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Abstract

This article describes the MasPar MP-1 architecture, a
massively parallel SIMD (Single Instruction Multiple Data)
machine with the following key characteristics: scalable ar.
chitecture in terms of the number of processing elements, svs.
tem memory. and system communication bandwidth! “RISC.
like” instruction set design which leverages optimizing compiler
technology; adherence to industry standard floating point for-
mats, specifically VAXTM and IEEE floating point; and an
architectural design amenable to a VLSI implementation. The
architecture provides not only high computational capability,
but also a mesh and global interconnect style of communica-
tion.

The techniques and subsystems of the MP-1 are described
including the interconnection mechanisms. Companion papers
describe the software system and provide a description of the
hardware implementation.

1 Introduction

MasPar Computer Corporation has designed and implemented
a high performance, low-cost, massively parallel computing
system called the MP-1. The system works in a SIMD {Sin-
gle Instruction Multiple Data) fashion. Previous machines
with similar characteristics are the MPP{1], DAP|4], Blitzen|2],
CMI3], DEC MPPI6}, and the VBMP(5]. Unique characteris-
tics of the MP-1 architecture are the combination of: a scalable
architecture in terms of the number of processing elements, sys-
tem memory, and system communication bandwidth; “RISC-
like™ instruction set design that leverages optimizing compiler
technology: adherence to industry standard floating point de-
sign. specifically VAX and IEEE floating point: and an archi-
tectural design amenable to 2 VLSI implementation.

Figure ! .shows a block diagram of the MasPar system with
five major subsystermns. The following brieflv describes each of
the major components ‘with a more detailed description later
in the paper

The Array Control Unit (ACU) The ACU performs two
primary functions: either PE Array control or indepen-
dent program execution The ACU controls the PE Ar.
ray by broadcasting all PE instructions. Independen:
program execution 1s possible since it is a full control
processor capable of independent program execution.

The Processor Element Array (PE Array) The PE Ar.
ray is the computational core of the machine. All in-
struction dispatch to the PE Array is from the ACU.

Communication Mechanisms The communication mecha-
nisms provide the following key capabilities:

o The X network for communication with neighboring
processors. All connections are on a 2-D mesh.

o The global router network permits random processor-
to-processor communication using a circuit-switched,
hierarchical crossbar communications network.

¢ Two global busses: a common bus on which the
ACU broadcasts instructions and data to all or se-
lected processors, and a logical OR-tree which con-
solidates status responses from all the processors
back to the ACU.

The UNIXR Subsystem (USS) Provides UNIX services to
the data parallel system. For example, all job manage-
ment and low speed network access (e.g. ethernet) is
performed by the USS.

The I/0 Subsystem Supports high speed 170 performance.
A channel style architecture is used allowing overlapped
computation and I/0 operations.

2 Machine Computational Model

Based on the previous architecture block diagram, the system
can be accurately viewed as having two instruction streams,
the UNIX Subsystem (USS) and the ACU, and three locations
for data: the USS, the ACU, and the PE Array. In the SIMD
fashion, all PE instructions reside in the ACU instruction mem-
ory.

Since two instruction streams are required for the system,
two basic programming approaches are possible and are both
are supported:

e One appiication code is automatically distributed across
the USS and the ACU with the data partitinoned across
the USS ACU. and PE Array. All interprocess comm .
nication is automatically handled by the compiler

» Two applicatior cndes are provided. one for “he 1'SS.
and one for the ACU PE Arrav where ail communication
between the two processes is explicitly controlled by the
programmer.
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Figure 11 MP.1 System Block Diagram



Common to both programming approaches are two differ-
ent interaction models: synchronous and asvnchronous both
with architectural and software support. In the synchronous
model, either the USS or the ACU. PE Array is actively run-
ning at one instant. Similar to UNIX remote procedure calls
(RPC). a subroutine calling convention allows straight forward
control flow transfer between the two hardware processes.

In contrast, the asvnchronous model allows both the USS
and ACU/PE Array to operate concurrently. Support for a
FORK/JOIN meodel are provided.

3 MP-1 Architecture

This section describes in more detail the basic architectural
subsystems including the basic instruction set model.

3.1 Array Control Unit (ACU)

The ACU, a custom processor, both executes instructions that
cause computation in the PE Array and executes instructions
that cause computation only in the ACU itself. The following
list describes the major architectural characteristics:

s Harvard style architecture with separate instruction and
data spaces.

o 32.bit, two address, load/store, simple instruction set

e 4 Gigabyte, virtual, instruction address space, using 4,096-
byte pages.

Table 1 shows the basic ACU instruction types where each
instruction uses one instruction word with 2 two address three
operand style format: src op dst — dst. In this load/store
stvle machine, all operations are only within the register set
with only load and store operations into memory. Instructions
typically execute in one or two clocks.

Instruction Types Examples

Memory: Load, Store

Logical: AND, OR, XOR

Arithmetic: ADD, SUB

Control: Branch, Jump to subroutine (JSR)

Table 1. ACU Instruction Set

The ACU has a microcoded implementation of this RISC
like instruction set due to the additional control requirements
of the PE Array. In the next section describing the PE Atrray,
PE instructions typically require more than one clock including
floating point instructions which are well suited to a microcode
implementation.

3.2 Processor Array

Fack PE has

nn-chip reg:sters. and ~ffl-chip memors 1sing a basic i0ad store

The pre-cesser arras is the cnmputatioral core
stvie insiruction set design During 3 computation. all PEs
execute the same instruction stream -which 1s broadcast by
the ACTU . unless thes have beer programmed tr idle.

The basic PE components foliow

’9

Integer and Floating Point ALU Both the integer and float-
ing point unit share the computational PE core. Float-
ing point hardware is included for both 32 and 64 bit
floating point numbers capable of VAX D. F, and G for-
mats; and IEEE standard floating point. Further, both
big and little endian conventions are supported. All PE
calculations are done in a scalar fashion without pipeline
latency.

Communications Interface Three interfaces are provided:
glo-bal router connections, nearest neighbor connections,
and connections to global ACU signals. Section 3.4 con-
tains further details.

Register Set In contrast to typical processor architectures,
the PE register set can be addressed as bits, bytes, 16-
bit words, 32-bit words, or 64-bit words depending on the
PE instruction used. The current implementation has 40
32-bit registers. Both floating point and integer values
are stored in the register set.

Main Memory Each PE has a private data store with full
ECC (remember that only data is stored in the PEs; all
instructions are stored in the ACU).

Control Logic Minimal control logic is required in each PE
since the majority of the instruction decode logic is in the
ACU and shared by all PEs. The control unit performs
two primary functions: simple decode of ACU broadcast
microinstructions, and conditional instruction execution.
Conditional instruction execution allows individual pro-
cessors to decide based on internal data whether it should
execute the current instruction.

The PE instruction set is nearly identical to the ACU in
that all instructions are two address, three operand instruc-
tions using a load/store model. All execution instructions (e.g.
add, sub, etc.) operate only out of the register set and only
load and store operations access memory. The following ta-
ble contains the basic PE instruction types and examples:

Instruction Types Examples

Memory: LD, ST, LDX, STX
Logical: AND, OR, XOR
Integer: ADD, SUB, MUL, DIV
Floating Point: FADD, FSUB, FSQRT
Control: Turn PEs on/off

Table 2: PE Instruction Set

Different instructions are provided for both single (32-bit)
and double {64-bit) precision floating point numbers. For inte-
gers, different instructions are provided for 1, 8, 16, 32 and 64
bit calculations designed specifically 1o support high level com-
piled languages like Fortran and C (a more detailed discussion
of the compilers are provided in a companion paper!

Twe very important instructions are LDX fload indirect;
and STX istore indirect; which ailow PEs to simultaneousiy
access different memory locations. This capability allows im-
portant data structures like queuves and look.up tabies to be
used



3.3 UNIX Subsystem (USS)

An important aspect of the system is the use of an existing
computer system {specifically a VAXstation 3520 U LT RIXTM
workstation) that follows existing industry standards (e.g. X
windows. TCPIP. etc.). The USS provides a complete. net-
work and graphics based, software environment in which all
the MasPar tools and utilities (e.g. compilers) execute. Part
of the application executes as a conventional workstation appli-
cation; most of the “operating system” functions are provided
by the workstation's UNIX software.

3.4 Communication Mechanisms

The following sections describe the five major communications
mechanisms. Included are descriptions of the programming
model and instructions.

3.4.1 USS to ACU

Three different types of interactions occur between the UNIX
Subsystem (USS) and the Array Control Unit {ACU) which
use three different types of hardware support. All are based
on a standard bus interface (VME). The following describes
each mechanism:

Queves Hardware queues are provided which allows USS pro-
cesses to quickly interact with the process running on the
ACU. The programming model is similar to UNIX pipes
but with hardware assist.

Shared Memory The shared memory mechanism overlaps
ACU memory addresses with USS memory addresses.
This provides a straight forward mechanism for processes
to share common data structures like file control blocks
etc.

DMA A DMA mechanism is provided that permits fast bulk
data transfers without using programmed 1/0.

3$.4.2 ACU to PE Array o

Two basic capabilities are required for data movement between
the ACU and PE Array: data distribution, DIST, and array
consensus detection which uses a global OR, GOR. An example

usage:

vhile (array_value > error_limit)
array_value = find_better_value();

In words. each PE gets a copy of the common error_ limit
value ard compares it to a PE specific data value. Then. all
PEs put the logical result of the expression evaluation onte an
OR tree allowing the ACU to decide if any PEs need to go
through the loop again

3.4.3 PE Arrsy: X\N\et

XNet communications provide all PEs with a direct connec.
tien to its eight nearest neighbors in a twe dimensional mesh
Soecifically. pach PF is cemnected 1o its neighbors tao the Nere:

Nortreast. East. Southeas: South, Seuthwes?. b
west. Processors located on the physical edge of the array have
toroidal wrapped edge connections

Three basic instruction types are provided to use the near-
est neighbor connections:

XNET The XNET instruction moves an operand from source to
destination a specified distance in all active PEs. The
instruction time is proportional to the distance times the
operand size since all communication is done using single
wire connections.

XNETP The XNETP instruction is pipelined so that a collection
of PEs move an operand from source to destination over
a specified distance. However, the pattern of active and
inactive PEs is very important since active PEs transmit
data and inactive PEs act as pipeline stages. The instruc-
tion time is proportional to the distance plus the operand
size due to its pipelined nature. For example if every 16th
PE in a row is active, the XNETP instruction could move
data between the active PEs providing a very high per-
formance non-blocking communication mechanism. This
mechanism is similar to the ideas proposed in {7}

XNETC The XNETC instruction is pipelined and is very simi-
lar to the XNETP instruction except that a copy of the
operand is left in all PEs acting as pipeline stages (e.g.
the inactive PEs). Again, the instruction time is propor-
tional to the distance plus the operand size.

3.44 PE Array: Global Router

The global router is a circuit switched style network organized
as a three stage hierarchy of crossbar switches. This mecha-
nism provides direct point to point bidirectional communica-
tions. The network diameter is 1/16 the number of PEs which
requires a minimum of 16 communication cycles to do a per-
mutation with all PEs. The basic instruction primatives are:

ropen open a connection to a destination PE

rsend move data from the originator PE to the destination

PE

rfetch move data from the destination PE to the originator
PE

rclose terminate the connection

The best analogy for using this network is the telephone
system where people who want to make a call use the following
steps:

1. People who want to make a call pick up their phone

2. Dial a phone number

3. If busy. hangup and try again later (go back to step one’
4. If connection completes, have a nice conversation

5 When call compietes. hangup

The usage sequence for the MasPar router js as fnllows

while {PEs_want_to_communicate) {
ropen
rsend
rfetch
rsend



rclose

3.4.5 PE Array to 1/0 Subsystem

Since the global router provides high performance random PE
to PE communication, the global router is also used to provide
a high performance communtcation mechanism into the I/0
subsystem. The interface is achieved by connecting the last
stage of the global router to an I/0 device. the I/0 RAM
(described in section 3.5). The programming model is identical
to the model described for using the global router in section
344.

3.5 Array 1/O System

Referring back to figure 1, the I/0 subsystem uses the following
key components: the global router connection into the PE Ar.
ray (over 1 GB/sec), a large 1/O RAM buffer (up to 256 MB),
and a high speed (230MB/sec) data communications channel
between peripheral devices, a bus for device control (not for
data movement). Using output as an example, the model for
using the I/O subsystem follows these steps:

1. Device is opened by the USS (all 1/0 devices are UNIX
controlled)

2. The ACU moves data into the /O RAM through the
global router.

3. Either the USS or an 1/0 Processor (IOP) schedules data
movement from the 1/0 RAM to the device (e.g. Disk);
data through the MPIOC and control on the VME bus.

4. The USS is notified when the transaction is complete.

Note that all transactions from the /O RAM to external
I/0 systems can occur asynchronously from PE Array oper-
ations. This is a key attribute since data can move into the
1/0 RAM at speeds over 1 GB/sec then move at 1/0 device
speeds, typically in the tens of megabytes per second or less,
without effecting the performance of the PE Array. These
hardware mechanisms can support either typical synchronous
UNIX I/O or newer (and faster) asynchronous 1/0 software
models. i

4 Summary

A key attribute of the MP-1 svstem architecture is that the sys-
tem characteristics all are scalable. Specifically, as the perfor-
mance increases {more PE boards are added}. the svstem mem-
ary increases. and the communications bardwidth increases

Each PE brard increase the svsterm capability while keeping
performance, communication. and memnry balanced System
“bottlenecks™ are not introduced as the number of processors

are increased

"

The architectural subsystems have been designed so that
the various computational tasks are distributed to specialized
units. Examples include: the ACU is specialized for controlling
the PE Array. the PE is optimized for both floating point and
integer calculations. Further. hardware software tradeoffs have
been made that leverage existing software tech nology. Key ex-
amples are both the ACU and PE instruction sets that closely
resemble current RISC style instruction sets. The advantage
in following this instruction set design is that complexity is
moved out of the hardware design and out of the microcode
design and into the compiler. Less complex hardware allows
both a faster and less expensive design. Further advantages
of moving the complexity into the compiler leverages optimiz-
ing compiler technology with the tremendous advantage of op-
timizing data placement, register allocation, and eliminating
unnecessary work.
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Abstract

By using CMOS VLSI and replication of components effectively,
massively parallel computers can achieve extraordinary
performance at low cost. Key issues are how the processor and
memory are partitioned and replicated, and how interprocessor
communication and 1/O are accomplished. This paper describes
the design and implementation of the MasPar MP-1, a general
purpose massively parallel computer system that achieves peak
computation rates beyond 2 billion floating point operations per
second. yet is priced like a minicomputer.

Massively Parallel System

Massively parallel computers use more than 1000 processors to
obtain computational performance unachievable by conventional
processors [1.2,3]. The MasPar MP-] system is scalable from
1.024 to 16,384 processors and its peak performance scales
linearly with the number of processors. A 16K processor system
delivers 30,000 MIPS peak performance where a representative
instruction is a 32-bit integer add. In terms of peak floating point
performance, the 16K processor system delivers 1,500 MFLOPS
single precision (32-bit) and 650 MFLOPS double precision (64-
bit). using the average of add and multiply times.

To effectively apply a high degree of parallelism to a single
application, -the problem data is spread across the processors.
Each processor computes on behalf of one or a few data elements
in the problem. This approach is called “data-level parallel” [4]
and is effective for a broad range of compute-intensive
applications.

Partitioning the computational effort is the kev to high
performance, and the simplest and most scalable method is data
parallelism. The architecture of the MP-1 {5} is scalable in a way
that permits its computational power to be increased along two
. axes: the performance of each processor, and the number of
provessors. This flexibidin is well matched 10 VLSI technology
where Circuit densitios continte 10 increase gt a rapid rate The
scaiadie nature of massively paraliel svstems  protects the
customers’ soltware investment while providing a path 1o
increasing performance in successive products [6].

Booause its architecture provides tremendous feverage, the MP-1
impementation ds conservative in terms of cucuit complexin.
design rules. IC geomertry. clock rates. margins. and power
dissipation. A sufficiently high processor count reduces the need

to have an overly aggressive (and thus expensive)
implementation. Partitioning and replication make it possible to
use low cost. low power workstation technology to build very high
performance systems. Replication of key system elements happily
enables both high performance and low cost.

Array Control Unit

Because massively parallel systems focus on data parallelism. all
the processors can execute the same instruction stream. The
MP-1 has a single instruction stream multiple data (SIMD)
architecture that simplifies the highly replicated processors by
eliminating their instruction logic and instruction memory, and
thus saves millions of gates and hundreds of megabytes of
memory in the overall system. The processors in a SIMD system
are called processor elements (PEs) to indicate that they contain
only the data path of a processor.

The MP-1 array control unit (ACU) is a 14 MIPS scalar
processor with a RISC-style instruction set and a demand-paged
instruction memory.” The ACU feiches and decodes MP-1
instructions. computes addresses and scalar data values, issues
control signals to the PE array. and monitors the status of the PE
array. The ACU is implemented with a microcoded engine to
accommodate the needs of the PE array. but most of the scalar
ACU instructions execute in one 70 nsec clock. The ACU
occupies one printed circuit board.

Processor Array

The MP-1 processor array (figure 1) is configurable from 1 to 16
identical processor boards. Each processor board has 1,024
processor elements (PEs) and associated memory arranged as 64
PE clusters (PECs) of 16 PEs per cluster. The processors are
interconnected via the X-Net neighborhood mesh and the global
multistage crossbar router network.

The processor boards are approximately 14" by 19" and use a high
density connector o mate with a common backplane. A
processor board dissipates less than 50 watts: a full 16K PE arrav
and ACU dissipate less than LODG watts. ’ ’

A PE cluster (figure 21 i composed of 16 PEs and 16 processor
memories {(PMEM). The PEs are logically arranged as a 4 by 4
array for the X-Net two-dimensiona! mesh interconnection. Each
PE has a large internal register fiic shown in the figure as PRES
Load and store instructions move data between PREG and
PMEM. The ACU broadcasts instructions and data 1o all PE
clusters and the PEs all contribute to an inclusive-OR reduction
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tree received by the ACU. The 16 PEs in a cluster share an
access port to the multistage crossbar router.

The MP-1 processor chip is a full-custom design that contains 32
identical PEs (2 PE clusters) implemented in two-level metal 1.6u
CMOS and packaged in a cost effective 164 pin plastic quad flat
pack. The die is 11.6 mm by 9.5 mm., and has 450.000 transistors.
A conservative 70 nsec clock vields low power and robust timing
margins.

Processor memory, PMEM, is implemented with 1 Mbit DRAM;s
that are arranged in the cluster so that each PE has 16 Kbwvies of
ECC-protected data memony. A processor board has 16 Mbytes
of memors. and a 16 board svstem has 236 Mbyvtes of memon
The MP-1 instruction set supports 32 kits of PE number and 32
bits of memory addressing per PE. so the memory svstem size is
lirmited only by cost and market considerations.

As an MP-1 oswiem i expanded. each increment adds PEs
memon, and communications resources. so the system alwayvs
maintains 2 balance between processor performance. memon
size and bandwidth, and communications and 1/O bandwidth.
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Figure 3. Processor Element and Processor Memory

Processor Elements

The MP-1 processor element (PE) design is different than that of
a conventional processor because a PE is mostly data path logic
and has no instruction fetch or decode logic. SIMD system
performance is the product of the number of PEs and the speed
of each PE, so the performance of a single PE is not as important
as it is in conventional processors. Present VLSI densities and
the relative tradeoffs between the number of processors and
processor complexity encourage putting many PEs on one chip.
The resulting design tradeoff between PE area and  PE
performance tends to reduce the PE architecture to the key
essentials.”

Each PE (figure 3) is designed to deliver high performance
floating point and integer computation together with high
memory bandwidth and communications bandwidth. yet have
minimal complexity and silicon area to make it feasible to
replicate many PEs on a single high-yield chip.

Like present RISC processors, each PE has a large on-chip
register set (PREG) and all computations operate on the
registers. Load and store instructions move data between the
external memory (PMEM) and the register set. The register
architecture substantially improves performance by reducing the
need to reference external memory. The compilers optimize
register usage to minimize load 'store memory traffic.

Each PE has 30 32-bit registers avaiiable 1o the programmer and
an additiona! § 32-bit registers that are used internally 1o
implemnent the MP-1 instruction set. With 32 PEs per die. the
resulting 48 Kbits of register occupy about 30¢% of the die area.
but represent 3% of the transistor count Placing the regisiers
on-chip vields an agpregate PE,PREG bandwidth of 117
gigabytes per second with 16K PEs. The registers are bit and bvie
addressable.



Each PE provides floating point operations on 32 and 64 bit
1EEE or VAX format operands and integer operations on 1, 8,
16, 32, and 64 bit operands. The PE floating point/integer
hardware has a 64-bit MANTISSA unit. a 16-bit EXPONENT
unit. a 4-bit ALU. a I-bit LOGIC unit. and a FLAGS unit; these
units perform floating point. integer. and boolean computations.
The floating point/integer unit uses more than half of the PE
silicon area but provides substantially better performance than
the bit-serial designs used in earlier massively parallel processors.

Most data movemnent within each PE occurs on the internal PE
4-bit NIBBLE BUS and the BIT BUS (figure 3). During a 32-bit
or 64-bit floating point or integer instruction, the ACU microcode

engine steps the PEs through a series of operations on successive .

4-bit nibbles to generate the full precision result. For example, a
32-bit integer add requires 8 clocks: during each clock a nibble is
ferched from a PREG register, a nibble is simultaneously
obtained from the MANTISSA unit, the nibbles are added in the
ALU, and the sum is delivered to the MANTISSA unit. At the
same time, the ALU delivers a carry bit to the FLAGS unit to be
returned to the ALU on the next step. The ALU aiso updates
bits in the FLAGS unit that indicate overflow and zeroness.

The different functional units within the PE can be simultaneously
active during each micro-step. For example, floating point
normalization and de-normalization steps use the EXPONENT,
MANTISSA, ALU, FLAGS. and LOGIC units together. The
ACU issues the same micro-controls to all PEs, but the operation
of each PE is locally enabled by the E-bit in its FLAGS unit.
During a floating point operation, some micro-steps are data-
dependent, so the PEs locally disable themselves as needed by the
EXPONENT and MANTISSA units.

Because the MP-1 instruction set focuses on conventional
operand sizes of 8, 16, 32, and 64 bits, MasPar can implement
subsequent PEs with smaller or larger ALU widths without
changing the programmer’s instruction model. The internal 4-bit
nature of the PE is not visible to the programmer, but does make
the PE flexible enough to accommodate different front-end
workstation data formats. The PE hardware supports both little-
endian and big-endian format integers, VAX floating point F, D,
and G format, and IEEE single and double precision floating
point formats.

Along with the PE controls, the ACU broadcasts 4 bits of data
per clock onto every PE nibble bus to support MP-1 instructions
with scalar source operands. The PE nibble and bit bus also
drive a 4-bit wide inclusive-OR reduction tree that returns to the
ACU. Using the OR tree, the ACU can assemble a 32-bit scalar
value from the OR of 16,384 32-bit PREG values in 8 clocks plus
a few clocks of pipeline overhead.

Processor Memory

Because only load and store instructions access PMEM processor
memory. the MP-1 overlaps memory operations with PE
computation. When a load or store instruction is feiched. the
ACU queues the operation te a separate state machine that
operates independently of the normal instruction stream. Up to
32 ivadrstore instructions can be queued and executed while PE
computations proceed. as jong as the PREG register being loaded
or stored i« not used by the PE in a conflicting way. A hardware
imteriock mechanism i the ACU prevents PE operations from
using 2 PREG register before it is loaded and from changing a
PREG register hefore it is stored. The optimizing compilers
move loads earlier in the instruction stream and delay using

registers that are being stored. The 40 registers in each PE assist
the compilers in obtaining substantial memory/execution overlap.

The PMEM processor memory can be directly or indirectly
addressed. Direct addressing uses an address hroadcast from the

- ACU, so the address is the same in each PE. Using fast page

mode DRAMS. a 16K PE system delivers memory bandwidth of
over 12 gigabytes per second. Indirect addressing uses an address
computed locally in each PE's PMEM ADDRESS UNIT and is a
major improvement over earlier SIMD architectures{7] because it
permits the use of pointers, linked lists, and data structures in a
large processor memory. Indirect addressing is about one third
as fast as direct addressing,

X-Net Mesh Interconnect

The X-Net interconnect directly connects each PE with its 8
nearest neighbors in a two-dimensional mesh. Each PE has 4
.connections at its diagonal corners, forming an X pattern similar
to the Blitzen[8] X grid network. A tri-state node at each X
intersection permits communications with any of 8 neighbors
using only 4 wires per PE.

Figure 1 shows the X-Net connections between PE clusters. The
PE chip has two clusters of 4 by 4 PEs and uses 24 pins for X-Net
connections. The cluster, chip, and board boundaries are not
visible and the connections at the PE array edges are wrapped
around to form a torus. The torus facilitates several important
matrix algorithms and can emulate a one-dimensional ring with
two X-Net steps.

All PEs have the same direction controls so that, for example,
every PE sends an operand to the North and simultaneously
receives an operand from the South. The X-Net uses a bit-serial
implementation to minimize pin and wire costs and is clocked
synchronously with the PEs: all transmissions are parity checked.
The PEs use the shift capability of the MANTISSA unit to
generate and accumulate bit-serial messages. Inactive PEs can
serve as pipeline stages to expedite long distance communication
jumps through several PEs. The MP-1 instruction set [5]
implements X-Net operations that move or distribute 1. 8, 16, 32,
and 64 bit operands with time propottional to either the product
or the sum of the operand length and the distance. The aggregate
X-Net communication rate in a 16K PE system exceeds 20

gigabytes per second.

Multistage Crossbar Interconnect

The multistage crossbar interconnection network provides global
communication between all the PEs and forms the basis for the
MP-1 1/O system. The MP-1 network uses three router stages
shown as S1. S2, and S3 in figure 1 to implement the function of a
1024 by 1024 crossbar switch. Each cluster of 16 PEs shares an
originating port connected to router stage S1 and a target port
connected to stage S3. Connections are established from an
originating PE through stages S1. S2. S3. and then to the target
PE. A 16K PE svstem has 1024 PE clusters. so each stage has
1024 router ports and the router supporis up 1o 1024
simultaneous connections.

Originating PEs compute the number of a target PE and transmit
it to the router S1 port. ‘Each router stage selects a connection to
the next stage based on the targe! PE number. Once estuhiished.
the connection is bidirectional and can move data bepaeen the
originating and target PEs. When the connection is closed. the
target PE returns an acknowledgement. Because the router ports



are multiplexed among 16 PEs, an arbitrary communication
pattern takes 16 or more router cycles to complete.

The multistage crossbar is well matched to the SIMD
architecture because all communication paths are equal length,
and therefore all communications arrive at their targets
simultaneously. The router connections are bit-serial and are
clocked synchronously with the PE clock; all transmissions are
parity checked. The PEs use the MANTISSA unit to
simultaneously generate outgoing router data and assemble
incoming router data.

The MP-1 router chip implements part of one router stage. The
router chip connects 64 input ports to 64 output ports by partially
decoding the target PE addresses [9]. The full-custom design is
implemented in two-level metal 1.64 CMOS and packaged in a
164 pin plastic quad flat pack. The die is 7.7 mm by 8.1 mm, and
has 110,000 transistors. Three router chips are used on each
processor board.

A 16K PE system has an aggregate router communication
bandwidth in excess of 1.5 gigabytes per second. For random
communication patterns the multistage router network is
essentially equivalent to a 1024 by 1024 crossbar network with far
fewer switches and wires.

Conclusion

Through a combination of massively parallel architecture, design
simplicity, cell replication, CMOS VLS, conservative clock rates,
- surface mount packaging, and volume component replication, the
MasPar MP-1 family delivers very high performance with low
power and low cost. The massively parallel design provides cost
effective computing for today and a scalable growth path for
tomorrow.
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Software To Support Massively Parallel Computing on the MasPar MP-1

Peter Chn"sty

MasPar Computer Corporation
Sunnyvale, CA

Abstract

Creating a commercially successful, massively  parallel,
minicornputer requires careful aniention to the problems of
application design and programming. The software product set was
2 key design focus for the MasPar computer from the beginning. Key
issues discussed are the following:

¢ The Programming Model

¢ Software Philosophy

o Parallel Virality

 High-Level Languages and Their Compilers
+ Application Porting and Adaptation

¢ Programming Support

The Programming Model

Asbitrary existing programs will not necessarily run efiectively on &
massively parallel machine. For scientufic and engincering
applications. a reasonable analogy for a SIMD massively parallel
machine is 3 ve<lor regisier machine with the register length equal to0
the size of the processor armay (for the MP-1 family (1] (2], 1.024 10
16.384 processors: much larger than typical vector registers). Most
existing codes have short average vector lengths -- of the order of
25. Therefore, perfect vectorization of such code results in utilizing
a few percent of the paralle! armay at best. From the outset, we have
assumed thal most exusting application code must be modified s0
that a high-degree of parallelism is expressed. We did not antempt 1o
create tools that would automatically discover massively parallelism
in arbitrary preexisting applications (the proverbial **dusty decks'’).

Such a reprogramming constraint would historically be 3 death
warrant for a2 new product In the case of the MP-1, we believe the
following facts justify the reprogramming for many applicatons:

« Dimirushing  performance  improvement in  conventional
machines forces all high-performance application designers o
consider new architectural alternatives. There is growing belief
thar some form of massive parailelism is the best approach to
conunuing peritrmance and pnee/performance umprovements.
The issue of expressed use of paralielism is common w0 all these
architectures. not Just the MP-1

¢ A VLSl massively parallel machine offers extraordinary
price/performance improvements today. The peak power of the
MP-1 is up to 100-1000 times that of a conventional machine of
equivalent price. We feel confident that many applicarions will
achieve minimally 2 facior of 10 improved price performance
afier all the application conversion and reprogramming is done.
Ahaorofwinpﬁccpafommjusﬁﬁsasiaﬁﬁwl
adaptation effort in most applications.

-Wehvedevebpedebcﬁvemhforponimexim
applications with minimal modifications (these are discussed in
more detail later). To adapt an application for massively parallel
execution, focus must be placed on the computation kemnel of the
application, but often the majority of the existing code can be run
intact.

. RxFomnq;pliaﬁms.wepmvideampﬂcrfonmbuof
Fortran 88 in which the panallelization is conveniently expressed
inttzmynomionpmvidedinmalmguage. An application
mberewﬁncninFomnsamdnmxmabmadmiexyof
computers, including traditional scalar and vector machines, as
Fortran 88 compilers become broadly available.

+ Finally, and most imponandy, broad parallelism is inherent in
most of the applications currenty funning on high-performance
computers. Creating programs that take advantage of a
massively panallel computer means taking advantage of the
mmmpuﬂklisminﬂnproblan.whid;usuany is in the form
of uniform caiculations on a muhidimensional mesh of data

MasPar and other massively paralle] computer vendors are using the
term “daw parallel”” {3] 10 connote the general concept of utilizing
the parallelism inherent in the problem data to ke advaniage of
many parallel processors. The imponant contrast is with **control”’
panlielism, in which s program is malyzed, either manually or by
compﬂetmk.ndindcpmdemsecdomo!wpmmmmm
concurrendly on multiple processors. Supercomputer applications
typically exhibit limited control parallelism, whereas they use data
meshes that are much bigger than even the largest paralle! amays.

Software Philosophy

Historically. many new computers have made their debut in the form
of fast hardware with muumal software. As desirable as that may be
for a new computer company, in today’s software iniensive world,
such a2 raw computer 15 unaffordable because of the cost of
programming. '



Abwumo&!wdayumxdueklxmwmkvm and
their use of the UNIX® operating system. A new RISC processor
with an eflective C compiler can quickly pon a version of UNIX 10
new hardware, and 1n rum quickly deliver the numerous software
capabiliies availabie 2 pontabie UNIX form.

MasPar's view of computer design has been similar to that of the
RISC providers in the sense that our strategy has focussed on
accelerating the widespread use of the machune. This resulted in the
following product goals:

« Udlize compiler technology efiectively 10 mask architectural
issues e

« Utilize existing languages

¢ Suppont 2 standard operating system

¢ Assure a rich set of suppont software as soon as possible
o Integrate into existing computer networks

In the MasPar architecture, the software focus is most evident in the
design of the Ammay Control Unit which represents a significant
architectural advance in the design and use of massively parallel
computers. The most successful massively parallel machine o date
= the Thinking Machines Corporation Connection Machine™ (3] -
drives the parallel amy with a microprogrammed sequencer, which
isinuundﬁvmbymmi:meﬁmismedbytheﬁm-end
computer. The macro instructions are complex  instructions,
including an implied **virtuality™* (see following section also) which
Gauses that instruction to execute repeatedly on multiple data items
within each processing element (o aliematively, as if there were a
larger number of virtual processing elements).

MasPar has taken the alternative view of replacing the
microprogrammed sequencer with a fully programmabie computer —
the Array Control Unit or ACU [1] {2). An optimizing compiler can
generate much better ACU code sequences 10 drive the armay for
parallel computation, than can be achieved with a preprogrammed
sequencer (see more below). We have taken the RISC approach of
depending on good compiler technology rather than preprogrammed.,
complex insguctions.

A broad variety of software and services are available with the
MasPar system because it incorporates a conventional UNIX
computer (a DEC™ VAX™ ULTRIX™ worksution). Rather than
defocus our development by developing our own scalar computer
and version of UNIX, we chose 10 simply utilize an existing UNIX
workstarion This UNIX subsysiem is the basis for our development
environment, providing all the conventional UNIX tools, and linking
the MasPar sysiem into the available network-based resources. The
MasPar development software runs under ULTRIX on the
workstation.

The MasPar programming model utilizes the front-end UNIX system
where appropriate 1n the support of massively parallel applications.
Preexisung code. such a5 window-based interachon code of

. petwork-based data access code. can conunue to run on the MasPar
UNTX front<nd. untouched. whle only the computatonal kemnel of
the application 15 adaped for paralle! execution and migrated (o run
on the data paralle! machune. The MP-1 has been designed so that
commurucation between the frontend resident segment of an
applicaton and the parallel segment of the applicaton 1s through
directly mapped hardware queues. without any operatng Sysiem
intervenuon, so that commurucauon is very efficient.

Scdnxmmolnnppliaﬁmmmddmonmemmor
xh:ACU.hsomecascsmosxo!ﬂ!applicaion scalar code runs on
the front-end. for exampie. if the application utilizes complex UNIX
resources such as X-Windows. In other cases the application runs
largely on the ACU. For example. 2 signal processing and analysis
application might run entirely on the ACU for maximum speed and
real-lime responsiveness. A later section on Programming
Languages gives a more detailed view of the programming options
available.

Parallel Virtuality

The MasPar sysiem advances the concept of paralle! virality by
using both optimizing compiler technology and architectural design.
In contrast, in the Connection Machine, parallel virtuality is largely
an instruction set or architectural concept. As has been proven in the
useofleCeanpul:r&mmmb:’mysiyﬁﬁcam benefit from
usingcompikﬁmeopﬁmiuﬁmwwmmmmbemx
madﬁmdsignl‘nncorpmmmexewﬁon&m?hemeismin
the eflective realization of a parallel virtuality. .

Vinuality is best understood in its shsence. Earlier massively
parallel machines, such as the GoodyearNASA MPP {4]) (S] and
eaﬂierversiomofﬂ!Am‘f'DAP"(G].hadlhemysical
dimuﬁunofﬂemsmrmydcaﬂyviﬁucinappﬁuﬁon
pmgnms.mmmdimemionondnmywsmﬂym
dimem'ono!ﬂzphysicﬂpmcemzmy(e.g..malztbylu
my,thelomdimem’onofudumyhadwbelu).hh
mnﬂyapeedﬂuhhdotvinuﬂ]yinpmblanfon&aive
mﬂexxbkappﬁaﬁouptommmim.mdcenn‘nlymimpedima
tolhebmdmolﬂmmchimﬂnimpommmnwhm
ﬂndazunyishrgetmmmephysicdmyavaﬂabk‘wm
soﬁmnawed!orardmdmymubemovedwmmyoh
different size.
mmummummwmmm
muchiwawﬂeomq:—irmcﬁomspedfymcvinumtyofthe
operation. For example, 2 virual 1o physical ratio (V/P ratio) of 16
would create a vimual processor armay 16 times larger than the

...physicalarny.inwhid:cascapammADDir&mﬁonmudhe

executed 16 tmes on each PE, once for each virual PE. With
instruction set virality, higher level software, such as compilers,
msmesys:cmah:vingmamysizewhichismondimcdy
suitable for the problem being solved, largely eliminating the issue
of amay size a5 2 programming issve. ‘Such architecrunal virtuality
ﬂsopcnmusonwmwremamunchmgedwhmmephyﬁcdmy
size changes. The program assumes the same vinual amay size.
Within the hardware sysiem. the V/P ratio changes and with in the
size of the loop on each PE.

Mnhrhnnkmadi&.muapptmchnmizingopdmizin;mpikr
technology {7} as well a5 elements of architecture and machine
design. Insiead of building virtuality into the instruction set, we use
techniques analogous 1o the management of veclor register sets in
Supercomputers such as the Cray. A Cray programmer freely uses
data vectors thar are much longer than the size of the YeCwWr registers

~ {8]. The optimizing compiler uses techniques such as **strip mining"

© break longer vector o data stnps that 8tin the vecior egisters.
and subscquently opumizing the ioop code 0 muumuze Jata moton
in and out of the vecior registers. Without such opumization, a Cray
application programmer would be forced into explicily coding the
vecwor register length The VLS! unplementation of the MasPar
machine provides a PE requsier set with the equivalent opportunity
for performance opumization. Just as the Cray compiler restructures



codenmadumodminm«nofmvecuwﬁmis
minimized, the MasPxr compilers optimization use of the PE
regisiers. This class of opumizations is not possible with an
instrucoon set concept of viruality It depends necessanly on the
complex analysis of the applicauon done by the compiler.

In summary. everyone agrees that paralle! vinuality in some form is
impontant.  MasPar implements viruality with the suppon of
compiler optimizations rather than simply as an instruction set, or
architectural feature (although the architecture is designed 10 assure
that compiler generated virtuality is efficient).

Programming Languages and Their Compilers

If massively parallel compulers are 10 play a significant role in
practical use, they will be programmed in conventional languages, or
dialects of conventional languages. MasPar provides adaptations of
C and Fontran suitable for programming massively parallel
machines.

The three languages provided ~ MasPar Fontran (MPF), MasPar C

(MPC), and the MasPar Parallel Application Language (MPL) -

divide into two categories.
oMnPuhﬂmMMaPqulmguagsmammm
fora!lpmsofmeMasParsystem(unﬁuu-cMsymm.lhe
ACU and the parallel amay) from a single program. Although
lhepmgnm.tt:pmgramme:dounotseemymmsot
boundaries. Furthermore, the MasPar Symbolic Debugger (see
l&u)nhucmﬂuedi&mcodemmu
appemofnsinglepmmm.fofmewnvuﬁmoﬂywk
mmmmmm«nmm:ymm
the details of the computer architecture, and deal in a2 high-level,
application-related programming abstraction.

MPL only generates code for the parallel subsysiem (the ACU
and PE array). MPL is also C-derived but remains more in the
style of C as a “*power’" language for direct, high-level control
of hardware. Typically an MPL program is used in conjunction
with a jointly designed frontend UNIX program 1o form a
composile application. The MPL programmer typically deals
with a wisible scam between frontend and back-end code,
although the MasPar Symbolic Debugger provides means for
multi-windowed, coordinated symbolic debugging of the
composite application. MPL is particularly valuable for porting
existing applications, &s will be discussed below (see Porting).
MasParFonnnisbasedonFonnn??.wimu:parﬂklmdamy
kmofFomnBSaddedMoaimpomnuy.inmisdmea.myx
are @ fintorder language concept. Amy calculations can be
expressed a3 simple expressions. Arrays can be used either in their
eniirety, or through a powerful sectioning mechanism which permits
parts of an array w0 be flexibly specified and utilized The MPF
compiler automatically gencrates PE array code for the paralle!
computanons in the code. Data is moved between the front-end and
ACU automatically, as necded.

. In addibon 1o the kinds of optimizaton typmcally found in a
supercompuler opamizing compiler {inciuding stnp muung and the
related loop transformss, the MPF compiler includes a category of
new opumizanons whuch analyze data placement and mouon, and
generaie code w0 dynamically restrucrure  arrays  within a
computation. Data placement optimizauon has always been a key
goal for compilers The effective temporary allocation of vanabies
registers is 2 key data placement opumizauon in modern RISC
compilers. The distnbuted memory in 2 massively paraliel computer
generates the need for additional data placement opumizations.

3

Although any dats in the PE array can be accessed simply by using
the global router mechanism, there is a significant latency difierence
between data that is the local PE registers, data that is in the local
data memory of that PE (roughly 10 umes slower), and data that is in
the local data memory of another PE (roughly 100 umes slower than
in the local register). A fundamental goal of the MPF compiler is 10
make the best possible use of the PE register, high-speed memory.
Ideally all variables needed in a computation wil! already exist in the
regisiers of the same PE. Failing that. the data should be the local
data memory of that PE.

The lstency of the distributed memory requires data placement
optimization for maximum computation, however the enommous
aggregate bandwidth of the global router subsystem provides a
powerful mechanism for solving the problem. When optimal, the
compiler generates code to reshape 2 data array (remap the elements
mmmmmow)wwnnwmmypmlm
computations. In contrast 10 most Fortran systems, data location in
muaymt.mdmismovedwopﬁmiumwnm Data
location and motion analysis is also used 0 optimize the location of
lemporary inermediate results during computations. Using symbol
information from the compiler, the MasPar Symbolic Debugger
umrindsﬂmeoptimimiommdmppuusymbolicdewuin;ofﬂc
optimized code,

In summary, MPF is s subset of a standard Fortran dialet which
pcmﬁue&cdvewdimolnnMnPucomwuwiﬂwbdn;m
tbiﬁqwnmd:md:modummn.mofwﬁchm‘nmppm
theFommquﬁ:pe.mpmmmmalugelyim
mmwunumwpmmmwym
unappliaﬁonpmblan.luvingd:nsko{xhpﬁmdnmuﬁmis
architecture 10 an optimizing compiler (as is always the case with
high-performance computers, there is benefit in understanding how
the the compilericomputer system operates, and programming in a
style that leverages that understanding).
Mas.P:rCismcxxum‘mofANSlCinwtﬁchﬂnpanlhlmym
be programmed explicidy in a virtual (size independent) model. The
best existing model for MPC is Thinking Machines Corporation’s
C*™ language.

Finally, MasPar provides a simpler, massively parallel C, MPL. for
programming the ACU and paralle]l armay. MPL is designed much
more in the traditional view of C as a high-level language which
doesn’t get in the way of doing what you want. MPL is based on
K&R C, with tree basic additions (10 the degree possible, the
semantics and syntax of K&R C are preserved):

* A variable can be declared as plural, in which case it is
instantisted on all PEs; otherwise it is instantiated on the ACU.
Expmﬁommnixplunlmnon-plum variables in which
case the scalar variables are promoted 10 plural (broadcast (o the
PEs) and the computation done in parallel. Reduction operators
exist for moving from plural data o scalar.

» Control structure semantics are adapted 10 3 SIMD computation
model If the control expression of a conditional structure is
plural. then the expression is evaluated in a plural form, and only
2 subset of the then active PEs evaluates the €Xpression as Urue
In SIMD control suuctures, rather than bypassing unselecied
code structure, the active set of PEs is subdivided, and each
subset exccutes the relevant code. One subset will execute the
THEN clause. the disjoint subset the ELSE clause. Plural
conwol structures such as SWITCH are transformed similarly
inio subsetting the acove set of PEs. In general, programming in
MPL can be thought of as writing 3 C program which cxecutes

oncaeh?EiMependmdybutsyrdrmnusly.Thckcyuwpdon



is tha scalar code within these plural control structures is
different from traditional C since scalar code in both the THEN
and ELSE clause will typically be executed if the control
expression is plural.

» Language syntax has been added o suppon use of the X-Net
(neighbor communications) and the global router. This syntax
supports access 10 a plural variable on a neighbor PE, or an
arbitrary PE, respectively. In the case of X-Net communication,
the most visible constraint is that the data motion direction is
SIMD - all PEs will communicate with the same direction
neighbor (¢.g.. the Northern neighbor) - or systolic, and not data
sensitive.

The use of the global router provides perhaps the most profound
contrast berween SIMD and MIMD programming. Global router
communications provide a means of generalized data exchange
duoughout the armay. However because the parallel program
execution is synchronous (i.e., each PE executes the same
program and at each instant, the same instruction of the same
program), data messages can only be received a the point the
program where they are being sent. Therefore all of the very
difficult issues of interprocessor  communications and
synchronization (e.g., interrupts, buflering, critical code sections)
are reduced 10 a single language construct Aside from the
segments of a program where data is being sert, data will not be
received. It sounds trivial and obvious untl you wach a
massively parallel application being created, at which point the
practical advantages of the SIMD model are enommous in lemms
of program design and debugging simplifications.

Because the base language is C, and the exiensions minimal and

consistent ‘with scalar semantics, trained C programmers program

comfortably in MPL very quickly.

Application Porting and Adaptation

The use of a mature UNIX front-end computer tightly integrated
with the ACU. and the MPL language, provide a remarkably
efiective means for application porting.

The first step in such a pon is to move an existing application o
execute on the UNIX froni-end. Because of the spreading use of
UNIX and the commonality between systems, typically this is s
straightforward and relatively simple task. Because the front-end is a
VAX running ULTRIX, the VMS Fortran compiler (called **fort™*
under ULTRIX) may be used. Since VMS Fortran is broadly used
within the scienti fic and engineering community, this is 2 sigrificant
advantage. Optionally other standard UNIX languages may be used.

Next, the key computation kemnels of the application are identified,
and critical data structures and their computations recoded in MPL.
Access 10 these MPL subroutines from the original application is
comparabie to calling 2 C subroutine in a normal UNIX applications,
although functions must be used to explicitly move data between the
frontend and back-end since the memory spaces are disjoint. Most
of the application code is typically not in the computation kerne!, so
the amount of time 10 pornt an application can be remarkable small
" The porung effon does require that the numencal methods be
adapied for massively paralle] execuvon Forunately, m the last
decade a wealth of basic rescarch has been done on machines like
the Goodyear MPP, the DAP and the Connccuon Machine so
algonthm design involves adapaton of published methods. not
necessanly the invenuon of new methods

mmmmwy.mmuﬁm
speed-up and cost performance increase. Al some point, diminishing
retumns will be be encountered. as the scalar computation remaining
prevents significant overall applications speed-up. This effect has
been coined *Amdall's Law™ and 1s sometimes given as the reason
why paralle] machines cannot succeed.

We interpret Amdahl's Law in a quite different manner. Each new
generation of computer (e.g.. minicomputers, personal computers
and workstations) has spawned an enlirely new style of application.
Minicomputers did not just run existing batch programs cheaper.
Instead the real-time design of minicomputers spawned new, highly
interactive applications. One could probably adapt Amdahl's Law to
demonstrate that minicomputers could not succeed because the gain
on existing batch applications was insufficient, but that analysis
would have clearly missed the point.

Similarly, we belicve the issue in the use of massively paralie!
computers is not simply how efiectively the existing computation
can be parallelized (the naive interpretation of Amdahl's Law), but
rather how additional computation can be utilized in 3 new version
of the application. For example

¢+ How can geophysical exploration be made more effective if
computation is an order of magnitude less expensive, and if the
**supercomputer”” can be deployed on the exploration truck?

+ How can the VLSI design process be speeded if there is an order
of magnitude more computation available and complex checking
and analysis can be done 0n an ongoing basis rather than as a
baiched verification process?

We believe that the implications of Amdahl's Law for massively
panaliel machines will be yet another adaptation of applications, this
time 1o utilize much more computation.

Programming Support

TheMqupmmmmingsyslcmgoawdlbeyondwhawbem
taditionally expected in 2 supercomputer (for which the 1ools have
tradiionally been reladvely primitive). Clearly programmability is
the key issue in the success of massively parallel computers.
Believing significant improvements could be achieved in the
programability of high-performance computers, we invested heavily
in developing application development tools.
Thebwpﬁoeo(ﬂ:MnPusyagmmpmmmcpmuanof
programmability. If a2 computer of a given power is ofiered af a
much lower price. then the relative cost of programming goes up in
the ratio of the old © new price (e.g., if the power of a $10M
compuier is offered & $500,000, the relative cost of programming
increases by a factor of 20). We had 10 improve programmability o
keep our computer realistically afordable o a minicomputer price.

Part of the MasPar software investment went inio the design of
high-level languages and implementation of optimizing compilers.
1dcally, massively paralle] computers can be programmed in familiar
high-level languages, and optimizing compilers will do most of the
work of mapping the algorithm into efficient code for a specific
computer archuecture The efficiency of such compiler generated
code will improve over ume as the spearfic opumization and
transformanon 1ssues are bener understood {as has been the history
of Cray compilers, for example) We are very pleased ar what we
have achieved 10 date. which validates the strategy of counting on
compiler technology.



Additonally we have invesed in a graphical, window-besed,
programming environment, which permits symbolic debugging of
compiler-optimized code, and graphical viewing of both application
execution and machine operation.

Our key assumption was that workstations and network standards
were 2 major force, and here 1o stay (which has clearly proven 10 be
the true), and that by utilizing the interactive power of 2 workstation,
and the graphical remote access available over a local area network,
we could significandly improve the programmability of a high-
performance computer. We designed a programming system that
depends on 2 graphical display (¢.g. cannot be used from a remote
teleprinter connected by a 300 baud line).

A graphical. interactive programming environment has the same
basic advangages in a high-performance compuler sysiem as it does
inapemnﬂoompulcrotwormmmm)«akwtﬁgb-
performance  computer vendors have developed such tools. One
potential problem would be access to the programming sysiem from
8 remote station. Early workstations had limited, and vendor-
specific, remote access capabilities. B was our judgement that in the
lmmmmwmammwucewmunm
reasonzble 10 count on high-performance, local-area networks and
graphical, virtual-terminal connections. In early 1988, we bet on the
bmadaccepunccmdmmofx-Windows(ove:SUN"NEWS"
for example), which at the time was not an assured decision, but has
since proven to be a good choice.
lyn.n'ngampru'mlimerfwewehlvemaedapmmmming
environment that brings much of the convenience of programming
personal computers or workstations © 3 machine  with
supercomputer performance. The convenience of the programming
symisvc:yimpommgivmmaulﬁmudymeamoft
machine like the MP-1 depends on many applications being
amesfunyponedoradzpwdmmmmmnpmmd&dp
of adaptation task, the more quickly that will occur.

The MasPar programming environment includes iools for browsing
and navigating through complex application codes. source level
debugging, and various wols for visualization the application and
machine execution. Since we assume that 3 programmer is using s
graphical display terminal, we reason that the more we can use
graphical displaystocxphinwham:madﬁmisdohu.mdzhc
more quickly a programmer will intemalize what it means 1o do
efective design and implementation of massively parallel
application. For example, a simple graphical tools displays the E-bit
(acuvity bit) forcadiPEmaﬁmcsunpiedbasi:pmvidmgm
immediate and initive demonstration of the parallel cfectiveness
of the application executing.

The key contributions in the MasPar Programming Environment are
these:

* A graphical, multiwindowed, poini-and-select interface.
* A modificd UNIX object file format that
— permits symbol access on demand rather than all & once (the
modificaion in symbol structure greatly reduces the
debugger stant-up delay on large applications)

— permits incremental delinking and relinking of a single
object module for incremental rebuilding of an application

(greatly  speeding  the  development cycle of large
applications).

— contains 3 dual code stream — the front-end code and ACU
code (simplifying the managemers of dual code stream
application development).

— includes greatly enhanced symbol information for debugging
(enabling the symbolic debugging of optimized code).

¢ A symbolic debugger (and compilers) thar permit symbolic
debugging of highly optimized code. The debugger handles both
single source programs with fronti-end and back-end code

components, or dual, cooperating, source programs, one for the
front-end and one for the back-end.

o Interactive browsing tools for the convenient, graphical
navigation through complex applications.

-Dauiqucﬁonmolsweumimhfgcdmstmaummdmys
graphically.
-Madﬁmuﬁmaﬁmmkhaammpl\iwaepicﬁmonhe
pmnelmdﬁmopmxion.showh;forenmpk.nuwmm
of active processors.

Summary
mxwdmbgylﬂmmuywﬂk!udﬁmmmbimd
mmm-lbo&rmwﬂdhemdemdwpumwm
peﬁommunmhﬁmmtapﬁc.mmnmgeofmeb{m
software sysiem is to permit supercomputer programming with
minicomputer convenience. We feel that ow products, which
imludemmivelypmﬂddialmo{mmmw
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| MasPaf 1200 S’"eries

Computer Systems

The MP 1200 Series consists of five
entry-to-large configurations from the
MasPar MP-1 Family of data-parallel
computers. Each of these systems breaks
new ground in price/performance, scal-
ability, and I/O capacity - all working in
concert to create a new class of high-
performance computers.

Highlights

O Exceptional Price/Performance. The MP 1200
Series provides up to 26,000 MIPS and 1,300
MFLOPS - at minicomputer prices. Never
before has so much performance been made
available within the minicomputer price range.

 System Scalability. The MP 1200 Series can be
configured with 1,024, 2,048, 4,096, 8,192, and
16,384 Processor Elements at initial installa-
tion or through convenient on-site upgrades.
Thus, the MP 1200 Series achieves a new level
of scalability in high performance computing
~from an entry system providing 1,600 MIPS
to a maximum configuration offering 26,000
MIPS — and all within the same system package.

O Very High I/O Capacity. The complete range

__of MP 1200 Series computers offer peak I/0

throughput of 200 megabytes per second
through the MasPar 1/0O Channel (MPIOC),
and with additional customer-designed hard-
ware, a fully configured 1200 Series system
can achieve 1.3 gigabytes per second through
direct connection into the MP-1’s Global
Router communications system.
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MasPar 1200 Series
Computer Systems

Specifications

DATA PARALLEL UNIT

Hardware

CPUs

" Array Control Unit (ACU)
Processor Element Array (PE Array) Configurations:
1,024 Processor Elements (PEs)
2,048 Processor Elements
4,096 Processor Elements
8,192 Processor Elements
16,384 Processor Elements

Peak Performance
PE Array Size MIPS - 32-Bit MFLOPS 64-Bit MFLOPS
1K PEs 1,600 82 36
2K PEs 3,200 164 73
4K PEs 6,400 325 145
8K PEs 13,000 650 290
16K PEs 26,000 1,300 580

Peak performance ratings are based upon integer 32-bit addition (MIPS)
and the average of floating point multiply and add (MFLOPS).

Memory

" 16 - 256 megabytes ECC protected total PE data memory (16 kilobytes per PE)
(System memory scales at the rate of 16 megabytes per 1K PE Array)
192 bytes register memory/PE
1 megabyte physical ACU instruction memory
Up to 4 gigabytes ACU virtual instruction memory memory
" 128 kilobytes ACU data memory

Inter-processor Communications

1.1-18 gigabytes/second peak X-Net, eight-way, nearest-neighbor communications
(between neighboring PEs on a 2 dimensional grid, torroidally wrapped at the edges)
80-1300 megabytes/second peak Global Router communications

(between arbitrary PEs or between PEs and 1/0)

Performance scales linearly with the number of PEs in the system

Backplane Slots

16 slots available for PE Boards (1,024 PEs/Board)
16 slots available for I/O RAM and controllers
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1/0 Channel Options

MasPar I/O Channel (MPIOC)
© 64 bit data bus
200 megabyte/second transfer rates
© 256 megabytes maximum dedicated I/O RAM buffer
Capability for development of VME-based controllers
MP-1 Global Router
Experienced I/O system designers may, by special arrangement with MasPar,
have direct access to the global router’s 1,024 maximum I/O connections for a
peak bandwidth of 1.3 gigabytes per second.
* 64 - 1,024 Router connections
« 80 - 1300 megabyte/second peak transfer rates
(Performance scales linearly with the number of PEs in the system)

Physical Characteristics

Enclosure -

55.5"H x 23.5"Wx325"D
< 800 Ibs

Power requirements
Line Voltage: 220V/240V 10
Frequency: 60 Hz/50 Hz
Current Rating: 30A
Maximum Power Consumption: 800-3700W depending on configuration

UNIX SUBSYSTEM

Hardware

VAXstation 3520

2 CVAX Processors

16 MB ECC memory (Optional expansion to 32 MB)

1332 Mbyte RZ55 SCSI 5-1/4"disk (Optional expansion to 664 Mbyte disk)
1296 Mbyte TK70 streaming cartridge tape

Ethernet”™ (ThinWire™ or thick wire, transceiver included)

105-key keyboard

3-button mouse

2 serial lines

19" color monitor

66 Hz refresh

1280 x 1024 x 8 planes image resolution
Optional additional 16 color planes
Optional 24 bit Z-buffer

Optional Gouraud shading and depth cueing

Physical Characteristics

Enclosure

CPU:27"Hx21"W x 18"D, 108 Ibs
Color Monitor:18.5"H x 20"W x 22"D, 75 lbs
Keyboard: 17"Wx 2"Hx 7"D

Power Requirements

Line Voltage: 120V/240V 10
Frequency: 60 Hz/50 Hz
Maximum power consumption: 670 W
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SYSTEM SOFTWARE
Note: All MasPar and Digital Equipment Corporation supplied
software products include a license for 4 active users unless otherwise noted.

Operating System
ULTRIX" with symmetric multiprocessing (SMP), compliant
with OSF Level 0 specifications
IEEE POSIX standard

The MasPar Execution Environment integrates operation of the
UNIX subsystem and the DPU.

Network Communications

Ethernet”™

TCP/IP

NFEFS™

DECwindows" (includes support for X 11 Windows)
" DECnet™

Graphics

Programmer’s Hierarchical Interactive Graphics System (PHIGS) - Run-time

Languages
OVAX C
71 Ulerix C
3 MasPar Parallel Application Language (MPL)
3 Optional languages:
* MasPar Fortran (MPF)
* VAX Fortran

MasPar Programming Environment (License for one active user)

i MasPar Symbolic Debugger
~*Machine Animator
7 Data Animator
dbx and dxdb (for debugging serial code only)

Utilities
~: All standard ULTRIX Worksystem software utilities are available

Remote Service Access

' Integrated Telebit Trailblazer” T9000 Modem with automatic error
correction to 19,200 bps for remote login and uucp access.

MasPar Computer Corporation Copyright 01990 .
. MasPar Computer Corporation
/49 North Mary Avenue All Rights Reserved
Sunnyvale, California 94086 i ; ined in thi is prelimi ; ;
2 yvale, The information contained in this document is preliminary. Although MasPar believes that the informa-
408-736-3300 tion is accurate, such information is subject to change without notice. MasPar Computer Corporation is

. not responsible for any inadvertent errors.
{'AX: 408-736-9560 T
Performance f?ures listed in this document are based on the best available information at the time of
publication and are subject to verification by actual benchmarks.

Mz:isl’ar, TI\:ISPPE, and MgDAd are trl::csier?:[x)rks otl' gas[’ar Computer.Corporation. The following are

. trademarks or registered trademarks of Digital Equipment Corp -ULTRIX, DECnet, VAX: tation,

PPL004.0490 DECwindows. (§NIX is a registered tradc%nark 2f T&T. X \)la?ndow Systemisa tradcmari of MIT,
NFS s a trademark of Sun Microsystems. Ethernet is a trademark of Xerox Corp. Trailblazer is a
trademark of Telebit Corp.



MASPAR

At MasPar we believe that data-parallel computing is the best choice for
more and more high performance users. And today, we offer a complete
massively parallel solution for a wide variety of people who want high-
performance scalable systems at affordable prices. For more details on the
MasPar MP-1 family of massively parallel computer systems, simply return
the enclosed business reply card. ,

If you have a research project that can utilize a data parallel computer
system then we have some good news for you. Earlier this year, MasPar
Computer Corporation and Digital Equipment Corporation announced the
Data Parallel Research Initiative. Universities and other research
organizations are invited to participate with MasPar and Digital in this
Initiative.

Institutions whose proposed projects are accepted into the Initiative program
may purchase MasPar computer systems and software at discounts
approaching 45%, with the option to purchase additional equipment from
Digital at discounts of up to 75%. In addition to these generous discounts
the principal investigators on the project are invited to participate in an
annual conference to present the results of their work.

Complete details on participation in this Research Initiative can be found in
the enclosed document and if you are interested in submitting a proposal
please contact me to obtain the necessary application forms.

Yours faithfully

. /
/ %A /g%/@;,_l«

Neil Rowlands

MasPar Computer Corporation

MasPar Computer Corporation
First Base, Beacontree Plaza. Gillette Way, Reading RG2 OBP, Berkshire, England /(0734) 753388 / FAX (0734) 313939
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Data-Parallel Research Initiative

In January 1990, MasPar Computer Corporation
and Digital Equipment Corporation announced
MasPar's participation in Digital's Data-Parallel
Research Initiative. This program, which was
introduced by Digital in May 1989, seeks to
advance the art and science of data-parallel
computing by sponsoring research and
development on data-parallel applications,
programming tools, and network access to data-
parallel machines in heterogeneous computing
environments. Universities and other research
organizations are invited to participate with
MasPar and Digital in this Initiative.

This program description provides full details on
the Data-Parallel Research Initiative and a format
for proposals. Proposals will be accepted at any
time; investigators should plan to complete the
research proposed under tﬁe Initiative by June 30,
1992.

Motivation Current applications of data-parallel computer
systems include molecular modeling,
computational fluid dynamics, structural and
thermal analysis, image processing, signal
processing, geophysical analysis, VLSI system
analysis, optimization, and information
management. Among the objectives of the
Initiative are encouragement of innovation in
algorithms and data models to achieve enhanced
performance in these applications, and stimulation
of new applications in other areas of engineering,
scientific, and commercial computation. Of
particular interest are applications which would
produce substantial economic impact if they were
widely available on data-parallel machines.

Significant gains have been made in parallel
programming languages and compilers for many
architectures, including those of data-parallel
machines. The Initiative hopes to stimulate tool-
related research which will assist the partitioning of
problems for data-parallel machines, facilitate the
conversion of existing (and typically vectorized)
codes, and further improve the efficiency or
usability of data-parallel machines.



The concentration of computational power which
is typical of data-parallel machines makes them
attractive as appfi)cation servers for compute-
intensive applications, just as the concentration of
I/O resources makes a machine an attractive data
server for I/O-intensive applications. The
Initiative expects to sponsor research which
enables and demonstrates convenient, high-speed
access to data-parallel machines in heterogenous
computing environments.

Program Features Universities and other research organizations are
invited to submit proposals descriging the
research to be uncfertaken, including a description
of the technology to be developed, a plan for its
dissemination in the data-parallel research
community, and a statement of the resources
required for the work. The research may be
begun at any time, but projects should be planned
for completion by June 30, 1992. The specific
form of this proposal and the mechanisms of its
evaluation are described below.

Participating institutions are granted the
opportunity to purchase MasPar MP-1 data-
parallel computer systems, and Digital products
required for the research at substantially reduced
prices which reflect the sponsors' commitment to
the Initiative. Normally, institutions are expected
to provide for personnel and other operating costs
of their Initiative projects.

Technical collaboration with MasPar and/or Digital
may be a component of the project, or not, as the
project requires, but the technology developed by
the project is to be available to botgyDigital and
MasPar, directly or by placing the technology in
the public domain. The research results of the
project are to be disseminated through
publications in technical journals amdg presentations
at conferences. To further encourage sharing of
information within the data-parallel research
community, Digital will sponsor an annual
conference at which the interim results of current
projects and the final results of projects completed
within the year will be presentecf. The first of
these conferences will be held in Fall 1990. Travel
support for principal investigators' participation in
these conferences will be provided by Digital.



Scope of the Initiative =~ The Data-Parallel Research Initiative is open to
universities, non-profit research organizations
including government agencies, and corporate
research organizations. Participants must be free
to share the research results of their Initiative
project with the data-parallel research community
through publication and presentation, and they
must present a plan to share the technology
developed in their project with Digital and
MasPar.

The Initiative is open to research institutions in all
areas of the world, subject to any export
restrictions of the U.S. government which may
apply and to the ability of both MasPar and Digital
to support their products in the location of the
institution. Neither of these limitations is expected
to apply to institutions in the U.S. , Canada,
Western Europe, "or Japan; in other areas, an initial
inquiry directed to MasPar is a desirable first step
to assure that these possible limitations do not
preclude participation.

Institutions whose proposed projects are accepted
into the Initiative program may purchase MasPar
computer systems ancf software and Digital
hardware and software, which are required for the
project and specified in the proposal, at significant
discounts.

MasPar systems acquired for an approved
Initiative project are subject to a special price list
which incorporates substantial discounts. Under
the Initiative, additional MasPar software or
service options are also available at substantial
discounts. Installations of more than one MP-1 at
a project site may be supported, given specific
research justification. Digital workstations or
other systems, network hardware, and software
may be included in the proposal's equipment
requirement, where their use is coordinated with
that of an MP-1 in the proposed project, at
discounts of 75%. Post-warranty maintenance of
computer systems purchased under the Initiative
can be prepaid through the project period at
discountecfJ rates, as well.



The Proposal Process The proposal process for the Data-Parallel
Research Initiative is straightforward, and
proposals may be submitted at any time.
Normally the proposal review and qualification
process requires no longer than six to eight weeks.

Consultation  Questions about the Initiative or its proposal
process may be addressed to any of the MasPar or
Digital contacts indicated below, at any time.
Applicants outside the U.S., Canada, Europe, and
Japan should inquire about eligibility.

Applicants should consult with a MasPar sales
representative in their geographic area for detailed
information about MasPar system configurations,
pricing, and availability. A MasPar quotation
detailing the MP-1 system(s) and any additional
MasPar hardware, software, or service options,
and showing the Initiative prices for these
components, must be included with the proposal.

In many cases, discussion of the proposed
research with MasPar field applications personnel
or corporate applications stag will be useful, in
advance of preparing a proposal.

Where Digital workstation options, additional
workstations or other systems, network hardware,
or software are required for the research,
applicants should also consult with their local
Digital sales representative. A separate Digital
quotation for these items must also be submitted
with the proposal.

Proposal Submission  Proposals consist of four parts, a cover sheet, a
narrative of approximately 10 pages, quotation(s),
and optional supporting information. The cover
sheet indicates separatefy the total costs, and
Initiative allowances, of the MasPar and Digital
components of the equipment requested for the
project; these components are listed in the
narrative of the proposal, corresponding to the
referenced quotations.

The detailed layouts of the cover sheet and
narrative are available, in either printed or
electronic format, upon request from MasPar. To
assure prompt and consistent evaluation of your
proposal, the suggested format should be followed
exactly.



The cover sheet and narrative should be submitted
via electronic mail to Digital's External Research
Program at:

eerp@curope.enet.dec.com

The MasPar quotation, and the Digital quotation if
additional Digital components are required for the
project, shoufd be included with the cover sheet
and narrative if the quotations are available in
electronic form. If a quotation is not available in
electronic form, it should be sent in hardcopy
form, referencing the proposal by name and date,
to

Digital Equipment Corporation
European External Research Program
12 av. des Morgines
Case postale 176
1213 Petit-Lancy 1
Switzerland

FAX +41 (22) 792.25.03

If you do not have access to an electronic mail
system, your proposal will receive prompt
attention if it is submitted on machine-readable
magnetic media (standard magnetic tape or
diskette). Proposals should be submitted in hard-
copy form only if neither electronic mail nor
magnetic media is available; in this case an original
ancf one copy should be submitted. Hardcopy and
magnetic media proposals are to be sent to tﬁe
above address.

Please also send copies of your proposal to both
your MasPar and Digital sales representatives.

Proposal Review  Proposals will be reviewed as they are received by
a panel of Digital and MasPar technical staff.
Normally a commitment to support the proposal
can be made within eight weeks of its sugmission.

Notification  The principal investigator and the contract
administrator of the proposing institution will be
notified as soon as a decision is reached. Orders
for required equipment, conforming to the
quotations submitted with the proposal with any
amendments agreed upon during the review
process, may be placed with MasPar (and, if
additional Digital components are included, with



Relationship to Other
MasPar Programs

Digital for these components) as soon as funds are
available to the proposing institution.

MasPar's participation in the Data-Parallel
Research Initiative coordinates with MasPar's
ongoing UniversityPartners Program, which
provides discounts for purchases of MasPar
systems by universities and non-profit research
institutions and establishes cooperative research
and development relationships with these
institutions. Institutions whose projects are
awarded Initiative grants will be designated

- UniversityPartners, which will make them eligible

for discounted ﬁurchases of MP-1 system
upgrades, peripherals, and extended service during
the project period and beyond.

Discounts under the Initiative exceed those which
are normally available under the
UniversityPartners program. The larger discounts
offered by the Initiative, and the opportunity to
purchase related equipment from Digital ata 75%
discount, make it appropriate for a qualifyin
institution to first seek support for an intended
purchase by submitting an Initiative proposal
Should such a proposal not be supported, the
UniversityPartners discount structure remains
available.

In some cases, where a research institution lacks
sufficient funds for an Initiative purchase,
sponsorship by a private corporation or
foundation may be possible. Inquiries are invited
from interested sponsors, and from research
institutions who require sponsorship.
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Contacts For response to questions about this program,
contact:

Neil Rowlands, Director of European Sales
MasPar Computer Corporation

First Base, Beacontree Plaza

Gillette Way, Reading

Berkshire RG2 OBP, England

Tel. +44 (734) 753388

Fax +44 (734) 313939

or

Deborah Murith, Program Manager
European External Research Program
Digital Equipment Corporation

12 av. des Morgines

Case postale 176

1213 Petit-Lancy 1

Switzerland

Tel. +41 (22) 709.48.76

Fax +41(22) 792.25.03
murith@europe.enet.dec.com

For detailed information about MasPar systems,
and for assistance in submitting a proposal to the
Data-Parallel Research Initiative, contact your
local MasPar sales representative.



The MasPar MP-1 Architecture

Tom Blank

MasPar Computer Corporation
Sunnyvale, CA

Abstract

This article describes the MasPar MP-1 architecture, a
massively parallel SIMD (Single Instruction Multiple Data)
machine with the following key characteristics: scalable ar-
chitecture in terms of the number of processing elements, sys-
tem memory, and system communication bandwidth; “RISC-
like” instruction set design which leverages optimizing compiler
technology; adherence to industry standard floating point for-
mats, specifically VAXTM and IEEE floating point; and an
architectural design amenable to a VLSI implementation. The
architecture provides not only high computational capability,
but also a mesh and global interconnect style of communica-
tion.

The techniques and subsystems of the MP-1 are described
including the interconnection mechanisms. Companion papers
describe the software system and provide a description of the
hardware implementation.

1 Introduction

MasPar Computer Corporation has designed and implemented
a high performance, low.cost, massively parallel computing
system called the MP-1. The system works in a SIMD (Sin-
gle Instruction Multiple Data) fashion. Previous machines
with similar characteristics are the MPP[1], DAP|[4], Blitzen(2),
CM{3], DEC MPPI6], and the VBMP[5]. Unique characteris-
tics of the MP-1 architecture are the combination of: a scalable
architecture in terms of the number of processing elements, sys-
tem mernory, and system communication bandwidth; “RISC-
like” instruction set design that leverages optimizing compiler
technology; adherence to industry standard floating point de-
sign, specifically VAX and IEEE floating point; and an archi-
tectural design amenable to a VLSI implementation.

Figure 1 shows a block diagram of the MasPar system with
five major subsystems. The following briefly describes each of
the major components with a more detailed description later
in the paper:

The Array Control Unit (ACU) The ACU performs two
primary functions: either PE Array control or indepen-
dent program execution. The ACU controls the PE Ar-
ray by broadcasting all PE instructions. Independent
program execution is possible since it is & full control
processor capable of independent program execution.

CH2843-1/90/0000/0020$01.00 © 1990 IEEE

The Processor Element Array (PE Array) The PE Ar-
ray is the computational core of the machine. All in-
struction dispatch to the PE Array is from the ACU.

Communication Mechanisms The communication mecha-
nisms provide the following key capabilities:

o The X network for communication with neighboring
processors. All connections are on a 2-D mesh.

e The global router network permits random processor-
to-processor communication using a circuit-switched,
hierarchical crossbar communications network,

e Two global busses: a common bus on which the
ACU broadcasts instructions and data to all or se-
lected processors, and a logical OR-tree which con-
solidates status responses from all the processors
back to the ACU.

The UNIX® Subsystem (USS) Provides UNIX services to
the data parallel system. For example, all job manage-
ment and low speed network access (e.g. ethernet) is
performed by the USS.

The I/O Subsystem Supports high speed I/O performance.
A channel style architecture is used allowing overlapped
computation and I/0 operations.

2 Machine Computational Model

Based on the previous architecture block diagram, the system
can be accurately viewed as having two instruction streams,
the UNIX Subsystem (USS) and the ACU, and three locations
for data: the USS, the ACU, and the PE Array. In the SIMD
fashion, all PE instructions residein the ACU instruction mem-
ory.

Since two instruction streams are required for the system,
two basic programming approaches are possible and are both
are supported:

¢ One application code is automatically distributed across
the USS and the ACU with the data partitioned across
the USS, ACU, and PE Array. All interprocess commu-
nication is automatically handled by the compiler.

e Two application codes are provided, one for the USS,
and one for the ACU/PE Array where all communication
between the two processes is explicitly controlled by the
programmer.
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Common to both programming approaches are two differ-
ent interaction models: synchronous and asynchronous both
with architectural and software support. In the synchronous
model, either the USS or the ACU/PE Array is actively run-
ning at one instant. Similar to UNIX remote procedure calls
(RPC), a subroutine calling convention allows straight forward
control flow transfer between the two hardware processes.

In contrast, the asynchronous model allows both the USS
and ACU/PE Array o operate concurrently. Support for a
FORK/JOIN model are provided.

3 MP-1 Architecture

This section describes in more detail the basic architectural
subsystems including the basic instruction set model.

3.1 Array Control Unit (ACU)

The ACU, a custom processor, both executes instructions that
cause computation in the PE Array and executes instructions
that cause computation only in the ACU itself. The following
list describes the major architectural characteristics:

e Harvard style architecture with separate instruction and
data spaces.

e 32-bit, two address, load/store, simple instruction set

o 4 Gigabyte, virtual, instruction address space, using 4,096-
byte pages.

Table 1 shows the basic ACU instruction types where each
instruction uses one instruction word with a two address three
operand style format: src op dst — dst. In this load/store
style machine, all operations are only within the register set
with only load and store operations into memory. Instructions
typically execute in one or two clocks.

Instruction Types Examples

Memory: Load, Store

Logical: AND, OR, XOR

Arithmetic: ADD, SUB

Control: Branch, Jump to subroutine (JSR)

Table 1: ACU Instruction Set

The ACU has a microcoded implementation of this RISC
like instruction set due to the additional control requirements
of the PE Array. In the next section describing the PE Array,
PE instructions typically require more than one clock including
floating point instructions which are well suited to a microcode
implementation.

3.2 Processor Array

The processor array is the computational core. Each PE has
on-chip registers, and off-chip memory using a basic load/store
style instruction set design. During 2 computation, all PEs
execute the same instruction stream (which is broadcast by
_the ACU), unless they have been programmed to idle.
The basic PE components follow:
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Integer and Floating Point ALU Both the integer and fioat-

ing point unit share the computational PE core. Float-
ing point hardware is included for both 32 and 64 bit
floating point numbers capable of VAX D, F, and G for-
mats; and IEEE standard floating point. Further, both
big and little endian conventions are supported. All PE
calculations are done in a scalar fashion without pipeline
latency.

Communications Interface Three interfaces are provided:

glo-bal router connections, nearest neighbor connections,
and connections to global ACU signals. Section 3.4 con-
tains further details.

Register Set In contrast to typical processor architectures,
the PE register set can be addressed as bits, bytes, 16-
bit words, 32-bit words, or 64-bit words depending on the
PE instruction used. The current implementation has 40
32-bit registers. Both floating point and integer values
are stored in the register set.

Main Memory Each PE has a private data store with full
ECC (remember that only data is stored in the PEs; all
instructions are stored in the ACU).

Control Logic Minimal control logic is required in each PE
since the majority of the instruction decode logic is in the
ACU and shared by all PEs. The control unit performs
two primary functions: simple decode of ACU broadcast
microinstructions, and conditional instruction execution.
Conditional instruction execution allows individual pro-
cessors to decide based on internal data whether it should
execute the current instructjon.

The PE instruction set is nearly identical to the ACU in
that all instructions are two address, three operand instruc-
tions using a load/store model. All execution instructions (e.g.
add, sub, etc.) operate only out of the register set and only
load and store operations access memory. The following ta-
ble contains the basic PE instruction types and examples:

Instruction Types Examples

Memory: Lb, ST, LDX, STX
Logical: AND, OR, XOR
Integer: ADD, SUB, MUL, DIV

Floating Point:
Control:

FADD, FSUB, FSQRT
Turn PEs on/off

Table 2: PE Instruction Set

Different instructions are provided for both single (32-bit)
and double (64-bit) precision floating point numbers. For inte-
gers, different instructions are provided for 1, 8, 16, 32 and 64
bit calculations designed specifically to support high level com-
piled languages like Fortran and C (a more detailed discussion
of the compilers are provided in a companion paper).

Two very important instructions are LDX (load indirect)
and STX (store indirect) which allow PEs to simultaneously
access different memory locations. This capability allows im-

portant data structures like queues and look-up tables to be
used.

T T e T T = T "N

e




UNIX Subsystem (USS)

important aspect of the system is the use of an existing
puter system (specifically a VAXstation 3520 ULTRIX ™
kstation) that follows existing industry standards (e.g. X
iows, TCPIP, etc.). The USS provides a complete, net-
k and graphics based, software environment in which all
MasPar tools and utilities (e.g. .compilers) execute. Part
1e application executes as a conventional workstation appli-
on; most of the “operating system” functions are provided
:he workstation’s UNIX software.

Communication Mechanisms
: following sections describe the five major communications
chanisms. Included are descriptions of the programming
del and instructions.

.1 USS to ACU

ree different types of interactions occur between the UNIX
bsystem (USS) and the Array Control Unit (ACU) which
, three different types of hardware support. All are based
a standard bus interface (VME). The following describes
*h mechanism:

eues Hardware queues are provided which allows USS pro-
cesses to quickly interact with the process running on the
ACU. The programming model is similar to UNIX pipes
but with hardware assist.

ared Memory The shared memory mechanism overlaps
ACU memory addresses with USS memory addresses.
This provides a straight forward mechanism for processes
to share common data structures like file control blocks
etc.

VA A DMA mechanism is provided that permits fast bulk
data transfers without using programmed 1/0.

1.2 ACU to PE Array

o basic capabilities are required for data movement between
e ACU and PE Array: data distribution, DIST, and array
nsensus detection which uses a global OR, GOR. An example

age:

1ile (array.value > error_limit)
array_value = find_better_value();

In words, each PE gets a copy of the common error limit
slue and compares it to a PE specific data value. Then, all
Es put the logical result of the expression evaluation onto an
‘R tree allowing the ACU to decide if any PEs need to go
1rough the loop again.

4.3 PE Array: XNet

"Net communications provide all PEs with a direct connec-
jon to its eight nearest neighbors in 2 two dimensional mesh.
ipecifically, each PE is connected to its neighbors to the: North,
{ortheast, East, Southeast, South, Southwest, West, and North-
vest. Processors located on the physical edge of the array have
oroidal wrapped edge connections.
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Three besic instruction types are provided to use the near-
est neighbor connections:

XNET The XNET instruction moves an operand from source to
destination @ specified distance in all active PEs. The
instruction time is proportional to the distance times the
operand size since all communication is done using single
wire connections.

INETP The XNETP instruction is pipelined so thata collection
of PEs move an operand from source to destination over
a specified distance. However, the pattern of active and
inactive PEs is very important since active PEs fransmit
data and inactive PEs act as pipeline stages. The instruc-
tion time is proportional to the distance plus the operand
size due to its pipelined nature. Forexample if every 16th
PEin a row is active, the XNETP instruction could move
data between the active PEs providing a very high per-
formance non-blocking communication mechanism. This
mechanism is similar to the ideas proposed in 7.

XNETC The XNETC instruction is pipelined and is very simi-
lar to the XNETP instruction except that a copy of the
operand is left in all PEs acting as pipeline stages (e.g.
the inactive PEs). Again, the instruction time is propor-
tional to the distance plus the operand size.

3.4.4 PE Array: Global Router

The global router is a circuit switched style network organized
as a three stage hierarchy of crossbar switches. This mecha-
nism provides direct point to point bidirectional communica-
tions. The network diameter is 1/16 the number of PEs which
requires a minimum of 16 communication cycles to do a per-
mutation with all PEs. The basic instruction primatives are:

ropen open a connection to a destination PE

reend move data from the originator PE to the destination
PE

rfetch move data from the destination PE to the originator
PE

rclose terminate the connection

The best analogy for using this network is the telephone
system where people who want to make a call use the following
steps: :

1. People who want to make a call pick up their phone

2. Dial a phone number

3. If busy, hangup and try again later {go back to step one)
4. I connection completes, have a nice conversation

5. When call completes, hangup

The usage sequence for the MasPar router is as follows:

while (PEs_want_to_communicate) {
ropen
rsend
rfetch
reend




rclose

}

3.4.5 PE Array to I/O Subsystem

Since the global router provides high performance random PE
to'PE communication, the global router is also used to provide
a high performance communication mechanism into the I/0
subsystem. The interface is achieved by connecting the last
stage of the global router to an I/O device, the 1/O RAM
(described in section 3.5). The programming model is identical
to the model described for using the global router in section
34.4.

3.5 Array I/O System

Referring back to figure 1, the I/O subsystem uses the following
key components: the global router connection into the PE Ar-
ray (over 1 GB/sec), a large I/O RAM buffer (up to 256MB),
and a high speed (230MB/sec) data communications channel]
between peripheral devices, a bus for device control (not for
data movement). Using output as an example, the model for
using the I/O subsystem follows these steps:

1. Device is opened by the USS (all I/O devices are UNIX
controlled)

2. The ACU moves data into the /O RAM through the
global router.

3. Either the USS or an I/O Processor (I0P) schedules data
movement from the I/0 RAM to the device (e.g. Disk);
data through the MPIOC and control on the VME bus.

4. The USS is notified when the transaction is complete.

Note that all transactions from the I/0 RAM to external
1/0 systems can occur asynchronously from PE Array oper-
ations. This is a key attribute since data can move into the
1/0 RAM at speeds over 1 GB/sec then move at I/O device
speeds, typically in the tens of megabytes per second or less,
without effecting the performance of the PE Array. These
hardware mechanisms can support either typical synchronous
UNIX 1/O or newer (and faster) asynchronous 1/0 software
models.

4 Summary

A key attribute of the MP-1 system architecture is that the sys-
tem characteristics all are scalable. Specifically, as the perfor-
mance increases (more PE boards are added), the system mem-
ory increases, and the communications bandwidth increases.
Each PE board increase the system capability while keeping
performance, communication, and memory balanced. System
“bottlenecks” are not introduced as the number of processors
are increased.

The architectural subsystems have been designed so that
the various computational tasks are distributed to specialized
units. Examples include: the ACU is specialized for controlling
the PE Array, the PE is optimized for both floating point and
integer calculations. Further, hardware software tradeofls have
been made that leverage existing software technology. Key ex-
amples are both the ACU and PE instruction sets that closely
resemble current RISC style instruction sets. The advantage
in following this instruction set design is that complexity is
moved out of the hardware design and out of the microcode
design and into the compiler. Less complex hardware allows
both a faster and less expensive design. Further advantages
of moving the complexity into the compiler leverages optimiz-
ing compiler technology with the tremendous advantage of op-
timizing data placement, register allocation, and eliminating
unnecessary work.
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The Design of the MasPar MP-1:
A Cost Effective Massively Parallel Computer
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Abstract

CMOS VLSI and replication of components effectively,
y parallel computers can achieve extraordinary
ance at low cost. Key issues are how the processor and

are partitioned and replicated, and how interprocessor
jication and I/O are accomplished. This paper describes
gn and implementation of the MasPar MP-1, a general
massively parallel computer system that achieves peak
stion rates beyond a billion floating point operations per
yet is priced like 2 minicomputer.

Massively Parallel System

ely parallel computers use more than 1,000 processors 10
computational performance unachievable by conventional
sors [1,2,3]. The MasPar MP-1 system is scalable from
to 16,384 processors and its peak performance scales
¢ with the number of processors. A 16K processor system
s 30,000 MIPS peak performance where a representative
tion is a 32-bit integer add. In terms of peak floating point
mance, the 16K processor system delivers 1,500 MFLOPS
precision (32-bit) and 650 MELOPS double precision (64-
sing the average of add and multiply times.

ectively apply a high degree of parallelism to a single
ation, the problem data is spread across the processors.
processor computes on behalf of one or a few data elements
problem. This approach is called “data-level parallel” [4]
is effective for a broad range of compute-intensive
ations.

joning the computational effort is the key to high
rmance, and the simplest and most scalable method is data
lelism. The architecture of the MP-1 [5] is scalable in 2 way
sermits its computational power to be increased along two
the performance of each processor, and the number of
ssors. This flexibility is well matched to VLSI technology
, circuit densities continue to increase at a rapid rate. The
je nature of massively parallel systems protects the
ners software investment while providing a path to
sing performance in successive products [6].

se its architecture provides tremendous leverage, the MP-1
pentation is conservative in terms of circuit complexity,
i rules, IC geometry, clock rates, margins, and power
ation. A sufficiently high processor count reduces the need

to have an overly aggressive (and thus expensive)
implementation. Partitioning and replication make it possible to
use low cost, low power workstation technology to build very high
performance systems. Replication of key system elements happily
enables both high performance and low cost.

Array Control Unit

Because massively parallel systems focus on data parallelism, all
the processors can execute the same instruction stream. The
MP-1 has a single instruction stream multiple data (SIMD)
architecture that simplifies the highly replicated processors by
eliminating their instruction logic and instruction memory, and
thus saves millions of gates and hundreds of megabytes of
memory in the overall system. The processors in 2 SIMD system
are called processor elements (PEs) to indicate that they contain

only the data path of a processor.

The MP-1 array control unit (ACU) is 2 14 MIPS scalar
processor with a RISC-style instruction set and a demand-paged
instruction memory. The ACU feiches and decodes MP-1
instructions, computes addresses and scalar data values, issues
control signals to the PE array, and monitors the status of the PE
array. The ACU is implemented with a microcoded engine to
accommodate the needs of the PE array, but most of the scalar
ACU instructions execute in one 70 nsec clock. The ACU
occupies one printed circuit board.

Processor Array

The MP-1 processor array (figure 1) is configurable from 1 to 16
identical processor boards. Each processor board has 1,024

rocessor elements (PEs) and associated memory arranged as 64
PE clusters (PECs) of 16 PEs per cluster. The processors are
interconnected via the X-Net neighborhood mesh and the global
multistage crossbar router network.

The processor boards are approximately 14" by 19" and use a high
density connector to mate with a common backplane. A
processor board dissipates less than 50 watts; a full 16K PE array
and ACU dissipate less than 1,000 watts.

A PE cluster (figure 2) is composed of 16 PEs and 16 processor
memories (PMEM). The PEs are logically arranged as a 4 by 4
array for the X-Net two-dimensional mesh interconnection. Each
PE has a large internal register file shown in the figure as PREG.
Load and store instructions move data between PREG and
PMEM. The ACU broadcasts instructions and data to all PE
clusters and the PEs all contribute to an inclusive-OR reduction

CH2843-1/90/0000/0025$01.00 © 1990 IEEE
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MP-1 Family
Data-Parallel Computers

The MasPar MP-1 Family of data-parallel com-
puters makes the vast power of massive paral-
lelism affordable and practical for a wide range of
developers, scientists, and engineers.

Outperforming many supercomputers yet
priced like a minicomputer, MP-1 products pro-
vide a price/performance improvement of #p to a
bundredfold over conventional architectures.
Numerous innovations contribute to the MP-1
breakthroughs — full-custom VLSI silicon, mas-
sive component replication, dense packaging
technologies, and distributed memory and pro-
cessing elements. In addition, MP-1 capabilities
scale readily with customer needs and budget.

'The MP-1 Family achieves an equally dramatic
breakthrough in programmability. Its robust soft-
ware development environment provides unique
support for data-parallel programming. High-
level languages and a suite of advanced develop-
ment tools greatly facilitate the creation of

effective parallel programs and the porting of
existing applications. As a result, software de-
velopers can readily adopt an enduring parallel
programming paradigm to exploit the power of
massive parallelism as never before.

MP-1 products couple the advantages of this
powerful processing and programming environ-
ment with the utility of a workstation. The sys-
tems are based on the UNIX® operating system
and feature a graphical, interactive point-and-
select interface built on the X Window Systen™
standard. They function as single-user systems or
as networked computational resources. They are
ideal for departmental use.

Highlights

Massively parallel architecture. By employing
thousands of processors to compute data-inten-
sive problems, MP-1 computers provide users
with an exceptionally powerful and expandable
computing environment .

Quantum leap in price/performance. MP-1
computers deliver exceptional power and break-
through price/performance — as low as 330 per
MIP and $600 per Mflop in a fully configured
system.

MP 1200 Series System



(7 Scalable performance. The MP-1 system readily
scales to accommodate demands for increased
processing power, memory size and bandwidth,
I/0O bandwidth, and processor communications
— without requiring changes to application soft-
ware.

(] Family of products. Available in configurations
from 1,024 processors to 16,384 processors,
MP-1 systems present a wide range of price/per-
formance options: up to 30,000 MIPS and 1,500
Mflops.

Small footprint, low power. Occupying a
fraction of the floor space of traditional high-
performance computers, MP-1 systems fit into
an office environment without any special sup-
port. Depending on configuration, they use
standard 110-volt or 220-volt AC power.

(7 Unprecedented 1/0 capacity. A fully config-
ured MP-1 data-parallel computer can support
peak I/O rates of up to 230 megabytes per sec-
ond. With specially designed customer hard-
ware, the architecture can support data rates of
up to 1.5 gigabytes per second .

(3 Data Parallelism. The MP-1 Family achieves
remarkable performance through its ability to
operate on thousands of data elements in paral-
lel. This effective paradigm for using massive
parallelism simplifies the job of parallel pro-
gramming and provides enduring protection for
software.

3 Modern graphical programming environ-
ment. Robust, interactive, graphical software
tools — symbolic debuggers; visualizers of data,
and processor behavior; and optimizing compil-
ers — all enhance productivity for MP-1 applica-
tion developers.

('} Mainstream languages with data-parallel
extensions. MasPar™ has enhanced Fortran and
C with data-parallel facilities so that developers
can produce effective parallel programs in a sim-
plified manner. In addition, the MasPar Parallel
Application Language (MPL) affords direct pro-
gram control over the data-parallel hardware.
MPL code integrates easily with many existing
languages.

Industry-standard software. The familiar
UNIX operating system, the X Window System,
and other standard protocols like TCP/IP and
NFS;" provide a powerful context for users

and developers.

MP-1 Hardware
MP-1 architecture consists of four subsystems:

@ The Processor Element (PE) Array

¢ The Array Control Unit (ACU)

o A UNIX subsystem with standard I/O
@ A high-speed I/O subsystem

Working together transparently under the top-
level control of UNIX, these subsystems provide a
single, integrated computing environment for
users. Together, they supply a wide range of com-
putational power — from traditional serial process-
ing on the UNIX subsystem to massively parallel
computing at rates of up to 30,000 MIPS — while
ensuring efficient overall behavior.

Processor Element Array. The computational
heart of the MP-1 architecture is the PE Array. It
is the source of the MP-1 Family’s ability to oper-
ate on thousands of data elements in parallel.

Each PE in the array is a MasPar-designed, reg-
ister-based, load/store RISC processor with dedi-
cated data memory and execution logic. Each
processor operates at 1.8 MIPS (32-bit integer add)
and 90 Kflops (average of 32-bit floating point

PE ARRAY

data memory

processor
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multiply and add). The PEs operate on standard
integer data sizes of 1, 8, 16, 32, and 64 bits, and
standard floating point operands of 32 and 64 bits.
This capability produces highly efficient machine
utilization. Extensive use of CMOS VLSI allows
extremely dense packaging — 32 processors per
chip, with forty 32-bit registers per PE.

By operating in a single instruction multiple
data fashion (SIMD), thousands of PEs can work
on a single problem simultaneously. Each PE has
its own data memory and can share data with
other processors through a global communications
system. The PEs receive instructions from the
Array Control Unit.

MP-1 systems currently support PE arrays with
1,024 to 16,384 processor elements. Peak perfor-
mance ranges from 1,800 to 30,000 integer MIPS
(32-bit add) and from 94 to 1,500 single precision
Mflops (average of add and multiply). Double pre-
cision (64-bit) floating-point performance ranges
from 41 Mflops to 650 Mflops. The aggregate PE
Array data memory ranges from 16 to 256 mega-
bytes. Designed with a scalable architecture, the
MP-1 Family is positioned to exploit advances in
semiconductor technology to allow increases in
the number of PEs, PE processing power, or any
of several other dimensions of system perfor-
mance.

Array Control Unit. Highly focused on compu-

tation, the processor chips in the PE Array con-
sign to the Array Control Unit most control and
memory management functions ordinarily found
in conventional processors. The ACU controls the
operation of the PE Array as well as communica-
tions among the PEs and the rest of the MP-1 sys-
tem. A dedicated, programmable control proces-
sor, the ACU is the only place where instructions
are issued and decoded. This division of labor
allows for maximum efficiency.

At the heart of the ACU is a register-based,
load/store RISC processor designed by MasPar.
The unit contains its own separate data and instruc-
tion memories and has 4 gigabytes of demand-
paged virtual instruction memory, allowing it to
operate independently from the UNIX Subsystem
processor. Another independent functional unit -
the Memory Machine — performs PE Array load
and store operations while the ACU broadcasts
such processor instructions as add, subtract, multi-
ply, and divide to the PEs for execution.

Interprocessor Communications. Processor
communications can become the most important
determinant of performance in distributed-mem-
ory machines such as the MP-1. Accordingly,
MasPar provides three highly efficient mechanisms
for communicating with elements in the PE Array.
These are:



¢ ACU-PE Array communications
# X-Net nearest neighbor communications
¢ Global Router communications

Under the first mechanism, the ACU broadcasts
values to all processors in the array simultaneously
and performs global reductions on parallel data to
recover scalar values from the array. The second
mechanism, X-Net, supports high-speed data
movement to and from the eight nearest neighbors
of each PE. Useful for moving data arranged in a
uniform array, X-Net Communications operates at
a peak bandwidth of more than 24 gigabytes per
second in the largest MP-1 configuration.

The Global Router mechanism handles commu-
nications of arbitrary connections among proces-
sors within the PE array. By providing a
multi-stage hierarchical crossbar switch, the
Router concurrently establishes links, each of
which will enable any two processors to send or
fetch data. In an MP-1 system configured with
16,384 processors, this connection mechanism sup-
ports 1,024 simultaneous links and operates at an
aggregate bandwidth of 1.5 gigabytes per second.

UNIX Subsystem. A VAXstation™ 3520 manages
program execution, user interface, and network
communications for an MP-1 system. When there
is a need for massively parallel execution, it invokes
the ACU and PE Array. This scalar processor is
configured with two CPUs, runs ULTRIX]' Digital
Equipment Corporation’s UNIX implementation,
and includes Ethernet” hardware and TCP/ID,
NFS,and DECwindows" software, which is based
on the X Window System, Version 11. The subsys-
tem also features 16 megabytes of memory, an
eight-plane color frame buffer, and a range of stan-
dard I/O devices including a 19-inch 1280x1024 high-
resolution monitor, standard keyboard and three-button
mouse, a 332-megabyte SCSI 5-1/4-inch disk drive, and a
296-megabyte streaming cartridge tape. Options include
up to 16 megabytes of additional memory as well as more
disk storage, a 24-plane color frame buffer and such graph-
ics software as PHIGS, PEX, and GKS.

I/O Subsystem. The MP-1 Family provides a wide
range of I/O performance that ranges from stan-
dard workstation speeds to a 230 megabyte/sec 64
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bit channel (MPIOC), and then up to a maximum
of 1.5 gigabytes per second with special user-
designed hardware.

The MP-1 high-speed I/O subsystem utilizes
the same innovative technology that provides
global communications within the PE Array. It
performs massively parallel I/O with performance
that scales with configuration size. It provides sup-
port for high-performance disk arrays with mult-
ple gigabytes of storage, and is also designed to
support frame-buffer graphics systems, and such
external interfaces as FDDI and HPPI. The sub-
system’s open interface specification allows cus-
tomer access to the MP-1’s high-performance I/O
for interfacing of custom I/O devices that operate
at up to 1.5 gigabytes per second.

The MP-1 Family. The MP-1 Family consists of
two series: the MP 1100 and MP 1200 series. Both
series offer a range of performance, memory, /O
bandwidth, and processor communications. Both
utilize two cabinets: a data-parallel unit consisting
of the ACU, PE Array, PE Communications and
high-speed 1/0; and a UNIX subsystem consisting
of a VAXstation 3520 ULTRIX workstation.

The MP 1100 Series includes three configura-
tions, with 1,024, 2,048, or 4,096 processors.
Similar configurations ranging up to 16,384 pro-
cessors are available in the MP 1200 Series.

All members of the MP-1 Family have a foot-
print of less than seven square feet and fit into a



standard office environment. Running on 110 or
220 volt AC power, depending on configuration,
MP-1 computers need no special facilities.

MP-1 Software

While the MP-1 Family uses many interconnected
processing units to achieve high performance, it
features a single, integrated software environment.
Every element of this environment is geared to-
ward fostering the use of data parallelism as an
effective programming style.

Standards. Wide use of standards provides a famil-
iar setting for developing and running data-parallel
applications:

¢ Operating system. The MP-1 software en-
vironment is based on the UNIX operating sys-
tem. The choice of this standard as a foundation
gives MP-1 users access to hundreds of utilities
and applications.

» User interface. The MP-1 software environment
is built around the X Window System. This win-
dowing system allows MP-1 products to support
graphics standards. It is fully integrated with the
DECwindows System and supports access from X
Window terminals and workstations.

¢ Communications and networking. The MP-1
software environment supports the protocols
essential to a shared network environment. These

include Ethernet, TCP/IP, NFS, uucp, BSD net-

Network Computing Resource

MP-1
Data Parallel
Computer

Ethernet

X Window
Terminal

i ULTRIX VAX
Workstation

work services, and X Windows among others. MP-1
systems also accommodate users of DECnet.

» Languages. The MP-1 software environment
supports mainstream programming languages,
including ULTRIX C, and VAX Fortran. In addi-
tion, MasPar provides data-parallel programming
languages that are full adaptations of C and
Fortran.

MasPar has made several innovative con-
tributions to this familiar environment to provide
special support for data-parallel programming.
These include high-level programming languages
and their compilers, and a comprehensive suite of
development tools.

MasPar Languages. Built on the ANSI Fortran 77
standard language definition, MasPar Fortran
(MPF) provides facilities to program in a high-
level language and generate code for data-parallel
execution. Optimization occurs automatically; the
process is transparent. But for those developers
interested in fine-tuning applications, MasPar also
provides direct programming access to the data-
parallel hardware through the MasPar Parallel
Application Language (MPL).

MPF is based on the Fortran 77 ANSI standard
with parallel and array extensions from ANSI
Fortran 8X. The MPF optimizing compiler trans-
lates Fortran array and parallel code into opti-
mized data-parallel machine code for execution on
the PE Array. By integrating arrays into the lan-
guage and providing control structures, these addi-
tions enable MPF to support arrays as first-class
language elements. MPF allows a single program
to direct operations of the UNIX Subsystem, the
ACU and the PE Array as a single, seamless sys-
tem.

The MasPar Parallel Application Language
(MPL) provides the most direct form of access to
the ACU and PE Array. A high-level language
derived from C, MPL allows developers to explic-
itly control data placement and operations on the
PE Array from the ACU.

MPL is useful for adapting UNIX applications
for data-parallel execution in a simple, incremental
fashion. The conversion process involves recoding
parallel data structures and subroutines for data
manipulation while leaving the remainder of con-
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DATA VISUALIZER OF phinew
|= ]

phinew = phi + epsilon *
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Alregister 24)
int

Inxprac error
inyproc

epsilon

OPEN INSPECTOR WINDOW

FOLLOW POINTER

FREEZE INSPECTOR DISPLAY.

OPEN PE VIEW WINDOW
DO

c{ixpat(i), iypnt(i)) = value
70 continue
endif

¢ do'iterative sohition in MPL

count=0
error = 1.0d0

@ idum = copyout{count,xcount,4)
idum =-copyout{error,xerror,8)}
idum = capyout(v,xv,8)

————————— ——AlTtext~—
dpu_debug]
dpu_driver
dpu_userR|
ermo

...J{0x00013D18)

ermo

type addr value type addr value

value
phinew >=1.26

type {| addr value]

Breakpoint Manager
:LIN LED IGNORE COUNT:0
FUI -’ ENABLED IGNORE COUNTY G
LINE: 48 (N: mdtffm ENABLED IGNORE COUNT: 0

value = fnxprec*fnyproc / apoint

3
¢ array has been read in from DPU, set paint values

if{ fnproc .eq. 1024 } then
do 40 = 1, npoint
1@ afixpnt{i),iypnt(i}) = vatue
40 continue

{0x00013D70)
{real
512.0

MSD stdin/stdout
MPPE Error/Status Log

type §i addr Jvalue|

The MPPE Screen During a Debugging Session.

trol, user interface, and non-compute-intensive
code intact. The resulting MPL code integrates
with existing ULTRIX C or VAX Fortran pro-
grams through subroutine calls.

MasPar Programming Environment. Known as
MPPE;" this comprehensive set of development
tools provides tremendous assistance to program-
mers of data-parallel code. It brings unprecedented
ease-of-use to the process of programming, adapt-
ing and debugging large, compute-intensive, mas-
sively parallel applications.

MPPE provides a single context for software
development, integrating myriad steps into a fluid,
graphical process. It is an easily learned envi-
ronment, featuring an interactive, window-ori-
ented, point-and select interface. Built on the X
Window standard, it can be used from any net-
worked terminal or workstation that supports this
protocol.

The MPPE makes it easy to visualize, analyze
and optimize the behavior of MP-1 processors,
algorithms and data. The tools are used as code is
written or ported, edited, compiled, debugged, and
tuned. These tools include a symbolic debugger, a

machine animator, and data visualizers, among
others.

* Symbolic Debugger. A tool for examining and
controlling the execution of an application,
MasPar’s source-language symbolic debugger is
always available. Programmers experience no lag
while the debugger is loaded. Nor is there a need
to restart a program after a problem is encoun-
tered. The debugger offers incremental access to
program symbols as needed, with minimal startup
overhead, and it also debugs optimized output
from MasPar compilers without recompilation.

® Visualizers and Animators. The MPPE serves
to open graphical “windows” into the behavior of
large data structures and the processor array itself.
A machine animator lets developers watch hard-
ware activity during execution, providing immedi-
ate feedback on how well the program is utilizing
the PE Array. A data visualizer allows pro-
grammers to examine large data arrays and watch
data values change as the program executes.

Many other components of the MP-1 software
environment further enhance the effectiveness of



the MPPE. The MasPar compilers were designed
so the debugger can operate truthfully on opti-
mized code. The symbol tables were also designed
so that information for specific functions and sub-
routines can be retrieved incrementally. This fea-
ture provides greater efficiency by improving
debugger initialization speed.

The MP-1 Family...
For the *90s and Beyond

The MP-1 Family delivers a combination of assets
that is unique in massively parallel computing:

(1 Aggressive price/performance. MP-1 comput-
ers have set a new standard for the cost of both
integer and floating-point computation — $30
per MIPS and $600 per Mflop in the largest
MP-1 configuration.

1 Outstanding programmability. With its exten-
sive set of graphical tools, the MasPar Program-
ming Environment is designed to make data
parallelism an intuitive programming style.

MasPar Computer Corporation
749 North Mary Avenue
Sunnyvale, California 94086
408-736-3300

FAX: 408-736-9560

P1.006.0190

(7 Vast computational power. Its massively
parallel design allows the MP-1 Family to match
users’ needs. The MP-1 computational unit
ranges from 1,024 to 16,384 processors and
offers up to 30,000 MIPS and 1,500 Mflops.

(7 Long-term growth path. The MP-1 Family
architecture protects your investment through
its scalability to greater numbers of processors,
memory, and I/O to accommodate larger and
larger amounts of data.

[ Small footprint. An MP-1 system readily fits
into an office or lab setting. It uses 110- or 220-
volt power and requires no special cooling.

These features are packaged into network-accessi-
ble systems of exceptional utility. MP-1 systems
deliver high-performance computation in the
familiar context of industry-standard software and
an interactive, graphical point-and-select user
interface.

Together, these assets will make it easier to use
data-parallel computing to unlock new levels of
productivity and performance.
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