adding Up the Cycles

Accounting for cycles in an out-of-order machine like the
Pentium® Pro processor is difficult due to all the
overlapped execution. It is still useful to examine the
various components of execution and stalls and compare
them to the actual cycles per instruction as shown in
Figure 15. The CPI is about 20 to 50% lower than the
individual components due to overlapped execution. The
figure also shows resource stall cycles in which some
resource such as execution unit or buffer enfry is not
available. Execution can proceed during a resource stall
cycle in some other part of the machine. Since more than
one uop can be dispatched in a cycle, the figure does not
account for execution parallelism, Micro-ops seem to
dominate in most integer benchmarks. Resource stalls, and
L2 misses contribute the most to the CPI in the FP
benchmarks. Branch mispredicts are not a major factor.

NI UOPS

147.vortex
101.tomeatv
103.su2cor

124.m88ksim
104.hydro2d
141.apsi
145.fpppp
146.waved

Figure 15 CPI vs. Latency Components

6. Characteristics Across Different
Workloads

SPEC9S is a popular CPU intensive benchmark suite. It is
widely used to characterize CPU performance. However,

the behavior of other workloads can be quite different.
This section presents the characteristics of desktop
applications running on a Pentium® Pro processor. In
particular, we present results for the SYSmark/NT
benchmark. These benchmarks are not floating point
intensive; Excel contains about 9% FP instructions,
MaxEDA has 4%, and the rest less than 0.5%. While the
SPEC95 benchmarks were optimized for the Pentium Pro
processor using the latest compilers, the SYSmark/NT
benchmarks are based on old binaries that have been
shipping for many years and were probably not generated
with all optimizations turned on.

In this section, we compare the SYSmark/NT benchmark
statistics with the minimum, median, or maximum for the
SPECint95 and SPECfp95 suites. The data presented here
shows that the SPEC integer benchmarks should not be
used to predict the performance of real business
applications

Figure 16 shows the CPI across different workloads. The
business applications (using old binaries with non-optimal
code) incur higher CPIs than the median for the
SPECint95 benchmarks. Two of the five SYSmark/NT
benchmarks incur higher CPI than the median observed
for the SPEC{p95 suite. The CPI is higher due to higher
L2 miss rates, Istream stalls, and resource stalls.

Figure 16 CPI for SYSmark/NT

Figure 17 shows the L2 cache misses. The three Microsoft
Office benchmarks incur much higher L2 misses than the
SPECint95 median, but well below the SPECfp95 median.
The code and data sizes of these business applications are
much larger than the SPEC integer benchmarks. Once
again, there is fairly strong correlation between L2 misses
and CPL Overall, Word and Excel exhibit the highest L2
misses and stall cycles among the SYSmark/NT
benchmarks.

296

0 2 4 6 8 10 12
Misses Per Thousand Instructions

14 16

Figure 17 SYSmark/NT L2 Cache Misses

Figure 18 shows the resource stalls. The SYSmark/NT
benchmarks incur higher resource stalls than the
SPECint95 median, but are well below the SPECp95
median. The higher resource stalls can be attributed to
higher L2 misses during which the internal resources can
be consumed by instructions waiting to be retired.

MaxEDA

Texim
Powerpoint
Exce!

Word
SPEC{p95_med
SPECI95_max

SPECIS5_med

[~]

02 04 06 08 1

Resource Stall Cycles par Ins! .ction

12

Figure 18 SYSmark/NT Resource Stalls

Figure 19 shows the instruction stalls. They are higher
than the SPECint95 median. Once again, this is due to
higher occurrence of string instructions in Word and Excel
that invoke the microsequencer and require the decoders
to stall. These workloads also have high context switch
activity resulting in ITLB flushes and Icache misses.

MaxEDA

Texim
Powerpoint
Excel

Word
SPECIp95_med
SPECInt95_max

SPECInt95_med

0 0.1 0.2 03 04 05

I-Stream Stall Cycles per instruction

0.6 07

Figure 19 SYSmark/NT Instruction Stalls

Figure 20 shows the uops per instruction. All the
SYSmark/NT benchmarks execute more uops than most

of the SPEC95 benchmarks. This is probably due to the
higher use of character string instructions. There is a
strong correlation between uops/instruction and CPI, a
trend not observed in the SPEC95 suite.

MaxEDA

Texim
Powsrpoint
Excet

Word
SPECTpY95_med
SPECInt95_max
SPECInt95_med

(] 0.5 1 15 2
Micro-ops per instruction

25

Figure 20 SYSmark/NT Micro-ops Per Instruction

Figure 21 shows the speculation factor. It is in the bottom
half of the distribution for SPECint95. The speculation
factor is lower because there are fewer mispredicted
branches.

MaxEDA
Texim
Powerpoint
Excel

Word

SPECIpa5_med
SPECIntes_med HEE e e e

SPECInt95_min {1

0.95 1 1.05

Speculation Factor

11 1.15 1.2

Figure 21 SYSmark/NT Speculation Factor

7. Concluding Remarks

The Pentium® Pro processor was designed to achieve
significantly higher performance than the Pentium
processor in the same process technology. It achieves this
performance through a superpipelined design that yields a
25% faster clock, and with an out of order dynamic
execution engine that reduces the CPI. The data presented
here shows that the Pentium Pro processor achieves a 15
to 45% reduction in CPI compared to the previous
generation design (Pentium processor) in the same process
technology, while running at a 25% faster clock
frequency. The processor’s out-of-order, speculative
execution engine does manage to overlap useful work with
pending memory accesses to reduce the impact of cache
misses. The impact of resource stalls is also reduced by
out of order execution. The branch prediction scheme

297

reduces branch mispredictions so as not to make them a
significant performance limiter. It performs well even on
old binaries that were not optimized for its
microarchitecture. Performance counter based
measurements show that the overall CPI achieved by the
Pentium Pro processor is about 20 to 50% lower than the
individual latency components due to overlapped
execution.

A detailed comparison of the Pentium Pro processor and
Digital’s Alpha 21164 RISC processor is reported in
another study [9].

8. Acknowledgments

The authors would like to thank the Pentium® Pro
processor designers for producing such an interesting
microprocessor and for incorporating the performance
counting mechanisms that enabled this study. Special
thanks to Bob Colwell for his extensive review and
valuable comments,

9. References

[1] Robert P. Colwell and Randy L. Steck, “A 0.6um
BiCMOS Processor with Dynamic Execution”,
ISSCC Proceedings, February 1995, pp. 176-177.
Linley Gwennap, “Intel’s P6 Uses Decoupled
Superscalar Design”, Microprocessor Report, Vol. 9,
No. 2, 16 February 1995, pp. 9-15.

Intel Corporation, “Pentium Pro Family Developer’s
Manual, Volume 3: Operating System Writer’s
Manual”, Intel Corporation, Order Number 242692,
1996.

Donald Alpert and Dror Avnon, “Architecture of the
Pentium Microprocessor,” IEEE Micro, June 1993,
pp. 11-21.

David Papworth, “Tuning The Pentium Pro
Microarchitecture,” IEEE Micro, April 1996, pp. 8-
15.

Jeff Reilly, “A Brief Introduction to the SPEC CPU95
Benchmark,” IEEE-CS TCCA Newsletter, June 1996.
Also, see http://www.specbench.org/osg/cpu95/.
http://www .bapco.com/nt1.htm

Tse-Yu Yeh and Yale Patt, “Two-Level Adaptive
Training Branch Prediction,” Proc. IEEE Micro-24,
Nov 1991, pp. 51-61.

Dileep Bhandarkar, “RISC versus CISC: A Tale of
Two Chips,” submitted for publication.

[2]

31

4]

(51

(6]

(7]
(8l

9]

" Intel® and Pentium® are registered trademarks of Intel
Corporation. Other brands and names are the property of
their respective owners.

-
-»

Received: from nsf.ac.uk by dcs.ed.ac.uk id aa20677; 14 Apr 92 13:14 BST
Received: from hermes.intel.com by sun2.nsfnet-relay.ac.uk with SMTP inbound
id <9319-0@sun2.nsfnet~relay.ac.uk>; Tue, 14 Apr 1992 13:11:56 +0100
Received: from ssduk.intel.com by hermes.intel.com (5.65/10.01i):
Tue, 14 Apr 92 05:06:24 -0700
Received: from imussd.intel.com by ssduk.intel.com (4.1/SMI-4.1) id AA01282;
Tue, 14 Apr 92 13:07:45-010
Received: by imussd.intel.com (4.1/SMI-4.1) id AA01254;
Tue, 14 Apr 92 14:07:21 +0200
From: Thomas Bemmerl <thomas@com.intel.imussd>
Message-Id: <9204141207.AA01254Qimussd.intel.com>
Subject: European Supercomputer Development Center (ESDC)
To: stew@ca.utoronto.hub, dmirptO@es.uib.ps, reijns@nl.tudelft.hdetudll
Date: Tue, 14 Apr 92 14:07:21 MET DST
Cc: rniQuk.ac.ed.dcs, sanders@ch.ethz.inf, NPTRuk.ac.ed.ecsvax
X-Mailer: EILM [version 2.3 PL11]
Sender: thomas@com.intel.imussd
Status: RO RN -

Hi,

on March 31st 1992 I have left the Department of Computer Science of

Munich University of Technology (TUM). After having finished "Habilitation"
last December, I was searching for a new challenging career opportunity,

which I received at Intel Corporation. Starting April 1st I took over at Intel
Corporation the position to direct the newly founded European Supercomputer
Development Center (ESDC). ESDC is a European research and development
department of Intel’s Supercomputer Systems Division, associated to Intel GmbH
Germany located close to Munich in Feldkirchen. Enclosed you find for more
detailed information parts of the press release for the announcement of ESDC at
Supercomputing Eurcpe ’92. Therefore my new address is:

Intel GmbH

European Supercomputer Development Center (ESDC)
Dornacher Str. 1, W-8016 Feldkirchen b. Muenchen, FRG
Tel.: +49-89-90992-0, Fax.: +49-89-9039-142

e-mail: thomas@esdc.intel.com

You see, I will continue to work in the research field known to me,
concentrating initially on programming tools and distributed operating systems
for parallel supercomputer technology. Intel ESDC will initially start with the
following two charters:

1. Active participation in Intel’s research and development programs (Touchstone,
TriStar, Paragon, iWarp) to achieve affordable TeraFLOPS supercomputer
technology by the middle of the decade. Within these R&D programs ESDC
initially takes over work in the field of parallel programming tools
(performance analysis) and distributed operating systems (dynamic
loadbalancing). In the long term ESDC will also become active on research
and development projects in the field of parallel applications for TeraFLOPS
computers.

2, Enhancement of the Touchstone and TriStar programs by collaborative
projects with European research and development groups from industry,
government and academia. In coopéeration with Intel users and other
interested research groups, ESDC is going to be involved in European R&D
projects (e.g. ESPRIT) and other European activities on High Performance
Computing (HPC).

A challenging long term vision may be a partly combination of HPC activities
in Europe and the US, due to the fact that problems addressed by HPC
(the so called grand challenges, as global climate modeling and weather

s #

forecasting, the human genome project, computational fluid simulation,
QCD effects, etc.) are relevant for the US as well as for Europe. Global and
international solutions are most appropriate to solve these grand challenges.

For this reason I am very interested to stay in touch with your organization
and you personally. Do not hesitate to contact me under my new address,

if you have any questions, in particular on opportunities for further
scientific collaborations.

Looking forward to fruitful future cooperations, I remain,
with best regards,

Dr. habil. Thomas Bemmerl
Director, European Supercomputer
Development Center (ESDC)

LEEE RS SRS R R R R R R R R RS R R R e R R D R S R e R s

News Release
Intel Establishes European Supercomputer Development Centre
Extends Lead in Race to Deliver World’s First TeraFLOPS Supercomputer

PARIS, 13. February 1992 —-- Intel Corporation, the worlds leading supplier of
parallel supercomputers, today announced the establishment of a European
Supercomputer Development Centre to be located in Munich, Germany.

Dr. Thomas Bemmerl of the Technical University Munich is moving to Intel to
direct the operations of the Centre. Under Bemmerl’s direction, Intel’s
European Supercomputer Development Centre (ESDC) will be collaborating with
European Users and European research labs to develop software technologies
in support of TeraFLOPS computing.

"The establishment of our European Supercomputer Development Centre is evidence
of our commitment to be more actively involved in the High Performance Computing
initiatives being discussed in the European Community, such as those being
considered by ESPRIT programes, the Rubbia working group and the Euorpean
Industry Initiative", sald Joseph Mazzarella, international are director for
Intel‘s Supercomputer Systems Division.

According to Justin Rattner, Intel Fellow and director of technology for
Intel’s Supercomputer Systems Division,

Intel’s new European Supercomputer Development Centre will initially focus
on software tools, environments and operating systems, and their impact on
user applications for TeraFLOPS.

According to Steve Nachtsheim, vice president, Intel Products Group - Europe,
"Intel’s aggressive TeraFLOPS programme, the launch of our powerfull new
Paragon XP/S supercomputer and our overall success in Europe has enabled
Intel to dramatically extend our worldwide leadership position in
supercomputing. Integrating technologies, sofware and applications from Intel,
our European partners and customers, is another step in Intel’s goal of
ensuring the practical usability of TeraFLOPS computers".

BYTECH

Bytech Ltd., 2, The Western Centre, Western Road, Bracknell RG12 1RW. Telephone: Sales 0344 48221 1 Admin/Technical 0344 424222 Telex: 848215

80286 EDUCATIONAL FOCUS

To enable Bona-Fide Educational Establishments to take advantage of Intel's
80286 "Supermicro" technology, Bytech are offering a selected range of
Intel's 80286 based products and development kits at a fraction of the
normal price.

FOR A VERY LIMITED PERIOD BYTECH WILL GIVE AN EDUCATIONAL DISCOUNT OF
UP TO 60% ON THESE ''TECHNOLOGY-LEADING" PRODUCTS.

List(¢) Educational(g)

SBC286/10 - 80286 based CPU board %3057 1832
SBC012CX - 512KB LBX RAM board 2259 1807
SBC010CX - 1.0MB LBX RAM board , 4769 2861
SBC020CX - 2.0MB LBX RAM board 8283 6626
SBC286/10 KIT - System SBC286/10 + SBC012B +

. 7530 3012

System Debug Monitor

SYS310-17MR KIT - BRMX 310 Starter Kitg
+ SBC286/10 KIT 25028 14016
SYS310-17MX KIT - XENIX 310 Starter Kit
+ SBC286/10 KIT i 24216 13559
SYS310-4 ~ 310 Microsystem Hardware Unit%
+ SYS310-17MR KIT 25932 17635
SYS310-4 - 310 Microsystem Hardware Unit}
+ SYS310-17MX KIT 25120 17083
MDX431B - 8 & 16 bit Development System 44050 34603
+ 111286 - In-Circuit Emulation for 80286
+ SBC286/10 KIT

DON'T DELAY - PHONE 0344-482211 TODAY FOR FURTHER INFORMATION ON THESE
SUPER DEALS.

N.B. Offer expires 31st March 1985.

Registered Office: 16 Stratford Place, London W1N 9AF. Reg. No. 1426108 (England) A member of the IBR Electronics Group.

the43” allows systems to be red -
1:46-10 petformanée ,

-y

r
)
i
'
]
I
t
t
1

£
]
1
1
i
i
I
1}
I
ol

o i e s e e i

" 1930 Intel Technical Symposium

= @V@wﬁu

_..Lﬁuw,

‘jﬂ.i.ﬁ.!\li L/ Al\M:ioE n

e iv.ﬁw

p h w,..,wtﬁ
=
,%ﬂ@u

o

~intel " -~

N INTEL DELIVERS SOLUTIONS

THE INTEL 432

A 32-BIT MICROMAINFRAME!

VLSI IMPLEMENTATION, OVER 200K DEVICES
240 BYTES VIRTUAL ADDRESS SPACE

224 BYTES PHYSICAL ADDRESS SPACE

8, 16, 32, 64, AND 80-BIT DATA TYPES

3 OPERAND ADDRESS MODES

2 MIP PERFORMANCE RANGE

TRANSPARENT MULTIPROCESSING
OBJECT-ORIENTED ARCHITECTURE

ADDRESS CACHING

ORTHOGONAL INSTRUCTION SET
{INDEPENDENT AND DECENTRALIZED 1/O
SELF-DISPATCHING PROCESSORS
PROTECTION TO THE DATA STRUCTURE LEVEL
ADA ABSTRACTION, TYPING, AND CONCURRENCY

\ INTEL DELIVERS SOLUTIONS]

ot

THE 432 MICROMAINFRAME. ..

OBJECT
ARCHITECTURE

VLSI
COMPONENTS

MULTIFUNCTION
APPLICATIONS
EXECUTIVE

ADA
PROGRAMMING
LANGUAGE

.- .A TOTAL SYSTEM APPROACH

INTEL DELIVERS SOLUTIONS {({E40

i

AV, ¥
QP

~intel
432 OBJECTIVE:

TO SIGNIFICANTLY REDUCE THE

COST
&
TIME TO MARKET

OF SOFTWARE INTENSIVE
MICROCOMPUTER APPLICATIONS

INTEL DELIVERS SOLUTIONS (K55

mintel

MICROCOMPUTER APPLICATIONS ARE
GROWING IN COMPLEXITY

INCREASING COMPLEXITY

TODAY

&

~intel

| l 1
CLASS DEDICATED l!NTELLIGEN‘Y | SHARED INDEPENDENTl COOPERANVE'
CONTROL l CONTROL ' LOGIC APPLICATIONS ’ APPLICATIONS '
| | | |
] | | |
' | ; 432 I
| | | |
| | | |

EXAMPLE DISCRETE ELECTRONIC CLUSTER PROCESS OFFICE

LOGIC ‘ CASH] TERMINAL CONTROL ’INFORMAHON
REPLACEMENTl REGISTER l CONTROLLER SUPERVISOR l SYSTEM l-

| | |

SINGLE APPLICATION FUNCTION MULTIPLE APPLICATIONS

PER CPU PER CPU

INTEL DELIVERS SOLUTIONS “b’

PABX’s, ONCE A SIMPLE SWITCHING

FUNCTION. ..

TELEPHONE
sSwitCH

===

e e] e o e e e

R N |

I

& SINGLE FUNCTION

® LINE GROWTH PRE-PLANNED

INTEL DELIVERS SOLUTIONS{

(‘Inte! ™

..TODAY, A TOTAL MANAGEMENT
INFORMATION SYSTEM

LEAST
COSY
ROUTING

, VOICE MESSAGE
STORE & FORWARD

TELEPHONE
SWITCH

I w

BILLING .______J] ELECTRONIC

MAIL

_ CALL
FORWARDING

® COOPERATING, MULTIPLE APPLICATIONS

¢ HIGH PERFORMANCE AND FUNCTION

® COMPUTER CRITICAL TO OPERATION OF BUSINESS
® CONTINUOUSLY GROWING

~ INTEL DELIVERS SOLUTIONS (548

OTHER INCREASINGLY COMPLEX
MICROCOMPUTER APPLICATIONS:

® TRANSACTION PROCESSING

® ONLINE OFFICE INFORMATION

© COMPUTER AIDED DESIGN AND SIMULATION
® MULTIFUNCTION BUSINESS SYSTEMS

® FACTORY AUTOMATION AND CONTINUOUS
PROCESS CONTROL

1 INTEL DELIVERS SOLUTIONS

Fintel

ATTRIBUTES OF COMPLEX APPLICATIONS

» MULTIFUNCTION

» CONCURRENT

+» LARGE SCALE

»» GROWING AND EVOLVING
+ SOFTWARE INTENSIVE

COMPLEX APPLICATIONS ARE
432 APPLICATIONS

A
N

R
!9:#;2’

I

ntel

INTEL DELIVERS SOLUTIONS{/

A v
Yo vs

THE 432 MICROMAINFRAME:

® A DIRECT RESPONSE TO THE GROWTH IN
APPLICATION COMPLEXITY

® A UNIQUE COMBINATION OF SYSTEM
CAPABILITIES OPTIMIZED TO REDUCE
THIS COMPLEXITY

e

ps
INTEL DELIVERS SOLUTIONS {3}

10

~intel ‘\ \

THE iAPX 432:

1. LARGE SCALE COMPUTER POWER

2. INCREMENTAL PERFORMANCE CAPACITY

3. HIGHLY DEPENDABLE HARDWARE AND SOFTWARE

4. INCREASED PROGRAMMER PRODUCTIVITY

1

- INTEL DELIVERS SOLUTIONSY

~intel ‘

HOW?

BY COMBINING INTEL's LEADERSHIP
IN VLSI TECHNOLOGY
WITH
AN ADVANCED OBJECT-BASED ARCHITECTURE

12

\ INTEL DELIVERS SOLUTIONS

f—!ﬂte[
, 432 PROCESSORS: THE LARGEST SILICON
F | SYSTEMS EVER PRODUCED

WA -

432 »

100K |-
ME8000 (64-PiIN) »

MUMBER
F 8086 (£0-PIN) o

TRANSISTORS
© Z8000 {40 & 48-PIN)

10K |

1« TSRS TS VDU WU NV WUV (R S WSO0S WS NN | i
72 74 ‘% ‘78 ‘80 ‘82 ‘84
YEAR OF INTRODUCTION

- INTEL DELIVERS SOLUTIONS {{hY

,—-mtef ~
432 PROCESSORS: THE LARGEST SILICON
SYSTERS EVER PRODUCED

i N

1 4320

foox £ ® IAPX 432 SILICON IS 6 x iAPX 86

M68000 (64-PIN) »

NUMBER & OVER 100 MAN-YEARS IN iAPX 432
OF SILICON DESIGN, LAYOUT

TRANSISTORS

8086 (40-PIN) ©

© ZB0OD (40 & 48-PIN)
® 30 MBYTES OF TEST PROGRAMS AND

2 YEARS DEC-10 CPU TIME DEVOTED

108 TO VALIDATION AND CAD

@ PY' VU N S U T | S W W SR WSO UUNEN NS S |
72 ‘74 ‘% ‘78 ‘80 ‘82 ‘84

YEAR OF INTRODUCTION

\ INTEL DELIVERS SOLUTIONS

-

y '557“:\‘

| ~inte!

® VIRTUAL ADDRESSING

-~ 24 BYTES OF VIRTUAL ADDRESS SPACE
— 224 BYTES OF PHYSICAL ADDRESS SPACE

® THE SILICON OPERATING SYSTEM

HIGH LEVEL LANGUAGE INSTRUCTION SET

INDEPENDENT AND DECENTRALIZED /O

® MAINFRAME SYSTEM PERFORMANCE

432 LARGE SCALE COMPUTER POWER

e PROTECTION TO THE DATA STRUCTURE LEVEL

L INTEL DELIVERS SOLUTIONS (1%

~inte!

20 20°

MIPS
MILLIONS OF
INSTRUCTIONS
PER
SECOND

1.0

MAINFRAME SYSTEM PERFORMANCE

1.0

20

*THROUGH MULTIPLE PROCESSORS

ISBC86/12 PDP-11/34 INTEL 432 VAX 11/780 IBM 370/158

\ INTEL DELIVERS SOLUTIONS (X%

15

16

r-lﬂte[
' MAINFRAME POWER AT MICROCOMPUTER
SIZE AND COST*

MICRO MAINFRAME MIN| SUPER MINI MAINFRAME

icuft 2cudt, fcult, 180 cu.ft s
| 1 N
| 2| 2§

*CENTRAL PROCESSOR SIZE AND COST
\,

rintel

iSBC 812 INTEL 432 PDP-11134 VAX 14/780 a

AR
INTEL DELIVERS SOLUTIONS {{{X5%

THE 432 PROVIDES INCREMENTAL
PERFORMANCE CAPACITY

20

2.0 20
MIPS
WMILLIONS OF
INSTRUCTIONS
PER
SECOND
- 1.0
. /)
|/
] 0.2]l | 0.2 H 05 |
ISBC86/12 PDP-11/34 432 VAX 11/780 1BM 370/158

*FOR EXECUTION OF PARALLELICONCURRENT PROCESSES

INTEL DELIVERS SOLUTIONS £5504)

7

18

~I

.ntel. : "

TRANSPARENT MULTIPROCESSING
PROVIDES
INCREMENTAL PERFORMANCE CAPACITY
WITHOUT SOFTWARE CHANGES

r

- o= -
432 i 432 I 1 432 [H 432 !
DATA] DATA V1 pATA | eee | paTtA

PROCESSOR| 1pPROCESSOR! | PROCESSOR | 1 PROCESSOR

—-T-.-— g gt l..—-r...‘.-.—
b 1
| |1 i1
PN T S P J S P N I
1
— . w— — - |
20 -

PERFORMANCE ~
(MIPS)
10}

1 i 1 { 1 1]
NUMBER OF PROCESSORS

\ INTEL DELIVERS SOLUTIONS|
"
f-lrﬁ‘&!‘) 1
THE iAPX 432 HAS TRUE 32-BIT
MAINFRAME FUNCTIONALITY
IAPX 432 TYPICAL 16-BIT
FUNCTIONALITY FUNCTIONALITY
ADDRESS SPACE T R
INSTANTANEOQUS 232 216218
VIRTUAL 2% NO SUPPORT
DATA TYPES 8, 16, 32, 64 and B0-BIT 8, 16-BIT
BOOLEAN, CHARACTER BOOLEAN, CHARACTER
ORDINAL, INTEGER, REAL ORDINAL, INTEGER
LONG ORDINAL, INTEGER, REAL .
INSTRUCTION SET HIGH LEVEL (0.9..A=B+C) "ASSEMBLY LEVEL
MULTI-OPERAND (0-3) TWO OPERAND
VECTOR, RECORD REGISTER BASED
uo INDEPENDENT DEPENDENT
PARALLEL SLAVED
PROTECTION FINELY GRAINED... COARSE
PER DATA SUPERVISORIUSER
STRUCTURE
[
> INTEL DELIVERS SOLUTIONS 3;‘.3%»» -

10

aa i

R co

Fintel

432 PROVIDES INCREMENTAL /0 CAPACITY

VO BANDWIDTH ’ 18
Mbytesisec

10

Y
/
25 ! 2 H 25 |}V

iSBC 6612 POP11134 = 432

VAX 11/780 18BM 370/158

: \ INTEL DELIVERS SOLUTIONS(
~intel ,
MULTIPLE I/O SUBSYSTEMS
PROVIDE
INCREMENTAL /0 CAPACITY
B W
- - -‘
" Y [_!uo
SUBSYSTEM | | SuBSYSTEM] | SuesYeTe] i
L - Lo
*:g Lo b L
10
HO
BANDWIDTH
{mb/sec) 5
\ N‘;MBElR OF]"O SIUBSIYSTElMS ‘
INTEL DELIVERS SOLUTIONS

1"

AN
D
Y

N ee.té?

21

22

-.‘r-intel'

THE INTERFACE PROCESSOR PROVIDES A
PATHWAY TO INTEL’s ENTIRE PRODUCT
LINE OF COMPONENTS AND BOARDS

~intel

lm MULTIPROCESSOR INTERCONNECT ﬂ]]
IAPX 4R IAPX 432 IAPX 432
W2, DR 3 P e ,:é,’
AN
- BUBBLE L3 | l
L2 11d MEMORY APX
| 1-] memony IAPX 86 DMA
P o, “ SUBSYSTEM ,_] 286

sec | isBC " e
F = T+ ETHERNET —

PROCESS | »

— 4 contaoe | ,

Ram L 4 1 r— INTERFACE |

s SDLC
BACKUP oM 1 [
—
—r—_- L.
BISYNC
WINCHESTER 35y
.

RN
INTEL DELIVERS SOLUTIONS .’sj:;.

FUNCTIONAL REDUNDANCY CHECKING

CHECKER |%

FOR HARDWARE FAULT DETECTION

12

INTEL DELIVERS SOLUTIONS¢ y

24

~intel

ADVANCED ADDRESSING AND PROTECTION

® PROTECTION TO THE DATA STRUCTURE LEVEL

® ENCAPSULATION TO THE LOWEST LEVEL
PROGRAM UNIT

® “NEED TO KNOW’” ADDRESSING

® DETECTION AND CONFINEMENT OF ACCESS
VIOLATIONS

...FOR HIGHLY DEPENDABLE SOFTWARE SYSTEMS

~intgl

INTEL DELIVERS SOLUTIONS K

IMPROVED PROGRAMMER PRODUCTIVITY

OBJECT THE

ARCHITECTURE /S%ICON

MODULAR
AND
STRUCTURED
PROGRAMMING

FACILITIES
ADA /
PROGRAMMING

LANGUAGE

MULTIFUNCTION
APPLICATIONS
EXECUTIVE

BUILT-IN SOFTWARE DESIGN METHODOLOGY

13

INTEL DELIVERS SOLUTIONS

25

28

~intel

THE 432 ARCHITECTURE

® OVERCOMES FUNCTIONAL BARRIERS
— TRUE 32-BIT MAINFRAME FUNCTIONALITY
— OBJECT-BASED SUPPORT FOR STRUCTURED PROGRAMMING
— HIGH LEVEL LANGUAGE INSTRUCTION SET
— THE SILICON 0S

¢ IMPROVES PROGRAMMER PRODUCTIVITY

INTEL DELIVERS SOLUTIONS)

rintef

THE 432 RAISES THE
HARDWARE/SOFTWARE INTERFACE

APPLICATIONS

HIGH LEVEL LANGUAGE

OPERATING SYSTEM

a32
' ASSEMBLY LANGUAGE

GATE LEVEL

THROUGH THE SILICON 0S

INTEL DELIVERS SOLUTIONS '

28

14

THE SILICON OS

e BUILT INTO THE INSTRUCTION SET
~ PROCESS SCHEDULING AND DISPATCHING
— INTERPROCESS COMMUNICATION AND SYNCHRONIZATION
— STORAGE RESOURCE MANAGEMENT

¢ IMPROVES PERFORMANCE
AND
LOWERS SOFTWARE COSTS

INTEL DELIVERS SOLUTIONS ?.ée 2

5

&“'9"

ST

CAREFUL SEPARATION OF OS MECHANISMS
(IN SILICCN) AND POLICIES (iN SOFTWARE)
ALLOW APPLICATIONS TO BE OPTIMIZED

EXAMPLE MECHANISMS EXAMPLE POLICIES
PROCESSORS AUTOMATICALLY REAL TIME, TIME SHARING, BATCH
DISPATCH PROCESSES BASED ON ANDIOR DYNAMIC LOAD SHARING CAN
PRIORITY BE OPTIMIZED BY SOFTWARE POLICIES
DEADLINE | PARAMETERS SETTING PARAMETERS
TIMESLICE }

MEMORY ALLOCATION MEMORY ALLOCATION PROCEEDS
TOTALSTORAGE | papavercoe AUTOMATICALLY UNTIL BOUNDS
MAX INCREMENTS { EXCEEDED. SOF TWARE POLICIES THEN

HANDLE REQUEST FOR MORE

INTEL DELIVERS SOLUTIONS

15

‘\\

\9&5‘

sv‘e.v’

220
(RO = 30

W”W

~intel

THE MULTIFUNCTION APPLICATIONS
EXECUTIVE

® BUILDS ON THE SILICON OS FOR ADVANCED
APPLICATION SUPPORT .

® A LIBRARY OF FLEXIBLE TOOLS
® COMPLETE RUNTIME ENVIRONMENT

® EASILY MODIFIED AND/OR EXTENDED

INTEL DELIVERS SOLUTIONS

~intgl

THE ADA PROGRAMMING LANGUAGE

INTENDED FOR

+ SYSTEMS PROGRAMMING
» NUMERICAL PROBLEM SOLVING
» REAL-TIME APPLICATIONS

PASCAL INSPIRED

DIRECTLY REFLECTS AND SUPPORTS THE 432
OBJECT-BASED ARCHITECTURE

IMPROVES PROGRAMMER PRODUCTIVITY THROUGH:
» STRONG TYPING
» DATA ABSTRACTION
» INFORMATION ACCESS CONTROL

16

INTEL DELIVERS SOLUTIONS{

-

at

32

~intel

A BUILT-IN SOFTWARE DESIGN
METHODOLOGY FOR INCREASED
PROGRAMMER PRODUCTIVITY

® AN EXTENSION AND GENERALIZATION OF STRUCTURED
PROGRAMMING CONCEPTS

e BASED UPON MODULAR PROGRAMS AND MODULAR
DATA STRUCTURES (OBJECTS)

® A COMPREHENSIVE APPROACH TO ORGANIZING AND
BUILDING COMPLEX SOFTWARE SYSTEMS

\ INTEL DELIVERS SOLUTIONS K

~intel
ALL ELEMENTS OF THE 432
WORK TOGETHER

OBJECT
ARCHITECTURE

MULTIFUNCTION
APPLICATIONS
EXECUTIVE

VLSI
COMPONENTS

ADA
PROGRAMMING
LANGUAGE

TO SUPPORT THE SOFTWARE DESIGN METHODOLOGY
AND IMPROVE PROGRAMMER PRODUCTIVITY

17

\. INTEL DELIVERS SOLUTIONS ({555

34

Fintel

THE INTEL 432 PRODUCT FAMILY

T
(D
) & &0‘9‘9'

avar
ava

\ v INTEL DELIVERS SOLUTIONS

~intel

432 COMPONENT PRODUCTS

® GENERAL DATA PROCESSOR

— 43201 INSTRUCTION DECODE UNIT
— 43202 INSTRUCTION EXECUTION UNIT

® INTERFACE PROCESSOR
~— 43203 1/0 SUBSYSTEM INTERFACE

.«"55
)

+Y

\ INTEL DELIVERS SOLUTIONS

18

3%

Fintel — .

IAPX-432 COMPONENT FAMILY
CHARACTERISTICS

® 8 MHz STANDARD CLOCK RATE
® 5VOLT ONLY OPERATION
@ 64-PIN QUAD INLINE PACKAGE (QUIP)

~intel 1

INTELLEC 432/100 EVALUATION SYSTEM

1
® SOFTWARE @g)

© DOCUMENTATION @
e HARDWARE eees 00
) ISBC 432/100

f\ .
UTILIZES AN INTELLEC N L..__J a
\Xm‘,

~

-
i

> INTEL DELIVERS SOLUTIONS {15}
NS

19

intef

e T A-r.;mm’m\

iBCS 432/200 MULTIPROCESSOR BOARD
COMPUTER SYSTEM

-~
\

MULTIBUS™ 86/12 \

19

SYSBUS ,
PROCLINK)
GDP
MEMORY CONTROLLER

_ STORAGE ARRAY 3\

5\,%35.

LS I
b

20

l TN J "
INTEL DELIVERS SOLUTIONS :'ggf;gg »
riﬁw -
INTELLEC SERIES H1/432 DEVELOPNJE
SYSTEM
MAINFRAME . | N 2 |
2 s
' MAINFRAME Skt
lusen“usen"ussn] LINK -s;;;s "
S~ .'",'1 \ M “E; I >" 40
\ INTEL DELIVERS SOLUTIONS (EE L/ «

R S e e g e

e

s

N

~l

nr[e[‘

432 DEVELOPMENT SOFTWARE

e ADA-432 — CROSS COMPILER

® LINK-432 — CROSS LINKER

e DEBUG-432 — SYMBOLIC DEBUGGER
® UTILITIES — LOAD-432, UPDATE-432

® iMAX 432 — MULTIFUNCTION APPLICATIONS

EXECUTIVE

INTEL DELIVERS SOLUTIONS

I

niel

THE 432 PRODUCT FAMILY

® A COMPLETE SET OF TOOLS
® MULTIPLE LEVELS OF INTEGRATION

@ DESIGNED FOR ADVANCED APPLICATIONS

21

INTEL DELIVERS SOLUTIONS

41

42

rintel

THE 432 TOTAL SYSTEM APPROACH

VLSI
COMPONENTS

ARCHITECTURE

PROGRAMMING

MULTIFUNCTION
APPLICATIONS
EXECUTIVE

FOR MULTIFUNCTION APPLICATIONS

INTEL DELIVERS SOLUTIONS

£

‘venullorm

Y

ry

S

AN D55 0 e M P T g PR 4

?;»S,.J
IALLYIS Sy

!
RS S e s

blll - - e —~ - - - JN i
"o ~ o - . - .l'.lln-lcc-l'l'cl’ll.l."-""\li:ﬁll,%llln wum
oem ey H
! !
353497¢ “ {z) ov2’ *r. - N
14341501510 IALVITESSY . - £
SNTE 35ve 7 -y !
N srssrrrrrrrrsva [I ¢
! * 1 ' o
PENP S | . I b
. : ! . Pt
1
yaes se3dg 2 Jo 1 ! 3
._w $942v3 N._vu N . 1 “ 1
1434338 Vv : “) “ '
‘343 '04NT $8320V | e e om o o) oot Vo
INIRDIS ONY 3¢AL {1) 3102 el il {a) m2vy - r ! ;
. PIORIY Gry e qq I e = e K1913Y ONY ¢ !
. . $53400Y 35ve i u 11y .w $53500v, 7578 v 1!
° 3
. “ ! ! n~ ! 4 > “ f
18V 193060 gt i “ i Lo
b Ty _ | 1o)
Pty 2 { P
W “ 11 /] .] . >
7 y T
: 1 A. iy '
3 NI (PSR « _
tava . [
L] . . - "’ “ s
. W o] 713 *NOTIVHYOINY { H
1N3vI01IAI8 SEavaCY 7 . HIONIY MY 34AL | ° lsumw m_
ey » " .
LEZIFULY TR LT . . 4 $31Q 20—t !
BS3HO0Y VI ISAHY Quemmemms ’ {4} sis
{1) A¥02d3v10 34343434 .
3184 193000 123780
$53V00Y TY31907 e . -
. w. :
] . .:\\ u\\
r i
) %«Qu(qtfnm ¥0132118 ~
. . $3306Y L19-2(
. SOCINVIAVISHI
A\i .
o tooe, e @ e \%

)7

o W o T P A WO

o

iy

PRSI

- b -

> et

L e Wy S

yenye sppwerapgt wese-g gy g IR

W) ©. gl

‘Y oANI JOVN

o 7 i 4 S v e R

' el PR T A o T st o g R e 2B R I Ry L e e S N e ke SAAARGI e

ONISSIYAAY QIINIIYO LJ3rdo dod SISve @
SIHIYD QINIVINIVH 3YVYMQUVH dIHD NO - NOILW¥3d0 INIIOI443 0

NOILYY3dO ¥0SSI00Yd IdILINW ¢

AYOWIW TYNLYIA 3ATLVAY
NOILYJ0T34 JIWVNACQ

S3NSSI JYYML0S 'S*0 S3svd ¢

SION3Y3ZY NOLLONYLSNI U3LYOHS
(ONISSTUAAY KON OL Q3. GIZITYO0T

NOILYI0SI LInvd aNV ALIYVINQOW @
sisvd mozmmummz ¥3d vV NO mszumzu 1HOIY/HLONIT/3dAL
NOI1J3104d @

S3IAE yzC JOo SLIE W - - -~ TIYIISAHd
S3LAQ gy 40 SLI1€E OF - TYNLYUIA
’WMW«) xonam‘ ~ !W@#—.L.Zm a@u

:NN - | SIN3W93S
mmp>m z¢C 40 SLI9 2g - SNOINVLINVISNI

§30VdS SS3UAAY JNY1 8

AUVWHNS ONISSIYAUY 2eh

cae g Suws

ety g B R

v ol 4SO e N SRR A oy S T, GBI, O S 1, G APy G A 5N D

N ETR

1

|nte| ADVANCE INFORMATION SHEET

iIMAX 432
"MULTIFUNCTION APPLICATION EXECUTIVE
RELEASE 1

B Run-Time Executive for Intel’s 32-bit m Library of Ada Packages
iAPX 432 Micromainframe

. # Provides Basic Services
6‘ For Any 432 Application

® Supports muitiple iAPX 432
General Data Processors

w User Configurable
= User Extendable

intel's iIMAX 432, the Multifunction Applications Executive, is a software product designed for use with
computer systems based on the iAPX 432 Micromainframe. iIMAX 432 is a collection of software components

C which provide basic development and run-time services for 432 applications. When coupled with the
operating system mechanisms embedded in silicon by the 432 hardware architecture, iIMAX 432 provides
efficient operating system functions to 432-based systems. The iMAX 432 Executive is appropriate for many
applications including communications, EDP, process control, and industrial automation.

432 GENERAL DATA PROCESSOR 1/0 ATTACHED PROCESSOR
C SOFTWARE SOFTWARE
' [
PROCESS
e SERVICES [~ |
> : 1 l
i
i —| somer | e
1 i SERVICES /
i l -] —] [EXECUTIVE / PRINTER
i ,
STANDARD
T | 170 DEVICE
pom=m SERVICES " DRIVER .
i i l CONTROLLER Pe '\\
EXTENDED custom |
! ousER | TYPE l DRIVER [—=—~-— -»(CusToM
| MODULE | sevices | ¢\ |] 4 \ !
i | . N~
] 1 INTERPROCESS | =
_ . COMMUNICATION s
SERVICES I
: IMAX 432 SOFTWARE MODULES
= = e= :USER SOFTWARE MODULES
Cf Figure 1. iMAX 432 Operating Environment

The following are trademarks of inte! Corporation and its affiliates and may be used only to describe Intel products: intellec, MULTIBUS. and the combination of 1SBC and a
numerical suffix. Corporation assumes no responsibility for the use of any circuitry embodies in an {ntel product. No other circuit patent licenses are implied.
< INTEL CORPORATION, 1981 172087-001 June 1981

S -

iMAX 432

intel

ADVANCE INFORMATION SHEET

FUNCTIONAL DESCRIiPTION

The iIMAX 432 Executive cooperates with the iAPX
432 hardware to provide full support for the soft-
ware transparent multiprocessing. This allows 432
systems to offer incremental performance capability:
through the addition of processor mddules. iIMAX
432 also manages memory and 1/O resources, A
device-independent 1/0O interface is provided, and
the system contains drivers to support a terminal or
character printer. The executive supports extended
types, and allows the same degree of protection to
these user-defined. data types as to 432 hardware-
recognized data types. Services are grouped into
modules according to function. These include
storage services, process services, /O services,
and initialization services.

iIMAX 432 can be partitioned into two parts. The
central system portion is coded in Ada and executes
on the iIAPX 432 General Data Processor(s). The
1/0 portion is written in PL/M 86 and executes on
an attached processor in the I/O Subsystem.

The central system portion of iIMAX 432 takes
advantage of the compile time package intesface
checking. Parts of iMAX 432, the specifications to
the user visible interfaces, are maintained in files
which are accessible to the Ada compiler. When a
programmer compiles an Ada module, the compiler
checks the moduie’s references to iIMAX 432
against its stored iMAX specifications. Module
interface errors are discovered easily and early at

compile time. As illustrated in Figure 2, the iMAX
432 specifications provide compile-time checking,
and the iMAX 432 software components provide
run-time services.

FEATURE OVERVIEW

Structured Application Development Environment

iMAX 432 provides a uniform interface to 432 sys-
tem hardware that remains consistent from applica-
tion to application. iMAX 432 supports the software
transparent multiprocessing environment as well as
a range of memory and 1/O configurations.

Moduiar ‘Structure

The user's view of iIMAX 432 is that of a library of
packages whose interfaces to user-written code are
procedure calls. A 432 system does not distinguish
between modules of the executive and modules of
application code. Protection mechanisms are the
same for both. The user can extend system function
according to the application’s requirement. This
modular approach allows quick user familiarity with
the services provided.

Operating System Functions in
432 Hardware Architecture

The iMAX 432 Executive cooperates with the 432
hardware architecture, which provides many con-
ventional operating system functions embedded in

ADA
COMPILER

LINK

DEBUG USER APPLICATION

/LOAD SOFTWARE

A

iMAX 432
SPECIFICATIONS

iMAX 432 SOFTWARE
COMPONENTS

Figure 2. Software Development Environment

2

intel

iMAX 432

ADVANCE INFORMATION SHEET

silicon. Functions implemented in hardware operate
much faster than if left to software, and provides a
secure multiprocessing environment. Operating
system mechanisms are distinguished from operat-
ing system policies by the 432 system architecture.
Many of these mechanisms are handled by 432
hardware, including process scheduling and dis-
patching, processor management, storage alloca-
tion, protected data sharing, and exception handling.
The potlicies which control these mechanisms are
implemented through parameters set by calls to
iMAX 432. This provides flexibility to the user, who
can use efficient hardware operations to implement
a choice of operating system policies.

Storage Services

Release 1 of IMAX 432 supports dynamic relocation
of segments, along with their creation and destruc-
tion. Deallocation of memory is provided by a
parallel garbage-collection process. Those memory
segments which the application program no longer
needs are reclaimed automatically. This process
executes periodically in parallel with other pro-
cesses in the system; the system does not stop to
invoke garbage collection. Memory compaction is
also automatic, and is invoked whenever there is
not an adequate block in memory to grant an
allocation request.

Process Services

An application for the iAPX 432 is composed of
multiple concurrent processes. iMAX 432 manages
these processes for user-supplied routines, adding
information t0 make an execution environment
recognizable to the hardware. Any number of pro-
cesses can be created, set running, and destroyed.

iMAX 432 provides scheduling catlls to set priorities
for processes. Scheduling parameters can be static,
or can be updated by a concurrent policy-update

process. iIMAX 432 provides a means to monitor the
flow of control within a process using the trace
mode specification.

Process communication and synchronization are
accomplished using communication ports built by
iMAX 432. Communication ports are queues where
processes send and receive messages. Messages
can be queued at communication ports in either
FIFO or priority/deadline order.

1/0 Services

iInput/output operations on a 432 system are
accomplished through separate, peripheral subsys-
tems. An attached processor (AP) controis device
drivers and communicates to the 432 General Data
Processors through a 432 Interface Processor (IP).
Software controlling the IP is resident on the
attached processor, and is supplied with IMAX 432.

Release 1 of IMAX 432 contains facilities to support
a character printer or terminal. The user can
provide an interface to other /O devices by adding
a device driver to the AP and a 432 GDP interface
module.

Initialization Services

The iIMAX 432 initialization routine manages system
startup. iIMAX 432 supplies initial data structures
and loads them into 432 system memory. The
executive then signals the 432 General Data
Processors to start.

Subsequent Releases

The iIMAX 432 Executive was engineered for phased
release. The second release will contain additional
facilities such as virtual memory support, a file
system, a human interface, and drivers for addition-
al /0O devices.

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara CA 95051 e (408) 734-8102 x598

e

‘P2ULIM Yo2! O euwrzpel) e sl o2
S i i gyWXSeA8| AWl 8105€ sy | XLPOLEKS| - VLP-OLESKS | L4-0LE/983
‘ LU - A5 FISWXSEAY | WL &1 06€ GNBF | XWOP-OLESAS | ¥WH-OLESAS | WOP-OLESAS | O7-0LE/985
LALLBL G300 ZUOHCPIRL X0 L/ 201 W - aw L & 06€ GNGY | XOv-OLESAS| HOP-OLESAS | VOF-OLESKS | 0v-0LE/983
SPOPARH ‘PRoy eieyeg (YUON) UoalAg \
\ PISWXSOAY | BIBLS 8% 05€ BWG6L | XWLL-OLESAS | IWLL-OLESAS | WLL-OLESAS | £1-01€/983
851878 XL ML BLOY 242G fRWieg - MELS 03¢ aweL XLLOLESAS | MLL-OLESAS | VZL-OLESAS | £1-0LE/983 g
PROY W2152/0 203U2D) Wi21Sap 241 & PI1Uo214g - MBLS &% 05€ - ~ = VOLESAS | 10LE/98G | 98308
—~ N Ooro 9 06E awol ~ WEOLESAS | VE-OLEKS | VEOLE/OB :
:— — OYY 0BE awel - AVEOLESAS | VEOLEAAS | VE-0LE/S.
- i : - N 805 awsl - YEOLESAS| €OLEAAS | £0LE/98
- 1953 106€ awel - = VEOLEAS | VB-0LE/8
- 3953 &1 05¢ awsl - - BOLEAS | &0LE/8
- 8L % 05E - - = L-0bEdAS | 1-0LE/98 | - 9808
- - — - - ~ 3 06-0LEAS = -
@ezsW o/l | IDNYARVIS | IDINARVIS | AINO
NOISNvdxa | WW¥ Ao NG XINGX | xwWe | Juwmaave | YWAISAS | 3dALOD
—\—‘mmm.v gmo MZOI& VLVONBI— VLVOABL— - VLYONBL— YLYOABL— VLYOASL— YLYONBL— VLYOABL—
VLYONBIE VLYOABLE VLYOABA VLYOABLE VLTOASLH VLYOABLE VLYOABL+
VOSOASH VOEBAS+H — VOEOAS+ VOEBAGH VOEDASH WSYOAS+ VSYOASH
\muUD—UOLQ N_DEQQEOU %O UmC@_ winwixew : WRNUIXeW LUNLLIXRN - LINUIXRW LINLLIXRW LUNLUIXRW LINWIXeW
2DIM B PUR LORRSILLOISND ‘24emyos uopedydde ajqejieae M 08 S o o w5 i e i Brs’ | e Mo
4O 20NDE SHOTRRSLONR PRI L) 104 M OGS M 0B R 055 M OG5 o055 MOLG - SHONOLB 0 2MOdDq
S90S ; USGO DY | s uorsuedxa
uoglel USY0®S US90®y U0ELOL US90®Y US90@Y US90DE SAGIINW
Do (1) -SIoAURY () | SoauRd () SDuoauRY () soluoAURD (1) soldoiued () soleau) () (dljeied
5EE5 1) 5E55U (1) BEESU() BEB@) BB GEe® BEESMON | leuaSSHOd O/
(Peneuwioun) (PIReULoIUN)
G-UgABl (€ uawsD (PemewouR) (PANBULOMN) (P2NeLON)
UMENGL UM EW6L UAEWGL MMEWSE UM EAGY
(P2aneuwlod) (paneuios) (Pa11euio) (P2RRLULIOY) (paneudiod) (paneulod) (Panewioy)
lk s s r 80-6-LLESAS PEIADHIOZE MHIAPIOSE WIEADIOZE 2WISGDIOGE FRIBADIOGE 2HSIAPIOBE 28I ENOBE 2501015 sseW
A A X s LEBIES 81968 968 D963 DIYMENOY DI/MEBNOY DDIYMENOT DDI/MENOY | OLafoepuedk3
m » V\M V\M s 8851 D9S3 DIOYY DDI/MENEIS DDIMBIBIS DDIY/MENOT DDI/MEW O RIoW2W Wvy
< A ¥ A FO-BIEAS @HWS) @HWS) @H) @) @HW) @HW) 10852304dl0)
% » < 9 el V/N 1808 £808 /8508 18308 /8308 /8508 SUBUINN
X X X A GO-G-LIESAS @HWS) @HWS) @HWS) @HW9) @HW) @HW) @HWS) L .
X X X X LO-GHEESAS 9808 9808 9808 98308 98308 98308: 98308 | 1ossad0idoW
awsy | awsr | ®iose | @wsy | ON3dOD FOIE/08 B-BOIE/98 E-VE-0IE/98 1OIE/98G LI0IE/98B OV-OIE/98F I¥-0IE/98B
@INM | O)INM | AddOH | 3dvi LLE SAS WALSAS WaLSAS WALSAS WaLSAS WALSAS WaLSAS WALSAS |

INTEL SYSTEM 310 FROM BYTECH

SYSTEM 310

The high performance microsystem family designed to provide the

OEM and System Builder with

% FLEXIBILITY—to meet the diverse application needs of todays highly
competitive markets.

sk EXPANDABILITY—to quickly absoro new advances in VLS|
functionality and performance needed to secure decisive product
wins in the application and markets of tomorrow.

%k GUARANTEES—elimination of dead-ends' inthe OEM'sproduct future,
Muitibus architecture provides compatibility and expandability: for
years to.come. :

SYSTEM 310 FAMILY

sk SYSTEM 310 is built entirely on standards:-
® Buses @ Interfaces ® Peripherals @ Software.
% SYSTEM 3101is ‘OPEN’ to:-
@ New VLS| expansion ® Application—specific. configuration
® Hardware & Software from Independent Vendors @ All levels of
integration. }
%k SYSTEM 310is compatible with over1,000Multious productsavailable
today from over 170 vendors including:-
@ Disk controllers—SCSl, SAS!, SMD, ST506/412 etc. ® Graphics
interfaces—GKS, NAPLPS, Virtual Device Driver etc. ®Serial|/O—Sync/
Async/Bi-sync, HDLC/SDLC, etc. ® Local area networks—Ethernet,
1SO model compatibility ® Giobal area networks—X25, SNA,
2780/3780; RJE, etc. ® Many other products for configuring unicue
functionality into System 310.
SYSTEM 310 is available in over 20 standard configurations off-the-
shelf from Bytech (see Configuration Guide overleaf).
SYSTEM 310is available as a desk-top, rack-mounting or floor-standing
unit,
Winchester, Diskette and Tape support.
Choice of ‘Micro-engines—Industry standard 8086 micro and
80986 super-micro.
SYSTEM 310 offers an unprecedented range of price/performance
options.

* X% ¥ X

SYS311—PERIPHERAL EXPANSION SUBSYSTEM

Designed to complement SYSTEM 310.

3 full height 54" bays.

45Mb Cartridge tape streamer.

Increased Winchester storage capacity.

Increased Diskette storage capacity.

The SYS311 can be configured to any combination of peripherals
required by OEMS,

SYSTEM 310 STARTER PACKAGES

Fast, low-risk, easy entry to technology leadership with a complete,
comprehensive package for OEM’s and system builders, tailored to get

¥* K % K XX

application solutions up and running quickly and consequently provide
a fast-to-market system level product.

% Choice of hardware units.
% RMX or Xenix packages available.
% Complete Operating System software including:-
® Assemblers @ High-level languages @ Utilities and development tools
® 5 day hands-on Intel workshop training course ® 2 days on-site
Intel consultancy support @ Software support contract:-
@ Hot-line technical support service ® Regular software updates
® Software performance reporting service ®nsite technology
exchange membership ® Newsletters.
® Hardware Warranty ® Systems and software product registration.

SYSTEM 310 SOFTWARE

INTEL'S RMX OPERATING SYSTEM optimises SYSTEM 310 for real-
time, multi-tasking, time-critical applications such as:-
® Factory automation ® Distributed access.and control functions
® Industrial control ® Communication networks @ Image processing
where fast response to the real-world' is required.
% Fortran, PL/M, Pascal, C, Basic languages supported.
% Assemblers, utilities and development tools supplied.
% Industry’s most highly configurable operating system.
%k Built-in drivers for many of Intel's board level products.
%k Off-the-shelf application packages.
* Powerful interactive configuration utility for fast and efficient system
configuration, generation and performance tuning.
INTEL'S XENIX OPERATING SYSTEM optimises SYSTEM 310 for
interactive, multiuser applications such as:-
® Distributed data processing ® Business data processing
® Distributed software development ® Mainframe communication
and interaction @ Scientific, engineering and graphics applications
o Off-the-shelf application packages
where superior human-machine interaction and performance is required.
% Fortran, Cobol, C, Basic languages supported:
% Wealth of development tools and utilities.
% Superior data reliability and integrity—record and file locking,
automatic disk recovery.
% Enhanced human interface.
% Interactive configuration utility for fast and efficient system
configuration, generation and performance tuning.
INTEL'S MSDOS OPERATING SYSTEM complete and fully licensed
version of microsofts MSDOS 2.1 operating system.
% Complementary operating system for SYSTEM 310 running RMX or
XENIX.
* Stand-alone MSDOS also available.
% Wealth of off-the-shelf languages and application packages available
from many independent vendors.

SYSTEM 310 FAST FROM BYTECH

Bytech hold large stocks of SYSTEM 310, so we can deliver fast
off-the-shelf.

Fora comprehensive data pack covering all aspects of SYSTEM 310
hardware and software as well as information and technical advice on all
aspects of configuration and customisation, call us now on

PHONE 0344 4899211
intel + BYTECH

‘Bytech' is a trademark of Bytech Limited,

1S@’/;

1

Winter 1989/90

Published by Intel Scientific Computers

Intel Announces iPSC/860:
7.6 GFlop System Unveiled

in London

U.S. Debut at Uniforum in January

Beaverton, OR (December 18, 1989)
On January 10, 1989, Intel Scientific
Computers will unveil the iPSC/860, the
first in a series of supercomputers based
on Intel’s advanced RISC microproces-
sor technology. The American debut of
the iPSC/860 will be in the Intel booth at
Uniforum from January 23-25.

The iPSC/860 is an expandable super-
computer, ranging from 8 to 128 proces-
sors. System performance ranges from
480 MFlops to 7.6 Gigaflops.

Random access memory is also
expandable, and currently ranges from
64 Megabytes to 2 Gigabytes.

Beta sites include NASA-Ames and
Oak Ridge National Laboratories.
Customers include Boeing Advanced
Systems and others.

The next issue of iSC Currents will
carry several feature articles on the
iPSC/860. Until then...

Pacific Sierra and
Intel Announce
Intention to Offer
CASE tools for Dusty
Deck FORTRAN
Programs

FORGE to be the First Set of
Programming Tools Designed to Help
Developers Port FORTRAN to iPSC
Family

Reno, Nevada (November 13, 1989)
— Intel and Pacific Sierra Research
announced today their intention to devel-
op a series of programming tools aimed
at helping developers port existing
FORTRAN code to the iPSC family of
high performance systems.

The first offering will be FORGE, an
interactive set of tools that simplifies the
task of developing, supporting, and
evolving FORTRAN programs.

The Nature of the Problem

Transforming a serial FORTRAN pro-
gram into a “parallel” structure requires
decomposing the existing code and
restructuring it in a more efficient paral-
lel form. To produce the best parallel
code, the programmer must understand
as much as possible about the existing
code before the restructuring process

(Continued on page 2)

Software Tools
(Continued from page 1)

ﬂg'\ﬂa\

%ORT RAN
Source
code

begins. Very often, serial FORTRAN
programs being converted have been
developed by scientists or engineers,
rather than the programmer doing the
conversion. The inherent programming
difficulties contributed by the original
programmer, combined with often poor
or non-existent documentation, markedly
increase the difficulty of the code trans-
formation process.

Porting serial code to supercomputers
or creating highly efficient parallel code
for them, whether they are shared mem-
ory or distributed memory architectures,
requires restructuring codes at a higher
level to generate the most efficient paral-
lel algorithms. Current automatic paral-
lelizing compilers are of limited help,
because they extract only the parallelism
that exists in the low-level DO loops.

While fully automated solutions are
not technically feasible, today a compre-
hensive set of programming tools is
available that provides the required high-
level approach for software developers.
FORGE is an interactive set of tools that
can simplify the tasks of developing,
supporting, and evolving FORTRAN

FORGE is an interactive set of tools
that simplifies the tasks of developing,
supporting, and evolving FORTRAN programs.

programs and thus can enhance the effec-
tiveness of programmers in developing or
porting code for parallel systems.

The FORGE System

FORGE is built around a FORTRAN
database that provides a parsed version of
the serial code to assist the programmer
in his analysis and understanding of the
program content and structure. Rather
than having to dig through stacks of list-
ings, FORGE allows the programmer to
efficiently examine the code through a
Quick-Look tool set designed for easy
query of the database information. The
graphical interface is a UNIX worksta-
tion based on X-windows.

The baseline FORGE system consists
of a FORTRAN syntax parser, database
generator, program maintenance utility,
and database viewing tools that enable
the programmer to examine and manipu-
late an entire FORTRAN program as a
single entity. The analysis capabilities of
FORGE enable the programmer to under-
stand program flow and variable usage.
Run time statistics are provided through
an optional instrumentation facility.

Code manipulations may be performed
by the programmer using an editor of
choice. FORGE is well-documentied

with a HELP facility to assist the pro-
grammer in using the analysis tools.

Management Resources

A program database is created from a
group of program units, grouped as
“packages” by the programmer. A pack-
age is a collection of program units that
make up the entire program or contribute
to a common functionality. After user
creation and definition of the program
units that comprise a package, FORGE
parses each unit and creates the database
containing symbol usage and control
information on both a global and a local
basis. Several packages may be ana-
lyzed individually or as a single entity.
The database contains information on all
symbol usage throughout the program.
This enables interprocedural analysis of
both control and dataflow.

If FORGE encounters a FORTRAN
error, it initiates the system editor to
allow the programmer to immediately
modify the code and correct the error.
Upon exiting the editor, the new code is
reparsed. The size of the parsed
database code may be from 3 to 5 times
larger than the original FORTRAN code.
FORGE can support programs of any
size, given the availability of adequate
disk storage.

Package manipulation tools provide
capabilities for selecting, creating, and
deleting packages and viewing source
files; for analyzing and modifying pack-
ages; for defining and editing files in
packages; and for maintaining several
versions of each routine. Database view-
ing tools enable the programmer to
browse the database and perform such
functions as: trace variables, display con-
stants, query database, list all routines,
show COMMON block grid, and per-
form consistency checks on both COM-
MON blocks and argument passing.

The COMMON block grid illustrates
how COMMON variables are used
throughout the program to restructure
COMMON storage. Equivalencing and
COMMON block differences, as well as
name changing through argument pass-

(Continued on page 12)

User Profiles

Technical University of Munich

The Technical University (TU) of
Munich and Intel have a long history.
The school has been using Intel chips,
boards, development systems, and pro-
gramming tools in its classrooms for ten
years. More recently, TU Munich pur-
chased an iPSC/2 after examining a
transputer-based megacluster machine
and a tree-structured parallel machine.
The iPSC/2 won out because of its
Direct-Connect architecture, integrated
memory management, a load balancing
feature, and its open architecture, which
provided total access to the software.

“The {PSC/2 was the first machine to
offer full connection between all the
nodes,” said Professor Thomas
Bemmerl, the director of TU Munich’s
parallel research group. “It’s a big step
on the hardware manufacturer’s part
towards simplifying parallel program-
ming.”

Simplifying parallel programming is
largely what Bemmerl and his cohorts at
TU Munich are engaged in. Three years
ago, they started developing a set of pro-
gramming tools to make parallel pro-
gramming as easy as sequential pro-
gramming. To date they have completed
a portable parallel operating system,
known as the MKK, a method for moni-
toring the behavior of parallel software,
a debugger, a performance analyzer, and
a visualization tool.

TU Munich’s goal is to come up with
application development tools that will
make parallel machines easy to program,
thus broadening the appeal and usage of
parallel machines. Their accomplish-
ments to date have been impressive.

The Three Stages of Parallel
Programming

The parallel research group at TU
Munich reasoned that parallel program-
ming will pass through three stages. The
first and current stage is manual pro-
gramming, where every line of code
must be written by hand. The next is
interactive programming, where devel-

TU Munich campus

opers “plug in” values to stylized forms,
much like the application generators
used today in sequential programming.
The final stage, which Professor
Bemmerl]’s group intends to help usher
in, will be fully automatic programming.

TU Munich identified three problems
with today’s parallel software develop-
ment methods: they are too time-con-
suming and, thus, too expensive.
Parallel software development tends to
be architecture-specific. Finally, the
complexity of the software often slows
down the parallel hardware.

TU Munich established three design
goals to solve these problems: 1)
increase programmer productivity by
developing an integrated toolkit, 2) cre-
ate a portable tool environment (one sup-
porting multiple microprocessors), and
3) optimize performance by creating
close cooperation among hardware,
operating system, and tools.

The resulting toolkit has the follow-
ing characteristics:

1) Tight integration between tools (a

shared common symbol database and
graphic primitives)

2) Support of multiple abstraction
levels, allowing developers to work in
assembler and high level languages, even
at the process level

3) Support of a number of instrumen-
tation techniques, i.e., hardware monitor-
ing, software monitoring, hybrid moni-
toring, and simulation

4) Portability across various parallel
architectures

5) Adaptability for different process
concepts, programming languages, and
compilers

6) Expandability with new tools and
functionality

7) Friendly, menu-oriented human
interface

Multiprocessor, Multitasking Kernel
(MKK)

TU Munich’s approach to software
tool design has been to initially create a
transparent layer of systems-level soft-
ware to sit between the tools and the

of al Ob‘\e ClS p\\'\g S\]pp

omg N ion suppo

podet
% _id, ;“ g &?xe re’p\‘f)

MMK Illustration

hardware. Their strategy is similar to
that of the ISO/OSI network model,
where a layer at level “i” needs no
knowledge of software or hardware ‘
installed at levels lower than “i.” This
layering strategy was the key to portabil-
ity between architectures and to future
expandability.

TU Munich’s portable layer is called
the Multiprocessor Multitasking Kernel
(MMK), which sits atop a multiproces-
sor operating system. Its main purpose
is to balance the load among processors,
and it does this by automatically routing
tasks based on processor availability.

Few multiprocessor operating sys-
tems perform load balancing. Instead,
the programmer is required to keep tabs
on which processor is running which
process. Whenever the programmer
sends a message to a specific process, he
has to specify in his program the load on
which the process is localized.

With MMK, the programmer does not
have to keep in mind which process is
running; MMK keeps track of it for him.
This transparent multitasking process
capability is the main feature of MMK.

MMK also allows developers to think
about their parallel programs in an

cen d detetion

o\"lCept
ed design © "

ime,
msg_lem Y

A thal \bOX

repy)

object-oriented fashion. It
offers active objects (tasks),
communication objects (mail-
boxes), synchronization objects
(semaphores) and storage objects (mem-
ory). The object-oriented architecture is
another step toward freeing the program-
mer from considerations of specific
architectures, letting him concentrate on
the application instead.

MMK obijects are locally and globally
available, meaning it makes no differ-
ence to the programmer whether the
objects are located on a local or a remote
processor node. All MMK objects can
be dynamically created and deleted,
implying that the number of objects is
limited only by the amount of available
memory. With the current version of
MMK, dynamic object migration is also
possible, meaning that objects can be
migrated from one processor load to
another to improve total processing
speed.

Ultimately, the group will implement
a dynamic load balancer that will contin-

Performance Analyzer Screen

uously migrate objects between proces-
sors to achieve optimum performance
throughout runtime.

Peeking in on the System Without
Slowing Things Down

After getting MMK in place,
Bemmerl needed to create one more
important element before tackling the
tools themselves. That element was
some technique for monitoring the exe-
cution of parallel programs. Monitoring
can be done in hardware, software or a
combination of both.

Bemmerl’s group implemented one of
each kind of monitor. All three support
interactive tool use. None require extra
recompilation. And, the tools need not
know which monitoring technique they
are using.

The transparent nature of MMK
makes interchangeability possible. For
example, the hardware monitor is easily
replaced with the software monitor with-
out changing the upper layers of the
MMK model. All three monitors offer
the same interface to the upper layers;
they differ only in the degree of retarda-
tion of program execution.

The monitors allow the programmer
to specify predicates and conditions
(e.g., breakpoints, trace conditions, trig-
gers, etc.) about the program execution
at several abstraction levels. He can dis-
play and modify contents of memory
cells, I/O ports and MMK objects.

Thomas Bemmerl

At the host level, the monitors man-
age events, actions and symbols. Based
on primitive events and action mecha-
nisms, the tools can specify complex
predicates about the dynamic behavior
of the target system. The specification
of events and actions is based on sym-
bols in the monitored program.

The monitoring system is complete-
ly distributed, meaning each processor
is monitored individually and the data
then combined and presented to the
programmer under the friendly guise of
a graphical user interface. The pro-
grammer can opt to look at systems-
level activity, at a specific node, or
even at a specific process.

The star performer of the monitoring
system is the hardware monitor. Non-
intrusive monitoring is done in hard-
ware. Each processor is individually
monitored through hardware logic. Each
hardware monitor is adapted to the sig-
nals of the processor it’s monitoring, so

when a statement is executed, it’s recog-
nized by the monitor in parallel with the
execution of the load program. Asa
result, program execution is not affected
at all.

The hardware monitor currently con-
sumes an entire board per processor.
Bemmerl’s team is working with the
University’s electrical engineering
department and Siemens Corporation to
shrink the board to a single chip.

Tools With a Friendly Face

So far, Bemmerl’s group has complet-
ed a debugger, performance analyzer and
visualizer under the MMK model.
Remaining are a configurator, mapper,
load generator, load balancer and test
system. All the tools are tightly integrat-
ed and all are accessible from a common
graphical user interface.

The debugger lets the programmer
display and modify the states of pro-
grams running on the parallel processor.
A powerful debugging language allows
specification of complex predicates
about the dynamic execution of pro-
grams.

The performance analyzer gives the
programmer graphical information about
the efficiency of the communication
between processes or processor ele-
ments, about the activation of proce-
dures, access to variables and operating
system objects. The programmer can
then localize bottlenecks and optimize
mapping of processes into processors.

The visualization tool offers another
way of displaying the dynamic behavior
of multiple processors. This tool shows
graphically the flow of communications
between processes or processors, as well
as control and data flow.

The graphical user interface, imple-
mented on a Sun workstation, makes fre-
quent interactive use of the toolkit easier
and more engaging.

The Barriers are Falling

Bemmerl has three goals: to demon-
strate the portability of the toolkit to
other parallel processor architectures, to
shrink the hardware monitor board to a
chip and to validate the toolkit on real-
life applications.

“We are very proud of the hardware

monitor in particular,” concludes
Bemmerl. “It’s a very complex design
and represents a major breakthrough in
the ability to observe parallel programs
in action.”

“We hope our work will make a dif-
ference in helping parallel machines
become more widely accepted by mak-
ing them easier to program. Many peo-
ple stand to benefit.”

TU Munich is using a 32-node iPSC/2
with 80 Megabytes of memory and a
separate pair of processors dedicated to
I/O. The I/O system has 2.8 Gigabytes
of secondary storage.

Oklahoma State
University Processes
Images and Sound
with Hypercube

Submitted by Professor Keith Teague,
School of Electrical and Computer
Engineering, Oklahoma State University.
Dr. Keith Teague manages the iPSC/2
hypercube parallel processing laborato-
ry at Oklahoma State University.

With a grant from DARPA and the
State of Oklahoma, Oklahoma State
University purchased an Intel iPSC®/2
supercomputer two years ago. It’s at the
heart of four graduate research projects
in signal and image processing:

 Hypercube Image Processor

* Superquadric neural network

» Hypercube Ray Tracer

» Digital coding of high-fidelity audio

Hypercube Image Processor

We developed the Hypercube Image
Processor (HIP) here at Oklahoma State
University to be both an interactive
image processing system and a frame-
work for developing parallel image pro-
cessing algorithms.

In the area of parallel processing, it’s
well known that the biggest challenge is
developing software. The idea of HIP is

to make parallel programming easier. It
does this by providing standard methods
of data decomposition. Decomposition
is an ordered method of breaking the
data into finite elements so that it can be
parcelled out to various processors. By
developing standard methods and pro-
viding libraries for common graphical
elements, programiners won’t have to
reinvent the wheel every time.

In its library are
decomposition methods for horizontal
strips, checkerboards and pyramids, as
well as numerous functions to operate on
these images. Custom decompositions
and functions can also be programmed
and incorporated into HIP. The signifi-
cance of this is that no programming
effort is ever wasted; code produced by
other programmers can be easily used in
new applications.

Another beauty of HIP is that it can
be used by both programmers and end
users. Programmers access HIP through
C and users access it through a UNIX®
shell. To a user, HIP looks much like a
serial image processor with a very large
number of buffers and excellent
response time. Its parallelism is hidden.

Ron Daniel, a Ph.D. student, and
Michael Carter, a Master’s student, are
working on this project.

Superquadric Neural Network

Ron Daniel is also using HIP and the
iPSC/2 to develop a neural network to

model 3D objects for machine vision.
The network will model individual com-
ponents with geometric solids known as
superquadrics. These graphics primi-
tives can describe a wide variety of
physical shapes with a very compact rep-
resentation. Furthermore, the decompo-
sition of objects into simpler component
parts is a very similar process to the
decompositions the human brain makes.
These high-quality models should pro-
vide a significant step forward in
machine vision.

The neural network has several
advantages over a serial algorithm for
estimating the superquadric parameters.

It can work with more complex scenes,
and its massive parallelism would
allow real-time processing on custom

hardware. The network being devel-
oped and simulated in the iPSC/2
provides much faster simulations
than could be performed on non-par-

allel machines.

Hypercube Ray Tracer

Ray tracing is a popular tech-
nique for rendering realistic
computer-generated images. Itis,
however, extremely costly in terms
of computing time. The iPSC/2
hypercube computer is being used
to study parallel techniques that
reduce the time required to generate
complex images.

Research at Oklahoma State
University has confirmed that ray
tracing is highly “parallelizeable” and
is well-suited to implementation on the
hypercube. It exhibits a fine-grained
parallelism at the pixel level - each pixel
is totally independent of pixels around it.
Thus, the pixels may be assigned to the
iPSC/2 nodes in a way most efficient for
intensity calculation. We have demon-
strated speedup in excess of 31 times on
a 32-node iPSC/2 and expect this
speedup to continue linearly to a large
number of nodes.

Michael Carter is working on this
project as part of his Master’s thesis.

Digital Coding of High-Fidelity Audio

The fourth program revolving around
the iPSC/2 hypercube computer is an
investigation into digital audio code

compression. It is our belief that such
methods could stimulate the develop-
ment of dialup music services that would
turn tomorrow’s telephone into a piece
of high-fidelity digital audio equipment,
with quality very close to that of com-
pact disc music.

Research into digital audio compres-

'sion for digital telephone transmission is

currently going on in France, Germany,
Switzerland, Japan, and other locations
inthe U.S., such as AT&T Bell Labs.
Although the quality of digital music is
extremely high, the conversion of analog
to digital audio produces files that are
huge - much too large to send over digi-
tal phone lines.

The iPSC/2 and new signal process-
ing methods are allowing us to shrink
digital music signals. One such method
is called vector quantization. Although
it shows great promise as a code com-
pression scheme, it is very computation-
ally intensive. On a machine like a
VAX®/780, it can take days to process
only a few minutes of music. On the
hypercube,

the time is reduced

by a factor of up to 100. Since the tech-
niques need to be developed, fried, test-
ed and then re-developed, again and
again, faster turnaround is essential.

Gary Pearson, a Ph.D. candidate at
Oklahoma State University, is the prima-
ry investigator of audio compression for
digital telephone transmission.

The iPSC/2 is also used for instruc-
tion in a graduate projects course on par-
allel processing.

SERC, Dareshury

Located approximately150 miles
northwest of London, between
Manchester and Liverpool, the
Daresbury Laboratory (DL) is one of
two national laboratories in the United
Kingdom under the control of the
Science and Engineering Research
Council (SERC).

SERC’s main responsibility is to
guide and fund research in physical sci-
ence and engineering in U.K. universi-
ties. This is achieved in part by SERC
running two laboratories and two obser-
vatories which provide facilities for aca-
demic research that is too large or
unsuitable for siting at individual univer-
sities.

One of the major areas of scientific
computation at the Laboratory is compu-
tational chemistry, with the Theory and
Computational Science Division the
focus of activities. The Computational
Science Group at Daresbury is responsi-
ble for supporting university research in
an increasingly broad range of computa-
tional subjects, which is largely accom-
plished by means of the Collaborative
Computational Projects (CCPs). Each
project is organized by a working group,
which defines the scientific direction of
the work, and carries out the agreed pro-
gram. The general aims of the projects
are to encourage basic research in the
given areas, to develop and maintain rel-
evant software packages, and to dissemi-
nate information among University and
other research groups by organizing
‘symposia’ or ‘workshops.’

Nine projects are currently supported
by SERC, including those in the areas of
Quantum Chemistry, Continuum States
of Atoms and Molecules, Computational
Studies of Surfaces, Protein
Crystallography, Computer Simulation
of Condensed Phases, Heavy Particle
Dynamics Analysis of Astronomical
Spectra, Electronic Structure of Solids
and Plasma Physics.

The Theory and Computational
Science Division pioneered the exploita-
tion of vector machines in the U.K., and
it continues to provide a national focus
in the area of parallel processing,

through the activities of the
Advanced Research
Computing Group (ARCG), a
group with expertise in the use
of multiprocessor systems.

ARCG works in close col-
laboration with universities
and with industry in develop-
ing parallel processor algo-
rithms, with major application
codes from a variety of disci-
plines running on MIMD con-
figurations typified by the
Intel iPSC/2 and other sys-
tems.

The Advanced Research
Computing (ARC) project at
Daresbury is now centered
around the iPSC/2, the second
generation systems of hyper-
cube architectures from Intel Scientific
Computers and another, transputer based
system. Experience with the hypercube
since installation suggests key features
that have led to a wide range of applica-
tion software ported.

® The machine has clearly been

designed as a FORTRAN engine
from the outset, with a wide-rang-
ing software library provided for
communications, etc.

¢ The UNIX environment of the

hypercube has led to a natural,
rather than a forced, integration
into the surroundings typified by
the Convex C220, Ardent Titan-2,
and Sun workstations. The ability,
for example, to run the remote
hosting software from any of these
machines provides a natural route
‘for scientists to access the
machine. Our original belief that
the iPSC/2 presents a user environ-
ment far superior to any of its con-
tenders has been substantiated by
our experience to date.

At installation the iPSC/2 comprised
32 multiple instruction multiple data
(MIMD) nodes placed on a hypercube
with direct-connect channels. Each node
comprises an Intel 80386 processor (4
MIPs in 32-bit arithmetic), 4 Mbyte
memory, a Weitek 1167 SX scalar accel-

erator, plus 64 Kbyte instruction and data
cache. Vector processing on each node
is achieved through a vector accelerator
(6.6 Mflop in 64-bit or 20 Mflop 32-bit).

In May 1989, the iPSC/2 was upgrad-
ed through the provision of:

1) aconcurrent I/O system, permit-
ting fast parallel random access to 1.5
Gbytes of data from any of the hyper-
cube nodes, and 2) an additional 32 SX
nodes.

The resulting 64-node system pro-
vides the community (at Daresbury) with
a machine that exhibits supercomputer
performance over a broad range of appli-
cation codes.

(Note: On March 6, 1989, SERC will
hold a Workshop on the Intel Hypercube,
“Applications Details and Results.” We
will update the SERC story in the next
issue of iSCurrents, with a report from
that workshop. For more information on
the SERC workshop, contact RJ. Allan
at SERC (phone 925 603 242. He can
be reached via his email address
RIA@DL.DLGM).

&M%,. -

Current

Intel Scientific Computers’ Distinguished User Focus:
Searle’s Drug Design Group

From hypertension to drugs for
NSAID-induced ulcers, Searle is a
name synonymous with the pharma-
ceutical industry. Now a wholly owned
subsidiary of the Monsanto Company,
Searle deploys a six-person drug
design group located in the Chicago
area. The group models drug-receptor
interactions critical to the design of
new pharmaceutical products. A
16-node, iPSC/2 parallel supercom-
puter plays a key role in their success.

“Typically, when Searle undertakes
a project to discover novel drugs in
certain areas, a discovery project team
is formed. It consists of modelers who
build a pharmacophore model and who
design new chemical structures based
on that model, chemists who synthe-
size these chemical structures, and bi-
ologists who develop and perform
assays of the potential effects of these
proposed drugs,” explained Dr. Dale
Spangler, of Searle’s drug design
group. “To develop and refine this
model, conformational analysis is
crucial. This involves the location of
all of the conformations (shapes) for a
particular structure that are biologi-
cally accessible. The search can
require ten thousand energy minimiza-
tions, calculations well suited for the
Intel parallel environment.”

Drug action is usually initiated by
the binding of a small molecule to a
special protein known as a receptor.

The process is similar to finding a key
that fits a lock, an analogy suggested

by Emil Fischer almost a century ago.
When the three-dimensional structure

of the receptor is known, the modeling

of the complex formed by the drug,
receptor, and solvent is known as
“receptor fitting.”

Unfortunately, in most cases the
structures of the receptors are un-
known. For such projects, the modeler
resorts to an alternative technique
known as “pharmacophore modeling”
or “receptor mapping.” This involves
taking structures of compounds with
known drug activity, determining their
allowed conformations, and matching
many combinations of “good” confor-
mations from each of these structures
to generate a model consistent with the

biological data. As new compounds are

tested and their activity becomes
known, calculations are performed on
these new structures to refine and
improve the model.

MacroModel & BATCHMIN on
the iPSC/2

Integrated into a network of VAXes
(see figure 1), the Searle iPSC/2
handles the computationally intensive
BATCHMIN code (the batch
minimizer of MacroModel) used
for conformational analysis.

Each non-rigid molecule pos-
sesses a number of

intel

rotatable chemical bonds (bonds that
can be rotated for a minimal energy
penalty). By taking 15-30 degree
increments of the torsional angle for
each of these rotatable bonds, a set of
conformations is generated. Macro-
Model and Sybyl (a general-purpose
modeling package from Tripos Associ-
ates) can be used to generate the initial
starting geometries for this set after
removing unreasonable conformations.

The conformations are subsequently
passed twice to BATCHMIN. In the
first pass, full geometry optimization
to locate the energy minima is per-
formed. The MM2 based force-field
energy of each conformation is mini-
mized and the global minimum is
determined.

In the second pass, constrained
optimizations are performed. While
holding the torsion angles for the
rotatable bonds fixed, all other geomet-
rical parameters are optimized to
minimize the MM2-based force field
energy. Conformations whose

energy falls within the 5-7 Kcal win-
dow above the global minimum are
retained. The energy cutoff is conser-
vatively set somewhat higher than the
consensus value for a biologically
accessible conformation.

At this point the researcher pos-
sesses a collection of energy mini-
mized structures defining low energy
regions of conformation space for the
molecule of interest.

The procedure is performed for
each compound used to create or
refine the model as well as all pro-
posed structures for synthesis. In
many cases these structures possess
5 or more rotatable bonds resulting
in tens of thousands of final conforma-
tions. The computationally intensive
task of optimizing these structures at
Searle is executed with BATCHMIN
(MacroModel) transported to a
16-node iPSC/2 interfaced seamlessly
to a VAX cluster (see figure 1).

“We have carried out calculations
that take more than a week on the
iPSC/2,” Spangler said. “These would
require more than 6 months on our
shared VAX 8650s.” Spangler pointed
out that during the month of June
1989, the iPSC/2 logged the equiva-
lent of 15,000 VAX 780 hours.
Spangler also indicated that this was
only half of the iPSC/2 capabilities.

Goals: Production Environment

Searle’s interest in microprocessor-
based, high-performance computing
was originally spurred by Dr. James
Snyder, the head of drug design, and
Dr. Errol Sandler, Searle’s Director of
Scientific MIS. However, it was not
until the arrival of the iPSC/2 that
Synder and other members of Searle’s
drug design group saw a commercially
available parallel processor that would
provide the necessary power for their
applications at a reasonable cost.

In April of 1988, Spangler and Dan
Volocyk of the Searle’s Scientific MIS
group sat down with Intel’s Tony
Anderson and Elliott Swan and
strategized what it would take to get
the iPSC/2 into a production
environment.

The project had three goals: 1)
create a seamnless interface with the

Cwacu) Cumaci) Cmacit) (Cmaci)

VAX
19.2kb L] ; i _> RIS 1 119.2kb
modem Ségt(')%" C Drug Design 4D1120 modem
CDICIDICIDICID)
Intel
Hypercube
16 parallel
803865
w/Weitek
FPUs
19.2kb | VAX 19.2 kb
modem Sun 3/60 117780 [™ modem
Cray X-MP EA/116EA
———— DECnet
TCPAP figure 1

VAXes, 2) allow the iPSC/2 to be
shared dynamically, and 3) determine
a series of programs easy to port.

“Our VAX users weren’t too
thrilled about having to work in a Unix
environment,” Volocyk said. “So we
wanted to give them transparency of
use.”

The dynamic sharing of the cube
would enable different needs to be
satisfied simultaneously.

“To allow multiple simultaneous
use of the cube, we needed different
requirements to be satisfied simultane-
ously. We needed to allow jobs
requiring two weeks to peacefully
co-exist with jobs of a half-hour or
even interactive jobs,” Spangler said.
“We needed a system that could give
all the nodes to a high-priority job
upon demand within a few minutes

and split the nodes in an equitable
fashion between multiple competing
jobs.”

BATCHMIN was chosen as the
first program to be ported to the Intel
parallel environment.

“We needed to port a program
whose use would have an immediate
impact on our modeling projects,”
Spangler said.

The development work began in
June, and in July the iPSC/2 arrived.
In August, the BATCHMIN port
began and took one man-month to
complete. BATCHMIN was divided
into 2 parts: a front-end supervisor
running on the SRM to control the
collection of data and keep the nodes
busy, and a back-end minimizer
running on each node to optimize a
single conformation.

VAX (VMS v5.1)

User initiates interaction from any
VAX by typing HYPERVIEW/SUBMIT.

HYPERVIEW

Parses a batch driver file
output file from one of
rug Design’s programs)

and creates a task profile

to be passed to the Hypercube.

E1 Parses submit command.
2) Opens the task_profile

and the user's command file. .
3; Greates task_profile. Maif
4) Opens the UNIX version Boxes

VAX/HYPERCUBE INTERFACE *SUBMIT*

receives a-message
from the mailbox

it reads the task
profile and creates

AST |

HYPERCUBE TOWER
{SRM — UNIX v5 13.2) (INTEL — iPSC)
HYPERGATE HYPERBATCH 16 nodes
(1) Gateway on cube (1) Forks child BATCHMIN
node. with PID #.
(2) Detached process. (2) Calculates the job’s
(3) When Hypergate fair share of nodes.

(3) Updates tables to
accommodate new job:
JOB_TABLE
CURRENT_TABLE
DESIRED_TABLE

“Slave” BATCHMINs
on each node receive
data, calculate and

an FTP subprocess
to-copy files to the
Hypercube from the
user area.

(4) When the job has
finished running

of the command file.

(5) Calls functions that
handle program-unigue
command files.

(6) Send task_profile and
return maitbox name to
CUBE_MAILBOX

HYPERGATE returns the

job number & status

(1) Creates return mailbox
message.

(2) Displays return mailbox
message.

©

Interaction ends when message
sent to User’s mailbox.

Yes

an FTP subprocess,
copies files back
from the Hypercube

send the results back
to BATGHMIN on the

(4) Based on TCP/IP signal
host (SRM).

or termination of child
process, the tables and
directories are updated
to handle end of job.

(5) Sends job termination
message.

and distributes them.
(5)-Sends a message to

Hyperview using

return mailbox.

} ast

CUBE_MAILBOX

Receives message as
numerical command

code + info provided

by other switches.

DEC|
(Opens SERVE.EXE on gateway)

NET

BATCHMIN (SRM part)
Child created when user requests
“submit” with program_name BATCHMIN
(otherwise a different program is forked).
A PID # is assoclated with each forked
BATGHMIN, and each BATCHMIN contains
the information for the job.
This part of BATCHMIN sends instructions
to its “slave” counterpart on the fower
when an owned node is available.

The results are written to disk.

iPSC
functions

figure 2

The interface between the users,
the VAXes, and the Hypercube was
completed after three man-months of
work, and in February of 1989, the full
system became available to Searle’s
drug design group.

The net result? The structure of
the command files for running on the
iPSC/2 are identical to those running
on the VAX cluster (see figures 2 and
3). The batch queuing is also similar
to batch queuing on the VAX. By
changing a single letter in their VMS

command, users can send their work
either to the VAX or the iPSC/2.

“We are getting eight times the
performance of a VAX 8650,” Volocyk
said. “And, just as important, we’re
doing work that otherwise couldn’t be
done on the systems available locally.”

Spangler explained that the iPSC/2
has an important place in the heteroge-
neous computer environment at Searle.
This includes a Cray X-MP at Mon-
santo in St. Louis, which Searle’s drug
design group gets roughly a 20% share.

However, for tasks that parallelize well
but do not easily vectorize, the iPSC/2
is the most cost-effective platform.

Price Performance Crucial

“For computational chemistry, we
think Intel’s going at things the right
way with a scalable number of power-
ful processors,” Spangler said. “We
weren’t really looking at a particular
type of parallelization or memory
scheme, but the way we get the greatest
amount of computing for a fixed

USER AREA HYPERVIEW

VAX/HYPERCUBE INTERFACE
FILE MANIPULATION

HYPERGATE

HYPERBATCH

Open the user’s
command file

Read the
TASK_PROFILE

Open a data file containing
program names and locations.
Find the focation of the master

Receive log
and output
files for job.

KEY

D Input

and slave sections of the program.

Execute FTP.QUT:
Get log file for job & output file
for the user's command file.

Put the log file into the user’s directory.
Convert binary files from UNIX to VMS.

Output

figure 3

number of dollars — happens to be
parallel processing. Intel as a company
is going to push microprocessor
technology primarily from the PC end,
and they’ve already demonstrated that
they’ll do it in a way to compete with
large machines.”

Future Plans: Faster Nodes,
More Software

What next?

In the short term, Spangler plans
to port the program RMSFIT, which
matches the many conformation sets
used in receptor mapping, to the
iPSC/2. This will involve dividing the
program into an SRM supervisor, and
a program running on each node that
performs many matches.

Over the long haul, Searle hopes to
port or locate a version of Amber
from Peter Kollman’s group at UCSF
for the iPSC/2.

“Amber allows us to build proto-
type receptors to interact with drug
molecules as well as with solvents,”
Spangler said. “We have utilized
roughly a thousand hours of Cray time
doing prototype calculations. For those
calculations that don’t need the Cray,
we need the most cost-effective com-
putational solution. We’re looking at
future developments from Intel to help
us there.”

Note: BATCHMIN for the iPSC/2
will become available to dues paying
members of the MacroModel Consor-
tium through Clark Still at Columbia
University. Interest in the VAX inter-
face should be directed to G.D. Searle.

n ®

Intel Scientific Computers
15201 N.W. Greenbrier Pkwy.
Beaverton, OR 97006
503-629-7629

Users Group Bits and Bytes: Europe & U.S.

European Users Group

(Rennes, France) On October 3, 1989,
approximately 50 iPSC users from 20
sites gathered for the Second European
iPSC Users Group Meeting in Rennes,
France. Participants came from as far
north as Umea, Sweden (near the Arctic
Circle) and as far south as Greece.

There were over 25 presentations,
most providing a brief overview of activ-
ities at each iPSC site. Major emphasis
was placed on software and tools, with
presentations on STRAND 88, CHO-
RUS, the GMD-Argonne macros, and
work on languages and environments at
IRISA. The Technical University of
Munich described their work on pro-
gramming tools, including a perfor-
mance analyzer and a visualizer.

Applications discussed included 3-D
Fluid Flow (ONERA), ray tracing
(IRISA), and computational chemistry
(SERC).

Speakers from the University of
Dublin and the University of Umea dis-
cussed teaching, using the iPSC/1 and
iPSC/2.

The 1990 European Users Group is
tentatively scheduled for the week of the
CONPAR 90 VAPP IV conference in
Zurich. Anyone with alternative sugges-
tions should contact Richard
Chamberlain at Intel’s Swindon Office
(44-793-696 578).

—~Richard Chamberlain, iSC
European Users Group Coordinator

iSC U.S. USERS’ GROUP
MEETING: St. Louis,
Missouri

(St. Louis, MO) The meeting began
on Thursday, October 5, at the Radisson
Hotel Clayton in St. Louis, Missouri,
with a warm welcome to attendees by
JoAnne Wold, newly appointed as iSC
User Group Administrator.

The agenda was packed with nine
technical presentations on a variety of
subjects, ranging in scope from seismic
applications to advanced database and
information systems programs to gradu-
ate level projects in machine
vision/image processing. The presenta-
tions covered useful ground for all atten-
dees, spanning the gamut of theoretical,
research-oriented, and practical applica-
tions of parallel processing technology
on iPSC machines.

Intel made several announcements.
Changes and improvements to the user
group and a new University Resource
Referral Program called “ACCESS”
were described. (More on ACCESS in
the next issue of Currents.)

Product announcements were made
pertinent to Connectivity, Release 3.1,
and More I/O for the iPSC/2.

David Billstrom, Product Marketing
Manager for Intel Scientific Computers,
gave a description of the current 3.0 soft-
ware release together with upgrade
issues involved in a move to the next
release. The features and benefits of the
new software release 3.1 were discussed
in detail, including the delivery of Ada,
VX performance, the repair of Decon,

and upgrade issues. Other new product
features also discussed included backup
tape capability, 9-track tape, VMS link
and VME interface.

At dinner Thursday night, Wendy
Vittori, iSC Director of Marketing and
Strategic Planning brought users up to
date on iSC’s future directions.

On Friday, October 6, from 9:30 AM
to 1:00 PM a University and Industry
Forum was held to discuss “Universities
as a Resource for Industry in the New
‘World of Parallel Processing.” The
objective of the forum was to exchange
information and ideas on the following
issues:

¢ What does industry need?

* How are universities preparing
students to meet the needs of
industry in parallel computing?

® Opportunities for industry/
university cooperation in course
development and research.

¢ Ewvaluation of existing programs
(with examples) and proposals for
the future.

10

A panel of representatives from uni-
versities and industry facilitated the ses-
sion. The forum moderator was Dr.
Marilyn Livingston, Professor in the
Computer Science Department of the
University of Illinois. As the questions
were posed by Dr. Livingston, the pan-
elists offered their views on the issues to
be considered. This was followed by a
moderated discussion in which attendees
participated. Panelists included:

David Billstrom, Product Marketing
Manager, Intel Scientific Computers
(Vendor Perspective)

Dr. Akin Ecer, President, Technalysis
Incorporated (Industry Perspective)

Dr. Gary B. Lamont, Professor,
Department of Electrical and Computer
Engineering, Air Force Institute of
Technology (University & Government
Perspective)

Dr. Charles Mosher, Senior Principle
Research Geophysicist, ARCO Oil &
Gas Company (Industry Perspective)

Dr. Keith Teague, Associate
Professor, Electrical and Computer
Engineering, Oklahoma State University
(University Perspective)

An edited transcription session was
published in the meeting proceedings
document for the purpose of sharing the
factual information developed by the
forum. If you have not received a.copy
of the proceedings, and would like to
receive one, or would like to receive

more information about the user group,
please contact JoAnne Wold, iSC User
Group Administrator, at 503-629-7737.

(To order a copy of the proceedings
from iSC’s October User Group Meeting,
write to JoAnne Wold, Intel Scientific
Computers, 15201 N.W. Greenbrier
Parkway, Beaverton, OR, 97006, or use
the enclosed reply card.

User Requests

Professor Dan McCarthy of the
University of Dublin is interested in
speaking with iPSC/1 users who are
using their systems for teaching. Dr.
McCarthy can be reached at the
following address:

Dr. Dan McCarthy

Department of Computer Science
School of Engineering

Trinity College

Dublin 2

Eire

Telephone: (35) 31 772941,

ext 1783

iPSC/2 Users developing applications
in LISP are encouraged to exchange
information with Josep Pujol at the
University of Blanes in Spain. The
address and phone number are:

Josep Pujol Gruart

Centre D’Estudia Avancats de
Blanes

Cami De Santa Barbara
17300 Blanes Girona

Spain

Telephore: (34) 72 33
6101/6102/6103

Intel’s ACCESS Program

To meet the growing demand by cus-
tomers for individuals and organizations
with iPSC programming experience in a
variety of applications, Intel’s ACCESS
Program was announced at both iSC’s
European and U.S. User Group
Meetings.

The ACCESS Program is designed to
match customers who need programming
expertise, iPSC consulting, applications
counsel, etc. with universities and other
organizations that have the personnel
and expertise to provide solutions.

As such, the ACCESS Program is
designed to serve as a database, allowing
iSC to refer customers to universities and
organizations listed in the ACCESS files.
iSC will not and cannot recommend one
university or organization over another;
it merely serves as a “bulletin board.”

The ACCESS Program is strictly vol-
untary and will initially be administered
through the iSC Users Group. More
detailed information on the program will
appear in upcoming issues of Currents.
Until that time, anyone wishing a
detailed description of the ACCESS
Program is invited to contact JoAnne
Wold, iSC Users Group Coordinator,
Intel Scientific Computers, 15201 NW
Greenbrier Parkway, Beaverton, OR,
97006. The phone number is
(503) 629-7737.

people} Places & Things | —

11

On Octob 9,1989, at the Society of jtera g A nurnber of iSC’s Europealt Users
Dotroleum ER$ feers hnnua onterence contﬁbuted papers at the First Turopean

in San Anto i 0, Texas, Dr- flohn s .ﬁ:; ‘:eos{u 1;)2{ ;_‘;i:::pg ia '::%Y:‘a&d %it Workshop oft Hypercube and Distributed

ot ~duetion17esed O aters; el d = es, a ~ 0
gave @ paper his experiences with an October, 1989. Those papers and others
H »

address:

iPSC/2. o , g’ : ave been.ed ed by ! Andre and
. yrar 4 Ready T Verjus and published by North-Holland
, . Prime Time? A Transcript of a Panel J o e
' A .i‘i‘!-’ 989 So of Discussion. @ dited by Horst D. S ﬂ%n s n he txtle Hypercube and Dist buted
ation e available from NAGA os Report R -89- e
nernce 1 ‘/. allas, TXS D ‘ Ol an 010, October 1989. An edited, short , . . « 3
.‘k ' ne -l and o0 ooT 5 X e .'., ::i‘ - - II-I ONIL 0 ” e ." (
Gas Compa . lind Dr. David Scott of lntemational Tournal of Superc omputer Dlstneuted Computers, please write the
Intel Scientifil} omputers presented a Applications.and °) be available thro <h following address in Europe:
paper U ed B parajiel P SrRentanon O ©
3D F-K Migr on for Distributed Memory the MIT Press: North-Hol\and (An imprint of
pmputers—y 5-gbstract for e I STRationa: An Petra de Mr -
At the Ocjbber 1989 oD Journal “Pe“” App e PO, Box 103 _
onierence, Held In Portland, Oregon, - . .]) OO0 SC AmS grdam,
r. Sigurd }é .Lillevik, the Enginee'ring t{:ﬁ(;r?p{t;st; .‘ga{\i i;cg"‘;z;néﬁg)?ga’ The Netherlands
Cute 'é3 ‘ sned papertitted quring the con.erence, paratiel ~* - - In the United States, 1o obtain copies
“Qysterms Den and Engineering for m\s a.f,‘d St tg of “Hyptercube and Dist\;'\buted .
Large—Scale 1 al\e\ Computers- the conference was to discuss recent ompufers, P case wite the 10 owing

i o developments in the use of MIMD arallel

e R0 -

fovertide —1989, D7 g computers in Toh periormance computa-
Barton and ary Withers presented a t‘xon;t\ fluid d e?migs. The intent of tr})\e
nape .',c’:!iu outing Perio mance.2 W aa-te-aarafT
A Function o the Speed, Quantity, and
Cost of the cessors,” at the IEEE-SPOT”

Elsevier Science Publishing Co.,
Inc.
P.O. Box 88 2
Madison Square Station
= A A)

findings of the meeting, and to give a per
gpective o1 the state of the art in using

Dl A

ored-Supercippuits - Reny, Srallel computers Tor soing large scale ’
Nevada. Ba i” is a mermboer of ,‘SC S engineering and scientific application
o -.ll ‘:'E'l;(". % ouUD. ML “:,., -,‘,J,...“,.a —
iSC's Trainit '\ anager- Levit, Numerical Aerodynamic Simulation
i NAS) Systems Division NASA-Ames:

| Kent Misegades, Cray Research; Gary
Montry, Myrias Computers; Ken Neves,
] ‘ Bo oiTIo & e o iCE = oI

O U Y
Patera, MIT; and Justin Rattner, Intel

ien ompuie
i
% For copies of transcripts of the
' papers or presentations Zited above,
1 please write to Ken Harper, iS
, 15201 N.W. Greenbrier Parkway,
| Beaverton, OR 97006, or use the
! snclosed rep y carg. e phoné num-
§§ per is (503) 629-7631.

12

Software Tools
{Continued from page 2)

ing, are considered when tracing a par-
ticular symbol. In the query facility, a
template-driven filtering capability
allows the programmer to specify the
characteristics of the variables to be
examined. The programmer can easily
focus on categories of variable use, such
as subscripts, reduction
functions, actual or
dummy arguments,
equivalences, etc., and
can combine templates
with Venn diagrams.

OTHER Features

Code conversion reformat-
tor supports resequencing
of statement labels, code
indentation, reordering of
declarations, extraction of
COMMON blocks into
INCLUDE files, conversion
of conditioned code blocks
into IF () THEN, ELSE,
ENDIF structures and typical
“tidy” features.

Code instrumentation facility

supports the gathering of runtime statis-
tics on CPU usage, DO loop usage, val-
ues of critical variables, and input vari-
ables. Code size may be from 3 to 5
times larger than the original FORTRAN
code. FORGE can support programs of
any size, given the availability of ade-
quate disk storage.

 Package manipulation tools provide
capabilities for selecting, creating, and
deleting packages and viewing source
files; for analyzing and modifying pack-
ages; for defining and editing files in
packages; and for maintaining several
versions of each routine. Database
viewing tools enable the programmer to
browse the database and perform such

functions as: trace variables, display con-
stants, query database, list all routines,
show COMMON block grid, and per-
form consistency checks on both COM-
MON blocks and argument

passing.

The COMMON

block grid illustrates how COMMON
variables are used throughout the pro-
gram to restructure COMMON storage.
Equivalencing and COMMON block dif-
ferences, as well as name changing
through argument passing, are consid-
ered when tracing a particular symbol.
In the query facility, a template-driven
filtering capability allows the program-
mer to specify the characteristics of the
variables to be examined. The program-
mer can easily focus on categories of
variable use, such as subscripts, reduc-
tion functions, actual or dummy argu-
ments, equivalences, etc., and can com-
bine templates with Venn diagrams.

APPLICATION
PORTABILITY FOR THE
‘90°S

In the 1990’s, parallel supercom-
puters will incorporate from a few
to several thousand processors. To

control development and mainte-
nance costs, application develop-
ers will have to be able to create
a single application algorithm
that can run efficiently across an
entire range of parallel system
configurations.
A new CASE tool,
MIMDizer (mim-dee-izer)
will be made available on
Intel’s iPSC® systems in
1990. MIMDizer is defined
to be an interactive software
system that will further
simplify the task of con-
verting existing sequential
FORTRAN programs into
efficient parallel code and will
improve programmer efficiency in the
design and implementation of new paral-
lel algorithms. MIMDizer gets its name
from the architectures of Multiple
Instruction, Multiple Data Stream sys-
tems such as Intel’s iPSC family of sys-
tems.

MIMDizer will go beyond automatic
parallelizing compilers by offering soft-
ware developers a high-level approach,
as opposed to the low-level approach
taken by current parallelizing compiler
technology. Fully automated solutions
are not technically feasible today for
coarse-grain restructuring. MIMDizer
will optimize programmer participation
in the restructuring process, permitting
the programmer to decide upon the pre-
ferred parallel decomposition strategy
while MIMDizer handles most of the
implementation detail.

(Continued on page 15)

13

—_
.m%%ﬁ%
o .
=

i o h%
. .
-~ w&%‘ .
c
- . ;
- =
_ %m&%% .
L o e 5
= .
s 5
s
.

0

o

&

o

a..

%..w%&%m%m S

.

.

aaa e

.
.A“.‘ -

S
= s SR S
-

.
= S
o Kw
- - =

S = @«%ﬁ%%@mw Seinee
.
...
...
. \
e

S

2 wmmﬁnu..ﬁ«;hmm&
e a@\@a

=

.
_

.
.
e

Ve

&

4
o

o

SR
.
e

=

i
-

o

e

.
s

e

-

N o
- 9
-

)
.
. xa%&ﬁ?&%&%mﬁ%\gﬁ
. = = .
.
... @
= .
e = e
. = . .
= et e o
o o . =
. = -
- ... =
< = @%?@ s
S > =l e
o e S
. =
.

e e =]
-

. %&WW&%%%&
“&«miymw\w@e&%%w«@m .
i a —
i =
-

2y

.
-

. -

S
e e

o
e
.
.
-
e 7

.
.

ﬁ .

=

o

s
e

-

.

=

\u‘«wux
.

S

o

5

]
e
.
. - = @
...
e 2 e s s
o~ Boesiia s e
. . - .- _
- el -]
. =2 3 : 8 .]
. s T = e
- - 8 v Bh % e s
- Cooed Gl S »&4%%%: : = " e e
- - i
R e o iy %
E By oot =

.

S

o

S

e
.

e

o

=

= S
e
e e

S s
A i SN
o e i o
o e 3
- e - = - it
el - S e =
= 5 - > = = 7
. = W? L 2= =24
= = ama = =
Same s o G ST R e
o el »

.

-
—
s

o
-
.
.
. e
-
= .
2 SN A
= w4
s N
-
-
TS
-

e

-
e

.

i

i3

xmwt.‘mw«‘

e
S emimsn

T
. 2
q T e e e
L e s \x%

o

- =

o
> s
. 5

R
-

e
e

=

SN
-

s

A 54 e
3 o i L
2

)
]

.
SEEEes

Sl
.=

=S
= g
- -

5
5

S

i
.

T
. =
.

i
48

v

B et e e ey 5
£ - - - - @ . =
S - = = .
Vo e e
= .
oy -
e Y . o= © .
- =
J ‘ : Qi
G N SO
n%m.e&x\wh%ww@@m !
Wx&%w%%% 4
=
N

.

-
Seae
- A

=
2

s
5

o

L e
S

=
. .

ha
S = .
. = = . .
oy el
. »wm\%w &Wma - =
e . s
e o

e
S

e

.
= }W%Wm] e
G

-
S
Con

=

e wsimw,maw\wwmwi =
o - wm%%&% - .

. e
o . ?m%%msﬁ,«&%w. x%w%%«m%@ \

o S i

.
. ,amn}%@%\%w -
-

S
\w&mww\%w% s

- Aqf.ﬁw%ﬁ%
. - .
o -
s
..
.
o

5 Ui\,«ﬁt;f. i
- S
- s 5
=

T

14

PARALLEL PROGRAMMING
' PRIMER AVAILABLE

ALONG WITH PARALLEL PROCESSING:
A SELF-STUDY INTRODUCTION

Users and interested parties are wel-
come to receive Intel’s Parallel
Programming Primer. As the title sug-
gests, the book (roughly 100 pages in
length) is intended “as an introduction to
developing applications for distributed-
memory parallel computers. The model
used in the book is based on the Intel
| iPSC/2 Parallel Supercomputer...”

The Programming Primer contains
eight chapters, an appendix with example
application codes developed for the
iPSC/2, and a Glossary.

The chapter titles are as follows:

Chapter 1: The Parallel System:

Divide and Conquer
Chapter 2: A Programming Model
for the Loosely Coupled
Parallel System
Working Smart, Not
Hard, Parallel Software
Engineering Principles
Chapter 4: Decomposition Strategies
Chapter 5: Domain Decomposition:
Examples and
Techniques

Chapter 6: Control Decomposition:
Examples and
Techniques

Chapter 7: Object-Oriented
Techniques for
Distributed Memory
Systems

Chapter 8: Parallel Programming
Tools: Developing a
Better Mousetrap

Chapter 3:

Also available from Intel is
Parallel Processing: A Self-
Study Introduction: A First
Course in Programming the
iPSC/2 Hypercube. The Self-
Study introduction was developed
by Ron Pickering from the
Polytechnic Wolverhampton in the
U.K., and adapted for the iPSC/2
by Clifford Addison, Jeremy Cook
and David Warhurst at the Christian
Michelsen Institute in Bergen,
Norway.

Copies of both of these publica-
tions can be obtained by using the
enclosed reply card, or contacting
either:

ntd

saentitic
Gaaentihe
mpulers

David Moody
Intel International Ltd
Intel Scientific
Computers
Pipers Way
Swindon
SN3 1RJ
England
(44)- 793-696 578

Kenneth Harper
Intel Scientific Computers
15201 N.W. Greenbrier
Parkway
Beaverton, OR 97006
(503) 629-7631

Gary DeLeon
Intel Japan (IJKK)
5-6 Tokadai
Tsukuba City
Ibaraki-Ken 300-26

15

NASA, INTEL RIACS,

& IBM TO HOST
PARALLEL CFD

90 in Indianapolis, May 6-8

Indianapolis (November 15, 1989)
NASA, Intel, IBM, RIACS, and Indiana
University/Purdue University at
Indianapolis (UIPUI) will host the
Parallel Computational Fluid Dynamics
1990 Conference. Parallel CFD will be
held in Indianapolis on the campus of
UIPUI on May 6 to May 8.

The organizing committee for Parallel
CFD includes: Enrico Clementi, IBM;
Justin Rattner, Intel; Richard Blech,
NASA-Lewis; Horst Simon, NASA-
Ames; Spiro Lekoudis, Office of Naval
Research; Richard Sincovec; Research
Institute for Advanced Computer
Science; Antony Jameson, Princeton
University; Anthony Patera, MIT; and
Akin Ecer, UIPUL

E Ron Bailey, NASA-Ames will be
the keynote speaker. Invited speakers
include David Caughey, Cornell and
NASA-Ames (Block Implicit Multi-grid
Solution of the Euler Equations on
Parallel Computer, Avi Lin, Temple
(Degenerate Parallel Algorithms for
Parallel CFD); Wolfgang Schmidt and
Bernhard Wagner, Dornier Luftfahrt
(Impact on Aircraft Design of Vector and
Parallel CFD Applications); Pierre Leca,
ONERA (Experiments in Parallel CFD
Using Distributed Memory Multi-

processors); J. Michael Summa,
Analytical Methods (Recent CFD
Applications in the Automobile
Industry); and William Van Dalsem, and
Horst Simon, NASA-Ames (Parallel
CFD at NASA-Ames).

There will also be a panel discussion,
“Parallel Application Software — Issues
and Answers,” led by Dan Anderson of
Ford Motor Company. Panelists include
Dennis Gannon, Indiana University;
John Van Rosendale, ICASE Langley;
David Gelernter, Yale University;
Anthony Patera, MIT; Jacques Perlaux,
Avions Marcel Dassault; and Ramesh
Agarwal, McDonnell Douglas.

The Parallel CFD organizing commit-
tee is soliciting contributed presentations
of 15 minutes on subjects that will com-
plement the invited papers.

Because registration for the Parallel
CFD conference is limited, advance reg-
istration ($200) by check or
MasterCard/VISA will be accepted by
Pat Fox, Indiana University/Purdue
University at Indianapolis, 799 W.
Michigan St., Indianapolis IN 46202
(317-274-0806).

A block of rooms has been reserved
at the University Hotel and Conference
Center. Contact the hotel at 1-800-627-
2700 to make hotel reservations.
Identify yourself as a Parallel CFD
Conference participant to receive the dis-
counted room rate.

Software Tools
(Continued from page 12)

Built upon FORGE, MIMDizer will
continue to provide comprehensive ana-
lytical information about the existing
sequential code, including interprocedu-
ral dependencies. Through graphical
data flow representation and restructur-
ing tools, the programmer will be able to
more efficiently manipulate code blocks
into improved parallel structures.
Analytical information from the new
structures will be provided to ensure
application integrity and stability. The
MIMDizer code generator will then pro-
duce parallel FORTRAN source code for
execution on the desired target machine.
Instrumented run time code will enable
the programmer to gauge the effective-
ness of the algorithms and allow iterative
optimization of the code. MIMDizer
will support rapid application bench-
marking for system evaluation purposes,
as well as development of highly effi-
cient parallel applications. MIMDizer
supports an extremely flexible program-
ming model that will make it practical
and cost-effective to develop portable
parallel applications.

™EORGE and MIMDizer are trade-
marks of Pacific-Sierra Research, Inc.

®iPSC and Intel are registered trade-
marks of Intel Corporation.

16

LETTER FROM THE EDITOR

As we went to press on the night of
December 18, 1989, we received word
that Intel Scientific Computers would be
unveiling its iPSC/860 at Super-comput-
ing Europe in London on January 10.
Similarly, we learned that the iPSC/860
would make its American debut at
Intel’s booth at Uniforum, which is
being held January 23 to 25 in
Washington, D.C.

Because not all of the pertinent prod-
uct information was available at the time
we went to press, and because we had a
commitment from our printer, and
because we wanted iSCurrents to con-
tinue two quarters in succession as a
guarterly publication, we decided to
devote much of the Spring Issue to the
iPSC/860.

Future Issues will also see articles on
“computational finance” as well as
reservoir modeling software.

There will also be a full report of the
seminar being held March 6 at the
Science and Engineering Research
Center (SERC) Daresbury, England, on

applications -and results using the iPSC/2
(see People, Places, & Things).

In addition to the normal product
updates, you will be seeing “how-10’s”
(and perhaps even “how-not-to’s”) writ-
ten by Intel applications consultants and
customers.

Our primary interest is to make
iSCurrents a useful, informative docu-
ment. Please let us know what your
interest is and we will try to accommo-
date you.

Until next quarter...

- K

Ken Harper,
Editor

PRELIMINARY

INTELLEC® 432/100
EVALUATION AND EDUCATION SYSTEM

= Evaluation and Education System for s Fully Assembled, MULTIBUS™-
the Intel® 432 32-Bit Micromainframe Compatible iSBC 432/100™ Board

= OBJECT BUILDER Evaluation Software s Object Programming Language
for Execution of 432 Symbolic Machine = Complete Set of Introductory Guides,

Instructions Reference Manuals, and Educational
» iAPX 432 General Data Processor Texts for the 432

The Intellec 432/100 combines hardware, software, and documentation to provide a complete learning and
evaluation environment for the Intel 432 32-bit Micromainframe. The system hardware consists of the
iSBC 432/100 board. The fully assembled and tested MULTIBUS-compatible board installs in any Intellec
800, Series ll or Series 11l Development System. The heart of the board is the powerful iAPX 432 32-bit Gen-
eral Data Processor (GDP). The iAPX 432 GDP combines mainframe functionality and performance with a
microprocessor form factor and cost. Standard features of the 432 GDP include a high level language in-
struction set, the Silicon Operating System, and software transparent multiprocessing.

Two software packages are included with the Intellec 432/100 system. They are:

Object Builder — Allows evaluation of the iAPX 432 architecture and provides a means to work with the
iAPX 432 at the symbolic machine instruction and system object level. It permits construction of actual
iAPX 432 objects, interactive manipulation of them, and execution of iAPX 432 instructions. Through Ob-
ject Builder, small 432 programs can be created and interpretively executed on the iAPX 432 GDP.

Object Programming Language (OPL) — An object-oriented high level language interpreter designed for
teaching and educational program development. OPL facilitates learning of 432 object-oriented design
methodology in a user-friendly, interactive, graphical environment.

A complete set of manuals, texts, and introductory guides accompanies the Intellec 432/100 system to
assist the user in learning and evaluation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to describe Intel products: Intellec, MULTIBUS, and the combination of iSBC and a
numerical suffix. Intel Corporation assumes no responsibility for the use of any circuitry embodied in an Intel product. No other circuit patent licenses are implied.
© INTEL CORPORATION, 1981 January 1981

171963-001

intel

INTELLEC® 432/100

PRELIMINARY

FUNCTIONAL DESCRIPTION

Hardware

iSBC 432/100™ BOARD

The fully assembled iSBC 432/100 board features
Intel’s iAPX 432 32-bit GDP. The board is both
MULTIBUS and RS232C compatible, and plugs
into a MULTIBUS slot in any Intellec 800, Series Il
or Series Ill Development System. The memory
for the iSBC 432/100 board is provided by and
shared with the Intellec Development System (see
Figure 1).

Processing Unit

The heart of the iSBC 432/100 board is Intel's
powerful iAPX 432 Micromainframe. The iAPX
432 is an advanced 32-bit microprocessor which
provides the functionality and performance of a
large-scale computer. It is implemented in N-
channel depletion load, silicon gate technology
(HMOS) and packaged in two 64-pin Quad In-Line
Packages (QUIP), integrating over 140,000 transis-
tors. The two components function as a pipelined
unit; one fetches and decodes instructions, the
other executes them. The two GDP components
are linked via a microinstruction data path.

The iAPX 432 features:
¢ Compiler-oriented Instruction Set
¢ The Silicon Operating System

s Software transparent multiprocessing for in-
cremental performance capability

s Capability-based (“need to know”) address-
ing and protection

o 240.pyte virtual addressing space

¢ Symmetrical support of all 8, 16, and 32-bit in-
teger data types, and proposed IEEE standard
32, 64, and 80-bit floating point

The Intel iIAPX 432’s integration of VLSI and sys-
tems technology provides a state-of-the-art means
to increase both hardware and software reliability,
provide a wide range of performance, and lower
the cost of developing large-scale systems.

iSBC 432/100™ Board Logic and Bus Structure

The iSBC 432/100 board communicates and
shares memory with the Intellec Development
System via the MULTIBUS interface. On-board
logic converts iAPX 432 addresses into MULTI-
BUS I/0 and memory commands. iAPX 432 local
addresses are transformed into MULTIBUS 1/O
commands; physical addresses into MULTIBUS
memory commands.

iSBC 432/100™ BOARD

432101 i

INSTRUCTION !
ADDRESS/

DECODER
UNIT CONTROL/DATA
INTERCONNECT

|

|

|

|

|

! MICROINSTRUCTION
| DATA PATH
|

|

|

|

|

CONTROL/DATA
INTERFACE LOGIC

ADDRESS/

|
|
432102
EXECUTION K ! MULTIBUS™
UNIT N l INTERFACE DEVELOPMENT
SYSTEM CPU
v - —
APX 432 :
S INTELLEC DEVELOPMENT SYSTEM MULTIBUS™ INTERFACE j
DEVELOPMENT DEVELOPMENT
DES‘Q?S‘-T‘I’E';A""%” SYSTEM MASS SYSTEM
STORAGE MEMORY

Figure 1. Fully-Configured Intellec® 432 System Block Diagram

2

intel

INTELLEC® 432/100

PRELIMINARY

Documentation

A comprehensive set of manuals, texts, and intro-
ductory guides accompanies the Intellec 432/100
system. Together with the Intellec 432/100 soft-
ware, they provide a self-contained learning and
evaluation environment. Manuals are provided to
acquaint the user with the iAPX 432’s architec-
ture, to assist in evaluation and design, and to
document the Intellec 432/100 hardware and soft-
ware. The documentation includes:

* jAPX 432 Object Primer — lllustrates the use
of objects and object-oriented design in the
iAPX 432.

¢ Introduction to the IAPX 432 Architecture —
Provides a motivation for and an overview of
the iAPX 432 architecture.

¢ JAPX 432 GDP Architecture Reference Man-
ual — Describes in detail the system objects
and primitive data types and their associated
operations, fault handling, and general sys-
tem concepts and facilities. Serves as the ref-
erence text for constructing systems and pro-
grams through Object Builder.

s Getting Started on the Inteilec 432/100 —
Serves as a guide to the Intellec 432/100 soft-
ware and documentation.

¢ Object Builder User's Guide — Shows how to
use Object Builder to construct sets of 432
objects and execute 432 programs.

* Object Programming Language User’s Man-
ual — Tutorial on and reference for OPL.
Shows how to use OPL for constructing 432
educational programs.

¢ iSBC 432/100 Hardware Reference Manual —
Documents principles of operation, board
capabilities, installation instructions, and
service information.

SPECIFICATIONS
Hardware — iSBC 432/100 Board

CENTRAL PROCESSOR

Intel iAPX 432 General Data Processor (43201 and
43202)

MEMORY ADDRESSING

224 physical, 240 virtual for iAPX 432

iAPX 432 addresses converted to 20-bit MULTI-
BUS I/0O and memory commands

MEMORY CAPACITY
Through Intellec MDS — 1M byte maximum

INTERFACES

MULTIBUS — All signals TTL compatible

Serial /0 — RS232C compatible, one program-
mable line using 8251A

SERIAL COMMUNICATIONS CHARACTERISTICS

Synchronous — 5-8 bit characters; internal or ex-
ternal character synchronization; automatic sync
insertion.

Synchronous Baud Rate — 0 to 64K baud.

Asynchronous — 5-8 bit characters; break char-
acter generation; 1, 112, or 2 stop bits; false start
bit detection.

Asynchronous Baud Rate — 0 to 19.2K baud.

TIMER

Four Read/Write /O ports for Intel 8253 Program-
mable Interval Timer. Used for serial /O baud rate
and processor scheduling clock.

CONTROL /O PORTS

Processor ID — Read
Processor States — Read
Memory Offset — Write
Processor Control — Write

intel INTELLEC® 432/100 PRELIMINARY
CONNECTORS Software (92
Pins | Centers Mating Object Builder — Requires)2‘87(of memory
interface (@ty) in.) c t
qty) | (in. onhectors Object Programming Language
MULTIBUS | 86 0.156 | Viking SKH43/9AMK 12 Shipped in both single and double density disk-
Serial /10 26 0.1 3M 3462.000 ettes

SOFTWARE SUPPORTED TERMINALS

Intellec
Hazeltine 1500 Series
Lear Seigler ADM 3A

PHYSICAL CHARACTERISTICS

Width — 12.0 in.
Height — 6.75 in.
Depth — 0.70 in.
Weight — 16 oz

DC POWER REQUIREMENTS

A45A @ +5V 5%
40mA @ =12V 5%

ENVIRONMENTAL CHARACTERISTICS

Operating Temperature — 0°C to 50°C
Relative Humidity — to 90% (non-condensing)

Documentation
171858-001 — iAPX 432 Object Primer

171821-001 — Introduction to the iIAPX 432 Archi-
tecture

171860-001 — iAPX 432 GDP Architecture Refer-
ence Manual

171819-001 — Getting Started on the Intellec
432/100

171859-001 — Object Builder User’s Guide

171823-001 — Object Programming Language
User's Manual

171820-001 — iSBC 432/100 Hardware Reference
Manual

ORDERING INFORMATION

Part Number Description

Intellec 432100 432 Evaluation and Education
System

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA ¢ (408) 734-8102 x598

Printed in U.S.A./Y-20/0181/50K/BA/SWW

PRELIMINARY

SYSTEM 432/600
32-BIT EXTENSIBLE COMPUTER SYSTEM

= Modular and Extensible m Advanced 32-Bit iIAPX 432 Architecture
— iSBC board form factor ’ — Transparent multiprocessing
— Range of CPU performance, memory — Object oriented addressing
capacity, l/O capability — High level language instruction set
— Field upgradable — Silicon Operating System
= Processor Extensibility — 2% bytes virtual memory |
— Up to six processors, any mix of u Extensible MULTIBUS™ Peripheral
General Data or Interface Pro-
Subsystems
cessors per system T .
— One to five independent peripheral
m Memory Features subsystems

— 128K to 4M bytes physical memory
— Optional memory interleaving
— ECC protection m Diagnostic Software Package

= Hardware Floating Point Capability

System 432/600 computers utilize the advanced VLSI architecture of the iAPX 432 Micromainframe. The
System 432/600 product line includes circuit boards, backplanes, cardcages, and chassis which are
offered individually and as integrated 32-bit computer systems.

Through subsystem extensibility, System 432/600 computers offer a wide range of processing power,
memory capacity, and I/O capability. A system including two data processors, 512 kbytes of ECC memory,
and a single /O processor with MULTIBUS subsystem requires approximately one-half of a cubic foot,
offering the potential for a desktop 32-bit computer system.

The following are trademarks of Intel Corporation and its affiliates and may be used only to describe intel products: intellec, MULTIBUS, and the combination of iSBC and a
numerical suffix. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No-other circuit patent licenses are
implied. March 1981
© INTEL CORPORATION, 1981 171861-001

intel

432/600

PRELIMINARY

ARCHITECTURE

The System 432/600 line of 32-bit computers takes
full advantage of Intel’s 432 architecture. The
hardware implemented software transparent
multiprocessing provides an immediate range of
performance in attacking applications which in-
volve concurrent tasks. Incremental performance
can be realized by simply adding additional data
processing boards or /O subsystems.

The object based architecture significantly
reduces the cost of developing large software
systems, enhances their reliability and security,
and facilitates the safe integration of new soft-
ware modules into existing systems.

The Silicon Operating System improves the per-
formance and reliability of systems using the
iAPX 432. Certain time critical, complex, and
security sensitive operating system mechanisms
are implemented in the hardware of the iAPX 432.
However, the user maintains flexibility in system
design since the policies that drive the hardware
mechanisms are software controlied.

TECHNOLOGY

System 432/600 computers utilize the iIAPX 432
General Data Processor (GDP) and interface Pro-
cessor (IP) components. The technology which

makes these components available in such a com-
pact form is Intel’s VLSI HMOS technology — a
short channel, high density, semiconductor fabri-
cation process. This process yields a density in
excess of 100K devices per chip and allows Intel
to offer a highly sophisticated CPU architecture
with an unmatched system performance/density
ratio.

FUNCTIONAL DESCRIPTION

Functionally, the System 432/600 can be parti-
tioned into three subsystems: processing,
memory, and 1/O. The processing subsystem con-
sists of one or more General Data Processors (one
processor per GDP board). The memory sub-
system stores data on modular storage array
boards and allows for access by the General Data
and /O processors. The I/O subsystem performs
the interface function between the central sub-
systems (General Data Processors and memory)
and external peripheral devices. Multiple and in-
dependent /O subsystems may be implemented
simply by adding appropriate boards. Figure 1
graphically presents a block diagram of the parti-
tioning of the minimal System 432/600 computer.

The System 432/600 allows for independent exten-
sibility of its three subsystems. A range of perfor-
mance and capacitites can be obtained by varying
the number of modules of each type in a system.

Z N

MEMORY
CONTROLLER

STORAGE
ARRAY

|

GENERAL

DATA
PROCESSOR

P
LINK

r)

wCw TM-HN<®

PROCESSOR |

-
~ INTERFACE | ATTACHED

PROCESSOR

l.....__l___

MEMORY
SUBSYSTEM

PROCESSING
SUBSYSTEM

PERIPHERAL
SUBSYSTEM

MULTIBUS™

< l

{1 SYSTEM 432/600 FAMILY PRODUCTS
T~71 MULTIBUS™ COMPATIBLE BOARD PRODUCTS

y

Figure 1. System 432/600 Block Diagram: Minimum Configuration

2

AFN-01871A

432/600

PRELIMINARY

Transparent multiprocessing allows for an im-
mediate breadth of performance within a product
line by simply adding processor modules without
any affect on system or applications software.
Memory capacity can be expanded in varying in-
crements by simply adding memory boards to the
system. I/O capabilities can be expanded by two
means, First, any MULTIBUS compatible board
can be added to an existing /O subsystem. And
second, parallel and independent I/O subsystems
may be added to the system. Figure 2 demon-
strates the extensibility of the three subsystems.

The 1/0 subsystems allow for the off-loading of /0
processing functions from the data processing
subsystem. Each /0 subsystem can perform
tasks of varying complexity ranging from mass
storage control and terminal interface to decen-
tralized data processing.

The /O subsystem implementation allows for
attached processing to be performed by Intel’s
existing line of peripheral devices. In addition,

since the I/O subsystems utilizes the MULTIBUS
interface, any compatible single board computer,
controller or peripheral may be used with the
system. Thus a broad range of devices are im-
mediately available for configuration within the
/10 peripheral subsystems of System 432/600
computers.

SYSTEM INTERCONNECT

The System 432/600 utilizes two types of
backplane interconnect busses. The System Bus
is a 32-bit bus that electrically connects the
General Data Processor (GDP), Interface Pro-
cessor Link (IPLk), Memory Controller (MC), and
Storage Array (SA) boards. Parity bits protect each
of the 4 bytes. Address and data are time
multiplexed on the bus. Dedicated control and
status lines coordinate system activity, perform
parallel arbitration, and support memory interleav-
ing. Slots on a System Bus backplane are
dedicated, in groups, to particular board types.
Separate slots accommodate processor boards
(GDP or IPLk), storage array boards and the

{x

MEMORY
CONTROLLER

STORAGE
ARRAY

STORAGE
ARRAY

MEMORY
SUBSYSTEM

GENERAL GENERAL
DATA DATA
PROCESSOR PROCESSOR

GENERAL
DATA
PROCESSOR

PROCESSING
SUBSYSTEM

wocw TIm-en<on

14
LINK

PERIPHERAL
SUBSYSTEM

~ E—— 1
INTERFACE | ArtacHep |

PROCESSOR | PROCESSOR |
4

)

INTERFACE |
PROCESSOR 1

ATTACHED |
PROCESSOR |

< MuLTIBUS™

[—_] SYSTEM 432/600 FAMILY PRODUCTS
C__] MULTIBUS™ COMPATIBLE BOARD PRODUCTS

l |
o —

PERIPHERAL |
CONTROLLER |

| LOCAL

Figure 2. System 432/600 Block Diagram: Extended Configuration

3

AFN-01871A

intel

432/600

PRELIMINARY

memory controller board. Table 1 summarizes the
System Bus backplane options offered by Intel
and the partitioning of the slots among the board
types.

Table 1. System 432/600 System Bus Backplane
Slot Partitioning

Total No. of Slots by Group
Backplane| GDP or Memory «
Slots IPLk Controller Memory
6 3 1 2
12 5 1 6
18** 6 1 10

* Each memory slot accommodates either 128K or 256K byte
Storage Array board.

** The eighteenth slot used for test/monitor connector.

The industry standard MULTIBUS interconnect
bus connects the Interface Processor (IP) board
with an attached processor and other /O sub-
system devices. The MULTIBUS backplane is
physically separate from the System Bus
backplane.

A flexible cable connects the Interface Processor
Link board on the System Bus backplane to the In-
terface Processor board on the MULTIBUS
backplane. This 1PLk cable provides a syn-
chronous 16 bit communications path with byte
parity and dedicated control lines. Address and
data are time multiplexed across the link.

SYSTEM IMPLEMENTATION

Data Processing Subsystem

General Data Processor (GDP) boards perform the
data manipulation and computation within the
System 432/600. The heart of the GDP board is the
32-bit iAPX 432 General Data Processor. The iAPX
432 GDP features a high level language instruc-
tion set, the Silicon Operating System, and soft-
ware transparent multiprocessing. In support of
multiprocessing, the GDP board performs buffer-
ing, interconnection between the processor com-
ponent bus and the System Bus, and arbitration
between multiple processors within a system.

Multiple GDP boards may be configured within
System 432/600 computers. Architectural features
make the addition of processor modules trans-
parent to the software and will enhance the perfor-
mance of systems executing concurrent tasks.
Arbitration between multiple GDP and IPLk
boards for access to the System Bus is based ona
dynamic priority algorithm. Similar to a round

robin schéme, this mechanism assures that GDP
and IPLk boards requesting memory access
receive equal access to the System Bus.

Figure 3. General Data Processor Board

Memory Subsystem

System memory is implemented using modular
self-refreshing storage boards. The memory array
includes 32 bits of data and seven bits of error cor-
recting code (ECC) per word. The ECC facility
allows for single bit error correction and double
bit error detection on each module. Two types of
storage array boards are available with capacities
of 128K and 256K bytes. :

Storage array (SA) board types may be mixed
within a system providing flexibility in memory
size, incremental granularity, and upgradability.
The only limitation exists when memory is inter-
leaved, in which case paired boards must be of the
same capacity.

Figure 4. Storage Array Board

The System 432/600 utilizes a single memory con-
troller board. This board services processor
memory requests, maps instruction addresses to
the proper storage array board(s), supports
memory interleaving, and centralizes hardware
error logging.

AFN-01871A

Y

432/600

PRELIMINARY

Figure 5. Memory Controller Board

Data can be accessed from memory by either a
GDP or an IP in variable length increments, in-
cluding: 1, 2, 4, 6, 8, and 10 bytes. When requests
cross word boundaries memory interleaving sig-
nificantly improves performance by effectively
accessing successive words in parallel. In an
interleaved configuration logically sequential
words are stored on separate storage array
modules. The memory controller initiates
accesses to logically sequential words on con-
secutive clock cycles. Data is returned to the re-
questing processor on consecutive bus cycles
rather than after sequential memory access
cycles.

I/0 Subsystem

System 432/600 products may be configured with
multiple and independent I/O subsystems. Each 1/O
subsystem requires an interface Processor Link
board connected to the System 432/600 System Bus
and an Interface Processor board connected to the
MULTIBUS backplane. The Interface Processor
board utilizes the iAPX 432 IP component.

In addition to the physical interconnect, the IP-IPLk
board pair makes available protected windows
through which an attached processor (AP) in the /O
subsystem can access the central system’s address
space. The IP maps a portion of the AP’s address
space into the address space of the central system.

"The |P extends the AP’s instruction set to include

the iAPX 432 object oriented instructions. This
allows the AP to perform data manipulation func-
tions within the central system. The IP does not
fetch instructions on its own but executes instruc-
tions, one at a time, as they are received from the AP.
After completion of acommand the IP sends an in-
terrupt to the AP to signal that it has finished.

The IP facilitates the initialization of the System
432/600 memory through its physical mode address-
ing capability. Logical addressing within the System

432/600 requires the existence of certain dynamic
data structures within the system’s address space.
These structures must be established before a GDP
can begin processing. The AP initializes these struc-
tures by utilizing the IP’s physical addressing mode.

The attached processor manages the /O subsystem.
The AP is responsible for activities such as polling
devices, responding to interrupts, and setting up and
monitoring DMA transfers. The AP can take on ad-
ditional functional capabilities and work as a
decentralized data processor.

This system structure improves performance by
minimizing the burden of low level 1/O tasks on the
central processor (GDP), while maintaining the pro-
tected and controlled access environment. The func-
tional complexity of a peripheral subsystem is a
design parameter. Since multiple and independent
110 subsystems are possible, each subsystem can
be optimally configured (hardware and software) for
its particular application.

Figure 6. IP-IPLk Board Pair

SYSTEM CONFIGURABILITY AND
PACKAGING

Intel offers System 432/600 products at two levels
of integration. For maximum configuration flex-
ibility the System 432/600 building blocks, in-
cluding logic boards, backplanes, cardcages, and
chassis are offered individually. Integrated 32-bit
computers housed in table top and rack mount-
able chassis are also available.

Subsystem extensibility within System 432/600
computers is limited by electrical, logical, and
performance considerations, as well as the
physical size of the backplane. The maximum size
of the System Bus is 23 board slots. Logically, a
combined total of six GDP and IPLk boards can be
configured in a System 432/600 product. Each
system requires a single memory controller board
which can logically address a maximum of 16

AFN-01871A-4

intel

432/600

PRELIMINARY

storage array boards. Performance considerations
are application dependent and can be met by
balancing the mix of GDPs and IPs in a system.

Cardcage size is independent of backplane size
for fiexibility in system configuration. A cardcage
can accommodate any combination of back-
planes, limited only by the physical number of
board slots in the cardcage. Figure 7 suggests
backplane and cardcage combinations.

A stylized, powered and cooled chassis is offered
that may be rack or table top mounted. The
chassis includes an 18 slot cardcage that can ac-
commodate various backplane configurations.

The System 432/670 is the mid-range member of
the integrated 32-bit computer product line.
Enclosed in a rack or table top mountable
powered and cooled chassis the System 432/670
includes two General Data Processors, one Inter-
face Processor, and 512 kbytes of ECC memory.
The System 432/670 includes a 12 slot System Bus
backplane that can accommodate subsystem ex-
pansion to include two additional GDPs and con-
nections to remote /O subsystems as well as a
total of 1.5 Megabytes of ECC memory. The
enclosed MULTIBUS /O subsystem includes an

SBC 86/12A attached processor with a total of 32
kbytes of EPROM/ROM, 64 kbytes of RAM, and
three MULTIBUS backplane slots for user con-
figuration.

RELIABILITY AND FIELD MAINTENANCE

Specific hardware design features that enhance
the reliability of the System 432/600 include the
highly integrated processors; error correction and
detection on the RAM storage array; parity check-
ing on all address and data paths; and type check-
ing on accesses to memory data structures.

An Error Correcting Code (ECC) insures the integ-
rity of data stored in memory. A seven bit code is
used for each 32-bit memory word. This feature
allows for single bit error correction and double
bit error detection on each of the storage
modules.

Parity bits are generated for each byte of address,
data, and access specification on the System Bus
as well as the on-board busses and the link cable.
This mechanism protects the system from propa-
gation of noise induced errors as well as the
failure of discrete logic components.

[6 SLOT CARDCAGE 1
| 6SLOT SYSTEM BUS]
BACKPLANES
| 6 SLOT MULTIBUS™ |
| 12 SLOT CARDCAGE |
.
] 12 SLOT SYSTEM BUS j
| 6 SLOT SYSTEM BUS 11 6 SLOT MULTIBUS™ |
BACKPLANES
I 12 SLOT MULTIBUS™]
L1 6 SLOT MULTIBUS™ | 1 6 SLOT MULTIBUS™ |

| 18 SLOT CARDCAGE |

18 SLOT SYSTEM BUS i

12 SLOT MULTIBUS™ l

[1
1]

| 12 SLOT SYSTEM BUS

| |
| |
|

6 SLOT MULTIBUS™ |

BACKPLANES 1 I 6 SLOT SYSTEM BUS

I 6 SLOT SYSTEM BUS 6 SLOT MULTIBUS™ 6 SLOT MULTIBUS™ J

6:SLOT MULTIBUS™ 6 SLOT MULTIBUS™ 6 SLOT MULTIBUS™ l

Figure 7. Suggested Cardcage and Backplane Combinations

6 AFN-01871A-4

intel

432/600

PRELIMINARY

A series of hardware managed registers located
on the Memory Controller board allow for logging
and analysis of system errors. A global view of the
error state of the system is maintained in the
System Error Register.

More detailed error information is stored in the
Memory Error Registers and the Processor Error
Register. The memory error registers contain in-
formation about the particular access that
resulted in the error logged in the System Error
Register. This register stores the identification of
the processor making the request, the word ad-
dress of the memory failure, and a pointer to the
particular bit that failed. The Processor Error
Register identifies any processor(s) in a fatal state
and any parity error that may have occurred on a
data transfer initiated by a processor. Software
executing on any processor (GDP or AP) can ac-
cess all three registers.

A software diagnostic package is offered in the
form of a two-level set of programs. At the first
level is a system validator designed to provide a
basic system confidence test during initialization
or maintenance activities. The second level in-
cludes a modular set of programs designed to
identify the faulty board(s) within a system.

The diagnostic programs begin execution on the
attached processor, first testing the Interface Pro-
cessor and then the IPLk interconnect to the
System Bus. The Memory Controller, Storage Ar-
ray module(s) and General Data Processor(s) are
then tested in sequence to verify the proper func-
tioning of those modules. The diagnostic software
provides sufficient resolution to allow program-
matic board level fault isolation and repair by
board replacement.

REAL TIME SOFTWARE

Intel’s IMAX 432 Multifunction Applications Exec-
utive software, specifically designed for the 432
product line, provides the execution environment
to support the advanced features of the architec-
ture. IMAX 432 is a modular collection of software
packages that can be configured to meet specific
application needs. Packages can be added by the
user to extend the capabilities of the executive.

SYSTEM DEVELOPMENT CAPABILITIES

The software development environment for
System 432/600 products includes a compiler and
a linker operating on a host computer; a loader
and debugger running on an Intellec Series Il (or I
upgrade) Microcomputer Development System;
and the System 432/670 as an execution vehicle. A
2780/3780 communications link ties the host to
the Intellec Development System. An IP board
from the execution vehicle plugs into the
MULTIBUS backplane of the Intellec Development
System to provide the logical and electrical inter-
connection between the two.

The systems implementation language for the 432
family of products is based on the Department of
Defense standard language Ada. Inspired by
Pascal, Ada allows programmers to realize the
productivity promised by modern language in-
novations such as strong typing, data abstraction,
and modularity. A true superset of standard Ada,
the systems implementation language provides
full access to the 432 architecture and supports
the more general multitasking and run time
facilities. Any standard Ada program will run cor-
rectly on a System 432/600 computer.

SPECIFICATIONS

Technology

PROCESSORS — HMOS VLSI General Data Pro-
cessors and Interface Processors.

MAIN MEMORY — MOS, 150ns-200ns, Dynamic
RAM.

BOARDS — Low power Schottky and Schottky
TTL interconnect logic.

Data Processing

PROCESSOR — iAPX 432 General Data Pro-
cessor. 1-5 GDPs per system.

HARDWARE FLOATING POINT — Full proposed
IEEE standard floating point.

INSTRUCTIONS — Over 200 instructions; bit
variable, frequency encoded.

ADDRESSING — 4 Mbytes physical, 1 terabyte
(2**40) virtual.

ADDRESSING MODES — Scalar, static vector,
dynamic vector, record.

DATA TYPES — 8-bit characters; 16-, 32-bit in-
tegers; 16-, 32-bit ordinals; 32-, 64-, 80-bit reals.

Memory

TYPE — MOS, 150ns-200ns, 64K or 32K Dynamic
RAM.

ORGANIZATION — 32 bits data plus 7 bits ECC.

AFN-01871A-4

intel

432/600

PRELIMINARY

PHYSICAL — Up to 4 Mbytes.
GRANULARITY — 128 and 256 kbyte increments.
ACCESS LENGTHS — 1, 2, 4, 6, 8 and 10 bytes.

MEMORY ACCESS BANDWIDTH — 6.5 Mbytes
per second sustained.

10

110 PROCESSOR — iAPX 432 Interface Processor.
1-5 IPs per system.

IP LINK BANDWIDTH — 2.25 Mbytes per second
sustained, Multibus to 432 memory.

IP LINK DATA PATH — 16 bits data plus 2 parity
bits.

IP LINK LENGTH — Up to 10 ft. @ 8 MHz clock
rate.

ATTACHED PROCESSOR — Any Intel SBC or
MULTIBUS compatible user device.

System Bus
DATA PATH — 32 bits data plus 4 parity bits.
CLOCK — 8 MHz.

BUS BANDWIDTH — 6.5 Mbytes per second sus-
tained.

Circuit Boards
PHYSICAL DIMENSIONS (Individual Boards)

Width — 12.00 in. (30.48 cm)
Height — 6.75 in. (17.15 cm)
Depth — 0.56 in. (1.43 cm)

ELECTRICAL REQUIREMENTS
Single +5 (x10%) volt supply.

Current @ + 5 Volts

Board (Worst Case Max.)
iSBC 432/601 (GDP) 7.0
iSBC 432/602 (IP) 5.5
iSBC 432/603 (IPLk) 6.5
iSBC 432/604 (MC) 6.5
iSBC 432/606 (128kB) 7.0
iSBC 432/607 (256kB) 7.0

ENVIRONMENTAL REQUIREMENTS

Operating Temperature — 0° to 55°C ambient
Relative Humidity — 10%-90% non-condensing
Air Flow — 300 LFPM air flow over boards.

Cardcages
PHYSICAL DIMENSIONS
6 slot cardcage:

Width 13.00 in. (33.02 cm)
Depth 4.88 in. (12.04 cm)
Height 8.25 in. (21.00 cm)

12 slot cardcage:

Width 13.00 in. (33.02 cm)
Depth 9.13in. (23.19 cm)
Height 8.25 in. (21.00 cm)

18 slot cardcage:

Width 13.00 in. (33.02 cm)
Depth 13.38 in. (33.99 cm)
Height 8.25 in. (21.00 cm)

Chassis
PHYSICAL DIMENSIONS

Width — 16.76 in. (42.57 cm), RETMA compatible
Height — 12.23 in. (31.06 cm)
Depth — 21.75 in. (55.25 cm)

POWER SUPPLY CHARACTERISTICS

Channel Ratings (Max.) — 120 amps @ + 5 volts;
10 amps @ + 12 volts; 4 amps @ — 12 volts; 2
amps @ — 5 volts.

Maximum Supply Loadings — 750 watts, total
over four channels.

Input Power Requirements (Max.) — 11 amps @
115 volts ac (+ 10%, —20%), 62-47 Hz optional:
220V ac, 50 Hz.

CERTIFICATIONS

UL Listed, FCC and CSA certified. Designed to
meet VDE EMI requirements.

Reference Manual

System 432/600 Reference Manual (NOT SUP-
PLIED).

Reference manuals are shipped with each product
only if designated SUPPLIED (see above). Manuals
may be ordered from any Intel Sales Represen-
tative, Distributor Office, or from Intel Literature
Department, 3065 Bowers Avenue, Santa Clara,
California 95037.

Related Documents

Intel 432 System Summary 171867-001
Introduction to the iAPX 432 171821-001
Architecture

iAPX 432 General Data Processor 171860-001
Architecture Reference Manual

iAPX 432 Interface Processor 171863-001
Architecture Reference Manual

iMAX 432 Advance 171866-001
Information Sheet

Intellec Series 111/432 171868-001

Development System Data Sheet

AFN-01871A-4

intel 4321600 PRELIMINARY
ORDERING INFORMATION Part

Part Number Description
Number Description BUILDING BLOCKS:

INTEGRATED SYSTEMS:
SYS 432/670 Integrated 32-bit computer in-

cluding:

2 - General data processors
(SBC 432/601)

1 - Memory controller
(SBC 432/604)

2 - 256 kbyte storage array
boards (SBC 432/607)

1 - Interface processor link
board (SBC 432/603)

1 - Interface processor board
(SBC 432/602)

1 - 12 slot system bus backplane
(SBC 432/611)

1-6 slot MULTIBUS backplane
(SBC 432/615)

1 - Enclosed chassis with 18 slot
cardcage (SBC 432/630)

1 - Attached processor
(SBC 86/12A)

1 - 16 kbyte Multimodule
EPROM (SBC 340)

1 - 32 kbyte Multimodule
RAM (SBC 300)

Data Processor Modules:

SBC 432/601

General data processor board

Memory Modules:

SBC 432/604
SBC 432/606

SBC 432/607

1/O Modules:
SBC 432/602
SBC 432/603

Backplanes:
SBC 432/610
SBC 432/611
SBC 432/612
SBC 432/615
SBC 432/616

Cardcages:
SBC 432/620
SBC 432/621
SBC 432/622

Chassis:
SBC 432/630

Accessories:
SBC 432/635
SBC 432/636
SBC 432/637

SBC 432/638

Memory controller board

128 kbyte dynamic RAM storage
board with ECC

256 kbyte dynamic RAM storage
board with ECC

Interface processor board
Interface processor link board

6 slot system bus backplane
12 slot system bus backplane
18 slot system bus backplane
6 slot MULTIBUS backplane
12 slot MULTIBUS backplane

6 slot cardcage
12 slot cardcage
18 slot cardcage

Enclosed, powered, and cooled
chassis with 18 siot cardcage

System bus extender card
Interface processor link cable
kit (external, shielded)

Interface processor link cable
kit (internal, ribbon)

Interface processor link cable
(external, 6 ft. shielded)

AFN-01871A-4

intel

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA ¢ (408) 734-8102 x598

AFN-01871A-4

f
bl

i

&

1981

FEBRUARY 24

Elect

SOFTWARE SHAPES VLS| PROCESSOR

®

HILL PUBLICATION

AW-

8
S

Mc GR

AR 165

S
RSN

e e
s G S SR o
S R d P P e
Ao s B hon AR
. i L
. s . ‘ W
N R EN s . .
; . . 3 o
. : W .

Ada determines architecture
of 32-bit microprocessor

Its use of the high-level language makes the chip set easy to program
for multiuser, multifunction applications like office systems

by Justin Rattner and William W. Lattin inter corp., Aicha, ore.

[J Generation after generation, micro-
processors increase in sophistication.
And the time and cost of developing
new applications for them escalates
also, till by now skilled system design-
ers and programmers are in very short

1
Y

-
B3

gt 1
\'l '-r‘ \\'
gl
A i
s

supply. e
Anticipating this critical situation, g

Intel Corp. undertook to develop a
microcomputer system that can be
made to handle complex, software-
intensive applications in much less time

.- 3

quences to human life or the cost of
doing business, so that long-term
dependability of both hardware and
software is essential.

Those characteristics of cooperative
multifunction applications guided the
432 designers to its major goals. The
breadth of computing power required,
in terms of both function and perform-
ance, includes support for multipro-
grammed and virtual memory operat-
ing systems; as such, ultimate perform-

and at much lower cost than has been

usual. The project encompassed nearly all aspects of
computer technology and resulted in the development of
a new semiconductor process— high-performance MOS,
or H-MOS—a new package with a high pin count-—the
quad in-line package or QUIP—and three of the largest
integrated circuits in history (see “A history of the
Aloha project,” p. 125).

Its crowning achievement thus far is a 32-bit micro-
processor —the iAPX 432 —that has a major new archi-
tecture, a new operating system (iMAX), and one of the
first compilers for Ada, the Department of Defense’s
new standard programming language.

As the first 32-bit microprocessor designed specially
for multiuser applications, the two-chip general data
processor (GDP) is a significant milestone in computer
technology (Figs. 1 and 2). Together with the single-chip
interface processor (IP) shown in Fig. 3, it was designed
to serve the kind of cooperative, multifunction applica-
tions typified by future office information equipment
and distributed data-processing systems. Similar systems
are also envisioned for use in computer-aided design and
factory automation.

Cooperative multifunction applications share four
important characteristics. They are large in scale and
broad in scope, requiring mainframe computing power.
They are software-intensive, each discrete function or
service requiring considerable programming. They are
expected to evolve over time, so the design must allow for
future software enhancement and increments in per-
formance. Finally, they are applications where the fail-
ure of the computer system can have serious conse-

ance for fully configured systems was to
be that of a mid-range mainframe.

Further, it was decided that the long-dreamed-of
incremental performance capability —adding power to a
432-based product already in the field simply by plug-
ging in additional GDPs and IPs—would gracefully
accommodate planned or even unplanned growth in com-
putational power over the life of an application. The goal
of increased programmer productivity was met by sup-
porting a comprehensive methodology for modular soft-
ware development, served by using Ada as the 432’s
native tongue. And finally, to ensure high hardware and
software dependability, the 432 includes extensive hard-
ware fault detection and software-protection mecha-
nisms.

Transparent muitiprocessing

Through careful attention to multiprocessing issues in
the definition of both its system organization and its
architecture, the 432 successfully implements the long-
sought-after idea of transparent multiprocessing for gen-
eral-purpose computation. This simple but important
concept means that the number of data processors in a
432 system can be increased or decreased without soft-
ware modification. It is even possible to start or stop a
processor at any time without informing, let alone dam-
aging, a single piece of software. More importantly,
neither the operating system nor the application pro-
grams need rewriting to exploit an increase in the num-
ber of processors.

A principal challenge in the development of any multi-
processing system is the design of the interconnection

119

. Instruction decoding. One of the two chips that make up the
general data processor, the 43201 is the instruction decoder. it
contains more than 100,000 devices on a single die, making it one of
the densest VLSI circuits to have been fabricated so far.

structure that ties the processors and memory subsystem
together. The 432 approach to this problem is unusual:
rather than define a standard bus, the 432 simply defines
a standard way for processors to communicate with
memory and each other. This frees the designer to
choose his own bus structure, optimizing the cost/per-
formance ratio of the application. All 432 processors are
compatible with the interconnect protocol.

The main goal of the interconnect protocol is to reduce
bus use. For that reason, it puts requests and replies in
separate packets, so that the first need not monopolize
the bus while waiting for the second. For example, a
processor generates a request packet in order to access
memory but expects a reply packet (Fig. 4) from the
memory system only if the request specified a read cycle.
The result is that the processor ties up the bus only long
enough to transmit a packet to the interconnect; some-
time later a reply packet will be returned, if necessary, to
the requesting processor. In the interval, other processors
may be active on the interconnection.

For still greater efficiency, the protocol defines pack-
ets as variable in length. A single request or reply may
transmit from 1 to 16 bytes of information. Fewer indi-
vidual storage accesses need be made to obtain long
operands, and designers using the 432 can improve sys-
tem performance by widening the interconnect’s bus.

Communication between processors is one of several
additional functions supported by the interconnect proto-
col. Because of the packet format, a processor can send
an attention signal to one processor or broadcast it to
several processors simultaneously. Upon receiving a sig-
nal, a processor examines an interprocessor message area
defined in memory. The message previously deposited
there by the sending processor will instruct the receiving
processor as to the desired course of action. Typical

120

2. Microexecution unit. Decoded instructions from the 43201 are
executed by the 43202, which has over 60,000 devices on chip. its
unusual horseshoe-shaped data bus can be discerned from the
photograph. The device is housed in a 64-pin quad in-line package.

interprocessor messages can direct either one or a set of
processors to start, stop and redispatch.

Many bus structures can be designed to meet the 432
packet protocol. A simple, single bus interconnect imple-
mented in discrete logic is shown in Fig. 5. On this bus,
the packets are demultiplexed as they leave the proces-
sors. The separate address and data lines are interfaced
to a static memory subsystem in the conventional way.
Up to four processors can be supported without serious
contention by this simple interconnect.

A conventional mainframe often offloads onto a mini-
computer all responsibility for low-level device control
and data transfers. The 432 general data processor
(GDP) uses an attached input/output processor in the
same way. Device driver execution, device interrupts,
direct-memory-access channel initialization are all han-
dled within the 1/0 subsystem.

Offloading 1/ O chores

A typical 170 subsystem is built around a Multibus or
other standard microprocessor system. A standard
microprocessor, such as an 8086, is connected to the bus
along with memories and peripheral devices to form a
complete, attached 170 processor.

The GDP is connected to the microprocessor-based 170
subsystem by the 432 interface processor (iP). Under
software control, a group of programmable, associative
memories in the IP called window registers can be
programmed to map a subsystem’s address space into the
432’s, The mapping operation is totally transparent to
the attached 170 processor, so that both read and write

3. Input/output support. The single-chip interface processor,
432083, offloads the general data processor of the tasks involved in
communicating with input/output devices. it includes 65,000 devices
and can emulate many of the general processor’s instructions.

cycles on the subsystem bus can proceed normally.

All communication in the 432’s central system is
based on messages and not interrupts. The IP receives
those messages sent to an /0 subsystem and holds them
in its window registers while signaling the 1/0 processor
with an interrupt. The 1/0 processor then fetches the
message through the 1P window.

Communication in the opposite direction is slightly
more complex. Since conventional interrupts do not exist
in the central 432 system, the IP must give the attached
processor the ability to send messages in the same way as
a 432 data processor. The iP looks like a memory-
mapped peripheral to the /O subsystem as the latter
writes commands to the IP registers. In passing those
messages into the central system the microprogrammed
logic of the IP emulates many of the same functions
found in the high-level instruction set of the 432 data
processor. Among the available commands is one to send
message. Consequently a 432 data processor cannot
detect any difference between messages sent by an IP
and those sent by another data processor.

Multiple 170 subsystems may also be used to incre-
mentally increase 170 processing power much as mulitple
data processors increase processing power for general
computation. By multiprocessing both 1/0 and data, the
432 serves many more applications than existing micro-
computer systems can and meets the major goal of
incremental, field-expandable, processing capability.

On chip

The processing units of the 432 are designed to exploit
very large-scale integrated H-MOS technology to the full,
The two-chip 43201/2 GDP, whose microphotographs
appear in Figs. 1 and 2, contains 160,000 transistors.

Over 100,000 devices are on the 43201 alone. The
single-chip IP in Fig. 3 holds roughly 65,000 transistors.
Each of the three 432 chips is housed in a 64-pin QUIP,
as shown in Fig. 6 [Electronics, Jan. 4, 1978, p. 130], and
each dissipates less than 2.5 watts of power from a single
5-volt supply. Two-phase clocking at 8 megahertz yields
the nominal 125-nanosecond microcycle time.

These complex components could not have been devel-
oped without several advances in design techniques and
tools. Among these was the use of regular logic struc-
tures and wiring topologies.

This technique, developed almost simultaneously at
Intel by Sam Schwartz and at the California Institute of
Technology by Carver Mead, dramatically reduces the
number of randomly drawn transistors. Creating a struc-
tured integrated circuit design is hard but gets easier
with practice. The niicrographs reveal a general increase
in geometric regularity from the earliest of the chips to
be developed, the 43201, to the latest, the 43203.

Both the GDP and the IP are microprogrammed and
rely on high-performance microarchitectures to mini-
mize microprogram size. The two-chip GDP contains a
4-K-by-16-bit microprogram ROM, and the IP contains a
2-K-by-16-bit ROM. The physical size of the IP’s micro-
program ROM is further reduced by having 2 bits stored
in each ROM cell, a technique developed for the 8087
numeric data processor [Electronics, Oct. 9, 1980, p. 39]
and improved upon in the 432.

The last two entries of Table 1 mention two of the
more interesting functional capabilities of the 43201 and
43202. The address generator on the 43202 is responsi-
ble for mapping or translating 432 logical addresses into
the physical addresses used to access the memory sys-
tem. To accelerate the translation process, the address
generator maintains a cache of recently used addresses,
so that a new entry automatically replaces the one least
recently used.

The silicon operating system is largely in microcode
with some simple hardware assistance. Consequently the
execution time for a typical operation like “send mes-
sage” is five times faster than for a highly tuned mini-
computer operating system and 20 to 30 times faster
than for the best mainframe operating system.

Table 2 describes the allocation of microcode in the
43201/2 data processor and provides one of the most

iAPX 432
PROCESSOR

]

REQUEST — ADDRESS, BYTE COUNT,
REQUEST TYPE

MEMORY
SUBSYSTEM

REPLY — DATA

4. Quantized memory requests. Since memory is shared by sever-
al processors, requests to access it are optimized by being quantized
into packets. A processor controls the bus just long enough to make
a request and receives a reply only if the request was to read.

121

ADDRESS
BUFFER

DATA
BUFFER

iAPX 43201
DATA
PROCESSOR

iAPX 43202
DATA
PROCESSOR

TIMING
CONTROL

BUS
ARBITRATION
LOGIC LOGIC

ADDRESS
LATCH AND
INCREMENT

MEMORY
ARRAY

DATA
BUFFER
AND SWAP

ADDRESS
BUFFER

DATA
BUFFER

iAPX 43201 iAPX 43202

5. Many bus structures. lllustrated is the minimal bus structure consistent with the iAPX 432 architecture. Many other configurations are
possible as long as they adhere to the quantized packet protocol of the 432. For example, a faster bus might use wider data paths.

important clues to the functional power of its microar-
chitecture: only 6% of the total microprogram is required
to implement the basic instruction set. The low percent-
age is due to the close match between the basic instruc-
tion set and the microinstructions. Many instructions can
be executed by just a single microinstruction. These
microinstructions emerge directly from the instruction
decoder located on the 43201 and therefore do not take
up space in the main microprogram ROM.

Virtual addresses

Virtual addressing, another important 432 function,
uses only 7% of microprogram space on the 43201. This
percentage is kept small by a little extra hardware, in the
form of back-up copies of certain key registers. When a
requested memory segment is not in RAM, microcode can
restore the machine to the state it was in when the
requesting instruction started. System software can then
bring the missing segment in from secondary storage and
execute the instruction afresh. The entire operation is
transparent to the executing program.

Table 2 also shows that a large amount of microcode
is devoted to the silicon operating system. Many of the
high-level 432 instructions, such as send message, are
included in this total. Equivalent functions, programmed
in the instruction set of a fypical microprocessor, would
take four to eight times as many bits.

All 432 components are designed to operate in two
modes so that highly fault-sensitive systems can be built

122

from them. In the master mode, a component operates
normally. But in the checker mode—a feature never
before found in a microprocessor—all the pins that
would normally operate as outputs reverse themselves to
function in a special input mode. Instead of asserting
output data, they sample the states of their signal lines.
The sampled data is compared internally, by an exclu-
sive-OR gate built into each output stage, with the data
that would have been asserted in master mode. A mis-
match on any pin indicates an error.

A fault-sensitive unit is formed, as shown in Fig. 7, by
simply wiring together two identical 432 components.
One chip is placed in the master mode and the other in
the checker mode by asserting the checker-mode pin.
Any error signal asserted by the checker is routed to a
special input on the master. In operation, the master and
checker stay in lock-step synchrony. Any disagreement
apparent at the output pins of the master is flagged
immediately by the checker and freezes the operation of
both units.

Longer and shorter

The instruction formats are designed to simplify and
to reduce the size of code. Consequently, instructions
vary in length and have from zero- to three-operand
references. The operand addressing modes are modeled
after the structures found in high-level languages like
Ada to support scalar, vector, and record data types.
These correspond roughly to the base-plus-displacement,

6. Quad in-line package. To house the 432 devices, a:more reliable package was developed. The QUIP combines a leadless chip-carrier with
a socket that has four staggered rows of pins on 100-mil centers. A metal clip helps dissipate heat, and test points are easily accessible.

base-plus-index, and base-plus-displacement-plus-index
addressing modes, respectively, found in conventional
machines. Instructions also never refer to a register,
since registers can be hard to manage during compila-
tion. Instead, operands may come either from memory or
from the hardware-supported expression-evaluation
stack. Any mix of memory or stack-based operands is
allowed. Lastly, the instructions may start and end on
any bit boundaries. Naturally, branch instructions are
designed to branch to a bit location, too.

With instruction formats such as these, the most fre-
quent statements of a high-level language like Ada com-
pile to single 432 instructions. Some examples are shown
in Fig. 8, along with the corresponding instruction
lengths (in bits).

An object orientation

The 432 has an object-oriented architecture. Objects
provide an identical framework for everything from a
simple piece of data, like a byte, to a message being sent
to another processor. They are responsible for most of
the facilities found in the 432 architecture, including
basic computation, language run-time environment,
resource management, interprocess communication, and
protected addressing.

A data object supports basic computation. It is simply
a linear, logical address space from 1-K to 64-K bytes in
length. Any type of binary data can be stored in a data
object, and a given element within the object is accessed

by specifying its byte displacement from the starting
address of the object. The complete logical address of a
single data item, as found in the operand fields of a
typical instruction, contains both the displacement and
the program’s local name (or nickname) for the data
object. This short, local object name selects the much
longer access descriptor, which indicates the location of
the object’s full name (or absolute address). The local
name often runs as few as 6 bits in an operand reference.

More than ordinary

Just as data objects support basic computation in the
432, more complex objects are used to support higher-
level functions. The hardware knows from their descrip-
tor-type code that they contain more than just ordinary

" . . . EAe(;ution time

Functional unit Typical operation at 8 MHz (us)
Variable-precision 32-bit integer 6.25 (16 uson
integer arithmetic unit multiply I1BM 370/148)
Microprogrammed 80-bit floating 26,125
floating-point multiply (38.5 uson
arithmetic unit 1BM 370/148)
Barrel-shift unit 32-bit field 1.875

extract

Address generator with 32-bit memory 0.75
associative cache of least access
recently used addresses
Silicon operating system send -message 80.875

123

Function Percentage

Basic instruction set 3,680 6
Floating-point arithmetic 11,680 18
Run-time environment 6,400 10
Virtual addressing 4,800

Fault handling 2,640 4
Silicon operating system 26,400 40
Multiprocessor control 8,640 13
Debug services 1,280 2
Total 64-K 100

data and uses that knowledge to implement many func-
tions carried out by software on conventional machines.
The hardware-recognized objects are referred to
generically as system objects.

System objects include domain objects and context
objects. Both of these primarily support the run-time
environments of high-level languages.

A domain object represents the addressing environ-
ment of a program module. Contained within the domain
object are all the access descriptors for both the module’s
instruction objects and its data objects. The domain also
contains links to other domains and thus is part of a
network of domains representing a completely linked
but still modular program.

A domain is actually composed of two parts—public
and private—that are analogous to the interface and
body portions of an Ada package [Electronics, Feb. 10,
1981, p. 127]. The public part contains the links to the
objects defined by a module’s interface specification,
while the links to other objects not defined in the inter-
face but used to implement the module are located in the
private part. Only objects whose links are found in the
public part of a domain object can be accessed from
other connected domains.

Context objects support the dynamic allocation of
memory every time they are activated. A context is
created dynamically when a procedure is called and is
deleted dynamically when the procedure returns. Since a
new context is created for every activation, contexts
directly support shared, recursive, and re-entrant proce-

MASTER MODE ————]

4320% _—
COMPONENT) OUTPUTS

INPUTS §

CHECKER
MODE ——

4320X

COMPONENT ¥

—— ERROR

7. Error-checking mode. Each 432 chip has a checker mode as
well as a master mode. Two devices can be wired in parallel and one
put in the checker mode to duplicate all the operations of the master
and signal an error when it detects a discrepancy.

124

dures. Their second major function is to provide each
procedure activation with a data object for its local data
and an operand stack for expression evaluation.

The remaining 432 system objects support the hard-
ware-based operating system services called the silicon
operating system. A data structure representing an indi-
vidual GDP is called a processor object. There is one
processor object for each physical GDP in a 432 system.

Some more objects

An object representing an independent concurrent
program or task is called a process object. Processes may
be scheduled to run on a processor and thus represent a
claim on some part of the system’s total processing
resources. A process object contains, among other things,
the priority of that process.

An object representing a portion of the allocatable or
free storage in the system is called a storage resource
object. Many such objects may exist in a system to
partition storage in accordance with claims and grants.
Through storage resource objects, new objects are Cre-
ated dynamically for software by the hardware.

A very flexible object that is used to support the
buffered transmission of messages between processes, or
programs, is called a port object. Port objects also
support the scheduling and dispatching of processes on
multiple processors-in a multiprogrammed fashion. Ports
are able to serve both functions because scheduling and
dispatching is modeled as sending a message (the process
object) to a process (the processor). In practice, the
message is nothing more than an access descriptor. Since
an access descriptor can reference any object, the send
instruction can be used to send any object and, hence,
any complex message. A message might be a data object
containing a string of text or a complex object including
executable code and perhaps representing an important
system resource. Objects, therefore, present a consistent
framework in which both processes and processors may
communicate conveniently.

Object addressing

Objects are stored in pieces of the address space called
segments. Simple objects can be stored by a single
segment, but complex ones may occupy many of them.
Important information about each object, including its
type and location in physical memory, is found in its
object descriptor. An object is always addressed via this
descriptor, the location of which is indicated by an access
descriptor (Fig. 9).

Length information is used to protect the object from
out-of-range addresses, and presence information, along
with other data in the object descriptor, is used to
implement virtual memory. To simplify storage manage-
ment, all object descriptors are grouped in a central
table. Naturally, the object table is an object, too, and its
object descriptor is contained within itself.

To select or refer to an object requires a 32-bit access
descriptor that contains the identity of the object it
references. Bach access descriptor also contains other
information to help control access to the object to which
it refers. Different access rights can be represented by
different access descriptors for the same object. This fact

The IAPX 432 32-bit microprocessor has been in gestation
for over six years, a third of that time in Santa Clara, Calif.,
and the remainder in Aloha, Ore. There its development
eventually became known as the special systems opera-
tion, or SSO, with Jean-Claude Cornet as director. But its
shroud of privacy led some to think SSO stood for “secret
systems operation.”

In the beginning the 432 was called the 8816, then the
8800. It had to be given a number because at Intel, “as
soon as you give something a number, it is instantly
perceived as this little thing with side-brazed connections
coming out of it,”" jokes principal engineer Justin R. Ratt-
ner (see photo). By November of 1975 the endeavor had
coalesced into a working unit under William ‘W. Lattin. He
remained 432 program manager until April of last year,
when he moved over to another Intel division.

The original idea was to ‘‘do something interesting’” with
very large-scale integration, but with Schottky TTL per-
formance. The team looked at and then discarded a
double-diffused MOS process and a modified charge-
coupled-device structure, before it finally came up with a
short-channel technology that could squeeze 100,000
transistors-onto a single chip yet still support future geom-
etry reductions. It was the birth of the high-performance
MQS, or H-MOS, process.

After some preliminary design work, the group pre-
sented prospective users with a specification. “They were
responsible for our emphasis on multiprocessing,” says
Rattner. It was the No. 1 thing they wanted.”” Back then,
the notion of software objects as a way of simplifying
programming barely existed. ‘‘But suggested mechanisms
began to get very ad hoc,” he adds. “Every new feature
seemed to involve a different machine facility, a different
hardware unit.”

Early one Saturday morning Rattner woke up convinced
software objects were the solution. **| wrote for about six
hours and called George Cox [a staff scientist], and that
Sunday morning we met at Intel to start working out the

details,” he recalls.

Then came the hardware desigh, which “made exten-
sive use of regular logic cells and wiring topologies, very
much along the lines of the work done at Cal Tech” by

A history of the Aloha project

Carver Mead, who had begun consulting on the project in
1975. “"We knew we couldn’t just randomly wire 100,000
transistors,” so computer-aided design and simulation
tools had to be designed.

Portions of the chips’ architecture were implemented
directly in silicon—so intimately that they have no logic-
gate equivalent. “‘We looked at each function, but instead
of drawing a logic diagram and figuring out a gate imple-
mentation, we asked if there was a way to do it with MOS
transistors directly,” says Rattner. For the processor's
control store, the team adapted a read-only memory cell
designed for the 8087 numeric processor that stores 2 bits
[Electronics, Oct. 9, 1980, p. 39]. Without tricks like the
ROM cell, ““the chips couldn’t have been built.”

Rattner feels the modular design methodology was “a
spectacular success.”” At least one of the chips, the com-
plex execution unit, “‘could have been shipped in sample
quantities the first day out of fab,” he says, adding that all
in all, “productivity was five, six, seven times that of some
other Intel projects.”

The SSO now employs over 100 engineers designing
follow-on board computers and design aids for the 432
family. Many of them have worked with minicomputer or
larger machines in the past, as also has marketing manag-
er Dave Best.

The project “‘cost a bundle,” says Best, adding that “it
was the largest investment in a single program that Intel
has ever made—larger even than the magnetic stuff,” the
bubble memories. -John G. Posa

is the basis of the 432’s need-to-know protection system:
in order to refer to an object, a program must contain an
access descriptor for it; a program may only access an
object according to privilege rights encoded in the access
descriptor it holds.

Access descriptors are found only in a special type of
segment called an access segment. This protects the
integrity of access descriptors by preventing them from
being treated as ordinary data. Only certain instructions
are permitted to move or manipulate access descriptors.

Selective entry

An access descriptor selects one of the 2% entries in
the object table, and each entry can specify a single-
segment object of up to 2'6 bytes. That gives a system-
wide logical address space of 29—1 trillion—bytes of
information. At any instant, however, the logical
addressing environment of a program is restricted to 2'¢
objects of up to 2'¢ bytes, or 4 gigabytes. The instanta-

neous addressing environment is represented by four
access segments, each of which is limited to 2! access
descriptors.

To implement the 432’s two-level addressing architec-
ture efficiently, each processor contains a buffer or cache
of the most recently used object addresses. Cache data
made stale by a software alteration of an object descrip-
tor (which is a relatively infrequent occurrence) can be
flushed by the operating system through interprocessor
communication.

The key computing resources of the 432, unlike con-
ventional systems, are controlled by hardware-defined
system objects rather than by user-supplied software.
This difference dramatically changes the way resources
are managed by, and ultimately the structure of, the
entire system.

For each type of system object, the hardware automat-
ically handles some part of the operations that can be
carried out on an object. Some of the operations are

125

40 [

a=b; | MOVE & a, b FORMAT, TYPE|
43 i]
a=asb; | MULTIPLY a, b FORMAT, TYPE|
59 0
a=bec; [MULTIPLY a b c FORMAT, TYPE|

83 0
alik: = b{j} = c(k); l MULTIF’LYI a(i)l b(])‘ c(k)' FORMAT‘ TYPEI

OBJECT >
ACCESS DESCRIPTOR
DESCRIPTOR
P BASE ADDRESS ‘
IDENTIFICATION LENETH OBJECT
AND ACCESS ™ I VIRTUZZ:AEEMORY o
RIGHTS CONTROL
R

8. Variable-size instructions. Since users are not expected to
program the 432 in assembly language, its instructions are not
aligned on convenient byte boundaries but instead can be any length
of bits. The statements illustrated compile to single 432 instructions.

available as instructions, while others are involved only
when the hardware determines, independently of any
particular instruction, that the operation is needed, such
as fetching an absent memory segment. Software is
responsible for providing the remainder of the operations
defining the complete interface to the object.

This organization presents an important hardware-
software tradeoff, involving just which operations should
be put into hardware and which would be better left to
software. In the 432, the decision to put an operation in
hardware is based on one of three factors. First, the
timing of an operation may be critical, affecting overall
system performance in a fundamental way. Second, an
operation may be security-critical, affecting the integrity
of the protection system and the isolation of important
information. Third, its reliability may be critical, affect-
ing the ability of the system to function correctly in
delicate programming situations.

The software part of the object management function
is still by no means trivial. Software is largely responsi-
ble for creating new objects and disposing of old ones.

Generally speaking, objects work to remove the tradi-
tional barriers between the operating system and the
application environment. The packages that make up
iMAX are tools with which the user may build an appli-
cation. If the iMAX package for a particular service is
not quite right, the user is free to replace it with a
package of different design.

Ada: implementation language

Ada, the Department of Defense’s new standard pro-
gramming language, is an ideal systems implementation
language for the 432. The goals established for Ada’s
design were very like those set for the 432 since the
language’s designers drew upon the same body of
research. The ultimate goals of both Ada and the 432
are increased programmer productivity, increased soft-
ware reliability, and low software life-cycle costs.

Ada is inspired by the Pascal language and has much
in common with it. But it differs from Pascal, and moves
far beyond the older high-level language, in its support
for large-scale, modular software. While several
attempts have been made to repair this deficiency in

126

9. Address calculations. All memory requests are calculated via a
two-level operation in which an access descriptor points to an object
descriptor and the object descriptor in turn indicates the location and
size of the desired memory contents (called an object).

Pascal, none has been widely accepted or used. Ada
makes these efforts obsolete.

Through its “package” construct, Ada provides a nat-
ural way to put together large programs based on
object-oriented modularization. A package defines an
object and the operations that can be done on it. Follow-
ing the object-oriented view further, a package restricts
access to an object as specified in a separate interface
portion and thus succeeds in hiding the details of its
implementation. .

Ada turns out to be an ideal language for the 432 not
only because they embody the same idea of modulariza-
tion but because many Ada constructs map directly onto
the hardware. For example, the Ada package construct
is directly supported in the 432 architecture by the
concept of a domain object and Ada subprogram activa-
tions become contexts in the 432 architecture.

In those cases where the hardware of the 432 goes
beyond Ada’s built-in constructs, Ada’s definition allows
for a special machine-access package. Any 432 instruc-
tion or feature can be accessed via this package, elimi-
nating the need for a 432 assembler. Ada is thus the only
language used to write the iIMAX executive and program-
mers are not ordinarily expected to require machine
access. Hence even systems programmers will use Ada,
resorting to direct machine access only rarely.

Ada and the 432 architecture cooperate to provide
complementary checks on a program’s design. Ada
checks data types and interfaces during compilation, and
the 432 subsequently rechecks them at run time in order
to catch errors missed or possibly caused by the compil-
er. The 432 architecture also provides those checks on
interfaces and data types that in Ada can only be made
during execution.

Finally, Ada is the basis of the 432’s integrated
programming system. This software development system
is built around Ada to provide separate compilation of
programs with fully checked interfaces as well as link-
time checking of module version numbers. The latter
capability ensures that old versions of programs will not
sneak back into a system. A symbolic source-level
debugger lets the application programmer debug pro-
grams in Ada rather than 432 machine language. Ol

Reprinted from ELECTRONICS, February 24, 1981, copyright 1981 by McGraw-Hill, Inc., with all rights reserved.

s
R
R

5

B

e

i

i
G
faistl

L

e
i

i

A

| |nte| iAPX 43203 PRELIMINARY
VLSIINTERFACE PROCESSOR

m Fully Independent and Decentralized m Protected 1/0 Interface to 432 Memory

1/0
m Silicon Operating System Instruction

m Buffered Data Path for High-Speed Set Extensions for Attached iAPX
Burst-Mode Transfers Processors

m Initialization/Diagnostic Interface to s Multibus™ System Compatible
432 Systems Interface

m Multiple 43203’s per System Provide m Functional Redundancy Checking
Incremental 1/0 Capacity Mode for Hardware Error Detection

The Intel 43203 Interface Processor (IP) provides 1/O facilities in iAPX 432 micromainframe systems
employing peripheral subsystems. An IP maps a portion of the peripheral subsystem address space into
iAPX 432 system memory. As any iAPX 432 processor, the IP operates in an object-oriented, capability-
based, multiprocessing environment.

The 43203 is a VLS| device, fabricated with Intel’s highly reliable +5 volt, depletion load, N-channel, silicon
gate HMOS technology, and is packaged in a 64-pin Quad In-Line Package (QUIP). Refer to Figure 1 for the
QUIP representation of the 43203 pin configuration.

L—U_r 64 AD15
63 AD14
62 AD13
61 AD12
60 AD11

O 59 AD10
58 AD9
57 ADS
56 vce
55 AD7
54 AD6
53 AD5
52 AD4
51 AD3
50 AD2
49 AD1
48 ADO
a7 VSS
46 PSR
45 BHEN/
44 WR/
43 cs/
42 ALARM/
a CLR/
40 HERR
39 FATAL/
38 PCLK/
37 INIT/.
36 vce
35 CLKA
34 CLKB
33 VsS

1
171874-1

Figure 1. iAPX 43203 Interface Processor Pin Configuration

The following are trademarks of Intel Corporation and may be used only to identify Intel products: BXP, CREDIT, i, ICE, iC8, im, Insite, Intel, intel, Intelevision, Intellec, iRMX,
iSBC, iSBX, Library Manager, MCS, Megachassis, Micromap, Multibus, Multimodule, PROMPT, Promware, RMX /80, System 2000, UP!, uScope, and the combination of ICE, iCS,
iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

© Intel.Corporation 1981 171874-001 Rev. A

intel

iAPX 43203

PRELIMINARY

FUNCTIONAL DESCRIPTION

The block diagram shown in Figure 2 iilustrates
the internal architecture of the Interface
Processor. Figure 3 represents the Interface Pro-
cessor as a logical device and illustrates the
signal interface to the Processor Packet bus (left
side) and the peripheral subsystem (right side).
The Interface Processor (IP) operates in conjunc-
tion with an Attached Processor (AP) to form the
fogical 1/0 processor of an iAPX 432 system.

The IP acts as a slave to the AP, and maps a por-
tion of the AP’s peripheral subsystem address
space into iIAPX 432 system memory with the same
protection mechanisms as any iAPX 432 pro-
cessor. Five peripheral subsystem (PS) memory
subranges may be mapped into iAPX 432 memory
segments. These five windows (labeled 0 through

4) allow the AP to reference iAPX 432 memory with
logical addresses or, in special circumstances,
with direct, 24-bit physical addresses.

A BASIC 1/0 MODEL

A typical application based on the JAPX 432
microprocessor family consists of a main system
and one or more peripheral subsystems. Figure 4
illustrates a hypothetical configuration that
employs two peripheral subsystems. The main
system hardware is composed of one or more
JAPX 432 general data processors (GDPs) and a
common memory that is shared by these pro-
cessors. The main system software is a collection
of one or more processes that execute on the
GDP(s).

iAPX 432
SYSTEM

PERIPHERAL
SUBSYSTEM

ACD15. . .ACDOD < >

DATA
ACQUISITION
UNIT

2\

> AD15...ADO

EXECUTION
UNIT
X A
' Y
PRQ, ICS, BOUT - e BHEN/,CS/, WR/
< ALE, OE, SYNC
FATAL/, ALARM/, o . . » DEN/
B ' iAPX PERIPHERAL
PCLK/, INIT/, CLR/ AP) PERIPHERAL B KD HDA
CONTROL CONTROL _ /
HERR & - INH1, XACK/, NAK
TIMING » INT
» PSR

CLKA, CLKB

171874-2

Figure 2. iAPX 43203 IP Functional Block Diagram

iAPX 43203 PRELIMINARY

vCcC GND
ACD15-0 <:> <:> AD15-0
PRQ ——] |« BHEN/
BUS GROUP o5 ; o GROUP
BOUT <——] -~ WR/
ALARM/ ————p > ALE PS TIMING
FATAL/ o < OE GROUP
SYSTEM PCLK/ - {-————— SYNC
GROUP —> PS BUFFER
INIT/ e sa203 L » DEN/ — CONTROL GROUP
CLR/ — > i Y PS INTERLOCK
LOGIC e HDA CONTROL GROUP
cLOCK CLKA ————» SYMBOL
GROUP CLKB ——p= 3 {NH1
NACK/ PS SYNCHRONIZATION
HARDWARE — HERR <——» = NAK/
R
DETECTION __ PSINTERRUPT
GROUP > INT GROUP
— PSRESET
> PSR GROUP
IAPX 432 SYSTEM PERIPHERAL SUBSYSTEM
171874-3

Figure 3. iAPX 43203 IP Logic Symbol

GENERAL DATA
PROCESSOR

PERIPHERAL
SUBSYSTEM

INTERFACE
PROCESSOR

INTERFACE
PROCESSOR

PERIPHERAL
SUBSYSTEM

GENERAL DATA
PROCESSOR

MAIN SYSTEM/PERIPHERAL SUBSYSTEM BOUNDARY

171874-4

Figure 4. Main System and Peripheral Subsystem

3

intal

iAPX 43203

PRELIMINARY

A fundamental principle of the iAPX 432 architec-
ture is that the main system environment is self-
contained; neither processors nor processes
have any direct contact with the ““outside world.”
Conceptually, the main system is enclosed by a
wall that protects objects in memory from possible
damage by uncontrolled I/O operations.

In an iIAPX 432-based system, the bulk of process-
ing required to support input/output operations is
delegated to peripheral subsystems; this includes
device control, timing, interrupt handling and buf-
fering. A peripheral subsystem is an autonomous
computer system with its own local memory, 1/O
devices and controllers, at least one processor,
and software. The number of peripheral sub-
systems employed in any given application
depends on the I/O-intensiveness of the applica-
tion, and may be varied with changing needs,
independent of the number of GDPs in the
system.

A peripheral subsystem resembles a mainframe
channel in that it assumes responsibility for iow-
level 1/O device support, executing in.parallel with
main system processor(s). Unlike a simple chan-
nel, however, each peripheral subsystem can be
configured with a complement of hardware and
software resources that precisely fits application
cost and performance requirements. In general,
_any system that can communicate over a standard
8- or 16-bit microcomputer bus such as Intel's
Multibus design may serve as an iAPX 432
peripheral subsystem.

A peripheral subsystem is attached to the main
system by means of an IP. At the hardware level,
the IP presents two separate bus interfaces. One
of these is the standard iAPX 432 Processor
Packet bus and the other is a very general
interface.

To support the transfer of data through the wall
that separates a peripheral subsystem from the
main system, the IP provides a set of software-
controlled windows. A window is used to expose a
single object in main system memory so that its
contents may be transferred to or from the
peripheral subsystem.

The IP aiso provides a set of functions that are
invoked by software. While the operation of these
functions varies considerably, they generally per-
mit objects in main system memory i{o be
manipulated as entities, and enable communica-
tion between main system processes and soft-
ware executing in a peripherai subsystem.

It is important to note that both the window and
function facilities utilize and strictly enforce the
standard IAPX 432 addressing and protection
systems. Thus, a window provides protected
access to an object, and a function provides a pro-
tected way to operate in the main system. The IP
permits data to flow across the peripheral sub-
system boundary while preserving the integrity of
the main system.

As Figure 5 illustrates, input/output operations in
an IAPX 432 system are based on the notion of
passing messages between main system pro-
cesses and device interfaces located in a
peripheral subsystem. A device interface is con-
sidered to be the hardware and software in the
peripheral subsystem that is responsible for
managing an 1/O device. An |/O device is con-
sidered to be a ‘‘data repository,” which may be a
real device (e.g., a terminal), a file, or a pseudo-
device (e.g., a spooler).

A message sent from a process that needs an 1/0
service contains information that describes the
requested operation (e.g., ‘‘read file XYZ"’). The
device interface interprets the message and car-
ries out the operation. If an operation requests
input data, the device interface returns the data as
a message to the originating process. The device
interface may also return a message to positively
acknowledge completion of arequest.

A very general and very powerful mechanism for
passing messages between processes is inherent
in the JAPX 432 architecture. A given peripheral
subsystem may, or may not, have its own
message facility, but in any case, such a facility
will not be directly compatible with the iIAPX 432’s.
By interposing a peripheral subsystem interface
at the subsystem boundary, the standard 1P com-
munication system can be made compatible with
any device interface (see Figure 6).

iAPX 432 SYSTEM INTERFACE

The IP exists in both the protected environment of
the iAPX 432, and the conventional environment of
the peripheral subsystem. Because of this, an IP
is able to provide a pathway over which data may
flow between the IAPX 432 system and the exter-
nal subsystem. The IP operates at the boundary
between the systems, providing compatibility and
protection. In this position, the Interface Pro-
cessor presents two different views of itseif, one
to software and processors in the iAPX 432
environment and another to its attached
processor.

iAPX 43203

PRELIMINARY

MAIN SYSTEM

PROCESS

PERIPHERAL SUBSYSTEM

DEVICE
INTERFACE]

171874-5

Figure 5. Basic IO Service Cycle

From the iAPX 432 side, an IP looks and behaves
very much like any other processor. It attaches to
the Processor Packet bus in the same way as a
GDP. Within the iAPX 432 memory, the IP supports
an execution environment that is compatible with,
and largely identical to, the GDP. Thus, the IP
recognizes and manipulates system objects
representing processors, processes, ports, etc. It
supports and enforces the iAPX 432’s access con-
trol mechanisms, and provides full interprocess
and interprocessor communication facilities.

The principal difference between the two pro-
cessors is that the GDP manipulates its environ-
ment in response to the instruction it fetches,
while the IP operates under the direction of its
attached processor. Indeed, the IP may be said to
extend the insfruction set of the Attached Pro-

- cessor (AP) so that it may function in the environ-
ment of the iIAPX 432 system.

PERIPHERAL SUBSYSTEM INTERFACE

A peripheral subsystem interface (PSl) is a collec-
tion of hardware and software that acts as an
adapter that enables message-based communica-
tion between a process in the main system and a
device interface in a peripheral subsystem (see
Figure 6). Viewed from the iAPX 432 side, the

peripheral subsystem interface appears to be a
process. The peripheral subsystem interface may
be designed to present any desired appearance to
a device interface. For example, it may look like a
collection of tasks, or like a coilection of
subroutines.

Hardware

The PSI hardware consists of an IP, an AP, and
local memory (see Figure 7). To improve per-
formance, these may be augmented by a DMA
controller. The AP and the IP work together as a
team, each providing complementary facilities.
Considered as a whole, the AP/IP pair may be
thought of as a logical 1/O processor that supports
software operations in both the main system and
the peripheral subsystem.

ATTACHED PROCESSOR

Almost any general-purpose CPU, such as an
8085, an iAPX 86 or an iAPX 88 can be used as an
AP. The AP need not be dedicated exclusively to
working with the IP.

It may, for example, also execute device interface
software. Thus, the AP may be the only CPU in the
peripheral subsystem, or it may be one of several.

in

iAPX 43203 PRELIMINARY

MAIN SYSTEM PERIPHERAL SUBSYSTEM

SERVICE
REQUEST
MESSAGE

SERVICE
REQUEST
MESSAGE

PROCESS SUBSYSTEM DEVICE
B
INTERFACE INTERFACE

SERVICE
REPLY
MESSAGE

SERVICE
REPLY
MESSAGE

171874-6
Figure 6. Peripheral Subsystem Interface
MAIN SYSTEM PERIPHERAL SUBSYSTEM
OPTIONAL
<___"> DMA-TYPE
) CONTROLLER
o
=
wi
=
(72
>
(2}
o
—— B S
[2 1
! = I
w
! z I
| = |
I a I
MAIN INTERFACE N| arracuen |
MEMORY PACKETBUS,)| procESSOR < > < /| ProcEssoR !
I I
! |
| INTERRUPT]| |
1 |
L _| _ LOGICALI/O| |PROCESSOR _ _
LOCAL
MEMORY
1718747

Figure 7. Peripheral Subsystem Interface Hardware

6

iAPX 43203

PRELIMINARY

As Figure 7 shows, the AP is ‘‘attached’ to the
interface processor in a logical sense only. The
physical connections are standard bus signals
and one interrupt line (which would typically be
routed to the AP via an interrupt controller).

Continuing the notion of the logical 1/O processor,
the AP fetches instructions, and provides the
instructions needed 1o alter the flow of execution,
and to perform arithmetic, iogic and data transfer
operations within the peripheral subsystem.

INTERFACE PROCESSOR

The IP compietes the logical 1/O processor by pro-
viding data paths between the peripheral sub-
system and the main system, and by providing
functions that effectively extend the AP’s instruc-
tion set so that software running on the logical I/O
processor can operate in the main system. Since
these facilities are software-controiled, they are
discussed in the next section.

As Figure 7 shows, the [P presents both a
peripheral subsystem bus interface and a stan-
dard iAPX 432 Processor Packet bus interface. By
bridging the two buses, the IP provides the hard-
ware link that permits data to flow under software
control between the main system and the
peripheral subsystem.

The IP connects to the main system in exactly the
same way as a GDP. Thus, in addition to being
able to access main memory, the IP supports
other iAPX 432 hardware-based facilities,
including processor communication, the alarm
signal and functional redundancy checking.

The IP is connected to the peripheral subsystem
bus as if it were a memory component; it occupies
a biock of memory addresses up to 64K bytes
long. Like a memory, the |P behaves passively
within the peripheral subsystem (except as noted
below). it is driven by peripheral subsystem

. memory references that faill within its address

range.

While the IP generally responds like a memory
component, it also provides an interrupt request
signal. The interface processor uses this line to
notify its AP that an event has occurred which
requires its attention.

To summarize, the AP and the IP interact with
each other by means of address references
generated by the AP and interrupt requests
generated by the IP. Since the IP responds to

memory references, other active peripheral sub-
system agents (bus masters), such as DMA con-
trollers, may obtain access to0 main system
memory via the IP.

Software
IP CONTROLLER

The peripheral subsystem interface is managed
by software, referred to as the IP controller. The IP
controller executes on the AP and uses the
facilities provided by the AP and the IP to control
the flow of data between the main system and the
peripheral subsystem.

While there are no actual constraints on the struc-
dure of the IP controller, organizing it as a collec-
tion of tasks running under the control of a
multitasking operating system (such as an RMX-80
or iRMX-86 operating system) can simplify soft-
ware development and modification. This type of
organization supports asynchronous message-
based communication within the IP controller,
similar to the iAPX 432’s intrinsic interprocessor
communication facility. Extending this approach
to the device interface as well results in a consis-
tent, system-wide communication model.
However, communication within the IP controller
and between the IP controller and device inter-
faces, is completely application-defined. It may
also be implemented via synchronous procedure
calls, with “messages’’ being passed in the form
of parameters.

However it is structured, the [P controller interacts
with the main system through facilities provided
by the interface processor. There are three of
these facilities: execution environments, win-
dows, and functions.

EXECUTION ENVIRONMENTS

The IP provides an environment within the main
system that supports the operation of the IP con-
troler in that system. This environment is
embodied in a set of system objects that are used
and manipulated by the IP. At any given time, the
IP controller is represented in main memory by a
process object and a context object. Like a GDP,
the IP itself is represented by a processor object.
Representing the IP and its controlling software
like this creates an execution environment that is
analogous to the environment of a process run-
ning on a GDP. This envirocnment provides a stan-
dard framework for addressing, protection and
communication within the main system.

intel

iAPX 43203

PRELIMINARY

Like a GDP, an IP actually supports multiple pro-
cess environments. The IP controller selects the
environment in which a function is to be executed.
This permits, for example, the establishment of
separate environments corresponding to indi-
vidual device interface tasks in the peripheral sub-
system. If an error occurs while the IP controller is
executing a function on behalf of one device inter-
face, that error is confined to the associated pro-
cess, and processes associated with other device
interfaces are not affected.

WINDOWS

Every transfer of data between the main system
and a peripheral subsystem is performed with the
aid of an IP window. A window defines a corre-
spondence, or mapping, between a subrange of

peripheral subsystem memory addresses (within
the range of addresses occupied by the iP) and an
object in main system memory (see Figure 8).
When an agent in the peripheral subsystem (e.g.,
the IP controiler) reads a local windowed address,
it obtains data from the associated object; writing
into a windowed address transfers data from the
peripheral subsystem to the windowed object.

The action of the IP, in mapping the peripheral
subsystem address to the main system object, is
transparent to the agent making the reference; as
far as it is concerned, it is simply reading or
writing local memory. '

Since a window is referenced like local memory,
any individual transfer may be between an object
and local memory, an object and a processor
register, or an object and an 1/O device. The

PERIPHERAL SUBSYSTEM MEMORY SPACE —»|-«—— MAIN SYSTEM MEMORY SPACE

3

LOCAL MEMORY ADDRESSES

NORMAL MEMORY REFERENCE Dl

P WINDOW MAPS SUBRANGE OF
PERIPHERAL SUBSYSTEM ADDRESS
/ ONTO AN OBJECT IN MAIN-MEMORY.

INTERFACE PROCESSOR ADDRESSES

SUBRANGE

OBJECT

WINDOWED MEMORY REFERENCE

171874-8

Figure 8. Interface Processor Window

s I

iAPX 43203

PRELIMINARY

latter may be appealing from the standpoint of
“gfficiency,” but it should be considered with

caution. Using a window to directly “‘connect’ an.

I/O device and an object in main memory has the
undesirable effect of propagating the real-time
constraints imposed by the device beyond the
subsystem boundary into the main system. It
may seriously complicate error recovery as well.
Finally, since there is a finite number of windows,
most applications will need to manage them as
scarce resources that will not always be instantly
available. This means that at least some /O
device transfers will have to be buffered in local
memory until a window becomes available. It may
be simplest to buffer all /O device transfers and
use the windows to transfer data between local
memory and main system memory.

There are four IP windows that may be mapped
onto four different objects. The IP controller may
alter the windows during execution to map dif-
ferent subranges and objects. References to win-
dowed subranges may be interleaved and may be
driven by different processors in the peripheral
subsystem. For example, the AP and a DMA con-
troller may be driving transfers concurrently, sub-
ject to the same bus arbitration constraints that
would apply if they were accessing local memory.

FUNCTIONS

A fifth window provides the IP controller with
access to the IP’s function facility. By writing
operands and an opcode into predefined locations
in this window’s subrange, the IP controlier
requests the IP to execute a function on its behalf.
This procedure is very similar to writing com-
mands and data to a memory-mapped peripheral
controller (e.g., a floppy disk controller). Upon
completion of the function, the IP provides status
information that the IP controlier can read through
the window. The IP can perform transfer requests
through the other four windows while it is

.executing a function.

The IP’s function set permits the IP controller to:

e alter windows;

* exchange messages with GDP processes via
the standard 432 communication facility;

* manipulate objects.

These functions may be viewed as instruction set
extensions to the AP, which permit the IP con-
troiler to operate in the main system. The com-
bination of the IP’s function set and windows, the

AP’s instruction set, and possibly additional
facilities provided by a peripheral subsystem
operating system, permits the construction of
powerful IP controilers that can relieve the main
system of much 1/O-related processing. At the
same time, by utilizing only a subset of the
available IP functions, relatively simple P con-
trollers can also be built (in cases where this
approach is more appropriate).

SUPPLEMENTARY INTERFACE
PROCESSOR FACILITIES

The preceding sections describe the IP as it is
used most of the time. The IP provides two addi-
tional capabilities that are typically used less fre-
quently, and only in exceptional circumstances.
These are physical reference mode and intercon-
nect access.

Physical Reference Mode

The IP normally operates in logical reference
mode; this mode is characterized by its object-
oriented addressing and protection system. There
are times when logical referencing is impossible
because the objects used by the hardware to per-
form logical-to-physical address development are
absent (or, less likely, are damaged). in these
situations, the IP can be used in physical
reference mode.

In physical reference mode, the P provides a
reduced set of functions. lts windows operate as
in logical reference mode, except that they are
mapped onto memory segments (rather than
objects) that are specified directly with 24-bit
addresses. In this respect, physical reference
mode is similar to traditional computer addressing
techniques.

Physical reference mode is most often employed
during system initialization to load binary images
of objects from a peripheral subsystem into main
memory. Once the required object images are
available, processors can begin normal logical

reference -mode operations.

Interconnect Access

in addition to memory, the iIAPX 432 architecture
defines a second address space called the
processor-memory interconnect address space.
One of the IP windows is software-switchable to

intel

iAPX 43203

PRELIMINARY

either space. In logical reference mode, the inter-
connect space is addressed in the same object-
oriented manner as the memory space, with the IP
automatically performing the logical-to-physical
address development. In physical reference
mode, the interconnect space is addressed as an
array of 16-bit registers, with a register selected
by a 24-bit physical address.

iIAPX 432 INFORMATION STRUCTURE

The following information describes the
requirements placed on the logical structure of
the iAPX 432 hardware environment. These
requirements are concerned directly with the con-
straints of physical memory, the type of data
transferred, and the structure of the data types.
These requirements are common to the iAPX 432
family of processors. (Any pin notations called out
in this information are described in the 43203 Pin
Description section of this data sheet).

Any 432 processor in the system can access all the
contents of physical memory. This section
describes how information is represented and
accessed.

Memory

The iAPX 432 implements a two-level memory
structure. The software system exists in a
segmented environment in which a logical
address specifies the location of a data item. The
processor automatically translates this logical
address into a physical address for accessing the
value in physical memory.

Physical Addressing

Logical addresses are translated by the processor
into physical addresses. Physical addresses are
transmitted to memory by a processor to select
the beginning byte of a memory value to be
referenced. A physical address is 24 binary bits in
length. This results in a maximum physical
memory of 16 Megabytes.

Data Formats
When a processor executes the instructions of an

operation within a context, operands found in the
logical address space of the context may be

10

manipulated. An individual operand may occupy
one, two, four, eight, or ten bytes of memory
(byte, double byte, word, double word, or
extended word, respectively). All operands are
referenced by a logical address as described’
above. The displacement in such an address is the
displacement in bytes from the base address of
the data segment to the first byte of the operand.
For operands consisting of multiple bytes, the
address locates the low-order byte while the
higher-order bytes are found at the next higher
consecutive addresses.

DATA REPRESENTATION

An iAPX 432 convention has been adopted for
representing data operands stored in memory.
The bits in a field are numbered by increasing
numeric significance, with the least-significant bit
shown on the right. Increasing byte addresses are
shown from right to left. Examples of the five basic
data lengths used in the iAPX 432 system are
shown in Figure 9.

DATA POSITIONING

The data operand types shown in Figure 9 may be
aligned on an arbitrary byte boundary within a data
segment. Noie that more efficient system opera-
tion may be obtained when multi-byte data struc-
tures are aligned on double-byte boundaries (if
the memory system is organized in units of double
bytes).

Requirements of an iAPX 432
Memory System

The multiprocessor architecture of the iAPX 432
places certain requirements on the operation of
the memory system to ensure the integrity of data
items that can potentially be accessed
simultaneously. Indivisible read-modify-write
(RMW) operations to both double-byte and word
operands in memory are necessary for manipu-
lating system objects. When an RMW-read is
processed for a location in memory, any other
RMW-reads from that location must be held off by
the memory system until an RMW-write to that
location is received {or until an RMW timeout
occurs). Note that while the memory system is
awaiting the RMW-write, any other types of reads
and writes are allowed. Also, for ordinary reads
and writes of double-byte or longer operands, the
memory system must ensure the entire operand

PRELIMINARY

|ntef iAPX 43203
BIT 7 0
BYTE
ADDRESS N
BIT 15 87 0
DOUBLE BYTE]
ADDRESS N+1 N
BIT 31 2423 16 15 87 0
WORD
ADDRESS N+3 N+2 N+1 N
BIT 63 56 ,31 2423 1615 87 0
DOUBLE WORD g
ADDRESS N+7 ©N+s N+2 N+1 N
BlT‘79 72 47 40 39 3231 2423 1615 87 0
EXTENDED WORD ; &
ADDRESS N+9 7 N+5 N+4 N+3 N+2 N+1 N
17187313
Figure 9. Basic iAPX 432 Data Lengths
has been either read or written before beginning
to process another access to the same location; MASTER
e.g., if two simultaneous writes to the same loca-
tion occur, the memory system must ensure that INPUTS OUTPUTS
the set of locations used to store the operand
does not get changed to some interleaved com-
bination of the two written values.
CHECKED
INPUTS OUTPUTS
. | HERR
iAPX 432 HARDWARE ERROR CHECKER
DETECT'ON 171§73-12

iAPX 432 processors include a facility to support
the hardware detection of errors by functional
redundancy checking (FRQC). At initialization time,
each iAPX 432 processor is configured to operate
as either a master or a checker processor (Figure
10). A master operates in the normal manner. A
checker places all output pins that are being
checked into a high-impedance state. Thus, those
pins which are to be checked on a master and
checker are parallel-connected, pin for pin, such
that the checker is able to compare its master’s
output pin values with its own. Any comparison
error causes the checker to assert HERR.

"

Figure 10. Hardware Error Detection

PROCESSOR PACKET BUS DEFINITION

This section describes and defines the signifi-
cance of the 19 signal lines that make up the Pro-
cessor Packet bus, and the general scheme by
which timing relationships on these lines are
derived. Although this section defines all legal
bus activities, the processors do not necessarily
perform all allowed activities. Slaves to the Pro-
cessor Packet bus must support all state transi-
tions to ensure compatibility.

intgl

iAPX 43203

PRELIMINARY

The Processor Packet bus consists of 3 control
fines:

¢ Processor Packet bus Request (PRQ),

¢ Enable Buffers for Output (BOUT),

¢ Interconnect Status (ICS).

This bus also includes sixteen 3-state Address-
Control-Data lines (ACD15 through ACDO0). PRQ
has two functions whose use depends upon the
application; i.e., PRQ either indicates the first
cycle of a transaction on the Processor Packet bus
or the cancellation of a transaction initiated in the
previous cycle. Of the three control lines, BOUT
has the simplest function, serving as a direction
control for buffers in large systems requiring more
electrical drive than the processor components
can provide. The ICS signal has significance per-
taining to one of three different system conditions
and depends on the state of the Processor Packet
bus transaction. The processor interprets the ICS
input as an indication of one of the following:

s Whether or not an interprocessor
munication (IPC) is waiting,

* Whether or not the slave requires more time to
service the processor’s request,

¢ Whether or notabus ERROR has occurred.

The Address/Control/Data lines emit output
specification information to indicate the type of
cycle being initiated, e.g., addresses, data to be
written, or control information. They also receive
data returned to the processor during reads.
Details of the ACD line operation and the
associated control lines are summarized below.

com-

ACD15-ACDO (Address/Control/Data)

As shown in Figure 11, the first cycle, (T1 or Tvo) of
a Processor Packet bus transaction (indicated by
the rising edge of PRQ), the high-order 8 ACD bits
(ACD15...ACD8) specify the type of the current
transaction. In this first cycie, the low-order ACD
bits (ACD7...ACD0) contain the least-significant
eight bits of the 24-bit physical address.

During the subsequent cycle (T2), the remainder
of the address is present on the ACD pins (aligned
such that the most significant byte of the address
is on ACD15 through ACDS8, the mid-significant
byte on ACD7 through ACDO). If PRQ is asserted
during T2, the access is cancelled and the ACD
lines are not defined.

During the third cycle (T3 or Tw) of a Processor
. Packet bus transaction the processor presents a
high impedance to the ACD lines for read trans-
actions and asserts write data for write
transactions.

12

Once the bus has entered T3 or Tv, the sequence
of state transactions depends on the type of
cycle requested during the preceding T1 or Tvo.
Accesses ranging in length from 1 to 32 bytes may
be requested (see Table 1). If a transfer of more
than one double byte has been requested, it is
necessary to enter T3 for every double-byte that is
transferred. The processor may simply enter T3 or
it may first enter Tw for any number of cycles (as
dictated by ICS).

After all data is transferred, the processor enters
either Tv or Tvo. Tvo can be entered only when the
internal state of execution is such that the pro-
cessor is prepared to accomplish an immediate
write transfer (overlapped access). During Tvo,
the ACD lines contain address and specification
information aligned in the same fashion as in T1. If
the processor does not require an overlapped
access, the bus state moves to Tv (the ACD lines
will be high impedance). After Tv, a new bus cycle
can be started with T1, or the processor may enter
the idle state(Ti).

ICS (Interconnect Status)

ICS has three possible interpretations depending
on the state of the bus transaction (see Table 2).

Notice that under most conditions ICS has IPC-

significance for more than one cycle. It is impor-
tant to note that a valid low during any cycle with
IPC significance will signal the processor that an
IPC or reconfiguration request has been received.
An iAPX 432 processor is required to record and
service only one IPC or reconfiguration request at
a time. Logic in the interconnect system must
record and sequence multiple (possibly
simultaneous) IPC occurrences and reconfigura-
tion requests to the processor. Thus the logic that
forms ICS must accomodate global and local IPC
arrivals and requests for reconfiguration as
individual events:

1. Assert IPC significance on.ICS for the arrival of
an IPC or reconfiguration request.

2. When the iAPX 432 processor reads
interconnect address register 2, it will respond
to one of the status bits for the IPC or recon-
figuration request signalled on ICS in the
following order:

Bit 2 (1=reconfigure, 0=do not reconfigure)
Bit 1 (1=global IPC arrived, 0=no global IPC)
Bit 0 (1=local IPC arrived, 0=no local IPC)

intel iAPX 43203 PRELIMINARY

171873-14

Initial State Next State Trigger

Ti T Bus cycle desired
Ti No bus cycle desired

T T2 Unconditional

T2 T3 ICS high
Tw ICS low
Ti Cancelled, Access Pending
Ti Cancelled, No Access Pending

T3 T3 Additional transfer required, ICS high
Tw Additional transfer required, ICS low
Tv All transfers. completed, no overlapped access
Tvo Current write with overlapped access

Tv Ti No access pending
T Access pending

Tvo T2 Unconditional

Tw Tw ICS low
T3 ICS high

Figure 11. Processor Packet Bus State Diagram

13

intel iAPX 43203 PRELIMINARY
Table 1. ACD Specification Encoding
ACD ACD ACD ACD ACD ACD ACD ACD
15 14 13 12 11 10 9 8
Access Op RMW Length Modifiers
0- 0- 0- 000 -1 Byte ACD15=0:
Memory Read Nominal 001-2 Bytes 00-InstSeg
010-4 Bytes Access
011 -6 Bytes 01-Stack Seg
100 -8 Bytes Access
1- 1- 1- 101-10 Bytes 10-Context Ctl
Other Write RMW 110-16 Bytes™* Seg Access
111-32 Bytes* 11-Other
ACD15=1:

* Not implemented 00-Reserved
01-Reserved
10-Reserved
11-Interconn

Register

3. The logic in the interconnect system must clear
the highest order status bit that was serviced by
the IAPX 432 processor, and if additional IPC
information has arrived, the interconnect
system logic must signal an additional IPC
indication to the iIAPX 432 processor.

The interconnect system must signal the
second IPC by raising ICS high for at least one
cycle and then setting ICS low for at ieast one
cycle during IPC significance time.

Table 2. ICS Interpretation

Level
High Low State
IPC None Waiting Ti, T1, T2*
Stretch Don’t Stretch T3, Tw
Err Bus Error No Error Tv, Tvo

*|CS has no significance in a cycle following a T2
where PRQ is asserted {cancelled access) or in any
cycle during which CLR/ is asserted.

PRQ (Processor Packet Bus Request)

PRQ is normally low and can go high only during
T1, T2 and Tvo. High levels during Tvo and T1
indicate the first cycle of an access. A high level
during T2 indicates that the current cycle is to be
cancelled. See Table 3.

14

Table 3. PRQ Interpretation

State PRQ Condition
Ti 0 Always
in 1 Initiate access
T2 0 Continue access
1 Cancel access
T3 0 Always
Tw 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

BOUT (Enable Buffers for Output)

BOUT is provided to control external buffers when
they are present. Table 4 and Figures 12 through
16 show its state under various conditions.

Processor Packet Bus Timing
Relationships

All timing relationships on the processor packet
bus are derived from a simple scheme and related
to Table 5. Each timing diagram shown in the
following pages (Figures 12 through 17) provides a
separate table illustrating the various system
states during the cycle. This approach to transfer
timing was designed to allow maximum time for
the transfer to occur and yet guarantee hold time.
The solid fines in Figure 18 show the state transi-
tions initiated by the IP.

intel iAPX 43203 PRELIMINARY

Any agent connected to the processor packet bus adequate time for the transfer and ensures suffi-
is recognized as either a processor or a slave. cient hold time after sampling. The BOUT timing is
Examples of processors are the GDP and the IP. A unique because BOUT is intended as a direction
memory system provides an example of a slave. control for external buffers.

In all tranfers between a processor and a slave, Detailed set-up and hold times depend on the pro-
the data to be driven are clocked three-quarters of cessor implementation and can be found in the ac
a cycle before they are to be sampled. This allows characteristics section.

Table 4. BOUT Interpretation

Low-to-High High-to-Low High-to-Low
Transition Transition Transition
BOUT Always High orLow or Low or High
Write 71,72, 73, Tw, Tvo Ti None Tv
Read T,7T2 Ti, Tv T3, Tw None

Table 5. iAPX 432 Component Signaling Scheme

Processor Slave
Inputs ACD: JCLKA All: ' 1CLKB
Sampled Others: tCLKA
Outputs All (except BOUT): JCLKA ACD: CLKB
Driven Others: tCLKB
BOUT: tCLKA

NOMINAL WRITE CYCLE
5 CLKA CYCLES]

T T2 T3 Tv T ‘ Ty T2

Ti

CLKA

ACDg s mm (ADDR/SPEC)-(ADDR)-(WRITE DATA)- --------------------- -(ADDR/SPEC)--(ADDR)—-

ics PC X iPC 4X iPC y STRETCH \(ERR X IPC x IPC X IPC x

BOUT _/ \ /

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Ti
Spec Lo-adr Tt
Hi-adr Mid-adr T2
Hi-data1* Lo-datal T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti
Spec to-adr Tl
Hi-adr Mid-adr T2

*Undefined if single byte write
171873-15

Figure 12. Nominal Write Cycle Timing

15

i iAPX 43203 PRELIMINARY

1 MINIMUM WRITE CYCLE
| 3 CLKA CYCLES

Ty : T T2 T3 Tvo T2 T

CLKA

ACD15...ACDg ------------(ADDR/SPEC X ADDR ﬁRlTEDATAX ADDR/SPEC X ADDR x WRlTEDATA)------

PRQ _____/—_-—\ / \
ICS IPC j IPC X 1PC y STRETCH \(ERR f 1PC X STRETCH X

BOUT /

ACD15 ACD8 | ACD7 ACDO | State
Hiz Hi-z Ty
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-datatl*® to-datal T3
Spec Lo-adr Tvo
Hi-adr Mid-adr T2
Hi-datal Lo-datal T3

*Undefined if single byte write
**(Preceded by read cycle)

171873-16

Figure 13. Minimum Write Cycle Timing

T T1 T2 T3 Tw T3 Tv T

CLKA

ACD15...ACDo ------------<7ADDR/SPEC X ADDR j wam-:nmlx WRITE DATA).----------------
PRQ ___—/_—-\ \
/ /
Ics IPC X 1PC X iPC Y STRETCH \ STRETCH / STRETCH ERR X IPC
BOUT / \

ACD15 ACD8 | ACD7 ACDD | State
Hi-z Hi-z Ti
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-datal Lo-datal T3
Hi-data2 Lo-data2 Tw
Hi-data2 Lo-data2 T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti

17187317

Figure 14. Stretched Write Cycle Timing

16

iAPX 43203 PRELIMINARY

T

MINIMUM READ CYCLE

Ny

T

5 CLKA CYCLES |

Te T3 l Ty Ty T

CLKA

ACD15...ACDg ---__-..--__(

\

!

ADDR/SPEC)(ADDR) o - READ DATA -----------------(ADDR/SPEC)-(

ics IPC x iPC X iPC , STRETCH < ERR X IPC X iPC X
BOUT / \ /
ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Ti
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-data* Lo-datal T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti 7
Spec Lo-adr m
*Undefined if single byteread
171873-18
Figure 15. Minimum Read Cycle (Not Buffered)
1. MINIMUM READ CYCLE (BUFFERED SYSTEM) |
| 6 CLKA CYCLES -
T T T2 Tw T3 v T

CLKA

ACDisn-ACDO'-"""'-"--'-'(ADDR/SPEC x ADDR)—-----_--------- READ DATA --------------_-< ADDR

IPC

—
X

|ch we X e X wc N\ smerch / smeren X e X
BOUT / \

ACD15 ACD8 | ACD7 ACDO | State

Hi-z Hi-z Ti

Spec Lo-adr Ti

Hi-adr Mid-adr T2

Hi-z Hi-z Tw

Hi-data1* Lo-datal T3

Hi-z Hi-z Tv

Hi-z Hi-z T

—

*Undefined if single byte read

171873-19

Figure 16. Minimum Read Cycle (Buffered System)

17

nter iAPX 43203 PRELIMINARY

| 2.CLKA CYCLES |

T Ty T2 ‘ T4 T2 T3 Ty T

CLKA

PRQ / CANCEL \
ICS 1PC X IPC *S,GNIF,CANC% X STRETCH X ERROR X PC X

COMPLETELY

ACD15 ACD8 | ACD7 ACDO | -State
Hi-z Hi-z Ti
Spec Lo-adr ™
Undefined Undefined T2
Spec Lo-adr T1e*+
Hi-adr Mid-adr T2
Hi-data* Lo-data T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti

*Undefined if single byte write
“*Access Cancelled
***New Access Started (Slave must
support this- subsequent access
even though ail processors may not

implement it.)
171873-20
Figure 17. Minimum Faulted Access Cycle
*NOTE THAT THE BROKEN TRANSITION
IN THE IP STATE DIAGRAM IS NOT
GENERATED BY THE IP.
171874-9

Figure 18. IP State Diagram

18

ntel iAPX 43203 PRELIMINARY
Table 6. iAPX 43203 Interface Processor Pin Summary
432 System Side
Hardware
Pin Group Pin Name Direction Error
Detection
PROCESSOR ACD15...ACD0O 110 X
PACKET BUS PRQ 0 X
GROUP ICS |
BOUT 0
SYSTEM ALARM / |
GROUP FATAL/ O(lat
Initialization)
CLR/ |
PCLK/ |
INIT/ |
CLOCK CLKA |
GROUP CLKB |
HARDWARE ERROR HERR O(lat
DETECTION GROUP Initialization)
Peripheral Subsystem Side
Hardware
Pin Group Pin Name Direction Error
Detection
PERIPHERAL AD15... ADO 110 X
SUBSYSTEM BHEN/ |
BUS GROUP CS/ |
WR/ |
PS TIMING GROUP ALE 1
OE |
SYNC |
PS BUFFER CONTROL DEN/ 0 X
GROUP
PS INTERLOCK GROUP HLD 0] X
HDA |
PS SYNCHRONIZATION XACK/ 0 X
GROUP NAK/ 0] X
INH1 0} X
PS INTERRUPT GROUP INT 0] X
PS RESET GROUP PSR o X

19

intel

IAPX 43203

PRELIMINARY

43203 PIN DESCRIPTION

The following section provides detailed informa-
tion concerning the 43203 pin description. Table 6
lists a summary of all signai groups, signal names
and their active states, and whether or not they
are monitored by the Hardware Error Detection
circuitry.

Processor Packet Bus Group

ACD15—ACDg (Address/Control/
Data lines, Inputs or Three-state Outputs,
high asserted)

The Processor Packet bus Address/Control/Data
lines are the basic communication path between
the IP and its environment. These pins are used
three ways:

¢ They may indicate control information for bus
transactions,

» They may issue physical addresses generated
by the IP for an access, or

* They may transfer data (either direction).

When the 43203 is in checker mode, the ACD pins
are monitored by the hardware error detection
logic and are in the high impedance mode.

PRQ (Processor Packet bus Request,
Three-state Output, high asserted)

PRQ is used to indicate the presence of a trans-
action between the IP and its external environ-
ment. Normaliy low, the PRQ pin is brought high
during the same cycle as the first double-byte of
address information is being driven onto the ACD
pins. PRQ remains high for only one cycle during
the access, uniess an address development fault
occurs. The 43203 will ieave PRQ high for a second
cycle to indicate the GDP has detected an
addressing or segment rights fault in completing
address generation. PRQ is checked by the hard-
ware error detection logic. PRQ is in a high
impedance state when the 43203 is in checker
mode.

20

ICS (Interconnect Status,
Input, high asserted)

ICS is an indication to the 43203 from the bus
interface circuitry concerning the status of a bus
transaction. The interpretation of the ICS state is
dependent upon the present cycle of a bus trans-
action and may indicate: ’

* Interprocessor communication (IPC) message
waiting,

¢ Inputdatainvalid,
¢ Output data not taken,

* Bus errorin external environment.

System Group
ALARM/ (Alarm, Input, low asserted)

The ALARM/ input monitors the occurrence of an
unusual, system-wide condition such as power
failure. ALARM/ is sampled on the rising edge of
CLKA.

FATAL/ (Fatal, Output, low asserted)
(Master, Input, low asserted)

FATAL/ is asserted by the IP under microcode
contirol when the processor is unable to continue
due to various error or fault conditions. Once
FATAL/ is asserted, it can only be reset by asser-
tion of INIT/. FATAL/ is not checked by the hard-
ware error detection logic.

When INIT/ is asserted, the FATAL/ pin assumes
an input role. Please refer to the INIT/ pin descrip-
tion for a discussion of this function.

Hardware Error Detection Group

HERR (Hardware Error Output, Open
Drain Output, high asserted) (Master,
Input, low asserted)

HERR is used to signal a discrepancy between a
master and a checker (difference between the
value internally computed in the checker and that
output by the master). The sampling of errors
occurs at the most appropriate time for the pin(s)
being checked.

iAPX 43203

PRELIMINARY

HERR is an open drain output which requires an
external pullup resistor. Nominally the output is
held low. HERR is released upon the detection of
discrepancy. The timing of HERR depends on the
source of the error. Once HERR is high it will
remain high until external logic forces it to go low
again. When HERR goes low again, the present
HERR error condition is cleared and HERR is
immediately capable of detecting and signaling
another error.

When INIT/ is asserted, the HERR pin assumes an
input role. Please refer to the INIT/ pin description
for a discussion of this function.

PCLK/ (Processor Clock, Input,
low asserted)

Assertion of PCLK/ for one clock cycle causes the
system timer in the IP to decrement. Assertion of
PCLK/ for two or more cycles causes the system
timer to be reset. PCLK/ must be unasserted for at
least 10 clock cycles before being asserted again.

CLR/ (Clear, Input, low asserted)

Assertion of CLR/ results in a microprogram trap
which causes the IP to immediately terminate any
bus transactions or internal operations which may
be in progress at the time, reset to a known state,
assert FATAL/, and await an IPC (which resets the
IP to the same state as INIT/ assertion does). The
IPC will not be serviced for at least four clock
cycles following CLR/ assertion.

Response to CLR/ is disabled by the first CLR/
assertion and is reenabled when the IP receives
the first IPC (or INIT/ assertion).

CLR/ is sampled by the IP on the rising edge of
CLKA.

INIT/ (Initialize, Input, low asserted)

Assertion of INIT/ causes the internal state of the
IP to be reset and starts execution of the initializa-
tion microcode. INIT/ must be asserted for a
minimum of 10 clock cycles. After the INIT/ pin is
returned to its nonasserted state, IP microcode
will initialize all of the internal registers and win-
dows and will wait for a local IPC.

During INIT/ assertion, the FATAL/ and HERR
pins are sampled by the IP to establish the mode
in which the two bus interfaces of the 1P are to par-

2

ticipate in hardware error detection. Table 7
specifies the encoding of the master/checker
modes.

Table 7. Representation of MASTER/CHECKER
Modes at Initialization

iAPX 432 Peripheral
FATAL/ | HERR Side Subsystem Side
0 0 MASTER MASTER
0 1 MASTER CHECKER
1 0 CHECKER MASTER
1 1 CHECKER CHECKER
Clock Group

CLKA, CLKB (Clock A, Clock B, Inputs)

CLKA provides the basic timing reference for the
IP. CLKB follows CLKA by one-quarter cycle and
is used to assist internal timings.

Peripheral Subsystem Bus Group
AD5—ADg (Address/Data, Input/Output)

These pins constitute a multiplexed address and
data input/output bus. When the attached pro-
cessor bus is idle or during the first part of an
access, these pins normally view the bus as an
address. The address is asynchronously checked
to see if it falls within (matches) any one of the five
window address ranges. The address is latched
on the falling edge of ALE thereby maintaining
the state of a match or no match for the remainder
of the access cycle. The addresses are then
uniatched on the falling edge of OE.

Once SYNC has pulsed high, the ADy5—ADg pins
become data input and output pins. When WR/ is
high (read mode), data is now accessed in the IP
and the output buffers are enabied onto the AD
pins if the OE is asserted. When WR/ is low (write
mode), data is sampled by the IP after the rising
edge of SYNC during the CLKA high time.

The address is always a 16-bit, unsigned number.
Data may be either 8 bits or 16 bits as defined by
BHEN/ and ADy. The 8-bit data may be transferred
on either the high (ADys—ADg) or the low
(AD7—ADg) byte. When 8-bit data is transferred on
the high or low byte, the opposite byte is 3-stated.

intgl

iAPX 43203

PRELIMINARY

Twenty-bit addresses are accommodated by the
external decoding of the additional address bits
and are incorporated in the external CS/ logic.

During the clock in which write data is sampled,
data must be set up before the rising edge of
CLKA and must be held until the falling edge of
that CLKA. Read data is driven out from a CLKA
high and should be sampled on the next rising
edge of CLKA.,

Hardware error detection sampling is not done
synchronously to CLKA. It is sampled by the fall-
ing edge of the OE pin. The internal AD pin hard-
ware error detection signal is then clocked and
output on the HERR pin. At this point it may still
not be synchronous with CLKA and should be
externally synchronized.

BHEN/ (Byte High Enable, Input,
low asserted)

This pin, together with ADg, determines whether
8 or 16 bits of data are to be accessed, and if it is
8 bits, whether it is to be accessed on the upper or
lower byte position. This pin is latched by the falil-
ing edge of ALE and unlatched by the falling edge
of ‘OE. BHEN/ and ADg decode as shown in
Table 8.

Table 8. Bus Data Controls

BHEN/ ADg Description

0 0 16-bit access

0 1 8 bits on upper byte,
lower byte tristated

1 0 8 bits on lower byte,

upper byte tristated

8 bits on lower byte,

upper byte tristated

CS/ (Chip Select, Input, low asserted)

Chip Select specifies that this IP is selected and
that a read or write cycie is requested. This pin is
latched by the falling edge of ALE and unlatched
by the falling edge of OE.

WR/ (Write, Input, low asserted)

This pin specifies whether the access is to be a
read or a write. WR/ is asserted high for a read
and asserted low for a write. This pin is latched by
the falling edge of ALE and unlatched by the fall-
ing edge of OE.

PS Timing Group

ALE (Address Latch Enable, Input,
Rising- and Falling-Edge-Triggered)

The rising edge of ALE sets a flip-flop which
enables Transfer Acknowiedge (XACK/) to
become active. The falling edge of ALE latches
the address on the AD{5-ADg pins and laiches
WR/, BHEN/ and CS/. Figure 19 shows two styles
of ALE.

OE (Data Output Enable, Input, high
asserted)

During a read cycle the OE pin enables read data

-on to the AD{5-ADg pins when it is asserted. Dur-

ing a read or write cycle the falling edge of OE
signifies the end of the access cycle. Specifically,
the falling edge of OE does three things:

1. Resets the XACK/ enable flip-flop, thereby
terminating XACK/.

2. Terminates DEN/ (if read cycle).
3. Opens address latches WR/, BHEN/, and CS/.

AD15...ADO, WR/, CS/, BHEN/ _{}—

4

ALE(STYLE 1) f s\

ALE (STYLE 2) \\

171874-10

Figure 19. Two styles of ALE
22

iAPX 43203

PRELIMINARY

SYNC (Synchronized Qualifier Signal,
Input, high asserted)

A rising edge on this signal must be synchronized
to the IP CLKA falling edge. This signal qualifies
the address, BHEN/, CS/ and WR/, indicating a
valid condition. SYNC also initiates any internal
action on the IP’s part to process an access. It
starts the request for data to the IP in a read
access. In a write access, data is expected one or
two CLKA’s after SYNC pulses high. At initializa-
tion time, IP microcode sets the write sample
delay to the slowest operation (two CLKA’s after
SYNC). However, this can be modified to one
clock cycle by making a function request to the IP
to change the write sample delay.

When the hold/hold-acknowledge mechanism of
the 1P is used, and once HDA has pulsed high, a
SYNC pulse is required to qualify the hold
acknowledge since the HDA pin can be
asynchronous.

PS Buffer Control Group

DEN/ (Data Enable, Output, low
asserted)

This pin enables external data buffers which
would be used in systems where the address and
data are not multiplexed (e.g., a Multibus system).
DEN/ assertion begins no sooner than the CLKA
high time of the first clock of SYNC assertion if a
valid, mappable address range is detected. It is
terminated with the falling edge of OE. In a write
access, it is also terminated after XACK]/
assertion.

Hardware error detection occurs during the first
clock of SYNC assertion.

PS Interlock Group

HLD (Hold Request, Output, high
asserted)

The hold/hold-acknowledge mechanism is an
interlocking mechanism between the peripheral
subsystem and the IP. Hold is used by the IP to
gain control of the subsystem bus to ensure that
no subsystem processors will make an access to
the IP while it alters internal registers.

This signal is put out synchronously with the
rising edge of CLKA. Hardware error detection
sampling occurs during CLKA low time.

23

In special cases it may not be necessary {o use
the HLD function interlocking. In this case HDA
can be tied high and no SYNC pulse will be
required for HDA qualification. The hardware
detects this condition by noting that the HDA pin
was high a half clock before HLD requests a hold.
In this mode the HLD output still functions and can
be monitored if desired.

HDA (Hold Acknowledge, Input, high
asserted)

HDA is asserted by the peripheral subsystem
when the IP’s request for a hold has been granted.
This pin need only be a high pulse and can be
asynchronous to CLKA. This pin must be followed
by a SYNC pulse in order to synchronously
qualify it.

PS Synchronization Group

XACK/ (Transfer Acknowledge, Output,
low asserted)

XACK/ is used to acknowledge that a data transfer
has taken place.

For random or local accesses, XACK/ indicates
that a transfer to or from IAPX 432 memory has
been completed.

For buffered accesses where the XACK-Delay is
not in the advanced mode, XACK/ signifies that
the transfer from/to the prefetch/postwrite buffer
in the IP has been completed.

For buffered accesses which use advanced
acknowledge mode (XD=0) the formation of an
advanced XACK/ signal is requested. This aliows
the possibility of interfacing to the peripheral sub-
system without wait states. The acknowledge will
be advanced if the access is a read operation and
the buffer contains the required data or the access
is a write operation and the buffer contains suffi-
cient space to accept the write data. In addition,
the access must be vaiid.

if XACK/ is preceded by a low pulse on NAK/,
then XACK/ signifies that the access encountered
a fault. If the access was a random access, other
than window #4, the window will be placed in the
faulted state and any further accesses to this win-
dow will be ignored by the IP.

intal

iAPX 43203

PRELIMINARY

If the IP is programmed to be in advanced
acknowledge mode (XD=0) and XACK/ is not
returned before the peripheral subsystem issued
SYNC, then XACK/ wiil be postponed until valid
data has been established on the AD15-ADg bus.

Five conditions affecting XACK/ behavior are:

o XACK-Delay, user programmable through an [P
function request. This parameter establishes
the minimum operating XACK-delay with
respect to the SYNC signal. Table 9 displays the
representation of the XACK-delay codes.

s XACK-enable-flip-flop, set by the rising edge of
the ALE signal and reset by the falling edge of
the OE signal.

¢ Internal IP Registers. These are used fto
determine validity of the peripheral subsystem
access and establish access modes.

* Type of access behavior: Random or Buffered,
Memory or Interconnect.

¢ Bus Faults, nonexistent memory, etc.

Hardware error detection occurs during the first
clock of SYNC assertion.

NAK/ (Negative Acknowledge, Output,
low asserted)

This signal precedes XACK/ by one-half clock
cycle in order to qualify it as a negative
acknowledge. This pin pulses low for only one
clock period.

When the IP is in physical mode and making an
interconnect access, negative acknowledge may
be used to indicate that the access was made to a
nonexistent interconnect address space. This will

allow determination of the system configuration
by a subsystem processor at system initialization
time.

This pin could be used to set a status bit and
cause a special interrupt to transmit the informa-
tion back o the subsystem.

This signal is synchronously driven from the fall-
ing edge of CLKA. Hardware error detection
occurs during CLKA high time.

INH1 (Inhibit, Output, high asserted)

This pin is asynchronously asserted by non-
clocked logic when a valid mappable address
range is detected. it can be used to override other
memories in the peripheral subsystem whose
address space is overlapped by an IP window.
After initialization, the microcode sets the INH1
mode for each window by loading registers in the
IP for each window. Once the subsystem is
allowed to make a function request, it can selec-
tively disable or enable the inhibit mode on each
window. This pin is gated off by CS/.

The selection of the inhibit mode for window 0,
when in buffered mode, causes a corresponding
built-in XACK-delay which delays the
acknowledge from going active until two clock
periods after the rising edge of SYNC. This was
done to facilitate most Multibus systems using
INH1, as they require that the acknowiedge be
delayed. When the Advanced XACK/ mode is pro-
grammed, the inhibit mode should not be used on
window 0 when in buffered mode, since the
acknowledge will not be effectively delayed.

Hardware error detection occurs during the first
clock of SYNC assertion.

Table 9. XACK/ Timing Parameters

Inhibit

Mode WR/

XD+

XDg XACK/ Formation

0

>
o

X2t auwuooooO
HKXYXXO 2O =
[VY e QU G G O o, W

0 Advanced Acknowledge

(XACK/ can occur before SYNC)
Rising edge of SYNC
Rising edge of SYNC plus 1 Clock
Rising edge of SYNC plus 1 Clock
Rising edge of SYNC plus 2 Clocks
Rising edge of SYNC plus 2 Clocks
Rising edge of SYNC plus 2 Clocks
lllegal condition

PG o Y o I o SO GUNY

Note: X=don'tcare condition

24

iAPX 43203

PRELIMINARY

PS Interrupt Group
INT (Interrupt, Output, high asserted)

This output is a pulse 2 CLKA’s wide, and is
synchronously driven from the rising edge of
CLKA. Hardware error detection occurs during
CLKA low time.

PS Reset Group

PSR (Peripheral Subsystem Reset,
Output, high asserted)

PSR is asserted by the IP under microprogram
control. When asserted, the peripheral subsystem
should be reset. In a debug type of controi, it may
be desirable to use this pin to set a status bitin an
external register or possibly cause a special inter-

rupt. This pin is normally asserted by the IP when
the peripheral subsystem is believed to be faulty
and would not respond to other means of control.

This signal is put out synchronously with the ris-
ing edge of CLKA. Hardware error detection
sampling occurs during CLKA low time.

43203 ELECTRICAL CHARACTERISTICS

Tables 10 through 12 and Figures 20 through 25
provide electrical specification information and
include input/output timing, read and write timing,
and component maximum ratings.

Instruction Set Comparison

Refer to Table 13 for a
comparison.

GDP/IP operator

Table 10. 43203 Absolute Maximum Ratings

Absolute Maximum Ratings

Ambient Temperature Under Bias
Storage Temperature

Voltage on Any Pin with Respectto GND
Power Dissipation

0°Cto70°C

—65° Cto +150° C
-1Vto +7V

2.5 Watts

Table 11. iAPX 43203 DC Characteristics

VCC=5V+10% Ta=0°Cto70°C
Spec Description Min Max Units
Vile Clock Input Low Voltage -0.3 +0.5 Vv
Vihe* Clock input High Voltage 3.5 VCC+0.5)
Vil Input Low Voltage -0.3 0.8 Y
Vih Input High Voltage 2 VYCC+0.5 \
lcc Power Supply Current - 450 mA
il Input Leakage Current - +10 uA
lo Output Leakage Current = +10 uA
iol @0.45Vol
HERR - 8 mA
FATAL/ - 4 mA
AD15...AD0 - 4 mA
OTHER - 2 mA
loh @2.4Voh - -0.1 mA

* For operation at 5 MHz or slower, the 43203 may be operated with a Vihc minimum of 2.7 volts.

25

ntal IAPX 43203 PRELIMINARY

Table 12. iIAPX 43203 AC Characteristics

VCC =5+10% Ta=0°Cto70°C Loading: AD15...AD0 20 to 100pf
OTHER 20to 70pf
- 8 MHz. 5MHz. X
Symbol Description i Max Min Viax Unit

GLOBAL TIMING REQUIREMENTS .
tey Clock Cycle Time 125 1000 200 1000 nsec.
tr,tf Clock Rise and Fall Time - 10 - 10 nsec.
11,12
13,t4 Clock Pulse Widths 26 250 45 250 nsec.
tis INIT/ to Signal Hold Time 15 - 20 - nsec.
tsi Signal to INIT/ Setup Time 10 - 10 - nsec.
tie INIT/ Enable Time 10 - 10 - tcy

SYSTEM SIDE TIMING REQUIREMENTS
tde Signal to CLOCK Setup Time 5 - 5 - nsec.
tcd Clock to Signal Delay Time - 55 - 85 nsec.
tdh Clock to Signal Hold Time 25 - 35 - nsec.
toh Clock to Signal Output Hold Time 15 - 20 = nsec.
ten Clock to Signal Output Enabie Time 15 - 20 - nsec.
tdf Clock to Signal Data Float Time - 55 - 75 nsec.

PERIPHERAL SUBSYSTEM SIDE TIMING REQUIREMENTS
tas AD15...AD0,CS/ ,WR/,BHEN/

Setup Time to ALE Low 0 - 0 - nsec.
tah AD15...AD0,CS/ ,WR/,BHEN/

Hold Time to ALE Low 32 - 35 - nsec.
tss SYNC High Setup Time to

CLKA High 50 = 60 - nsec.
tsh SYNC Low Hold Time to

CLKA High 30 - 40 - nsec.
tsw SYNC High Pulse Width 50 tss + 60 tss + nsec.

1.5tcy 1.5tcy

tds Write Data Setup to

Sampling CLKA High 10 - 20 - nsec.
tdx* Write Data Hold to Sampling

CLKA Low (Advanced XACK/) 10 - 20 - nsec.
tdhx Write Data Hold to XACK/ 5 - 5 - nsec.
tasy AD15...AD0,CS/,WR/,BHEN/

Setup to SYNC 120 - 160 = nsec.

PERIPHERAL SUBSYSTEM TIMING RESPONSES
tsdh CLKA High to HLD,INT,PSR - 75 - 90 nsec.
taih Valid AD15...AD0,CS/

to Chip INH1 Valid Delay - 80 - 85 nsec.
tede OE to DEN/ Delay - 65 - 70 nsec.
tead OE to Enable AD15...ADO Buffers

Delay (Read Cycle) - 70 - 75 nsec.
tdad OE to Disable AD15...AD0 Buffers

Delay (Read Cycle) - 52 - 52 nsec.
tced CLKA High to Enable AD15..AD0

Buffers Delay - 70 .- 75 nsec.
tevd CLKA High to Valid Read Data Delay = 80 - 90 nsec.
tox OE Inactive to XACK/ ;

inactive Delay - 80 - 90 nsec.
tdds AD15...ADO0 Disable Setup

to DEN/ High 0 = 0 - nsec.
txde XACK/ Low to DEN/ High

(Write Cycle) - 35 - 40 nsec.
tcde CLKA High to DEN/ Low - 70 = 75 nsec.

26

IAPX 43203

PRELIMINARY

Table 12. iAPX 43203 AC Characteristics (Cont’d.)

Symbol Description

8 MHz. 5MHz.

Min Max Min Max Unit

XACK/ TIMING CHARACTERISTICS

Buffered Accesses with XD=10
ALE High to XACK/ Valid
AD15...AD0 Read Data Valid
Setup to XACK/ Valid
{(When internal state does not
allow XACK/ before SYNC)
Valid AD15...AD0 to XACK/ Valid
{When internal state allows
XACK/ before SYNC)

Buffered Accesses (With XD=1or

XD=2) or Random Accesses
AD15...AD0 Read Data Valid

Setup to XACK/

Faulted Accesses
CLKA Low to NAK/
Setup of NAK/ to XACK/

tax
tdsx

tadx

tdsx

tsdl
tsnx

70 nsec.

20 - 20 - nsec.

- 120 - 140 nsec.

20 - 20 - nsec.

- 75 - 90
50 - 50 -

nsec.
nsec.

Note: All timing parameters are measured at the 1.5 Volt level except for CLKA and CLKB which are measured

atthe 1.8 Volt level.

* Write data is sampled for only one clock cycle. The PS must meet the tpnx specification thereby guaranteeing

tox-

ety 3|

AT
VAW

171873-22

CLKB

S I T I R

t 2l itg! ity

ACD15...ACDO
{READ DATA
TIMING)

INVALID DATA INVALID

|| |
HARDWARE ERROR toc o
DETECTION INPUT
TIMING AND INPUT
TIMING FORALL
INPUTS EXCEPT
ACD15...ACDg

{ON 432 SIDE)

INVALID DATA INVALID

i | <
toc ~ toH

171874-12

Figure 20. 43203 Clock Input Specification

Figure 22. 43203 input Timing Specification

[\ [

R I W B S

ALL QUTPUT
PINS
EXCEPT BOUT
(ON 432 SIDE)
cD. tEN— -~ —— -«— toH, toF
BOUT

|<—— tco | |<—— toH
171874-11

CLKA
> - tpc —-] -~ {nC
INIT/ S\ J{
U e ;———- tie e - ti5
Eﬁ%ﬁ_/ MASTER/CHECKER

171874-13

Figure 21. 43203 Output Timing Specification

27

Figure 23. 43203 Initialization Timing

S

iIAPX 43203

PRELIMINARY

LOCAL BUS SIGNALS

PERIPHERAL SUBSYSTEM INTERFACE SIGNALS
TO 43203

FROM 43203

WRITE
TO 43203

READ
FROM 43203

ALE

|

MULTIPLEXED

ADDRESS + DATA X _vauip apor X
\STATUS

VALID WRITE DATA

RO#,WRH,DEN#
(8086 MAX MODE) N

—

CLKA

SYNC

0g

| L

WSD =0
‘WRITE DATA
SAMPLE TIME

=1

‘WRITE DATA
SAMPLE TIME

le»—»i

[~ tosx =

rXACK/ Y

XD =0

XD = 1 READ \

\ XD = 2 WRITE

i
| |

INH1

X VALID INHIBIT

NAK/

<—|sm—>l
\

HLD,INT,PSR
L

tas tan

ADO-15
CS/.WR/,BHEN VALID ADDR

VALID WRITE BATA

tcoe

DEN/

*lcsn’{

VALID ADDR

ADO-15
CS/,WR/, BHEN

-

e teyp —m
1

txbe

——C

VALID READ DATA

-t ne-»i

DEN/

\

171874-14

Figure 24. Local Processor Bus Timing

MULTIBUS SIGNALS
FOR REFERENCE

TO 43203

PERIPHERAL SUBSYSTEM INTERFACE SIGNALS

FROM 43203

WRITE
TO 43203

READ
FROM 43203

P

MULTIBUS ADDRESS x

o

MULTIBUS DATA

—A

MULTIBUS COMMAND
{MWTC.MRDC/)

 \

SYNC

| — 15H—]
tasy

ts5—am]
tws:

OF

f(usxvi

XACK/

INH1

<—lmn—->i

[e—tox -»I

tspL

NAK/

HLD,INT,PSR
.

=t t

|-t 4 {

i |

ADO-F
CS/,WR/ BHEN

VALID ADDRESS

X vauowmimEDATA X"

DEN/

4—'005—»1
\

xDE

= lsns—»i

R |

ADO-F
€S/, WR/,BHEN

VALID ADDRESS

4—-!505—»’

<—|an->]
\

tean

5

<-IDA0->}¢'uns~>

VALID READ DATA

r

[——epE —

—

171874-15

Figure 25. Multibus™ Interface Timing

28

= @

iN iAPX 43203 PRELIMINARY

Table 13. GDP/IP Operator Comparison

OPERATOR IPIMPLEMENTATION

Window Definition Operator
Update Window +

Access Descriptor Movement Operators
Copy Access Descriptor =
Null Access Descriptor =

Rights Manipulation Operators
Amplify Rights =
Restrict Rights =

Type Definition Manipulation Operators
Create Public Type =
Create Private Type -
Retrieve Public Type =
Retrieve Type =
Retrieve Type Definition =

Refinement Operators
Create Generic Refinement =
Create Typed Refinement =
Retrieve Refinement =

Segment Creation Operators
Create Data Segment -
Create Access Segment =
Create Typed Segment -
Create Access Descriptor -

Access Path Inspection Operators
Inspect Access Descriptor =
Inspect Access Path =

Object Interlock Operators
Lock Object =
Unlock Object =
Indivisibly Add Short Ordinal -
Indivisibly Add Ordinial -
Indivisibly Insert Short Ordinal -
Indivisibly Insert Ordinal -

Context Communication Operators
Enter Access Segment
Enter Process Globals Access Segment
Set Context Mode
Cali
Call Context with Message -
Return -

1l

I~ 1

29

n

iAPX 43203

PRELIMINARY

Table 13. GDP/iP Operator Comparison (Cont’d.)

OPERATOR

IP IMPLEMENTATION

Process Communication Operators
Send
Receive
Conditional Send
Conditionai Receive
Surrogate Send
Surrogate Receive
Delay
Read Process Clock

Processor Communication Operators
Send to Processor
Broadcast to Processors
Read Processor Status and Clock
Move to Interconnect
Move from Interconnect

Branch Operators
Character Operators
Short-Ordinal Operators
Short-Integer Operators
Ordinal Operators

Integer Operators
Short-Real Operators

Real Operators
Temporary-Real Operators

Legend:

+

{ While conceptually similar, \P implements operator differently

IP and GDP identical implementation
GDP does notimplement operator
IP does not implement operator

than GDP

30

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara 95051 (408) 734-8102 x598
Printed in U.S.A./Y-33/0281/50K/PS/GFH

Intel iAPX 43201 iAPX 43202 PRELIMINARY
VLSI GENERAL DATA PROCESSOR

m Self-Dispatching Processors for m Capability-Based Addressing and
Software-Transparent Multiprocessing Protection

m Hardware Implemented Inter-Process

Communication and Dynamic Storage m 240 Bytes of Virtual Address Space

Allocation m Object-Based Architecture for
m High-Level Language Directed Improved Programmer Productivity
Instruction Set with 0-3 Operand
References m Symmetrical Support of All 8-, 16-, and
32-Bit Scalar Data Types and Proposed
m Functional Redundancy Checking IEEE Standard 32-, 64-, and 80-Bit
Mode for Hardware Error Detection Floating Point

The Intel iAPX 432 General Data Processor (GDP) is a 32-bit microprocessor that consists of two VLSI
devices, the 43201 and the 43202. These companion devices (shown in Figures 1 and 2) provide the general
data processing facility of the iAPX 432 Micromainframe. The combination of VLS! technology and
advanced architecture in the iAPX 432 system results in mainframe functionality with a microcomputer
form factor. The new object-based architecture significantly reduces the cost of large software systems
and enhances their reliability and security.

_Software-transparent multiprocessing allows the user to configure systems matched to the required per-
formance and provides an easy growth path. Hardware support for operating systems and high-ievel
languages eases their implementation.

The GDP provides 240 bytes of virtual address space with capability-based addressing and protection. In
addition, a hardware-implemented functional redundancy checking mode is provided for the detection of
hardware errors.

The iAPX 43201 and iAPX 43202 are fabricated with Intel’s highly reliable +5-volt, depletion load,
N-channel, silicon gate HMOS technology and each is packaged in a 64-pin Quad In-Line Package (QUIP).

Figure 1. 43201 Pin Assignment 1718731 Figure 2. 43202 Pin Assignment
Instruction Decoder/Microinstruction Sequencer Execution Unit 1718732

The following are trademarks of Intel Corporation and may be used only to identify Intel products: BXP, CREDIT, i, ICE, iCS, im, Insite, Intel, intel, Intelevision, Intellec, iRMX,
iSBC, iSBX, Library Manager, MCS, Megachassis, Micromap, Multibus, Multimodule, PROMPT, Promware, RMX/80, System 2000, UPI, uScope, and the combination of ICE, iCS,
IRMX, iISBC, iSBX, MCS, or RMX and a numerical suffix.

© Intel Corporation 1981 171873-001 Rev. A

intel

iAPX 432 01/02

PRELIMINARY

iIAPX 432 GDP FUNCTIONAL
DESCRIPTION

The general data processor is organized inter-
nally as a three-stage microprogram-controlled
pipeline. The first stage is the instruction decoder
(ID); the second stage is the microinstruction
sequencer (MS); and the third stage is the execu-
tion unit (EU).

The first two stages of the pipéline are physically
located on the 43201 (Figure 3). Each stage of the
pipeline can be considered an independent sub-
processor which operates until the pipeline is full
and then halts and waits for more work to do.

Instruction Decoder

The first subprocessor of the pipeline is the D,
which performs the following functions:

* Receives macroinstructions

¢ Processes variable-length fields

¢ Extracts logical addresses

e Generates starting addresses for the micro-
instruction procedures

* Generates microinstructions for
operations

simple

The general task facing the Instruction Decoder is
to interpret the macro-instruction stream to deter-
mine which micro-instruction sequence should be
initiated next and to extract logical address data.
The major sub-tasks involved in accomplishing the
larger goal are:

° jAPX 432 instructions contain a variable number
of bits, depending upon the complexity of the
instruction. Instructions may range from a few
bits long to several hundred bits long. Instruc-
tions may extend over many words in memory.
The Instruction Decoder requests words from
memory as they are needed.

s A GDP instruction is composed of a variable
number of fields and each field may contain a
variable number of bits. In most cases, the

MASTER HERR/

MICROINSTRUCTION
SEQUENCER ¥

ROM

BUFFER

AND R EENgIT
M HARDWARE | >
CHECKING Wlg

CONTROL

LOGIC

I

INSTRUCTION
DECODER

[

N

PROCESSOR
PACKET BUS
INTERFACE

)

CONTROL

< 1Sg
. 1Sp

TT A
RN |

R
ACDys...ACDg PRQ ICS INIT/

ALARM/RDROM/

CLR/ FATAL/

Figure 3. 43201 Block Diagram

171873-3

iAPX 432 01/02

PRELIMINARY

encoding of a field specifies its length. The
instruction Decoder interprets a field to find its
length.

e The Instruction Decoder determines when an
instruction boundary has been reached so that
it may properly begin decoding the next
instruction.

s In some cases, the interpretation of one field
may depend upon the value of some previous
field. In particular, the interpretation of the
opcode (the last field of an instruction) depends
on the value of the class field of that instruction
(the first field). The instruction Decoder saves
enough information about the instruction to
properly interpret every field in the instruction.

e A GDP instruction may contain an explicit
reference to some location in memory. This
logical address information must be transferred
to the Reference Generation Unit so that the
correct physical address of the operand may be
generated. As with all fields of a GDP instruc-
tion, the logical address fields are also variable
length fields. The Instruction Decoder has pro-
visions for formatting the logical address infor-
mation and storing it until needed by the
Reference Generation Unit.

e The iAPX 432 instruction set contains several
branch instructions. Since 1APX 432 insfructions
may start at any bit in the segment, the Instruc-
tion Decoder is able to start decoding at any
point in the segment. Since branches occur
fairly often in a typical instruction stream, it is
also desirable to minimize the start-up time of
the GDP after a branch has occurred.

* The Instruction Decoder provides a mechanism
to recover from an instruction that faults. The
information necessary for fault recovery will be
retained by the Instruction Decoder until the
instruction is successfully completed.

Microinstruction Sequencer

The second subprocessor in the pipeline is the
Microinstruction Sequencer (MS8) which performs
the following functions:

¢ |ssues microinstructions to the Execution Unit
(EU) (43202)

s Executes microcode sequences out of an
on-chip, 4.0K x 16-bit microcode ROM

* Responds to the bus control signals

¢ Invokes macroinstruction fetches

e |nitiates interprocessor communication and
fault handling sequences

The role of the Microinstruction Sequencer is to
decide which microinstruction shouid be sent to
the Execution Unit for each cycle. The Micro-
instruction Sequencer must consider each of the
following when generating microinstructions:

e There are two sources of microinstructions.
They may come from either the Instruction
Decoder or from a ROM contained in the
Microinstruction Sequencer (MS). The MS must
choose the appropriate source.

¢ The Microinstruction Sequencer must compute
the address in ROM (if any) of the next
microinstruction.

e The Execution Unit may require variable
lengths of time to complete some microinstruc-
tions. The Microinstruction Sequencer waits for
the Execution Unit to finish the requested
operation.

Execution Unit

The 43202 contains the third stage of the GDP
pipeline—the Execution Unit (EU). (Refer to
Figure 4.) This unit receives microinstructions
from the 43201 and routes them to one of the two
independent subprocessors that make up the EU.
These two are the Data Manipulation Unit (DMU)
and the Reference Generation Unit (RGU).

The EU executes most microinstructions in one
clock cycle. However, each of the subprocessors
has an associated sequencer that may run for
many cycles in response to certain microinstruc-
tions. Those sequencers are invoked for com-
plicated arithmetic operations (in the Data
Manipulation Unit) and Processor Packet bus
transactions (in the Reference Generation Unit).

The Data Manipulation Unit contains the registers
and arithmetic capabilities to perform the follow-
ing functions:

¢ Hardware recognition of nine (9) data types

e Built-in state machine for 16- and 32-bit multiply,
divide, and remainder

* Conirol functions for 32-, 64-, and 80-bit floating
point arithmetic

Intel iAPX 432 01/02 PRELIMINARY

DATA
CONTROL
MANIﬁl’{:hATION h DECODER

lygeulg CLR/ 1Sg...18¢

REFERENCE
GENERATION
UNIT

SYSTEM

¢ MASTER

TIMERS -

1
|
|
NS RN NI S -

PACKET BUS

PROCESSOR |
CONTROL |

HERR/

BOUT ICS PRQ ACDs..ACD,

Figure 4. 43202 Block Diagram 171873-4

The Reference Generation Unit performs the
following functions:

e Provides the translation of a 40-bit virtual
address into a 24-bit physical address

* Provides for a hardware-enforced domain
protection system (read, write, alter, accessed)

¢ Handles sequencing for 8-, 16-, 32-, 64-, and
80-bit memory accesses

¢ Controls on-chip top-of-stack register

The Execution Unit' manipulates data and
translates the logical addresses into physical
addresses. The efficient performance of these
tasks requires:

¢ While most microinstructions require only a
single cycle to complete, there are some that
require multiple and even variable numbers of
cycles. As a result there are two sequences in
the Execution Unit. One sequence is associ-
ated with the Data Manipulation Unit and is
responsible for controlling multiple-cycle
arithmetic operations. The other sequencer
works in conjunction with the Reference Gener-
ation Unit and is responsible for running cycles
on the Processor Packet bus.

* When a reference to a given memory segment
has been translated from its logical representa-
tion to a physical address, there is a cache in
the Reference Generation Unit that maintains
the physical base address as well as the length
of the segment. Future references to the same
segment can use this cached information as the
basis for logical to physical address translation.

e There is a hardware-implemented feature which
uses least-recently-used algorithms for
deciding which cached segment base-length
pair to replace when a new segment is
referenced.

* The top 16-bit element of the operand stack can
be stored in a register in the Data Manipuiation
Unit.

e A circuit in the Reference Generation Unit
checks every memory reference to see if it is
within the length of its segment. Since the iAPX
432 architecture. controls the type of access
(read, write) as well, whether or not the access
is allowed at all, this hardware also verifies that
the reference is of the proper type.

The 43201 and 43202 components, described
above, together form the GDP. Figure 5 is a block
diagram that shows both units interfacing to the
Packet bus as a single processor.

Intel iAPX 432 01/02 PRELIMINARY
CLOCK GROUP
vCC VSS CLKACLKE

L

BOUT ==

PRQ -=

PROCESSOR
PACKET BUS
GROUP

ICs >

ACD15. . . fi
ACDg

GDP
LOGIC
SYMBOL

<€———— ALARM/

o FATAL/

SYSTEM

<€————— PCLK/ GROUP

e |NIT/

t———— CLR/

OR
DETECTION

. MASTER | HARDWARE
ERR
GROUP

f-———— HERR/

Figure 5. GDP Block Diagram

171873-5

43202

CLKA
CLKB

q
d

MASTER
ASTE PCLK/

HERR/

FATAL/

O(LO
o010
(¢]|[@)|[8) (@]

CLR/

INIT/

0
0 olo
0

o

BOUT
PRQ

ICS

ALARM/

ACD15

O ACD14
> (T oAERS N\ 05 acorz_ 0"
OC Y, 5 O O{) N = ~ooig ACDT
o —O30N O ACDS
o———i_/_o—— =& , O— ACDS
O O\ O—O O O o2 ACD7
C /6 O\ i{'\ ACDS6
N\ 0 < / O ACDS
mo O\O / O o3 ACD4
[6) o 1o O L ACD1 ACD2

ACDO

Figure 6. GDP Layout

iAPX 43201/43202
PHYSICAL INTERCONNECT

Figure 6 illustrates how the 43201 and 43202 are
layed-out to form a GDP.

432 INSTRUCTIONS

Intel iAPX 432 instruction codes have been
designed to minimize the space the instructions
occupy in memory and still allow for efficient
encoding. In order to achieve the ultimate in effi-
ciency of storage, the instructions are encoded
without regard for byte, word, or other artificial
boundaries. The instructions may be viewed as a

171873-6

linear sequence of bits in memory, with each
instruction occupying exactly the number of bits
required for its complete specification.

iAPX 432 processors view these instructions as
composed of fields of varying numbers of bits that
are organized to present information to the
Instruction Decoder in the sequence required for
decoding. A unified form for all instructions allows
instruction decoding of all instructions to proceed
in the same fashion.

in general, GDP instructions consist of four main
fields. These fields are calied the ciass field, the
format field, the reference fieid, and the opcode
field. The reference field, in turn, may contain

intel

iAPX 43201/02

PRELIMINARY

several other fields, depending upon the number
and complexity of the operand references in the
instruction. The fields of a GDP instruction are
stored in memory in the following format.

The class field is either 4- or 6-bits long, depen-
ding on its encoding. The class field specifies the
number of operands required by the instruction
and the primitive types of the operands. The class
field may indicate 0, 1, 2 or 3references.

If the class field indicates one or more references,
a format field is required to specify whether the
references are implicit or explicit and their uses.

In the case of explicit references the format field
can indicate whether or not the reference is direct
or indirect. Further, the format field may indicate
that a single operand plays more than one role in
the execution of the instruction. As an example,
consider an instruction to increment the value of
an integer in memory. This instruction contains a
class field, which specifies that the operator is of
order two and that the two operands both occupy a
word of storage, foliowed by a format field, whose
value indicates that a single reference specifies a
logical address to be used both for fetching the
source operand and for storing the result, follow-
ed by an explicit data reference to the integer to
be incremented, and finally followed by an opcode
field for the order-two operator INCREMENT
INTEGER. It is possible for a format field to
indicate that an instruction contains fewer explicit
data references than are indicated by the instruc-
tion’s class field. In such a case the other required
data references are implicit references, and the
corresponding source or result operands are
obtained from or returned to the top of the
operand stack. The.use of implicit references is
iltustrated in the following example, which con-
siders the high-level language statement

A=A +B*C
The instruction stream fragment for this statement

consists of two instructions and has the following
form:

S opcode | reference | format | class S

< Increasing address

Assume that A, B, and C are integer operands.
The first class field (the rightmost field above)
specifies that the operator requires three
references and that all three references are to
word operands.

The first format field contains a code specifying
two explicit data references. These references
are to supply only the two source operands. The
destination is referenced implicitly so that the
result of the multiplication is to be pushed onto
the operand stack. The second class field is iden-
tical to the first and specifies three required
references by the operator. In addition, all three
references are to word operands. The second for-
mat field specifies one explicit data reference to
be used for both the first source operand and the
destination. The second source operand is
referenced implicitly and is to be popped from the
operand stack when the instruction is executed.

The reference fields themselves can be of various
lengths and can appear in various numbers, con-
sistent with their specification in the class and for-
mat fields. If implicit references are specified,
reference fields for them will not appear. Direct
references will require more bits to specify than
indirect references.

Following the class, format, and reference fields,
the ‘opcode field appears. The opcode field
specifies the operator to be applied to the
operands specified in the preceding fields.

Modes of Generation

Figures 7 and 8 illustrate the two iAPX 432 system
modes of generation: Selector Generation and
Displacement Generation.

The modes of Selector Generation are concerned
with the object structure and how they are access-
ed by the operands. The four modes of Selector
Generation shown are;

* Short Direct
¢ Long Direct
Stack Indirect

General Indirect

The modes of Displacement Generation specify
the physical location and displacement of objects
within a given segment or segment. The four
modes of Displacement Generation are:

Scalar Data Reference Mode

Record item Reference Mode

Static Vector Element Reference Mode

Dynamic Vector Element Reference Mode

iAPX 43201/02

PRELIMINARY

SHORT DIRECT

pog

SEGMENTS

izzzzmmz

LONG DIRECT

ENTRY
ACCESS

SEGMENTS
V7222277777722

STACK INDIRECT

TOP OF OPERAND
STACK

ENTRY

DISPLACEMENT LENGTH

GENERAL INDIRECT

ACCESS
SEGMENTS

f
l

——l l—OBJECT SELECTORLENGTH

>
DISPLACEMENT 10BJECTSELECTOR
70R 16 BITS 6 OR 16 BITS XiX AECNgggS
Y SEGMENTS
70R 16 4o0r14A2
-

DATA SEGMENT

ENTRY
ACCESS
SEGMENTS
EEEZTZZEGZZZZ przrzzzzzrzrZZ]
I Vi
l 2
&Y

Figure 7. Modes of Selector Generation

7

171873-7

iAPX 432 01/02

PRELIMINARY

DATAITEMINDEX LENGTH
e — LG,

ppJ s

DISPLACEMENT (7 OR 16 BITS) ><

&L

70R 16

DATA SEGMENT

Ly

SELECTOR

(MAY BE DIRECT ORINDIRECT)

A. SCALARDATAREFERENCE MODE

DISPLACEMENT LENGTH
—_ rdd

>

BASE DISPLACEMENT DATA ITEM OFFSET {\¢

INDIRECTLY) (7 OR 16 BITS)

bl

e2d

136 BITS 70R 16 BITS

DATA SEGMENT

TOP OF
OPERAND STACK
OR
VARIABLE IN SAME
DATASEGMENT

OR
VARIABLE IN ANOTHER
DATA'SEGMENT

RECORD
REFERENCED

DISPLACEMENT TO BASE
OF RECORD REFERENCED

L P S

ELEMENT
OF RECORD

REFERENCED

SELECTOR

B. RECORD ITEM REFERENCE MODE

171873-8

171873-9

Figure 8. Modes of Displacement Generation

8

N

iAPX 43201/02

PRELIMINARY

BASE LENGTH

ELEMENT INDEX
{SPECIFIED
INDIRECTLY

BASE DISPLACEMENT

X

1~36 BITS

/

TOP OF
OPERAND STACK
OR
VARIABLE:IN SAME
DATA SEGMENT

OR
VARIABLE IN ANOTHER
DATA SEGMENT

0OR 16 BITS

DATASEGMENT

SCALING BY X
DATATYPE

ELEMENT
DISPLACEMENT

SELECTOR

C. STATIC VECTOR ELEMENT REFERENCE MODE

&

BASE DISPLACEMENT

ELEMENTINDEX

(SPECIFIED (SPECIFIED
INDIRECTLY) INDIRECTLY)
(7) ([)
1-36 BITS 1-36 BITS
y] DATA SEGMENT
TOP OF TOP.OF
OPERAND STACK OPERAND STACK
OR OR
VARIABLE IN SAME VARIABLE IN SAME
DATA SEGMENT DATA SEGMENT
OR OR
VARIABLE IN ANOTHER VARIABLE IN ANOTHER
DATA SEGMENT DATA SEGMENT
SCALING BY
DATA TYPE
SELECTOR

D. DYNAMIC VECTOR ELEMENT REFERENCE MODE

VECTOR
REFERENCED

ELEMENT OF
VECTOR
REFERENCED

VECTOR
REFERENCED

ELEMENT OF
VECTOR
REFERENCED

171873-10

171873-11

Figure 8. Modes of Displacement Generation (Cont’d.)

9

intel

iAPX 43201/02

PRELIMINARY

HARDWARE ERROR DETECTION FOR
iAPX 432 PROCESSORS

iAPX 432 processors include a facility to support
the hardware detection of errors by functional
redundancy checking (FRC). At initialization time,
each iAPX 432 processor is configured to operate
as either a master or a checker processor. A
master operates in the normal manner. A checker
places all output pins that are being checked in
the high-impedance state. Thus, those pins which
are to be checked on a master and checker are
parallel-connected, pin for pin, so the checker can
compare its master’'s output values with its own.
Any comparison error causes the checker to
assert HERR/ (refer to Figure 9).

MASTER

»{INPUTS

OUTPUTS!—1-——->

CHECKED
OUTPUTS |

»| INPUTS

[—» HERR/

CHECKER

Figure 9. Hardware Error Detection sz

iAPX 432 INFORMATION STRUCTURE

The following section presents the information
structure for an iAPX 432 system and includes a
discussion of memory system requirements,
physical addressing, data formats, and data
representation. Any 432 processor in the system
can access all the contents of physical memory.
This section describes how information is
represented and accessed.

Memory

The TAPX 432 implements a two-level memory
structure. The software system exists in a
segmented environment in which a logical
address specifies the location of a data item. The
processor automatically translates this logical
address into a physical address for accessing the
value in physical memory.

10

Physical Addressing

Logical addresses are translated by the processor
into physical addresses. Physical addresses are
transmitted to memory by a processor to select
the beginning byte of a memory value to be
referenced. A physical address is 24 binary bits in
length. This results in a maximum physical
memory of 16 megabytes.

Data Formats

When a processor executes the instructions of an
operation within a context, operands found in the
logical address space of the context may be
manipulated. An individual operand may occupy
one, two, four, eight, or ten bytes of memory
(byte, double byte, word, double word, or
extended word, respectively). All operands are
referenced by a logical address as described
above. The displacement in such an address is the
displacement in bytes from the base address of
the data segment to the first byte of the operand.
For operands consisting of multiple bytes, the
address locates the low-order byte while the
higher-order bytes are found at the next higher
consecutive addresses.

Data Representation

An IAPX 432 convention has been adopted for
representing data operands stored in memory.
The bits in a field are numbered by increasing
numeric significance, with the least-significant bit
shown on the right. Increasing byte addresses are
shown from right to left. Examples of the five basic
data lengths used in the iAPX 432 system are
shown in Figure 10.

Data Positioning

The data operand types shown in Figure 10 may be
aligned on an arbitrary byte boundary within a data
segment. Note that more efficient system opera-
tion may be obtained when multi-byte data struc-
tures are aligned on double-byte boundaries (if
the memory system is organized in units of double
bytes). :

Requirements of an iAPX 432
Memory System

The multiprocessor architecture of the iAPX 432
places certain requirements on the operation of
the memory system to ensure the integrity of data

S

) ®
intel IAPX 432 01/02 PRELIMINARY
BIT 7 0
BYTE
ADDRESS N
BIT 15 87 0
DOUBLE BYTE
ADDRESS N+1 N
BIT 31 2423 1615 87 0
WORD
ADDREZSS N+3 N+2 N+1 N
BIT 63 56 31 2423 1615 87 0
DOUBLE WORD S
ADDRESS ~ N+7 T Nrs N+2 N+1 N
BIT 79 72 47 4039 32.31 2423 1615 87 - 0
EXTENDED WORD S S
ADDRESS N4+9 7 N+5 N+4 N+3 N+2 N+1 N

Figure 10. Basic iAPX 432 Dzta Lengths

items that can potentially be accessed simul-
taneously. Indivisible read-modify-write (BMW)
operations to both double-byte and word
operands in memory are necessary for manip-
ulating system objects. When an RMW-read is pro-
cessed for a location in memory, any other RMW-
reads from that location must be held off by the
memory system untii an RMW-write to that loca-
tion is received (or uritil an RMW timeout occurs).
Note that while the memory system is awaiting the
RMW-write, any other types of reads and writes
are allowed. Also, for ordinary reads and writes of
double-byte or longer operands, the memory
system must ensure the entire operand has been
either read or written before beginning to process
another access to the same location; e.qg., if two
simultaneous writes 1o the same location occur,
the memory system must ensure that the set of
locations used to store the operand does not get
changed to some interleaved combination of the
" two written values.

PROCESSOR PACKET BUS DEFINITION

This section describes and defines the signif-
icance of the 19 signal lines that make up the Pro-
cessor Packet bus, and the general scheme by
which timing relationships on these lines are
derived. Although this section defines alil legal
bus activities, the processors do not necessarily
perform all allowed activities. Slaves to the Pro-

11

171873413

cessor Packet bus must support all state transi-
tions to ensure compatibility (refer to Figure 11 for
Packet bus states).

The Processor Packet bus consists of 3 contro!
lines:

s Processor Packet bus Request (PRQ),
¢ Enable Buffers for Output (BOUT),
¢ Interconnect Status (ICS).

This bus also includes sixteen 3-state Address-
Control-Data lines (ACD15 through ACD0). PRQ
has two functions whose use depends upon the
application; i.e., PRQ either indicates the first
cycle of a transaction on the Processor Packet bus
or the cancellation of a transaction initiated in the
previous cycle. Of the three control iines, BOUT
has the simpiest function, serving as a direction
control for buffers in large systems requiring more
electrical drive than the processor components
can provide. The ICS signal fias significance per-
taining to one of three different system conditions
and depends on the state of the Processor Packet
bus transaction. The processor interprets the ICS
input as an indication of one of the following:

* Whether or not an interprocessor communica-
tion (IPC) is waiting,

¢ Whether or not the slave requires more time io
service the processor’s request,

*» Whether or nota bus ERROR has occurred.

iAPX 432 01/02

PRELIMINARY

Initial State Next State Trigger

Ti Tl Bus cycle desired
Ti No bus cycle desired

Ti T2 Unconditional

T2 T3 ICS high
Tw ICS low
Tl Cancelled, Access Pending
Ti Cancelled, No Access Pending

T3 T3 Additional transfer required, 1CS high
Tw Additional transfer required, ICS low
Tv Alltransfers completed, no overiapped access
Tvo Current write with overlapped access

Tv Ti No access pending
Tl Access pending

Tvo T2 Unconditional

Tw Tw ICS low
T3 ICS high

Figure 11. Processor Packet Bus State Diagram

17 1873-14

iAPX 43201/02

PRELIMINARY

The Address/Control/Data lines emit output
specification information to indicate the type of
cycle being initiated, e.g., addresses, data to be
written, or control information. They also receive
data returned to the processor during reads.
Details of the ACD line operation and the
associated control lines are summarized below.

ACD15-ACDO0 (Address/Control/Data)

During the first cycle, (T1 or Tvo) of a Processor
Packet bus transaction (indicated by theé rising
edge of PRQ), the high-order 8 ACD bits
(ACD15...ACD8) specify the type of the current
transaction. In this first cycle, the low-order ACD
bits (ACD7...ACD0) contain the least significant
eight bits of the 24-bit physical address.

During the subsequent cycle (T2), the remainder
of the address is present on the ACD pins (aligned
such that the most significant byte of the address
is on ACD15 through ACDS8, the mid-significant
byte on ACD7 through ACDO0). If PRQ is asserted
during T2, the access is cancelled and the ACD
lines are not defined.

During the third cycie (T3 or Tw) of a Processor
Packet bus transaction the processor presents a
high impedance to the ACD lines for read
transactions and asserts write data for write
transactions.

Once the bus has entered T3 or Tv, the sequence
of state transactions depends on the type of
cycle requested during the preceding T1 or Tvo.
Accesses ranging in length from 1 to 32 bytes may
be requested (see Table 1). If a transfer of more
than one double-byte has been requested, it is
necessary to enter T3 for every double-byte that is
transferred. The processor may simply enter T3.or
it may first enter Tw for any number of cycles (as
dictated by ICS).

After all data is transferred, the processor enters
either Tv or Tvo. Tvo can be entered only when the
internal state of execution is such that the pro-
cessor is prepared to accomplish an immediate
write transfer (overiapped access). During Tvo,
the ACD lines contain address and specification
information aligned in the same fashion as in T1. If
the processor does not require an overlapped
access, the bus state moves to Tv (the ACD lines
will be high impedance). After Tv, a new bus cycle
can be started with T1, or the processor may enter
the idle state(Ti).

ICS (Interconnect Status)

ICS has three possibie interpretations depending
on the state of the bus transaction (see Table 2).
Notice that under most conditions ICS has IPC
significance for more than one cycle. It is impor-
tant to note that a valid low during any cycle with
IPC significance will signal the processor that an

Table 1. ACD Specification Encoding

ACD ACD ACD ACD ACD ACD ACD ACD
15 14 13 12 " 10 9 8
Access Op RMW Length Modifiers
0- 0- 0- 000-1 Byte ACD15=0:
Memory Read Nominal 001-2 Bytes 00-inst Seg
010 -4 Bytes Access
011 -6 Bytes 01-Stack Seg
100 -8 Bytes Access
1- 1- 1- 101-10 Bytes 10-Context Ctl
Other Write RMW 110-16 Bytes* Seg Access
111-32 Bytes* 11-Other
ACD15=1:

* Not implemented 00-Reserved
01-Reserved
10-Reserved
11-Interconn

Register

13

intel

iAPX 43201/02

PRELIMINARY

IPC or reconfiguration request has been received.
An iAPX 432 processor is required to record and
service only one IPC or reconfiguration request at
a time. Logic in the interconnect system must
record and sequence multiple (possibly simul-
taneous) IPC occurrences and reconfigurdion
requests to the processor. Thus the logic that
forms ICS must accomodate global and local IPC
arrivals and requests for reconfiguration as
individual events:

¢ Assert IPC significance on ICS for the arrival of
an IPC or reconfiguration request.

¢ When the iAPX 432 processor reads inter-
connect address register 2, it will respond to
one of the status bits for the IPC or reconfigura-
tion request signalled on ICS in the following
order:

Bit 2 (1=reconfigure, 0=Do not reconfigure)
Bit 1 (1=global {PC arrived, 0=no globai IPC)
Bit 0 (1=Local IPC arrived, 0=no local IPC)

* The logic in the interconnect system must clear
the highest order status bit that was serviced by
the iAPX 432 processor, and if additional 1PC
information has arrived, the interconnect
system logic must signal an additional IPC
indication to the iAPX 432 processor. The inter-
connect system must signal the second IPC by
raising ICS high for at least one cycie and then
setting ICS low for at least one cycle during IPC
significance time.

Table 2. ICS Interpretation

Level
High Tow State
IPC None Waiting Ti, T1,T2*
Stretch Don’t Stretch T3, Tw
Err Bus Error No Error Tv, Tvo

*|ICS has no significance in a cycle following a T2
where PRQ is asserted {cancelled access) or in any
cycle during which CLR/ is asserted.

PRQ (Processor Packet Bus Request)

PRQ is normally low and can go high only during
T1, T2 and Tvo. High levels during Tvo and T1
indicate the first cycle of an access. A high level
during T2 indicate that the current cycle is to be
cancelied. (See Table 3.)

Table 3. PRQ interpretation

State PRQ Condition
Ti 0 Always
T1 1 Initiate access
T2 0 Continue access
1 Cancel access
T3 0 Always
Tw 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

BOUT (Enable Buffers for Output)

BOUT is provided to control external buffers when
they are present. Table 4 and Figures 12 through
16 show its state under various conditions.

PROCESSOR PACKET BUS TIMING
RELATIONSHIPS

All timing relationships on the Processor Packet
bus are derived from a simple scheme and related
to Table 5. Each timing diagram shown in the
following pages (Figures 12 through 17) provides a
separate table illustrating the various system
states during the cycle. This approach to transfer
timing was designed to allow maximum time for
the transfer to occur and yet guarantee hold time.
The solid lines in Figure 18 show the state transi-
tions initiated by the GDP.

Any agent connected to the Processor Packet bus
is recognized as either a processor or a slave.
Examples of processors are the GDP and the IP. A
memory system provides an example of a slave.

In all tranfers between a processor and a slave,
the data to be driven are clocked three-quarters of
a cycle before they are to be sampled. This allows
adequate time for the transfer and ensures suffi-
cient hold time after sampling. The BOUT timing is
unique because BOUT is intended as a direction
control for external buffers.

Detailed set-up and hold times depend on the pro-
cessor implementation and can be found in the AC
characteristics section.

intel iAPX 432 01/02 PRELIMINARY

Table 4. BOUT Interpretation

Low-to-High High-to-Low High-to-Low
Transition Transition Transition
BOUT Always High or Low or Low or High
Write T1,T2, T3, Tw, Tvo Ti None Tv
Read T1,T2 Ti,Tv T3,Tw None

. NOMINAL WRITE CYCLE ,
I~ 5CLKA CYCLES T

T l T4 T2 T3 Tv T l T T2

CLKA

ACB15...ACDo ---------—--(Anaa/spéc)-(ADDR)--(WRITEDATA)-—----—---------— ----- -(ADDR/SP(i)--(ADDR k)—---—

PRQ _ﬁ / \
1cs 1PC)(PC X IPC y STRETCH \(ERR X IPC)(1PC X PG X

BOUT _/ 7 \ ‘ /

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Ti
Spec Lo-adr Tt
Hi-adr Mid-adr T2
Hi-datal® Lo-datal T3
Hi-z Hiz Tv
Hi-z Hi-z Ti
Speg Lo-adr Tt
Hi-adr Mid-adr T2

*Undefined if siﬂgle byte write

Figure 12. Nominal Write Cycle Timing 17187315

Table 5. iAPX 432 Component Signaling Scheme

Processor 7 Slave
Inputs ACD: {CLKA All: 1CLKB
Sampled Others: TCLKA
Outputs Ali {(except BOUT): CLKA ACD: JCLKB
Driven Others: tCLKB
BOUT: tCLKA

15

iAPX 432 01/02 PRELIMINARY

Ty

MINIMUM WRITE CYCLE

T

X

3CLKA CYCLES

T2 T3 Tvo T2

T3

CLKA

ACD15...ACDp ------------(ADDR/SPEC x ADDR X WRITE DATA x ADDR/SPECX ADDR >< WRITE DATA)------
ma____ /7 \ / \

X IPC x iPC y STRETCH Y ERR X 1PC x STRETCH x

BOUT /

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Ty
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-datal* Lo-datal T3
Spec Lo-adr Tvo
Hi-adr Mid-adr T2
Hi-datal Lo-datal T3

*Undefined if single byte write
**(Preceded by read cycle)

Figure 13. Minimum Write Cycle Timing

171873-16

T

T

T2 T3 Tw Ta

Tv T

CLKA

ACD15...ACDo ------------(ADDR/SPEC X ADDR X WRITE DATA x WRITE DATA).-..----..--------_

/

ICS IPC

x iPC X IPC rSTRETCH \ STRETCH / STRETCH Y

ERR X IPC

BOUT /

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Ri-z Ti
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-datal Lo-datal T3
Hi-data2 Lo-data2 Tw
Hi-data2 Lo-data2 AR
Hi-z Hi-z Tv
Hi-z Hi-z Ti

o

Figure 14. Stretched Write Cycle Timing

16

171873-17

in iAPX 432 01/02 PRELIMINARY

| MINIMUM READ CYCLE
5 CLKA CYCLES

Tv l T T2 T3 Ty T T

CLKA

ACD;5...ACDg -----------(ADDR/SPEC)'(ADDR)— el READ DATA -----------------(ADDR/SPEC)-(

/TN c ST

Ics 1PC X 1PC X 1PC y sTReTcH X ERR X IPC X 1PC x

BOUT / \ f

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Ty
Spec Lo-adr T
Hi-adr Mid-adr T2
Hi-data® Lo-datal T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti
Spec L.o-adr T1

*Undefined if single byte read
**(Preceded by aread): AD TIMING

Figure 15. Minimum Read Cycle (Not Buffered)

171873-18

MINIMUM READ CYCLE (BUFFERED SYSTEM)
| 6 CLKA CYCLES

X

Tv T1 T2 Tw T3 Ty Ti

CLKA

ACD15...ACDo-------------(ADDR/SPECX ADDR)—--------------- READ DATA Yo e oemim o o i i e

i

ADDR

o /T S~
A

|C$X 1PC x IPC x IPC * STRETCH / STRETCH \(ERR f IPC

o) \ /T

ACD15 ACD8 | ACD7 ACDO | State
Hi-z Hi-z Tv*
Spec Lo-adr ™
Hi-adr Mid-adr T2
Hi-z Hi-z Tw
Hi-datal” Lo-datal T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti

*Undefined if singie byte read
**(Preceded by aread)

Figure 16. Minimum Read Cycle (Buffered System)

17

171873-19

iAPX 43201/02 PRELIMINARY

2CLKACYCLES

T Ty T2 Ty T2 Ta Ty T

CLKA

ACD1s... _— . . - - - . - . - -
ACDu-------(ADDR/SPEC X UNDEFINED X ADDR/SPEC X ADDR X WRITE DATA)-—-—---—--------------—------

PRQ / CANCEL S \
ICS 1pC X IPc X iPc

IPC X STRETCH X ERROR X pC X

- -
SIGNIFICANCE

IGNORE
COMPLETELY

ACD15 ACDS | ACD7 ACDO | State
Hi-z Hi-z Ti
Spec Lo-adr Tt
Undefined Undefined T2
Speg Lo-adr Tere
Hi-adr Mid-adr T2
Hi-data® Lo-data T3
Hi-z Hi-z Tv
Hi-z Hi-z Ti

*Undefined if single byte write
**Access Gancelled
***New Access Started (Slave must
support this subsequent access
even though all procegsers may not
implement it.)

Figure 17. Minimum Faulted Access Cycle 171187320

18

iIAPX 43201/02

PRELIMINARY

*Note that the broken transitions in the
GDP state diagram are not gener-
ated by the GDP component pair.

Figure 18. GDP State Diagram

43201 PIN DESCRIPTION

Processor Packet Bus Group

ACD15—ACDg (Address/Control/
Data lines, Inputs, high asserted)

The Processor Packet bus Address/Control/Data
lines are the basic communication path between
the GDP and its environment. These lines are
always inputs to the 43201 and are driven by either
the 43202 or the external environment. Note that
the 43201 must receive the specification byte from
the 43202 during T1 of a bus transaction (Figure
- 11). As a result, the ACD receivers must be
capable of siave timing as well as processor tim-
ing. (See Processor Packet bus timing relation-
ships for definition of processor and slave timing).

PRQ (Processor Packet bus
Request, Input, high asserted)

The PRQ input is used to initiate a transaction
between the GDP and the bus interface. PRQ is
normally held low by the 43202 whenever there is

19

171873-21

no transaction. PRQ is asserted high during the
first cycle of a bus transaction and returns low dur-
ing the second cycle if the transaction is to be
completed. The GDP may cancel a bus transaction
by asserting PRQ high (instead of returning it low)
during the second cycle of the transaction. The
GDP wiil cancel a transaction if a bounds or
access rights viclation for the transaction has
been detected. PRQ is sampled on the rising edge
of CLKA.

ICS (Interconnect Status,
Input, high asserted)

The ICS input is continually monitored by the 43201
to determine the state of bus transactions. The
interpretation of ICS depends on the present cycle
of a bus transaction and will indicate one of the
following states: '

1. Interprocessor communication (IPC) message
waiting.

2. Input data invalid, a strefched access.
3. Output data not taken, a stretched access.

4. Bus error in external environment.

intel

iAPX 432 01/02

PRELIMINARY

lntra_-GDP Bus Group

Ulys...Ulp (Microinstruction
Bus lines, Outputs, high asserted)

These lines are used to transmit microinstructions
from the 43201 to the 43202. These pins are high
impedance in the checker state (Refer to Hard-
ware Error Detection Group). They are monitored
by the hardware error checking logic.

1S6...1Sg (Interchip Status lines,
Inputs, high asserted)

The 43201 receives information pertaining to inter-
chip microprogram status from the 43202 over
these lines.

System Group

FATAL/ (Fatal, Output, low asserted)

FATAL/ is asserted by the 43201 under microcode
control and is used by the GDP microcode to
indicate to the system that the GDP cannot con-
tinue due to grossly incorrect information struc-
tures in memory. FATAL/ is synchronously
asserted low and remains low until the processor
is initialized. FATAL/ is not affected by the hard-
ware checking logic.

ALARM/ (Alarm signal,
Input, low asserted)

The ALARM/ input signals the occurrence of an
unusual system-wide condition (such as power
fail). The 43201 does not respond to ALARM/ until
it has completed execution of the current 432
instruction, i.e., if any instruction is currently
under execution. ALARM/ is active low and is
sampled on the rising edge of CLKA.

INIT/ (Initialization, Input, low asserted)

The INIT/ pin is used to establish initialization.
INIT/ must be asserted low for at least 10 CLKA
cycles before the initial state is reached to allow
time for the 43201 to begin execution of a micro-
code sequence that initializes all of the 43201 and
43202 internai registers. Once this initialization
sequence has been completed, normal operation
begins.

20

CLR/ (Clear, Input, low asserted)

Assertion of CLR/ results in a microprogram trap
which causes the GDP to immediately terminate
any bus transactions or internal operations which
may be in progress at the time, reset to a known
state, assert FATAL/, and await an IPC (which
resets the GDP to the same state as INIT/ asser-
tion does). The IPC will not be serviced for at least
five clock cycles following CLR/ assertion.

1f CLR/ is continuously asserted low for more than
one clock cycle, it is ignored during alternate
clock cycles (beginning with the second clock
cycle) of continuous CLR/ low assertion.

Hardware Error Detection Group
MASTER (Master, Input, high asserted)

The MASTER pin is used to place the processor in
either master or checker mode. MASTER is sam-
pled during initialization (INIT/ asserted). If
MASTER is asserted throughout initialization, the
43201 functions normally and drives the micro-
instruction bus. If MASTER is low throughout
initialization, microinstruction bus signals
ulis—uly go to their high-impedance state. A 43201
checker does not drive the microinstruction bus;
rather, it monitors the bus and compares the data
on the bus to its internally generated result,
signalling disagreement on its HERR/ line. This
hardware error detection capability on the 43201 is
provided mainly for test purposes. MASTER
should be tied to V¢ for normal operation and tied
low to enable hardware error detection and
disable the bus (uly5—ulp) outputs.

HERR/ (Hardware Error,
Output, low asserted)

HERR/ is a signal produced by the 43201 to
indicate disagreement between the data
appearing on the micro-instruction bus (ulis—ulp)
and the internally generated result of the 43201.
HERR/ is asserted low when disagreement occurs
and is valid during CLKA. HERR/ can drive one
low power Schottky load.

Clock Group
CLKA, CLKB (Clock A, Clock B, Inputs)
Clock A (CLKA) provides the basic timing

reference for the 43201. CLKB overlaps CLKA by
nominally 1/4 cycle (90 degrees phase shift). All

iAPX 432 01/02

PRELIMINARY

external signals are referenced to CLKA. Refer to
the AC Electrical Characteristics for exact state-
ment of timing relationships.

Testing Input

RDROM/ (Read ROM,
Input, low asserted)

The RDROM/ input line is used to force a sequen-
tial read of Read-Only-Memory. If RDROM/ is low
when INIT/ goes high, the 43201 goes into a
special diagnostic mode. In this mode, with
RDROM/ heid low, the 43201 microinstruction
sequencer steps through the 43201 microprogram
ROM, sequentially displaying (but not executing)
the 43201 microprogram on the ulis—ulg lines. The
RDROM/ feature is useful for testing. RDROM/
should be tied to V¢ for normal operation and tied
low for testing .

Power and Ground Connections

Vce (4 pins)

These pins supply +5 V+10 % referenced to GND
pins.

GND (5 pins)

These pins supply ground reference for the 43201.

Vgg (Internally Generated)
This pin is connected to the substrate bias voltage
of the 43201. An external low leakage 1 microfarad

capacitor rated at 5 volts or greater should be used
to bypass Vgg. Vgg is a negative voltage.

" N.C. (No Connection, 4 pins)

43202 PIN DESCRIPTION

Processor Packet Bus Group

ACD45—ACDgq (Address/Control/
Data lines, Inputs or Three-state Outputs,
high asserted)

21

The Processor Packet bus Address/Control/Data
lines are the basic communication path between
the GDP and its environment. These pins are used
three ways:

¢ They may indicate control information for bus
transactions,

e They may issue physical addresses generated
by the GDP for an access, or

¢ They may transfer data (either direction).

When the 43202 is in- checker mode, the ACD pins
are monitored by the hardware error checking
logic and are in the high impedance mode.

PRQ (Processor Packet bus Request,
Three-state Output, high asserted)

PRQ s used to indicate the presence of a transac-
tion between the GDP and its external environ-
ment. Normally low, the PRQ pin is brought high
during the same cycle as the first double-byte of
address information is being driven onto the ACD
pins. PRQ remains high for only one cycle during
the access, unless an address development fault
occurs. The 43202 will leave PRQ high for a second
cycle to indicate the GDP has detected an
addressing or segment rights fault in completing
address generation. PRQ is checked by the hard-
ware error logic. PRQ is in a high impedance state
when the 43202 is in checker mode (see MASTER
description).

ICS (Interconnect Status,
Input, high asserted)

ICS is an indication to the 43202 from the bus
interface circuitry concerning the status of a bus
transaction. The interpretation of the ICS state is
dependent upon the present cycle of a bus trans-
action and may indicate:

¢ Interprocessor communication (IPC) message
waiting,

* Inputdatainvalid,
¢ Qutput data not taken,

e Bus error in external environment.

intgl

iAPX 43201/02

PRELIMINARY

BOUT (Enable Buffers for Output,
Output, high asserted)

BOUT is used to control external bus transceivers
to buffer the 43201, 43202 from the Processor
Packet bus load. Though not required, the use of
buffers may be desired in systems with heavy
ioading. BOUT is asserted when information is to
leave the 43202 on the ACD lines. BOUT is not
checked by the hardware error detection logic.

Intra-GDP Bus Group

ulys—ulg (Microinstruction Bus
lines, Inputs, high asserted)

The ulys—uly input lines provide the 43202 with
microinstruction information sent from the 43201.

1ISg—1S¢ (Interchip Status lines,
Outputs, high asserted)

The 1S4—I1S; lines drive interchip microprogram
status information from the 43202 to the 43201.
ISg—18y are not checked by the hardware error
detection logic.

System Group

PCLK/ (Processor Clock,
Input, low asserted)

PCLK/ is asserted to change the state of two pro-
cessor timers. The affected timers are called the
system timer and the service timer. Assertion of
PCLK/ for one cycle causes the system timer to
increment and the service timer to decrement.
Assertion of PCLK/ for more than one cycle
causes the system timer to be cleared and
decrements the service timer. For proper opera-
tion PCLK/ must be unasserted for at least four
clock cycles before being asserted. PCLK/ is syn-
chronous with respect to CLKA, but is generally
unrelated to other interface timings.

CLR/ (Clear, Input, low asserted)

Assertion of CLR/ results in a microprogram trap
which causes the GDP to immediately terminate
any bus transactions or internal operations which
may be in progress at the time, reset to & known

22

state, assert FATAL/, and await an IPC (which
resets the GDP to the same state as INIT/ asser-
tion does). The IPC will not be serviced for at least
five clock cycies following CLR/ assertion.

If CLR/ is continuously asserted low for more than
one clock cycle, it is ignored during alternate
clock cycles (beginning with the second clock
cycle) of continuous CLR/ low assertion.

Hardware Error Detection Group

MASTER (Master, Input, high asserted;
25k nominal pullup on-chip)

The MASTER input determines whether the 43202
is to function as a master or a checker. In master
mode, the 43202 functions normally and drives all
of its outputs. In checker mode, ACD15—ACDy and
PRQ enter the high impedance state and BOUT is
unconditionally fow. A 43202, whether master or
checker, monitors the ACDy5—ACDy and PRQ
lines and compares the data on them to its inter-
nally generated result, signalling disagreement on
its HERR/ line. For normal operation, MASTER
may be either left alone or tied high. MASTER
must be tied low to disabie the ACD¢5—ACDg and
PRQ outputs.

HERR/ (Hardware Error, Open Drain
Output, low assertec)

HERR/ is asserted low by the 43202 to indicate
disagreement between the data appearing on the
ACDy5—ACDy and PRQ pins and the internally
generated result of the 43202. HERR/ is valid dur-
ing CLKA and can normally be asseried by a 43202
every clock cycle. HERR/ is prevented from being
asserted low during any clock cycle following a
clock cycle in which a CLR/ low assertion is
recognized by the 43202. HERR/ requires an exter-
nal 2.2k ohm nominal pullup resistor.

Clock Group

CLKA, CLKB (Clock A, Clock B, Inputs)

Clock A (CLKA) provides the basic timing
reference for the 43202. Clock B (CLKB) overlaps
CLKA by nominally 1/4 cycle {90 degrees phase
shift). Refer to the ac electrical characteristics for
exact statement of timing relationships. All exter-
nal signals are referenced to CLKA.

|
4

Intel iAPX 432 01/02 PRELIMINARY

Power and Ground Connections INSTRUCTION SET SUMMARY

Vce (Power Supply, 4 pins) Refer tc Table 14 for the iAPX 432 General Data
_, Processor operator set summary.
These pins supply +5V +10%, referenced to GND

pins.
43201/43202 ELECTRICAL
GND (Ground, 5 pins) SPECIFICATIONS
These pins supply ground reference for the 43202. Tables 6 through 13 and Figures 19 through 27 pro-

vide appropriate timing diagrams and tables to
_ represent the complete electrical specifications
N.C. (No Connection, 7 pins) for both the 43201 and 43202 components.

Table 6. iAPX 43201 Electrical Specification

Absolute Maximum Ratings

Ambient Temperature Under Bias 0°Cto70°C
Storage Temperature —65° Cto +150°C
Voltage on Any Pin with respect to GND* -1Vto +7V
Power Dissipation 2.5 Watts

*43201 Vg Pin with respectto GND -5V to OV

Table 7. iAPX 43201 Electrical Specification

DC Characteristics
VSS =0 Volts, VCC = 5 Volts + 10% Ta=0°Cto70°C
Symbol Description Min Max Units
S, Vili input Low Voltage i86...150 -0.3 +0.7 v
,/) Vihi Input High Voltage 186...180 3.0 VCC+0.5 Vv
Vile Clock Input Low Voltage -0.3 +0.5 v
Vihc* Clock Input High Voltage 3.5 VCC+0.5 v
Vil Input Low Voltage -0.3 0.8 \
Vih Input High Voltage 2 VCC+0.5 \'
Vol Output Low Voltage 0 0.35V
{Microinstruction Lines)
{lol = =0.1 mA)
Voh Output High Voltage 3.25 VCC v
(Microinstruction Lines)
(loh =0.1 mA)
Vol Output Low Voltage - 0.45 Y
{lol = 2.0 mA))
Voh Output High Voltage 2.4 VGG v
(loh = -400 uA)
lce Power Supply CGurrent — 400 mA
{(Sum of all VCG Pins)
fil Input Leakage Current — +10 uA

23

ntal IAPX 43201/02 PRELIMINARY

Table 7. iAPX 43201 Electrical Specification (Cont’d.)

DC Characteristics
VSS =0 Voits, VCC =5 Volts + 10% Ta=0°Cto70°C
Symbol Description Min Max Units
lo Output Leakage Current — +10 uA
lol @90.45Vol
HERR/ — A mA
FATAL/ — 4 mA
OTHER — 2 mA
loh @2.4Voh _ -0.1 mA

* For operation at 5 MHz or slower, the 43201 may be operated with Vihc minimum of 2.7 Volts.

Table 8. iAPX 43201 AC Characteristics

VCC=5+10% Ta=0°Cto70°C

Symbol Description M?nM';nzax anM';nzax Unit
tcy Clock Cycle Time 125 1000 200 1000 nsec.
tr, tf Clock Rise and Fall Time 0 10 0 10 nsec.
1, 12, Clock Pulse Widths 26 250 45 250 nsec.
{3, 14
tde Signal to Clock Set-up Time 5 — 5 — nsec.
tcd Clock to Signal Delay Time —_— 55 — 85 nsec.
tis Initto Si~gnal Hold Time 15 — 20 — nsec.
tie Init enable Time 10 — 10 — tcy
tdh Clock to Signal Hold Time 25 - 35 - nsec.
toH Clock to Signal Output Hold Time 15 — 20 — nsec.
tsi Signal to INIT/ Set-up Time 10 — 10 — nsec.
tuif Microinstruction Bus Float Time 0 - 0o - nsec. ,

The above specifications are subject to the following definitions and test conditions:
1. Notethattcy=t1 +12+t3+t4+2*tr+ 2*f.

2. Pins under consideration were subjected to the following purely capacitive loading:
C1=25pF on HERR/
C1:="50 pF on ul15...ui0, 186...1S0
C1=70 pF on all remaining pins.

3. All timings are measured with respect to the switching level of 1.5 Volts. The switching point of CLKA
and CLKB is referenced to the 1.8 Voltlevel.

4. CLKA and CLKB must be continuously applied for the 43201 to retain its state.

Table 9. iAPX 43201 Capacitance

Symbol Parameter Typical Unit
Cin Input Capacitance 6 pF
Cout Output Capacitance 12 pF

Conditions: fc=1 MHz, Vin=0V, VCC=5V, Ta=25° C
Outputs in High Impedance state

24

[} &

N iAPX 432 01/02 PRELIMINARY

Table 10. iAPX 43202 Electrical Specification

Absolute Maximum Ratings

Ambient Temperature Under Bias 0°Cto70°C
Storage Temperature —65°Cto +150° C
Voltage on Any Pin with respectto GND -1Vto +7V
Power Dissipation 2.5 Watts

Table 11. iAPX 43202 Electrical Specification

DC Characteristics

VSS =0Volis, VCC=5Volts + 10% Ta=0°Cto70°C
Symbol Description Min Max Units
Vile Clock Input Low Voltage -0.3 +0.5 \
Vihe* Clock Input High Voitage 3.5 VCC+0.5 Vv
Vil Input Low Voltage -0.3 +0.8 \
Vih input High Voltage 2 VCC+0.5 |
Vili Input Low Voltage -0.3 +0.7 \
uit5...uld

Vihi Input High Voltage 3.0 VCC+0.5 Vv
ult5...ut10

Vol Output Low Voltage — 0.45 '

(lol'=4.0 mA) ACD15...ACDO, PRQ
(lol'= 8.0 mA) BOUT, HERR/

Voh Output High Voltage 2.4 VCC Vv
(loh = —800 uA)

Voli Output Low Voitage I1S86...1S0 — 0.35 v
loli=0.1 mA

Vohi Output High Voltage 1S6...1S0 3.25 — \')
lohi=0.1 mA

lcc Power Supply Current — 455 mA
(Sum of all VCC Pins)

ifi Input Leakage Current — +10 uA
except MASTER

Him Input Leakage on MASTER — -400 uA

llo Output Leakage Current — +10 uA

Vo=0.45V .. VCC

* For operation at 5 MHz or slower, the 43202 may be operated with Vi, minimum of 2.7 Volts.

25

intel APX 432 01/02 PRELIMINARY

Table 12. iAPX 43202 AC Characteristics

VCC=5+10% Ta=0°Cto70°C
Symbol Description MiSnM ||-\lllzax Mi5nM }Ijllzax Unit
tr, tf Clock Rise and Fail Time 0 10 0 10 nsec.
1,12, Clock Pulse Widths 26 250 45 250 nsec.
t3, t4
fcy Clock Cycle Time 125 1000 200 1000 nsec.
(toy = t1 + 12+ 134+ t4 + 2% tr + 2*tf)
tdc Signal to Clock Set-up Time 5 — 5 — nsec.
ted Clock to Signal Delay Time — 55 — 85 nsec.
tdh Clock to Signal Hold Time 25 — 35 — nsec.
toh Clock to Signal Output Hold Time 15 — 20 — nsec.
ten Clock to Signal Output 15 — 20 — ‘nsec.
Enable Time
tdf Clock to Signal Data Float Time — 55 — 75 nsec.

The timing characteristics given below assume the following loading on output pins. Loading is given in
terms of a fixed capacitance plus a DC currentload.

Pins Loading
HERR/ 90 pF lol=8 mA., Open Drain
BOUT 70 pF lol=8 mA., loh=-800 uA
PRQ 70 pF lol=4 mA., loh=-800 uA
IS6...150 50 pF MOS only
ACD15...ACDO 70 pF lol=4 mA., loh=-800 uA

All output delays are measured with respect to the falling edge of CLKA except for BOUT. BOUT output
delays are measured with respect to the rising edge of CLKA.

All timings are measured with respect to the switching level of 1.5 Volts. The switching point of CLKA and
CLKBis referenced to the 1.8V level.

The 43202 is not capable of DC operation. For continuous data and logic state retention the CLKA and CLKB
signals must be present.

Table 13. iAPX 43202 Capacitance

Symbol Parameter Typical Unit
Cin Input Capacitance 6 pF
Cout Output Capacitance 12 pF

Conditions: fc=1 MHz, Vin=0, Vout=0, VCC=5.0V, Ta=25° C.
Outputsiin High Impedance state

26

iAPX 432 01/02 PRELIMINARY

[-—— f{oy]
th | |- te
CLKA ; \ Z
e __/__
i | Bamea |1
t t2 t3 7]
171873-22

Figure 19. 43201 Clock Input Specification

[

RN [W B W m_ K_J{__
W15...ul0 INVALID DATA INVALID ACD15..ACDO INVALID DATA INVALID
(FROM MEMORY)
tco toH ‘, ? ‘t ?
1S6...1Sg bc DH
ACD15...ACDO
(FROM 43202) INVALID DATAY INVALID
FATAL/ CLR/, ALARM/
et praiee
wl15...4 t t
. A (HARDWARE ERROR pe o
CD OH DETECTION)

171873-23

171873-24

Figure 20. 43201 Output Timing Specification

Figure 21. 43201 Input Timing Specification

/N WS\
B DISAGREEMENT
154410 X X X X X X X
INIT/ \ £
—_:L l<—f31 [{j5 —|
MASTER L 7‘
.. tcp —»| e e e tCp
HERR/ ’ \ A
ton

Figure 22. 43201 Hardware Error Detection Timihg

27

171873-25

iAPX 432 01/02 PRELIMINARY

CLKA

3| - tpc - ~—{pC

INIT/

Figure 23. 43201 Initialization Timing 171873-26

-\ f S U

INIT/ [

| | tpC —p| |—ipe

RDROM/

—] |- tgy

55

uC ROM x uC ROM

ul15...40 X DATAQ DATA1
£

Figure 24. 43201 Microcode Interrogate Timing

tcy

)
Si\pt

] tlits! iy

R =] |- - tF

Figure 25. 43202 Clock Input Specification 1732

28

171873-27

intal iAPX 432 01/02 PRELIMINARY

ALL OUTPUT PINS 3-SJATE VALID
EXCEPT BOUT PREVIOUS DATA
DATA
cD, teN— [] -«— toH, iDF
BOUT
—_— [--—tcp — -— toH

Figure 26. 43202 Output Timing Specification 787328

CLKA R
DATA
ACD15...ACDO
(READ TIMING)
—- t
tbe <" %" vaup
HARDWARE ERROR DETECTION
INPUT TIMING AND INPUT TIMING
FOR ALL INPUTS EXCEPT ACDjs...ACDy
-] tou
toc fe—

Figure 27. 43202 Input Timing Specification 17s73.20

29

intal

iAPX 432 01/02

PRELIMINARY

Table 14. General Data Processor Operator Set Summary

Save Character

AND Character

OR Character

XOR Character

XNOR Character
Complement Character

Add Character
Substract Character
increment Character
Decrement Character

Equal Character

Not Equal Character

Equal Zero Character

Not Equal Zero Character

Greater Than Character

Greater Than or Equal Character
Convert Character to Short Ordinal

Save Short Integer

Add ShortInteger
Subtract Short Integer
Increment Short integer
Decrement Short Integer
Negate Shortinteger
Multipiy Short Integer
Divide Short Integer
Remainder Short integer

Equal Short integer

Not Equal Short Iinteger
Equal Zero Short Integer
Not Equal Zero Short Integer

Greater Than Shortinteger

Greater Than or Equal Short Integer
Positive Short Integer

Negative Short Integer

Convert Short Integer to Integer
Convert Short Integer to Temporary Real

Character Operators Short-integer Operators Integer Operators
Move Character Move Short integer Move Integer
Zero Character Zero Short Integer Zero integer
One Character One Short Integer One Integer

Save Integer

Add Integer
Subtract integer
increment Integer
Decrement Integer
Negate Integer
Multiply Integer
Divide Integer
Remainder Integer

Equal Integer

Not Equal Integer

Equal Zero Integer

Not Equal Zero Integer
Greater Than integer

Greater Than or Equal Integer
Positive Integer

Negative Integer

Convert Integer to Short Integer
Convert integer to Ordinal
Convert Integer to Temporary Real

Complement Short Ordinal

Extract Short Ordinal
insert Short Ordinal
Significant Bit Short Ordinal

Add Short Ordinal
Subtract Short Ordinal
Increment Short Ordinal
Decrement Short Ordinal
Multiply Short Ordinal
Divide Short Ordinal
Remainder Short Ordinal

Equal Short Ordinal

Not Equai Short Ordinal

Equal Zero Short Ordinal

Not Equal Zero Short Ordinal
Greater Than Short Ordinai

Greater Than or Equal Short Ordinal

Convert'Short Ordinal to Character
Convert Short Ordinal to Ordinal
Convert Short Ordinal to Temporary Real

Complement Ordinal

Extract Ordinal
Insert Ordinal
Significant Bit Ordinal

Add Ordinal
Subtract Ordinal
Increment Ordinal
Decrement Ordinal
Multiply Ordinal
Divide Ordinal
Remainder Ordinal

Equal Ordinal

Not Equal Ordinal

Equal Zero Ordinal

Not Equal Zero Ordinal
Greater Than Ordinal

Greater Than or Equal Ordinai

Convert Ordinal to Short Ordinal
Convert Ordinal to Integer
Convert Ordinal to Temporary Real

Short-Ordinal Operators Ordinal Operators Short-Real Operators
Move Short Ordinal Move Ordinal Move Short Real
Zero Short Ordinal Zero Ordinal ZeroShort Real
One Short Ordinal One Ordinal Save Short Real
Save Short Ordinal Save Ordinal
Add Short Real—Short Real
AND Short Ordinal AND Ordinal Add Short Real—Temporary Real
OR Short Ordinal OR Ordinal Add Temporary Real—Short Real
XOR Short Ordinal XOR Ordinal Subtract Short Real—Short Real
XNOR Short Ordinal XNOR Ordinal Subtract Short Real—Temporary Real

Subtract Temporary Real—Short Real
Multiply Short Real—Short Real
Multiply Short Real—Temporary Real
Multiply Temporary Real—Short Real
Divide Short Real—Short Real

Divide Short Real—Temporary Real
Divide Temporary Real—Short Real
Negate Short Real

Absolute Value Short Real

30

iAPX 432 01/02

PRELIMINARY

Table 14. General Data Processor Operator Set Summary (Cont’d.)

Short-Real Operators

Real Operators

Temporary-Real Operators

Equal Short Real

Equal Zero Short Real

Greater Than Short Real

Greater Than or Equal Short Real
Positive Short:Real

Negative Short Real

Gonvert Short Real to Temporary Real

Move Real
Zero Real
" Save Real

Add Real—Real

Add Real—Temporary Real
Add Temporary Real—Real
Subtract Real—Real

Subtract Real—Temporary Real
Subtract Temporary Real—Real
Muitiply Real—Real

Multiply Real—Temporary Real
Multiply Temporary Real—Real
Divide Real—Real

Divide Real—Temporary Real
Divide Temporary Real—Real
Negate Real

Absolute Value Real

Equal Real

Equal Zero Real

Greater Than Real

Greater Than or Equal Real
Positive Real

Negative Real

Convert Real to Temporary Real

Move Temporary Real
Zero Temporary Real
Save Temporary Real

Add Temporary Real

Subtract Temporary Real
Multiply Temporary Real

Divide Temporary Real
Remainder Temporary Real
Negate Temporary Real

Square Root Temporary Real
Absolute Value Temporary Real

Equal Temporary Real

Equal Zero Temporary Real

Greater Than Temporary Real

Greater Than or Equal Temporary Real
Positive Temporary Real

Negative Temporary Real

Convert Temporary Real to Ordinal
Convert Temporary Real to Integer
Convert Temporary Real to Short Real
Convert Temporary Real to Real

Access Descriptor Movement
Operators

Rights Manipulation Operators

Type Definition Manipulation
Operators

Copy Access Descriptor
Null Access Descriptor

Amplify Rights
Restrict Rights

Create Public Type

Create Private Type

Retrieve Public Type Representation
Retrieve Type Representation
Retrieve Type Definition

Refinement Operators

Segment Creation Operators

Access Path Inspection Operators

Create Generic Refinement
Create Typed Refinement
Retrieve Refined Object

Create Data Segment
Create Access Segment
Create Typed Segment
Create Access Descriptor

Inspect Access Descriptor
Inspect Access

Object Interlock Operators

Branch Operators

Iinterconnect Operators

Lock Object

Uniock Object

Indivisibly Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal
Indivisibly Insert Ordinal

Branch

Branch True

Branch False

Branch Indirect

Branch Intersegment

Branch Intersegment without Trace
Branch Intersegmentand Link

Move to Interconnect
Move from Interconnect

Process Communication
Operators

Processor Communication
Operators

Context Communication
Operators

Send

Receive

Conditional Send
Conditional Receive
Surrogate Send
Surrogate Receive
Delay

Read Process Clock

Send to Processor
Broadcast to Processors
Read Processor Status and.Clock

Enter Access Segment

Enter Global Access Segment
Set Context Mode

Call Context

Call Context with Message
Return from Context

31

intal

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara 95051 (408) 734-8102 x598
Printed in U.S.A./Y-32/0281/50K/PS/GFH

